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Abstract

With this research we found that the Random Forest model we used significantly out-

performs the Decision Tree model. With improvements in prediction error metrics ranging

from 74% to 90% and that the R² and Variance Explained performances are on average

approximately 25.39% better than those of the Decision Tree model we used. We performed

an analysis on the trade-off between accuracy and interpretability within the Fast Moving

Consumer Goods industry. Using Walmart’s M5 Walmart Sales Forecasting data we aim

to optimize recommendation systems for the industry. While performing these models on

the data, the data was divided in different subgroups and their performance was quanti-

fied on measures such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)

and Coefficient of Determination (R²). Our analysis gives insight in interpretability of both

models and aims to choose the most suitable model for consumer goods recommendations in

the FMCG industry. The transparent structure of Decision Trees makes them valuable for

scenarios that require a clear understanding of model decisions. Despite the lower accuracy

of Decision Trees, they show a good fit to true values and explain a significant portion of the

variance of the target variable. Our results show that our Random Forest models shows com-

pared to our Decision Tree model better predictive accuracy, as mentioned approximately

25.39% in R² value and from 74% to 90% in error metrics. They come closer to the true

values and explain a larger proportion of the variance. However, their complexity creates

challenges in interpretability. Within the scope of this research we discuss their robustness

in capturing data patterns and their effectiveness in the dynamic FMCG industry.

Keywords— Machine Learning, FMCG (Fast Moving Consumer Goods) Industry, Decision Trees

(DT), Random Forests (RF), Predictive Analytics, Recommendation Systems, Model Interpretability,

Accuracy-Interpretability Trade-off, Data Analysis, M5 Walmart Sales Forecasting, Consumer Behavior

Prediction, Retail Analytics, Forecasting Models, Statistical Modeling, Business Intelligence
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1 Introduction

This research focuses on the importance of predictive recommendations for the Fast Moving

Consumers Goods (FMCG) industry. While performing this research we will explore the value

of using specific types of machine learning models. To be more specific the models that were used

during this research are Decision Trees and Random Forest. As Godoy (2022) confirms with his

research that organizations extensively employ demand forecasting models to proactively for-

mulate decisions pertaining to production, logistics, and inventories, anchoring these strategies

on anticipated customer behavior dynamics. And that this makes it easier and more insight-

ful for the companies within such an industry to determine the unit quantities to be acquired

or manufactured for via various process applications. This way organisations will for example

be able top coordinate resources and associated costs, establishing foundational parameters for

personnel allocation, machine utilization, raw material procurement, etc. (Godoy, 2022). Based

on this information, we can suggest that accuracy in forecasting sales is considered a crucial

factor, providing operational and decision-making advantages. With their research Tallaro et

al. (2019) support that the importance of sales estimations is big, especially for sectors as the

FMCG industry (Tallaro, et al., 2019).

In order to make a legitimate prediction and derive assumptions from it that are in turn

representative of the FMCG industry, the M5 Walmart Sales Forecasting dataset is deployed

while performing the analysis within this research.

With our research, we will quantify the impact of advanced machine learning techniques

on the precision of consumer goods recommendations within the Fast-Moving Consumer Goods

(FMCG) industry. We will analyze the performance trade-offs between Decision Trees and

Random Forests, using the M5 Walmart Sales Forecasting data. Our findings aid researchers

and practitioners in making informed decisions when selecting and designing models, showing

that carefully considering how complex a model is can lead to useful results that are still easy to

understand. This approach is not only scientifically robust but also holds academic significance

for its direct applicability in model selection.

By promoting methodological advances and transparency this study contributes to mana-

gerial relevance and provides useful insights for those who are in the chair of decision making in

the FMCG industry. This study analyses the strengths and weaknesses of Decision Trees and

Random Forests. By making the research methodology and data accessible, this study aims to

be generalizing and reproducible within the industry.

By using Decision Trees and Random Forests, this research aims to provide consumer goods

recommendations, particularly within the FMCG industry. Explaining what the models do

makes it more obvious on why using and comparing these two specific models. As we assume

that Decision trees provide interpretability by clarifying the predictive logic of the model, while

Random Forests provide greater accuracy by aggregating several Decision Trees. Both aspects

are valuable in order to understand consumer patterns better and can facilitate informed de-

cisions for the FMCG industry, which is confirmed with Tallaro et al. (2019) their research, they
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discuss the strategic importance of reliable forecasting in management decisions across different

markets and industries (Tallaro et al, 2019).

In current research on the usage of machine learning we find that Specific machine learning

methods like Decision Trees are very interesting for usage performing this research, but why?

Decision Trees, cited by Song and Ying (2015) are powerful statistical tools, they aim to sim-

plify complex input-target relationships and facilitate easy interpretation without the need for

distributional assumptions, among other advantages. They can deal well with skewed data and

robustly handle outliers (Song & Ying, 2015). Their flexibility and adaptability in using varied

subsets of features and decision rules are assumed to fit well with the dynamic FMCG industry

and are therefore explored within this research. Safavian and Landgrebe (1991) provide us with

the results from their paper on the usefulness of Decision Trees in other markets or industries.

For example, they discuss their effectiveness in various applications, such as radar signal classi-

fication and medical diagnosis, due to their ability to simplify complex decision-making processes

(Safavian & Landgrebe, 1991).

Academic research has explored that in the FMCG industry, Random Forests, known for

their classification accuracy and robust results, seamlessly manage complex data. Belgiu and

Drăguţ (2016) add to this with their research that the effectiveness of the Random Forest

classifier is influenced by the sample design and that the feature to measure variable importance

has found wide applications, including dimension reduction of hyper spectral data (Belgiu &

Drăguţ, 2016). However, for this paper the usage of Random Forest can therefore be valuable in

the way that not only highly accurate predictions can be provided but also variable importance

is a key measure in finding consumer preference patterns.

As previously introduced in this paper and as found in the existing literature, the usage of

these models and more specific the ability of these techniques to process data robustly and deal

with relevant variables can enhance sales forecasting. Thus the expected impact of machine

learning on future sales forecasting and demand can contribute significantly. Wu and Zheng

(2015) present with their research sales forecasting models using machine learning techniques

that outperform traditional models in predicting product demand, especially in volatile markets

with short life cycles such as fast fashion retail (Wu & Cheng, 2015). Furthermore, Tsoumakas

(2018) argues that machine-learning techniques, from simple approaches such as the moving

average and ensemble methods using various learning algorithms, offer efficiency and adaptability

for forecasting time series data compared to conventional statistical methods (Tsoumakas, 2018).

As a result, this paper aims to give insights into the trade-off between interpretability and

accuracy for different machine learning models for the prediction of sales performed for the

FMCG industry. The scope of the research are supervised machine learning models. And the

aim of this paper is to quantify the accuracy and interpretability trade-off comparing a Decision

Tree model and a Random Forest model. The paper focuses on the current state of literature on

machine learning methods used to predict FMCG sales. The paper covers both the mechanics of

classification and regression methods, as well as their respective advantages and disadvantages.

The following main research question and sub questions are therefore covered:
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”What is the trade-off between accuracy and interpretability for Decision Trees and Random

Forests in optimizing consumer goods recommendations using the M5 Walmart Sales Forecasting

data, and how does this trade-off vary based on the specific parameters and features used in each

method?”

Followed by the following sub-questions.

1. Will Decision Trees be more interpretable than Random Forests but may they sacrifice ac-

curacy in order to achieve this interpretability?

2. Will Random Forests be more accurate than Decision Trees but may they sacrifice inter-

pretability in order to achieve this accuracy?

3. For the FMCG industry, are Decision Trees be more useful than Random Forests in terms of

providing actionable insights into the factors driving consumer behavior?

4. In order to optimize the accuracy of consumer goods recommendations for the FMCG in-

dustry, is a hybrid approach that combines Decision Trees and Random Forests most effective?

Figure 1: Conceptual Research Framework
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This paper holds both academic relevance and yield practical implications. This work con-

tributes to the existing literature on using machine learning methods in the FMCG industry.

Furthermore, it advances the understanding of consumer preferences and patterns and the im-

plications of interpretability and accuracy. The conceptual framework presented in figure 1

shows us that steps that this research follows in finding the results and drawing the conclusions

and recommendations from these results. Also it shows us how we will come to the answer of

our main research question.

The main findings show that although Decision Trees offer significant interpretability and a

transparent approach to decision making, they generally lag behind Random Forests in terms of

predictive accuracy. Our Random Forest model, shows a 99,8% accuracy compared to a 85,5%

accuracy from our Decision Tree model. Overall, our findings show that the Random Forest

model significantly outperforms the Decision Tree model, with improvements in prediction error

metrics ranging from 74% to 90%. R² performances are on average approximately 25.39%

better than those of the Decision Tree model. This significant improvement marks the Random

Forest model’s ability to explain the variance in the data and its enhanced predictive accuracy.

Unfortunately they show us increased complexity and reduced interpretability. With this paper

we tried to quantify this trade-off and offer a nuanced understanding of the implications of

choosing one method over another. During this research the importance of tailoring model

selection to the specific goals and constraints of the FMCG industry was one of the main focuses.
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2 Literature review

This section explores related literature, starting with the advances and disadvantages of the

application of Decision Tree methods. The following section concludes with the explanation of

the application of Decision Trees and Random Forest in the FMCG industry and discusses the

advantages as well as the disadvantages. Next, the review analyzes previous findings regarding

the effectiveness of the application of Decision Tree and Random Forest models used for recom-

mendation in the FMCG industry and also discusses the gaps in the literature. By mentioning

the disadvantages of the application of both models in the FMCG industry in this part of the

paper we also give a slight introduction to the limitations of this research.

