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Abstract

This study addresses the challenge of forecasting cold-start promotional demand for an online

grocery retailer through the development and application of a contrastive regression model. The

research pursues four primary objectives: (i) developing an interpretable model for cold-start

promotions, (ii) comparing the model against baseline methods, (iii) extending its application

beyond cold-start scenarios, and (iv) applying the model to a real-life business case to enhance

the promotional demand forecasting process of Picnic, a leading e-grocery retailer. To achieve

these objectives, the study makes use of a contrastive framework that combines the CatBoost

algorithm with a k-nearest neighbor search, and extends this framework to accommodate hetero-

geneous feature data and inter-category training. Results indicate that the contrastive regression

model is on par with established baseline methods and largely outperforms Picnic’s manual fore-

casting process in terms of cold-start forecasting accuracy and computational effort, while also

providing additional post-hoc explainability of individual forecasts. Moreover, the model shows

potential to add value even beyond application on strictly cold-start promotions, showing super-

ior accuracy for at least the first three promotions of a grocery article. Application of the model

to Picnic’s business case suggests substantial potential to improve the forecasting operation,

reducing analyst workload while improving accuracy and still maintaining the ability to check

the rationale behind and reliability of forecasts. Overall, the study underlines the effectiveness

of the contrastive regression model in forecasting promotional demand for online grocery retail-

ers, offering actionable insights for (e-)grocery retailers, and contributing to the advancement

of forecasting methods that provide additional post-hoc explainability of the output. Further

research should primarily aim to improve the contrastive regressor’s training set-up and nearest

neighbor search, and explore the use of asymmetrical loss functions to decrease the level of un-

derforecasting and enhance practical added value in a grocery forecasting operation.

Keywords: Retail demand forecasting, cold-start forecasting, retail promotions, contrastive ex-

planations, interpretable machine learning, e-grocery, regression trees, nearest neighbour search
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Chapter 1

Introduction

Article demand forecasting in retail focuses on predicting how many articles need to be in store

at a certain moment to fulfill all customer demand. Muriana (2017) shows that in the grocery

retail sector particularly, computing an accurate demand forecast is crucial: sales rotation is

high (articles are only in stock for several days or weeks before they are sold) and a significant

share of articles is perishable, with shelf lives often less than a week. As a consequence, under-

forecasting immediately leads to unsatisfied customers, while overforecasting more than often

leads to overcrowded distribution channels and product waste (Christensen et al., 2021).

To complicate matters even more, grocery retailers frequently use promotion mechanisms

such as price discounts, highlighted displays and recipe showcases to increase customer demand

of a specific set of articles. This rise in demand leads to higher article sales, but also higher sales

of complements, lower sales of substitutes, purchase postponement, and stockpiling (Anderson

& Fox, 2019). Zhang and Wedel (2009) show that these effects can be even stronger for online

grocery retailers, as optimized displaying and personalization lead to higher effectiveness. This

disruption of the regular demand pattern caused by a promotion makes forecasting more complex

as promotional uplifts vary greatly among product categories, data on promotional periods

is sparse, and errors are magnified due to the increased sales volumes (Fildes et al., 2022).

Moreover, the consequences of forecast errors are more severe in times of promotions compared to

regular sales weeks: going out-of-stock for a successful promotion damages customer satisfaction

even more than usual, while unsuccessful promotions result in excess stock that is hard to sell

when sales levels return to baseline.

A widely used approach to model article demand during promotions considers a certain

baseline demand level for regular (non-promotion) periods, and then assumes the demand to

grow with a certain promotional uplift factor whenever an article is put in promotion (Blattberg

& Neslin, 1993). As the change of customer behaviour caused by a promotion, and hence the

resulting uplift, is very article-specific, the most intuitive way to forecast promotional demand

for an article is by looking at the uplift from historical promotions of that same article. Assum-

ing that the relation between promotion mechanism and resulting promotional uplift remains

stable over time, and assuming that the baseline demand level is known, then forecasting pro-

motional demand for an article is relatively straightforward. However, the problem becomes

more complicated when the article promotion is of the “cold-start” type, meaning that little

to no historical promotion data from that same article is available. In absence of this data, an
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alternative approach to forecasting demand for a cold-start article promotion is to use data on

similar historical promotions from other articles (e.g., involving an article that is from the same

category, or applying the same promotion mechanism). Similarity between the forecasted article

promotion and historical article promotions can be based on similarity in many variables, such

as product category, baseline demand, discount depth, regular selling price, time of the year, or

the way the promotion was showcased. Importance of each of these variables in defining sim-

ilarity between promotions differs strongly across markets and article categories, so a tailored

approach is likely to be needed. Furthermore, when historical promotion data of the article in

question is sparse or unreliable, it is hard to determine whether the resulting cold-start promo-

tional demand forecast is reasonable. As demand forecasts are often used to automatically order

new stock, it should be possible to somehow assess a forecast’s reliability and logic. Therefore,

methods that forecast demand for cold-start promotions should not only be accurate, but also

provide an interpretable form of reasoning or explanation behind the forecast. For example,

knowing which historical promotions were deemed similar and which variables were important

in calculating this similarity can help analysts determine whether a forecast can be trusted or

should be adjusted.

This research is done in cooperation with Picnic, a European e-grocery retailer that often

encounters the problem of cold-start promotional demand forecasting in their business operation.

Picnic sells their products solely via a dedicated online app and delivers orders directly at

the customer’s door. In order to prepare capacity along the whole distribution channel and

ensure suppliers have enough stock for an upcoming article promotion, promotional demand

forecasts at Picnic need to be computed at least five weeks ahead. However, the current article

demand forecasting process is not yet able to forecast promotional demand for this longer-

term horizon. Instead, promotional demand forecasts are computed manually by forecasting

analysts using data on historical promotions and business expertise. Although the error rate of

manual forecasting is on an acceptable level, automating the process is a high priority due to

the significant operational workload it causes. First initiatives focused on building a relatively

simple model that computes the forecast of an upcoming promotion as the average of historical

promotions from the same article. Performance of this approach shows to be good for frequent

and well-established article promotions, because many useful datapoints are available. However,

accuracy shows to be significantly worse for promotions involving new articles or less-established

discount mechanisms (i.e, article promotions of the “cold-start” type). Currently, Picnic does

not have a model that can provide an accurate demand forecast for these cold-start article

promotions. The requirements for such a model to be implemented in the business operation

of Picnic are twofold: not only should the forecasting error be low enough to give a reasonable

first indication of expected demand, but the rationale behind the forecasts should also be clear

such that analysts can challenge and potentially adjust unreliable forecasts.
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All the above leads to the following four main objectives of this research:

1. Develop a model that provides interpretable demand forecasts for cold-start

promotions. This involves designing a method that can handle the lack of historical

data associated with cold-start promotions and still compute an accurate forecast. To do

so, features that contribute to cold-start forecasting performance in an e-grocery setting

should be selected and their individual importance scores evaluated. Furthermore, a crucial

prerequisite of the model is to provide a certain level of interpretability of its intrinsic

decision making and final output.

2. Extend the application area of the model beyond strictly cold-start promotions.

To increase the applicability of the cold-start model, its use will be extended to forecasting

promotions for articles that have already been in promotion before. To evaluate the effect,

the performance of the model will be assessed for varying degrees of “coldness” (i.e. varying

amounts of historical promotions availabe from the same article).

3. Compare the developed model with baseline methods. The goal here is to compare

the cold-start forecasting model with established baseline methods to learn how they relate

in terms of forecasting performance, computational load, and interpretability of the output.

As a minimal requirement, the forecasting performance should be at least on par with,

but preferably higher than the current manual process at Picnic. The comparison is done

for different article categories to evaluate the model’s performance for various subsets of

the assortment and assess its applicability at Picnic.

4. Apply the developed model to an e-grocery business case. To assess the model’s

interpretability and ease of implementation, an example is shown of a real-life business

situation. The goal here is to have a concrete view on how the model can be used in

a regular forecasting operation, and to display its added value to e-grocery companies.

Additionally, this exercise aims at identifying areas of improvement for the model and

providing relevant managerial insights.
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Chapter 2

Literature review

2.1 Promotional demand forecasting in grocery retail

Forecasting demand during promotion periods in grocery retail has been the focus of numerous

academic papers in the past. First methods were based on the simple “base-times-lift” principle,

where promotional demand is calculated as the product of baseline demand and a certain uplift

factor: Chase (1994) described how estimating an assortment- or category-wide uplift factor

for weak, medium, or strong promotional effects can help to more accurately forecast customer

demand. This approach was improved by Cooper et al. (1999), introducing a 67-variable regres-

sion model that uses article-level data on average sales during historical promotions. Variables

included information about pricing, promotional events and level of display. Two prominent

limitation of their approach are the fact that the model can not forecast promotional demand

for new articles, and the forecast error increases when an existing article is promoted in a new

way (e.g., a new discount mechanism, or a different way of displaying the article).

Özden Gür Ali et al. (2009) provide a solid literature overview and evaluation of 30 differ-

ent methods for article demand forecasting during promotions in a grocery retail setting. The

methods vary in complexity of the model (simple exponential smoothing versus regression trees),

extensiveness of features (only recent sales and promotion data versus complex marketing fea-

tures), and level of aggregation (forecasting demand per store versus total aggregated demand).

They found that simple time series models perform well in regular, non-promotion weeks, but

regression trees with complex features outperform the more simple models during promotion

periods. Donselaar et al. (2016) compare moving average-based time series models with regres-

sion methods in forecasting promotion demand of perishable grocery items. They predict the

model target, in this case promotional uplift factor, based on features concerning price, pro-

motion mechanism, and baseline demand. They found the largest accuracy improvement after

distinguishing between “routine” categories (i.e. with a stable demand process and large number

of datapoints) and “non-routine” categories. More specifically, forecasting for routine categories

can best be done by regressing only on datapoints from the category itself, while forecasting for

non-routine categories benefits from also including datapoints from other categories. Ma et al.

(2016) developed a methodological framework to use both intra- and inter-category promotional

data to improve forecast accuracy of article-level promotional sales in retail, where main focus

was on dealing with the high dimensionality that this data usually displays. They conclude that
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95% of the accuracy improvement they achieved can be attributed to the intra-category data,

while only 5% was added by the inter-category data. More recently, Bojer et al. (2019) com-

pared several regularized regression methods with (ensembles of) decision trees in their ability

to accurately forecast company-level promotion demand with a four-week horizon. For articles

with historical information, XGBoost with category-level pooling and feature engineering shows

best performance. For articles with little to no relevant historical data they observe similar

forecast errors for all methods, with LASSO-regression slightly outperforming the others. As

an interesting area for further research they propose to explore whether the same results hold

for weekly-level sales, or for a different forecast horizon. Falatouri et al. (2022) compared the

performance of models based on Seasonal Autoregressive Integrated Moving Average (SARIMA)

and Long Short-Term Memory (LSTM) in forecasting demand of fruits and vegetables in gro-

cery retail. They found that LSTM performed better for articles with stable sales history, while

SARIMA outperforms for seasonal articles. Futhermore, including promotional data as an exo-

genous variable in SARIMA significantly improved forecasting accuracy.

2.2 Cold-start demand forecasting

The methods mentioned above naturally fail to provide accurate forecasts for cold-start pro-

motions, because they heavily rely on data from historical promotions from the same article.

With the occurrence of cold-start situations increasing and computational possibilities extend-

ing, literature has focused more on solving this problem of sparse historical data. Wen et

al. (2017) combined Sequence-to-Sequence Neural Networks, Quantile Regression and Direct

Multi-Horizon Forecasting in a powerful framework for probabilistic multi-step time series re-

gression; the method is successfully tested on a cold-start demand forecasting case for Amazon,

and outperformed well-established methods. Chauhan et al. (2020) introduced a modified Dy-

namic Key-Value Memory Network for cold-start forecasting of e-commerce sales, which was

based on the idea that a model can learn most from related articles, and outperformed con-

ventional LSTM by 25%. Dai and Huang (2021) introduced a cold-start forecasting approach

with new inter-article similarity measures and feature random search, building upon the idea

that similar articles have similar sales. They found that their method outperforms established

machine learning methods in predicting sales in the first months after product launch. Xu et

al. (2021) proposed a time series-aware Heterogenous Graph Attention Network that includes

a new Category-Property-Value feature, which also takes into account product characteristics

such as brand and category. Tests on an industrial sales dataset show that their method deems

effective. Fatemi et al. (2023) aknowledged that deep learning-based models do not naturally

capture causal relationships between dependent variables, and that Granger causality can be an

effective tool to help characterize these interdependencies. However, they rightfully state that

application of the Granger causality principle is difficult in cold-start forecasting problems where

historical data is sparse or absent. To solve this, they introduced the Cold Causal Demand Fore-

casting framework, which combines two main components to create a causal forecasting model

specifically for cold start problems: first a causal graph representing the cause-effect relation-

ships between variables, and second a forecasting structure consisting of Graph Neural Networks,
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Long Short-Term Memory Networks (LSTM), and a dense Neural Network that generates the

forecasts. Their method outperformed baseline methods such as standard LSTM and Graph

Neural Networks in forecasting cold-start network traffic for 200 Google services in several data-

centers. Although the framework uses a similarity-based approach to leverage historical data of

existing datacenters to forecast for new datacenters, it provides relatively little and hard to un-

derstand insights in which factors contributed to this datacenter similarity, and which variables

were predominant in generating the final forecast.

2.3 Interpretable machine learning

The above mentioned literature on cold-start forecasting all have the disadvantage of not provid-

ing an intuitive explanation of how the final forecast was computed. Especially more state-of-

the-art forecasting architectures involving a Neural Network, LSTM or Temporal Fusion Trans-

former (TFT) generally perform very well but lack direct interpretability of the output needed

to assess how reliable a cold-start forecast is. Linardatos et al. (2021) rightfully note that recent

surges in forecasting performance often involve making models more complex, turning them

into opaque “black box” systems and losing direct interpretability. This direct interpretability

of the model’s input data, importance of each feature, and underlying calculations is crucial for

analysts to intuitively understand, adjust and explain to others the final demand forecast. A

universal definition of the term “interpretability” in this sense does not exist and previous work

is not conclusive on the correct way to assess this. Lipton (2016) argues that the desire for

interpretability of a model arises when the direct objective of a learning algorithm (i.e. com-

puting accurate forecasts on unseen test data) does not fully cover the needs of the user. He

splits the term “interpretability” into transparency (how does the model work?) and post-hoc

explainability (besides the predictions, what else does the model tell me?), and argues that to-

gether with the evaluation metrics these two terms are essential to characterize a model. On the

other hand, Lipton warns that the aversion against opaque learning algorithms should not un-

justifiably hamper development of new methods that outperform simpler models, and suggests

that the need for interpretability is tested rigorously. Concerning post-hoc explainability, Miller

(2018) provides a framework based on contrastive explanations where the difference condition

forms the basis of the answer to the question: “Why did the model output P, rather than Q?”.

This contrastive approach shows to be an intuitive way of explaining the output of a regres-

sion model: it specifically elaborates on the information that helped the model differentiate

between P and Q, instead of focusing on the (often more trivial) question why the output is

in the neighborhood of P or Q in the first place. The added value of contrastive explanations

in interpreting model output is underlined by Jacovi et al. (2021), who proposed a method to

produce contrastive explanations for classification models by modifying model behavior to only

be based on contrastive reasoning. Moreover, the concept of contrastive explanations is partic-

ularly interesting for Picnic as well: forecasting analysts primarily base their prediction on the

observed demand of historical promotions, hence the current manual process heavily relies on

contrastive reasoning to compute a promotional forecast. The use of contrastive explanations is

therefore a familiar and widely accepted approach within Picnic.
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Finding an appropriate balance between direct, easy-to-understand post-hoc explainability

on one side, but also an acceptable error rate for cold-start forecasts on the other side, remains

a complicated topic to solve. A promising attempt to fill this gap is the research carried out

by Aguilar-Palacios et al. (2020) on interpretable cold-start promotional demand forecasting.

They proposed a method involving a gradient boosted decision tree (GBDT) algorithm that

can accurately forecast demand for cold-start article promotions, while in addition providing

interpretable contrastive explanations for each forecast. Their method is based on the idea of

finding historical promotions with similar promotional features, also called “neighbors”, and

then predicting the difference in promotional demand between those neighbors and the upcom-

ing promotion. As a first step, they train a GBDT to predict the difference in demand between

a pair of two promotions based on their promotional features. Second, they applied a greedy

k-nearest neighbors algorithm with weighted Euclidean distances to find the k most similar his-

torical promotions to an upcoming test promotion. The weights used in this distance calculation

are based on the feature importances from the trained GBDT. Lastly, the trained GBDT is used

to generate the final forecast of the upcoming promotion by leveraging the data of the k nearest

neighbors. Using the CatBoost algorithm as the GBDT in the contrastive regression framework

showed to give the lowest Mean Absolute Percentage Error (MAPE) out of all GBDTs, and was

only outperformed by direct regression using the Extremely Randomized Trees algorithm. One

of the limitations of their contrastive regression framework is the fact that it is not able to detect

upper outliers in a dataset of historical promotions (article promotions that had atypically high

sales), and therefore tends to overforecast. Furthermore, the regressor is solely trained on the

subset of historical promotions that are from the same category as the forecasted promotion,

ignoring any inter-category relations.

This research aims to extend and improve the contrastive regression framework as introduced

by Aguilar-Palacios et al. (2020), and implement it in an e-grocery setting to create direct

business impact for Picnic. First, an additional outlier detection step prior to model training

aims to exclude promotions with atypical sales by scaling for baseline sales and relative discount.

