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Abstract

This paper explores strategies for optimizing the replacement policy of computer components

to achieve lifetime extension (LTE) of desktop computers. The research examines a Markov

Decision Model (MDM) that evaluates the average replacement costs via time discretisation,

utilizing a linear programming (LP) formulation. An extension of the problem introduces de-

pendencies among components, with CPU having a pivotal role in decision making. While these

approaches provide optimal solutions, their interpretability may be limited. To address this,

the paper introduces a heuristic approach called the Power of Two (PoT) policy, comparing its

performance to the MDM. Lastly, the study enhances the optimal replacement policy by incor-

porating environmental considerations, specifically targeting the major contributor of carbon

dioxide (CO2) during manufacturing phase of computer components.

Keywords: Lifetime extension, Markov Decision Model, Power of Two, CO2 emissions
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Introduction

In a rapidly evolving world, it is of crucial importance to keep up with the latest technological

advancements. A prediction in February 2023 indicated that consumers will spend around 685

billion dollars on electronic devices throughout the year (Statista Research Department, 2023c).

Only in the Netherlands, the revenue from the electronics market is estimated at around 7 bil-

lion euros in 2023 with annual growth rate of 1.21% for the next five years (Statista Research

Department, 2023b). This trend indicates the willingness of consumers to spend in order to

align with the contemporary technology.

Conversely, the economic impact tends to burden consumers more frequently as a result of

rapid technological obsolescence. The accelerated progress of technology and market compet-

ition are driving the production of tech products with shorter and shorter lifespans, leading

to economical obsolesce (high repair and maintenance costs) even before the end of their life

(Umeda, Daimon & Kondoh, 2005). Along these lines, the incorporation of new equipment fea-

tures and capabilities occurs at a rapid pace (Kang & Schoenung, 2005), rendering the electronic

equipment obsolete and necessitating the frequent need for replacement.

While the economic weight on consumers cannot be overlooked, the warnings regarding en-

vironmental pollution have triggered a sense of urgency in the global community. In particular,

the detrimental effects of over-consumption along with the short life cycles of devices have

led to unprecedented hazard in the environment. With the current rate of consumption, the

planet requires one and a half year in order to renew the resources used by humans in one year

(McLellan, Grooten & Almond, 2012). Furthermore, the extraction and consumption of raw

materials skyrocketed from 36 billions of tonnes in 1980 to almost 70 in 2010 (Linster et al.,

2015). This upward trend is still ongoing, with the extraction of 85 billions raw materials in

2020 and the projection to surpass 100 in 2030 (Lutz & Giljum, 2017). As we move forward,

it is essential for the society to recognize the urgent need for more sustainable practices, by

embracing circular economy policies.

To address these challenges, new strategies have been developed to prolong the lifespan of

products. These strategies are categorized according to the life cycle phases of systems, namely

Beginning of Life (BoL), Middle of Life (MoL) and End of Life (EoL). For each phase, certain

methods offer unique opportunities, challenges and economic benefits. In case of EoL, four key

actions are the most popular among others, namely remanufacture, refurbish, reuse and recycle

(Khan, Mittal, West & Wuest, 2018).
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After the implementation of stringent governmental regulations aimed to mitigate environmental

pollution, the concept of ’life extension’ has become the central point of discussions among sci-

entists. Lifetime extension (LTE) is defined as the extended utilization period of a product,

resulting in a slowdown of the flow of materials through economy (Bocken, De Pauw, Bakker &

Van Der Grinten, 2016) and is regarded a reuse method during the EoL phase of a component.

This further classification seeks to delve into the concept of reuse more comprehensively and

investigate life extension in a more detailed manner.

This relatively new concept has led to confusion in distinguishing the terms maintenance and

life extension. According to the definition, maintenance is defined as ”any activity intended

to retain or restore a functional unit in or to a specified state in which the unit can perform

its required functions” (Wikipedia, 2023b). In contrast, lifetime extension is defined as ”the

process of restoring a used product to a better operational state and prolonging its remaining

life” (Shafiee, Finkelstein & Chukova, 2011). In other words, life extension seeks to enhance a

system with new requirements whereas maintenance intends to keep system’s functionality to a

certain level.

Despite this terminology difference, the mathematical approaches of LTE, considering deteri-

orating systems and increased requirements, align with those in the traditional maintenance

policies. Furthermore, LTE involves the partial replacement of a system, a fact directly linked

with the case of multi-component systems, discussed in the literature as part of maintenance

strategies.

This paper aims to delve into the relatively new and under-explored topic of life extension

of components within a system. Given the emerging attention of the field, with limited explor-

ation of certain aspects in the past, there is compelling need for the its study. In essence, this

paper seeks to provide insights into the following critical questions.

• How can the feasibility of implementing LTE be assessed in terms of costs and CO2 emis-

sions? Under what circumstances LTE is an applicable strategy? What are the challenges

associated with its implementation?

– How can the concept of life extension be formulated mathematically?

– Why is it currently challenging to quantify the effects of this strategy on a complex

multi-component system?

– Is there any feasible method to calculate interdependencies among components?

– Are there mathematical tools that can capture the expected lifetime of a system?

– How can the measurement of CO2 emissions be carried out during the implementation

of the life extension strategy?
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1.1 Problem Statement

The remarkable improvement in computer’s performance throughout the years has been attained

due to advancements in its individual components. For instance, between 2004 and 2023 the

central processing unit (CPU) demonstrated a 25,000-fold improvement,with a projected upward

trajectory in the coming years (PassMark, 2023). On the other hand, as every physical object,

components are subject to deterioration. Within the existing literature, deterioration types

are often classified based on their dependencies: economic, stochastic, and structural (Oakley,

Wilson & Philipson, 2022). Given the intricate nature of computers where components degrade

at different rates due to technical or technological reasons (Rachaniotis & Pappis, 2008), it would

be reasonable to investigate the stochastic dependency among on them. Stochastic dependence

arises when the condition or lifespan distributions of other components are influenced by the

state of a particular component (Oakley et al., 2022).

In the standard benchmarks sites each component is labeled based on its performance, price

and specifications: high end, high to mid, low to mid and low end. For this study the scope

falls into the low end computers and components whereas the choice is based on the multiple

benefits they offer for an average user such as affordability, easy-use and portability. In reality,

a desktop computer requires the assembly of more than ten components, which interact each

other through complex connections (Wikipedia, 2023a). However, the lack of consistent data

for each component as well as the difficulty of creating a mathematical model for all of them

prompts us to focus on assessing three main components of a computer: the central processing

unit, video card and hard drive (CPU, GPU, HDD).

Manufacturers design computers with average lifespan varying around four and a half years.

(Statista Research Department, 2023a). However, this period can be extended based on several

factors. One prominent choice to prolong computer’s life is the replacement of its components

with more technologically advanced ones in order to be compatible with the latest innovations

of technology. Peck (2016) indicated that a minimal increase of 1% of value added by economic

activities related to a longer lifetime for products would have an aggregated effect of 7.9 billion

EUR per year across the European economy.

Computers are one of the many examples of electronic devices associated with high levels of

e-waste and their construction is a highly resource-intensive process. According to United Na-

tions University, a desktop computer with monitor demands 1.8 tons of raw materials during

manufacturing phase (Hoang, Tseng, Viswanathan & Evans, 2009) while Williams (2004) es-

timated the energy use during production up to a staggering 81% compared to the usage stage.

As a result, the production and usage of computer accounts 2% of the total greenhouse gases

(GHG) emission in the United States (Masanet, Price, Brown, Worrell et al., 2005). Among

the greenhouse gases, the major culprit in climate change is considered to be carbon dioxide

(CO2). Since the era of industrialization, these gases have played a substantial role in global

warming, with its consequences already beginning to manifest. The planet is in a critical state

and decisive measures must be taken to prevent alarming consequences.
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The primary goal of this paper is to present a comprehensive plan for PC users in case of

their desktop computer no longer meets demand, by either replacing the whole computer or its

individual components. When referring to the whole computer, the focus is on the three main

components of a desktop computer: the central processing unit (CPU), the graphics processing

unit (GPU) and the hard drive disk (HDD). The choice to study these components is motivated

by their significant impact on incorporating the latest capabilities introduced in the market into

a computer system.

The upgrade strategy involves the replacement of these three components from the period of

their integration into a computer up to reaching to a certain condition. Throughout this period,

the components may experience deterioration or remain unaffected, or they undergo to prevent-

ive replacement at a fixed state. Upon replacement, the components are replaced with new,

enhanced counterparts, ensuring that the system always maintains a certain level of perform-

ance while it keeps the cost as low as possible.

The objective of this approach is to reduce the average costs during the replacement cycle.

Insights derived from the upgrade strategy are intended to empower users in making informed

decisions about upgrading their systems to better align with the latest technological require-

ments.

1.2 Carbon Dioxide Footprint

In the present era, technology companies have adopted the practice of officially keeping records

about how their products impact the environment. This transparency serves dual purposes: it

shows that companies are serious about being eco-friendly but also puts them in the conversation

about environmental responsibility. From an economic point of view, embracing this strategy

can provide a competitive advantage, enhancing the brand image and attractiveness of products,

especially to environmentally conscious consumers.

This introduction serves as a crucial foundation for comprehending the scope of the upcom-

ing section, aiming to estimate the optimal replacement policy for computer components by

considering carbon dioxide emissions during the manufacturing phase. The driving force for this

endeavor is rooted in the insights from Ferreboeuf et al. (2019), which reveals that a substantial

70-75% of the overall carbon emissions arise during the manufacturing phase for the case of a

desktop computer.

However, it is essential to acknowledge a significant challenge in this pursuit—the scarcity of

relevant data. Among supplier companies, there is substantial variation in the published amount

of CO2 of computers during manufacturing. For example, Dell reports a percentage of approxim-

ately 50% whereas Hewlett Packard (HP) indicates that the percentage varies around 30%. This

discrepancy might stem for the fact that there are more available published data for higher-end

models of Dell compared to those of HP, with emphasis on more budget-friendly computers. A
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naive explanation for this discrepancy could be that the higher the performance of a computer

the greater its emissions to the environment.

Finding information, particularly for low-end computers, proved to be a formidable task. This

challenge is magnified by the fact that major technology companies focus their production ef-

forts on higher-end models, constructing only a limited number of low-end computers. Within

the context of this discussion, the term ”low-end computers” primarily refers to laptops. This

scarcity of data underlines the need for more comprehensive and accessible information to in-

form sustainable decision-making, especially concerning the environmental impact of computer

components.

The plan aims to formulate an effective strategy for environmentally conscious PC users fa-

cing deficiencies in their computer requirements. The proposed approach involves replacing

components with upgraded versions to attain a certain level of performance based on their car-

bon emissions rather than costs. The main components studied for this research - CPU, GPU,

HDD - align with those in optimal replacement policy discussed above, given their impact on

the CO2 emissions during PC construction and their significant contribution to overall com-

puter performance. The method emphasizes quantifying the average carbon dioxide emissions

associated with the replacement cycle of computer components.

1.3 Relevance

The research on the optimal upgrading of computers and their components investigates a topic

that is not only insufficiently explored by scientists but also with plenty of room for further

development. Currently, literature refers to the maintenance on ’multi-component system’ as a

system with more than one component but the limitation lies on most of the published papers,

which deal with cases of solely two components. In reality, machines consist of multiple com-

ponents that require frequent maintenance in order to avoid down times, oversized costs as well

as to keep a certain service level. The same problem applies in the study of personal computers,

where a wide gap in the literature must be addressed.

In addition to the misconception regarding the number of components, only a limited num-

ber of papers address lifetime extension strategies. This is primarily because decision-making

proves to be not entirely explainable but also the lack of prior experiences in implementing these

types of strategies (Ziegler, Gonzalez, Rubert, Smolka & Melero, 2018). The issue becomes lar-

ger, where even fewer papers present mathematical models to describe life extension problems.

The heightened awareness of environmental protection and the potential impacts associated

with the entire life cycle of products—from manufacturing and distribution to consumption and

end-of-life—has stimulated increased interest in developing methods for a deeper understand-

ing. Nevertheless, the existing literature on assessing the environmental impact of component

replacement within a mathematical framework remains relatively sparse. This study aims to

address this gap by implementing a replacement policy centered on reducing CO2 emissions.
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1.4 Outline

The remainder of this paper is organized as follows: Section 2 introduces the literature review.