2.1 Decision Trees: interpretable but less accurate

Decision Trees provide a transparent and interpretable model that is essential in various decision-

making contexts, such as the FMCG industry. They represent decisions graphically, with nodes

indicating features, branches decision rules and leaves outcomes, simulating human cognitive

processes and providing a simple method for understanding data. However, while their simpli-

city, a term introduced by Wu et al. (2018), facilitate understanding and manual analysis of

predictions, they may come at the expense of accuracy due to challenges in capturing complex

relationships in data (Wu et al, 2018).

Figure 2: Graphical visualization of a Decision Tree (Izza et al., 2020)
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Decision Trees, cited by Song and Ying (2015) are considered powerful statistical tools,

simplify complex input-target relationships and facilitate easy interpretation without the need

for distributional assumptions, among other advantages. They can deal well with skewed data

and robustly handle outliers (Song & Ying, 2015). Which is of high value when the need and

want for predictions on a tight time schedule in a fast moving market such as the FMCG industry

is big. Assertive decision making is highly appreciated and effective in such an industry. By

applying a Decision Tree model decision makers can act fast on the results of the model even

though they are robust and not highly accurate. The graphical visualisation of a Decision Tree

model is relatively easy to interpret and shows you which way to walk in the decision making

process. Figure 2 shows us a decision with n=4 that the path to go to the prediction of value 1

is through x1=1, x2=0, x3=1 and x4=1 and it shows us that the outcome will be 1 whichever

path you will walk. In this Decision Tree we can see that the path you walk is important

and determining for the decision you will make. Safavian and Landgrebe (1991) discuss their

effectiveness in various applications, such as radar signal classification and medical diagnosis,

due to their ability to simplify complex decision-making processes (Safavian & Landgrebe, 1991).

Their flexibility and adaptability in using varied subsets of features and decision rules could fit

well with the dynamic FMCG industry, balancing accuracy and interpretability for effective,

actionable insights.

Existing literature has focused on improving the interpretability of Decision Trees through

various methods, including visualization, rule extraction and feature importance analysis. Craven

and Shavlik (1996) have attempted to interpret pre-trained models by constructing Decision

Trees to mimic the predictions of pre-built neural networks, without simplifying the network

itself (Craven & Shavlik, 1996). In the FMCG industry, where data can be voluminous and

multifaceted, the ability of Decision Trees to screen variables and select features is critical.

Moreover, their resilience to non linearity, as described by Rokach & Maimon (2014), enables

them to navigate the complexity of market trends and consumer behavior without affecting their

parameters (Rokach & Maimon, 2014).

2.2 Random Forests: accurate but less interpretable

Random Forests (RF), discussed by Breiman (2001), have established themselves as a model

of accuracy in numerous predictive domains by cleverly merging the predictive capabilities of

multiple Decision Trees through ensemble learning. Nevertheless, the complexity introduced

by this ensemble poses an observable interpretability challenge, hiding the clear distinction of

unique feature contributions and specific decision rules (Breiman, 2001). As this research will

look into the value of using ensemble methods like Random Forest over Decision because of their

complex structure. As Biau and Scornet (2016) argue with their research, that the fundamental

architecture of RF’s, particularly characterized by the ”divide and conquer” strategy - splitting

data, creating randomized tree predictors for each subset and then integrating these predictors

- merits attention due to its wide applicability and minimal requirements for parameter tuning,

thus securing its valued position among various prediction methodologies (Biau & Scornet, 2016).

Though, the applicability of Random Forest is very big and the use of them for predictions with

high accuracy it does not take away the fact that Random Forest is a black-box model which
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is not easy to interpret and might be more difficult to use for decision making and finding

underlying (consumer preference) patterns.

Random Forests, as described by Breiman (2001), aggregate multiple tree predictors, increas-

ing the generalization error as the forest expands. They show pronounced robustness against

noise and provide estimates for error, strength, correlation and variable importance (Breiman,

2001). Belgiu and Drăguţ (2016) add with their research that the effectiveness of the RF clas-

sifier is influenced by the sample design and that the feature to measure variable importance

has found wide applications, including dimension reduction of hyper spectral data (Belgiu &

Drăguţ, 2016). In the FMCG industry, Random Forests, known for their classification and re-

gression accuracy and robust results, seamlessly manage complex data, providing stakeholders

with highly accurate, reliable results. Decisions may be taken from these results but based on

what? This is something that needs to be further examined with additional analysis’s.

The ensemble nature of RF, as Breiman (2001) argues, reduces some of the limitations inher-

ent in single Decision Trees because predictions are generated by a joint effort of majority voting

or averaging across the ensemble. Consequently, the RF model, consisting of an amalgam of

classification or regression trees without pruning and developed via stochastic selections of train-

ing data samples and random feature selections, generally outperforms single-tree classifiers and

exhibits a competitive generalization error rate (Breiman, 2001). The methodological diversity,

particularly in dealing with predictions within the confines of small samples and multidimen-

sional spaces, underscores the extensive familiarity and application of Random Forest (RF) in

various fields. This methodological diversity and the previously pronounced advantage covering

the application of Random Forest is one of the reasons why we believe and examine the use of

a Random Forest model performing this research. However, on the other side while performing

this research we also see also recognition the complexity that RF adds to the interpretability of

models (Ghimire et al., 2012; Gislason et al., 2006; Han et al., 2015).

Figure 3: Visualization of Random Forest model application on a dataset - introducing the black
box in the process (Hatwell et al., 2020)

Challenges arising from the interpretability of RF models, is something we also see in other

industries and in the existing literature and is therefore something we need to consider for this

research as well. Breiman (2001) explains with his work that Random Forest in applications such
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as analyses of medical experiments where deciphering variable interactions is critical to predic-

tion accuracy, require innovative approaches to explaining how the algorithm works (Breiman,

2001). However, when put together in an ensemble, the ability for clear, coherent interpretation

is drastically reduced, categorizing RF models as ’black-box’ models and embodying a notable

sacrifice of interpretability in the pursuit of greater accuracy (Valente et al , 2021). The Random

Forest process as presented in Figure 3 shows us the so called Black Box Model which as the

name tells is a complex, for those who are unknown of machine learning algorithms, method

which they van not interpret. This may hinder the ease of interpreting the valuable and highly

accurate predictions which the model provides.

When we look into the complex dynamics of RF and DT and try to compare both models

based on the existing literature we can find, we see, as Sakar et al. (2016) argue in their

research, a clear trade-off between the superior predictive power that RF often exhibits and the

compromised interpretability , especially compared to simpler models such as DT (Sakar et al.,

2016). Their statement is something which is in line what we already thought and what we

will try take into account and figure out when we do want to apply it in the FMCG industry.

Sakar et al. (2016) also intersect with their research that the complex architecture developed

by RF might complicate coherent model interactions and decision-making processes, making

it more challenging to gain easily interpretable insights, especially in applications that require

transparent understanding (Sakar et al., 2016).

When evaluating RF against other machine learning classifiers, several studies have shown

notable differences between various facets, including the accuracy of the classification outcome,

the training time, and the robustness of the classifier under different training samples or research

areas (Belgium & Drăguţ, 2016 ;Gislason et al., 2006; Chan and Paelinckx, 2008; Vetrivel et

al., 2015). With Random Forest being an ensemble method which considers not only one tree

but a whole Forest of trees has high training time. Training time being high and the input data

set being of large size it might be that deploying Random Forest in the FMCG is not the best

model for gaining actionable insights in a short period of time and is therefore something we

also need to consider computing for this research. However, we can not turn our backs on the

fact that RF has consistently demonstrated commendable performance, especially with regard

to classification accuracy, compared to decision tree classifiers, Binary Hierarchical Classifier

(BHC), Linear Discriminant Analysis (LDA), and Artificial Neural Network (ANN) classifiers

(Ham et al ., 2005; Shang and Chisholm, 2014; Chan and Paelinckx, 2008). Which makes them

in our opinion interesting for research like ours.

Although RF’s are praised for their predictive accuracy, this section showed us that they

reveal a non-negotiable trade-off between accuracy and interpretability, burying the transparency

of decision-making processes and contributing under a complexity introduced by the ensemble

of Decision Trees (Breiman 2001). This section also showed us that rather, Decision Trees

illuminate clear, understandable decision paths, and possibly at the cost of reduced accuracy.

This includes not only a technical challenge, but also an ethical challenge for the responsible use

of machine learning in practice.
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2.3 Application of Decision Trees and Random Forest in the FMCG Industry

Existing literature shows us that multiple researchers have used these machine-learning tech-

niques to discern factors that influence consumer preferences, purchase decisions and brand

loyalty by revealing crucial variables and decision rules that determine consumer behavior, en-

abling targeted marketing initiatives and better product recommendations.

From existing literature we found that Wu and Zheng (2015) present sales forecasting mod-

els using machine learning techniques that outperform traditional models in predicting product

demand, especially in volatile markets with short life cycles such as fast fashion retail (Wu &

Cheng, 2015). Furthermore, Tsoumakas (2018) argues that machine-learning techniques, from

simple approaches such as the moving average and ensemble methods using various learning

algorithms, offer efficiency and adaptability for forecasting time series data compared to con-

ventional statistical methods (Tsoumakas, 2018). In FMCG, the ability of these techniques to

process data robustly and deal with relevant variables can enhance sales forecasting, thus the

expected impact of machine learning on future sales forecasting and demand can contribute sig-

nificantly. Working on this section we will study the applicability of machine learning methods

in the FMCG industry. With the use of the M5 Walmart Sales Forecasting dataset uses for this

research and being time series data use of the methods can provide benefits.

That is how we found that in exploration of the FMCG industry, specific characteristics

and challenges of the industry as well as the methods we use for analyzing are particularly

interesting. Nozari et al. (2022) serve as a crucial reference, discussing the symbiosis between

rapid technological developments and the resulting challenges within the industry. In particular,

the FMCG industry is praised for its adept and intelligent supply chain management, which

stems from the intrinsic requirement to produce and distribute goods quickly in accordance

with consumer demand (Nozari et al., 2022).