Second, a new feature on article category is introduced and the scope of model training is

extended to allow for leveraging inter-category information. Third, a different regression tree

algorithm, based on the principle of random forests instead of gradient boosting, is incorporated

in the contrastive regression framework with the goal of improving forecasting accuracy. Lastly,

a heterogeneous distance measure is implemented to allow for mixed-type data in the feature

space.
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Chapter 3

Methodology

This chapter lays out all the methodological steps used in this research. It starts by explaining

in more detail the contrastive regression model from Aguilar-Palacios et al. (2020) in Section

3.1. This model is the starting point for the proposed model extensions listed in Section 3.2.

Next, Section 3.3 gives an overview of the model target and potential features available in the

data. Section 3.4 then lists the candidate models proposed in this research and the procedure to

select the best out of these candidates. Lastly, Section 3.5 describes how the selected contrastive

regression model is evaluated and compared to baseline methods.

3.1 Contrastive Regressor base model

The starting point of the model proposed in this research is the contrastive regression model

introduced by Aguilar-Palacios et al. (2020), hereafter called the “base model”. Their model is

based on the idea that similar promotions (with similar explanatory variables) generate similar

demand. In the case of cold-start article promotions however, there is a lack of data on similar

historical promotions from the same article. As a solution, the contrastive regression framework

looks for historical promotions that are relatively similar to the upcoming cold-start promotion,

but also takes into account the differences in explanatory variables that might still be present.

This eventually leads to a cold-start promotional forecast that is accompanied with a contrastive

explanation. An example is: suppose we plan an upcoming ice cream promotion in summer

with 25% discount. We expect the demand to be lower than a historical ice cream promotion

during summer with 50% discount, because discount has a positive effect on article demand.

Furthermore, we expect the demand to be higher than a historical ice cream promotion during

winter with 25% discount, because temperature has a negative effect on the demand for ice

cream. The demand of the upcoming promotion is now defined in contrast to the demand of

these two similar historical promotions, and is likely to be somewhere in between. To facilitate

this, the GBDT algorithm is not trained on forecasting the demand of an upcoming promotion

directly, but it instead forecasts the difference in demand between the upcoming promotion and

similar historical promotions.

A general understanding of the five steps in the base model is crucial to understand the

rationale behind the extensions proposed in this paper, hence a brief overview of these steps is

given in this section. Figure 3.1 shows a visual representation of the base model. For a more
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detailed explanation, please consult Section 2 of the paper by Aguilar-Palacios et al. (2020).

Figure 3.1: Step 1 to 5 of the base model

Step 1: setting up the contrastive training set

The first step consists of setting up a contrastive training set Dext = (Xext,yext). The subscript

“ext” in the notation refers to the fact that this contrastive training set is an extended version of

the original dataset D. The observations in the contrastive training set are computed as follows:

we start with a dataset D = (X,y) with N observations, where each observation is a historical

promotion with q features in X and one response variable in y. Now, we select the first obser-

vation from D as the first reference promotion, denoted by (xref(1), yref(1)). Next, we randomly

draw another observation from D and call it the first “neighbor” of the first reference promotion,

denoted by (xneig(1,1), yneig(1,1)). This random drawing process is done under the restriction that

this neighbor promotion occurred prior to the reference promotion to preserve the time-structure

of the data. Now, the dependent variables of the first observation in the contrastive training

set consist of the promotional features of the reference as well as of the neighbor, resulting in

xext
1 = [xneig(1,1),xref(1)] with length 2q. The response variable of the first observation in the

contrastive training set is the difference between the demand of the reference promotion and the

corresponding neighbor, resulting in yext1 = yref(1) − yneig(1,1). For the first reference promotion,
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This drawing process is repeated k1 times to find k1 random neighbors, yielding the first k1

observations of the contrastive training set denoted by {(xext
1 , yext1 ), ..., (xext

k1
, yextk1

)}. The above

steps are repeated N times, where each of the promotions in D is used as a reference promotion,

eventually leading to the contrastive training set Dext with Nk1 observations. Note that in the

contrastive training set, the response variable (yexti for i = 1, ..., Nk1) does not represent article

demand directly, but the difference in article demand between a reference promotion and one of

its randomly selected neighbors.

Step 2: training the regressor and computing feature importances

As a second step, a Gradient Boosting Decision Tree (GBDT) algorithm is trained on the con-

trastive training set. In other words, we learn it to predict difference in demand between two

promotions (yext) based on their explanatory variables (Xext). After training the GBDT al-

gorithm, the feature importance vector v = [vneig,vref] is calculated. This vector has length

2q and contains the importance scores for the features belonging to the neighbor and reference,

respectively. For the GBDT algorithms in this research, the feature importances denote how

much on average the prediction changes if the feature value changes. They are therefore cal-

culated individually for each feature, and then normalized such that all feature importances

together add up to 100. The feature importance vector forms the basis of the weights that

are used later in the nearest neighbor search. To enhance direct interpretability and have one

importance score per explanatory variable, the separate vectors are added up when presenting

the feature importances to the user. This results in the more compact aggregated importance

vector v′ = vneig + vref with length q, which will also represent the weights later on.

Step 3: selecting the nearest neighbors

The third step evolves around selecting the nearest neighbors (most similar historical promo-

tions) for an upcoming test promotion (xtest, ytest). Note that ytest is the final target we want to

forecast, hence this value is unknown. For this test promotion, the contrastive test matrix Xext
test

needs to be computed by again finding neighbors. This time though, these neighbors are not

selected randomly, but chosen to be the k2 observations from the original dataset of historical

promotions D that are closest to the test promotion xtest. The base model in Aguilar-Palacios

et al. (2020) applies a weighted Euclidean distance measure to calculate the distance between

two promotions, where the weights are based on the feature importances v from the trained

GDBT. Finally, the features of the test promotion together with the features of the k2 nearest

neighbors are used to arrange the contrastive test matrix Xext
test.

Note that we can distinguish between a symmetrical and an asymmetrical approach for

leveraging the feature importance vector v = [vneig,vref] in the weighted distance calculation.

The symmetrical approach scales the features of the test promotion and the potential neighbor

both with the aggregated importance vector v′. The asymmetrical approach scales the features of

the test promotion with vref, and the features of the potential neighbor with vneig. This research

applies the symmetrical approach, as we choose the weights of the reference and neighbor to

affect the distance equally regardless of direction (i.e., regardless of which promotion is the

reference, and which is the neighbour).
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Step 4: computing the forecast

As a fourth step, each of the k2 rows in Xext
test is used seperately as input to the trained GBDT

from step 2 to forecast one of the elements in ŷext
test = [ŷext1 , ..., ŷextk2

]. These elements in ŷext
test

can be viewed as the forecasted differences in demand between the test promotion and each

of the k2 nearest neighbors, i.e. ŷextj = ŷtest(j) − ynn(j) for j = 1, ..., k2. Note that the actual

demand of the nearest neighbor ynn(j) is known, but the demand of the test promotion ytest(j)

obviously is not. To transform this back to a forecast of the demand of the test promotion, the

forecasted difference is added to the actual demand of the nearest neighbor. In other words,

we rewrite to ŷtest(j) = ynn(j) + ŷextj for j = 1, ..., k2, and we gather the resulting forecasts in

the vector ŷ = [ŷtest(1), ..., ŷtest(k2)]. This vector now contains k2 demand forecasts for the same

test promotion, but all using a different nearest neighbor as reference point. Lastly, the final

demand forecast of the test promotion ŷtest is computed by taking the weighted average of the

k2 different forecasts in ŷ, where the inverse of the distances to each nearest neighbor are used

as weights. Hence, we get for the final forecast

ŷtest =
w⊤ŷ

w⊤1
,

where 1 is a (1× k2) vector of ones, and w = [ 1
d1
, ..., 1

dk2
] with dj the distance between the test

promotion and the j-th nearest neighbor.

Step 5: forecast governance

The fifth and final step concerns verifying whether the demand forecast ŷtest is reasonable given

the demand of similar historical promotions. To do so, a modified z-score of the forecast is

computed with respect to the actual demand of the k nearest neighbors, given by

z =
0.6745|ŷtest −median(ynn)|

median(|ynn −median(ynn)|)
,

where ynn = [ynn(1), ..., ynn(k2)] is the vector containing the actual demand of the nearest neigh-

bors. All forecasts with a modified z-score above a threshold η are flagged as unreliable, and

should be reviewed and adjusted if necessary. This research uses η = 2.5, following the work by

Aguilar-Palacios et al. (2020) stating that this yields a relatively conservative governance check.

3.2 Proposed model extensions

This section outlines the four extensions applied to the base model from Section 3.1 that are

proposed in this research: an outlier detection method using baseline demand, an inter-category

training set-up, a decision tree algorithm with random selection of node splitting values, and a

heterogeneous distance measure for mixed-type data.

3.2.1 Outlier detection prior to model training

The base model is able to detect and remove a part of the lower outliers from the training set

by checking for promotions that were only active in a small number of stores or for a shorter
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period of time. However, it does not detect promotions that are deemed normal in the feature

space, but had an unusual amount of sales due to external factors that are not reflected in the

features. Failing to exclude these outliers from the training set can lead the model to learning

wrong relationships, resulting in higher risk of over- or underforecasting.

As an extension to the base model, this research introduces an additional step of outlier

detection and removal applied to the original dataset D prior to step 1 of the base model (setting

up the contrastive training set). The goal of this additional step is to have a standardized,

objective way of excluding both the lower and upper outlier promotions from the set of historical

promotions. To construct such a method, we first need to define when a historical promotion

is actually considered to have an unusual amount of sales. In our proposed outlier detection

method, this definition is computed using information on the baseline sales and relative discount

associated with the promotion. The method has two sequential steps, which are detailed below:

• Step 1: The first step aims at excluding promotions where the resulting sales was lower

than the baseline sales of the article, and where we assume this was caused by external

factors that are not captured by the model. To do so, we define the sales uplift associated

with a promotion as

sales uplift =
promotional sales

baseline sales
.

As a promotion is expected to have an incremental effect on sales, promotions with an

uplift below 1 are unreliable by definition. Reasons for an uplift below 1 could for example

be supply chain issues, technical issues in the store app, or unusually high baseline sales

in the period prior to the promotion. As we do not want the model to learn from these

observations, they are are called lower outliers and excluded from the training set first.

• Step 2: The second step aims at excluding promotions that are deemed normal in the

feature space, but had unusually little or many sales. To define a promotion with an

unusual amount of sales among a set of promotions, we introduce a concept called the

“discount-normalized lift” (DNL), which for a certain promotion is defined as

discount-normalized lift (DNL) =
sales uplift

relative discount
.

To illustrate why this concept helps in detecting outlier promotions, please consider the

simplified example in Table 3.1. All promotions A to H can be considered normal in the

part of the feature space that is span by relative discount and sale uplift, as for both

features we do not observe any extreme values. However, we do observe pairs of relative

discount and sales uplift that can be considered extreme when observed together, and the

DNL enables us to detect these. Promotion G has an unusually high sales uplift given the

low relative discount. This could for example be caused by an unanticipated newspaper

item about Picnic boosting sales during the promotion, or supply chain issues for substitute

articles. On the other hand, promotion H has an unusually low sales uplift given the high

relative discount. Possible reasons for this are similar to those mentioned earlier in step 1.
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Promo ID Relative discount Sales uplift Discount-normalized lift

A 0.20 4 20

B 0.25 6 24

C 0.50 11 22

D 0.15 3 20

E 0.20 5 25

F 0.50 9 18

G 0.20 11 55

H 0.50 3 6

Table 3.1: Example of outlier detection using discount-normalized lift (DNL).

Now that we have explained how promotions with an unusual amount of sales are found

using the DNL, we need to define upper and lower thresholds for the DNL that determine

whether a promotion is actually an outlier. To define these thresholds, we apply a method

based on the adjusted boxplot introduced by Hubert and Vandervieren (2008). They

propose an improved calculation of upper and lower outlier thresholds for skewed data

based on the distribution quartiles, interquartile range (IQR) and the medcouple (MC), a

univariate measure of skewness. These outlier thresholds account for possible skewness in

the distribution of the DNL, which is particularly relevant in this research since the sales

uplift (and as a consequence also the DNL) in the data are right-skewed (see Section 4.5).

For MC ≥ 0, the thresholds are

[Q1 − k · e−4MC · IQR;Q3 + k · e3MC · IQR],

and for MC < 0, the thresholds are

[Q1 − k · e−3MC · IQR;Q3 + k · e4MC · IQR],

where Qi is the i-th quartile of the data, MC is the medcouple, IQR = Q3 − Q1 is the

interquartile range, and k is a nonnegative constant determining the width of the interval.

Our outlier detection method applies k = 3, following the research by John Tukey stating

that datapoints beyond these thresholds are considered “far out”, yielding a conservative

detection method (Tukey (1977)). Lastly, it is important to take into account the large

differences in sales uplift between different subgroups of articles: while promotions for

frequently bought fresh items such as fruit and vegetables tend to have a lower sales uplift

of 2 to 5, the sales uplift for ambient items such as deodorant and laundry detergent can

easily rise above 10. To account for this, we define the above mentioned interval for each

subcategory separately, after which all article promotions from that subcategory with a

DNL outside this interval is marked as an outlier. These outliers will then be excluded

from the training set, concluding our outlier detection method.

Note that excluded promotions are always examined to learn potentially interesting patterns

that suggest the model can be improved (e.g., when one specific article within a subcategory

always has unusual promotional sales, or always suffers from supply chain issues).
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3.2.2 Inter-category training set-up

The base model is designed for “intra-category” application: it is trained on historical promotions

from only one article category, and can be used to forecast promotions from that same category.

As a consequence, the pool from which the model can select its nearest neighbors (dataset D
in step 1 of the base model) contains only historical promotions from a single article category,

and promotions from other categories can not be used to compute the forecast. This also means

that a separate model needs to be trained for each category. This poses two potential problems:

first, it could be the case that the upcoming test promotion is actually most similar to historical

promotions from outside its own category (e.g. when the specific combination of selling price

and relative discount associated with the test promotion is rarely observed in its own category,

and more common in other categories). By restricting to intra-category training, this inter-

category information can not be utilized. Second, the set of historical promotions can be small

or empty for categories that are new or have little promotions in general. When the forecasted

test promotion is from a category that suffers from this data scarcity, it could be useful for the

model to be able to resort to data from other categories.

As an extension to the base model, this research introduces an “inter-category” set-up. More

concretely, this means that the dataset D in step 1 of the base model contains article promotions

from all categories, and that one overarching model is trained that can be used to forecast

promotions from any category. The hypothesis is that intra-category information is still crucial

for the model (as was also argued by Ma et al. (2016)) and that the majority of test promotions

has the nearest neighbors in its own category, so we still want the model to somehow recognize

when two historical promotions are from the same category. This is facilitated by adding article

category as a feature to the model, hereby allowing this variable to be an explanatory factor

both in the internal regression tree and in the nearest neighbor search.

3.2.3 Random forest-based decision tree algorithm

An important component of the base model is the gradient boosted decision tree (GBDT)

algorithm that is trained to perform regression on the contrastive training set Dext in step 2, and

then used to forecast demand of an upcoming test promotion in step 4. Aguilar-Palacios et al.

(2020) evaluated performance of the contrastive regressor with different GBDT algorithms, and

concluded that the CatBoost-based contrastive regressor had superior forecasting performance.

CatBoost (Categorical Boosting) is a gradient boosting algorithm released by Yandex in 2017

that gained popularity due to its built-in categorical feature handling and high performance in

both classification and regression problems (Prokhorenkova et al. (2017)). It distinguishes itself

from other boosting algorithms such as XGBoost and LightGBM through three key innovations.

First, the trees in CatBoost are balanced due to symmetric node splitting, meaning that the

algorithm finds the best combination of feature & split value for a certain depth level, and than

splits all nodes from that level using this combination. This symmetrical structure, also called

“oblivious trees”, both increases computational efficiency and decreases the risk of overfitting.

Second, the algorithm applies internal target encoding, which uses the category-level averages

and probability distribution of the target to encode categorical features. As a result, the inherent

order of categorical features is preserved, and we have an effective training method that does not
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need one-hot encoding. Third, CatBoost combines this target encoding with a concept called

ordered boosting to prevent target leakage. Target leakage occurs because traditional target

encoding is applied using solely data from the training set. This can lead to a prediction shift,

because the conditional distribution of the target derived from the training set can be different

from what is observed in the test set. To overcome this, the training samples are randomly

permuted and an artificial ordering in the data is created, after which target encoding is applied

for each permutation seperately. This leads to a different encoding for each permutation (and

hence for each boosting iteration), preventing the tree from overfitting on the target encoding.

Despite the promising performance of the contrastive regressor based on CatBoost, which

even outperformed direct regression using CatBoost, Aguilar-Palacios et al. (2020) found that

contrastive regression was still outperformed by direct regression using the Extremely Random-

ized Trees (ERT) algorithm. Note that “direct regression” here means that an algorithm is

directly trained on dataset D, hence it regresses promotional demand (y) on promotional fea-

tures (x). This in contrast to the contrastive regressor, where the algorithm is trained on the

contrastive training set Dext and thus regresses difference in promotional demand on promo-

tional features of both reference and neighbor.

Following the promising results of direct regression using ERT, this research explores the

use of ERT within the contrastive framework as a possible improvement to the base model. In

contrast to the gradient boosting-based decision tree algorithms considered by Aguilar-Palacios

et al. (2020), ERT is a random forest-based algorithm. It was introduced by Geurts et al.

