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Abstract

In this study, we investigate spillover dynamics in the sovereign debt market in the Eurozone

using 10-year yield spreads from ten early adopters of the common currency. We introduce

a novel multiple shock spillover measure enabling us to measure spillovers from a block of

countries simultaneously, allowing us to analyse spillovers from the core to the periphery, and

the other way around. Additionally, we perform a comparison of time-varying multiple shock

and bilateral spillover measurements from rolling-window, repeated weighted least squares,

and TVP-VAR model estimates. Our novel multiple shock spillover index shows that during

the sovereign debt crisis, spillovers from a simultaneous shock to the core and periphery were

low, whereas bilateral spillovers reached peak levels. This reveals that during the sovereign

debt crisis, a larger than normal share of spillover occurred within the core and periphery,

rather than between the core and periphery. In the bilateral spillover analysis, we find

substantial temporal variation in spillovers, with Belgium, France, Italy, and Spain playing

a prominent role in the transmission of spillovers. Throughout the sample period, most

countries are neither net recipients nor net transmitters of spillovers but rather switch back

and forth between being net recipients and net transmitters. Furthermore, we do not find

evidence for consistent spillovers from the periphery to the core, or the other way around. The

TVP-VAR model appears most suitable for the timely detection of spillovers as it produces

relatively smooth spillover measures that respond to new information quickly. In contrast,

the rolling-window estimates exhibit episodes of increased spillovers that last as long as an

observation that pertains to a shock is included in the rolling window, and the repeated

weighted least squares produce smooth, but less time-variant spillover measurements.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Ever since the inception of the European Coal and Steel Community (ECSC), the earliest pre-

decessor of the European Union (EU), in the 1950s, European countries have sought ways to

collaborate in order to promote peace and prosperity on the European continent. The estab-

lishment of a common market that allowed the free movement of products, services, and labour

was at the time regarded as one of the major steps in advancing economic integration within the

EU. In 1991, economic cooperation was further intensified with the Maastricht Treaty and the

establishment of the Economic and Monetary Union (EMU). After years of careful preparation,

twelve member states of the EU took a major step forward in economic integration in 1999, by

adopting a common currency, the euro. This group of countries, together with later adopters

of the euro, is commonly referred to as the Eurozone (EZ) or Euro Area (EA). The new cur-

rency was first introduced in a non-physical form, until notes and coins began to circulate in

2002, rapidly replacing old currencies. The adoption of this new common currency was one of

many policies intended to advance economic and financial integration, which in hindsight was

empirically proved successful, as Eurozone countries have experienced substantial economic and

financial convergence (Ehrmann et al., 2011; Gunnella et al., 2021).

However, the negative consequences of economic and financial integration gained much promi-

nence during the sovereign debt crisis, which unfolded in the aftermath of the 2008 global

financial meltdown. Some of the so-called periphery countries, Spain, Greece, Ireland, Italy, and

Portugal, had accumulated unsustainable fiscal deficits and government debt. The situation

was worsened by the fact that these countries could not devalue their currency due to their

use of a common currency. Financial distress in Greece led to a loss of investors’ confidence

in sovereign bonds in Greece, prompting investors to start questioning whether the financial

distress in Greece could spill over to other countries. As a consequence, international markets

required greater sovereign risk premia, setting off a sequence of fiscal bailouts, further trouble in

the banking system, the downgrading of all EMU countries but Germany, and IMF intervention

in several EU countries. The sovereign debt crisis revealed the strong intertwining of European

financial markets and the risk of spillovers.

In this paper, we investigate to what extent sovereign yield spreads have been subject to spillovers

from other Eurozone countries since the adoption of the common currency. More specifically,

we research whether spillovers depict temporal variation throughout the sample period. As an

accurate and timely assessment of spillovers is paramount, we evaluate several measurement

methods for time-varying spillovers and assess their strengths and weaknesses. Additionally, we

propose a novel multiple shock spillover measure that enables us to assess the spillover from

shocks in multiple countries simultaneously. We apply this novel measure to evaluate spillovers

from the Eurozone core to yield spreads in periphery countries, and the other way around.

3



For the purpose of our analysis, we use 10-year sovereign bond yield spreads for Austria, Bel-

gium, Finland, France, Greece, Ireland, Italy, the Netherlands, Portugal, and Spain. The sample

ranges the full existence period of the Eurozone, from 04/01/1999 to 01/08/2023. To measure

the bilateral linkages of sovereign debt markets, we use spillover measures based on the gener-

alised forecast error variance decomposition of a VAR model, as in Diebold and Yilmaz (2009,

2012). Since the adoption of the common currency, the Eurozone has been faced with numerous

events, such as the great financial crisis, the Eurozone debt crisis, the COVID-19 pandemic, and

the Russian invasion of Ukraine. It is not inconceivable that spillovers are not constant through-

out the sample period, hence we measure temporal variation of spillovers in the sovereign debt

markets. To evaluate the temporal variation of spillovers, Diebold and Yilmaz (2009, 2012)

propose to use rolling-window estimation. However, this approach often exhibits large jumps up

and down after a shock occurs or when an observation that pertains to a shock exits the rolling

window. Moreover, the rolling-window approach requires the choice of a window size, which is

more often than not chosen arbitrarily. To overcome these issues, we can estimate the time-

varying dynamics of spillover with the repeated weighted least squares approach over the full

sample, in the spirit of Bataa et al. (2013), or we can estimate a time-varying parameter VAR

(TVP-VAR) model using forgetting factors, such as described by Antonakakis et al. (2020). To

determine the most accurate and timely measurement method of spillovers in the sovereign debt

market, we perform a comparison of the three different estimation methods: the rolling-window

approach, the repeated weighted least squares, and the TVP-VAR approach.

In light of the sovereign debt crisis, where unsustainable fiscal deficits and public debt in pe-

riphery countries had triggered a loss of investors’ confidence across the Eurozone, we would to

answer the question of whether developments in either the core or the periphery of the Eurozone

spill over into countries in the other block. Previously, Claeys and Vaš́ıček (2014) have attempted

to analyse EU-wide developments by augmenting the VAR framework of Diebold and Yilmaz

(2009, 2012) with common factors, where one of the factors can be interpreted as the difference

between the core and periphery. Rather than using a factor-augmented VAR approach, we pro-

pose a novel multiple shock spillover measure that enables us to measure spillovers from a group

of countries to the remainder of countries. This novel spillover measure is based on the multiple

shock forecast error variance decomposition (van der Zwan, 2023). In contrast to the ordinary

spillover measures of Diebold and Yilmaz (2009, 2012) which only measure bilateral spillovers,

our novel measure allows us to analyse spillovers between blocks of countries. To answer our

question of whether shocks in either the core or periphery could spill over into countries in the

other block, we implement our novel multiple shock spillover index to assess the spillover effect

from a simultaneous shock to the core and periphery.

The introduction of the multiple shock spillover index enables us to measure the spillovers from

the core and periphery. The ordinary and multiple shock spillover differ in the fact that the

multiple shock spillover index does not measure spillovers within the core and periphery, result-
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ing in a much lower spillover measure compared to the ordinary spillover index. This indicates

that, although a substantial amount of spillovers is transmitted between the core and periphery,

the lion’s share of spillover occurs within the core and periphery. Spillovers from simultaneous

shocks to the core and periphery were particularly influential during the introduction of the euro

to the general public, the financial crisis, and the COVID-19 pandemic. However, throughout

the sovereign debt crisis, the multiple shock spillover index experienced a negative trend, which

stands in contrast to the ordinary spillover index. This shows that spillovers from the core

(periphery) only influence sovereign yield spreads in periphery (core) countries to a limited ex-

tent, hence studying the within-effect and bilateral relations is crucial to understanding the full

extent of spillover dynamics of sovereign debt markets in the Eurozone. Our bilateral spillover

analysis shows that Belgium, France, Italy, and Spain are key players in the transmission of

spillovers. The prominent role of these countries in spillover dynamics in the Eurozone can be

attributed to the large size of their economies (except Belgium) and the high level of public

debt. Throughout the full sample period, these four countries are the only net transmitters of

spillovers, with all other countries being net recipients. However, spillovers depict a high degree

of temporal variation, and we find that most countries are not consistently net recipients nor net

transmitters, but they rather switch back and forth between being a net recipient and net trans-

mitter throughout the sample period. In general, we note that countries tend to switch between

being net recipients and transmitters in periods of crisis. For example, during the sovereign

debt crisis, Austria went from being a net recipient to being a net transmitter. In many cases,

these switches are temporary, but in some cases, the switch persists after the underlying crisis

has ended. In the comparison of estimation methods, we find all three methods produce very

similar-looking time-varying spillover patterns, however, whereas the rolling-window approach

exhibits large jumps up and down after a shock occurs or when an observation that pertains to

a shock exits the rolling window, the repeated weighted least squares and TVP-VAR approaches

produce smoother time-varying parameter estimates. Overall, parameter estimates from the

TVP-VAR model tend to adjust to newer information quicker, while the repeated weighted least

squares method produces smoother, but less time-variant, parameter estimates.

Understanding spillover dynamics in sovereign debt markets in the Eurozone is essential for

policy-makers, including central bankers, to anticipate and possibly prevent a future sovereign

debt crisis. The extent to which, for example, distress in sovereign debt markets is emanating

from a single country as opposed to a group of countries can influence the policy response to be

undertaken. A timely response is paramount when it comes to detecting and managing crises,

hence quick and accurate detection of changes in spillovers is a favourable attribute of a spillover

measurement methodology. Moreover, a thorough analysis of spillovers in sovereign debt mar-

kets improves investors’ understanding of the risk and diversification benefits of investing in the

sovereign debt market in the Eurozone. In addition, dynamic spillover analysis allows policy-

makers and banks to anticipate consequences of foreign yield shocks to the financial sector, as

sovereign bond yield increases feed into the financial sector by affecting the balance sheets of fi-
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nancial institutions, reducing domestic banks’ ratings and pushing up their funding costs (Bank

for International Settlements, 2011).