To look into the statement that Random Forest and Decision Tree methods might be ad-

vantageous existing literature of Tallaro et al. (2019) add to our research that the applicab-

ility of Machine Learning in optimizing inventory management and demand forecasting in the

FMCG industry (Tallaro et al., 2019). In contrast, Günesen et al. (2021) investigated cus-

tomer turnover prediction and retention within the FMCG industry using a mix of Machine

Learning algorithms, which provided insightful models for skillful marketing and operational

strategies amidst a fluctuating consumer base (Günesen et al., 2021). Panjwani et al. (2020)

offered a practical approach to predicting sales using DT and RF, with accuracy’s of 83.86%

and 81.21%, respectively, confirming their effectiveness in providing nuanced, actionable insights

into consumers’ buying patterns within the retail industry (Panjwani et al., 2020). This exist-

ing literature outlines a spectrum of Machine Learning applications within the FMCG industry

and provide a comprehensive perspective on how DT and RF provide actionable predictions in

consumer behavior. Which we can and need to take into account for our own research en the

corresponding results.

Using Decision Tree and Random Forest algorithms to analyze customer behavior, especially

in the dynamic world of retail and e-commerce, presents unique challenges and limitations. One
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critical limitation, identified by Kim et al. (2005), has to do with the methodology’s limitation

of analyzing only two data sets simultaneously, requiring a more complex, recursive approach for

analyzing three or more data sets. Moreover, the management of different data types, especially

the transition from continuous to discrete values, requires additional pre-processing steps, po-

tentially leading to information loss or additional analysis effort (Kim et al., 2005). In addition

to procedural and data management challenges, the intrinsic variability in consumer behavior,

especially in online shopping environments, requires consistent refinement and adaptation of

Decision Tree and Random Forest models to maintain their predictive accuracy and relevance

amid rapidly changing consumer behavior in the retail and e-commerce sectors.

2.4 Summary and Gaps in the Literature

From the literature section we found that Decision Trees offer interpretability but may come

at the expense of accuracy, while Random Forests offer high accuracy but may be less inter-

pretable. Decision Trees have proven useful in the rapidly changing consumer goods industry

for understanding consumer behavior. However, there is a gap in understanding the specific

industry contexts, data types and evaluation metrics that influence the trade-off between inter-

pretability and accuracy. With this research we therefore try to address these gaps by exploring

the optimal approach for consumer goods recommendations in the FMCG industry, we consider

the combination of Decision Trees and Random Forests by quantifying the trade of between

accuracy and interpretability of both methods.

In this research, we explore the roles and challenges of Decision Trees and Random Forests in

predictive modeling, particularly in the FMCG industry, based on existing literature in machine

learning algorithms.

Decision Trees and Random Forests, both rooted in tree-based methodologies, cater to differ-

ent aspects of predictive analysis. Decision Tree is famous for its simplicity and interpretability

(Song and Ying, 2015; Safavian and Landgrebe, 1991), while RF stands out for its high accur-

acy and robustness, especially with noisy data (Breiman, 2001; Belgiu Drăguţ, 2016). This

simplicity versus accuracy duality forms the foundation for discussions on their application in

domains like the FMCG industry, where transparency and precision are critical.

However, literature, including studies by Jadhav Channe (2016) and Craven Shavlik (1996),

points out that while DT’s interpretability aids decision-making, it may struggle with complex

data relationships. Conversely, RF, despite its competitive performance and ability to manage

complex data patterns, often appears as a ’black-box’ model, making it challenging to extract

interpretable insights (Wu et al., 2018).

In the FMCG industry, algorithms play a crucial role in exploring consumer behavior and

enhancing decision-making through sales forecasting and consumer behavior analysis. They ad-

dress data management challenges and rapidly changing consumer data effectively (Khade, 2016;

Kim et al., 2005). Nonetheless, both models’ advantages and shortcomings offer opportunities

for our current and future research.
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Consensus on interpretability versus accuracy of Decision Trees: In our literature review,

we find that Decision Trees are popular due to their high interpretability and user-friendliness.

They simplify complex datasets into understandable decision paths (Jadhav Channe, 2016;

Craven Shavlik, 1996), making the data more accessible and actionable. However, the same

simplicity that makes Decision Trees interpretable can limit their predictive performance. This

limitation becomes apparent when dealing with complex data that involves multidimensional

relationships, which Decision Trees tend to oversimplify. Therefore, while Decision Trees improve

interpretability, they may sacrifice accuracy in complex predictive tasks. This highlights the

trade-off between interpretability and accuracy when choosing data analysis models.

Consensus on accuracy versus interpretability of Random Forests: We found that the literat-

ure also converges to a consensus that emphasizes that Random Forests (RF) exhibit high levels

of accuracy and robustness, particularly when managing complex data and noise (Breiman,

2001). Yet this high accuracy often leads to a sacrifice of interpretability because Random

Forests, by using numerous Decision Trees and different node splitting rules, make deciphering

individual feature contributions or specific decision paths quite complicated. This duality of

increased accuracy and decreased interpretability confirms the statement.

Ambiguity in the application of Decision Trees in the FMCG industry: The statement sug-

gesting that DT may be more useful than RF in providing useful insights into factors determining

consumer behavior in the FMCG industry finds both support and possible disagreement in the

existing literature, we found. As Song and Wing (2015) discuss that Decision Trees interpretab-

ility can certainly provide a more direct and clear understanding of the importance of variables

and decision paths in consumer behavior, there is also evidence that RF, with its superior accur-

acy, can provide better predictive analytics for scenarios that require precision in predicting and

navigating complex consumer data (Song and Ying, 2015). Thus, while DT offers transparent

insights, it is not unequivocally established that they are categorically more useful than RF in

the FMCG industry.

In our literature review, we’ve identified significant gaps and limitations in existing research

on Decision Trees (DT) and Random Forests (RF), as well as opportunities for further investig-

ation.

• Application in Diverse Sectors: The literature predominantly focuses on the use of

these algorithms in the FMCG sector, leaving other sectors like finance or telecommunic-

ations underexplored. Research should extend to diverse industry contexts.

• Handling Diverse Data Types: Existing studies often overlook the effectiveness of DT

and RF with diverse data types, such as text and images, especially in scenarios involving

small and imbalanced datasets.

• Comprehensive Model Evaluation: While some evaluation of these models exists, it

lacks depth in terms of using various metrics and conducting benchmark comparisons with

alternative models. A more versatile evaluation approach is needed.
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• Implementation and Optimization Challenges: Implementing and optimizing DT

and RF can be challenging, particularly in context-specific applications. Scalability and

computational efficiency should be addressed.

• Interpretability Enhancement: Despite RF’s accuracy, its complexity can hinder in-

terpretability, particularly in critical areas like healthcare. Research should focus on im-

proving interpretability.

• Bias Mitigation and Fairness: There’s limited exploration of bias mitigation, fairness,

and the robustness and security of DT and RF against vulnerabilities.

• Real-World Deployment Challenges: Research should delve into the practical chal-

lenges of deploying DT and RF in real-world scenarios. Strategies for integrating these

models with emerging technologies and adapting to evolving consumer behavior need ex-

ploration.

In light of the identified gaps and limitations of the current literature, with our research we

are determined to help in the exploration to overcome these shortcomings, especially in the area

of applying Decision Trees and Random Forests algorithms in different sectors and diversified

data types. With the architecture of our research analysis we contribute to the exploration

and evaluation of these models across different data types, while also extending the evaluation

metrics and benchmarking strategies to give a as detailed an overview as possible of the model,

thereby increasing the reliability and applicability of the findings.

As we navigate you through these exploratory paths, the research will delve deeply into

challenges and strategies for real-world deployment that deploy Decision Tree and Random

Forest with emerging technologies. Hereby, creating a roadmap for navigating the dynamically

changing landscape of consumer behavior with advanced machine learning algorithms. The

contributions of this research not only being to elevate the academic aspect by addressing the

aforementioned gaps, but also pioneer new paths for the hands-on and ethical application of

Decision Tree and Random Forest across a spectrum of industries, data types and real-world

scenarios, strengthening its centrality in both the academic and practical worlds.
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3 Data

3.1 Introduction to M5 Walmart Sales Forecasting Data

The M5 Walmart Sales Forecasting data, a very comprehensive collection of sales and product

data employed in this study, originates from Walmart, which is pivotal for representing the

FMCG industry. Leveraging historical sales data across a multitude of products and stores,

it serves as a real-world repository to explore and evaluate predictive model building, notably

through Decision Trees and Random Forests, in the context of consumer goods recommendations.

Which is the main reason why we used it for to perform our research. To introduce you to the

data set we explore the content. By giving you an insight into the data sets most relevant

content, the content which we will be using within our research, you get familiar with it.

In Figure 4 we see the time series of Walmart’s sales over across different stores in different

states over the range of the data set which starts on 29th of January 2011 and ends on 22nd of

April 2016 (Mathur, 2020).

Figure 4: The time series of sales across different stores over different states(Mathur, 2020).

3.2 Structural Composition

The M5Walmart Sales Forecasting dataset entails daily sales data spanning several years, provid-

ing a substantive chronological breadth to discern trends, cyclicality, and potential anomalies

pertinent to the FMCG industry. At its core, the dataset contains hierarchical categorizations

enveloping products, enabling nuanced insights into varied product categories, and contextual

factors. A lot can be taken from the data set but within this research we will use the sales data

and let the other area’s of the dataset to rest. That is why we want to show you Figure 5 where

you can see the time series line chart of all the sales over the range of the data set.