(2006) and is based on the same principles as traditional random forests, but with two key

differences: first, ERT does not apply resampling of observations when building the tree (i.e.

it does not perform bagging) but instead samples from the entire dataset. Second, ERT does

not directly select the best split out of a random subset of predictors, but it makes a small

number of randomly chosen cuts for each predictor and then selects the best split from these

cuts. The ensemble produced by ERT therefore yields trees that are less correlated, resulting

in lower variance with only a relatively small increase in bias (Geurts et al., 2006). For the

ERT algorithm in this research paper, we use the ExtraTrees implementation from the Scikit-

learn library (Pedregosa et al., 2011), with corresponding feature importances denoted as the

average accumulation of the impurity decrease within each fitted tree. As the ERT algorithm

does not accept non-numerical variables, the categorical variables in the feature space need to be

numerically encoded prior to training. In this research, the CatBoost encoder from the Scikit-

learn library is used to solve this problem. This encoding algorithm applies the same principles

of target encoding and ordered boosting as described earlier.

3.2.4 Heterogeneous distance measure

The base model uses the weighted Euclidean distance measure to calculate the distance between

two promotions, with the feature importance scores as weights. This distance measure can only

be used when the data is purely numerical or binary, but is not applicable for mixed-type data

that also contains categorical variables, date variables, or text.

As an adjustment to the base model, this research implements the concept of Gower’s sim-

ilarity to define the distance between two promotions (Gower, 1971). This hybrid similarity
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metric enables to measure similarity between two observations that consist of multiple data

types. Just as in the base model, the dimensions are weighted using the feature importance

scores from the regression tree algorithm. The resulting weighted Gower’s distance between two

promotions x1 and x2 is defined as:

D(x1, x2) = 1− S(x1, x2)

= 1−

(
1

p

p∑
j=1

wj · sj(x1, x2)

)

where S(x1, x2) =
1
p

∑p
j=1wj · sj(x1, x2) is Gower’s similarity between two promotions, p is the

number of features, wj is the weight of feature j, and sj(x1, x2) is the partial similarity function

for feature j. To correctly handle mixed-type data, Gower’s similarity applies a different partial

similarity function for each data type. In addition to the three partial similarity functions for

numerical, ordinal, and nominal variables that were originally introduced by Gower, this research

uses a fourth similarity function for cyclical variables. Examples of cyclical variables are month

of the year, season, or financial quarter. The four partial similarity functions are:

• For numerical variables: the range-normalized Manhattan distance is used, which gives:

sj(x1, x2) = 1− |x1j − x2j |
Rj

where x1j and x2j are the values of variable j for promotion x1 and x2, respectively, and

Rj is the range of the values for variable j.

• For ordinal categorical variable: the ranked range-normalized Manhattan distance is

used. This means that the categories of the variable are first transformed to integers using

ordinal encoding, after which the range-normalized Manhattan distance is calculated. The

partial similarity function then takes the same form as for numerical variables.

• For nominal categorical variables: an indicator function is used, which gives:

sj(x1, x2) =

1 if x1j = x2j

0 if x1j ̸= x2j

where x1j and x2j are the values of variable j for promotion x1 and x2, respectively.

• For cyclical categorical variables: a cyclical variant of the range-normalized Manhat-

ten distance is used. First, the values are transformed to integers using ordinal encoding

(e.g. “April” becomes 4, and “December” becomes 12). Next, the partial similarity is

calculated as:

sj(x1, x2) = 1− min(|x1j − x2j |, Tj − |x1j − x2j |
Tj/2

where x1j and x2j are the encoded values of variable j for promotion x1 and x2, respectively,

and Tj is the period of the cyclical variable j (e.g., for month of the year we have Tj = 12).

This function ensures that the cyclical nature is preserved, and that the distance between

for example April (4) and December (12) is seen as 4 months instead of 8.
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3.3 Model target and features

This section introduces the model target and available features considered in this research.

3.3.1 Target

The target of the base model is recommended to be (a compound metric of) article-level pro-

motional demand. In this research, we use a compound demand metric that is generally used

at Picnic called Article Delivery Rate (ADR). ADR is an article-level metric that indicates how

many times an article is ordered on average at Picnic. It is defined as the average article count

per customer delivery and is therefore independent of the total number of customer deliveries,

making it a suitable proxy for relative article demand. For example: if on average 1 out of 20

deliveries contains a cucumber, the ADR for cucumber is 1
20 = 0.05. In this research we spe-

cifically focus on weekly ADR, which is the ratio of total weekly article sales over total weekly

delivery count, hence it can be seen as the average ADR during a certain week. The reason for

choosing ADR is because the number of deliveries at Picnic can vary strongly between weeks.

Picnic predicts this number of weekly deliveries using a seperate forecasting model, and its out-

put has proven to be reliable over the last years. To get a final prediction in terms of number

of articles, ADR is multiplied by the number of deliveries. To ensure that our model actually

captures the effect of promotions on relative article demand and not the fluctuations in number

of deliveries, ADR is used. As an example: if there is a group of 1000 active customers that

buys a total of 30 cucumbers in a certain week, the average ADR of cucumber in that week is

0.03. If some time later the group of active customers has increased to 1500 but the relative

article demand for cucumber hasn’t changed, the total sales would increase to 45 but the ADR

would remain 0.30 accordingly. Note that we do not necessarily assume that the weekly set of

article promotions does not affect the total number of weekly deliveries; if in a certain week

the total promotional offer is exceptionally attractive or not attractive to customers, we might

expect the number of deliveries to grow or shrink a little bit accordingly. We do however think

that this effect is negligible and assume that the attractiveness of the weekly set of article pro-

motions stays constant over time, thereby also keeping the effect of promotions on the number

of weekly deliveries constant. This assumption is plausible given that Picnic carefully configures

the promotional offer of each week, making sure that each week contains a similar, balanced

set of article promotions. Any deviations in the number of deliveries are then captured by the

seperate forecasting model mentioned earlier.

What is important to mention is that ADR, which is directly derived from article sales, does

not fully capture the article demand: when an article runs out of stock at a certain fulfilment

center during a promotion and can not be sold there anymore, the real article demand is higher

than the actual sales. As a result, using ADR (based on actual sales) as the target variable

when training the model would lead to underforecasting of the real article demand. To correct

the actual promotional sales for this local out-of-stock periods, we use data on customers that

saw an article “unavailable” after adding it to their basked in the app to estimate the “lost

sales” due to unavailability. As a result, the target variable of our model is this ADR quantity
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corrected for unavailability, which we call “clean ADR”. Clean ADR is calculated as

clean ADR =
Sactual + 0.75 · Cmissed · a

Dweekly
,

where Sactual is the actual sales, Cmissed is the amount of customers that saw the article un-

available and did not order it later that week, a is the average number of articles a customer

buys per order, and Dweekly is the total number of deliveries that week. The conversion factor of

0.75 means that 75% of the customers that add an article to their online basket end up actually

ordering that article, and this factor is based on analysis at Picnic.

3.3.2 Features

The explanatory variables (i.e. available model features) considered in this research are the

following (ordered by feature type, and followed by the rationale behind including this variable):

• Numerical:

– Baseline clean ADR (i.e. average clean ADR of preceding three non-promotion

weeks): we expect that a higher baseline clean ADR leads to higher clean ADR, as

promotional demand by definition is an upscaled version of baseline demand.

– Regular selling price (i.e. article selling price without discount): we expect that

a higher regular selling price leads to higher clean ADR, as a discount for an article

that is more expensive is more appealing to customers.

– Relative discount (e.g. “0.20” for a 20% discount): we expect that higher discount

leads to higher clean ADR, as more discount is more appealing to customers.

– Promotion group size (i.e. the number of article promotions in the promotion

group, e.g. “4” for a paprika chips promotion that is part of a promotion group with

three other flavours): we expect that a larger promotion group size leads to lower

clean ADR, as customers can then choose between a larger set of interchangeable

article promotions (of which they will likely only choose one or two). Hence, we

can think of it as if a larger promotion group size spreads out the total number of

customers that buy from this promotion group over more articles, decreasing the

promotional sales uplift of each individual article.

– Article content (number of items in one article, e.g. “6” for a sixpack of drink cans):

we expect that a higher article content leads to higher clean ADR, as customers get

more value for their money if the article promotion contains more items.

– Freshness days (i.e. the number of days for which freshness of the article is guar-

anteed, e.g. “7” for a milk carton with a shelf life of one week): we expect that

higher freshness days lead to higher clean ADR, as customers are more likely to be

encouraged to buy an article promotion when it has a longer shelf life (these articles

are more likely to be stockpiled by customers).

– Multibuy quantity (i.e. the number of articles a customer should buy to qualify

for the promotion, e.g. “1” for a 50% discount promotion, and “2” for a 1+1 free
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promotion): we expect that a higher multibuy quantity leads to higher clean ADR,

as we expect that the decreased number of customers that buy the article promotion

(because some customers are put off by a higher multibuy quantity) does not outweigh

the increased number of articles bought per customer.

• Binary:

– Superdeal (i.e. whether the promotion was highlighted as a superdeal in the store

app): we expect that a superdeal has higher clean ADR, as the visibility towards cus-

tomers for this promotion is higher than that of promotions that are not a superdeal.

– Freshness guarantee (i.e. whether the grocery retailer guarantees freshness of the

product at delivery): we expect that a promotion with a freshness guarantee has

lower clean ADR, applying the same reasoning as for the feature “freshness days”.

• Categorical:

– Promotion mechanism (e.g. “x for y% discount” or “x plus y free”): we expect each

promotion mechanism to have a different effect on customer demand. For example,

a “25% discount” promotion is likely to have a different effect on customer demand

than a “2nd for 50% discount” promotion.

– Article category (e.g. “Pasta, Rice & International”): we expect each article cat-

egory to have a different underlying relationship between features and article demand.

• Time-date:

– Promotion month (month in which article promotion was active): we expect each

month to have a different effect on promotional demand (e.g., ice cream promotions

might have a larger uplift in summer)

Other variables that are generally known to affect promotional demand could not be included

because this data is not yet available at Picnic. These include promotions from competitors,

additional marketing effort carried out by Picnic (e.g. weekly email to customers or TV com-

mercial highlighting certain promotions), and a more detailed indication of the visibility of the

promotion in the store app (e.g. whether the promotion was shown on the home page, and how

high it was ranked on the promotion page or search menu). Note that only one time-date vari-

able is considered, because multicollinearity between features is undesirable for the contrastive

regression framework. The reason why is discussed in more detail in Subsection 4.5.3.

3.4 Model selection

This section describes the methodology used to select the best performing contrastive regression

model out of the ones proposed in this research. First, the feature selection procedure is ex-

plained. Next, an overview of all candidate models is given, together with a detailed outline of

the training & validation scheme used for model selection. Furthermore, the error metric that

is used to evaluate all models is introduced.
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3.4.1 Candidate models

As stated in Section 3.2, the primary goal of this research is to extend and potentially improve

the contrastive regression model as introduced by Aguilar-Palacios et al. (2020), and compare

its performance in an e-grocery setting with baseline methods. As a first step towards this goal,

we should determine which (if any) of the proposed extensions improve the performance of the

base model and thus should be included in the final model that will be benchmarked against

baseline methods. To achieve this, four models will be trained, optimized, and evaluated to find

the winning model. The four candidates are based on the contrastive regression framework, in

combination with the following decision tree algorithms and training set-up:

• CatBoost algorithm and intra-category training (denoted ’CR-CBintra’)

• ExtraTrees algorithm and intra-category training (denoted ’CR-ERTintra’)

• CatBoost algorithm and inter-category training (denoted ’CR-CBinter’)

• ExtraTrees algorithm and inter-category training (denoted ’CR-ERTinter’)

A comparison of the above four candidates determines whether (and if so, which of) the model

extensions improve forecasting performance. Note that all candidate models implement the

outlier detection method proposed in Subsection 3.2.1 and the heterogeneous distance metric

proposed in Subsection 3.2.4. Furthermore, all candidates use five neighbors when computing the

contrastive training set and five neighbors when forecasting the final demand, hence k1 = k2 = 5,

following the results from Aguilar-Palacios et al. (2020). Please find a more detailed discussion

on the choice for the number of neighbors in Section 8.1.

3.4.2 Selection procedure

To gain insight in the forecasting performance of the four candidate models, confidence intervals

are computed for their generalization errors. Here, “generalization error” denotes the model error

on unseen test data. These intervals provide a better understanding of the relative performances

of the candidate models, because we not only compare the average error but also give a sense of

its variance. The generalization error we aim to estimate in this section is denoted by n1
µ, which

is defined as the error the model makes on unseen test data when trained on a training dataset

of size n1. To compute confidence intervals for n1
µ, we use the estimators for the generalization

error and its variance that were introduced by Nadeau and Bengio (2003). The pseudocodes for

the cross-validation schemes used to compute these estimators are given in Appendix B. The

dataset used in these procedures is called Dselect (size n), where n is the number of observations.

First, to estimate the generalization error we apply repeated random sub-sampling cross-

validation (also known as Monte Carlo cross validation), which was first introduced by Picard

and Cook (1984). We perform J = 15 rounds of cross-validation, each round with a random

train-validate split ratio of 80:20. As a result, n1 = 0.8n is the number of observations in each

training set and n2 = 0.2n is the number of observations in each validation set. For the j-th

round, let Dj be the subset of n1 training observations randomly sampled from dataset Dselect,
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and let Dc
j denote the remaining n2 validation observations. The resulting cross-validation

estimate of the generalization error after 15 rounds is then given by

n2
n1
µ̂ =

1

15

15∑
j=1

µ̂j ,

where µ̂j is the “average test error” belonging to the j-th round, denoted by

µ̂j =
1

n2

∑
i∈Dc

j

L(j, i).

Here L(j, i) is the error a model trained on training set Dj makes on an unseen observation i

from validation set Dc
j . Note that

n2
n1
µ̂J is an unbiased estimator of the generalization error n1

µ,

given the assumption that the observations in Dselect are independent and all follow the same

underlying distribution. In this research, we assume that indeed the article promotions in Dselect

come from the same data generating process that independently creates promotions. It is known

that in practice, each set of weekly promotions is likely to be tuned by the company, and their

resulting sales are never fully independent as promotions for substitute and complement articles

affect one another. However, supported by the facts that we have a large range of available

promotions (on average 800-1000 are active at the same time) and inter-promotional dynamics

are known to be less prominent at Picnic, we assume approximate independence.

Second, to estimate the variance of this generalization error estimator, we apply a slightly

different cross-validation procedure. We start off by randomly splitting the dataset Dselect into

two datasets D1 and Dc
1 with split ratio 50:50. Then, for each of these two datasets, 15 rounds of

repeated random sub-sampling cross-validation are performed using a train-validate split ratio

of 60:40 (to ensure that the validation set is again of size n2). This computes two independent

estimates of the cross-validation error µ̂(1) and µ̂c
(1). Note that this time, these estimates of

the generalization error are computed using a training dataset of size n′
1 = n

2 − n2 < n1, hence

we actually compute n2

n′
1
µ̂ instead of n2

n1
µ̂. These steps are repeated 5 times to get 5 pairs of

cross-validation estimates of the generalization error. The estimated variance is now given by

n2

n′
1
σ̂2 =

1

10

5∑
m=1

(µ̂(m) − µ̂c
(m))

2.

Nadeau and Bengio (2003) state that this estimator overestimates the variance of the generaliza-

tion error estimator n2
n1
µ̂, because

n2

n′
1
σ2 ≥ n2

n1
σ2. This statement is made using the conjecture that

the decision function computed by our learning algorithm becomes less variable as the training

set becomes larger. In this research in particular, this means that we assume that the variance

of the final tree that results from training on a set of observations (and hence, the variance of

the generalization error) decreases as we increase the number observations.

Eventually, for each of the four candidates the cross-validation schemes produce an estimation

of the generalization error and its variance. These are then used to compute confidence intervals

for the generalization error, leveraging the work by Nadeau and Bengio (2003) which states that

the estimated generalization error follows an approximate normal distribution. Here the central
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limit theorem is used to argue that the distribution of n2
n1
µ̂ is approximately normal, because

it is the mean over many (in this case 15n2) forecasting errors. The central limit theorem is

valid under the assumption that these errors are independent, i.e. the errors from different

cross validation rounds as well as within each cross-validation round should be independent.

First, due to the random sampling of the test set in each round, errors from different rounds

are expected to be independent. Second, within each round we also assume the errors to be

independent as we propose that the observations in Dselect come from a data generating process

that independently creates promotions, following the same reasoning as mentioned earlier.

For each model, the confidence interval of the generalization error is calculated as:

[µ̂− c
√
σ̂2, µ̂+ c

√
σ̂2]

where µ̂ = n2
n1
µ̂, σ̂2 =

n2

n′
1
σ̂2, and c = z1−α/2 is the 100 · (1 − α)-th percentile of N(0, 1). In

this research we compute 95% confidence intervals, hence α = 0.05. The interpretation of the

estimated mean and confidence interval of the generalization error of the four candidates will be

as follows: in essence, the mean of the generalization error will be used to decide which model

has the highest forecasting accuracy and should be selected for further analysis. In addition, the

estimated confidence intervals serve solely as an indication of how stable this generalization error

is (and hence, how stable the performance of the model is). As the variance of the generalization

error is overestimated, this indication of stability is conservative (a desirable property when

proposing new model extensions in literature). Note that we do not aim to draw statistical

conclusions from the confidence intervals on which model significantly outperforms the others.

3.4.3 Hyperparameter tuning

In the cross-validation schemes described above, each individual round requires the training

and tuning of a new model on a new subset of data. As mentioned already, in this research the

hyperparameters of the model are tuned using Bayesian optimization. This form of optimization

gradually builds a surrogate probability model of the objective function, and uses this model

to select the most promising hyperparameters to evaluate in the true objective function in the

next trial. For a more detailed explanation, please consult the paper by Snoek et al. (2012).