Our study contributes to the academic literature on spillovers in sovereign debt markets in

the Eurozone in two important ways. First, we analyse dynamic spillovers in the sovereign debt

market in the Eurozone using rolling-window, repeated weighted least squares, and TVP-VAR

approach and we compare the estimates, finding that for the purpose of timely detection of

spillovers, the TVP-VAR is most suitable. Secondly, we propose a novel multiple shock spillover

measure, which enables us to analyse spillovers from a group of countries, in our case the Euro-

zone core and periphery.

This paper is structured as follows, first, we discuss relevant previous research in Section 2.

Next, in Section 3 we discuss the sovereign yield data and the transformations that we use to

conduct our analysis. In Section 4, we discuss the estimation methods and spillover measures,

including our novel multiple shock spillover measures, that we use to analyse spillover dynamics

in the Eurozone. We present the results of our analysis in Section 5. Finally, we draw the

conclusion to our study in Section 6.

2 Literature

The adoption of the common currency and the transition to the EMU has led to a rapid integra-

tion in financial markets, including the sovereign bond market, as pointed out by Ehrmann et al.

(2011). In the early stage of the EMU, several studies have analysed co-movement among euro-

denominated sovereign yield spreads, finding that integration of the government bond markets

is stronger for EMU countries in contrast to non-EMU members (Christiansen, 2007; Caporale

and Girardi, 2011). Likewise, in the examination of sovereign yield spreads responses to bad

news, Cappiello et al. (2006) document significant evidence of a structural break in correlation

after the introduction of the euro. The strong integration of yield spreads continued throughout

the financial crisis, as is found by Sosvilla-Rivero and Morales-Zumaquero (2012) who docu-

ment evidence of unidirectional causality in bond yields of 11 EMU countries during the period

2001–2010. The determinants of the yield spread for EMU countries are different than for non-

EMU countries, as Balli (2009) finds that unlike in other bond markets, risk factors and other

macroeconomic and fiscal indicators are not able to explain the sovereign bond yields after the

beginning of the monetary union, which can be seen as a sign for perfect financial integration.

However, the relation between macroeconomic and expected fiscal fundamentals is not constant,

as Afonso et al. (2015) show that the menu of macro and fiscal risks priced by markets has been

significantly enriched since March 2009, including international financial risk and liquidity risk.

According to Favero et al. (2010) differences in liquidity, the availability of derivatives markets

for sovereign bonds, and a different response of national markets to global factors are the main

sources of differences in sovereign debt yields in the Eurozone.
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The purpose of our research is to provide insight into the occurrence of spillovers in the sovereign

debt market in the Eurozone since the introduction of the euro. Spillovers in the sovereign debt

market in the Eurozone have attracted much attention after the Great Financial Crisis and the

Eurozone crisis. In this period, financial distress in Greece led to a sharp decline in investors’

confidence in sovereign bonds in Greece, prompting investors to start questioning whether the

financial distress in Greece could spill over to other countries. According to Bølstad and Elhardt

(2018), investors in Eurozone sovereign debt began to question the willingness of European insti-

tutions to rescue specific economies from October 2009 onwards. This activated a self-fulfilling

crisis, as the fear of default led investors to demand higher risk premiums, increasing the risk of

default (De Grauwe and Ji, 2013). Furthermore, Attinasi et al. (2009) suggest that the rescue

packages for the banking sector and the economic fallout of the crisis cast doubt on the debt

sustainability of sovereign debt in several Eurozone countries, leading to so-called wake-up calls

(Bekaert et al., 2014; De Santis, 2012; Giordano et al., 2013; Ludwig, 2014). A multitude of

studies find empirical evidence of the existence of spillovers amongst Eurozone countries with

periphery countries being the primary exporters of sovereign risk (De Santis, 2012; Metiu, 2012;

Galariotis et al., 2016; González-Sánchez, 2018). Although the prevalent view is that shocks

originating from the periphery countries are the main sources of sovereign risk, there are also

recent studies indicating that core countries are the main transmitters of spillovers in the Euro-

zone. (BenSäıda, 2018; Chatziantoniou and Gabauer, 2021)

In view of the fact that timely and accurate detection of changes in spillovers is a favourable at-

tribute of a spillover measurement methodology, we perform a comparison of estimation methods

that can be used to compute time-varying spillover dynamics using the VAR-based framework

of Diebold and Yilmaz (2009, 2012). The first method, the rolling-window estimation, has been

proposed in the original paper by Diebold and Yilmaz (2009) as a method to analyse temporal

variation of spillovers in global equity markets. Since then, several studies have utilised the

spillover framework of Diebold and Yilmaz (2009, 2012) and their rolling-window approach to

study spillovers in the sovereign debt markets in the EMU. Fernández-Rodŕıguez et al. (2015)

analyse spillovers in sovereign debt markets since the inception of the Eurozone, finding that

periphery countries become dominant transmitters of spillovers during the European debt crisis.

Antonakakis and Vergos (2013) zoom in specifically on the period of the financial and sovereign

debt crisis, finding that periphery countries operate in a more destabilising manner than the core

countries, supplying spillover to both core and periphery countries. The repeated weighted least

squares approach has, as far as we know, not been used to measure spillover dynamics. Similar

approaches have been used in the past for many other applications, e.g. Bataa et al. (2013).

To complete the comparison, we follow Antonakakis et al. (2020) and estimate a time-varying

parameter VAR (TVP-VAR) model using forgetting factors in the spirit of Koop and Korobilis

(2013, 2014). This methodology has been applied to sovereign debt markets in the EMU by

Chatziantoniou and Gabauer (2021), finding episodes of fragmentation between the connect-

edness of the yields of various states after the 2008 crisis, with core countries being the main
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transmitters of shocks. To gain insight into which method produces superior measurements of

spillover dynamics, we perform a comparative analysis.

The sovereign debt market in the Eurozone does not operate as a system independent of in-

ternational financial markets. Previous studies, such as Codogno et al. (2003) and Bernoth

et al. (2012), substantiate that a major part of the bond yield spreads in the EU is determined

by a global surge in risk aversion and other external factors. This is affirmed by Afonso et al.

(2015), who find that international financial risk is priced in by the markets since the finan-

cial crisis. To account for international and EU-wide developments, Claeys and Vaš́ıček (2014)

augment the spillover framework of Diebold and Yilmaz (2009, 2012) with common factors that

account for EU-wide developments, finding that spillover effects dominate the domestic funda-

mental factors for Eurozone countries. Their analysis gives prominence to Italy and Spain as key

transmitters of spillovers during the sovereign debt crisis, while periphery countries are shown to

be more vulnerable to spillovers than countries that belong to the Eurozone core. In our study,

instead of using common factors, we introduce a novel multiple shock spillover index based on

the work of van der Zwan (2023), enabling us to analyse spillovers from a number of countries

simultaneously. We apply this novel spillover measure to investigate spillover dynamics from

the core countries to the periphery countries, and the other way around.

3 Data

The dataset considered for this study contains daily observations of the 10-year government

benchmark yield for eleven Eurozone countries retrieved from Datastream1. The government

benchmark yield is based on the most representative bond available for the given maturity band

at each point in time. Generally, that is the latest issue within the given maturity band, where

consideration is also given to yield, issue size, and coupon (FTSE Russel Group, 2023). To

construct the benchmark yield, the yield to redemption - the interest rate where the current

value of the bond (calculated on the basis of the rates and the accumulated interest) is equal

to the cash value of all future yields (interest payments and redemptions) - is calculated for

this benchmark bond. Because we would like to assess spillovers throughout the full existence

period of the Eurozone, our sample contains 4216 observations ranging from 04/01/1999 to

01/08/2023. The countries in consideration are Austria, Belgium, Finland, France, Germany,

Greece, Ireland, Italy, the Netherlands, Portugal, and Spain. The remaining nine Eurozone

countries are not considered in this study because they adopted the euro only recently, or due

to the limited availability of the 10-year sovereign bond yield.

1The Datastream codes for the 10-year government benchmark yields used in our analysis can be found in

Appendix A.
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Figure 1: 10-year sovereign bond yield spreads in the period from 1999 to 2023.

Note: the 10-year sovereign yield spreads for countries in the Eurozone core are displayed in the upper graph,

while the yield spreads for periphery countries are depicted in the lower graph. Abbreviations: AT, Austria;

BE, Belgium; ES, Spain; FI, Finland; FR, France; GR, Greece; IE, Ireland; IT, Italy; NL, the Netherlands; PT,

Portugal.

In this study, we measure sovereign credit risk using the 10-year bond yield spread, which is the

difference between the 10-year bond yield of the country in question and the German 10-year

yield. In literature, the 10-year bond yield spread is often regarded as an important measure

of sovereign credit risk, as it measures the premium required by investors to lend money to a

government compared to investing in a risk-free investment, such as the German government

bond. To measure sovereign risk, longer maturities are preferred as they better reflect a gov-

ernment’s ability to repay its debt in the long term. One disadvantage of using yield spreads

is the need to exclude the reference yield, in our case the 10-year German bond yield, from the

analysis. Although CDS spreads are arguably a better measure of sovereign credit risk, we aim

to measure spillover during the whole period of existence of the Eurozone. Prior to the financial

crisis, CDS markets were not quite as developed and hence illiquid, which makes sovereign debt

spreads a preferred measure of sovereign risk.

The Eurozone can roughly be categorised into two parts: the core, and the periphery. The

former consists of Austria, Belgium, Finland, France, and the Netherlands, whereas the lat-

ter includes countries such as Greece, Italy, Ireland, Portugal, and Spain. Countries in the

periphery are typically characterised by higher public debt and a lack of fiscal discipline. In
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these countries, high debt and fiscal deficits are often accompanied by a high interest rate on

sovereign debt, as can be seen in Figure 1. The upper graph exhibits the 10-year sovereign yield

spread for the countries that compose the core, and the lower graph displays yield spreads in the

periphery countries. In these figures, we can observe a large discrepancy between yield spreads

in the core and periphery countries, with periphery countries frequently facing yield spreads

of magnitude greater than 5%, whereas the highest yield spread for core countries occurred in

Belgium during the sovereign debt crisis reaching a level of just above 3.5%. Looking at the

whole sample period, we observe that in the upper graph yield spreads declined in the period

between 1999 and 2007, showing the convergence of sovereign debt markets that followed the

economic and financial integration that occurred after the adoption of the common currency.