While the M5 Walmart Sales Forecasting data provides a comprehensive foundation, it is

pivotal to acknowledge its constraints. Potential limitations such as missing data, outliers, or
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Figure 5: Time series line chart illustrating the long-term aggregated sales patterns(Mathur,
2020).

inherent biases should be critically evaluated to ascertain the robustness and generalizability of

the derived models and findings.

Understanding temporal dynamics is important to understand seasonalities, trends, and

other temporal associations within the FMCG sales. The extended duration of the dataset

facilitates an in-depth temporal analysis, pivotal for training and testing predictive models, and

understanding the chronological evolution of consumer purchasing behaviors. This is why we

consider the data set of high value for the performance of our models. In our analysis we do not

take into account all the variables, one of our variables of interest is the category ID variable

(cat id). The Department Id shows us the different categories within a department and that is

why we want to show you Figure 6, in which you see a bar chart of the sales distribution across

various categories over time.

3.3 Explanatory Variables and External Factors

The dataset is enriched with additional variables, such as prices, promotional events, and po-

tentially correlated external factors, that can be instrumental in understanding and modeling

the intricate dynamics of sales data. By analyzing how external factors (e.g., holidays, seasons)

impact sales trends, and incorporating these insights into predictive models, provides a holistic

understanding of multiple influences affecting purchasing behaviors (Mathur, 2020).

3.4 Data Pre-Processing

3.4.1 Data set

For our research we did not made use of all the available data sets. For the analysis in R we

used the train validation data set. The pre-processing of the data was not needed since the data

was cleaned already. For example, NA values were already removed. From this train validation
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Figure 6: Stacked bar chart illustrating the sales time series across various store departments
over time, per state(Mathur, 2020).

data set we took a smaller sample to work with.

3.4.2 Subset

To be more specific we kept all of the 30.490 the observations from this data set but we removed

a few variables from the data. For example we removed, ‘id‘, ‘item id‘, ‘dept id‘, ‘store id‘,

‘sate id‘ and we kept ‘cat id‘. Since we want to observe the overall sales in a specific category

of Walmart’s department and are not interested in which ID, Item ID, Department ID, Store

ID or State ID have an influence on predicting our target variable we left them out. We did

however used the whole time range and therefore created a data set which contains the ‘cat id‘

variable and the day variables ranging from d1 to d1912.

3.4.3 Target Variable

Our target variable, or our variable of interest is the sum variable. The sum variable we created

by computing the sum of all the sales over the 1.912 for each observation within a specific

product category. The sum variables ranges from 10 items to 250.502 items sold over the whole

time period.

3.5 Subgroups

In order to quantify the trade-off as we aim to answer our research question we divided the

dataset into ten subgroups. The ten subgroups where composed in random order and without

repetition. Then we trained ten individual Decision Tree models for each subgroup using R.

Next we will do the same for the Random Forest models. These models have the same features

and parameters as the default models in R. The ten subgroups will provide ten different packs

of results and therefore comparative material, which is crucial for quantifying the trade-off of

our models performances.
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4 Methodology

As we are interested in the sum of the sales over the specific time frame our target variable

is continuous. Given the quantitative aspect of the target, employed we employed regression

models to forecast the sum of sales variable accurately. Which we choose for because of the

capability of regression techniques to model and predict continuous outcomes, making them

suitable for performing our research analysis. For conducting our research we used a Decision

Tree model and a Random Forest model. Therefore, this section explains the choice behind

the preference for regression analysis, specifically through the use of Decision Tree and Random

Forest Regression models, to capture the intricate relationships between the features and the

continuous sales sum.

4.1 Decision Tree

The Decision Tree methodology, widely acclaimed for its versatility in predictive modeling,

ingeniously partitions the feature space into homogeneous regions, effectively facilitating nuanced

data classification and prediction (Song & Ying, 2015). In order to perform the Decision Tree

we used the standard Decision Tree model, which is further explained in A.

After deploying the DT on the M5 Walmart Sales Forecasting dataset. Parameter settings

and thresholds were set to default values so that the model, while application in this research,

not only identifies well-nuanced relationships between variables, but also remains robustly in-

terpretable to industry stakeholders. The resulting tree, attempts to strike a balance between

model interpretability and prediction accuracy, serving as a powerful tool for uncovering and

explaining the many factors that shape consumer behavior.

Applied to the M5 Walmart Sales Forecasting dataset, the Decision Tree methodology is well

suited for uncovering subtle relationships among variables that influence purchasing decisions

(Panjwani et al., 2020). The interpretability of the methodology proves crucial in the FMCG in-

dustry, where quick and informed decisions are critical to success. Here, understandable insights

derived from Decision Trees can enable decision makers to create targeted marketing strategies,

optimize inventory management and create personalized customer experiences (Tallaro et al.,

2019). However, the challenge of maintaining accuracy while maintaining interpretability re-

quires a strategic approach. By carefully tuning parameters during tree construction and ap-

plying pruning techniques after construction, making it possible to strike a balance between

predictive performance and interpretability.
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4.2 Random Forest

After performing our Decision Tree analysis we performed our Random Forest analysis on the

same train and test datasets, in order to get a mean prediction (regression) of the individual

trees. A more extensive explanation of Random Forest is explained in A.

4.2.1 Variable Importance and Feature Selection

One of the most compelling facets of the Random Forest algorithm pertains to its intrinsic

capability to perform feature selection. The process of selecting a feature subset of the original

feature set for tree-node split is described as randomization technique. To classify a new instance,

RF puts the new instance down each tree in the forest. Each tree provides a predicted label as a

vote for prediction. RF chooses the classification with the most votes (Gregorutti, et al., 2017).

The variable importance V I(xj) for the feature xj in a Random Forest is calculated as the

average reduction in accuracy of the model after permuting the feature’s values. For each tree

t in the forest, the difference in prediction error is computed before and after permuting xj .

This difference is summed over all instances in the out-of-bag (OOB) sample. The resulting

sums across all trees ntree are then averaged and normalized by the size of the OOB sample

|OOB|(Gregorutti, et al., 2017).

V I(xj) =
1

ntree

ntree∑
t=1

[ ∑
i∈OOB

I(yi = ht(xi))−
∑

i∈OOB

I(yi = ht(x
(j)
i ))

]
/|OOB|

Here, I is an indicator function that equals 1 when the predicted value ht(xi) equals the

true value yi, and 0 otherwise. The term x
(j)
i denotes the feature vector xi with the j-th feature

permuted.

When a VIM method is performed, each feature is designated with an importance score.

Thus a feature ranking can be obtained by ordering the importance scores (Gregorutti, et al.,

2017).

4.2.2 Model Optimization and Hyperparameter Tuning

Optimization of the Random Forest model entails the strategic tuning of hyperparameters. A

few pivotal hyperparameters include the number of trees B in the forest, the maximum depth

of trees, and the minimum samples per leaf (Breiman, 2001). Tuning is typically performed

via grid search or randomized search approaches, aiming to navigate the model towards its

optimal performance through the exploration of various hyperparameter combinations. Given

the substantial depth and intricacy of the M5 Walmart Sales Forecasting data, the research

entails tuning, ensuring that the resultant model is robustly aligned with the underlying data

distributions and interactions.

Further discussions in this subsection include a mix of practical applications, theoretical

intricacies and strategic considerations, interweaving Random Forest with the specificity of the

FMCG industry. Following the matching of algorithmic parameters to the data, the application
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of the Random Forest model to the M5 Walmart Sales Forecasting dataset reveals layers of

consumer behavior patterns and nuanced variable interactions, fostering an enriched, data-driven

decision-making environment within the FMCG industry.

4.3 Evaluation Metrics

To conclude our analysis and our research the evaluation and comparison of predictive models

are crucial steps to determine their efficacy and reliability. To achieve this, we computed four

statistical metrics, each designed to capture different aspects of model performance. These

metrics allow us to quantitatively assess and compare the accuracy and consistency of our

performing models. Further explanation on the evaluation metrics we used in our research to

compare the model performance can be found in A.

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are suitable for

evaluating the average error magnitude and the error distribution’s spread, respectively. While

MAE provides a straightforward measure of average prediction error, RMSE gives additional

weight to larger errors, making it particularly sensitive to outliers. This difference in sensitivity

makes them complementary metrics for assessing model performance (Hodson, 2022).

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

To give more insight in the models ability to explain the target variable, the Coefficient of

Determination, denoted as R2 metric offers insights into the proportion of the target variable’s

variance that the model accounts for. High R2 values indicate that the model explains a signific-

ant portion of the variance, suggesting a good fit to the observed data (Nakagawa & Schielzeth,

2013).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(3)

By analyzing these metrics in tandem, we can form a comprehensive view of model per-

formance, not only in terms of prediction accuracy but also in how well the models generalize

to new, unseen data. This multifaceted approach to model evaluation enables us to select the

most appropriate model for deployment in practical applications, ensuring both reliability and

robustness in predictive tasks.
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5 Analysis and Results

In the analysis and results section we will present to you the results and how we conducted

these results while performing this research. As previously mentioned we focused on quantifying

the accuracy and interpretability trade-off using Decision Tree and Random Forest methods. In

order to make consumer goods recommendations for the FMCG industry which we have as our

industry of interest we used the M5 Walmart Sales Forecasting data set.

5.1 Decision Tree Analysis and Results

First we applied the Decision Tree method to the dataset of interest. We did not make use of

all the variables in the data set but focused on only the relevant variables by selecting specific

columns from the dataset, including the ‘cat id‘ variable and a range of other features: columns

7 to 1920, which represent the days when the sales of the specific products were tracked. In

order to quantify the trade-off and as previously mentioned in the data section of this paper,

we divided the dataset into ten subgroups and training individual Decision Tree models for

each subgroup using the rpart package in R. These models adhere to the same features and

parameters as the Random Forest models.