In this research, the number of trials is set to 30, and in each trial the dataset is split into

a training and validation set with ratio 80:20. The three hyperparameters to be tuned (with

corresponding search ranges between parentheses) are number of iterations for CatBoost or

number of estimators for ERT ([1, 1000]), learning rate ([0.001, 0.1]), and tree depth ([1, 8]).

3.4.4 Error metrics

The error metric that is used to train the models and assess their forecasting performance in

the selection procedure s the Mean Absolute Error (MAE). This metric is defined as:

MAE =
1

N

N∑
i=1

| ŷi − yi |
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where N is the number of predictions, ŷi are the predictions, and yi are the observed values.

This metric applies an absolute loss where the penalty is proportional to the absolute value of

the error. As a result, MAE treats all errors (from small to large) equally and weighs them

linearly proportional to their magnitude. It therefore is less sensitive to outliers compared to,

for example, Mean Squared Error (MSE). MAE is very suitable for situations in which the

contribution of each error to the overall assessment of model performance should be linearly

proportional to its magnitude. This behaviour is particularly relevant in this research: each

error leads to a certain amount of articles that gets over- or underforecasted at Picnic, and

the primary goal for the business is to minimize the sum of absolute errors across the whole

promotion assortment (i.e., minimize the sum of all customers that see an article promotion

unavailable on one side, and all articles that potentially become waste on the other side). Because

MAE is based on the sum of absolute errors, this metric is naturally more strongly influenced by

forecasting errors for articles that have a higher sales level. This property is desirable at Picnic,

as these errors also cause the most customer dissatisfaction or product waste.

In addition to the MAE, two relative error metrics are used to help interpret the size of

the errors with respect to the actual observed clean ADR. These are the Weighted Absolute

Percentage Error (WAPE) and the Weighted Percentage Error (WPE), which are defined as

WAPE =

∑N
i=1 |ŷi − yi|∑N

i=1 yi
,

WPE =

∑N
i=1(ŷi − yi)∑N

i=1 yi
,

where N is the number of predictions, ŷi are the predictions, and yi are the observed values.

The WAPE and WPE are the standard metrics used at Picnic to evaluatue the performance of

article demand forecasting processes. The WAPE weights the sum of absolute errors of a set of

forecasts by the sum of the observed values, and is therefore a normalized version of the MAE.

As a result, it is a relative error measure where the contribution of each error to the overall

assessment of model performance is linearly proportional to its magnitude (just as was the case

for the MAE. The WPE is similar to the WAPE, but uses the sum of errors instead of the the

sum of absolute errors in the numerator. As a result, this metric gives a clear view on whether

the model tends to over- or underforecast article demand. Both WAPE and WPE allow Picnic

to compare the performance of a forecasting model across different sets of forecasts with varying

total demand (e.g., across different weeks, or different parts of the article assortment).

3.5 Final model evaluation

This section describes the methodology used to evaluate the final model (i.e. the winning

candidate model from Section 3.4) on a test set of unseen promotions. This evaluation is twofold:

first, the feature importance scores are interpreted to get a better insight in the factors that

are deemed important for cold-start promotional demand forecasting. Second, the forecasting

performance of the final model is compared to existing baseline methods to determine how the

accuracy of the contrastive regression framework relates to more established forecasting models.
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3.5.1 Models to be evaluated

This subsection lists the models that are considered in the final model evaluation:

1. Winning contrastive regressor model: the contrastive regression model that had best

performance out of the four candidates in Section 3.4.

2. Direct regression with intra-category training using CatBoost algorithm: the

CatBoost algorithm trained directly on the X (features) and y (clean ADR) of the original

dataset D containing historical promotions. Hence, it directly forecasts the demand of an

upcoming promotion by using its features as input. This as opposed to the contrastive

regression model, where the regression tree is trained on the contrastive training set Dext

and used to forecast the difference in demand between the upcoming promotion and its k2

nearest neighbors. For the direct regression model, a separate regression tree is trained for

each article category (i.e. the intra-category training set-up is applied), as this was also

done in Aguilar-Palacios et al. (2020) and we want to isolate the effect of inter-category

training in the contrastive regression models.

3. Direct regression with intra-category training using Extremely Randomized

Trees algorithm: the same procedure as described above, but with the Extremely Ran-

domized Trees algorithm as regressor. Note that this is the only model that outperformed

the contrastive regression model in Aguilar-Palacios et al. (2020).

4. Weighted nearest neighbor regression with intra-category training: a weighted

Nearest neighbor Regression (NNR) algorithm that forecasts the demand of an upcoming

article promotion in two steps. As a first step, it finds the k nearest neighbors (most similar

historical promotions) to an upcoming article promotion using the same weighted Gower’s

distance metric that is also used in the contrastive regression model. The same dataset of

historical promotions as used for the other models is also used here, with exactly the same

features. Note that again the intra-category approach is applied, because this was done in

Aguilar-Palacios et al. (2020) and we want to see the impact of inter-category training in

contrastive regression. Hence, we look for neighbors only within the own article category

and use weights specific for that category in the distance calculation. These weights

are based on the feature importances from one of the earler mentioned direct regression

models with intra-category training. The choice for model 2 (CatBoost) or model 3 (ERT)

will depend on which of the two algorithms shows best performance in the contrastive

regression framework. As a second step, it forecasts the demand of the upcoming article

promotion by simply taking the weighted average of the demand of the k neighbors, where

the weights are equal to the inverse of the distance between the upcoming promotion and

each neighbor. Hence, the forecasted demand for article promotion i is denoted by

ŷi =
w⊤ynn

w⊤1

where 1 is a (1× k) vector of ones, w = [ 1
d1
, ..., 1

dk
] with dj the distance between the test

promotion and the j-th nearest neighbor, and ynn = [ynn(1), ..., ynn(k)] with ynn(j) the actual
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ADR of the j-th nearest neighbor. As explained above, this distance is computed using the

weighted Gower’s distance metric with the feature importances from direct regression as

weights. For a more detailed explanation of weighted nearest neighbor regression, please

consult Altman (1992). Note that by definition, the forecasted demand will always be

in between the minimum and maximum of the demands of the k neighbors. Therefore,

we expect this model to perform well for article promotions that are more frequent and

well-known, but worse for article promotions that are more “cold-start” and have less near

neighbors. Hence, it can be seen as a useful compromise between contrastive regression on

the one hand (which has explainable forecasts and focuses on good accuracy for cold-start

promotions), and direct regression on the other hand (which has less explainable forecasts,

but focuses more on good accuracy all-round).

5. Naive model: a naive model that produces forecasts in a simple and computationally

efficient manner. For an upcoming article promotion from a certain article category, we

take the average promotional uplift of all promotions in the training set belonging to that

category and multiply this uplift with the baseline demand of the article. Hence, the

forecasted demand for article promotion i belonging to article category c is given as

ŷi = ūc · bi,

where ūc is the average uplift of all promotions in the training set from article category c,

and bi is the baseline demand of the article.

6. Manual forecast: a manual forecast that was created by an analyst specialized in pro-

motional demand forecasting at Picnic. These forecasts are computed approximately five

weeks prior to the upcoming promotion based on the features of the upcoming promotion,

data on similar historical promotions, and business expertise. They were already computed

in the past and are retrieved from an internal database retrospectively for this research.

The manual forecast can be considered an educated guess of the demand for an upcoming

promotion, and is currently the standard way of computing promotional demand forecasts

at Picnic. Although the forecasting accuracy of this process is on an acceptable level, it

is prone to human errors and very time-consuming because the forecasts have to be com-

puted one-by-one and always involve subjective interpretation. Therefore, the main goal

of the contrastive regressor proposed in this paper is to at least match, and potentially

even improve, the forecasting accuracy of this manual process currently used at Picnic.

3.5.2 Evaluation procedure

Step 1: training the models that involve a learning algorithm

Before evaluating the performance of the models described above, the ones involving a supervised

learning algorithm (model 1-3) need to be trained and tuned. The training set is the same

dataset Dselect that was used in Section 3.4 to select the best contrastive regressor model.

Hyperparameters are again tuned using Bayesian optimization with 30 trials and a train-validate

split ratio of 80:20, using the same hyperparameter ranges as were introduced in Subsection 3.4.3.
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Step 2: evaluating the models on unseen data

The models are tested on an evaluation set Deval containing unseen observations. For the

contrastive regressor (model 1), the feature importance scores of the internal tree algorithm

are interpreted to understand which factors are deemed important for cold-start promotional

demand forecasting with the contrastive framework. Furthermore, the forecasting errors are

evaluated to get an objective view on model accuracy. To test whether the forecasts of model

1 are statistically different from the forecasts of models 2-6 individually, Wilcoxon signed-rank

tests are performed with a significance level of α = 0.05. This test enables pairwise comparison

of the forecasts and does not require the normality assumption thanks to the non-parametric

nature of the test. To account for multiple testing, the significant level is corrected via the

Bonferroni procedure, giving α∗ = α
ntests

= 0.05
n where n is the number of tests. Lastly, the

computational load of each model is assessed by tracking the runtime associated with one cycle

of training & prediction.

3.5.3 Error metrics

The error metric used to train and tune the models is again the MAE. To assess their performance

relative to the actual observed clean ADR, we again use WPE and WAPE. In addition to

these three metrics, the coefficient of determination (R2) is calculated. This metric denotes the

proportion of the variance in the target (clean ADR) that is predicted by the features the model,

and is calculated as

R2 = 1− Sum of Squared Residuals (SSR)

Total Sum of Squares (SST)
= 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(yi − ȳ)2

,

where N is the number of predictions, ŷi are the predictions, ȳi is the mean of the observed

values, and yi are the observed values. In other words, the R2 checks to what extent the

regression model outperforms a model that simply takes the mean of observed values as each

prediction. Here, 0 denotes that the regression model is just as good as simply predicting the

mean, and 1 denotes a perfect fit.
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Chapter 4

Data

The data used in this research is provided by Picnic, an online supermarket delivering groceries

in the Netherlands, Germany and France. The Dutch market is currently their main market

with around 200,000 customers every week, but their customer base in Germany and France are

expanding rapidly. At Picnic, customers place an order with a minimal value of €40,- via the

dedicated Picnic mobile app by selecting items out of the 10,000+ items currently in assortment.

After filling their basket, customers select a morning, afternoon or evening delivery slot on any

weekday of choice, after which the groceries are delivered to their home free of charge. Any

additional items can be added to this same order basket up to the evening before delivery,

providing a flexible grocery shopping experience.

The data source from which all data is extracted is the Picnic Data Warehouse. This data

warehouse continuously collects data from multiple sources, such as customer orders, deliveries,

logistic operations, demand planning, financials, and many more. It provides a comprehensive

and centralized source for Picnic employees to extract data from to use in analyses and reporting.

4.1 ArticlePromotion data class

The contrastive regression method proposed in this paper forecasts demand of upcoming art-

icle promotions based on demand of historical article promotions that share similar values for

certain features. To facilitate the search for similar historical promotions, we introduce a data

class ArticlePromotion. This class holds a variable for the observed value of the model target

(subsection 3.3.1), each of the features (subsection 3.3.2), the corresponding manual forecast

(model 5 from subsection 3.5.1), and the so-called “coldness” of a promotion. In this research,

the coldness of an article promotion is the number of historical promotions that were done earlier

for that particular article at the start of the promotion (i.e., how many times has this article

been in promotion before, so how much useful historical data is available?). As an example: if an

article has never been in promotion before and the forecast is considered completely cold-start,

then this field is 0. However, if an article has already been in promotion three times earlier and

hence some historical data is available, then this field is 3. The variable “coldness” enables us

to evaluate the forecasting performance of a model for varying degrees of coldness to investigate

the effect of increasing promotion data availability.
Each observation in our dataset is a historical article promotion characterized by a seperate
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instance of the ArticlePromotion data class. An example of such an instance is:

Clean ADR = 0.039

Baseline clean ADR = 0.017

Regular selling price = 2.79

Relative discount = 0.25

Promotion group size = 14

Article content = 1

Freshness days = 50

Multibuy quantity = 1

Superdeal = yes

Freshness guarantee = no

Month = August

Promotion mechanism = x% discount

Article category = Breakfast & Snacks

Manual forecast = 0.042

Coldness = 3


4.2 Filtering

The observations used in this research are extracted from the Picnic Data Warehouse. Several

filters are applied to construct the full dataset used for model selection and evaluation. The list

below gives an overview of these filters, which can be seen as the requirements an ArticlePro-

motion instance must meet to be included in the research:

1. Market: the promotion was active in the Dutch market. The rationale behind this is that

the Dutch market is most matured and contains the highest data quality amongst Picnic’s

markets. As the market dynamics in Germany and France are different and data quality

and completeness are lower, we exclude these observations.

2. Time frame: the promotion was active between 2023 week 25 and 2023 week 46. The

starting week is the first week in which article promotions were sold via a dedicated

promotion page in the Picnic app, hence denoting the first week in which the data is

based on an app environment and promotional strategy as Picnic has it today. The ending

week denotes the most recent sales week at the time of conducting this research.

3. Promotion type: the promotion is of type “Regular Weekly”. This means that it con-

cerns a regular weekly promotion that was planned to be active for seven days (Monday

to Sunday). This is in contrast to promotions of type “Day deal”, which were planned to

be active for only one day, or of type “Continuous”, which are always active.

4. Active period: the promotion was active for 5-7 days. Important to mention is that

promotions of type “Regular Weekly” are not necessarily always active for seven days. On

the one hand, it could be active for less than 7 days when for example a weekly promotion

starts later than Monday due to delivery issues at the supplier, or ends earlier than Sunday

due to the article going completely out-of-stock. On the other hand, it could be more than

7 days when for example Picnic decides to extend the promotion to prevent product waste.

This range is selected in accordance with the business operations at Picnic: promotions
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with an active period outside this range are considered not representative of a “normal”

weekly promotion, hence the sales can not be reliably corrected. The correction procedure

for promotions with an active period within this range is outlined in Section 4.3

4.3 Correction

As detailed in Subsection 3.3.1, in this research the target variable of the model (clean ADR) is

aggregated on a weekly level. This means that we specifically focus on the ratio of weekly article

sales over weekly delivery count, which can be seen as the average ADR of a weekly article

promotion. For promotions that were active for less than 7 days, the corresponding sales need

to be scaled accordingly to represent a full-week promotion. Hence, the following correction is

applied to all ArticlePromotion instances:

weekly clean ADR = observed clean ADR · 7

dactive

where dactive ∈ {5, 6, 7} is the number of days the promotion was active.

Furthermore, for promotions concerning ambient articles with an unspecified shelf life, the

variable “Freshness days” is automatically set to 50.

4.4 Dataset split for model selection & evaluation

The dataset that remains after extracting all ArticlePromotion instances from the Picnic Data

Warehouse and applying the filters from Section 4.2 needs to be split in two parts: a selection set

that is used for model selection (Section 3.4), and an evaluation set that is used for final model

evaluation (Section 3.5). In this research, the data is split chronologically, where the selection

set contains all promotions between 2023 week 25 and week T , and the evaluation set contains all

promotions between 2023 week T +1 and week 46. This chronological split ensures that a cold-

start promotion in the evaluation set is in fact cold-start (i.e. it prevents that promotion data

from the same article from a later period in time leaks into the selection set and diminishes the

meaning of the time-related variable “Coldness” in the evaluation set). Week T will be chosen

such that the split ratio is approximately 70:30 for the selection and evaluation set, respectively,

ensuring sufficient unseen test observations are available for the final model evaluation.

4.5 Preliminary data analysis

This subsection contains a preliminary data analyses performed prior to building the regression

model. The analyses aim at providing a better understanding of the model target and available

feature data. This understanding is used to substantiate modeling choices and feature selection,

and helps to interpret the results from model selection and evaluation later on.

4.5.1 Final dataset

Figure 4.1 visualizes the result of the sequential process of data collection, filtering, outlier

detection, and splitting. Here, N denotes the number of observations in the final dataset D.
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Collecting all ArticlePromotion instances and applying the filters from Section 4.2 leads to a

full dataset of 13,822 observations. A preliminary check excluded 155 observations because they

involve article categories that have too little observations to apply the intra-category training

set-up. As a result of the outlier detection method proposed in Subsection 3.2.1, 446 observa-

tions are excluded because the sales uplift is smaller than 1, and 106 observations are excluded

because the discount-normalized lift falls outside of the adjusted interquartile range. Hence,

filtering and outlier detection do not lead to a serious loss in data. After splitting, the selection

set contains 8,369 observations between 2023 week 25 and 40, and the evaluation set contains

4,743 observations between 2023 week 41 and 46.

Figure 4.1: Process of data collection, outlier detection, and splitting

4.5.2 Distribution of target variable and features

Histograms (for numericals) and countplots (for categoricals) are computed for the target vari-

able and features to evaluate their distributions. A full overview of all distributions is given

in Appendix A.1. The following subsection discusses the noteworthy findings that have direct

implications for the modeling choices made later.

Regarding the target variable, Figure 4.2a shows that the data for clean ADR (for simplicity

here called y) is strongly positive skewed, with a mean of 6.94 · 10−3, median of 3.08 · 10−3,

skewness of 6.1, and range of [6.27 · 10−5, 2.23 · 10−1]. This is caused by a handful of popular

routine articles (mainly fresh fruit & vegetables such as cucumber, tangerine, and bell pepper).