Convergence was abruptly interrupted, first by the financial crisis, and later by the sovereign

debt crisis. Financial and economic turmoil in periphery countries was accompanied by un-

precedented increases in sovereign yield spreads, particularly for Greece and to a lesser extent

Ireland and Portugal. The sovereign debt crisis also had an effect on core countries, driving the

yield spreads to elevated levels, albeit remaining very low compared to the yield spreads in the

periphery. In the post-crisis period, from 2014 onward, we observe a decreasing trend with the

exception of Greece whose yield spread remains very high until 2018. Although the yield spread

data of Greece contains potentially relevant information, the yield spread reaches exceptional

levels for a prolonged period of time. To assess whether the yield spread of Greece has a dispro-

portionate influence on the results, we perform all analysis excluding Greece in Appendix C and

compare the results with the results including Greece, finding that Greece’s influence is very

limited. In the more recent period, small hikes can be observed around the pandemic period

and during the energy crisis caused by the Russian invasion of Ukraine. Throughout the sample

period, including times of crisis, we observe very strong co-movement of sovereign yield spreads.

This indicates the possibility that countries affect each other or that there are possibly common

drivers determining the yield spread levels across sovereign debt markets in the Eurozone.

Table 1 displays the mean, standard deviation, skewness, kurtosis, minimum, maximum, and

augmented Dickey-Fuller test statistics for the level and first difference of sovereign yield spreads.

The descriptive statistics illustrate that core and periphery countries are different in several ways.

First, the mean yield spread of periphery countries is substantially higher than for core coun-

tries. Secondly, the yield spreads of periphery countries, and their first difference, exhibit higher

standard deviation. Finally, the skewness of the first difference in periphery countries is negative

(except in Italy), whereas skewness is positive for core countries. These descriptive statistics

underline the difference between core and periphery in the Eurozone. For all countries, we notice

that all first differences are skewed and fat-tailed (excess kurtosis). Sovereign yield spreads are

dependent on macroeconomic and (expected) fiscal fundamentals (Afonso et al., 2015), hence

trends and seasonality in yield spreads are expected to occur coinciding with business and credit

cycles. Due to the prominent role of fundamentals as determinants of sovereign yield spreads,

we expect yield spreads to be non-stationary. To test whether this holds true in an empirical
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Table 1: Descriptive statistics of 10-year government bond yield spreads

AT BE ES FI FR GR IE IT NL PT

Yield spreads

Mean 0.295 0.441 0.976 0.213 0.303 4.186 1.074 1.233 0.177 1.737

Std. 0.245 0.424 1.074 0.157 0.253 5.839 1.707 1.050 0.137 2.412

Skewness 1.741 2.608 1.850 0.931 1.592 2.617 2.635 1.159 1.294 2.362

Kurtosis 7.569 12.086 6.659 4.640 7.161 11.118 9.925 4.297 5.636 8.671

Min -0.236 -0.020 -0.088 -0.109 -0.071 0.060 -0.178 0.071 -0.092 -0.090

Max 1.832 3.603 6.341 1.009 1.902 38.062 11.896 5.579 0.897 15.557

ADF -3.017 -2.289 -1.668 -2.928 -2.877 -1.948 -1.591 -2.367 -3.190 -1.187

First differences

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Std 0.028 0.032 0.058 0.033 0.027 0.370 0.069 0.062 0.021 0.104

Skewness 0.258 0.367 -1.009 -0.345 0.088 -24.748 -1.641 0.291 0.484 1.325

Kurtosis 15.274 26.227 33.307 85.271 15.531 1290.810 61.308 22.574 15.232 111.605

Min -0.280 -0.355 -0.968 -0.668 -0.227 -19.641 -1.312 -0.723 -0.166 -1.925

Max 0.280 0.371 0.546 0.621 0.294 4.218 0.898 0.670 0.184 2.137

ADF -21.111** -20.891** -20.226** -21.317** -21.692** -20.391** -20.523** -20.462** -21.875** -24.864**

Note: the table shows descriptive statistics of the yield spreads and their first differences. ADF denotes the

augmented Dickey-Fuller test (Dickey and Fuller, 1979) with 5%(1%) critical values of -2.86(-3.44); The 5%

and 1% significance levels are denoted by * and ** respectively. Abbreviations: AT, Austria; BE, Belgium;

ES, Spain; FI, Finland; FR, France; GR, Greece; IE, Ireland; IT, Italy; NL, the Netherlands; PT, Portugal.

setting, we test whether yield spreads and first differences are stationary using the augmented

Dickey-Fuller test statistic (Dickey and Fuller, 1979). The augmented Dickey-Fuller test shows

that yield spreads are non-stationary, while the first differences are stationary. Since stationar-

ity is a condition for VAR models (Sims, 1980), we opt to use the first differences to analyse

spillovers. Henceforth, we will use the term ‘yield spread’ and ‘first difference of yield spread’

interchangeably.

Table 2: Correlations between 10-year government bond yield spreads

AT BE ES FI FR GR IE IT NL PT

AT 1.00 0.87 0.64 0.82 0.83 0.62 0.64 0.68 0.89 0.64

BE 0.87 1.00 0.82 0.62 0.89 0.82 0.86 0.80 0.77 0.88

ES 0.64 0.82 1.00 0.40 0.87 0.87 0.78 0.90 0.63 0.91

FI 0.82 0.62 0.40 1.00 0.64 0.30 0.36 0.51 0.82 0.32

FR 0.83 0.89 0.87 0.64 1.00 0.81 0.67 0.91 0.76 0.84

GR 0.62 0.82 0.87 0.30 0.80 1.00 0.77 0.79 0.50 0.95

IE 0.64 0.86 0.78 0.36 0.67 0.77 1.00 0.64 0.58 0.86

IT 0.68 0.80 0.90 0.51 0.91 0.79 0.64 1.00 0.62 0.82

NL 0.89 0.77 0.63 0.82 0.76 0.50 0.58 0.62 1.00 0.57

PT 0.64 0.88 0.91 0.32 0.84 0.95 0.86 0.82 0.57 1.00

Abbreviations: AT, Austria; BE, Belgium; ES, Spain; FI, Finland; FR, France; GR, Greece; IE, Ireland; IT,

Italy; NL, the Netherlands; PT, Portugal.
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The correlations between the 10-year sovereign yield spreads are displayed in Table 2. Here,

we observe that sovereign yield spreads in the Eurozone are highly correlated. High correlation

is found among core countries (e.g. Belgium-France, 0.889), among periphery countries (e.g.

Spain-Portugal, 0.912), and between core and periphery countries (e.g. France-Italy, 0.914).

4 Methodology

4.1 Dynamic parameter estimates

The framework to measure the strength and direction of spillovers proposed by Diebold and

Yilmaz (2009, 2012) is based on the forecast variance decomposition of a VAR(p) model. The

vector autoregressive model under consideration for this study is a covariance stationary VAR(p)

model

yt =

p∑
i=1

Φiyt−i + εt, (1)

where yt is a vector with n elements containing all sovereign yield spreads at time t, and

εt ∼ (0,Σ) is a vector of independently and identically distributed disturbances. The esti-

mated parameters Φ1, . . . ,Φp can be used to compute the spillover measures using the method

described in Sections 4.2 and 4.3. For the VAR-order, we set p = 2, following Diebold and

Yilmaz (2009, 2012). To check for robustness of the VAR-model we compare estimation results

with p = 1, 2, and 4 in Appendix B.1, and we find that the results are not sensitive to the choice

of VAR-order p.

The full sample estimates summarise the spillovers between sovereign debt markets. However,

throughout the sample period January 1999-July 2023, the Eurozone has undergone numerous

developments, such as economic and financial integration, the great financial crisis, the Euro-

zone debt crisis, the COVID-19 pandemic, and the Russian invasion of Ukraine. A wide range

of studies, such as Antonakakis and Vergos (2013), Claeys and Vaš́ıček (2014), and Fernández-

Rodŕıguez et al. (2015), show that global and European events have a strong influence on the

time-variation of spillovers. To evaluate the time-variation of the linkages among sovereign debt

markets in the Eurozone since the adoption of the common currency, we require time-varying

VAR parameter estimates. These time-varying parameter estimates can in turn be used to com-

pute the spillover measures from Sections 4.2 and 4.3, which enable us to assess the extent and

nature of the temporal variation of the spillover measures.

In our study, we perform a comparison of three different approaches to estimating time-varying

parameters. First, we follow Diebold and Yilmaz (2009, 2012), who obtain time-varying pa-

rameter estimates using a 200-day rolling-window estimation approach. While this approach

generates spillover plots that accurately capture the increase in spillover when a shock occurs,

they do not necessarily capture the downward movement in a timely manner. On the contrary,
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the spillover indices often exhibit large jumps up and down after a shock occurs or when an ob-

servation that pertains to a shock exits the rolling window. Furthermore, in the rolling-window

approach observations outside of the rolling-window are discarded while they may contain valu-

able information. When selecting the rolling window size, the researcher has to make a trade-off

between the usage of available data and persistence. In Appendix B.2, we compare estimation

results with a 50, 100, 200, and 500-day rolling window, finding that the resulting spillover

measures are very sensitive to the choice of the window-length. After careful consideration, we

deem a 200-day rolling window to be appropriate for our application.