Section 3 outlines the methodology, beginning with the problem setup in 3.1. Section 3.2 intro-

duces the implemented mathematical approach, with a specific focus on the Markov Decision

Model. Additionally, 3.3 presents a subtle modification to the original problem, while 3.4 pro-

poses a heuristic algorithm. Finally, 3.5 presents the framework for assessing carbon dioxide

emissions. In Section 4 the corresponding results are displayed. The paper concludes in Section

5, followed by Section 6 which delves into future additions and discussions.
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Literature Review

This chapter presents the relevant literature of the research topic. In Section 2.1 a detailed ex-

amination on the life extension strategies and implications applied to computers are introduced.

Section 2.2 delves into the environmental aspect, focusing on the assessment of CO2 footprint

through life extension.

2.1 Desktop Computer Literature

In recent decades, the multifaceted significance of systems maintenance have attracted more and

more attention from both researchers and industrial sector. Mobley (2002) underlined that main-

tenance costs could represent up to 60% of the total operating costs. On the same wavelength,

Gräber (2004) expressed that maintenance costs could reach up to 30% of the production costs

in a power plant.

However, the concept of lifetime extension has diverted the attention of scientists. Fontana

et al. (2021) emphasized the implementation of LTE as of highest importance in the field of pre-

dictive maintenance. Moreover, Budzinski, Bezama and Thrän (2020) illustrated the benefits of

LTE, particularly in reducing environmental hazards. In a chronological progression, scientists

initially acknowledged the importance of maintenance and then redirected their endeavors to-

wards LTE. This strategic shift aims to minimize costs and environmental impacts, among other

objective goals.

In the literature, an interested reader could find numerous papers related to maintenance sys-

tems with a single component. The vast majority of them aim on reducing costs or shortening

failures times of a system. Nonetheless, modern systems are way more complex and they consist

of multiple components. Two major reasons pivoted scientists’ efforts to study multi-component

systems: First, the rapid growth of computer technology and the development of analytical tech-

niques gave the opportunity for detailed examination of these systems. Secondly, it turns out

that components interact to each other in some multi-component systems. The latter proved to

be a crucial element on maintenance decisions (Dekker, Wildeman & Van der Duyn Schouten,

1997).

Although many maintenance planning strategies have been studied thoroughly at latest years,

such as corrective maintenance (occurs upon failure of the system) or preventive maintenance

(either on a fixed pre-specified age or after T periods of time), the topic of upgradeability is an
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emerging and relatively new strategy (Khan et al., 2018). The following three papers investigate

the topic of lifetime extension: Ziegler et al. (2018) administered interviews with onshore wind

turbine firms in four European countries, namely Germany, Denmark, Spain and UK. Their

result showed that end-of-life solutions will record a considerable market in the next years. van

Noortwijk and Frangopol (2004) made a comparison of two maintenance models: a condition-

based and a reliability-based. Both of them aim to find the optimal balance between reliability

and life-cycle cost of a deteriorating civil infrastructure. Yang, Frangopol and Neves (2006)

proposed a model which assesses the reliability of deteriorating bridges structures based on life-

time functions. Despite the growing attention given to the term of ’upgradability’ (Khan et al.,

2018), a generic qualitative modelling for life extension is lacking.

An alternative term used to describe LTE is the concept of ’mid-life upgrade’, a terminology

commonly employed in military. Three papers discussed below incorporate this approach in

their research. Kusumo and Sinha (2002) proposed a plan to enhance the performance of mil-

itary air-crafts to meet the demand for improved mission capabilities. However, this paper

lacks of mathematical framework, relying instead on qualitative methods. Jonnalagadda, Sinha,

Hoffmann and Schrage (2005) conducted a design analysis of military helicopters in order to

develop their on board mission systems and address the demand for technological upgrades.

Similarly to the previous paper, this work does not integrate mathematical modelling into its

methodology. On the other hand, Nijland, Atyeo and Sinha (2004) assess the flight performance

of an upgraded design for helicopters. This paper implements simulation to draw conclusions.

Nonetheless, they didn’t manage to come up with solid conclusions due to inaccurate helicopter

specifications.

In the present era, engineering systems are subject to degradation stemming from both us-

age and environmental influences. As components interact within a system, the degradation or

failure of one component affects the others. De Jonge and Scarf (2020) spotted a gap in existing

research, revealing that only a few papers investigate the influence of stochastic dependency

on physical entities and all of them miss important information: They either do not consider

condition information or limit their work on only two components (Oakley et al., 2022). Keizer,

Flapper and Teunter (2017) observe that studies typically isolate dependencies, yet in reality,

systems often involve a combination of different dependency types. Equally significant is the

oversight in many papers regarding the factor of uncertainty; these studies tend to assume fixed

threshold values, overlooking the dynamic nature of component deterioration intervals. This

oversight results in obtained findings that paint a distorted picture of the process, potentially

leading to misleading conclusions. The three papers highlighted above underline the challenges

associated with accurately measuring these dependencies.

Another gap in the literature is spotted on the limited number of papers that utilize mathem-

atical methods for computer upgrading, coupled with a scarcity of research on the implemented

methods and derived conclusions. To be more specific, only two papers have been found imple-

menting operations research approaches in the context of computer setups. Generally, as the
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number of examined components increases, the application of precise mathematical approaches

for optimal replacement becomes more challenging. Rachaniotis and Pappis (2008) presented a

PC case aimed at determining the optimal upgrade policy to maximize overall computer per-

formance, considering three components. They applied stochastic dynamic programming but

this method is computationally intensive. Their findings suggest that if a greater number of

components are studied, the problem may be susceptible to the curse of dimensionality, an issue

raised from the exponential increase in the amount of data. On the other hand, Zafiropoulos and

Dialynas (2004) implemented a meta-heuristic algorithm called simulated annealing in order to

find the optimal system structure for an electronic device.

2.2 Environmental Assessment

With the tremendous prosperity of the electronics industry, an increasing awareness about the

environmental impacts related to mass production, electricity use and waste management has

been raised. These concerns resonate not only with scientists and environmentalists but also

within corporate circles (Choi, Shin, Lee & Hur, 2006). In order to capture the environmental as-

pects of a product during its lifetime, they developed a methodology called life cycle assessment

(LCA). LCA is a systematic approach to assess and quantify the environmental performance

associated with all stages of product creation, processes and activities (ISO (International Or-

ganization for Standardization), n.d.) and is used in fields like marketing, product selection and

strategic planning (Weidema, Wenzel, Petersen & Hansen, 2004).

Due to the growing importance of environmentally friendly practices, many papers have been

published using Life Cycle Assessment (LCA), especially when looking at electronic products

like TVs, laptops, and smartphones. Most of the published work investigate the complete life

cycle of a product, from extraction of resources to the end-of-life disposal. For example Duan,

Eugster, Hischier, Streicher-Porte and Li (2009) conducted LCA to desktop computers in China

from global level. Figures 2.1 and 2.2 in this study provide key insights. Figure 2.1 makes it

clear that manufacturing and use play a dominant role in causing environmental damage during

the life cycle. Moreover, it highlights that the most significant impacts are on human health and

resources. This pattern holds true for carbon emissions per phase as well, as shown in Figure

2.2, where usage and manufacturing take precedence.

On the other hand, Andrae and Andersen (2010) assess the consistency of studies for consumer

electronics. They point out significant deviations among LCA studies for laptop and desktop

computers, but also consensus for smartphones and TVs. In a recent study, Loubet et al. (2023)

organized LCA focusing on single-board computers (SBC) and desktop computers (PC) within

the higher education context. The outcomes of their investigation emphasize the eco-friendly su-

periority of integrating SBCs for student use, highlighting a significantly reduced environmental

footprint linked to this alternative.

A relatively overlooked aspect in the literature pertains to the sustainable analysis of electronic

device upgrades. The existing body of literature lacks comprehensive coverage on the sustain-
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Figure 2.1: Environmental impact per phase (Duan et al., 2009)

Figure 2.2: CO2 emissions per phase (Duan et al., 2009)

ability assessment of computer components, with only a handful of papers addressing various

facets. Fatimah and Biswas (2016) conducted a survey on small to medium sized computer

re-manufacturing enterprises by assessing economic, energy, reliability and unemployment cri-

teria and conducting life cycle assessment. Also, Han et al. (2021) introduced a mathematical

framework designed to optimize both greenhouse gas emission savings and profits through the

reuse and recycling of end-of-life computers. However, a notable gap persists, as no identified

paper specifically addresses optimal upgrade policies with the explicit aim of minimizing the

CO2 footprint, diverging from the traditional focus on cost considerations.
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Methodology and Data

In this chapter, a comprehensive overview of the implemented methodologies is provided. Section

3.1 describes the general framework of the problem. In Section 3.2 the implementation of Markov

Decision Model is outlined. Moving forward, Section 3.3 delves into a case featuring dependent

replacement probabilities whereas Section 3.4 introduces a heuristic algorithm developed for

comparative assessments. Concluding this exploration, Section 3.5 illustrates a mathematical

framework focused on evaluating the CO2 footprint resulting from the replacement policy.

3.1 Model and Data

The cornerstone of constructing a Markov Decision Model lies in accurately defining the math-

ematical framework for the problem at hand. For this context, three components (CPU, GPU,

HDD) of a desktop computer are considered. The model is described with finite state and action

spaces, a design choice to insert practical functionality to the problem as well as to avoid com-

putational issues. In the broader context, failures of system components tend to adhere to either

Weibull or exponential distributions (Zafiropoulos & Dialynas, 2004). For electronic products

specifically, their failure rates tend to stabilize over time, allowing for a reliable approximation

through the use of an exponential model (Rachaniotis & Pappis, 2008). In this work, exponential

distribution is utilized to describe the deterioration level of the components. The goal is to not

only broaden model’s utility but also simplify computational processes.

While the typical lifespan of a desktop computer is generally estimated at 5.29 years in 2023

(Statista Research Department), this paper adopts a functional lifetime of 5 years for the sake of

practicality. The component performance, denoted as Pi(t), represents the relative performance

of component i compared to its latest version at time t, determined by the deterioration rate λ.

It is mathematically expressed as Pi(t) = e−λitPi(0) = (αi)
tPi(0), where Pi(0) = 100% signifies

the initial performance of component i at t = 0 and 0 < Pi(t) ≤ 1. The parameter αi = e−λi

denotes the geometric performance decrease of component i while αt
i expresses the deterioration

level of component i at time t. The system performance P sys is also measured in relation to a

complete new system. It is defined as the weighted average of the three individual component

performances, expressed as Psys(t) =
∑3

i=1 wiPi(0)e
−λit

3 . Minimum performance requirements are

set not only for each component but also for the entire system: P sys ≥ θsys and Pi(t) ≥ θi for

i ∈ 1, 2, 3.

Recognizing the complexity involved in controlling a continuous state system, a strategic decision
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is made by discretizing the state space. This approach simplifies the analysis by segmenting the

state space into 10 equal pieces, each representing a half-year interval with t ∈ 1, 2, ..., 10. The

parameter λi signifies the degradation value of component i and is independent of the state of

component. To illustrate discretization in probabilities, notation pin is introduced. Component

i experiences deterioration from state n to state n + 1 with probability P i
n,n+1 = (1 − pin) or

remains at state n with probability P i
n,n = pin. Therefore, the system is observed on fixed periods

of time and there are two possible transitions from each state.

To establish a connection between the deteriorating performance of the system and the trans-

ition probabilities, it is assumed that the expected performance level αiPi(t) remains constant

and independent of the states. This assumption is modelled by considering partial transitions

from states rather than actual. In mathematical notation, it is formulated as

αiPi(t) = pinPi(t) + (1− pin)βPi(t)

In this equation, the expected performance of component i at time t is expressed as the prob-

ability of being at state n with probability pin and having performance Pi(t) and the probability

of deteriorating to state n+ 1 with probability 1− pin with the corresponding performance. By

solving in terms of pin, it holds that pin = αi−β
1−β . Clearly, the transition probabilities remain

constant as the state evolve and depend only on parameter αi of each component as well as

parameter β. Here, β denotes the step size of deterioration, it is constant for all components

and is independent of the states. Determined arbitrarily by the decision maker, β influences the

magnitude of transition probabilities and consequently impacts the average replacement costs.