As a result, the target of the tree algorithm in the direct regression models (models 2-3) is

strongly positive skewed. Furthermore, recall that the response variable of the observations in

the contrastive training set, which is used for training the contrastive regression model, is defined

as yext = yref − yneig (for an arbitrary reference promotion and randomly sampled neighbor).

Figure 4.2b shows that this variable (as a natural consequence of the skewness of y) contains

extreme positive and negative values. Hence, the target of the tree algorithm in the contrastive

regression model (model 1) has very heavy tails. When the model target in a regression tree

algorithm is strongly positive skewed or has heavy tails, the extreme values will more prominently

affect the variances and the node splits will be drawn towards extreme values as well. As a result,

the tree algorithm can potentially be forced to isolate the tails of the data from the rest of the

data points, leading to less balanced node splits. This in turn will eventually create a regression

tree that performs better in forecasting the extreme values, while its accuracy is lower for data

points with the target variable around the median. As a solution to the skewness of y and heavy

tails of yext, we propose to apply a log-transformation. For y, we transform via ylog = log(y),

which indeed yields the more desirable symmetrical distribution shown in Figure 4.2c. For yext,
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(a) Distribution of y (b) Distribution of yref − yneig

(c) Distribution of log(y) (d) Distribution of log(yref)− log(yneig)

Figure 4.2: Distribution of model targets before and after log-transformation (y = clean ADR)

we transform via yextlog = log(yref) − log(yneig) to ensure the log-transformation is not taken for

negative numbers. Note that we can also rewrite this to yextlog = log( yref
yneig

), so a different way

of looking at this is: we first take the ratio between the demand of the reference promotion

and the neighbor (instead of the difference), and then we log-transform this ratio. Figure 4.2d

shows that yextlog also has a more desirable symmetrical distribution. The log-transformations as

proposed above will be carried out prior to training the regression tree algorithms in models 1-3,

after which the output of these algorithms will immediately be back-transformed to clean ADR

before continuing with possible remaining steps of the model.

Regarding the features, the variables baseline ADR, article content, promotion group size

and selling price are also positive skewed. There is however no need to log-transform this data,

because this transformation will not change the node splits in the regression tree. The reason for

this is that a tree algorithm builds node splits for each numerical feature based on a “greater or

less than” condition, where the split value that yields the largest impurity decrease is selected.

Hence, any monotonic transformation that does not change the order of the values (such as

a log-transformation) will also not change the relative position of the node splits, leading to

the exact same final tree. Further, Figure 4.3a shows that most promotions have a freshness

of around 3-7 days (fresh food articles), 21 days (ambient food articles), or 50 days (non-food

articles). Similarly, Figure 4.3b shows that the relative discounts of 20%, 25%, and 50% are

most prominent. The peaks in the distribution of these variables may cause the model to
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(a) Distribution of freshness days (b) Distribution of relative discount

(c) Distribution of article category (d) Distribution of promotion mechanism

Figure 4.3: Distribution of subset of features

underperform for promotions that do not correspond with these standard values for discount or

freshness. Next, Figure 4.3c shows that approximately one-third of the observations comes from

the article category “Drugstore” (NL: “Drogist”). For the contrastive regression model that

applies inter-category training, this might bias the tree algorithm towards performing relatively

well for this category while performing worse for the others (as opposed to the intra-category

approach, which trains a seperate tree for each category). However, the imbalance in the article

category variable is fully representative of the real-life situation at Picnic, because the majority

of article promotions indeed comes from the “Drugstore” category. As the business goal for

Picnic is to minimize the total sum of absolute forecast errors, we deliberately decide not to

handle this imbalance by for example applying stratified sampling. Lastly, Figure 4.3d shows

that the promotion mechanism “absolute discount Y” is underrepresented, which could also lead

to the models underperforming for future promotions that apply this mechanism.

4.5.3 Correlation between features

Although the forecasting performance of tree-based algorithms naturally does not suffer from

multicollinearity of features, the feature importance calculation does run the risk of becoming

unstable when features are highly correlated (Nicodemus et al. (2010)). As the contrastive

regression framework proposed in this research directly makes use of feature importance scores

to compute a forecast, severe multicollinearity is undesirable. In this research, the correlation
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Figure 4.4: Correlation heatmap of features

for numerical-numerical variable pairs is denoted by Spearman’s rank correlation coefficient,

a non-parametric measure that describes the monotonic relationship between two variables by

assessing the degree to which their ranks are correlated. A value of -1 indicates a perfect

negative correlation, 0 denotes no correlation, and 1 denotes a perfect positive correlation. In

this research, pairs with an absolute Spearman’s coefficient of |r| > 0.7 are marked as collinear,

following the work and corresponding suggestion by Dormann et al. (2013). For numerical-

categorial pairs, the correlation is denoted by eta-squared, the proportion of the variance in

the numerical variable that is explained by the different categories in the categorical variable.

Eta-squared ranges between 0 (no association) and 1 (perfect association), where η2 > 0.6 is

used as collinearity threshold in this research Cohen et al. (2013). For categorial-categorical

pairs, the correlation is denoted by Cramér’s V, a measure of association between two nominal

variables that is based on the chi-squared statistic normalized by the number of observations

and the minimum number of category levels. A value of 0 denotes no association, and a value of

1 denotes perfect association. In this research, pairs with a Cramér’s V of V > 0.6 are marked

as collinear, following the work carried out by Rea and Parker (1992) and Kyu (2016) suggesting

that above this threshold variables have a “strong association”.

Figure 4.4 shows a heatmap plot of the correlation between all 12 features, calculated as

describe above. For the variable pair freshness days & freshness guarantee we observe r = −0.74,

which is to be expected as they describe the same article characteristic (namely, freshness of an

article) in an opposite manner. Based on the fact that freshness guarantee can be considered a

binarized version of freshness days, we expect freshness days to contribute more to the forecasting
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Figure 4.5: Correlation between clean ADR and baseline ADR

performance. Furthermore, for the variable pair article category & freshnes guarantee we observe

η2 = 0.66. Based on these two insights, we decide to exclude the variable freshness guarantee

from the features when building the models. Other noteworthy correlations that are just below

the earlier defined thresholds are observed for the pairs freshness days & discount (r = 0.67, i.a.

because non-food articles in general have higher discounts), promotion mechanism & relative

discount (η2 = 0.58, i.a. because “X plus Y free” in general has higher discounts), and article

category & freshness days (η2 = 0.59, i.a. because articles from “Meat & Fish” in general

have less freshness days). Lastly, the variable article category shows to be fairly correlated to

almost all other variables. This might suggest that some article categories are associated with

a distinctive set of feature values that is different from other categories, and hence that the

intra-category training approach might work better than the inter-category approach.

4.5.4 Correlation between model target and features

Scatter plots are computed to display potential correlations between the model target and all

features. An overview of the resulting scatter plots is given in Appendix A.2. These plots

will indicate to what extent the features have a positive or negative association with the target

variable, and hence gives a first indication of which features will be important in the forecasting

model. The one insight worth mentioning here is the obvious correlation between clean ADR

and baseline ADR, which is displayed in Figure 4.5. The red-dotted line denotes where clean

ADR is equal to baseline ADR, and hence where the sales uplift is equal to 1. The scatter

plot shows a clear positive correlation, where each observation lies above the red-dotted line

suggesting a sales uplift larger than 1. This positive correlation is logically explained by the fact

that promotional demand is always an upscaled version of the baseline demand.

4.5.5 Model target over time

Lastly, we analyse the behaviour of the model target (clean ADR) over time to check for a

possible trend or seasonality that can not be explained by the behaviour of the features. A full

overview of the behaviour of the model target and all features over time is given in Appendix
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(a) Clean ADR (b) Number of article promotions per category

Figure 4.6: Clean ADR and number of article promotions per category over time

A.3. Figure 4.6a plots the weekly mean and corresponding 95% percentile interval of clean

ADR, showing a clear downward trend. This trend can be logically explained by the gradual

shift in the composition of the set of weekly article promotions at Picnic. This shift is visible in

Figure 4.6b, which gives the number of article promotions per category over time. The number

of promotions for the category ’Drugstore’ (NL: ’Drogist’) increased significantly from week 25

to 46, while this number remained relatively stable for other categories. This increase resulted

when Picnic intensified the promotional strategy for this category in 2023. As articles from this

category generally have low baseline demand (and hence, low promotional demand) compared

to other categories, this led to a decrease of the average weekly clean ADR. This shift in the

composition of the set of weekly promotions can affect the performance of the CR-CBinter

model in the final model evaluation: as the share of promotions coming from the category

’Drugstore’ is lower in the training set (week 25-40, also called the selection set) than it is in the

evaluation set (week 41-46), we can not officially state that observations in both sets come from

the same underlying data generating process. Therefore, we should critically assess whether the

performance of the inter-category model during model selection also generalizes to the unseen

data in the final model evaluation. This will indicate whether the inter-category contrastive

regression framework is able to handle this shift in composition of weekly set of promotions, and

whether it is robust enough to maintain high accuracy when the promotion strategy changes.

As the trend in clean ADR can be fully attributed to deliberate changes in Picnic’s promotion

strategy, and these changes are fully captured by the features, no trend variable is included in

the models. Considering seasonality, we still hypothesize that the time of the year in which an

article promotion is done to some extent affects the promotional demand. Part of this seasonal

effect is expected to be captured by the seasonality in baseline ADR, but the remaining part is

expected to be caused by a seasonality in the promotional uplift (e.g., an article promotion for

hot chocolate is likely to have a higher uplift in December than in July). To allow for the models

to learn this seasonality, the cyclical variable “Promotion month” is included as a feature. Note

that the dataset used in this research contains only six months of promotions, hence more data

is needed for the model to learn the full-year seasonal pattern.
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Chapter 5

Results

In this chapter, the results of the research carried out in this report are displayed. First, Section

5.1 provides the outcome of the comparison of the four candidate contrastive regression models,

and the selection of the final model. Next, Section 5.2 interprets this final model and shows

the results of its comparison with the baseline methods. All results are computed using Python

version 3.11.2, Jupyter Lab version 3.6.6, an Intel Core i7-8665U processor with 1.90GHz CPU

frequency, and Windows 11 Pro version 23H2.

5.1 Model selection

This section describes the results of the model selection procedure explained in Section 3.4.

The performances of the four candidate contrastive regressors in forecasting clean ADR are

given in Table 5.1. The numbers regarding MAE are scaled by factor 103 for readability. The

mean MAE is 1.80 · 10−3 and 1.90 · 10−3 for CR-CBinter and CR-CBintra, respectively. For

CR-ERTinter and CR-ERTintra, the mean MAE is 1.98 · 10−3 and 2.27 · 10−3, respectively.

Regarding the confidence intervals, we observe that the MAE of the CR-CBinter, CR-CBintra

and CR-ERTintra models display similar variance. The variance of CR-ERTinter is slightly

lower, which could be a consequence of the earlier mentioned property of lower variance for the

ExtraTrees algorithm. The results suggest that the CatBoost-based models outperform their

ExtraTrees-based counterparts, because the mean MAE for CR-CBinter and CR-CBintra is

notably lower than for CR-ERTinter and CR-ERTintra, respectively. Furthermore, the results

also suggest that the overall performance of inter-category training is higher than that of intra-

category training, as the mean MAE for CR-CBinter and CR-ERTinter is lower than for CR-

CBintra and CR-ERTintra, respecively. However, we hypothesize that the two training set-ups

(inter- vs. intra-category) might perform differently for different subsets of article promotions.

Therefore, we decide to evaluate both the CR-CBinter and CR-CBintra model in more detail in

the final model evaluation of Section 5.2.
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Candidate model MAE (10−3) WAPE (%) WPE (%)

Mean 95% CI Mean Mean

CR-CBinter 1.80 [1.68, 1.92] 21.6 -4.5

CR-CBintra 1.90 [1.76, 2.04] 23.9 -6.0

CR-ERTinter 1.98 [1.89, 2.07] 24.6 -11.4

CR-ERTintra 2.27 [2.12, 2.42] 28.8 -7.3

Table 5.1: Performance of four contrastive regression candidates in forecasting clean ADR
(results of generalization error for 15 rounds of cross-validation)

Regarding the error rate relative to the actual observed clean ADR, the WAPE of the models

ranges between 21.6% and 28.8%. This result is promising and suggests that the contrastive

regression framework has potential to improve the manual forecasting process at Picnic (with a

current WAPE of around 30% on average). The results in the next section however will provide a

more detailed comparison between the contrastive regression framework and manual forecasting.

Furthermore, the WPE shows that the CatBoost-based models on average underforecast by

4.5% and 6.0% with inter- and intra-category training, respectively. The ExtraTrees-based

models on average underforecast by 11.4% and 7.3% with inter- and intra-category training,

respectively. From this we can conclude that the contrastive regression framework on average

tends to slightly underforecast the clean ADR, and that this underforecasting is more prominent

for the ExtraTrees-based models. A possible explanation for underforecasting could be the

presence of omitted variables that are not stable over time, preventing the contrastive regressor

to correctly identify that an upcoming promotion has higher demand compared to its historical

neighbors. Another explanation could be that relationship between two random neighbors in the

contrastive training set is not fully representative of the relationship between a test promotion

and similar historical promotion, causing to underforecast in the latter case.

5.2 Final model evaluation

This section describes the results of the final model evaluation procedure from Section 3.5.

5.2.1 Overall forecasting performance

The results of the comparison of the overall performance between the CR-CBinter & CR-CBintra

models and the five baseline models are given in Table 5.2. The table gives the MAE, WAPE,

WPE, and R2 for each model, as well as the p-value for the six Wilcoxon signed-rank tests

(WSRT) that compare the CR-CBinter model with the other models, and lastly the computa-

tional load for each model. The numbers regarding MAE are scaled by factor 103 for readability.

The CR-CBinter model, direct regression with CatBoost, and direct regression with Ex-

traTrees show similar overall forecasting accuracy, with a MAE of 1.60 · 10−3, 1.58 · 10−3, and

1.59 · 10−3, respectively. The CR-CBintra model and weighted nearest neighbor regression

slightly underperform compared to the aforementioned three, with a MAE of 1.68 · 10−3 and

1.79·10−3, respectively. Lastly, all five regression models largely outperform the manual forecasts

and naive forecasts, which have a MAE of 2.32 · 10−3 and 3.61 · 10−3, respectively. The WAPE
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Model Forecasting performance WSRT Computational load

MAE (10−3) WAPE (%) WPE (%) R2 p-value Runtime (s)

CR-CBinter 1.60 27.5 -0.1 0.88 - 210
CR-CBintra 1.68 29.1 3.1 0.89 <0.001 437
Direct CatBoost 1.58 27.3 3.4 0.89 <0.001 345
Direct ExtraTrees 1.59 27.5 1.6 0.90 <0.001 21
Weighted NNR 1.79 31.0 9.8 0.84 <0.001 364
Naive forecast 3.61 62.3 43.7 -0.13 <0.001 <1
Manual forecast 2.32 40.1 23.0 0.78 <0.001 <1

Table 5.2: Accuracy and computational load of contrastive regressors versus baseline models
(results of training on 8,369 observations and forecasting 4,743 observations)

of the CR-CBinter and CR-CBintra models (27.5% and 29.1%, respectively) is higher than their

WAPE during model selection (21.6% and 23.9%, respectively) while the MAE is actually lower,

from which we can deduct that the mean of the observed clean ADR is lower in the evaluation

set than it is in the selection set (this is in accordance with our earlier conclusion drawn from

Figure 4.6a in Section 4.5). From the WPE we conclude that the CR-CBinter model on average

equally over- and underforecasts, while the other four regression models slightly overforecasted

clean ADR. Both the manual and naive forecast primarily overforecast clean ADR, with a WPE

of 23.0% and 43.7%, respectively. The results for R2 show that all five regression models are able

to explain largest part of the variance of the observed clean ADR, with an R2 ranging between

0.84 and 0.90. The manual forecast shows to have reasonable explanatory power with an R2 of

0.78, while the naive prediction shows to be worse than predicting the mean ADR (R2 of -0.13).

The Wilcoxon signed-rank tests comparing the forecasts of the CR-CBinter model to the

other six models produce p-values below 0.001. Hence, we conclude that we can reject the hy-

pothesis that the median difference between the paired observations of the CR-CBinter model

and the other six models is zero, given a α∗ = 0.05
6 significance level.

Figure 5.1 shows scatter plots of the forecasts versus observed values of clean ADR for the

two contrastive regression models. Both the x-axis (actuals) and the y-axis (forecasts) are log-

transformed to facilitate an easier interpretation of the plot. The red-dotted line follows the

equation y = x, hence it represents a “perfect model” where the forecasts are equal to the

observed values. From these two figures (combined with the R2 scores of 0.88 and 0.89) we can

infer that both contrastive regression models successfully capture the relationship between the

promotional sales and the resulting clean ADR, and that they can compute reasonable forecasts.

Figure 5.2 shows scatter plots of the relative forecasting error (the forecasting error divided

by the actual value, given as a percentage) versus the actuals for the two contrastive regression

models. It can be clearly observed for both models that the relative forecasting errors (both in

positive and negative direction) are largest for small values of actual clean ADR, and then con-

sistenly decrease as the actual clean ADR becomes larger. This pattern is a logical consequence

of the way we optimized the models: the goal is to minimize the sum of absolute errors at Picnic,

hence the Mean Absolute Error (MAE) was used as the error metric in model training. As a

result, the relative error for popular article promotions with high ADR is very well contained,

while (inevitably) more “room for error” is left for article promotions with lower ADR. Eventu-

ally, this is the primary objective for Picnic’s promotion demand forecasting process: ensuring
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(a) CR-CBinter (b) CR-CBintra

Figure 5.1: Forecasted vs actual clean ADR for two contrastive regression models
(red-dotted line denotes where forecast is equal to actual value)

(a) CR-CBinter (b) CR-CBintra

Figure 5.2: Relative forecasting error vs actual clean ADR for two contrastive regression models
(red-dotted line denotes where relative error is equal to zero)

that the absolute number of wrongly forecasted articles is kept to a minimum, to minimize the

total customer impact and food waste across the whole promotional assortment. Comparing the

plots of the two models, we observe that the CR-CBinter model tends to underforecast more

than the CR-CBintra model, which is also in line with the higher WPE of the latter in Table 5.2.