To avoid large jumps up and down after observations pertaining to shocks exit the rolling window,

we assign decreasing weights to older observations, without entirely discarding these potentially

informative observations. That is, we estimate the VAR model using weighted least squares,

such that the observation at time τ−k is given weight λk, for k = 0, 1, 2, . . . , and weight zero for

k < 0, with 0 < λ < 1, resulting in VAR estimates for t = τ . Repeating this for τ = 1, 2, . . . , T

yields a sequence of VARs with smoothly time-varying parameter estimates. The specification

of this approach, which we will henceforth refer to as repeated weighted least squares, depends

on the choice of λ. From the comparison of estimation results with λ = 0.98, 0.99, 0.995, and

0.998 in Appendix B.3, we find that the estimates with larger value λ produce smoother spillover

measures and tend to underestimate their counterparts estimated with lower values of λ. The

resulting spillover measures are relatively sensitive to the specification of λ, however, the re-

sults are less sensitive to the selection of λ than the rolling-window approach is sensitive to the

choice of the window-length. Based on a comparison of different values of λ, we determine to

set λ = 0.995. Compared to the rolling-window approach, the repeated weighted least squares

approach assigns lower weight to observations between 2 and 200 days old and larger weight to

observations older than 200 days. For example, a 100-day-old observation has weight 0.61 com-

pared to weight 1, whereas a 300-day-old observation’s weight equals 0.22 compared to zero in

the rolling-window approach. Although by design, this weighting will not reproduce any abrupt

change, this approach utilises all available information, assigning greater weight to more recent

data and yielding smooth parameter estimates that gradually capture changes in spillovers.

Although the repeated weighted least squares is able to produce smooth parameter estimates

utilising all available observations, historical observations remain very influential as they carry

substantial weight, regardless of the value of these particular observations. Antonakakis et al.

(2020) propose to obtain parameter estimates using a time-varying parameter (TVP-VAR) model

using the Kalman filter with forgetting factors in the spirit of Koop and Korobilis (2014). In

this approach, the covariance matrix is allowed to be time-variant, providing an assessment of

the accuracy of the estimation. The information contained in the covariance matrix can in turn

be used to update the parameter estimates.
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Because little is known about the nature of parameter changes, we allow the parameters to

follow a random walk, an approach which has been popular for economic time series at least

since Cooley and Prescott (1976). The TVP-VAR(p) model can be written in state-space form

as follows:

yt = Φtzt−1 + εt εt|Ωt−1 ∼ N(0,Σt) (2)

vec(Φt) = vec(Φt−1) + ξt ξt|Ωt−1 ∼ N(0,Ξt) (3)

with

zt−1 =


y+t−1
...

y+t−p

 Φ′
t =


Φ1t

...

Φpt


where Ωt−1 represents all available information until t−1, yt, and zt are n×1 and np×1 vectors,

respectively, Φt and Φit are n× np and n× n-dimensional matrices, respectively, εt is an n× 1

vector, and ξt is an n2p× 1 vector, whereas the time-varying covariance matrices Σt and Ξt are

n× n and n2p× n2p dimensional matrices, respectively. Moreover, vec(Φt) is the vectorisation

of Φt which is an n2p× 1 vector.

To reduce the computational intensity of estimating the state-space model, we implement forget-

ting factors in the Kalman filter algorithm (Kalman, 1960), in the spirit of Koop and Korobilis

(2013, 2014). The basic idea is to replace Σt and Ξt by estimates and, once this is done, analyti-

cally derive the distribution of Φt. To use the Kalman filter, we assume that all disturbances are

normally distributed, i.e. εt|Ωt−1 ∼ N(0,Σt) and ξt|Ωt−1 ∼ N(0,Ξt). Under this assumption,

we can write

vec(Φt)|z1:t−1 ∼ N(vec(Φt|t−1),Σ
Φ
t|t−1), (4)

that is, we know that the vectorisation of parameters Φt given all sovereign yield spreads till t−1

are normally distributed with mean vec(Φt|t−1) and variance ΣΦ
t|t−1. In this notation, Φt|t−1 and

ΣΦ
t|t−1 are respectively Φt and ΣΦ

t given all available information until t − 1. Φt|t−1 and ΣΦ
t|t−1

are obtained from the predication step of the Kalman filter:

Φt|t−1 = Φt−1|t−1 (5)

ΣΦ
t|t−1 = ΣΦ

t−1|t−1 + Ξt (6)

This is the only place where Ξt enters the Kalman filter, thus, if we replace the preceding

equation by

ΣΦ
t|t−1 =

1

κ1
ΣΦ
t−1|t−1, (7)

there is no longer a need to estimate or simulate Ξt. Note, that equations 6 and 7 imply that

Ξt = (1− κ−1
1 )ΣΦ

t−1|t−1, (8)
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The constant κ1 is referred to as ”forgetting factor” because this specification implies that an

observation j periods in the past has weight κj1 in the filtered estimate of Φt, hence partially

forgetting historic observations. κ1 is restricted to the interval 0 < κ1 < 1. A similar ap-

proximation is used to remove the need to estimate Σt. We follow Koop and Korobilis (2013)

by using an exponentially weighted moving average (EWMA) to model volatility (RiskMetrics,

1996; Brockwell and Davis, 2016), i.e.

Σt = κ2Σt−1|t−1 + (1− κ2)ε
′
tεt, (9)

where εt = yt − Φt|t−1zt−1 is produced by the Kalman filter.

The application of forgetting factors requires us to select a value for κ1 and κ2. For κ1, we

assume that daily changes are relatively slow and stable under the random walk specification.

In order to achieve this slow time variation in the coefficients, we set κ1 = 0.99. For the decay fac-

tor κ2 in the EWMA estimator, RiskMetrics (1996) suggests values in the region of (0.94, 0.98).

Because we use daily data, we opt for a relatively stable specification by setting κ2 = 0.98. In

Appendix B.4, we compare estimation results for several alternative values of forgetting factors,

finding that the choice of κ1 and κ2 has some influence on the magnitude of peaks, but is much

less sensitive to the estimation specification than the other estimation methods. Note that the

constant parameter specification can be achieved by setting the decay factors κ1 = 1 and κ2 = 1.

Estimation procedures to allow the decay factors to be time-varying exist, however, we decide to

keep them constant, as Koop and Korobilis (2013) found that the value-added by time-varying

decay factors was questionable while it increased the computational burden of the Kalman filter

significantly.

We initialise the Kalman filter using the Primiceri (2005) prior, setting the initial value of

Φt, ΣΦ
t , and Σt equal to the ordinary least squares estimate using the first 250 days of the

sample, i.e.

vec(Φ0) ∼ N(vec(ΦOLS),Σ
Φ
OLS), (10)

Σ0 = ΣOLS , (11)

where ΦOLS , Σ
Φ
OLS , ΣOLS are the ordinary least squares estimates for the first 250 observations.

Together, equations 4, 5, 6, 8 form the prediction step of the Kalman filter with forgetting

factors. Next, we update Φt, Σ
Φ
t , and Σt given the information at time t. First, we compute the

Kalman gain

Gt = ΣΦ
t|t−1z

′
t−1

(
zt−1Σ

Φ
t|t−1z

′
t−1 +Σt

)−1
, (12)

which explains how much the parameters Φt and the parameter uncertainty ΣΦ
t should be ad-

justed in any given state. If the parameter uncertainty ΣΦ
t|t−1 is small (large), it means that

the parameter Φt should be similar (adjusted to) their prior states. On the other hand, if the
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error variance Σt is small (large), meaning that the estimation is very accurate (inaccurate), the

parameters Φt should be similar to (adjusted to) their prior values. In the updating step, we use

the Kalman gain to update Φt, Σ
Φ
t using the information at time t:

Φt|t = Φt|t−1 +Gt(yt − Φt|t−1zt−1), (13)

ΣΦ
t|t = (1−Gt)Σ

Φ
t|t−1, (14)

and we update Σt given information at time t using the EWMA specification as follows:

Σt = κ2Σt−1|t−1 + (1− κ2)ε
′
t|tεt|t, (15)

where εt|t = yt −Φt|tzt−1 is the measurement error at time t. Equations 12, 13, 13, and 15 form

the updating step of the Kalman filter algorithms. Combining the prediction and updating step,

the Kalman filter algorithm can be formulated as follows:

Prediction Step:

vec(Φt)|z1:t−1 ∼ N(vec(Φt|t−1),Σ
Φ
t|t−1)

Φt|t−1 = Φt−1|t−1

εt = yt − Φt|t−1zt−1

Σt = κ2Σt−1|t−1 + (1− κ2)ε
′
tεt

Ξt = (1− κ−1
1 )ΣΦ

t−1|t−1

ΣΦ
t|t−1 = ΣΦ

t−1|t−1 + Ξt

Updating Step:

vec(Φt)|z1:t ∼ N(vec(Φt|t),Σ
Φ
t|t)

Gt = ΣΦ
t|t−1z

′
t−1

(
zt−1Σ

Φ
t|t−1z

′
t−1 +Σt

)−1

Φt|t = Φt|t−1 +Gt(yt − Φt|t−1zt−1)

ΣΦ
t|t = (1−Gt)Σ

Φ
t|t−1

εt|t = yt − Φt|tzt−1

Σt|t = κ2Σt−1|t−1 + (1− κ2)ε
′
t|tεt|t,

Repeating these computations for every value of t = 1, . . . , T and saving the value of parame-

ter estimates Φt, we obtain a set of time-varying parameter estimates {Φ1, . . . ,ΦT }. After we

have estimated the time-varying parameters, we need to transform the TVP-VAR model into a

moving-average representation and use the parameter estimates to compute the spillover index,

as is shown in Section 4.2. To estimate the TVP-VAR model, we make use of the Connected-

nessApproach package of Gabauer (2022).
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4.2 Spillover measures

To compute the spillover measure of Diebold and Yilmaz (2009, 2012), we need to use the param-

eter estimates from the previous section to rewrite the model in moving average representation,

that is,

yt =
∞∑
i=0

At,iεt−i, (16)

where the coefficient matrices At,i can be computed recursively using At,i = Φt,1At,i−1 +

Φt,2At,i−2 + · · · + Φt,pAt,i−p, with At,0 being an n × n identity matrix and At,i = 0 for i < 0.