This approach not only eases the complexity associated with continuous state systems but also

provides a structured framework for a more comprehensible examination of the system’s dynam-

ics. Lastly, as regard to the action space A, its scope can be narrowed down to the decision of

whether a component needs to be upgraded. Therefore, notation a ∈ A for component i with

i ∈ 1, 2, 3 denotes that

ai =

1 if component i is upgraded

0 otherwise

The computational complexity of this problem depends on the number of variables introduced.

Indeed, the number of variables grows exponentially with the number of components in the

problem. To make it feasible, the deterioration level for all components ranges from 0 to 9. It

is assumed that deterioration for each component can be measured in time. Along these lines,

Jiajian Yan (2023) proved that the component with the slowest deterioration in a desktop com-

puter is CPU. He also demonstrated that in general HDD has the highest deterioration, followed

by GPU among the examined components. However, only for low-end computers, he showed

that GPU deteriorates faster than HDD. The latter assumption is considered in this work as

well. Mathematically, it is expressed as λCPU < λHDD < λGPU .
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Furthermore, a constant cost is associated with each component replacement. Since this pa-

per refers to the case of low-end computers, each cost is obtained as the average price from a set

of low-end components. All the data utilized in this analysis were sourced from the thesis project

of Jiajian Yan (2023). Table 3.1 presents a summary of the relevant values in the dataset.

Table 3.1: Data for prices

Item Sample size # of Low-End Comp. Aver. Price (USD)

GPU 146 36 170 $
CPU 585 144 70 $
HDD 387 98 30 $

The choice to focus on GPU, CPU, and HDD as the primary components for study is driven by

their crucial roles in shaping the overall performance and functionality of a computer system.

Specifically, CPU stands as the central processing unit, functioning as the computer’s brain.

Simultaneously, GPU plays a vital role in rendering graphics and processing videos, while HDD

serves as the long-term storage location for data. Collectively, these components are considered

core elements essential to the operation and functionality of a computer system.

The importance of upgrading/replacing components aims to proactively mitigate the overall

deterioration and subsequently failure of a computer, leading to extended lifespan of the sys-

tem. To formulate the optimal upgrade strategy, a Markov Decision Model is implemented to

address the decision making. The central focus is on determining which components should

be upgraded and when a complete system replacement is needed, under the condition that the

average replacement costs are minimized.

3.2 Replacement Model

To avoid critical failures that can result in production losses, planned replacement of most op-

erating units is essential. Replacement activities undertaken before a failure occurs are termed

preventive replacement (PR), while those conducted after a failure are known as corrective

replacement (CR) (Nakagawa, 2005). The definition of failure is rather contextual, varying

depending on a problem. In this paper, the term ”failure” specifically denotes performance

degradation, resulting in a decline in the efficiency or reliability of a system over time, rendering

it dysfunctional.

The problem addressed in this paper is formulated as a Markov Decision Model, a fundamental

approach in maintenance theory that falls also into the scope of preventive replacement. This

affinity is evident in the optimal replacement planning of components, strategically implemented

to prevent the system from a non-functional condition. This method will be applied to ensure

the continued operational efficiency of our system.
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Mathematically, the Markov process comprises the states of all three components i1, i2, i3 ∈
I = I1× I2× I3. At each combination of states, eight actions can be taken: Do nothing (a = 0),

replace CPU (a = 1), component HDD (a = 2), replace GPU (a = 3), joint replacement of CPU

and HDD (a = 4), joint replacement of CPU and GPU (a = 5), replacement of HDD and GPU

(a = 6) or replacement of all three components (a = 7). In short, set A is described as

A(i1, i2, i3) =



{0} if i1 ̸∈ {0,M} and i2 ̸∈ {0,M} and i3 ̸∈ {0,M},

{1} if i1 ∈ {0,M} and i2 ̸∈ {0,M} and i3 ̸∈ {0,M},

{2} if i1 ̸∈ {0,M} and i2 ∈ {0,M} and i3 ̸∈ {0,M},

{3} if i1 ̸∈ {0,M} and i2 ̸∈ {0,M} and i3 ∈ {0,M},

{4} if i1 ∈ {0,M} and i2 ∈ {0,M} and i3 ̸∈ {0,M},

{5} if i1 ∈ {0,M} and i2 ̸∈ {0,M} and i3 ∈ {0,M},

{6} if i1 ̸∈ {0,M} and i2 ∈ {0,M} and i3 ∈ {0,M},

{7} if i1 ∈ {0,M} and i2 ∈ {0,M} and i3 ∈ {0,M},

where constant M denotes the maximum age (deterioration) a component can reach. The

transition matrix p(i1, i2, i3)(j1, j2, j3)(a) denotes the probability of going from state (i1, i2, i3) to

state (j1, j2, j3) under action a. The probabilities denote independence not only in deterioration

among components, but also in replacements actions. Moreover, the renewal points of the process

are defined as instances where the system undergoes preventive replacement. Consequently, the

process starts anew, resulting in an identical optimal upgrade strategy.

p(i1, i2, i3)(j1, j2, j3)(0) =



(1− p1n)(1− p2n)(1− p3n) for j1 = i1 + 1, j2 = i2 + 1, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

(1− p1n)(1− p2n)p
3
n for j1 = i1 + 1, j2 = i2 + 1, j3 = i3, i1, i2, i3 ̸∈ {0,M}

(1− p1n)p
2
n(1− p3n) for j1 = i1 + 1, j2 = i2, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

(1− p1n)p
2
np

3
n for j1 = i1 + 1, j2 = i2, j3 = i3, i1, i2, i3 ̸∈ {0,M}

p1n(1− p2n)(1− p3n) for j1 = i1, j2 = i2 + 1, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

p1np
2
n(1− p3n) for j1 = i1, j2 = i2, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

p1n(1− p2n)p
3
n for j1 = i1, j2 = i2 + 1, j3 = i3, i1, i2, i3 ̸∈ {0,M}

p1np
2
np

3
n for j1 = i1, j2 = i2, j3 = i3, i1, i2, i3 ̸∈ {0,M}

The probabilities indicate the likelihood of component i deteriorating from state n with prob-

ability 1− pin or remaining at the same state (without deterioration) with probability pin. Once

state M = θ1 = θ2 = θ3 is reached, it implies that the component has exceeded its performance

threshold, necessitating an upgrade. Upon replacement, the components start with deterioration

level 0. A constant probability for all states, 1 − pi0 = 1 with i ∈ {1, 2, 3}, implies the release

of a new version of component i and pi0 = 0 otherwise. It is assumed that replacements require

negligible amount of time to occur. For the rest of the actions, the corresponding probabilities

are presented in Appendix B.1.

The cost for each combination (i1, i2, i3) depends only on the action taken. Therefore, each
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cost depends on the replaced item per action. Note that discount factor α = 0.9 is assumed on

the joint replacement of two components while factor γ = 0.8 is set to describe the full replace-

ment of all three components. It is assumed that the full replacement is cheaper than replacing

each component separately (cfull <
∑n

i=1 ci). This assumption is grounded in the potential

economies of scale in the model, arising from the introduction of completely new systems. The

following scheme describes the structure of replacement costs.

c(a) =



0 if a = 0

c1 if a = 1

c2 if a = 2

c3 if a = 3

α(c1 + c2) if a = 4

α(c1 + c3) if a = 5

α(c2 + c3) if a = 6

γ(c1 + c2 + c3) if a = 7

with ci denoting the purchasing cost of the new version and installation cost in the computer of

component i.

After establishing all the input parameters for the problem, the mathematical formulation is

introduced in Formulation 3.2. The Markov decision chain can be characterized as unichain,

signifying a subset of states with mutual communication. Consequently, the optimal policy will

have no two disjoint closed sets and an LP formulation can be used to determine it. The for-

mulation is inspired from the book of Tijms (2003) and aims to minimize average costs. Each

variable xai1i2i3 in the formulation represents the long-run probability when the system is in state

(i1, i2, i3) ∈ I under action a ∈ A.

min
∑
i1∈I

∑
i2∈I

∑
i3∈I

∑
a∈A

c(a)xai1,i2,i3 (3.1a)

subject to
∑
a∈A

xai1,i2,i3 =
∑
j1∈I

∑
j2∈I

∑
j3∈I

∑
a∈A

p(j1,j2,j3)(i1,i2,i3)(a) · x
a
j1,j2,j3 ∀i1, i2, i3 ∈ I (3.1b)

∑
i1∈I

∑
i2∈I

∑
i3∈I

∑
a∈A

xai1,i2,i3 = 1 (3.1c)

xai1,i2,i3 ≥ 0 ∀i1, i2, i3 ∈ I, ∀a ∈ A

(3.1d)

The objective function 3.2a minimizes the total average costs. Constraint 3.2b expresses the

balance equation: The inflow to a specific set of states must equal the outflow. Constraint 3.2c

ensures that the probabilities sum up to one. Lastly, 3.2d indicates the non-negative nature of

the decision variables.
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3.3 Introducing Dependency

As previously mentioned, components within systems often exhibit interdependencies, a com-

mon occurrence in real-world scenarios. Capturing these dependencies poses a challenge due to

the difficulty in accurately estimating probabilistic dependencies. Furthermore, when multiple

components fail simultaneously, determining the optimal sequence for repairs becomes critical,

to provide the system with the most favorable characteristics (Thomas, 1986).

The components of a computer interact with each other to achieve a certain performance level.

This interaction is crucial because any decrease in the efficiency of one component can have

a downgrading effect on overall performance. As a result, a complex network of dependencies

intertwines all these components. The key challenge in this aspect lies in the difficulty of quan-

tifying these dependencies accurately. To date, researchers have relied on assumptions to make

their results as realistic as possible. Furthermore, scientific literature on the interdependence of

computer components remains unexplored.

For this paper, the assumptions are made based on the condition of CPU and are presented

below in bullet points. This choice is rooted in its comparatively economical price in contrast

to other components. Foremost, it is acknowledged as the most effective method to increase PC

performance (The TechSiting, 2018) with the lowest yearly degradation rate among the examined

components (Jiajian Yan, 2023). As already discussed, it holds that λCPU < λHDD < λGPU .

• If CPU deteriorates, all the other components also deteriorate

• If HDD deteriorates, but not CPU, then GPU deteriorates

• If CPU and HDD do not deteriorate, then GPU can deteriorate

To incorporate the aforementioned information, the transition probabilities from MDM need to

be adjusted. The rest of the problem remains unchanged.

p(i1, i2, i3)(j1, j2, j3)(0) =



1− p1n for j1 = i1 + 1, j2 = i2 + 1, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = i2 + 1, j3 = i3, i1, i2, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = i2, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = i2, j3 = i3, i1, i2, i3 ̸∈ {0,M}

p1n − p2n for j1 = i1, j2 = i2 + 1, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

0 for j1 = i1, j2 = i2 + 1, j3 = i3, i1, i2, i3 ̸∈ {0,M}

p2n − p3n for j1 = i1, j2 = i2, j3 = i3 + 1, i1, i2, i3 ̸∈ {0,M}

p3n for j1 = i1, j2 = i2, j3 = i3, i1, i2, i3 ̸∈ {0,M}

Initially, the matrix represents a scenario where all components experience deterioration, with

the probability of degradation set to the lowest degradation probability among components,

namely 1−p1n, considering that 1−p3n > 1−p2n > 1−p1n. If only HDD and GPU degrade, excluding
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CPU, this event occurs with probability p1n−p2n. Similarly, if only GPU deteriorates while other

components remain unaffected, the probability is p3n − p2n. Lastly, if none of the components

deteriorate, this happens with probability 1−p3n. This pattern applies to replacement actions as

well. For the remaining actions specified in the problem, the transition probabilities are detailed

in B.2. The matrix illuminates the symbiotic relationship among components, highlighting that

CPU’s condition directly affects the condition of others.

3.4 Heuristic Approach

In many real-world scenarios, employing heuristic algorithms yields results that are close to

optimal, particularly when dealing with large-scale problems. In the context of this paper, the

utilization of a heuristic algorithm is motivated by two primary considerations. First, it enhances

interpretability, making the results more readable to individuals without a strong mathematical

background. This stands in contrast to the LP formulation, which may be less intuitive for

non-mathematical audiences. Secondly, the adoption of heuristic algorithms allows for effective

comparison. Such a comparative analysis aids in assessing the ’quality’ of the solution obtained

through heuristics as opposed to the solution derived from the LP formulation.