The results from the Decision Tree analysis where processed into a table to make it more

clear. On first sight we found that the results and the performance of the Decision Tree model

were quite good and accurate. In order to compare the results and to gain more insight in

if these results and the model performance is actually good and reliable we computed model

performance scores. To be more specific we computed the MAE, RMSE and R². MAE and

RMSE values were comparable, underscoring the models’ ability to make predictions closely

aligned with actual values. Moreover, consistently high R² values affirmed that Decision Trees

effectively explained a substantial portion of the variance in the target variable. Also, we find

that the R² are surprisingly high, something we will study continuing this section.

We created table 1 which summarizes the performance of the Decision Tree model applied

to the 10 different subgroups of the dataset. Similar to the Random Forest analysis, the model’s

effectiveness in predicting the target variable is assessed using multiple metrics.
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Table 1: Decision Tree Results

Decision Tree Results

Subgroup MAE RMSE R2

1 1173.9 4109.3 0.52

2 1154.7 2521.9 0.79

3 1019.5 2029.9 0.83

4 1096.2 2289.2 0.81

5 1011.8 2079.3 0.81

6 1096.6 2316.6 0.77

7 1028.5 1798.5 0.85

8 1184.3 2850.6 0.77

9 1049.6 2056.3 0.82

10 1171.4 2781.4 0.80

Mean absolute error (MAE): MAE quantifies the average absolute differences between the

predicted and actual values. The MAE for the Decision Tree model across subgroups ranges

from 1011.8 to 1184.3, with subgroup 5 yielding the lowest MAE at 1011.8, indicating better

predictive accuracy. The MAE values are quite high and not as we hoped in performing this

analysis. However there are several possibilities on why these values are quite high for this

Decision Tree analysis which we need to consider. First of all, there might be overfitting in the

training data as they can create complex, deep trees that perfectly fit the training data but may

generalize poorly to new, unseen data. When considering the specific data set we used for this

research there is a possibility that Decision Trees might struggle with complex relationships in

the data.

RMSE (Root Mean Square Error): RMSE provides a measure of prediction error, with larger

errors being penalized more heavily than smaller ones. Within this analysis, RMSE values ranged

from 1798.5 to 4109.3. Subgroup 7 emerged with the lowest RMSE, valued at 1798.5, indicating

relatively accurate predictions and minimal error. For the RMSE applies the same explanation.

We hoped for lower values, but the high values might be caused by the possible overfitting

Decision Tree models are known for the data size and complexity. Also Decision Trees are more

sensitive to outliers and since outliers are not removed from the data set and might even be

added to the data set this can have a significant influence on the model performance scores. The

target variable being the sum of the product category over all the 1941 days and in large range

differs because of this.

Coefficient of Determination (R²): R² illustrates how well the model elucidates the variance

within the data, with higher values indicating a better fit. The values in the attached table

indicate that Subgroup 7 has the highest R² value at 0.85, meaning that the Decision Tree

model fully explains a significant portion of the variance in the data for this subgroup. When
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considering the relatively high values of MAE and RMSE for our Decision Tree model analysis

we were as mentioned before surprised that the R² is relatively high. And are positive to observe

this outcome of the model, since it means that the model is still quite good at predicting the

sum of products sold and the model does not under perform on this part. It also confirms the

previous explanation on the high values of MAE and RMSE since the target variable is the sum

and the range of the sum is large.

Based on the results of out Decision Tree analysis we found that it shows different predictive

performance across subgroups. And the results are surprising but therefore not less interesting.

Since the MAE and RMSE are showing us significantly inferior values, being quite high, but

on the other hand the R² showing us surprisingly high values which are more valuable since

the Decision Tree method is known for performing inferior in for example the are of overfitting

compared to other machine learning methods. Subgroup 5 achieved the lowest MAE, indicating

high predictive accuracy, while subgroup 7 showed the lowest RMSE and the highest R², indic-
ating high predictive accuracy and comprehensive explanatory power with respect to variance in

the data. The simplicity and interpretability of Decision Trees provide a transparent, intuitive

visualization of decision paths, distinguishing them from more complex models such as Random

Forests.

5.1.1 Interpretability of Decision Tree results

From our Decision Tree analysis we found the prediction values and provided the table to

demonstrate the model performance. However, with presenting the model performance metrics

we will be able to quantify the accuracy trade-off, but not the interpretability. In order to

gain insights from the model analysis and the results we need to focus on making the results

insightful and visual as well. That is why we provided the following Decision Tree graph in

R. The decision tree, as illustrated in Figure 7, presents an overview of the sales patterns

observed in the product dataset, based on different day-specific sales figures. The tree divides

the product data into distinct, homogeneous groups, each characterized by unique sales patterns

and averages.

In Figure 7 we can see that the root node provides an initial split based on the sales volume

of 48 units on day 1,260 (d1260 < 48), thereby mark the significance of this specific day in

distinguishing product sales trends. As the data set we used is a time series data set, we find

that the Decision Tree is slightly more difficult to interpret or on first sight needs a little bit of

additional explaining. The Decision Tree as we see it in Figure 7 is showing us the importance

of the variables presented in the data set. As assumed beforehand we will find that specific sales

days are important in the prediction of the target variable. The root node shows us that an

average sale of 2,331 units of a specific product, calculated over all 3,049 products, is moderately

popular within the analyzed time frame.

Subsequent nodes reveal further breakdowns in the analysis. The ’Yes’ child node, repres-

enting products with sales beneath the 48-unit threshold on day 1,260, taking into account all

products in the dataset, with a diminished sales average of 2,128 units. The accompanying

split criterion, d561 < 10, shows us that for when the sales on day 1,260 are indeed lower than
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Figure 7: Decision Tree Visualization discussing Product Sales Patterns.

48 items, that a new path might be considered and other days and sales volumes are of big

influence. Overall, it shows us the days we need to consider important in the prediction of the

sum of sales for a specific product category.

In contrast, the ’No’ child node represents only 6 products, with a greatly increased average

sales volume of 105,000 units. This sudden increase underscores the central role these products

play in the sales portfolio and potentially act as revenue pillars during the set period. And is

something we need to take into consideration for future research. Since the sudden increase of

these products is something we do not want to focus on or want to investigate while performing

this research. However, it is important to realize that the mentioned days in Figure 7 are of big

influence for the prediction of the sales quantity.

This decision tree framework provides crucial insights into the dynamics of product sales

within the dataset and marks potential avenues for broader research and strategic interventions,

particularly targeting critical days such as d561 and d1260, and the outstanding sales performance

of specific outliers. As mentioned in the previous paragraph, while performing this research and

analysing and interpreting these results we do not want to focus on the volumes but we do want

to focus on the importance of the variables which have a influence on the target variable. As can

be seen in Figure 7 there are some specific days which we consider important in the prediction

of our target variable. And we consider these variables important. As for the interpretability

of Figure 7 discussion might exist in how interpretable the results are. When focusing on the

importance of the variables which in this Decision Tree figure are the specific days, can this

discussion quickly be eliminated.

25



5.2 Random Forest Analysis and Results

For the second part of our analysis we applied a Random Forest method to the dataset. Same as

for the Decision Tree method we did not make use of all the variables in the data set but focused

on only the relevant variables by selecting specific columns from the dataset, including the ‘cat id‘

variable and a range of other features: columns 7 to 1,920, which represent the days when the

sales of the specific products were tracked. In order to quantify the trade-off and as previously

mentioned in the data section of this paper, we divided the dataset into ten subgroups and

training individual Random Forest models for each subgroup using the Random Forest package

in R. Random Forest models were subsequently trained on each subgroup individually, with

100 trees in each forest. These models have the same features and parameters as the Decision

Tree models. Approximately the same analysis was performed for the Random Forest models as

for the Decision Tree models, which is crucial for comparing the two model performances and

quantifying the trade-off between the two model outcomes.

As previously explained in the Decision Tree results section we analysed the model per-

formance in order to gain reliable insights from the models results. We also computed the

MAE, RMSE and R²for the Random Forest models. The results of the Random Forest analysis

consistently showed significant high predictive accuracy. We found that for all subgroups, the

Random Forest model consistently shows relatively low values for Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE), confirming that the model’s predictions consistently

approximated the true values. Moreover, the R² values consistently indicated that a significant

proportion of the variance in the target variable was explained by the Random Forest model.

To provide an insightful overview of the model performance values Table 2 summarizes the

metrics of the performance values of our Random Forest model applied to the 10 different

subgroups of the dataset.

Table 2: Random Forest Results

Random Forest Results

Subgroup MAE RMSE R2

1 135.6 534.9 0.99

2 134.2 628.1 0.99

3 154 1383.3 0.98

4 139.5 634.3 0.99

5 148.7 1430.3 0.98

6 138.7 726.7 0.99

7 125.3 419.4 0.99

8 127.3 504.2 0.99

9 135 608.1 0.99

10 135.5 656.4 0.99
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MAE measures the average absolute difference between the predicted values and the actual

values. And is for all subgroups, ranged from approximately 125.3 to 154. Lower MAE values

indicate better predictive accuracy, and subgroup 7 achieved the lowest MAE at 125.3. The low

values of MAE are positive and also expected since the Random Forest model handles overfitting,

outliers and data complexity better compared to Decision Tree. Still the results from the model

performance do surprise us and since they are not near 0 they need to be seriously considered

in interpreting the models predictions.

The RMSE is another measure of prediction error, with larger errors being more heavily

weighted. In this analysis, the RMSE ranges from about 419.4 to 1430.3. Subgroup 7 stands out

with the lowest RMSE of 419.4. Compared to the model performance results from the Decision

Tree model we see that our Random Forest model is performing better on MAE and RMSE.

With the prediction errors being lower we can say that the model is handling the data better

and might provide us with more reliable predictions. Hence we do need to take into account

that our Random Forest was expected to perform better on this area because the method is

simply handling overfitting, outliers and data complexity better and the function of the ensemble

methods is to process the previously mentioned areas better.