The moving average coefficients are crucial for the computation of the general forecast variance

decomposition. Following Koop et al. (1996) and Pesaran and Shin (1998), we calculate the

H-step-ahead forecast error variance decomposition as

θt,i,j(H) =

σ−1
t,j,j

H−1∑
h=0

(e′iAt,hΣtej)
2

H−1∑
h=0

e′iAt,hΣtA′
t,hei

, (17)

where Σt is the estimated covariance matrix of the error vector εt, which is available from the

Kalman filter in the time-varying parameter approach, σt,j,j the estimated standard deviation

of the error term for the jth equation, and ei a selection vector with one as the ith element and

all other elements zero. The diagonal elements of θt(H) contain the contributions of shocks to

the yield spread i to its own forecast error variance, the off-diagonal elements show the cross

contributions of yield spread j to the forecast error variance of yield spread i. Under the gen-

eralised forecast error variance decomposition, the own and cross-variable variance contribution

shares do not sum to one, hence, each element of θt(H) is normalised, such that

θ̃t,i,j(H) =
θt,i,j(H)
n∑

j=1
θt,i,j(H)

, (18)

where
∑n

j=1 θ̃t,i,j(H) = 1 and
∑n

i,j=1 θ̃t,i,j(H) = n by construction. Using the volatility contri-

butions from the generalised forecast error variance decomposition, we can compute the total

spillover index, as proposed by Diebold and Yilmaz (2012):

St(H) =

n∑
i,j=1,i ̸=j

θ̃t,i,j(H)

n∑
i,j=1

θ̃t,i,j(H)

· 100 =

n∑
i,j=1,i ̸=j

θ̃t,i,j(H)

n
· 100, (19)

which gives the average contribution of spillovers from shocks to all (other) variables to the

total forecast error variance. To gain insight into the direction of spillovers, we measure the

directional spillovers received by yield i from all other markets j as:

Si·,t(H) =

n∑
j=1,j ̸=i

θ̃t,i,j(H)

n∑
i,j=1

θ̃t,i,j(H)

=

n∑
j=1,j ̸=i

θ̃t,i,j(H)

n
· 100. (20)
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In similar fashion, we measure the directional spillovers transmitted by sovereign bond yield i

to all other markets j as:

S·i,t(H) =

n∑
j=1,j ̸=i

θ̃t,j,i(H)

n∑
i,j=1

θ̃t,j,i(H)

=

n∑
j=1,j ̸=i

θ̃t,j,i(H)

n
· 100. (21)

We obtain the net spillover from market i to all other markets j as:

Si,t(H) = S·i,t(H)− Si·,t(H). (22)

The net spillover is simply the difference between the transmitted spillovers and those received

from other markets. Finally, we can measure how much each market contributes to another

market using the net pairwise spillover measure, which is defined as:

Si,j,t(H) =

(
θ̃t,j,i(H)
n∑

i,q=1
θ̃t,i,q(H)

− θ̃t,i,j(H)
n∑

i,q=1
θ̃t,j,q(H)

)
· 100 (23)

=

(
θ̃t,j,i(H)− θ̃t,i,j(H)

n

)
· 100. (24)

The net pairwise spillover between sovereign bond yield i and j is simply the difference between

shocks transmitted from yield i to market j and those transmitted from j to i.

4.3 Multiple shock spillover measures

The sovereign debt market is a fast-moving market, often responding instantly to global and

EMU-wide developments. The spillover index as proposed by Diebold and Yilmaz (2009, 2012)

uses a forecast error variance decomposition. However, since we work with daily data, the

occurrence of multiple shocks within a single period is quite plausible, potentially triggering

other shocks. To account for the possibility of developments occurring in several countries

simultaneously, we propose a novel spillover measure that enables us to analyse spillovers from

a group of countries to the remaining countries. This new spillover measure uses the concept

of multiple shock impulse response functions of van der Zwan (2023). Using the estimated

moving average coefficients, we calculate the H-step ahead multiple shock forecast error variance

decomposition as

θSt,i(H) =

H−1∑
h=0

e′iAt,hΣtP (P ′ΣtP )−1P ′Σt(At,h)
′ei

H−1∑
h=0

e′iAt,hΣtA′
t,hei

, (25)

where S represents a shock to multiple variables in the VAR model, Σt is the estimated co-

variance matrix of the error vector εt, At,h are the moving average coefficients, ei is a selection

vector with one as the ith element and all other elements zero, and P is the permutation matrix,

a matrix structured according to the shock S. For example, a shock to first and third variable
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corresponds to a permutation matrix P = [e1, e3]. This multiple shock forecast error variance

decomposition can be interpreted as a measure for the fraction of the H-step-ahead forecast er-

ror variance explained by the shock S, thus the percentage of unanticipated changes in variable

i’s forecast due to multiple shocks occurring simultaneously.

In literature, periphery countries are often regarded as the main source of spillovers in the

sovereign debt market in the Eurozone (Antonakakis and Vergos, 2013; Claeys and Vaš́ıček,

2014; Fernández-Rodŕıguez et al., 2015). Hence, in our situation, it is interesting to analyse the

spillover dynamics of common shocks to core and periphery countries. We compute the mul-

tiple shock forecast error variance decomposition for shocks to core countries and to periphery

countries, which we denote as C and P respectively. Under the multiple shock forecast error

variance decomposition, the own and cross-variable variance contribution shares do not sum to

one, hence, each element of θCt (H) and θPt (H) is normalised, such that

θ̃Ct,i(H) =
θCt,i(H)

θCt,i(H) + θPt,i(H)
θ̃Pt,i(H) =

θPt,i(H)

θCt,i(H) + θPt,i(H)
, (26)

where θ̃Ct,i(H) + θ̃Pt,i(H) = 1 and
∑n

i

(
θ̃Ct,i(H) + θ̃Pt,i(H)

)
= n by construction. We use the nor-

malised multiple shock forecast error variance decomposition to calculate the spillover measures

of Diebold and Yilmaz (2009, 2012) modified to account for shocks to multiple countries simul-

taneously. The total spillover index can be calculated as

St(H) =

∑
i∈P

θ̃Ct,i(H) +
∑
i∈C

θ̃Pt,i(H)∑
i∈{C,P}

(θ̃Ct,i(H) + θ̃Pt,i(H))
· 100 =

∑
i∈P

θ̃Ct,i(H) +
∑
i∈C

θ̃Pt,i(H)

n
· 100, (27)

where C and P are the set of indices of core and periphery countries respectively. The measure

gives the average contribution of spillovers from shocks in core countries to yield spreads in

periphery countries, and vice versa. To measure the spillover of core and periphery shocks on

yield spreads, we measure the directional spillovers received by yield spread i from shocks to

core and periphery as:

S·
ti =

1

2

(
I(i ∈ C)θ̃Pt,i + I(i ∈ P)θ̃Ct,i

)
· 100, (28)

where I(·) is an indicator which is 1 if the condition is true and 0 otherwise. In words, the

directional spillover to yield spread i is the mean of the spillovers from the joint shock not

including yield spread i. We measure the directional spillovers transmitted by the joint shocks

to core and periphery countries to all sovereign yield spreads as

SC
t·(H) =

∑
i∈P

θ̃Ct,i(H)∑
i∈{C,P}

(θ̃Ct,i(H) + θ̃Pt,i(H))
· 100 =

∑
i∈P

θ̃Ct,i(H)

n
· 100, (29)

SP
t· (H) =

∑
i∈C

θ̃Pt,i(H)∑
i∈{C,P}

(θ̃Ct,i(H) + θ̃Pt,i(H))
· 100 =

∑
i∈C

θ̃Pt,i(H)

n
· 100. (30)
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These spillover measures allow us to assess the strength and direction of spillovers when multiple

shocks occur simultaneously in the core and periphery of the Eurozone.

5 Results

5.1 Multiple shock spillover analysis

To measure spillovers from the Eurozone core to the periphery, and the other way around, we

use our novel multiple shock spillover measures. Table 3 presents the multiple shock spillover

table computed over the full-sample period. The columns under C and P depict spillovers from

a shock to the core and periphery respectively, to each country in the Eurozone, i.e. the fraction

of forecast error variance that can be attributed to a core/periphery shock. The last column

contains the received spillover per country, that is, if a country belongs to the core, the fraction

of forecast error variance that can be attributed to a periphery shock, and vice versa. The

bottom row displays the amount of spillover generated by the core and periphery respectively.

The multiple shock spillover index is shown in the bottom-right corner.

Table 3: Multiple shock spillover table, period 04/01/1999 - 01/08/2023

C P Received

AT 84.0 16.0 16.0

BE 70.9 29.1 29.1

FI 96.5 3.5 3.5

FR 76.6 23.4 23.4

NL 85.2 14.8 14.8

ES 28.5 71.5 28.5

GR 4.3 95.7 4.3

IE 13.7 86.3 13.7

IT 27.0 73.0 27.0

PT 11.0 89.0 11.0

Transmitted 84.4 87.0
Spillover index

= 17.1%

Note: this table presents the multiple shock spillover measures, based on Equations (26)-(30), calculated

from multiple shock forecast error variance decompositions based on 10-step-ahead forecasts. Abbreviations:

AT, Austria; BE, Belgium; ES, Spain; FI, Finland; FR, France; GR, Greece; IE, Ireland; IT, Italy; NL, the

Netherlands; PT, Portugal.