For the reasons stated above, the adopted heuristic is referred to as the Power-of-Two (PoT)

policy. This algorithm is considered appropriate for deterministic setups (Ekinci & Ornek, 2007)

and finds application in manually conducted schedules. It’s uniqueness lies in the fact that cycle

times are restricted to be powers of two (Ouenniche & Boctor, 2001). More specifically,

T = 2mq (1)

with m being an integer number and q the basic period. A significant benefit of utilizing these

cycle times is the attainment of relatively straightforward cyclic schedules (Axsäter, 2015). To il-

lustrate the implementation of this approach, Algorithm 1 provides a pseudocode representation.

Algorithm 1 Power of Two Policy

1: Set λCPU, λHDD, λGPU as expected deterioration for CPU, HDD, GPU

2: Set cCPU, cHDD, cGPU as replacement costs for CPU, HDD, GPU

3: Set joint discount factor α← 0.9, full discount factor γ ← 0.8

4: Set expected lifetime: E(CPU) = 1
λCPU

, E(HDD) = 1
λHDD

, E(GPU) = 1
λGPU

5: Define T, q ∈ Z
6: T ← max(E(CPU), E(HDD), E(GPU))

7: Fix m ∈ Z and find relevant q

8: Round down q if necessary

9: Set q equal to replacement times for the rest

10: Fit multiples of q to T

11: Find number of individual and joint replacements within renewal cycle

12: cost1← # of Individual Replacements × Individual Replacement Costs

13: cost2← # of Joint Replacements × Joint Replacement Costs

14: cost3← # of Full Replacements × Full Replacement Costs

15: Average replacement cost as a PoT← cost1+cost2+cost3
T
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In essence, the algorithm initiates by computing the expected lifespan of components, de-

termined by their deterioration rate (λ). Equation (1) establishes the common cycle T as the

highest lifetime among the components. By fixing m ∈ Z, the corresponding parameter q is

found. In case of q is not integer, then it is rounded down. Each q signifies replacement in-

stances for the remaining components within the range from the shortest lifetime to T . Joint

replacements are preferred in such cases, leveraging discounts on the replacement actions. Lastly,

the average replacement costs are calculated based on the renewal cycle length, denoted as the

common cycle T .

3.5 CO2 Emissions: Problem Formulation and Solution Ap-

proach

To measure the overall carbon emissions, our focus turns to the examination of the HP Pavilion

Desktop PC TP01, a desktop computer manufactured by Hewlett Packard (HP). It stands out

as one of the limited low-end computers for which we managed to gather precise data, directly

published by HP (Table 3.2). However, the data provided lacks a breakdown of carbon emissions

for each individual component. To address this limitation, we turn to the insights presented by

Loubet et al. (2023), as depicted in Table 3.3(a) and 3.3(b).

Table 3.2 illustrates the percentages and quantities of CO2 emissions at each life stage of a

desktop computer. In our example, the total carbon footprint is measured at 709 Kg over its

entire life cycle. From this amount, one-third is attributed to the manufacturing stage while

the remaining two thirds are coming from the usage phase. It’s worth noting that the other life

stages make no contribution to carbon emissions.

Table 3.2: CO2 Kg eq. emissions / life stage (Hewlett Packard (2021))

Life stage Percentage (%) Amount (Kg)

Manufacturing 33.7 % 239

Distribution 0 % 0

Use 66.3 % 470

End-of-Life 0 % 0

Total 100 % 709

The bar chart in Figure 3.1 illustrates carbon emissions across manufacturing phase for various

processes and components of a desktop computer. To break it down, the leftmost bar displays

an overview of carbon emissions throughout each phase of life cycle, highlighting ’components’

as the primary contributors. The middle graph delves deeper into a component-level analysis,

revealing that approximately half of the emissions originate from motherboard among other

components. Last but not least, the right column depicts the role of individual sub-components

of the motherboard in the emissions.

Upon careful review of the middle graph, an absence is observed in the direct reporting of the
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Figure 3.1: Left column illustrates CO2 emissions across the life cycle of a desktop computer,
with EoL components emerging as predominant contributor. Middle column represents classi-
fication by components. Right column provides a detailed breakdown into the sub-components
of motherboard. (Loubet et al., 2023)

Central Processing Unit (CPU). However, it can be considered as the value of ’Integrated cir-

cuits (incl. Processor)’, displayed on the right bar of the graph. Hence, the percentage emissions

attributed to Integrated circuits serves as the percentage of CPU for this work. Given that CPU

is installed on the motherboard and replaceable, unlike motherboard itself, the graph highlights

its environmental impact. According to the chart, CPU emerges as the most pollutant com-

ponent, constituting around 30% of the total emissions and 60% of motherboard’s emissions.

In comparison to other components addressed in the problem, CPU is two and five times more

pollutant than GPU and HDD respectively. The corresponding percentages are more clear in

sub - Tables 3.3(a) and 3.3(b).

The data clearly reveal that certain components, such as disk drive or power supply, exhibit

higher pollutant levels than HDD and could be investigated. However, the selection of HDD is

not solely ruled by its carbon emissions. Instead, it also plays a crucial role in enhancing com-

puter performance through upgrade, while others don’t. Despite its relatively lower emissions,

HDD is a critical part contributing massively to the overall performance of the computer.

The selection of these components to study is driven by their major contribution to carbon

dioxide emissions, the availability of relevant data and their contribution to overall perform-

ance. Numerically, the details are visually depicted in Table 3.3. It is important to note that

both Tables 3.2 and 3.3 display values of carbon dioxide equivalent (CO2 eq) instead of carbon

dioxide CO2. While these two terms are related, they represent slightly different concepts. The

latter refers to a a specific greenhouse gas while the former is a metric quantifying the potential

of various greenhouse gases contributing to global warming, expressed in an equivalent amount

of CO2. For the purpose of this paper, the two terms are treated as equivalent.

22



(a) CO2 eq. emissions / component

Item Percentage (%)

Motherboard 50
GPU 15
HDD 6
RAM 5

Disk drive 8
Power supply 16

Total 100

(b) CO2 eq. emissions / sub-component of
motherboard

Motherboard sub-components Percentage (%)

Integrated Circuits 30
Printed wiring board 10

Capacitors 5
Connectors 3
Inductors 2
Total 50

Table 3.3: Comparison of CO2 eq. emissions for different components (Loubet et al. (2023))

Table 3.3(a) highlights that the primary contributors to most manufacturing related pollut-

ants are the motherboard, GPU and the power supply, accounting for approximately 80% of the

total emissions while Table 3.3(b) delves into a further categorization of the sub-components

within the motherboard. It is crucial to note that this classification relies on a single paper

(Loubet et al., 2023) and may limits the depiction of reality. Potential inconsistencies in the

data underline the need for further research and sources to ensure better assessment.

In Table 3.4, the ’Manufacturing’ column quantifies the CO2 emissions for each component.

Components studied for this problem are highlighted with bold letters, along with their respect-

ive quantities. The last row presents the total carbon emissions of an entire desktop computer,

obtained by summing the emissions of all components. Additionally, the ’Percentage’ column

displays the contribution percentage of each part during the manufacturing process.

While the total actual manufacturing emissions stand at 239 Kg, the problem utilizes differ-

ent value. The decision is driven from the significant numerical difference in emissions between

individual and full replacement scenarios. Selecting the true number might yield misleading

results, favoring individual replacements over full replacement due to the significant gap in the

values. Furthermore, since this study involves a three-component system, considering the actual

emissions might introduce a disparity in the model. Therefore, for this problem, full replacement

emissions are considered the summation of individual emissions from CPU, GPU and HDD, res-

ulting in a value of 121.89 Kg.

Mathematically, the problem works as follows. Formulation 3.2 is implemented as detailed in

Section 3.2. The objective of decision-making is to minimize the overall replacement costs over

the renewal cycle. In that way, the model creates a solution path constructed from the non-zero

decision variables. Each variable denotes the probability of replacing at state (i1, i2, i3) under

action a. As a reminder, the decision variables are depicted as xai1,i2,i3 and the Formulation 3.2

is presented below.
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Table 3.4: Carbon emission values of components

Item Manufacturing (in Kg) Percentage (%)

Motherboard 119.5 50
CPU 71.7 30
Print.Wir.Board 23.9 10
Capacitors 11.95 5
Connectors 7.17 3
Inductors 4.78 2

GPU 35.85 15
HDD 14.34 6
RAM 11.95 5
Disk drive 19.12 8
Power supply 38.24 16

Total 239 100

min
∑
i1∈I

∑
i2∈I

∑
i3∈I

∑
a∈A

c(a)xai1,i2,i3 (3.2a)

subject to
∑
a∈A

xai1,i2,i3 =
∑
j1∈I

∑
j2∈I

∑
j3∈I

∑
a∈A

p(j1,j2,j3)(i1,i2,i3)(a) · x
a
j1,j2,j3 ∀i1, i2, i3 ∈ I (3.2b)

∑
i1∈I

∑
i2∈I

∑
i3∈I

∑
a∈A

xai1,i2,i3 = 1 (3.2c)

xai1,i2,i3 ≥ 0 ∀i1, i2, i3 ∈ I, ∀a ∈ A

(3.2d)

At that point, the CO2 emissions are introduced in the problem. For each replacement action,

the aforementioned decision variables are multiplied by the corresponding carbon emission of the

replaced component. This incorporation allows the decision-making to identify the most cost -

effective plan for replacement, taking into account the environmental impact. In other words,

this approach adds an extra dimension in the model presented in Section 3.2 by taking into

consideration green aspects. The corresponding carbon emissions for each replacement action

are displayed below.

e(a) =



0 if a = 0

e1 if a = 1

e2 if a = 2

e3 if a = 3

e1 + e2 if a = 4

e1 + e3 if a = 5

e2 + e3 if a = 6

e1 + e2 + e3 if a = 7
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with ei being the amount of carbon emissions of component i. The specific values for each

component can be found in Table 3.4, highlighted in bold.

Structurally, the problem’s actions remain the same as replacement decisions refer to the same

computer components. Note that discount factors are not applied to joint and full replacement

of components, in contrast to Formulation 3.1. The decision lies in the fact that joint or full

replacements do not address additional environmental benefits when compared to individual

replacements.
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Results

In this chapter, the insights from the previously mentioned methodology will be implemented.

The presentation of the findings is organized as follows: Section 4.1 demonstrates each of the

aforementioned algorithms involving two components. Accordingly, Section 4.2 displays the

algorithms considering a three - component system. Lastly, Section 4.3 exhibits the optimal

replacement policy based on two factors: replacement costs and carbon emissions during man-

ufacturing of desktop components. For the rest of the paper, the algorithms were written in

Java programming language (version 16.0.2) and CPLEX solver (version 22.1.0) employed when

needed.

4.1 Case of two components

4.1.1 Markov Decision Model

In a two-component system, our focus is directed on CPU and GPU. Even though HDD is also

crucial for the overall performance, the choice of studying these specific components is motivated

by their multifaceted roles in the functionality of a computer. However, the strongest motivation

comes from the existence of two extreme values in the problem, namely the lowest deterioration

value of CPU and the highest replacement costs of GPU. It is valuable to investigate the beha-

vior of the model within this problem setup.

For low-end components the deterioration levels for CPU and GPU are established to λCPU =

0.05 and λGPU = 0.18. These values come up from the research of Jiajian Yan (2023) and

imply the significantly higher deterioration of GPU compared to CPU during their life cycles.

The parameters αi = e−λi are determined based on the magnitude of rate λi, resulting in

αCPU = 0.9538 and αGPU = 0.8352. The step size β influences the magnitude of deterioration

and is set to β = 0.8. The corresponding weights influencing the overall system performance

are wGPU = 0.67 and wCPU = 0.33. These weights are determined arbitrarily and reflect the

consumer preferences and the performance expectations of each component towards the per-

formance of a desktop computer. Once either the system or a component reaches its minimum

performance threshold θi = θsys = M = 6, a preventive replacement occurs and a new version

of it takes place. The exact mathematical formulation can be found in A.1.

The computational time of the algorithm is quite short (<< 0.01sec). The reason behind this

efficiency is the small number of considered components and consequently the reduced number

of decision variables on the problem. As the latter tends to increase exponentially with the
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former, the running time is reasonable low.

The optimal policy yields an average cost of 27.15$ USD over a half-year period. These costs

exhibit variability based on the replacement probabilities associated with each action. Specific-

ally, parameter β influences the magnitude of transition probabilities. Therefore, opting for a

higher value of β leads to substantially higher costs.