To gain a better understanding of the potential causes behind inaccurate forecasts computed

by the contrastive regression framework, we leverage its ability to produce contrastive explan-

ations and apply this to two CR-CBinter forecasts with a large relative error. The contrastive

explanations for these two forecasts are given in Appendix C. The first test observation, with

contrastive explanation given in Table C.1, was overforecasted with a relative error of 392%.

The test promotion is very similar to the five neighbors for all features but the relative discount:

while the nearest neighbors are “1+1 free” promotions with 50% discount, the test promotion

has a “2+1 free” mechanism with 33% discount. The actual observed ADR for the five neigh-

bors ranges between 36.12 · 10−4 and 99.70 · 10−4, which corresponds to uplifts between roughly

10-20. The contrastive regressor successfully predicted that the lower relative discount of the

test promotion will lead to a lower ADR, hence the forecasted differences in ADR between
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the five neighbors and the test promotion are negative (ranging between −14.01 · 10−4 and

−48.69 · 10−4). These forecasted differences however were not large enough: the final forecasted

ADR was 33.18 · 10−4 (an uplift of 6.7), while the actual observed ADR was 6.74 · 10−4 (an

uplift of 1.4). From this first example, we can learn the following two things: on the one hand,

the contrastive regressor does seem to learn the correct positive association between relative

discount and resulting ADR. On the other hand, the model did not succeed in computing an

accurate forecast in this specific case. This can be partially attributed to the fact that this

specific test promotion has an unconventionally low uplift given the specific mechanism and

discount. However, it could also indicate that certain omitted variables exist that can explain

the low ADR but are not yet included in the feature space.

The second test observation, with contrastive explanation in Table C.2, was underforecasted

with a relative error of -93%. In this case, the test promotion is very similar to the five neighbors

for all features, hence the differences in ADR are correctly predicted to be small. The resulting

final forecasted ADR was 3.19 · 10−4 (an uplift of 1.9), while the actual observed ADR was

34.08 · 10−4 (an uplift of 19.8). We can safely state that this specific test promotion has an

unconventionally high observed ADR, when compared to the five neighbors. This again indicates

that there might be omitted variables that can explain this high ADR, but are not yet included

in the feature space.

All in all, the two examples suggest that the pre-training outlier detection method might

not be able to detect all outliers, as for both test observations the actual observed ADR is very

different from what would be expected based on the nearest neighbors. This large differences in

ADR could be caused by one or more omitted variables that have high explanatory power, but

are not yet included in the feature space.

5.2.2 Computational load

The results of tracking the model runtimes are also given in Table 5.1. This runtimes correspond

to one cycle of training the model on a dataset of Ntrain = 8369 observations and predicting the

target for a dataset of Ntest = 4743 observations. The regression tree algorithms are all trained

with 500 iterations (or 500 estimators for ExtraTrees), learning rate of 0.05 and tree depth of 8.

The contrastive regression models have a runtime of 210 seconds and 437 seconds for inter-

and intra-category training, respectively. Direct regression using CatBoost and ExtraTrees takes

345 seconds and 21 seconds, respectively, and Weighted Nearest neighbor Regression (NNR) has

a runtime of 364 seconds. Lastly, the naive forecast and manual forecast do not make use of

a learning algorithm, hence their running time is negligible. Comparing the two contrastive

regressors, we can conclude that the intra-category training approach is more computationally

demanding, which could be caused by the fact that we have to train a new CatBoost learner

for each category. Comparing the CR-CBintra model with direct regression using CatBoost and

weighted NNR, we see that direct regression and weighted NNR are roughly 20% faster than

contrastive regression. To try to explain these results, we see two potential causes: first, recall

that the number of observations in the contrastive training set used to train the tree algorithm

in the contrastive regressor is N1 · k1 (where N1 is the number of observations in the training

set for direct regression, and k1 is the number of randomly selected neighbors used to set-up the

41



contrastive training set). Second, note that the contrastive training set contains twice as many

features as the original training set (one set of features for the reference promotion, and one

set for the neighbor). These two points could explain the longer runtime for the CR-CBintra

model compared to direct regression using CatBoost and weighted NNR. Lastly, direct regression

using ExtraTrees shows to be significantly less computationally demanding than direct regression

using CatBoost (21 seconds vs. 345 seconds). We expect this to be due to three main reasons:

first, ExtraTrees builds decision trees using random split points instead of searching for the best

split value at each node, the latter being computationally more intensive. Second, ExtraTrees

does not require the process of optimizing sequential trees needed for gradient boosting. Third,

CatBoost needs to create multiple random permutations of the data for the ordered target

encoding, whereas ExtraTrees doesn’t.

5.2.3 Feature importances in contrastive regressor

Table 5.3 displays the feature importances for the CR-CBinter and CR-CBintra models. For the

CR-CBintra model, the table shows the average feature importance from all category-specific

trained regression tree, weighted for the number of test observations from each category.

For the inter-category model, the most important features are baseline clean ADR (67.5%),

relative disocunt (9.5%), promotion group size (6.9%), article category (5.1%), and regular selling

price (3.0%). For the intra-category model, these are baseline clean ADR (60.4%), relative

discount (10.4%), promotion group size (8.2%), regular selling price (7.4%), and promotion

mechanism (4.9%). Hence, the baseline demand, discount, selling price, and size of the promotion

group contribute most to the forecast in both models. Furthermore, the features article content,

freshness days, multibuy quantity, superdeal, and promotion month show to be less important,

with importance scores ranging between 0.4-2.9%. Lastly, comparing the importance scores of

the sets of features belongings to the reference and neighbor shows that both contribute equally

to the final forecast.

Feature Importance score (%)

CR-CBinter CR-CBintra

Reference neighbor Combined Reference neighbor Combined

Baseline clean ADR 33.9 33.6 67.5 31.9 28.5 60.4

Regular selling price 1.3 1.7 3.0 3.1 4.3 7.4

Relative discount 4.7 4.8 9.5 5.0 5.4 10.4

Promotion group size 3.5 3.4 6.9 4.1 4.1 8.2

Article content 0.7 0.5 1.2 0.7 0.5 1.2

Freshness days 0.5 0.5 1.0 0.9 0.9 1.8

Multibuy quantity 0.2 0.2 0.4 0.5 0.5 1.0

Superdeal 0.7 1.1 1.8 0.7 1.1 1.8

Promotion mechanism 0.9 0.9 1.8 2.1 2.8 4.9

Article category 2.6 2.5 5.1 - - -

Promotion month 0.9 0.9 1.8 1.4 1.5 2.9

Table 5.3: Feature importance scores of final contrastive regressor
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(a) WAPE

(b) WPE

Figure 5.3: WAPE and WPE for varying number of earlier promotions available

5.2.4 Forecasting performance per level of coldness

Figure 5.3 shows the forecasting performance (both WAPE and WPE) for varying numbers of

earlier promotions available (also called the ’coldness’, as explained in Section 4.1). An example

of how to interpret the plots: suppose that for a certain article, we have already done two

promotions in the past. Now we want to forecast the demand for a third one, hence we focus on

the model performances for the case where 2 earlier promotions are available (level of coldness

equal to 2). We can conclude that the CB-CRinter model and direct CatBoost have the best

accuracy, both with a WAPE of 30%. Furthermore, CR-CBinter shows to slightly underforecast

demand, while direct CatBoost on average overforecasts in this situation, with WPEs of -1%

and 8%, respectively. Note that the plot shows the results for the first 20 promotions of an

article, as the subset of articles with more than 20 promotions in the test set is too small to

draw reliable conclusions.

Several useful insights can be derived from Figure 5.3. First, Figure 5.3a shows that all

models display an increasing accuracy as more earlier promotions become available (except for

the naive forecast), with a WAPE of around 40% for pure cold-starts and decreasing to around

20-25% as an article gets promoted more often. This is in accordance with our earlier hypothesis

stating that forecasts are more accurate when more useful data is available. Second, the five

regression models largely outperform the naive forecast and the manual forecast for all degrees of

coldness, which suggests that implementing a regression model (regardless of which one) already

shows great potential to improve the forecasting process at Picnic. Third, diving deeper into
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the comparison of the different regression models for cold-start forecasting, CR-CBinter and

direct CatBoost show to slightly outperform CR-CBintra and direct ExtraTrees for the first

three promotions of an article, although these differences in accuracy can be considered small.

In addition to this, weighted NNR shows to perform worse than the other four regression models

for the first three promotions, but shows comparable performance for forecasts with more earlier

promotions available. When an article has had more than three promotions, CR-CBinter and

direct CatBoost most consistently retain a WAPE below 30%, however no clear conclusion can

be drawn on which model strictly outperforms the other models in terms of overall forecasting

accuracy.

Looking at Figure 5.3b, we confirm that the manual forecast, naive forecast, and weighted

NNR all on average overforecast demand, with a strictly positive WPE for all levels of coldness.

The two contrastive regression and two direct regression models all show the same pattern of

relatively stable WPE for all levels of coldness. The CR-CBinter model generally has a WPE

slightly below zero, whereas the other three have a WPE around or slightly above zero.

5.2.5 Forecasting performance per article category

Table 5.4 shows the forecasting performance per article category for the CR-CBinter model,

CR-CBintra model, weighted nearest neighbor regression (WNNR) and manual forecast. These

three regression models are selected and compared to manual forecasting because they provide

direct explainability and flagging of the forecasts, hence they are most suitable to replace the

current process at Picnic. For each article category and each model, the WAPE and WPE are

given as a percentage. Note that the article categories are split into two types: “fresh food”

categories, and “non-fresh food or non-food” categories. In general, overforecasting is more

problematic for the fresh food categories, because this more often leads to food waste due to

lower shelf lives. The goal of this table is to identify which forecasting methods are particularly

well suited for which categories by looking at the overall absolute error (WAPE) and the level

of over- or underforecasing (WPE).

The WAPE and WPE for the best performing model per category are in bold. We conclude

that for 11 out of 21 categories, the CR-CBinter model shows most potential to improve the

forecasting accuracy compared to the manual forecast. For 5 other categories, the CR-CBintra

model shows to be most promising. WNNR has the best performance for another 3 out of 21

categories, and for the last 2 categories manual forecasting still seems to be the best option.

Note that this selection is primarily based on which model has the lowest WAPE, except for

the categories “Breakfast” and “Drugstore”: although the CR-CBinter model here has the

lowest WAPE, WNNR is selected because this method on average overforecasts more than CR-

CBinter, which is preferred for this categories. Furthermore, note that the manual process in

general heavily overforecast the promotions for non-fresh food or non-food categories: this can

be traced back to the “better safe than sorry” strategy of forecasting analysts at Picnic, who

generally tend to overforecast promotions from these categories. As this leads to excess stock

and congested warehouses, this is also not desirable. Concluding, contrastive regression and

weighted nearest neighbor regression show clear potential to improve the forecasting operation

at Picnic for a large part of the promotional assortment.
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Category type Category Forecasting performance

CR-CBinter CR-CBintra WNNR Manual
WAPE WPE WAPE WPE WAPE WPE WAPE WPE

Fresh food

Cheese 23.3 2.1 29.9 9.9 26.7 11.0 43.4 28.7
Dairy & eggs 24.7 -8.9 21.4 -3.0 24.7 -2.3 29.0 6.8
Cold cuts, spreads & tapas 25.5 -0.3 26.0 11.6 29.1 12.8 26.1 14.2
Meat & fish 25.4 -6.0 21.3 9.3 23.5 3.2 18.9 -0.2
Potatoes & vegetables 24.6 -3.1 18.6 -3.5 21.9 10.7 25.0 14.8
Vegetarian & vegan 24.1 12.7 27.8 22.5 34.4 16.5 37.9 -23.6
Fruit 25.5 4.3 36.5 26.9 48.6 45.5 27.9 21.5
Ready meals 30.6 0.9 32.4 -0.5 31.7 3.2 28.6 -0.2
Bakery 24.3 3.3 36.9 26.2 29.2 16.9 27.1 10.3

Non-fresh food
or non-food

Baby & child 27.1 -8.3 61.9 58.7 106.7 90.2 51.3 31.4
Pantry 27.5 10.2 41.9 30.1 34.9 20.1 57.3 38.1
Beer & appetizers 22.0 -4.9 19.8 -3.7 22.7 0.5 36.3 22.6
Coffee & tea 27.6 -7.0 29.5 -5.7 32.0 2.2 53.5 43.8
Home & cleaning 34.8 -9.4 33.7 -14.2 37.9 11.9 57.9 34.7
Pasta, rice & world foods 28.1 -0.3 29.9 -0.8 32.4 6.9 36.0 20.4
Drinks 17.8 -1.7 22.6 -10.0 29.9 22.1 71.6 66.6
Cookies, candy & snacks 36.0 -23.5 34.4 -18.7 34.0 -5.6 47.8 28.4
Frozen 47.8 17.6 36.0 16.5 37.4 24.2 69.5 62.4
Wine 29.3 5.4 37.7 14.9 35.1 11.3 35.2 -1.4
Breakfast 22.5 -8.5 26.8 1.4 23.3 3.2 39.3 31.1
Drugstore 38.1 -24.1 43.1 -34.2 43.2 -17.3 81.0 42.4

Table 5.4: Forecasting performance per article category for CR-CBinter, CR-CBintra, WNNR
and manual forecast (WAPE and WPE are given in percentages)
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Chapter 6

Conclusion

Recalling what was introduced in Chapter 1, this research focused on four main objectives. This

chapter reflects on these objectives and summarizes the concluding insights from the results.

The first objective was to develop a model that provides interpretable demand forecasts

for cold-start promotions. To accomplish this, a contrastive regression model is adopted that

forecasts difference in demand between two promotions and provides post-hoc explanations of

forecasts. It makes use of the CatBoost algorithm and a k nearest neighbor search, and was

originally designed for intra-category training (i.e., training on and forecasting for solely one

article category). This research proposed four extensions to the existing contrastive regression

model. First, the model was enriched with a pre-training outlier detection method based on

the adjusted boxplot for skewed data. As a result, 4.0% of the data was marked as an outlier

and removed, but test results later on show that some observations that could potentially be

considered an outlier were still present in the data. Second, a heterogeneous distance measure

was successfully introduced that enables the use of both numerical and categorical features.

Third, the ExtraTrees algorithm was implemented to replace CatBoost as the internal regressor,

but this implementation did not indicate to improve forecasting accuracy. Fourth and last,

this research extended the contrastive regression model to allow for inter-category training (i.e.,

training on and forecasting for multiple categories with one model). Results from model se-

lection show that this extension leads to a decrease in the mean absolute error compared to

intra-category training. Furthermore, inter-category training reduced computational load by

roughly 50%. Testing the inter- and intra-category contrastive regression models on a dataset

of unseen observations shows an overall WAPE of 27.5% and 29.1%, respectively. The relative

forecast error is largest for observations with low ADR and and decreases as the ADR increases.

Furthermore, the results show that inter- and intra-category training are both superior for a dif-

ferent set of article categories, indicating they are not interchangeable and can both add value

in a forecasting operation. Regarding interpretability, the contrastive regression model has the

ability to provide contrastive explanations. These explanations accompany each forecast with

the feature importance scores, a list of the most similar historical promotions, and their simil-

arity to the forecasted promotion. This offers users an intuitive and easy-to-understand way to

check the rationale behind each forecast. Together with the absence of feature engineering and

the tree-based structure, the contrastive regression model is an interpretable approach to pro-

motional foracasting. Feature importance scores show that baseline demand, relative discount,
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promotion group size, article category, and regular selling price are deemed most important to

predict the difference in demand between two promotions. Furthermore, results indicate there

might be important explanatory variables that are not yet included in the feature space.

The second objective focused on comparing the contrastive regression model to several

baseline methods. First of all, contrastive regression largely outperforms Picnic’s current manual

forecasting process and a simple naive forecast in terms of overall accuracy. This indicates that

the model has great potential to improve the manual process, and that a simple model does not

suffice. Furthermore, the overall accuracy of the contrastive regression models is slightly higher

than that of weighted nearest neighbor regression, and on par with that of direct regression

with CatBoost and ExtraTrees. This suggests that the contrastive regression model is the best

choice in this case, offering both accuracry and post-hoc explainability of forecasts. Regarding

the computational load, the runtime of contrastive regression is approximately 20% higher than

that of direct regression and weighted nearest neighbor regression because it requires training

on a contrastive dataset that contains k times more observations than the original dataset.

The third objective was to extend the application area of the model beyond strictly cold-

start promotions. Evaluating the forecasting accuracy for varying number of earlier promotions

available, we observe that the contrastive regression models can reach an impressive WAPE of

less than 40% on average for the first promotion of an article. This error decreases to roughly

20% on average as more historical promotions are available. The contrastive regressor with

inter-category training and direct CatBoost model show similar performance, outperforming the

other models for the first three promotions of an article. From the fourth promotion onwards,

these two models also show the most stable performance with a WAPE below 30% on average,

but no clear conclusion can be drawn on which model is consistently superior in terms of overall

forecasting accuracy. All in al, this suggests that the added value of the contrastive regression

model is not limited to forecasting strictly cold-start promotions, but shows potential to improve

the forecasting operation for at least the first three promotions of an article.