Table 3 shows that the multiple shock spillover index over the full sample is equal to 17.1%,

meaning that 17.1% of forecast error variance can be traced back to spillover from shocks to

the core and periphery. Moreover, we find that a shock to the periphery generates slightly more

spillover than a shock to the core, although the difference is minor. Spain, Italy, Belgium, and to

a lesser extent France, are most sensitive to spillovers from other sovereign debt markets in the

Eurozone. For Spain and Italy, respectively 28.5% and 27.0% of the forecast error variance can
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be traced back to a simultaneous shock to the core countries. This is unsurprising, as previous

studies such as Broto and Pérez-Quirós (2011) find that Spain and Italy are more affected by

EMU-wide developments than by internal dynamics. For Belgium and France, spillovers from

a shock to the periphery amount to 29.1% and 23.4% respectively. These four countries are

characterised by high public debt, with Italy (142.4%), France (111.9%), Spain (111.2%), and

Belgium (106.0%) taking the second, third, fourth, and sixth rank in the EU in terms of debt-to-

GDP. The high amount of public debt in Spain, Italy, Belgium, and France makes their sovereign

bond markets subject to spillovers from other sovereign debt markets. The countries receiving

the least amount of spillovers are Greece and Finland. For Finland, this result is unsurprising

as Finland has a moderate debt-to-GDP ratio of 74.3% and its economy functions relatively

independently of the periphery countries. In contrast, the debt-to-GDP ratio in Greece equals

166.5%, making it the country with the highest public debt in the EU. Furthermore, the fallout

of the financial crisis led to financial distress in Greece, setting off a sequence of events that we

now know as the sovereign debt crisis. These two phenomena would lead one to believe Greece

to be more vulnerable to spillovers from the Eurozone core but results in Table 3 show that this

is not the case.

During the sample period from 1999 to 2023, many developments have occurred in the global

economy and financial markets. The establishment of the EMU and the continuing economic

and financial integration in the EU have structurally affected cross-border dynamics between

markets. During this period, several large global events such as the Great Financial Crisis, the

Eurozone debt crisis, and the COVID-19 pandemic, have strongly impacted financial markets.

To analyse the temporal variation of spillovers in the sovereign debt market during this time

period, we compute spillover measures using time-varying parameters. To investigate which

estimation method yields the best assessment of spillover dynamics, we estimate time-varying

parameters using three different methods: a 200-day rolling-window, repeated weighted least

squares, and a TVP-VAR model.

Figure 2 displays the multiple shock spillover index throughout the sample period computed us-

ing the time-varying parameter estimates. Since the introduction, several peaks can be clearly

identified, most of which can directly be linked to global economic and financial events. Al-

though the euro has been used as accounting currency since 1999, the introduction of physical

currency and the adoption of the euro by the general public was not until the beginning of 2002.

The introduction of the physical euro was accompanied by a spike in the multiple shock spillover

index. The spike following the introduction of the euro was succeeded by an episode of relatively

low spillovers that lasted until 2005. In the years leading up to the financial crisis, we observe an

increasing trend in the multiple shock spillover index, eventually reaching its peak on January

2, 2008. In 2015 and 2016, two relatively smaller spikes occurred simultaneously with the ECB’s

introduction of the asset purchase programme (APP). As a result of the global financial crisis

in 2008, key interest rates controlled by the ECB came close to their effective lower bound - the
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Figure 2: Total multiple shock spillover index, period 08/10/1999 - 01/08/2023

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying param-

eter estimates obtained using 200-day rolling-window estimates, repeated weighted least squares where a k-day-old

observation is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98.

point at which lowering them further would have little to no effect. To bring inflation back to

the ECB’s target of 2% over the medium term, the ECB turned to unconventional monetary

policy measures, among which the APP. On January 22, 2015, the ECB announced that it would

start purchasing assets amounting to €60 billion per month from March 2015 onwards. The

effects of the APP can be observed in the total spillover index, with an observable peak on June

11, 2015. In June 2016, the ECB announced that the monthly purchases under the APP would

be expanded to €80 billion which gave rise to another increase in spillovers. More recently, an

elevation in the total spillover index occurred right around the start of the COVID-19 pandemic

in Europe. This peak was later succeeded by another spike in the total spillover index after

a surge in COVID-19 cases and tightening pandemic prevention measures during the start of

2021. The more recent peaks in the total spillover index are of greater magnitude compared

to earlier peaks, reflecting an increase in the connectedness of sovereign debt markets in the

Eurozone. The size of the spillover increases might also be magnified by the ECB’s pandemic

emergency purchase programme (PEPP), an unconventional monetary policy measure initiated

in March 2020 to counter the economic and financial risk posed to the euro area posed by the

COVID-19 outbreak. Remarkably, the multiple shock spillover index experiences a negative

trend throughout the sovereign debt crisis. This indicates that spillovers from shocks to the core

to periphery countries, and the other way around, decreased after the financial crisis and kept

decreasing throughout the sovereign debt crisis. This stands in contrast with the prevalent view

that financial distress, accompanied by unprecedented yield spreads, originated in periphery

countries such as Greece, Portugal, and Ireland, and later spread across the Eurozone.
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In comparison, the rolling-window, repeated weighted least squares, and TVP-VAR approach

produce very similar-looking time-varying spillover patterns, simultaneously detecting peaks and

troughs in the spillover index. However, upon closer inspection, there are a number of subtle dif-

ferences between the spillover measures. Most notably, the spillover index for the 200-day rolling

window estimates exhibit episodes of increased spillovers that last for exactly 200 days. These

increases arise after a shock, after which the index tends to stay high as long as the observation

that pertains to the day of the shock is included in the fixed-length rolling window. The repeated

weighted least squares approach produces smooth changes in the total spillover index, however,

this does not resolve the persistence as old observations still carry significant weight. In Figure 2,

we see that in general, the TVP-VAR model tends to overestimate spillovers during peaks com-

pared to the repeated weighted least squares approach, while it underestimates spillovers during

periods of low spillovers. This corresponds to our previous comment that the repeated weighted

least squares renders smoother (i.e. less variable) estimates. However, it is very important to

note that the results are very much subject to the specification of both models as the weights

and decay factors have a strong influence on the variability of the spillover index for both models.

Figure 3 presents the directional spillovers to each country’s sovereign yield spreads from simulta-

neous shocks to the core and periphery. The received spillover plots depict a substantial amount

of temporal variation. Especially, the increase in spillover during the financial crisis stands out.

First, directional spillovers to Spain, France, Greece, Italy, the Netherlands, and Portugal in-

creased around 2005, shortly followed by increases in received spillovers in Ireland, Belgium, and

Austria. While these elevated spillover measures returned to normal levels in some countries, the

received spillovers remained high throughout the sovereign debt crisis in some countries, such

as Austria, Belgium, Spain, and Italy. Overall, received spillovers experienced a negative trend

during the sovereign debt crisis, indicating a declining amount of spillover between the core and

periphery. After both crises, directional spillover to Greece and the Netherlands never recov-

ered to pre-crisis levels. During the COVID-19 pandemic, directional spillovers to all countries

experienced a sudden increase, indicating a surge of spillover between the core and periphery.

In Figure 4, we observe the amount of spillover transmitted by a shock to the core and pe-

riphery. To delve deeper into the destinations of the transmitted spillovers, we decompose the

transmitted spillover measure into the countries of destination in Figure 5. In the first period,

prior to the physical introduction of the euro, we observe high transmitted spillovers from a

periphery shock to core countries. Directional spillovers from a periphery shock to core coun-

tries’ sovereign yield spreads were initially moderate, but increased around the introduction of

the physical euro, in particular to Greece, Ireland, and Italy. The largest increase in transmit-

ted spillover occurred in the years leading up to and during the financial crisis. The increase

in transmitted spillovers from a core shock increased a few years prior to the financial crisis,

around 2005. In this period, spillovers to Greece, Italy, and Greece increased strongly, adding

to spillovers from Spain already present pre-crisis. Later, spillover to Ireland also increased,
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Figure 3: Directional spillovers to each country’s sovereign yield spreads from a simultaneous shock to

core and periphery in the period 08/10/1999 - 01/08/2023. Estimated using a 200-day rolling-window,

repeated weighted least squares, and a TVP-VAR model.

Note: the plot depicts the multiple shock received spillover measure calculated using Equation (28) with time-

varying parameter estimates obtained using 200-day rolling-window estimates, repeated weighted least squares

where a k-day-old observation is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99

and κ2 = 0.98.

bringing the transmitted spillover to a new high. The increase of transmitted spillovers from a

periphery shock was of a smaller magnitude and increased more steadily. First, in the period

between 2004 and 2007, spillovers to France and Portugal increased, followed by substantial

increases in spillovers to Belgium in the first half of 2007 pushing the transmitted spillovers to

peak levels. The elevated level of transmitted spillovers from a core shock persisted until 2010,

whereas the transmitted spillovers of a periphery shock remained at increased levels throughout

the sovereign debt crisis, supplying spillover to core countries, especially Belgium and France.

This corresponds with studies such as Antonakakis and Vergos (2013) and Claeys and Vaš́ıček
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Figure 4: Directional spillovers from simultaneous shocks to core and periphery country’s sovereign yield

spreads, period 08/10/1999 - 01/08/2023. Estimated using a 200-day rolling-window, repeated weighted

least squares, and a TVP-VAR model.

Note: the plot depicts the multiple shock transmitted spillover measure calculated using Equation (29) and (30)

with time-varying parameter estimates obtained using 200-day rolling-window estimates, repeated weighted least

squares where a k-day-old observation is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors

κ1 = 0.99 and κ2 = 0.98.

(2014), who found that sovereign debt markets in the periphery of the Eurozone became domi-

nant transmitters of spillovers to yield spreads in core countries during the sovereign debt crisis.

We note that post-crisis, spillovers of simultaneous shocks to the core and periphery to the

Netherlands and Greece decrease structurally. Around 2015, the ECB started with the APP,

giving rise to a range of smaller peaks occurring between 2015 and 2017. In these peaks, we

note that a substantial fraction of the increase in transmitted spillovers is absorbed by Ireland.

For the directional spillover from a periphery shock, increases in spillovers to France, Finland,

and the Netherlands stand out. Finally, sovereign yield spreads experienced a surge of spillovers

from simultaneous shocks during the outbreak COVID-19 pandemic. This surge of spillovers has

affected all countries, although the increase of spillovers to Spain is relatively limited compared

to other countries in the Eurozone.