Given that transition probabilities do not depend on the states but components themselves,

the replacement actions take place uniformly throughout the renewal cycle. In other words,

each replacement action occurs with identical probability for all states. By conditioning on each

action, the likelihood of replacing CPU over a half-year period is measured to 4% while the

corresponding probability for GPU replacement is 13.4%. The replacement likelihood for both

components together is observed to a negligible 0.6%. Figure 4.1 provides a visual representation

on which and when component(s) require upgrade due to deterioration.

Evidently, GPU is more prone to be replaced compared to CPU, primarily due to its higher

degradation rate. In particular, the transition probability matrix denotes greater likelihood of

replacement for components with tendency for higher degradation, given that λGPU > λCPU .

Furthermore, the decision-making process is influenced by the replacement cost of each compon-

ent. Considering that the replacement costs of GPU is 2.5 times higher than those of CPU and

the model’s objective is to minimize costs, it becomes an important factor in the decision-making

framework.
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Figure 4.1: Replacement Policy for CPU and GPU (λCPU = 0.05, λGPU = 0.18)

In Figure 4.1, the bullet points represent the replacement actions over the renewal cycle. As

the states evolve, the replacement probabilities remain stable. This outcome was expected as

replacement probabilities were independent of states. Consequently, each combination (i1, i2)

has identical probability to be replaced for a given a. The colors in the figure signify the action
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taken for every combination of states, with the hue remaining unchanged as the states progress

- each action is executed with the exact same probability.

The computer’s expected performance is determined based on individual performances of its

components. For CPU, the item’s expected performance falls within the range of 100% and

74% before replacement, while the corresponding interval for GPU spans from 100% to 34%.

To delve deeper into the system’s performance, an assessment will be conducted considering

replacement actions for each component. Thus, given that CPU is replaced at state M , the

average system performance falls between 91% and 51% with an average of 66%. Similarly

for GPU, replacement at state M yields a performance between 55% and 48% with an aver-

age of 51%. The overall system performance reaches its minimum level when both components

attain their maximum deterioration age at state M , where the overall performance drops to 47%.

Conducting a sensitivity analysis on the algorithm’s solution pattern reveals potential vari-

ations. In the first scenario, preventive replacement is delayed to state 9 instead of state 6,

allowing assessment of the model’s behavior over an extended time horizon. Figure 4.2 depicts

this adjusted solution path.
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Figure 4.2: Replacement Policy for CPU and GPU at state 9 (λCPU = 0.05, λGPU = 0.18)

While the solution path resembles that of Figure 4.1, the impact of the discount factor on the

longer time horizon becomes apparent. Gold bullets mark computer replacement, signifying the

preference for system replacement at these specific states. The average cost is influenced by the

extended time frame, resulting in lower average costs of 17.64$. A deeper exploration of the

matter entails modifying the discount factor to δ = 0.8 while retaining the delayed preventive

maintenance. The outcomes of this adjustment are illustrated in Figure 4.3

Comparing Figures 4.2 and 4.3 highlights a heightened occurrence of states necessitating full
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Figure 4.3: Replacement Policy for CPU and GPU at state 9 with δ = 0.8 (λCPU = 0.05,
λGPU = 0.18)

replacement. More specifically, the algorithm identifies two additional states ((6,9) and (9,7)),

driven by higher discount-related replacement costs. This prompts the algorithm to favor full

replacement sooner, leading to an overall reduction in replacement costs. Consequently, the

average costs in this scenario are computed at 16.86$ per half-year period.

4.1.2 Dependent Deterioration

An identical framework is applied involving dependent probabilities between the components.

Both parts have the same λ’s as before and they are replaced after an identical period of time

(M = 6). The formulation remains the same, with only modification being on the transition

matrix, denoted as p(i1, i2)(j1, j2)(a).

Although the current formulation has simpler structure than the original MDM, the compu-

tational time remains the same (<< 0.01sec). The average replacement costs slightly decrease

to a value of 26.79$ USD. This kind of dependency introduces unpredictability in the behavior

of the model for two reasons. Firstly, the average cost depends on the deterioration speed of

CPU. Moreover, the interdependence among components implies also dependency on the actions

taken. In the present scenario, the replacement probability of one component varies based on

the condition of the other, as illustrated in Figure 4.4.

Across the renewal cycle, replacement actions no longer adhere to a constant probability as in

the original model. Figure 4.4 represents these varying probabilities with different colors. For

example, the replacement probability of CPU in state (6,5) is higher compared to replacing it in

state (6,1). This pattern holds true for GPU replacements as well. The lighter the hue of a color,

the greater the corresponding replacement probability. Furthermore, it is worth mentioning that

there is a small probability of replacing GPU even in state (6,0). This occurrence is a result

of underlying assumptions and is depicted mathematically on the transition probability matrix.
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Figure 4.4: Dependent Replacement Policy for CPU and GPU (λCPU = 0.05, λGPU = 0.18)

While this may potentially lead to higher average costs compared to the original model, the fluc-

tuations in replacement probabilities throughout the cycle contribute to overall cost reduction.

The remaining points within the rectangular shape denote the probability of taking no ac-

tion. However, the likelihood of being in state (i1, i2) fluctuates for the first three states of each

component and then stabilizes, mirroring the behavior observed in the original problem. This

difference is spotted due to the interdependence nature of the problem. The minor variance in

the overall costs stem from the initial, low probability of replacing at the beginning of the cycle,

contrasting to the original model.

To evaluate algorithm’s performance across different parameter settings, a sensitivity analysis

is conducted, following the approach of the original MDM. As before, the first case involves

replacing system components at state 9 and the results are illustrated in Figure 4.5.

In Figure 4.5, color hue intensity correlates with replacement probability. Therefore, sole CPU

replacement sees a higher probability at state (9,8), while GPU replacement is more likely at

state (6,9). Conversely, full replacement has a higher probability at state (7,9) compared to

(9,9), reflecting the diverse deterioration rates. This divergence implies a likelihood of compon-

ent replacement in different states rather than simultaneously. Additionally, this explains the

delay in CPU replacement at early states compared to GPU. Grey states exhibit probabilistic

variations, as illustrated in Figure 4.4. Accurately depicting these probability shifts with dif-

ferent hues poses a challenge. For further evidence about the approach, Figure 4.6 explores the

impact of setting a higher discount factor on the problem.

Similarly with the original model, a higher discount factor increases the frequency of full replace-

ment actions. Six states indicate full replacement with varying probabilities. The likelihood of

replacement at states (6,9) and (9,7) surpasses that at state (9,9), influenced by the interdepend-
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Figure 4.5: Dependent Replacement Policy for CPU and GPU at state 9 (λCPU = 0.05, λGPU =
0.18)
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Figure 4.6: Dependent Replacement Policy for CPU and GPU at state 9 with δ = 0.8 (λCPU =
0.05, λGPU = 0.18)

ence of component actions. While individual CPU replacement occurs less frequently, it does

so with smaller probabilities, contributing to an increase in corresponding GPU replacement

probabilities.

4.1.3 Power of Two policy

In this section, the final algorithm demonstrated is the Power of Two policy. As previously

stated, parameters λCPU = 0.05, λGPU = 0.18 denote the deterioration rates of components

per half-year, and the replacement costs are displayed in Table 3.1. The expected lifetime

of each component is derived from the corresponding exponentially distributed probability

function. Utilizing the properties of exponential distribution, E(CPU) = 1
λCPU

= 20 and
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E(GPU) = 1
λGPU

= 5.55. The renewal cycle is determined by the least common multiple

between 20 and 5.55, resulting a cycle duration of 2220. Throughout this period, CPU is re-

placed 111 times while GPU 400 times. Evidently, GPU displays higher number of replacements

per cycle due to its faster deterioration. The expected cost E(C) is calculated using the formula:

E(C) =
# of Indiv. Replacements× Indiv. Replacem. Costs + Disc. Full Replacem. Costs

Length of Renewal Cycle

In other words,

E(C) =
110 ∗ 70 + 399 ∗ 170 + 216

2220
= 34.12$

Figure 4.7: Expected Replacements for CPU and GPU with λCPU = 0.05, λGPU = 0.18

The result implies that CPU and GPU are replaced 110 and 399 times individually while in

period 2220 a full replacement occurs. Upon the full replacement, the system renews and the

same actions are repeated. The average cost of this renewal cycle is measured to 34.12$ per

half-year. Remember that the model in Section 3.2 expresses the average cost over a half-year

period as well.

At that point the Power of Two policy will be presented. From Section 3.4, it is known that

T = 2mq (1)

Initially, a slight modification of the algorithm in Section 3.4 is outlined. The parameter q rep-

resents the shortest expected lifetime among the components which is q = 5.55 - the smallest

value among the items under study. Another restriction is imposed by ensuring that the renewal

cycle remains smaller than 20; otherwise CPU would cease functioning. In essence, the goal is

to identify a common replacement cycle, falling between 5.55 and 20.
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The Power of Two heuristic performs well for deterministic environments. Given that, the

timing of the coordinated replacements depends on the decision-maker. For simplicity, let’s con-

sider a common cycle length T = 20. In this scenario, GPU undergoes replacement 4 times while

CPU only one. The visual representation of this policy is illustrated in Figure 4.7. At the 20th

period, both components are replaced simultaneously, resulting in a discounted replacement.

The average cost is calculated as

E(C ′) =
# of Indiv. Replacements× Indiv. Replacem. Costs + Disc. Full Replacem. Costs

Common Cycle

Or,

E(C ′) =
3 ∗ 170 + 216

20
= 36.3$

Figure 4.7 depicts that GPU is replaced in periods 5.55, 11.1, 16.65 and 20 while CPU is replaced

at period 20. The value of 216 signifies the discounted replacement price for both components.

However, the common cycle length can be optimized, reducing the average replacement costs.

The optimization of T involves the decision to replace the whole system when either of the

components reach its lifetime limit. In the earlier scenario, the common cycle of 20 represents

the cycle when CPU reaches its age limit. However, a more in - depth analysis is required to

assess the costs when GPU reaches its limit. This occurs when the life cycles are 5.55, 11.1

and 16.65. These are the only three possibilities, as all the other multiples of 5.55 surpass the

lifetime of CPU. Table 4.1 displays all potential common cycles where GPU is replaced at its

limit.

Table 4.1: Potential Common Cycles

Common Cycle CPU GPU Total Cost ($) Average Cost / Half -Year ($)
5.55 1 1 216 43.2
11.1 1 2 386 34.77
16.65 1 3 556 33.39

The ’optimal’ common cycle, minimizing replacement cost, is determined to be 16.65 periods.

Throughout this period, the average replacement costs amount to 33.39$ per half-year. In con-

trast, the optimal replacement costs from Section 4.1.1 are 27.15$. This indicates that the

replacement costs for PoT are approximately 20% higher than those in the LP formulation.

This disparity is expected since in PoT, components are not replaced at their optimal times,

leading to redundant replacements and higher costs. The advantage of the algorithm lies more

in providing interpretable results rather than efficiency in achieving optimal replacements.

Alternatively, considering common cycle and shortest expected lifetime as an integers (T, q ∈ Z)
may offer a more straightforward interpretation. For that reason, sensitivity analysis follows,

starting with q = 5. In this scenario, GPU is replaced in period 5, 10, 15 and 20 while CPU is

replaced in period 20. The replacement times are almost identical to the case presented earlier.
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The corresponding average replacement costs are

E(C1) = E(C ′) =
3 ∗ 170 + 216

20
= 36.3$

This strategy holds the advantage of replacing components before reaching their expected life-

times. In practical terms, a component may fail prematurely or after reaching its anticipated

value. Opting for GPU replacement every 5 periods minimizes the risk of failure while keeping

costs constant. Conversely, considering q = 6 proves illogical, as this value exceeds the lifetime

of GPU, posing a high risk for the computer’s functionality.

Figure 4.8: Expected Replacements for CPU and GPU with q = 4

Another option is to consider an even smaller value for q, further minimizing the risk of failure.

However, this also results in more replacements over time, leading to higher replacement costs.