The R² value indicates how well the model explains the variance in the data. Values close to

1 indicate a strong fit. Subgroup 7 has the highest R² value of about 0.99, suggesting that the

model explains a significant portion of the variance in this subgroup. As expected our Random

Forest model explains predicts the target variable almost completely with the highest R² being

very close to 1. In all of the 10 subgroups the R² value is very high and very close to 1, which

indicates that our model is quite capable of handling the data and providing us with highly

accurate predictions. As previously mentioned, we do not want to focus on the results of the

predictive values our models provide us with, but the underlying patterns are more important

in recovering insights from the data and finding the variables that are important in predicting

the target variables.

In summary, we found from the results of out Random Forest analysis, that the model shows

strong predictive performance for all subgroups, with subgroup 7 consistently achieving the

lowest MAE, RMSE and the highest R2. This indicates that the model effectively captures the

underlying patterns in subgroup 7’s data, making it a notable subgroup for further analysis or

attention. However, it is crucial to recognize that although Random Forest excels in predictive

accuracy, interpretability poses a notable challenge.

5.2.1 Interpretability of Random Forest results

From our model performance results we can quantify the accuracy trade-off as we wanted and

we can also compare the model performance of both the Decision Tree and the Random Forest

model, but we can not compare the interpretability. Since, we want to provide consumer goods

recommendations for the FMCG industry we do need to gain insights from both models. In

the previous section on our Decision Tree analysis we interpreted the Decision Tree graph so

get an insight on which variables are responsible for the steps in the Decision Tree path. The

same we wanted to do for our Random Forest model. Since, interpreting a Black-Box model
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like Random Forest, choosing which method for interpretation is most relevant was a challenge.

However, as explained previously with our research we want to focus on giving insights in the

important variables for predicting the sales for specific products and we do not want to focus

on the sales volumes the prediction provides us with. In this paper the interpretation of our

Random Forest model is enriched by the inclusion of a variable importance plot in order to give

insights in which variables can be of more influence in prediction. The variable importance plot

is crucial in this context, particularly focusing on the permutation importance measure. This

approach, as introduced by Strobl et al. (2008), effectively demonstrates the significance of each

predictor by assessing the change in model accuracy following the random permutation of the

predictor’s values, thereby simulating its absence from the model (Strobl, et al., 2008).

In the following two Variable Importance Plots we can see the variables which are considered

important in predicting the target variable from our data set according to the results of our

Random Forest model. In Figure 8 we find the important features on a default of the Variable

Importance Plot, with other words, the top 1o most important variables for predicting our

target variable. And in Figure 9 we find the same top 10 important Features including cat id.

In the second Variable Importance Plot we added cat id because we wanted to compare the

importance of the product categories with the other important variables, and from here conclude

whether cat id is or is not important.

Figure 8: Feature Importance Plot for the 10 most important figures
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Figure 9: Feature Importance Plot for the 10 most important figures including Category ID

From the Variable Importance Plots in Figure 8 & 9 we can deduce that there is a consistent

day specific importance, cat id has lower significance compared to the specific days and that

there might be implications as well as strategy formulation.

Consistent Day-Specific Importance: From the Variable Importance Plot in Figure 8

we can see that there are specific days which have high importance in predicting the target

variable. After including the variable, cat id, in the feature importance analysis as can be seen

in Figure 9, the day-specific variables (d 10, d 9, d 5, d 6, d 561, d 8, d 553, d 1277, d 265, and

d 7) retain their high influence positions, suggesting that certain days are crucial to the model’s

predictive ability. The significant low value of importance for the variable cat id suggests that

is has very low predictive power in predicting the target variable and suggests that product

category (as expected beforehand) is not of importance compared to the specific days shown in

the plot in Figure 8. In Figure 8 we can see that d 561 has high importance in predicting the

target variable, which is interesting as we also saw in our Decision Tree graph that d 561 has a

significant position in the presented path. Day 561 might be a special day which can be of high

influence in driving consumer sales patterns for a specific product.

Lower Significance of cat id: As mentioned in the previous paragraph on specific days

importance from our Random Forest model we find it interesting that cat id emerges as a

remarkably less influential variable, indicating that product categorization identity may not be

a prominent determinant in deciphering the dynamics of sales sum within the observed dataset.

An remarkable result, but not less valuable in providing consumer goods recommendations when

considering that decision making does not have to focus deeply on product categories.

29



Implications and Strategy Formulation: From interpreting both plots, to be more

specific the plot in Figure 9 where the importance of cat id is taken into consideration, we

can suggests that sales in different product categories are similar, influenced by general factors

rather than specific elements per category. This observation supports the idea that general sales

strategies and promotional campaigns can be effective across categories. In light of this, a few

strategic additions and deeper analytical probes may provide further clarity and refinement in

deriving actionable insights:

• Category-Specific Analysis: Despite the lower overall importance, examining the im-

pact of cat id during certain periods or on crucial days can reveal category-specific dy-

namics or correlations with sales trends.

• Mixed-Effect Modeling: Exploring mixed-effects models can facilitate the capture of

overarching trends while accounting for variations within cat id.

• Category and Day Alignment: The strategic alignment of influencer days with product

category peaks can provide opportunities for optimizing marketing initiatives, inventory

management and customer engagement strategies.

• Inter-Category Correlations: Examining correlations in sales patterns between differ-

ent product categories during the identified critical days can provide interesting insights

into buying behavior or the dynamics of substitute and complementary products.

When taking into consideration the previous presented results and interpretation of our Ran-

dom Forest model and also from our Decision Tree model, we can see that the decrease in the

significance of cat id demonstrates that sales incentives are primarily driven by key days, re-

cognizing specific characteristics by category, especially during these days, can lead to a specific

(marketing) strategy. This strategy combines key predictive factors with detailed insights spe-

cific to each category. While variable importance plots are a valuable tool in predictive modeling,

they present certain limitations that warrant caution. One major disadvantage is their lack of

insight into underlying scientific truths and causal relationships. This limitation, rooted in the

shift from modeling surface or noise mechanisms to focusing on prediction (Efron, 2020), implies

that these plots might offer only a superficial understanding of the data, potentially overlooking

deeper, more stable relationships. Additionally, Efron (2020) states with his research, the reli-

ance on ephemeral relationships, as discuss by the emphasis on algorithmic behavior over data

generation models, raises concerns about the long-term relevance of the identified important

variables. This issue is further compounded in scenarios involving large datasets (high ’n’ and

’p’), where the complex behavior of algorithms may not be fully captured by variable import-

ance plots, potentially leading to oversimplified interpretations (Efron, 2020). Furthermore, this

approach’s potential misalignment with traditional scientific inquiry, which values a compre-

hensive understanding of the data’s origin and nature, underscores a significant gap in using

these plots for certain types of scientific research. In summary, while variable importance plots

provide valuable insights into the predictive algorithms, their limitations in conveying scientific

truths, handling complex data scenarios, and aligning with traditional scientific methods marks

the need for a careful and balanced application in predictive modeling.
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5.2.2 Comparing the Metrics

With our research we aimed to quantify the trade-off between accuracy and interpretability

for Decision Trees and Random Forest models in optimizing consumer goods recommendations.

Taken into account the different specific parameters and features used in each method. With

the application of both a Decision Tree model and a Random Forest model on our data set we

quantified the accuracy trade-off based on specific model performance metrics and we interpreted

both model predictions using innovative methods. In this part of the results section we will

compare the model performance metrics of both models and compare the interpretation of both

plots.

Decision Tree Model:

• MAE: Ranges from approximately 1011.8 to 1184.3 across subgroups.

• RMSE: Ranges from about 1798.6 to 4109.3.

• R2: Ranges from approximately 0.52 to 0.85.

Random Forest Model:

• MAE: Ranges from approximately 125.3 to 154 across subgroups.

• RMSE: Ranges from about 419.4 to 1430.3.

• R2: Ranges from approximately 0.98 to 0.99.

Firstly, we present a trade-off analysis between the two models:

Predictive Accuracy: The Random Forest model generally exhibits superior predictive ac-

curacy, as indicated by lower MAE and RMSE values across all subgroups. This underscores

Decision Trees capacity to make more precise predictions on average.

Model Complexity: Random Forests, being ensembles of Decision Trees, are inherently more

complex and less interpretable than individual Decision Trees, which might be preferable where

interpretability is crucial.

Explanation of Variance: Our Random Forest model show us a higher proportion of vari-

ance (higher R2) compared to our Decision Tree model, indicating a more profound grasp of the

underlying patterns in the data.

Consistency: Decision Trees may exhibit notable variability in performance between sub-

groups, while Random Forests tend to provide more consistent and stable results.

5.2.3 Quantifying the Trade-off

To reach for the main goal of this research which is quantifying the trade-off between accuracy

and interpretability of the Random Forest and Decision Tree models we used we need to com-

pare the metrics and take into consideration the interpretations we were able to extract from

the visualizations. Comparing the performance metrics of both models and summarizing the

differences of both models are shown in Table 3. We present a quantitative comparison between
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the Decision Tree and Random Forest models based on the differences and the percentage differ-

ences for each subgroup. First, we provide comparison’s of the metrics stand alone for Decision

Tree and Random Forest.

Mean Absolute Error (MAE) Comparison:

• Random Forest MAE Range: Approximately 125.3 to 154.

• Decision Tree MAE Range: Approximately 1011.8 to 1184.3.

• Quantitative Difference: The Random Forest model demonstrates significantly lower MAE

values, indicating markedly superior predictive accuracy.

Root Mean Squared Error (RMSE) Comparison:

• Random Forest RMSE Range: Approximately 419.4 to 1430.2.

• Decision Tree RMSE Range: Approximately 1798.6 to 4109.2.