The different estimation methods produce almost identical time-varying patterns in the di-

rectional multiple shock spillover measures. However, small discrepancies between different

measures exist, exhibiting similar patterns as the differences between estimates of the multiple

shock spillover index. Although the rolling-window multiple shock spillover index exhibits sev-
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Figure 5: Directional spillovers from simultaneous shocks to core and periphery country’s sovereign

yield spreads decomposed into five recipients of spillovers, period 08/10/1999 - 01/08/2023. Estimated

using the TVP-VAR model.

Note: the plot depicts the multiple shock transmitted spillover measure calculated using Equation (29) and (30)

with time-varying parameter estimates obtained using TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98,

decomposed into the destination countries of the transmitted spillovers.

eral 200-day episodes of elevated spillovers, the directional spillover measures depict fewer of

these episodes. Nevertheless, in a small number of cases, the rolling-window estimates of direc-

tional spillovers do not adjust quickly to changes, unlike other measures. For example, in 2020,

the transmitted spillovers from a simultaneous shock to the periphery increased in response

to the outbreak of the COVID-19 pandemic. After the initial panic subsided, the transmit-

ted spillover measures estimates with repeated weighted least squares and TVP-VAR quickly

declines, whereas the rolling-window estimate remained high for a 200-day period in which it

greatly overestimates the other spillover measures. In several instances, the repeated weighted

least squares approach is observed to adjust slowly to change in comparison to other spillover

measures. Notably, in Figure 3, the directional spillover to Ireland in 2006 adjust relatively

slowly to changes compared to the spillover measures computed using the other approaches.

In general, we recognise that the TVP-VAR model adjusts quickest to changes, whereas the

rolling-window approach has the tendency to remain at an increased level after shocks, and the

repeated weighted least squares approach produces smooth. but slowly changing, estimates.
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5.2 Bilateral spillover analysis

Table 4 presents the full-sample estimates of the direction and intensity of spillovers between

different sovereign bond markets in the Eurozone. The entries of Table 4 report the own and

cross variance shares of a shock to sovereign yield spreads onto other sovereign yield spreads.

Here, the ijth entry is the estimated contribution to the forecast error variance of yield spread i

coming from shocks to yield spread j. The received and transmitted spillovers per country i can

be computed by taking the sum over all entries in row i and column i respectively. The total

spillover index is presented in the lower right corner.

Table 4: Spillover table, period 04/01/1999 - 01/08/2023

AT BE FI FR NL ES GR IE IT PT Received

AT 43.1 13.7 2.6 12.9 8.5 7.6 0.6 2.5 6.7 1.8 56.9

BE 10.7 32.9 1.9 14.5 8.3 11.7 0.9 4.9 11.0 3.2 67.1

FI 3.7 3.7 77.7 3.8 4.5 2.2 0.3 1.2 2.2 0.7 22.3

FR 10.4 15.0 2.1 34.7 14.0 9.3 0.7 2.6 9.1 2.2 65.3

NL 8.3 10.5 3.1 17.1 44.4 7.1 0.3 2.3 5.6 1.2 55.6

ES 5.9 11.5 1.2 8.9 5.7 32.5 1.6 6.8 19.4 6.4 67.5

GR 1.4 2.7 0.3 1.9 0.6 4.7 76.3 3.2 4.9 3.9 23.7

IE 2.9 7.6 0.9 3.9 2.8 11.0 1.9 50.5 8.6 9.9 49.5

IT 5.4 11.3 1.3 9.2 4.8 20.3 1.5 5.5 34.7 5.8 65.3

PT 2.3 5.6 0.7 3.3 1.6 10.4 2.6 10.7 9.2 53.7 46.3

Transmitted 50.9 81.7 14.1 75.5 50.8 84.4 10.5 39.7 76.7 35.1
Total spillover

index = 52.0%
Transmitted,

including own
94.1 114.6 91.8 110.2 95.3 116.9 86.7 90.2 111.4 88.8

Net spillovers -5.9 14.6 -8.2 10.2 -4.7 16.9 -13.3 -9.8 11.4 -11.2

Note: the table shows spillover measures, based on Equations (18)-(22), calculated from generalised forecast

error variance decompositions based on 10-step-ahead forecasts. The received, transmitted, and net spillovers

displayed in the table are N times larger than the ones computed using Equations (20)-(22). Abbreviations:

AT, Austria; BE, Belgium; ES, Spain; FI, Finland; FR, France; GR, Greece; IE, Ireland; IT, Italy; NL, the

Netherlands; PT, Portugal.

The results in Table 4 highlight the influential role of Spain, Italy, France, and Belgium in

sovereign debt markets in the Eurozone. These countries represent the four primary recipients

and transmitters of spillover effects. Additionally, they are the sole contributors with a positive

net spillover, indicating that they transmit more spillover than they receive. In contrast, the

remaining countries exhibit negative net spillovers. For the first three countries in this cate-

gory, their prominent role in the transmission of spillovers can be attributed to the size of their

economies. France, Italy, and Spain are the second, third, and fourth-largest economies in the

EU. Furthermore, as previously noted, these countries are characterised by high public debt.

The size of the economy and the high public debt gives a plausible explanation for the prominent

role of these countries in the Eurozone debt market. Belgium, despite having a moderately sized

economy, has, with a debt-to-GDP ratio of 106.0%, the second highest debt in the core, making

it a prominent importer and exporter of spillovers (Metiu, 2012; Ang and Longstaff, 2011).
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Finland and Greece are among the least influential countries in the Eurozone debt market, taking

first and second rank in received and transmitted spillovers. The multiple shock spillover index

measures identify the same countries as least subject to spillovers. Although Greece was the first

country to face financial distress during the sovereign debt crisis, the spillover table exhibits no

evidence of spillovers from Greece to other Eurozone countries. The limited influence of Greece

is affirmed by other studies, such as Philippas and Siriopoulos (2013), who provide evidence

showing that the overall spillover effects of the Greek market on other European bond markets

are of minor importance. According to Mink and De Haan (2013) spillovers from Greece to

the rest of the EU could arguably be reduced by investors’ acknowledgment of the bad state

of Greek public finance in early 2010, giving them a wake-up call regarding the domestic fiscal

position of other countries.

From Table 4, several interesting bilateral spillover relations stand out. For example, France

is strongly connected to both Belgium and the Netherlands. Respectively, 15.0% and 14.0% of

France’s forecast error variance come from innovations in Belgium and the Netherlands. Cor-

respondingly, France’s sovereign yield spread spills over into the yield spread in Belgium and

the Netherlands with 14.5% and 17.1% of forecast error variance coming from shocks in France.

As noted, France and Belgium are dominant players in spillover dynamics in the core, which is

also reflected in the bilateral linkages. Similarly, a strong bilateral relation between Spain and

Italy can be found in the periphery, where Spain transmits 20.3% and receives 19.4% to and

from Italy. These bilateral linkages further affirm the prominent role of Spain, Italy, France,

and Belgium in sovereign debt markets in the Eurozone.

Figure 6 presents the temporal variation of the ordinary spillover index throughout the sample

period. The total spillover index depicts several distinct periods in which the index reaches

record levels. These instances mostly occur simultaneously with the peak levels in the multiple

shock spillover index, with a few notable exceptions. During this period, yield spreads reached

unprecedented levels, in particular in countries such as Greece, Portugal, and Ireland. Although

this period is also noticeable in the total spillover index, the increase is relatively moderate com-

pared to the magnitude of the sovereign debt crisis. The peaks in spillovers during the Eurozone

crisis perfectly coincide with important events, for example, the spillover index achieved a record

level of 80.1 in response to the first bailout package for Greece on May 5th, 2010. In contrast to

the ordinary total spillover index, the multiple shock spillover index exhibits a negative trend

throughout the sovereign debt crisis. This implies that during the sovereign debt crisis, a large

share of spillovers between sovereign yield spreads occurred within the core and the periphery.

This is in line with Antonakakis and Vergos (2013), who find that the within-effect of spillovers

is substantial during the sovereign debt crisis. A second difference can be observed around the

introduction of the APP, where the amount of spillover is much higher compared to the multiple

shock spillover index, again indicating the importance of the within-effect.
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Figure 6: Total spillover index, period 08/10/1999 - 01/08/2023

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using 200-day rolling-window estimates, repeated weighted least squares where a k-day-old

observation is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98.

The comparison of the estimation methods for the ordinary spillover index yields similar results

as discussed in previous sections. The TVP-VAR model adjusts quickest to changes, whereas

the rolling-window approach has the tendency to remain at an increased level after shocks, such

as can be seen in the pandemic period between 2020 and 2021. The repeated weighted least

squares approach produces smooth, but slowly changing, estimates.

Figures 7 and 8 illustrate the bidirectional spillover to and from individual sovereign yield spreads

over the period since the introduction of the euro. Examining whether countries function as net

importers or net exporters of spillovers within the Eurozone, Figure 9 presents the time-varying

net spillover measure, indicating the difference between transmitted and received spillovers. In

general, transmitted spillovers exhibit greater temporal variation than received spillovers. We

also note that most countries are not consistently net recipients nor net transmitters, but they

rather switch back and forth between being a net recipient and net transmitter throughout the

sample period. Additionally, we observe that substantial increases and decreases in received

spillovers are frequently accompanied by corresponding movements in transmitted spillovers,

and vice versa. The different estimation methods produce almost identical time-varying pat-

terns in the directional and net spillover measures. However, small discrepancies between the

different measures exist, exhibiting similar patterns as the differences between estimates of the

total spillover index. Although the rolling-window total spillover index exhibits several 200-

day episodes of elevated spillovers, the directional and net spillover measures depict fewer of
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Figure 7: Directional spillovers to each country’s sovereign yield spreads in the period 08/10/1999 -

01/08/2023. Estimated using a 200-day rolling-window, repeated weighted least squares, and a TVP-

VAR model.