Therefore, the case of q = 4 is examined. In that case, GPU is replaced at periods 4, 8, 12, 16

and 20 while CPU is replaced at period 20. This implies individual GPU replacements four times

and the system replacement at a discount on period 20. The corresponding policy is illustrated

in Figure 4.8. Mathematically,

E(C2) =
4 ∗ 170 + 216

20
= 44.8$

Clearly, the average cost is higher than in the previous cases. This trade-off between replacement

times and danger of failure characterizes algorithm’s nature. The percentage difference between

E(C1) and E(C2) is approximately 20%, a significant figure that becomes even more apparent

in the long term.
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4.2 Case of three components

4.2.1 Markov Decision Model

In the three - component system, the mathematical modelling of Markov Decision formula-

tion becomes somewhat complicated. The introduction of an additional component (HDD)

exponentially escalates the complexity of the problem. Therefore, the problem requires higher

computational power to be solved. Degradation parameters for low-end components, derived

from Jiajian Yan (2023), are defined as follows: λCPU = 0.05, λHDD = 0.13, λGPU = 0.18. Con-

sequently, αCPU = 0.9512, αHDD = 0.878 and αGPU = 0.8352 imply the geometric performance

decrease for each component. The step size is constant at the value of β = 0.8 for all compon-

ents. In prioritizing user requirements, components are assigned specific weights, indicative of

users’ inclinations to replace each element to enhance overall system performance. Mathemat-

ically, they are expressed as wGPU = 0.5, wHDD = 0.25 and wCPU = 0.25. As in the case of

two components, when a component or the whole computer attain its minimum performance

requirements where M = θi = 6, an upgrade is initiated by replacing the relevant counterpart.

The replacement costs can be found in Table 3.1 whereas the mathematical framework has been

presented in Formulation 3.2.

Regarding the algorithm’s running time, solving the problem demands more time, yet it re-

mains reasonably fast (≈ 2.5sec). Compared to the case of two components, the computational

time has been remarkably escalated by 25 times. The reason behind this phenomenon is the

increase in the number of variables in the problem, soaring from 400 to a staggering 8000!

In terms of average cost, it is measured to 30.05$ USD. This figure is higher than the cost

associated with two components. The increase is attributed not only to the study of an extra

component but also in the low replacement price of HDD, set at 30$ USD. Conditioning on the

action taken, CPU is replaced at a total probability of 3.5%, HDD at 8.9% and GPU at 12%

per half-year period. However, the joint replacements of two out of three components are less

common, with corresponding percentages residing around 1%. This trend is similarly observed

in the case of replacing all components, as illustrated in Figure 4.9.

It is evident that Figure 4.9 is not easily readable. In fact, a 3D depiction of the policy fails to

convey all the insights and another type of graph would be more suitable to represent our find-

ings. In general, interpretability is a challenging aspect when presenting systems’ replacement

of more than two components graphically. In an attempt to enhance clarity of our results, a bar

chart is presented in Figure 4.10 as an alternative depiction.

The bars in Figure 4.10 reflect the percentage frequency of individual and joint component re-

placements, given their replacement actions. More specifically, the discounted replacement of

two out of three components occurs less frequently compared to single replacements, highlight-

ing the cost - effective advantage of individual component replacements, as evidenced by the

leftmost bars in the graph. The likelihood of replacing the whole system is rather rare, primarily
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Figure 4.9: Replacement Policy for CPU, HDD and GPU (λCPU = 0.05, λHDD = 0.18, λHDD =
0.13)

due to its highest cost.

The probability of replacing either HDD or GPU is 2.5 and 3.5 times higher compared to

that of CPU. This discrepancy is attributed to their higher λ’s, leading to more potential re-

placements of the former compared of the latter. The occurrence of minimal percentages in joint

and full replacement actions is due to the forced replacement at state M in the problem. If, for

instance, system or component replacements were to occur at later stage (M > 6), joint or full

replacements would become more favorable. However, it is important to note that the current

model settings do not showcase this insightful perspective.
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Figure 4.10: Frequency of Replacement Actions for CPU, HDD and GPU

As the system advances, its expected performance gradually diminishes. Following a full replace-

ment, the system commences with 100% performance rate. Given that individual replacement
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actions have the most significant influence on the average costs, it is valuable to investigate the

expected performance of the system as each component approaches its age limit.

Upon reaching its maximum age, CPU yields an overall performance ranging from 93% to

50%. Similarly, for HDD, this interval is 86% to 50% and for GPU, it is 66% and 48%. The

average performance for CPU, HDD and GPU is 67%, 64% and 56% respectively. The lowest

performance is observed when all components simultaneously reach their age limit at point M ,

causing the system performance to drop to 47%.

To gain deeper insights into the algorithm, a slight modification is applied to the problem. More

specifically, the preventive replacement occurs at state 9 instead of state 6. This adjustment

allows for a clearer examination of the impact of the discount factor on replacement actions.

Figure 4.11 portrays the total probabilities for each replacement action under this adjustment.
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Figure 4.11: Frequency of Replacement Actions for CPU, HDD and GPU at state 9

As the preventive replacement of components is delayed, the probabilities of individual replace-

ments diminish. Notably, replacement probabilities for HDD and GPU decrease by half, while

the corresponding decrease is even more intense for CPU. Conversely, the probability of full

replacement experiences a significant increase, as the overall cost associated with this action is

reduced. In general, the algorithm opts for full replacement over any other kind of replacements.

As an alternative, Figure 4.12 depicts the case of replacing at state 9 but with higher discount

values.

In that case, with the joint (α = 0.8) and the full (γ = 0.7) replacement discounts, the effect

intensifies. Individual and joint replacement probabilities sharply decline to negligible percent-

ages, while the probability of full replacement skyrockets to a substantial 7.6%! Essentially, the

decision-making process predominantly leans toward full replacements over other model actions.
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Figure 4.12: Frequency of Replacement Actions for CPU, HDD and GPU at state 9 with α = 0.8
and γ = 0.7

4.2.2 Dependent Deterioration

In the scenario involving dependent probabilities, the identical mathematical approach of For-

mulation 3.1 is employed. As with the case of two components, the only element changing in

this modification is the transition probability matrix p(i1, i2, i3)(j1, j2, j3)(a).

The average cost is recorded to 29.53$ USD. This outcome follows a similar trend to the two-

component system, where the average replacement costs are slightly lower than those of the

original model. This can be attributed to the higher frequency of taking no action, at a percent-

age of 74% instead of the original 72%. Individual replacements are favored with slightly reduced

percentages compared to the initial problem. Moreover, the symbiotic relationship among com-

ponents leads to joint replacements more often than the first scenario. Full replacement remains

the least probable action. Lastly, the algorithm exhibits slightly faster running time (≈ 2sec).

Figure 4.13 depicts the corresponding results.

Individual replacements continue to dominate the graph with sole replacement of CPU, HDD

and GPU accounting 2.8%, 8.3% and 11.6% per half-year respectively - percentages lower than

those observed in the original model. In contrast, joint replacements show an increase in per-

centages compared to the previous model, reflecting the interdependence among the components

as indicated by the transition probabilities. The presumed dependency in the model opts for

joint replacements due to the nature of relationship among components. Evidently, the joint

replacement of HDD and GPU occurs more frequently compared to the rest joint replacements,

given the high deterioration suffered by both components.

The solution path aligns with that observed in the first model. Similar to the initial MDM,

presenting the results in 3D graphs remains challenging, rendering Figure 4.9 also inadequate

for this case. It is essential to recognize that the decision variables in state (i1, i2, i3) under
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Figure 4.13: Dependent Replacement Actions for CPU, HDD and GPU

action a are not identical for each action. Much like the original model, as states evolve, the

optimal strategy opts for replacement of a component when the other components are closer

to their maximum deterioration level. Unfortunately, this trend is hard to be depicted with

different colors and hues for more than two components.
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Figure 4.14: Dependent Replacement Actions for CPU, HDD and GPU at state 9

If the preventive replacement occurs later, the model exhibits similar behavior to that discussed

in Section 4.2.1. The significant changes lie in the replacement probabilities for each state

(i1, i2, i3) which vary throughout the cycle. Depicting this proves to be challenging due to the

involvement of numerous variables. Figure 4.14 illustrates the corresponding results, emphasiz-

ing a significant percentage in the full replacement action.

Figures 4.11 and 4.14 display evident similarities, prompting the need for further exploration.
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Figure 4.15: Dependent Replacement Actions for CPU, HDD and GPU at state 9 with α = 0.8
and γ = 0.7

To delve deeper, Figure 4.15 is introduced, showcasing the case with higher discounted values,

as previously discussed. The discount factors are α = 0.8 for joint and γ = 0.7 for full re-

placements respectively. This approach interrelates the components to each other, by making

decisions based on the condition of CPU. In essence, the expectation is a more frequent occur-

rence of full replacements than any other action, at a percentage of 8.4%, leaving the rest of

actions at minor numbers. This results from the highly discounted replacement costs associ-

ated with full replacement and the interdependency among the components. Consequently, the

algorithm consistently opts for full replacements.

4.2.3 Power of Two policy

The Power of Two policy operates similarly to the previously described approach, featuring two

components. For each component, the parameters are specified as follows: λCPU = 0.05, λHDD =

0.13, λGPU = 0.18, with constant replacement costs. The expected lifetimes of CPU, HDD and

GPU are E(CPU) = 20, E(HDD) = 7.7 and E(GPU) = 5.5. The renewal cycle is determined

by the least common multiple (LCM) of component lifetimes, set at a value of 1540. During the

cycle, CPU, HDD and GPU undergo replacement 77, 200 and 280 times respectively.

In Figure 4.16, the expected replacement times for each component are illustrated for the first

20 periods of the renewal cycle. Clearly, GPU leads the replacement times since it lasts shorter

than the rest of items. While it appears that GPU is replaced three times more often than

CPU, the corresponding proportion is higher in the long run. This trend also applies to HDD,

seemingly replaced twice as frequently as CPU in short term.

Replacement costs are calculated similarly to the two - component scenario, incorporating joint
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Figure 4.16: Lifetime illustration of computer components

replacements. The expected cost E(C) is calculated using the following formula:

E(C) =
# of I.Replac.× I.Replac.Costs

Length of Ren. Cycle
+

# of J. Replac.× J. Replac.Costs

Length of Ren. Cycle
+

F. Replac.Costs

Length of Ren. Cycle

Here, I, J, F represent individual, joint and full replacements respectively. Numerically, this

implies

E(C) =
68 ∗ 70 + 158 ∗ 30 ∗ 232 ∗ 170

1540
+

1 ∗ 90 + 7 ∗ 216 + 40 ∗ 180
1540

+
216

1540

or,

E(C) = 37.06$

Naturally, the result is higher than that of the two-component system, primarily due to the

additional component introducing extra replacement costs. The joint replacements across the

cycle are computed based on the LCM of the corresponding component lifetimes. For example,

GPU undergoes a total of 280 replacements throughout the renewal cycle. Joint replacement

for CPU and GPU, with LCM of 220, leads to 7 replacements. At the same wavelength, joint

replacement of HDD and GPU has LCM 38.5, implying 40 replacements. As a result, individual

replacements for GPU amount to 232 (280 - 47 - 1). Accordingly, the same applies for CPU and

HDD. Note that the discount factors α = 0.9 and γ = 0.8 are applied also for this approach,

signifying the discounted cost of replacing more than one component simultaneously.

As it has already been discussed, parameter q denotes the shortest expected lifetime of compon-

ents and value T represents the common cycle time for a full replacement occurs and system

renewal. Since GPU is the most-deteriorating component, it is assigned the lowest lifetime.

Moreover, the common cycle lies in a number between 5.5 and 20, the two extreme numbers

of the problem. The Power of Two policy gives the freedom for deterministic replacements at
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any point of time. One approach could be to set T and q as integer numbers, with T being the

highest expected lifetime among the components. By fixing m, the corresponding q is found and

rounded down to the nearest integer. In this scenario, the least deteriorating item is replaced

at time T with others replaced every q periods.

The optimal q for this case is attained when m = 2, resulting in q = 5. Following this strategy,

GPU and HDD are replaced jointly at times 5, 10, 15, 20 with the full replacement (including

CPU) at time 20. In that case, the average replacement costs are

E(C ′′) =
3 ∗ 0.9 ∗ (170 + 30) + 0.8 ∗ 270

20
= 37.8$

However, this schedule leads to unnecessary frequent replacements for HDD. Despite its expec-

ted lifetime being 7.7, the approach dictates replacements every 5 periods. Therefore, HDD is

replaced 4 times within the cycle length whereas it could be more advantageous to replace it 3

times (at times 7.7, 15.4 and 20).