• Quantitative Difference: Random Forests boast significantly lower RMSE values, signaling

predictions with substantially smaller errors.

Coefficient of Determination (R2):

• Random Forest R2 Range: Approximately 0.9792 to 0.9976.

• Decision Tree R2 Range: Approximately 0.5177 to 0.8548.

• Quantitative Difference: Random Forest consistently secures higher R2 values and variance

explained, delineating a superior explanation of the variance across all subgroups.

From these first comparisons of both model performances on their own we find that the

comparative analysis confirms the superiority of the Random Forest model in terms of predictive

accuracy and explained variance. The differences in MAE, RMSE and R2 are significant, with

the Random Forest model consistently providing more accurate and reliable predictions.

To provide a more quantitative comparison of the Decision Tree and Random Forest mod-

els based on the output values, we will present and discuss each metric in the context of its

implications for model performance in Table 3.

The MAE and RMSE differences we calculated by subtracting the RF results from the DT

results, which show the absolute improvement in error metrics by using RF over DT. A positive

difference indicates an improvement, and the percentages reflect how much the RF model has

improved relative to the DT model in terms of percentage. The negative differences in R² show

that RF has higher values than DT, which are closer to 1, indicating better model fit and more

variance explained by the RF model. The percentage differences for R² are significant, often

exceeding 70%, which indicates the superior performance of the RF model compared to the

DT model across all subgroups. The RF model consistently shows higher R² values, suggesting

that it is a better model for prediction in this context. Concluding with the findings that the

Random Forest model significantly outperforms the Decision Tree model, with improvements in
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Table 3: Comparison of Decision Tree and Random Forest Models
Sub-
group

MAE
(DT)

RMSE
(DT)

R² (DT) MAE
(RF)

RMSE
(RF)

R² (RF)

1 1038.3 3574.4 -0.47 88.45% 86.98% -90.38%
2 1020.5 1893.8 -0.20 88.38% 75.09% -25.32%
3 865.5 646.6 -0.15 84.89% 31.85% -18.07%
4 956.7 1654.9 -0.18 87.27% 72.29% -22.22%
5 863.1 649.0 -0.17 85.30% 31.21% -20.99%
6 957.9 1589.9 -0.22 87.35% 68.63% -28.57%
7 903.2 1379.1 -0.14 87.82% 76.68% -16.47%
8 1057.0 2346.4 -0.22 89.25% 82.31% -28.57%
9 914.6 1448.2 -0.17 87.14% 70.43% -20.73%
10 1035.9 2125.0 -0.19 88.43% 76.40% -23.75%

prediction error metrics ranging from 74% to 90%. Also concluding from the table, we find that

the R² performances are on average approximately 25.39% better than those of the Decision

Tree model. This significant improvement marks the Random Forest model’s ability to explain

the variance in the data and its enhanced predictive accuracy.

However, it is important to remember that the trade-off is not only about performance, but

also about model complexity and interpretability, with Decision Trees providing a simpler and

more interpretable model alternative. The choice between the two models should be determined

by specific objectives and the trade-offs the user is willing to make. It depends on which

decision needs to be taken and based on that information or requested insight, for which kind of

interpretation is desired. We are not able to quantify the interpretability of both Decision Tree

and Random Forest methods withing the scope of this research. However, we are able to gain a

valuable insight in which method might be more relevant for a specific issue.

5.3 Discussion

5.3.1 Predictive Performance

Looking at the results section of our study, we see that both models do not offer relatively easy-

to-interpret results. Both models give us a very accurate prediction of the target variable and

are therefore both of great value for making, in the case of this study, outlet predictions. Both

our Decision Tree model and Random Forest model show great predictive power in calculating

the target variable. The visualisations we have presented in this paper show that our Decision

Tree model shows an actual path in which different choices can be substantiated. Based on the

direction the relevant decision-maker wants to take in his decision, the Decision Tree provides a

visual justification therein and is thus in this case easier to interpret compared to the Random

Forest visualisation where innovative methods are needed to make the results insightful. Our

answers to both sub-questions 1 and 2 are therefore be yes.

1. Will Decision Trees be more interpretable than Random Forests but may they sacrifice

accuracy in order to achieve this interpretability? When performing a research like the one we

executed in this paper Decision Trees will sacrifice accuracy in order to be more interpretable.
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With not using ensemble method consisting of multiple trees or, for example, cross validation,

Decision Trees will always retain a disadvantage over Random Forest that do have this built in

on the accuracy topic. But they will most likely be the ones winning on interpretability.

2. Will Random Forests be more accurate than Decision Trees but may they sacrifice in-

terpretability in order to achieve this accuracy? The same discussion holds for Random Forest.

From our results we find that our Random Forest model performs better compared to our De-

cision Tree model. But we have to conclude that our model does sacrifice interpretability in

order to gain accuracy.

5.3.2 Insightful Interpretability

Based on the interpretability of the visualisations we have obtained and presented in this research

from our Decision Tree and Random Forest models, we need to choose which one can provide

the most valuable insight to the FMCG industry. If we look at specific questions that decision-

makers need to answer, it is a question that may be partly easier to answer. While carrying out

this research, we found out that the interpretability of the models is of great importance, but

also a piece of customisation for the specific issue. As we have focused on the FMCG industry,

consumer behaviour and therefore consumer preference should be high on our agenda. The

valuable insights we want to obtain must therefore focus on processes. Decision Trees offer us

an overview of the path that can be chosen to arrive at a final decision, indicating in it which

intermediate steps are chosen and thereby showing which variables are important in predicting

the target variable. In effect, they provide us with a consumer path.

3. For the FMCG industry, are Decision Trees be more useful than Random Forests in terms

of providing actionable insights into the factors driving consumer behavior? As explained in the

above paragraph we can conclude based on the results of this research that yes, specifically for

the FMCG industry we find that the interpretation we gain from the Decision Tree are more

insightful than the interpretation gained from our Random Forest Variable Importance Plot.

The biggest reason for this being that the Decision Tree shows us a model path for consumer

behaviour.

4. In order to optimize the accuracy of consumer goods recommendations for the FMCG

industry, is a hybrid approach that combines Decision Trees and Random Forests most effective?

For other research this recommendation might be of value, but the results of our models differ

to much from each other to combine them. This is why the answer to this sub-question is no.
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6 Concluding thoughts and Future Work

6.1 Conclusion

To conclude our research and to translate the results we found from our analysis into valuable

insights for the FMCG industry, we will present the conclusion of our research in this section.

Through answering the research question we formulated, which we used as a guide while con-

ducting our research, we will substantiate the concluding thoughts building on our research

findings and regale you with valuable insights that can be applied by decision-makers in the

FMCG industry.

When we look at the trade-off between accuracy and interpretability while employing De-

cision Trees and Random Forests for optimizing consumer goods recommendations utilizing the

M5 Walmart Sales Forecasting data, we see some significant differences. Random Forest per-

forms better than Decision Trees in predicting correctly, which we can tell from looking at the

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R2, and how much variance

they explain. Days like Day 10 (d 10) and Day 9 (d 9) really matter for predictions accord-

ing to the outcome of our Random Forest model. But the type of product, called Category

ID (cat id), doesn’t seem as important according to the Variable Importance(Figures 8 & 9).

Random Forest is more accurate but harder to understand, while Decision Tree is easier and

even maybe more insightful to interpret, but not as sharp in making predictions. The outcome

of our research is important for people who use these models but aren’t experts in the field

of machine learning applications and the interpretation of machine learning models. Choosing

whether to make use of a Decision Tree model or a Random Forest model depends on what you

need, who’s going to use it, and what for.

With the above, we have answered the first part of our research question, but this does not yet

answer the second part which relates to giving consumer goods recommendations and optimising

them through the use of machine learning methods such as Decision Tree and Random Forest.

Since the results of our research enable us to confirm parts of the existing literature but also

contribute to research on the application of machine learning models in the FMCG industry,

it has been of great academic interest and relevance. With our research, besides academic

relevance, we have also had a focus on optimising consumer goods recommendation and we

discuss how relatively ”complex” machine learning models can be applied for gaining insights

on a short-term or daily basis for decision makers, for example. As mentioned above, choosing

whether to make use of a Decision Tree model or a Random Forest model depends on what

you need, who’s going to use it, and what you are going to use it for. Many factors make it

important to choose a particular model, as just mentioned, many decision makers need short-

term insights or like to receive a daily update with advice on which approach is best. As a

result, not only accuracy of the model and prediction or interpretability must be considered,

but also, for example, the calculation speed of the model, the capacity of the model and more.

This is why a model like Decision Trees might be preferable, our results show that the prediction

accuracy does not under perform our Random Forest model that badly and the results of our

model are easy to interpret. What is beyond the scope of our study, but what can be named
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is that our Decision Tree model required significantly less computation time than our Random

Forest model and the model can be considered more advantageous in that respect if frequent

(daily) insights are desired.

To conclude the concluding section of this paper, we would like to elaborate on the results of

our models and outline what we can glean from them. From both the Decision Tree shown in 7

and the Variable Importance Plot shown in 8, we can see that specific days play an important role

in determining the value of the target variable. Thus, a number of days have great explanatory

power in determining the target variable and thus can be marked as days of interest if we want

to focus on consumer behaviour pattern/preference. To be specific, our results show that we can

consider the following days Day 561 and 1,260 (d561 and d1260) as relevant and can be presented

to decision makers. A possible advice for decision makers is to take a closer look at these days

and examine whether they hold a special date, holiday or other function that would allow them

to be marked as special and explain their predictive power. For example, when these days are

holidays, they can create special holiday campaigns and thereby underline themselves or certain

products even better. Or when they are weekend days, they can offer special deals to their

customers and thereby provide an extra service for their customers.