The fourth objective was to use the model to provide promotional demand forecasts and

additional post-hoc explanations in a real-life business example. In this regard, the research

aimed at improving the promotional demand forecasting process of Picnic, a European-wide e-

grocery retailer. We conclude that both contrastive regression models together with the weighted

nearest neighbor regression model show great potential to achieve this improvement. This con-

clusion is based on two main reasons concerning accuracy and interpretability: first, the three

models altogether show to outperform the manual forecasting process for 19 out of 21 article cat-

egories, and are on par with direct regression using established tree-based algorithms. Second,

the three models all have the ability to provide a post-hoc explanation for each forecast, greatly

increasing its usability in Picnic’s operation compared to direct regression. Additionally, repla-

cing the current manual process with a regression model will significantly decrease the workload

of forecasting analysts at Picnic: whereas the current forecasting process demands roughly 8 to

12 hours per week distributed between two analysts, running a model and interpreting its results

will only take approximately one hour (assuming the model is re-trained and used to forecast

roughly 1000 article promotions on a weekly basis). More detailed business insights for Picnic

are discussed in the next chapter.
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Chapter 7

Business implications for Picnic

This chapter describes the business implications of the conducted research for Picnic. The aim

is to extract relevant insights from the results, translate these to tangible implications, and do

suggestions that can help improve Picnic’s business operations.

7.1 Relevant insights and value for Picnic’s forecasting process

As discussed already in Chapter 6, the main contribution of this research to Picnic’s business

operation is the proposal of a model that provides accurate and explainable demand forecasts

for promotions. On top of this, the results from this research bring several insights that can be

leveraged by Picnic in the future, and the most important ones are discussed below.

First of all, the data analysis shows that the target variable clean ADR is right skewed. This

is caused by a handful of popular fresh food article promotions each week that reach an ADR

of 0.10 or higher (meaning that more than 10% of all customers that week buys this specific

promotion). Because of this high penetration across the customer base, these promotions can

“make or break” a certain week: underforecasting greatly hurts customer satisfaction, while

overforecasting causes large amounts of food waste. Fortunately, optimizing a model on the

MAE will already bias it towards keeping the relative error for these popular article promotions

low. To further decrease the risk of unavailability or food waste, Picnic should make special

arrangements with suppliers to deliver extra articles ad-hoc when there is a risk of going out-of-

stock, or build in extra alerts that warn if sales are lagging during the week.

Regarding the complexity of the promotional demand forecasting process at Picnic, it should

not be ignored that no model in this research achieved an overall WAPE below 27% on average.

Analysing the forecasts with a large relative error shows that their actual demand was very

different from the demand of their five nearest neighbors, despite these neighbors having nearly

identical feature values. Apart from the fact that there might be important omitted variables

missing in the feature space, this suggests that promotional sales at Picnic also suffer from a

fairly large random component that will always remain hard to predict.

As a next point, recall that the inter-category training set-up yielded a higher forecasting

accuracy than intra-category training for 14 out of 21 article categories at Picnic. Apparently,

forecasting for these categories generally benefits from pooling the observations in one dataset

and training one model. This suggests that the articles from these categories share similarities
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in their promotional features, but also that they respond somewhat similarly to promotional

periods. On the other hand, we expect articles from categories that benefit from intra-category

training to display a more unique and distinctive relationship between promotional features and

resulting demand. The clusters of categories that can be formed naturally from this provide

Picnic with new learnings about their customer base and buying behaviour.

Diving deeper into the results for the inter-category trained model, we observe that the

nearest neighbors mainly come from the same category as the forecasted promotion. The hypo-

thesis posed earlier, stating that many cold-start promotions might actually be most similar to

historical promotions from outside its own category, is therefore unlikely to be true. The reason

for this is that Picnic’s dataset already contains roughly 10,000 promotions across the whole as-

sortment, and this number grows by roughly 1,000 every week. As a result, the model generally

has no trouble finding five sufficiently similar historical promotions within its own category.

Further, the error of manual forecasting is found to be significantly worse for cold-starts

(i.e., when little promotional data is available for the article): the WAPE for the first three

promotions of an article is between 60-75%, whereas for later promotions this number decreases

to around 30-40%. This underlines how hard it is for Picnic analysts to find the right data and

give a correct interpretation when no earlier promotion is done for the article.

Lastly, it is important to realise that the features baseline ADR, promotion group size, article

category, regular selling price, freshness days, article content, and promotion month cannot be

directly tuned by the promotion team when configuring individual article promotions. Summing

their importance scores shows that these “fixed” features together account for roughly 85% of a

forecast’s variability. On the other hand, the remaining 15% of the feature importances can be

attributed to four features the promotion team can tune freely for each individual promotion:

relative discount, promotion mechanism, superdeal, and multibuy quantity. This implies that

a rough forecast of promotional demand can be computed by already entering the values for

the seven “fixed” features, and adding an initial expected value for relative discount, promo

mechanism, superdeal, and multibuy quantity. The latter four can then be detailed in a later

stage when the promotion plan is sharpened to produce a more accurate forecast.

7.2 Application of contrastive regressor in practice

In this section, a practical example of the application of the contrastive model will display

its explainability and usability for forecasting analysts. Note that quantitatively assessing the

interpretability of a model is not straightforward and difficult to do objectively, and this is not

the focus of this research. Table 7.1 shows an example of how the output dashboard of an article

promotion forecast computed by the contrastive regressor could look like.

The upper part of the table shows, from left to right, the features, importance scores, and

feature values for the five nearest neighbors and forecasted promotion. The lower part of the

table shows, for each of the neighbors, the actual ADR, forecasted difference in ADR between

the neighbor and test promotion, forecasted ADR of the test promotion, and the weight of the

neighbor (i.e., the inverse of the distance between the neighbor and the test promotion). Lastly,

on the bottom right the final weighted forecasted ADR of the test promotion is given.
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Feature Imp. (%) NN1 NN2 NN3 NN4 NN5 Test promo

Baseline ADR 67.5 162.8 232.4 247.0 233.2 258.5 236.9
Selling price 3.0 1.43 3.49 1.78 3.49 1.66 1.45
Discount 9.5 0.30 0.25 0.25 0.25 0.25 0.33
Group size 6.9 8 9 8 31 42 7
Article content 1.2 1 1 1 1 1 1
Freshness days 1.0 5 7 21 7 21 5
Multibuy qty. 0.4 1 2 2 2 2 1
Superdeal 1.8 Yes No No No Yes Yes
Mechanism 1.8 Abs. price X for Y X for Y X for Y X for Y Abs. price
Category 5.1 Dairy Dairy Dairy Dairy Dairy Dairy
Month 1.8 Sept Aug Jul Oct Sept Nov

Actual observed ADR 888.3 402.1 567.5 407.8 557.2
Forecasted difference in ADR 139.8 444.0 348.2 510.1 432.7
Forecasted ADR 1028.1 846.1 915.6 918.0 990.0
Weight 19.4 18.0 16.3 14.1 13.0

Weighted forecasted ADR 939.6

Table 7.1: Visualization of output dashboard of a promotion forecast using contrastive regressor

The unique approach of the contrastive regressor enables to not only provide this final

forecast, but also additional information about the features and neighbors. This information is

highly valuable for a promotion analyst, as it helps determining whether a final forecast can be

considered reasonable with respect to similar historical promotionis. This check for reliability

using post-hoc explanations cannot be done when a more opaque machine learning algorithm

such as direct regression with CatBoost or ExtraTrees is used, as these models solely provide

the final forecast and the feature importances. Note that for readability, the example in Table

7.1 now only displays data on the model features and ADR. It is however highly encouraged to

also include context such as article name and promotion week.

If deemed necessary by the analyst, the contrastive explanation provides three ways to adjust

the forecast. First, the feature importance scores can be redistributed if an analyst thinks that,

for this forecast in particular, specific features are more important than others. Redistributing

the feature importance scores will affect the weights in the distance calculation, hence it will

alter the weights of the neighbors. Second, the weights can be readjusted if an analysts thinks

that one of the neighbors is not as similar to the test promotion as the weight represents and

should be more or less important in determining the final forecast. Third, the final weighted

forecast can be directly adjusted if an analyst simply expects to be able to produce a better

forecast manually (for example, if extra information is given that is not available to the model,

or if the analyst wants to deliberately over- or underforecast).

At Picnic, checking all roughly 1000 weekly promotional forecasts for reliability manually

would still take significant time and effort, and this is not a sustainable process in the longer

term. On the other hand, for the contrastive regressor to be implemented in an autonomous

forecasting process that automatically places orders at suppliers, it is still highly desirable to

have such a control mechanism in place. To facilitate this, one can use the forecast governance

step from the contrastive regressor (step 5 from Section 3.1) to identify potentially unreliable

forecasts. These flagged forecasts can then be checked accordingly to minimize the risk of large

forecasting errors in a labour-efficient manner.
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Chapter 8

Discussion

This chapter reflects on the choices made in the Methodology and Data chapters of this report,

and the conclusions that were drawn from the Results. First, Section 8.1 discusses all important

assumptions and considerations, as well as points out the limitations of this research. Second,

Section 8.2 proposes interesting topics that could be the focus of further research.

8.1 Assumptions, considerations and limitations

First of all, the contrastive regression models heavily rely on data regarding baseline demand: the

outlier detection method needs it to calculate the promotional uplift, and the feature importance

scores of baseline clean ADR are 67.5% and 60.4% for CR-CBinter and CR-CBintra, respectively.

In this research, baseline demand is taken from the week in which the promotion was active. In

practice however, a promotional forecast at Picnic is computed five weeks ahead, hence baseline

demand also needs to be predicted five weeks ahead. This prediction is not error-free, so this

indirectly adds uncertainty to the promotional demand forecast. In this research, it was a

deliberate choice to use baseline demand from the promotion week instead of predicting this

five weeks ahead, so a clean assessment of contrastive regression could be made without the

noise from predicting the baseline demand. We assume that this noise will be negligible because

baseline demand of an article in general does change much in five weeks. This assumption

should be checked before the model is implemented; for example by measuring the decrease in

forecasting performance for varying levels of lag in the baseline clean ADR variable.

As to the time structure of the data, the promotion month feature was included in the

model to account for yearly seasonality in promotional demand. The hypothesis was that two

promotions with equal features but from a different month will have different demand. The

feature importance scores of 1.8% and 2.9% suggest this effect is relatively small. However, note

that only six months of promotional data is included in this research, so we can not yet draw any

reliable conclusions on the seasonality of promotional demand. To investigate further, at least 24

months of observations is needed. Furthermore, no trend variable is included in the models. This

choice is substantiated by the results of the preliminary data analysis, which indicate that the

trend in clean ADR can be attributed to manual changes in the promotion strategy of Picnic, and

these changes are captured by the features. By not including this trend variable in the feature

space, we inherently assume that two article promotions with the same promotional features but
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from different years can be considered completely equal. In other words, we hereby assume that

there are no unobserved variables that change over the years and also influence the promotional

demand. This assumption is not waterproof, as it is already known that such unobserved factors

do exist: for example, the layout of the promotion page in the Picnic app changes regularly, and

macroeconomic changes also influence consumer behaviour and susceptibility to promotions. It

should be investigated to what extent such unobserved factors exist, how large their impact is

on promotional demand at Picnic, and how they can be included in the feature space.

The outlier detection method proposed in this research uses the discount-normalized lift

(DNL) variable to detect outlier promotions. Here the assumption is made that outlier promo-

tions with unconventionally low or high demand given the observed features can be detected by

checking for observations that have an extreme DNL. Of course, there might also be promotions

that do not have an extremely low or high DNL, but are still an outlier in a different dimension

and should actually be excluded. Detecting these outliers as well was not considered within

the scope of this research. Moreover, this research assumes that the outlier detection method

undoubtedly improves forecasting performance and that no good leverage points are excluded.

This assumption should also be tested by comparing the outcome of different models with and

without the newly introduced outlier detection method.

Considering the feature selection, a method had to be set up that handles the combination

of numerical and categorical features and provides an objective, comparable measure of multi-

collinearity for each possible feature pair. Work that tackles this problem of uniformly detecting

multicollinearity in mixed-type datasets (including suitable thresholds) is limited. Hence this

method combines various academic sources, resulting in multicollinearity detection based on

both Spearman’s correlation, eta-squared, and Cramér’s V. The results of the multicollinearity

analysis and following feature selection are therefore not claimed to be unambiguously correct,

and should be interpreted with the above in mind.

Further, the feature importance scores for CatBoost are calculated as the average relative

change in the predicted value caused by a change in the feature value. This method is selected

due to its easy interpretability and computational efficiency, but it does introduce the risk that

categorical features with many levels (like article category) are overrated compared to ones with

little levels (like superdeal). For a more reliable result, the robustness of the importance scores

can be investigated by calculating the mean absolute value of the SHapley Additive exPlanation

(SHAP) values (Lundberg et al. (2018)) and comparing this to the current importance scores.

Another important decision was to use k1 = 5 random neighbors to build the contrastive

training, and k2 = 5 nearest neighbors to compute the final forecast. The number 5 was chosen

for computational feasibility and because it yielded the best results in Aguilar-Palacios et al.

(2021). Hereby, we inherently assume that k1 = 5 is enough for the CR-CBinter model to

capture the complex dependencies between promotions from different categories, and we assume

k2 = 5 is enough to collect the most relevant neighbors. These are strong assumptions to make,

and we do not rule out that adding more neighbors can further improve performance. Section

8.2 further elaborates on ideas for improvement of this part of the model.

Next, one should be cautious with interpreting the target in this research, which is is cus-

tomer demand for grocery articles (clean ADR). As customer demand essentially is fictive and
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unobservable, this quantity has no real life “observed” value. As is explained in Subsection

3.3.1, clean promotion ADR is calculated from the observed article sales and the number of

customers that saw the article unavailable in the app. This means that the model target is an

approximation of the article demand during a promotion, and this approximation induces an

additional error to the model outcome. One could argue that, as a result, the actual forecasting

performance is “only as good as the approximation of article demand”. The approximation of

clean ADR in Subsection 3.3.1 assumes that no customers withdrew from ordering at Picnic at

all due to seeing the article in promotion unavailable in the app. Also, a 75% conversion rate is

used for the share of customers that adds an article to their basket and ends up actually ordering

it. Although this percentage is based on empirical analysis at Picnic, it still adds an additional

source of uncertainty in computing the target variable clean ADR. It should be investigated how

large this uncertainty actually is, and whether it is the same across different subsets of the data.

The comparison between the inter- and intra-category trained contrastive regressor also

requires nuance. First of all, the results show that the CR-CBinter model assigns a 5.1%

importance score to the feature article category. This can be roughly interpreted as saying: on

average, 5.1% of the difference in demand between two promotions can be attributed to their

article category. This is expected to be caused by the fact that categories can have different

levels of baseline and promotional demand in general, but also a different underlying relationship

between promotional features and resulting demand. With the intra-category approach, we

do not allow the model to leverage inter-category information. Instead, we account for this

difference between categories by construction, namely through the training of a seperate learning

algorithm for each category. A different way of looking at this is that we add an additional,

pre-fixed layer to the regression tree that already distinguishes between the 21 article categories,

and construct 21 seperate underlying trees afterwards. The results show that the CR-CBinter

model has a higher overall forecasting accuracy than the CR-CBintra model. We differentiate

between three potential reasons for this improvement: as a first potential reason, the inter-

category set-up could be better because it allows to find nearest neighbors for the forecasted

promotion outside its own category. This however is likely not the case, as we observe that the

five nearest neighbors often come from the same category. As a second potential reason, it could

be that a part of the promotions from a certain article category follows a demand pattern that

is different from the rest of the category and more similar to promotions in other categories.

By using inter-category training, the model can also learn this demand patterns from other

categories, increasing the overall accuracy. As a third potential reason, the underlying pattern

between promotional features and demand could simply be the same for different categories,

hence the model performs better solely because it is trained on a larger dataset of promotions.

Our expectation is that the improved performance of the CR-CBinter model is a combination

of the latter two, and that the reason can differ per category. On the one hand for example,

the categories “Baby & Child” (148 observations) and “Fruit” (110 observations) show a strong

decrease in WAPE after extending from intra- to inter-category training (from 61.9% to 27.1%

and from 36.5% to 25.5%, respectively), which might indicate that the separate models in the

intra-category approach suffered from having too little training data. On the other hand, the

WAPE for the category “Potatoes & vegetables” (346 observations) is notably lower for intra-
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category than for inter-category training (18.6% versus 24.6%, respectively) despite having fairly

little training data, which shows that extending to inter-category training and increasing the

training sample size does not improve performance here.

Lastly, recall that the dataset with article promotions used in this research displays an

imbalance in the article category feature: the category “Drugstore” (NL: “Drogist”) accounts

for roughly one third of the observations, while the other 20 categories all account for between

1 to 8% of the data. The expectation is that at Picnic, this imbalance will remain and possibly

grow even larger, as the assortment for the category Drugstore expands rapidly and this category

heavily relies on promotions. Despite the imbalance, the inter-category trained contrastive

regression model is not unproportionally biased towards producing an accurate forecast for

Drugstore promotions. This is confirmed by the results in Table 5.4 of Section 5.2, showing

that the WAPE for Drugstore is actually the highest amongst all categories. The reason for

this is the following: the model is trained on minimizing the mean absolute error, hence it will

primarily focus on reducing the relative error for popular promotions with large demand and

focus less on reducing the relative error of promotions with lower demand (Figure 5.2 in Section

5.2 clearly visualises this). Because Drugstore articles generally have low baseline ADR and

hence low promotional ADR, the relative error of the CR-CBinter model for this category is high

compared to other categories. Interesting to mention is that the CR-CBinter still outperforms

the CR-CBintra model for the Drugstore promotions: this shows that training a seperate model

solely on data from Drugstore promotions does not increase accuracy, and even suggests that

the forecasting performance is improved if we use one overarching training set.