In an attempt to improve the replacement costs with as many joint replacements as possible, a

different approach will be followed. The common cycle will be fixed based on the expected life

of each component and its multiples. In other words,

For the case of CPU,

Table 4.2: Potential Common Cycles with CPU

Common Cycle (T) Replace CPU Replace HDD Replace GPU Average Cost / Half - Year ($)
20 1 3 4 39.3

For the case of HDD,

Table 4.3: Potential Common Cycles with HDD

Common Cycle (T) Replace CPU Replace HDD Replace GPU Average Cost / Half - Year ($)
7.7 1 1 2 50.12
15.4 1 2 3 40

For the case of GPU,

Table 4.4: Potential Common Cycles with GPU

Common Cycle (T) Replace CPU Replace HDD Replace GPU Average Cost / Half - Year ($)
5.5 1 1 1 39.27
11.1 1 2 2 35.67
16.6 1 3 3 34.7

Comparing the annual replacement costs presented in Tables 4.2, 4.3 and 4.4, it becomes evid-

ent that the most beneficial common cycle for full replacement of the system is at period 16.6.

This implies that, upon the third replacement of GPU, a full replacement takes place. At the
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same time, HDD is replaced 3 times, with the third replacement closely following the second (at

periods 15.4 and 16.6 respectively). Practically, the replacement of HDD for third time occurs

relatively fast compared to the previous one. However, its low replacement cost contribute only

marginally to the average costs.

The optimal replacement costs derived from the Markov Decision Model result to 30.05$ for

a half-year interval while PoT indicated an average cost of 34.7$ for the same time period. As

with the two-component system, the heuristic yields average costs nearly 14% higher than those

in the LP formulation. Although PoT promotes coordinated replacements to leverage joint and

full replacement discounts, this strategy may result in redundant replacements, leading to overall

costs.

To showcase the significance of discount in joint and full replacements, the scenario where joint

replacements are not incorporated is considered. Assume that CPU is replaced every 5 period

and HDD every 7, with a common cycle length T = 20. This strategy reduces the risk of failure

for components before they reach the limit of their expected lifetimes. However, the absence of

a discount factor arises as the components are replaced at different intervals. For instance, GPU

is replaced in periods 5, 10, 15, HDD in periods 7, 14 and a full replacement occurs at period

20. The average costs are:

E(C3) =
3 ∗ 170 + 2 ∗ 30 + 216

20
= 39.3$

This result is identical to that of in Table 4.2. The former has the advantage of replacing

components slightly earlier than the latter, reducing the risk of failure. However, it does not

capitalize on discounts, leading to higher average replacement costs.

The option of joint replacement every 5 periods has been discussed earlier. Another option

could be to implement joint replacements every 6 periods; however, this might result to system

downtimes, a fact that should be avoided. Therefore, we explore the case of replacements oc-

curing every 4 periods, as illustrated in Figure 4.17.

Figure 4.17 depicts the corresponding joint and full replacement periods, where HDD and GPU

are replaced every 4 periods (at times 4, 8, 12, 16), with a full replacement taking place in

period 20. This approach offers the advantage of discounted replacements for multiple compon-

ents. However, the average costs are higher

E(C4) =
4 ∗ 0.9 ∗ (170 + 30) + 0.8 ∗ 270

20
= 46.8$

Although this case gives the opportunity for discounted costs and ’safe’ replacement times, it

also implies more frequent replacement actions. In essence, components might be replaced more

often than necessary, leading to extra replacements. PoT grants decision makers the freedom to

deterministically choose when to replace components.
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Figure 4.17: Joint and Full Replacement Depiction for CPU, HDD and GPU

4.3 CO2 Footprint Savings

The mathematical model outlining the optimal replacement strategy has been described in For-

mulation 3.2. Utilizing consistent deterioration rates - λCPU = 0.05, λHDD = 0.13, λGPU = 0.18

- the model employs geometric performance decrease parameters for each component, expressed

as ai = e−λi with fixed step size of β = 0.8. The associated replacement costs for each compon-

ent are provided in Table 3.1.

The average CO2 emissions stand at 9.96 kg per renewal cycle, a factor introduced as an ad-

ditional consideration within the Markov Decision Model framework presented in Section 3.2.

This value is derived by multiplying the probability of a replacement action, as determined by

solving the MDM in Section 4.2.1, by the corresponding carbon emissions, exhibited in Section

3.5. Evidently, the amount of carbon emissions is influenced by the transition probabilities which

in turn depend on parameters αi and β. It is important to highlight that transition probabilities

remain constant and independent of states. Figure 4.18 illustrates the average carbon emissions

saved for replacement actions at any given state.

The carbon savings, in terms of magnitude, are relatively moderate, a fact that is mainly attrib-

uted to the replacement probabilities in the model. GPU stands out with the highest savings

of 0.17 Kgs per state due to its highest deterioration and significant contribution to carbon

emissions. Regarding CPU there is a noticeable shift: Despite being initially considered the

least likely component for individual replacement in the cost model (Figure 4.10), it leaps to the

second position, with 0.1 Kgs savings when considering CO2. This shift is primarily due to its

substantial manufacturing carbon release, making it a crucial component to replace for meeting

all the goals. In contrast, HDD, despite having the second-highest transition probabilities, is

considered the least pollutant item, occupying the last place in terms of individual replacement

with a relatively low savings rate at 0.05 Kgs.
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Figure 4.18: Amount of carbon dioxide emissions per state and action for three components (in
Kgs)

Joint replacement actions exhibit remarkable saving rates, ranging from 0.07 to 0.14 Kgs. This

behavior results as a mixture from the non-discounted emission values and the low replacement

probabilities. If the latter were higher, the corresponding numbers would be more significant.

The same applies also for the savings in case of full replacement. To enhance clarity, Figure

4.19 represents the corresponding percentages of each replacement action, given that an action

is taken in the model.
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Figure 4.19: Contribution of each action among the replacement actions (in %)

By conditioning on each action taken, it becomes evident that the predominant contributor is

the sole replacement of GPU. This dominance is a result of the interplay among the high deteri-

oration probability, cost and carbon emissions. However, when it comes to joint replacements,

Figure 4.19 highlights their relatively lower probabilities which weren’t transparent in Figure

4.18. This phenomenon appears due to the low discount factor, established in the beginning of

the problem.

45



Conclusion

This paper discusses the optimal replacement policy of low-end computer components during

the End-Of-Life (EoL) phase, aiming to extend the overall lifespan of a desktop computer. The

complication of the problem necessitates a mathematical formulation through discretization of

time, establishing a framework for informed replacement decisions. The deterioration rates of

components are captured using an exponential probability function for their modelling. Further-

more, the replacement cost for each component is determined as the average value derived from

a set of low-end components obtained from a PC benchmark site (PassMark). Recognizing the

complexity in studying all components of a desktop computer, this work focuses on the three

major contributors to overall performance: GPU, CPU and HDD.

The Markov Decision Model (MDM) stands as an exact mathematical algorithm applied in

this problem. It is described as an LP method where replacement actions are component-

dependent. The outcome provides an overview of the average replacement cost over a renewal

cycle. Insights derived from this method underscore the crucial role of the most deteriorating

component (GPU) in decision making. This trend is clearly manifested in the probabilities of the

transition matrix, which is the foundation of problem formulation. Nevertheless, a drawback of

this approach lies in its assumption that components deteriorate independently of one another,

displaying a non-realistic scenario.

To address this challenge, a slight modification is introduced, by creating interdependence among

components. Accurately measuring stochastic dependency or all types of dependencies simul-

taneously is practically impossible. Therefore, an assumption is made to partially capture this

concept: The actions for all components depend on the condition of CPU. In this scenario, the

influence of GPU is reduced compared to original MDM, as replacement probabilities depend

on the deterioration level of CPU.

In terms of computer performance, the outcome can be interpreted differently. In the two

mentioned models, HDD exhibits the lowest probability of replacement per state but also the

lowest replacement costs. Essentially, a significant performance boost can be achieved by repla-

cing HDD as opposed to any other component. It is crucial to note that HDD contributes one

fourth to the overall performance. Therefore, substituting HDD not only lowers average costs

but also extends computer’s lifespan, enhancing overall performance.

While MDM yields optimal solutions in terms of costs, its limitation lies in interpretability.
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Understanding how this method operates might be challenging for individuals without technical

background. Consequently, a heuristic approach called Power of Two is introduced. In this

method, each component undergoes replacement after a specific number of periods, following a

power of two (2m) periodicity. Like MDM, deterioration rates of all studied components influ-

ence the model, as they affect the overall replacement cycles. Note that replacements in this

approach are coordinated, rendering the joint cost of components as a crucial factor for the

decision-making. However, this approach leads to sub-optimal results as components are not

replaced in their optimal periods.

Last but not least, an alternative optimal replacing policy is presented, focusing both costs

and carbon dioxide emissions. The choice of carbon dioxide as a metric stems from its impact

among greenhouse gases and the environmental hazard it poses. The mathematical framework

is rooted in the original MDM model but adapted to consider carbon emissions. The data for

the analysis are sourced from the published CO2 eq. emissions of a low end computer, the HP

Pavilion Desktop PC TP01. It turns out that the component with the highest environmental

impact (CPU) emerges as an essential factor in decision making.
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Discussion

The paper employs the Markov Decision Model to calculate the average cost over the renewal

cycle, focusing on three key components of a desktop computer. However, a computer comprises

more than ten components in total, making it impractical to study all components due to ex-

tremely high number of states in the problem, and consequently, decision variables. Another

limitation is the modelling of deterioration rates using probability functions, a commonly em-

ployed method in the literature for electronic products. However, it is acknowledged that this

choice might not fully capture reality, as it could omit valuable information.

Furthermore, scientists have yet to comprehensively capture the dependencies among com-

ponents. Currently, there is no exact method to measure these dependencies due to lack of

understanding regarding how components interact. Additionally, there is scarcity of research,

assessing two or more kinds of dependencies simultaneously. Therefore, a solid extension of

this study could rely on assumptions about all kinds of dependencies with outlook for future

improvement.

Another limitation is that the assessment of each component’s contribution to carbon diox-

ide emissions relies on a single paper. Despite the scientific exploration into the subject of

greenhouse emissions from electronics, only one study provides a detailed breakdown of CO2

emissions by components. This particular paper derives its findings from a single computer,

with no specification of whether it falls into the category of high or low-end computing. Con-

sequently, the carbon dioxide data presented in this paper are based on a single-computer study

without indication about its performance, resulting in a more generic presentation.

Finally, life extension strategies have attained considerably less attention compared to the reg-

ular maintenance approaches. This discrepancy can be attributed to the delayed appreciation

of the former compared to the latter. However, the primary challenge lies in the utilization

of a mathematical framework for decision making. The majority of papers either qualitatively

describe or just employ simulation to assess the performance of a system, when implementing

LTE.
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Appendix A - Two components model

A.1 Markov Decision Model

For the case of studying two components (CPU and GPU), the Markov decision model consists

of the states of each component, namely i1, i2 ∈ I with I = I1 × I2. At each combination of

states an action is taken and there are four possible actions: No action (a = 0), replacement

of CPU (a = 1), replacement of GPU (a = 2) or both components are replaced (a = 3). With

mathematical notation the set A is described as,

A(i1, i2) =



{3} if i1 ∈ {0,M} and i2 ∈ {0,M},

{1} if i1 ∈ {0,M} and i2 /∈ {0,M},

{2} if i1 /∈ {0,M} and i2 ∈ {0,M},

{0} otherwise.

where the constant M represents the maximum state of replacement. The transition prob-

abilities moving from (i1, i2) to (j1, j2) by taking action a can be described from the matrix

p(i1, i2)(j1, j2)(a).

p(i1, i2)(j1, j2)(0) =



(1− p1n)(1− p2n) for j1 = i1 + 1, j2 = i2 + 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

(1− p1n)p
2
n for j1 = i1 + 1, j2 = i2, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

p1n(1− p2n) for j1 = i1, j2 = i2 + 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

p1np
2
n for j1 = i1, j2 = i2, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

0 else

p(i1, i2)(j1, j2)(1) =



(1− p10)(1− p2n) for j1 = 1, j2 = i2 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}

(1− p10)
1p2n for j1 = 1, j2 = i2, i1 ∈ {0,M}, i2 ̸∈ {0,M}

p10(1− p2n) for j1 = 0, j2 = i2 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}

p10p
2
n for j1 = 0, j2 = i2, i1 ∈ {0,M}, i2 ̸∈ {0,M}

0 else
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p(i1, i2)(j1, j2)(2) =



(1− p1n)(1− p20) for j1 = i1 + 1, j2 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}

(1− p1n)p
2
0 for j1 = i1 + 1, j2 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}

p1n(1− p20) for j1 = i1, j2 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}

p1np
2
0 for j1 = i1, j2 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}

0 else

p(i1, i2)(j1, j2)(3) =



(1− p10)(1− p20) for j1 = 1, j2 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}

(1− p10)p
2
0 for j1 = 1, j2 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}

p10(1− p20) for j1 = 0, j2 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}

p10p
2
0 for j1 = 0, j2 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}

0 else

where 1− pin represents the probability of component i deteriorating from state n to state n+1

and pin otherwise. Probability 1− pi0 = 1 denotes the probability of component i being replaced

and starting from state 0.