6.2 Implications and Future Work

6.2.1 Practical and Scholarly Implications

Our study looks at how Decision Trees and Random Forests balance being right versus being

easy to understand, which matters for business people and researchers. Businesses, especially

those selling quickly bought goods, need to think carefully about what they want from a model.

If they need to explain decisions easily, Decision Trees might be better. If they need the best

predictions, Random Forest could be the way to go. A major implication coming from the

usage of these methods for this research therefore is that no optimal combination can be found

for high accuracy and easy and insightful interpretation. For researchers, the study points out

an interesting area to look into: making a model that is both easy to explain and good at

predicting, a possibility for this need to be achieved is by for example combining Decision Tree

interpretation and Random Forest accuracy. However, this is beyond the scope of our research

and therefore an interesting are to focus on in future research. Combining both methods might

provide researchers and businessmen some very relevant insights.

6.2.2 Model Applications

Our research shows that whether you use Decision Trees or Random Forests the decision depends

on what you need them for. It is not only important to make a decision based on the preferred

output, but also it needs to be taken into consideration what you data looks like. For example,

the complexity of a data set is crucial for how the model is able to process it. Decision Tree are

at their best with categorical data and is for example less good with continuous variables and

imbalanced data sets. However, for clear, direct advice Decision Trees are the model you should

deploy. While Random Forest is better for getting the most accurate predictions they can let
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us down in gaining valuable insights and remain mysterious about their way or working and

computing. Overall we can say that Random Forest handle most of the data sets better than

Decision Trees can. In our research we encountered as well the problem that the performance

of Decision Trees is inferior which may be due to different reasons. As mentioned in the results

part is their under performance to blame because of overfitting, not handling outliers to well or

the fact that our dataset might be to complex. However, in our research we did not have the

capacity to dedicate additional research in order to figure this out. Which leaves an interesting

opportunity for future research.

6.2.3 Strategic Recommendations and Future-proofing Analytics

This study suggests that knowing which factors, like specific days, are important and under-

standing what each model does best should help people make better use of Decision Trees and

Random Forests models to deploy them better. Use Random Forest when you really need to get

things right, and Decision Tree when you need clear, useful advice. Looking into mixed models

that combine Decision Tree and Random Forest would have been a good idea for both current

use and is for sure an relevant topic for future research. It’s important to keep these models and

methods flexible and ready to change with new market trends, technology, and customer habits

to make sure they stay useful in the long run.

6.2.4 Robustness of Conclusions

An integrated approach might have been a wise move to test the robustness of these results:

engaging in cross-validation, which involves utilizing various folds and disparate data segments

to confirm the persistence of patterns in predictive accuracy and variable importance; initiating

a sensitivity analysis. Something we only performed partially with our analysis. Also, thereby

adjusting parameters and model assumptions to scrutinize whether the predictive power and

variable importance hold steady amidst the modifications; and, if feasible, conducting external

validation by applying the models on an alternate dataset to affirm their predictive capabilities

and consistency across differing contexts. Which is something we did not do within the scope

of our research. We choose not to add or deploy any of these robustness metrics in order to not

make our research too extensive. We wanted to focus on deploying our basic Decision Tree and

Random Forest model and the results we got from their analysis and compare their performance.

We wanted to create an umbrella overview of the function of them and we were not focusing on

optimising model performance or results. Of course, we do support the drive for future research

and admit that our research results might have been better if we did included them.

That is why we can conclude that this study’s findings about Decision Trees and Random

Forests are strong, but they need a close look, especially because of differences in key measures

like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R2, and how much they

explain. To make sure these results are solid, a few steps are key:

1. Cross-validation: This means testing the models with different parts of the data to see if

they still predict well and if the important factors stay the same.
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2. Sensitivity analysis: Change some settings and assumptions in the models to check if they

still work well and if the same things are important.

3. If possible, try the models on a different set of data to see if they still predict well in other

situations.

This paper’s conclusions about the balance between being easy to understand and being

accurate in Decision Trees and Random Forests needs careful checking. This includes making

sure the findings can be used in different situations and industries, not just where they were

first tested. It’s also important to compare these results with what other studies have found to

see if they match or add something new. Finally, it’s crucial to test how useful these findings

are in real-world situations, especially in businesses like those selling quickly bought goods, to

make sure the advice given is still relevant and effective.

6.3 Further Research

Looking into the future, there are many ways to build on this papers findings. One idea is to

use different ways of measuring how well models work to get a fuller picture of their strengths.

Exploring various combined models might help find the best mix of being easy to understand and

accurate, which could improve systems for suggesting products in businesses like those selling

quickly bought goods. Also, studying how to choose and combine different factors (feature

engineering and selection) might reveal new or better combinations for predictions. It would

be interesting to compare other machine learning methods, like Gradient Boosting or Neural

Networks, to see how they stack up. And testing these models in different industries, places,

or with different products would help understand how well they work in various situations and

what specific patterns or needs different industries have. This future research could not only

confirm what our research found but also add to the ongoing conversation about using machine

learning in business recommendation systems.
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A Appendix

This section gives an overview of the standard machine learning methods used in this

paper.

A.1 Decision Tree

Decision Trees, cited by Song and Ying (2015) are powerful statistical tools, they aim

to simplify complex input-target relationships and facilitate easy interpretation without

the need for distributional assumptions, among other advantages. They can deal well with

skewed data and robustly handle outliers (Song & Ying, 2015). The model’s genesis can be

attributed to the Recursive Partitioning Algorithm, where the feature space is repeatedly

bifurcated based on minimizing a defined criterion. Mathematically, the decision to split

a node is determined by identifying the feature, s, and the threshold, t, which collectively

minimize the impurity of resultant child nodes:

(s, t) = argmin
s,t

[
2∑

i=1

piH(Ri)

]
Here, pi symbolizes the proportion of samples in child node i, H represents the impurity

function, and Ri corresponds to the regions demarcated by the split on feature s and

threshold t.

In DT models, the impurity function, H, is pivotal in gauging the uniformity of a node.

For classification tasks, the Gini impurity is frequently employed, articulated as:

HGini(t) = 1−
c∑

i=1

p2i

While for regression tasks, the Mean Squared Error (MSE) typically acts as the impurity

measure, defined as:

HMSE(t) =
1

Nt

∑
i∈Dt

(yi − ȳt)
2

Where Nt is the number of samples in node t, Dt signifies the training samples in node t,

yi is the target for sample i, and ȳt is the average target over all samples in node t.

Post-construction, the tree is subjected to pruning, a crucial process aimed at mitigating

overfitting by algorithmically trimming branches that confer minimal predictive power.

Cost-complexity pruning, a popular variant, is defined by the cost-complexity criterion

Rα(T ):

Rα(T ) = R(T ) + α|T |

Where R(T ) measures the misclassification rate of tree T , |T | represents the number of

terminal nodes, and α serves as a complexity parameter, regulating the trade-off between

tree size and its goodness of fit to the data. The optimal tree size is generally determined

via cross-validation.
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A.2 Random Forest

Random Forest, proposed by Leo Breiman in 2001, operates by constructing a multitude

of Decision Trees at training time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees. Mathematical de-

tails and algorithmic specifics of Random Forest are embedded throughout this section,

with the aim of increasing understanding and providing a clear picture of the operational

mechanism.

A.2.1 Algorithmic Framework of Random Forest

The Random Forest algorithm is hinged upon the bootstrap aggregating (or bagging)

technique, which involves generating multiple bootstrap samples (subsets of data) and

then aggregating the results. Given a training set X = x1, x2, . . . , xn with responses Y =

y1, y2, . . . , yn, bagging repeatedly (B times) selects a random sample with replacement of

the dataset and fits trees to these samples:

(Tb, b = 1, . . . , B)

For b = 1, . . . , B:

•Sample, with replacement, n training examples from X,Y ; call these Xb, Yb.

•Train a classification or regression tree Tb on Xb, Yb.

After training, predictions for unseen samples x′ can be made by averaging the predictions

from all the individual regression trees on x′ or by taking a majority vote in the case of

classification trees.

f̂B
rf (x

′) =
1

B

B∑
b=1

f̂b(x
′)

where f̂B
rf (x

′) is the predicted response for sample x′ and f̂b(x
′) is the predicted response

from the bth Random Forest tree.

A.3 Evaluation metrics

To evaluate the performance of our Decision Tree model and our Random Forest model,

we employed several statistical metrics, each providing unique insights into the model’s

predictive accuracy and reliability. We computed the Mean Absolute Error (MAE), the

The Root Mean Squared Error (RMSE), The Coefficient of Determination, denoted as R2.

The Mean Absolute Error (MAE) measures the average magnitude of the errors in a set

of predictions, without considering their direction. It is calculated as the average of the

absolute differences between the predicted values and the actual values (Hodson, 2022).

The formula for MAE is:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)
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where yi represents the actual values, ŷi denotes the predicted values, and n is the number

of observations.

The Root Mean Squared Error (RMSE) provides a measure of the average magnitude of

the error, giving a higher weight to larger errors. This is particularly useful when large

errors are particularly undesirable. The RMSE is defined as the square root of the average

of squared differences between the predicted and actual values. The formula for RMSE is:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5)

The Coefficient of Determination, denoted as R2, quantifies the proportion of the vari-

ance in the dependent variable that is predictable from the independent variable(s). It

provides a measure of how well observed outcomes are replicated by the model (Nakagawa

& Schielzeth, 2013). The formula for R2 is:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(6)

where ȳ is the mean of the actual values.

Lastly, the Variance Explained complements the R2 metric by providing a direct inter-

pretation of the proportion of total variation in the dependent variable that is accounted

for by the model. It is essentially another way to express R2, and in many contexts, these

terms are used interchangeably.

By applying these metrics, we aim to provide a comprehensive assessment of our Decision

Tree model’s performance, focusing on its accuracy, reliability, and the extent to which it

captures the variance in the target variable.
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