8.2 Topics for further research

Regarding topics for further research, this section distinguishes between research that focuses

on improving or extending the contrastive regression model, and research that expands the

application area of the model beyond promotional demand forecasting in grocery retail.

8.2.1 Potential improvements to the contrastive regression model

A first point of improvement considers adding more features to the regressor. As mentioned

earlier, these include promotions from competitors, additional marketing effort carried out by

Picnic, and a more detailed indication of the visibility of the promotion in the store app.

Next, to identify other potential points of improvement or extensions to the contrastive

regressor, the steps of the model described in Section 3.1 can be used as guidance. Note that

the second step of the outlier detection method can be interpreted as a highly simplified robust

regression with relative discount and baseline sales as the explanatory variables and promotional

sales as the response variable. The reason for using relative discount and baseline sales is

because we assume that these factors are crucial in determining promotional sales. This choice

is substantiated by the findings later, displaying a joint feature importance of almost 75% for

baseline sales and relative discount. Solely including these two variables was a deliberate choice

to maintain high transparency in the way outliers are detected, but including more explanatory

variables and performing a proper robust regression might improve the method. Good starting
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points are the MM-estimator for robust linear regression introduced by Yohai (1987), or the

ROUT-method for robust nonlinear regression introduced by Motulsky and Brown (2006).

An important building block of the contrastive regression model is the internal regressor

that computes the feature importances forecasts the difference in clean ADR. In this research,

tree-based algorithms are used due to their high accuracy and inherent ability to compute

feature importances from the splitting process. As an improvement, the decision tree regressor

can be replaced by more advanced regression methods, for example support vector regression

(Drucker et al., 1996) or neural network regression (Specht, 1991). Note that both methods do

not inherently offer feature importance calculation, but this could be solved by implementing a

permutation-based method, for example as introduced by Altmann et al. (2010).

Regarding the feature importance calculation: importance scores are now calculated on an

aggregated level during trainig, and hence each nearest neighbor applies the same weights to

calculate the distance to the test promotion. An interesting extension would be to explore the

use of forecast-specific SHAP-values to weigh the distances between the test promotion and the

neighbors. As a result, each distance calculation between a test promotion and neighbor would

use a different weights matrix that is based on the SHAP-values from the forecast of the difference

in ADR between the two. The potential benefit is that this “local weighing” might improve

forecasting accuracy. The expected cost however is that this will severely increase computational

effort, as SHAP-values need to be computed for each combination of test promotion and potential

nearest neighbor (hence, the tree algorithn needs to forecast the difference in demand between

the test promotion and every potential neighbor in the training set).

As another possible improvement, we can explore ways to combine the inter- and intra-

category set-ups. Forecasting results underline that some categories benefit from the inter-

category training, while others show better forecasting performance when trained intra-category.

A simple idea to combine the two approaches is to extend the process of building the contrastive

regression set by selecting for example 5 random neighbors from the same category as the

reference promotion, and 5 random neighbors from a different category. To allow for even more

flexibility in the trainig set-up, an ensemble model can be built that consists of multiple models

with different training scopes (intra-category, inter-category, and any option in-between).

Next is the nearest neighbor algorithm that finds the most similar promotions. This research

uses a simple brute force approach with a fixed number of neighbors (k2 = 5) and Gower’s dis-

tance as a similarity measure. First, brute force calculation is computationally heavy as for

every new forecast the distance between the forecasted promotion and all historical promotions

needs to be calculated. To decrease computational effort for searching the neighbors, a more

efficient data structure configuration method such as a K-Dimensional Tree (Bentley, 1975a) or

Ball Tree (Omohundro, 1989) can be used. These methods both efficiently structure multidi-

mensional data and hence decrease search time per forecast. K-Dimensional Trees organize the

observations in hierarchical axis-aligned rectangles, where Ball Trees organize the observations

in hierarchical spheres; the latter is considered computationally more efficient for number of

dimensions d ≥ 3, and therefore preferred for the article promotion dataset. Second, the choice

for 5 neighbors is based on the findings by Aguilar-Palacios et al. (2021), but it is not confirmed

whether this is also the best choice for the contrastive regressor proposed in this research. Fur-
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ther research should evaluate the performance for varying number of nearest neighbors, for

example k = {3, 4, 5, 6, 7, 8, 9, 10}. We also hypothesize that some cold-start promotions have

many similar historical promotions, while others might have little to none. This substantiates

the implementation of a method that does not fix the number of neighbors, but rather specifies

a proximity range in which all nearest neighbors should lie, such as the radius-based neighbor

searching techniques first introduced by Bentley (1975b). Third, it should be evaluated whether

the use of a different hetereogeneous distance measure than Gower’s distance can improve fore-

casting performance. Possible options are the Heterogeneous Euclidean-Overlap Metric (HEOM)

or Heterogeneous Value Difference Metric (HVDM) from Wilson and Martinez (1997).

Lastly, the loss functions used in this research (MSE, WAPE and WPE) are all symmetric,

meaning that they equally weigh over- and underforecasts. At Picnic however, overforecasting is

sometimes preferred over underforecasting for non-fresh or non-food articles. For these articles,

excess stock can be preserved and sold later, while out-of-stocks immediately cause customer dis-

satisfaction. This substantiates the use of an asymmetric performance metric for (at least) part

of the article promotions. Two good options for an asymmetric loss function that are often used

are the Weighted Least Squared Error (WLSE) and the Linear Exponential Error (LINEXE).

This can be extended to an even more flexible approach where a different loss function is used

for each category that fits the freshness of those articles.

8.2.2 Application of contrastive regression beyond demand forecasting

Besides improving the contrastive regression model, there are also interesting opportunities to

extend its application area beyond promotional demand forecasting in grocery retail. These

opportunities have in common that they involve regression to predict a quantity, suffer from

cold-startness or low data availability, and require explainability of the model outcome.

A first example is predicting the performance of a startup company (e.g. annual revenue, or

market capitalization after one year) based on a dataset of startups that were founded in the

past. Numerical features could then include current revenue, profit margin, or total investments,

and categorical features could include the specific market or industry, level of scalability, or type

of technology used. In addition to the forecast, the list of similar historical startups provided

by the model can be useful to learn from their successes or mistakes, or to identify synergies.

A second example involves predicting the performance of a newly launched book (e.g. copies

sold in the first month) based on existing books. Numerical features could include the perform-

ance of prequels, the available marketing budget, or the number of pre-orders, and categorical

features could include the genre, the reputation of the author, or the platform(s) on which it is

released. Additionally, the feature importances provided by the method can help the publisher

or film studio determine where to focus on to increase sales.

As a third example, consider predicting the adoption of sustainable regulation by companies

based on the adoption of earlier regulation. Numerical features could include the amount of

environmental impact (e.g. percentage reduction in carbon emission or energy consumption), the

costs of implementation, or the long-term financial yield, and categorical features could include

the type of regulation, presence of government incentives, or level of compliance required.
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Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. (2010, 5). Permutation importance: a cor-

rected feature importance measure. Bioinformatics, 26 , 1340-1347. doi: 10.1093/BIOIN-

FORMATICS/BTQ134

Anderson, E. T. & Fox, E. J. (2019, 1). How price promotions work: A review of practice and

theory. , 1 , 497-552. doi: 10.1016/BS.HEM.2019.04.006

Bentley, J. L. (1975a, 9). Multidimensional binary search trees used for associative searching.

Communications of the ACM , 18 , 509-517. doi: 10.1145/361002.361007

Bentley, J. L. (1975b). A survey of techniques for fixed radius near neighbor searching (Tech.

Rep.). Stanford, CA: SLAC.

Blattberg, R. C. & Neslin, S. A. (1993, 1). Chapter 12 sales promotion models. Hand-

books in Operations Research and Management Science, 5 , 553-609. doi: 10.1016/S0927-

0507(05)80035-0

Bojer, C. S., Dukovska-Popovska, I., Christensen, F. M. M. & Steger-Jensen, K. (2019). Retail

promotion forecasting: A comparison of modern approaches. IFIP Advances in Informa-

tion and Communication Technology , 567 , 575-582. doi: 10.1007/978-3-030-29996

Chase, J., Charles W. (1994, Fall). Customer demand forecasting. The Journal of Business

Forecasting Methods Systems, 13 (3), 2.

Chauhan, A., Prasad, A., Gupta, P., Reddy, A. P. & Saini, S. K. (2020, 4). Time series

forecasting for cold-start items by learning from related items using memory networks.

The Web Conference 2020 - Companion of the World Wide Web Conference, WWW

2020 , 120-121. doi: 10.1145/3366424.3382728

Christensen, F. M. M., Solheim-Bojer, C., Dukovska-Popovska, I. & Steger-Jensen, K. (2021,

3). Developing new forecasting accuracy measure considering product’s shelf life: Ef-

fect on availability and waste. Journal of Cleaner Production, 288 , 125594. doi:

10.1016/J.JCLEPRO.2020.125594

57



Cohen, J., Cohen, P., West, S. G. & Aiken, L. S. (2013). Applied multiple regression/correlation

analysis for the behavioral sciences. Routledge.

Cooper, L. G., Baron, P., Levy, W., Swisher, M. & Gogos, P. (1999). Promocast ™: A new

forecasting method for promotion planning. Marketing Science, 18 (3), 301–316.

Dai, Y. & Huang, J. (2021, 4). A sales forecast method for products with no historical data.

2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics,

ICCCBDA 2021 , 229-233. doi: 10.1109/ICCCBDA51879.2021.9442603

Donselaar, K. H. V., Peters, J., Jong, A. D. & Broekmeulen, R. A. (2016, 2). Analysis and

forecasting of demand during promotions for perishable items. International Journal of

Production Economics, 172 , 65-75. doi: 10.1016/J.IJPE.2015.10.022

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., . . . Lautenbach, S.
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Appendix A

Preliminary data analysis

A.1 Distribution of target and features

(a) Clean ADR (b) Baseline clean ADR

(c) Regular selling price (d) Relative discount

Figure A.1: Full overview of target and feature data distributions
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(e) Promotion group size (f) Article content

(g) Freshness days (h) Multibuy quantity

(i) Superdeal (j) Promotion mechanism

(k) Article category (l) Promotion month

Figure A.1: Full overview of target and feature data distributions
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A.2 Correlation between target and features

(a) Baseline clean ADR (b) Regular selling price

(c) Relative discount (d) Promotion group size

(e) Article content (f) Freshness days

Figure A.2: Scatter plots and box plots of model target vs. features
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(g) Multibuy quantity (h) Superdeal

(i) Promotion mechanism (j) Article category

(k) Promotion month

Figure A.2: Scatter plots and box plots of model target vs. features
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A.3 Behaviour of target and features over time

(a) Clean ADR (b) Baseline clean ADR

(c) Regular selling price (d) Relative discount

(e) Promotion group size (f) Article content

(g) Freshness days

Figure A.3: Behaviour of target and features over time
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(h) Multibuy quantity

(i) Superdeal

(j) Promotion mechanism

(k) Article category

Figure A.3: Behaviour of target and features over time
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Appendix B

Pseudocode for model selection

Algorithm 1 Pseudocode for generalization error estimator n2
n1
µ̂

1: Input: model selection dataset Dselect (n samples), number of cross-validation rounds J,
error metric L(j, i)

2: Output: generalization error estimate n2
n1
µ̂

3:

4: for j = 1 → J do
5: Randomly split Dselect with ratio 80:20 into Dj (n1 samples) and Dc

j (n2 samples)
6: Train model and tune hyperparameters with Bayesian optimization using Dj

7: for (Xi, yi) ∈ Dc
j do

8: Use Xi as input for trained model to forecast ŷi
9: Calculate error between yi and ŷi using error metric L(j, i)

10: end for
11: Calculate average error µ̂j =

1
n2

∑
i∈Dc

j
L(j, i)

12: end for
13: Calculate generalization error estimate n2

n1
µ̂ = 1

J

∑J
j=1 µ̂j

14:

15: return n2
n1
µ̂
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Algorithm 2 Pseudocode for variance of generalization error estimator
n2

n′
1
σ̂2

1: Input: model selection dataset Dselect (n samples), number of rounds M, number of cross-
validation rounds J, error metric L(j, i)

2: Output: variance of generalization error estimate
n2

n′
1
σ̂2

3:

4: for m = 1 → M do
5: Randomly split Dselect with ratio 50:50 into Dm and Dc

m

6: for d = {Dm, Dc
m} do

7: for j = 1 → J do
8: Randomly split d with ratio 60:40 into dm,j (n′

1 samples) and dcm,j (n2 samples)
9: Train model and tune hyperparameters with Bayesian optimization using dm,j

10: for (Xi, yi) ∈ dcm,j do
11: Use Xi as input for trained model to forecast ŷi
12: Calculate error between yi and ŷi using error metric L(j, i)
13: end for
14: Calculate average error µ̂m,j =

1
n2

∑
i∈dcm,j

L(j, i)

15: end for
16: if d = Dm then
17: Calculate generalization error estimate µ̂(m) =

1
J

∑J
j=1 µ̂m,j

18: else if d = Dc
m then

19: Calculate generalization error estimate µ̂c
(m) =

1
J

∑J
j=1 µ̂m,j

20: end if
21: end for
22: end for
23: Calculate variance of generalization error estimate

n2

n′
1
σ̂2 = 1

2M

∑M
m=1(µ̂(m) − µ̂c

(m))
2

24:

25: return
n2

n′
1
σ̂2
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Appendix C

Example of contrastive explanations

In the two tables below, numbers regarding ADR are scaled by factor 104 for readability.

Feature Importance (%) NN1 NN2 NN3 NN4 NN5 Test promotion

Baseline ADR 67.5 5.08 5.04 4.49 4.01 4.15 4.95

Selling price 3.0 5.86 5.99 5.49 5.49 6.98 7.19

Relative discount 9.5 0.50 0.50 0.50 0.50 0.50 0.33

Group size 6.9 7 7 8 8 7 8

Article content 1.2 1 1 1 1 1 1

Freshness days 1.0 50 50 50 50 50 50

Multibuy qty. 0.4 2 2 2 2 2 3

Superdeal 1.8 Yes Yes Yes Yes Yes Yes

Mechanism 1.8 X+Y X+Y X+Y X+Y X+Y X+Y

Category 5.1 Drug Drug Drug Drug Drug Drug

Month 1.8 Sept Sept Sept Sept Sept Oct

Actual observed ADR 58.74 99.70 59.70 36.12 50.88

Forecasted difference in ADR -29.03 -48.69 -26.89 -14.01 -20.62

Forecasted ADR 29.71 51.01 32.81 22.11 30.26

Weight 53.4 53.0 53.0 52.7 52.5

Weighted forecasted ADR 33.18

Actual observed ADR 6.74

Table C.1: Contrastive explanation for forecast with large positive relative error
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Feature Importance (%) NN1 NN2 NN3 NN4 NN5 Test promo

Baseline ADR 67.5 1.73 1.58 1.54 1.53 1.51 1.72
Selling price 3.0 6.99 6.99 6.95 6.95 6.95 6.99
Relative discount 9.5 0.50 0.50 0.50 0.50 0.50 0.50
Group size 6.9 44 44 44 44 44 44
Article content 1.2 1 1 1 1 1 1
Freshness days 1.0 50 50 50 50 50 50
Multibuy qty. 0.4 2 2 2 2 2 2
Superdeal 1.8 Yes Yes Yes Yes Yes Yes
Mechanism 1.8 X+Y X+Y X+Y X+Y X+Y X+Y
Category 5.1 Drug Drug Drug Drug Drug Drug
Month 1.8 Sept Sept Sept Sept Sept Nov

Actual observed ADR 3.86 4.21 2.67 4.30 2.85
Forecasted difference in ADR -0.68 -0.35 -0.27 -0.41 -0.27
Forecasted ADR 3.18 3.86 2.41 3.89 2.59
Weight 506.8 483.4 476.9 475.6 471.8

Weighted forecasted ADR 3.19
Actual observed ADR 34.08

Table C.2: Contrastive explanation for forecast with large negative relative error
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Appendix D

Additional programming code files

This appendix contains a short description of the six programming code files used in this research.

File 1: contrastiveRegressor.py

Contains the class that is used for the contrastive regression model. Methods are included to

train the model, get the feature importances, update the pool of potential neighbours, predict

test observations, retrieve the results, and get a post-hoc contrastive explanation.

File 2: weightedNearestNeighbourRegressor.py

Python-file containing the class that is used for the weighted nearest neighbour regression model.

Methods are included to train the model, get feature importances, update the pool of potential

neighbours, predict test observations, retrieve results, and get a post-hoc explanation.

File 3: promotionOutlierDetection.py

Python-file containing the function that applies the outlier detection method as described in

this research to a dataset of article promotions.

File 4: gowerDistanceCyc.py

Python-file containing the functions that calculate Gower’s distance between two data instances

that contain numerical, categorical, and cyclical variables.

File 5: modelSelection.ipynb

Jupyter Notebook-file containing the model selection procedure as described in this research.

This includes data preparation and a loop that trains and tests the four candidate models and

saves the forecasting results.

File 6: modelEvaluation.ipynb

Jupyter Notebook-file containing the final model evaluation procedure as described in this re-

search. This includes data preparation and a loop that trains and tests the seven models and

saves the forecasting results and feature importances.
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