The replacement costs are independent of the condition of the items, but depend on taken

actions. Therefore, a replacement of CPU costs c1, while a replacement of GPU costs c2. The

summation of these two costs results the full replacement. However, it is assumed that the full

replacement is cheaper than replacing each component separately (cfull <
∑n

i=1 xi). Therefore,

a discount factor δ = 0.9 is introduced. More precisely,

c(a) =



0 if a = 0

c1 if a = 1

c2 if a = 2

δ(c1 + c2) if a = 3.

At this point, all the input data have been defined and the LP approach of the model is displayed

(A.1). The mathematical formulation is identical with the one of Formulation 3.1 with its

objective aiming to minimize the average costs. The distinction lies in the number of decision

variables but also in the size of the transition matrix due to the fewer possible actions of the
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problem.

min
∑
i1∈I

∑
i2∈I

∑
a∈A

c(a)xai1,i2 (A.1a)

subj. to
∑
a∈A

xai1,i2 =
∑
j1∈I

∑
j2∈I

∑
a∈A

p(j1,j2)(i1,i2)(a) · x
a
j1,j2 ∀i1, i2 ∈ I (A.1b)

∑
i1∈I

∑
i2∈I

∑
a∈A

xai1,i2 = 1 (A.1c)

xai1,i2 ≥ 0 ∀i1, i2 ∈ I, ∀a ∈ A (A.1d)

The objective function A.1a is designed to minimize the total average costs. Constraint A.1b

outlines the balance equation: The inflow to a certain set of states equals the outflow. Constraint

A.1c ensures that the summation of all probabilities equals one. Lastly, A.1d indicates the non-

negative nature of the decision variables.

A.2 Dependent Deterioration

For the two-component case, the assumptions are also based on CPU’s condition, given the

lowest deterioration rate per year compared to others (Jiajian Yan, 2023), the relatively low

cost but also the significant role of it in overall performance (XDA - Developers, 2023). The

assumptions are summarized below:

1. If CPU deteriorates, GPU also deteriorates

2. If CPU does not deteriorate, GPU can deteriorate

To integrate these information into the problem, a few changes have to be done. Although the

formulation and input data remain the same, outlined in A.1, adjustments to the transition

probabilities are necessary. The subsequent sections provide detailed configurations within the

transition probability matrices.

p(i1, i2)(j1, j2)(0) =



1− p1n for j1 = i1 + 1, j2 = i2 + 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = i2, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

p1n − p2n for j1 = i1, j2 = i2 + 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

p2n for j1 = i1, j2 = i2, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}

0 else

p(i1, i2)(j1, j2)(1) =



1− p1n for j1 = 1, j2 = i2 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}

0 for j1 = 1, j2 = i2, i1 ∈ {0,M}, i2 ̸∈ {0,M}

p1n − p2n for j1 = 0, j2 = i2 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}

p2n for j1 = 0, j2 = i2, i1 ∈ {0,M}, i2 ̸∈ {0,M}

0 else
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p(i1, i2)(j1, j2)(2) =



1− p1n for j1 = i1 + 1, j2 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}

0 for j1 = i1 + 1, j2 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}

p1n for j1 = i1, j2 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}

0 for j1 = i1, j2 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}

0 else

p(i1, i2)(j1, j2)(3) =



1 for j1 = 1, j2 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}

0 for j1 = 1, j2 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}

0 for j1 = 0, j2 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}

0 for j1 = 0, j2 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}

0 else

It is evident that the probability transition matrix is slightly less complicated than the one

indicated in A.1. The non-zero entries in the matrices are determined by the condition of CPU,

which dictates the overall system. In all other entries, probabilities have a value of zero.
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Appendix B - Three components model

B.1 Transition Probabilities for Independent Deterioration

This section illustrates the remaining transition probabilities introduced in Section 3.2. They

are depicted for each action within the problem framework.

p(i1, i2, i3)(j1, j2, j3)(1) =



(1− p10)(1− p2n)(1− p3n) for j1 = 1, j2 = i2 + 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)(1− p2n)p
3
n for j1 = 1, j2 = i2 + 1, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)p
2
n(1− p3n) for j1 = 1, j2 = i2, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)p
2
np

3
n for j1 = 1, j2 = i2, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p10(1− p2n)(1− p3n) for j1 = 0, j2 = i2 + 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p10(1− p2n)p
3
n for j1 = 0, j2 = i2 + 1, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p10p
2
n(1− p3n) for j1 = 0, j2 = i2, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p10p
2
np

3
n for j1 = 0, j2 = i2, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(2) =



(1− p1n)(1− p20)(1− p3n) for j1 = i1 + 1, j2 = 1, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p1n)(1− p20)p
3
n for j1 = i1 + 1, j2 = 1, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1np(1− p20)(1− p3n) for j1 = i1, j2 = 1, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1n(1− p20)p
3
n for j1 = i1, j2 = 1, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p1n)p
2
0(1− p3n) for j1 = i1 + 1, j2 = 0, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p1n)p
2
0p

3
n for j1 = i1 + 1, j2 = 0, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1np
2
0(1− p3n) for j1 = i1, j2 = 0, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1np
2
0p

3
n for j1 = i1, j2 = 0, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(3) =



(1− p1n)(1− p2n)(1− p30) for j1 = i1 + 1, j2 = i2 + 1, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p1n)p
2
n(1− p30) for j1 = i1 + 1, j2 = i2, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1n(1− p2n)(1− p30) for j1 = i1, j2 = i2 + 1, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1np
2
n(1− p30) for j1 = i1, j2 = i2, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p1n)(1− p2n)p
3
0 for j1 = i1 + 1, j2 = i2 + 1, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p1n)p
2
np

3
0 for j1 = i1 + 1, j2 = i2, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1n(1− p2n)p
3
0 for j1 = i1, j2 = i2 + 1, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1np
2
np

3
0 for j1 = i1, j2 = i2, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}
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p(i1, i2, i3)(j1, j2, j3)(4) =



(1− p10)(1− p20)(1− p3n) for j1 = 1, j2 = 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)p
2
0(1− p3n) for j1 = 1, j2 = 0, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p10(1− p20)(1− p3n) for j1 = 0, j2 = 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p10p
2
0(1− p3n) for j1 = 0, j2 = 0, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)(1− p20)p
3
n for j1 = 1, j2 = 1, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

(1− p10)p
2
0p

3
n for j1 = 1, j2 = 0, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p10(1− p20)p
3
n for j1 = 0, j2 = 1, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p10p
2
0p

3
n for j1 = 0, j2 = 0, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(5) =



(1− p10)(1− p2n)(1− p30) for j1 = 1, j2 = i2 + 1, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p10)(1− p2n)p
3
0 for j1 = 1, j2 = i2 + 1, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p10(1− p2n)(1− p30) for j1 = 0, j2 = i2 + 1, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p10(1− p2n)p
3
0 for j1 = 0, j2 = i2 + 1, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p10)p
2
n(1− p30) for j1 = 1, j2 = i2, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

(1− p10)p
2
np

3
0 for j1 = 1, j2 = i2, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p10p
2
n(1− p30) for j1 = 0, j2 = i2, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p10p
2
np

3
0 for j1 = 0, j2 = i2, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(6) =



(1− p1n)(1− p20)(1− p30) for j1 = i1 + 1, j2 = 1, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p1n)(1− p20)p
3
0 for j1 = i1 + 1, j2 = 1, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p1n)p
2
0(1− p30) for j1 = i1 + 1, j2 = 0, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p1n)p
2
0p

3
0 for j1 = i1 + 1, j2 = 0, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p1n(1− p20)(1− p30) for j1 = i1, j2 = 1, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p1n(1− p20)p
3
0 for j1 = i1, j2 = 1, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p1np
2
0(1− p30) for j1 = i1, j2 = 0, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p1np
2
0p

3
0 for j1 = i1, j2 = 0, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(7) =



(1− p10)(1− p20)(1− p30) for j1 = 1, j2 = 1, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p10)(1− p20)p
3
0 for j1 = 1, j2 = 1, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p10)p
2
0(1− p30) for j1 = 1, j2 = 0, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p10(1− p20)(1− p30) for j1 = 0, j2 = 1, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

(1− p10)p
2
0p

3
0 for j1 = 1, j2 = 0, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p10(1− p20)p
3
0 for j1 = 0, j2 = 1, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p10p
2
0(1− p30) for j1 = 0, j2 = 0, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p10p
2
0p

3
0 for j1 = 0, j2 = 0, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}
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B.2 Transition Probabilities for Dependent Deterioration

This section represents the rest of transition probabilities established in Section 3.3, outlining

them per each action within the problem framework.

p(i1, i2, i3)(j1, j2, j3)(1) =



1− p1n for j1 = 1, j2 = i2 + 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 1, j2 = i2 + 1, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 1, j2 = i2, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 1, j2 = i2, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p1n − p2n for j1 = 0, j2 = i2 + 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 0, j2 = i2 + 1, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p2n − p3n for j1 = 0, j2 = i2, j3 = i3 + 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p3n for j1 = 0, j2 = i2, j3 = i3, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(2) =



1− p1n for j1 = i1 + 1, j2 = 1, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = 1, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1n − p3n for j1 = i1, j2 = 1, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p3n for j1 = i1, j2 = 1, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = 0, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = i1 + 1, j2 = 0, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = i1, j2 = 0, j3 = i3 + 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = i1, j2 = 0, j3 = i3, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(3) =



1− p1n for j1 = i1 + 1, j2 = i2 + 1, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = i2, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1n − p2n for j1 = i1, j2 = i2 + 1, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p2n for j1 = i1, j2 = i2, j3 = 1, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = i2 + 1, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = i2, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1, j2 = i2 + 1, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1, j2 = i2, j3 = 0, i1 ̸∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}
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p(i1, i2, i3)(j1, j2, j3)(4) =



1− p1n for j1 = 1, j2 = 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 1, j2 = 0, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 0, j2 = 1, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 0, j2 = 0, j3 = i3 + 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p1n for j1 = 1, j2 = 1, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 1, j2 = 0, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 0, j2 = 1, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

0 for j1 = 0, j2 = 0, j3 = i3, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ̸∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(5) =



1− p1n for j1 = 1, j2 = i2 + 1, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 1, j2 = i2 + 1, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = i2 + 1, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = i2 + 1, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p1n for j1 = 1, j2 = i2, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 1, j2 = i2, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = i2, j3 = 1, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = i2, j3 = 0, i1 ∈ {0,M}, i2 ̸∈ {0,M}, i3 ∈ {0,M}

p(i1, i2, i3)(j1, j2, j3)(6) =



1− p1n for j1 = i1 + 1, j2 = 1, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = 1, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = 0, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1 + 1, j2 = 0, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

p1n for j1 = i1, j2 = 1, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1, j2 = 1, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1, j2 = 0, j3 = 1, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = i1, j2 = 0, j3 = 0, i1 ̸∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}
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p(i1, i2, i3)(j1, j2, j3)(7) =



1 for j1 = 1, j2 = 1, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 1, j2 = 1, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 1, j2 = 0, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = 1, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 1, j2 = 0, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = 1, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = 0, j3 = 1, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}

0 for j1 = 0, j2 = 0, j3 = 0, i1 ∈ {0,M}, i2 ∈ {0,M}, i3 ∈ {0,M}
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