Note: the plot depicts the received spillover calculated using Equation (20) with time-varying parameter estimates

obtained using 200-day rolling-window estimates, repeated weighted least squares where a k-day-old observation

is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98.

these episodes. However, in a small number of cases, the rolling-window estimate of directional

spillovers does not adjust quickly to changes, unlike other measures. For example, in 2006 the

rolling-window estimate of the transmitted spillovers of Ireland exhibits a 200-day period during

which it greatly overestimates spillovers, compared to the other approaches. In several instances,

the repeated weighted least squares approach is observed to adjust slowly to change in compari-

son to other spillover measures. Notably, in Figure 7, the directional spillover to Greece displays

an upward trend between 2012 and 2015. However, whereas the rolling-window and TVP-VAR

approaches experience swift increases during this period, the spillover measure estimated using
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Figure 8: Directional spillovers from each country’s sovereign yield spreads in the period 08/10/1999

- 01/08/2023. Estimated using a 200-day rolling-window, repeated weighted least squares, and a TVP-

VAR model.

Note: the plot depicts the transmitted spillover calculated using Equation (21) with time-varying parameter

estimates obtained using 200-day rolling-window estimates, repeated weighted least squares where a k-day-old

observation is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98.

the repeated weighted least squares approach increases at a more gradual pace. Another in-

stance of this phenomenon is observed in the received spillovers in Finland between 2009 and

2011. In general, we recognise that the TVP-VAR model adjusts quickest to changes, whereas

the rolling-window approach has the tendency to remain at an increased level after shocks, and

the repeated weighted least squares approach produces smooth, but slowly changing, estimates.

Based on both directional and net spillover measures, Spain appears to be a consistent net

transmitter, only rarely receiving more spillovers than it transmits. Italy is also a major net

transmitter of spillovers, although it had gone back and forth between being a net recipient
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Figure 9: Net spillovers of each country’s sovereign yield spreads in the period 08/10/1999 - 01/08/2023.

Estimated using a 200-day rolling-window, repeated weighted least squares, and a TVP-VAR model.

Note: the plot depicts the net spillover index calculated using Equation (22) with time-varying parameter estimates

obtained using 200-day rolling-window estimates, repeated weighted least squares where a k-day-old observation

is assigned weight λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98.

and net transmitter before the financial crisis, it has solidified its position as one of the most

consistent net transmitters since 2010. The importance of Spain and Italy in the transmission

of spillovers in the Eurozone is in line with previous studies, such as Galariotis et al. (2016),

who find that spillovers run from larger peripheral economies such as Spain and Italy to core

countries, and Broto and Pérez-Quirós (2011) who finds both countries to be more affected

by events on other EMU markets than by domestic events. Furthermore, France has played

a significant role as a spillover supplier, albeit having had more short-lived episodes as a net

recipient. Finally, Belgium has predominantly acted as a net transmitter, except for a period

between 2005 and 2008. Moreover, the magnitude of net spillovers has been inconsistent dur-
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ing the last decade. The role of France and Belgium as a channel to and from the Eurozone

core has been documented extensively (De Santis, 2012; Metiu, 2012). Throughout the whole

period, only Finland has experienced consistently negative net spillovers, indicating its role as a

net recipient. Directional spillovers to Finland have been inconsistent, and Finland transmitted

minimal spillovers, resulting in net negative spillovers. Most countries are neither net recipients

nor net recipients throughout the sample, but they rather switch back and forth, experiencing

episodes as net recipients and net transmitters. For example, Austria has been a large trans-

mitter of spillovers in two multi-year periods: 2000-2004 and 2009-2014. During these episodes,

Austria has been a net transmitter, while functioning as a net recipient throughout the rest of

the sample period. Portugal has exhibited a positive trend in transmitted spillovers since the

sovereign debt crisis, turning it into a net transmitter in 2019. Before the sovereign debt crisis,

Portugal had already experienced several episodes with positive net spillovers. During the initial

decade of the euro, Ireland has been going back and forth between being a net recipient and

net transmitter of spillovers due to unstable transmitted spillovers. In the subsequent decade,

the directional spillovers from Ireland stabilised, resulting in a minor net transmitter status

between 2014 and 2017, followed by a shift towards negative net spillovers. In certain countries,

we observe a structural break somewhere in the sample period. For example, Greece has been

a net transmitter until 2010. In the period leading up to the sovereign debt crisis, directional

spillovers from Greece dropped substantially, leading to Greece becoming a net recipient of

spillovers. Mink and De Haan (2013) argue that this reduction of directional spillovers from

Greece to the rest of the Eurozone could arguably be attributed to investors’ acknowledgment

of the bad state of Greek public finance in early 2010, giving them a wake-up call regarding the

domestic fiscal position of other countries. After the sovereign debt crisis, Greece continued to

exhibit low levels of transmitted spillovers. Similarly, the Netherlands acts as a net transmitter

before the sovereign debt crisis, then shifts to being a net recipient of spillovers.

5.3 Comparison

The full-sample multiple shock spillover index equals 17.1%, which is substantially lower than

the ordinary spillover index which amounts to 52.0%. The primary reason why the multiple

shock spillover index is lower than the ordinary spillover index, is the fact that the multiple

shock spillover measures neglect spillovers within the core and periphery. For example, as pre-

viously discussed, a large fraction of directional spillovers to France originate from Belgium and

the Netherlands. As the multiple shock spillover measures only measure spillovers from a shock

to the periphery to France, the received spillovers from Belgium and the Netherlands are not

included in the multiple shock spillover measures resulting in a lower received spillover measure

and total spillover index. This difference explains the vast majority of the discrepancy between

both indices.
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Figure 10: Comparison of the multiple shock index and the ordinary spillover index corrected for the

within-effect.

Note: the plot compares the multiple shock spillover index and a benchmark index based on the ordinary spillover

index adjusted to ignore the within-effect calculated with time-varying parameter estimates obtained using 200-

day rolling-window estimates, repeated weighted least squares where a k-day-old observation is assigned weight

λk with λ = 0.995, and TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98. The benchmark index is

constructed by taking the sum of all spillovers from core countries to periphery countries, and the other way

around, disregarding spillovers from core(periphery) countries to other core(periphery) countries.

To perform a fair comparison between the multiple shock spillover index and the ordinary

spillover index, we create a benchmark index by adjusting the ordinary spillover index to exclude

spillovers within the core and periphery. In the full sample, this benchmark index equals 20.2%,

compared to the multiple shock spillover index being 17.0%. We assess differences over time by

evaluating the comparison of dynamic estimates of the multiple shock index and the benchmark

for the rolling-window, repeated least squares, and TVP-VAR approach, displayed in Figure 10.

The indices slightly deviate, but in general, we find that both indices depict a very similar time-

varying pattern. In general, the benchmark overestimates the multiple shock spillover index

by a few percentage points. In Figure 11 we zoom in on the difference between the multiple

shock spillover index and the benchmark index during four key moments in the existence of the

Eurozone: (i) the introduction of physical currency, (ii) the financial crisis, (iii) the sovereign

debt crisis, and (iv) the COVID-19 pandemic. These four graphs show that most often both

indices produce quite similar results and the benchmark tends to overestimate the multiple

shock spillover index. A notable exception to this generalisation occurred during the sovereign

debt crisis, immediately after the agreement on the first bail-out package for Greece. The

agreement instantaneously gave confidence to investors in sovereign bonds across the Eurozone

and the effects of this event were absorbed by all sovereign debt markets simultaneously, causing

the multiple shock spillover index to exceed the benchmark index by more than 5%. For the
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Figure 11: Comparison of the multiple shock index and the ordinary spillover index corrected for the

within-effect during key moments in the existence of the Eurozone.

Note: the plot compares the multiple shock spillover index and a benchmark index based on the ordinary spillover

index adjusted to ignore the within-effect calculated with time-varying parameter estimates obtained using a

TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98 during the four key moments in the existence of

the Eurozone: (i) the introduction of physical currency, (ii) the financial crisis, (iii) the sovereign debt crisis, and

(iv) the COVID-19 pandemic. The benchmark index is constructed by taking the sum of all spillovers from core

countries to periphery countries, and the other way around, disregarding spillovers from core(periphery) countries

to other core(periphery) countries.

multiple shock spillover measures to achieve full potential as a spillover measure, the frequent

occurrence of simultaneous shock is paramount. In our application, we work with daily data,

limiting the added value of our novel spillover measure. However, the multiple shock spillover

measure has great potential as a spillover measure for lower-frequency financial markets data.

5.4 Decomposition

To investigate the origins and destinations of spillovers for each country, we break down the

spillover measures. In Figure 12, the directional spillovers to each country’s sovereign yield

spreads are decomposed into the nine countries from which the received spillovers originate.

Figure 13 depicts the directional spillovers from each country’s sovereign yield spreads decom-

posed into the destination of the transmitted spillovers. Moreover, we study the net contribution

of different countries on the net spillovers from each country using the decomposed net spillovers

presented in Figure 14.

In previous sections, we have highlighted the role of Belgium and France in the core of the Eu-

rozone. The decomposed spillover measures in Figures 12, 13, and 14 confirm that Belgium and

France receive and transmit substantial spillover from and to periphery countries. Generally,

spillovers to and from the periphery contribute positively to Belgium and France’s net spillovers.
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Figure 12: Directional spillovers to each country’s sovereign yield spreads in the period 08/10/1999 -

01/08/2023, decomposed into the sources of spillovers. Estimated using the TVP-VAR model.

Note: the plot depicts the received spillover calculated using Equation (20) with time-varying parameter estimates

obtained using TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98, decomposed into the countries from which

the spillovers originate.

However, during the the financial crisis, the contribution of periphery countries to Belgium’s net

spillover was negative. In the meanwhile, periphery countries’ contribution to the net spillover

of France was extra positive during the financial crisis. Amidst the sovereign debt crisis, the

contribution of the periphery to the net spillovers of both countries was negative. Austria expe-

riences significant spillovers from the periphery. However, the directional spillover from Austria

to the periphery is comparatively moderate, resulting in a negative contribution of spillovers

to/from the periphery on net spillovers. For the yield spread in Finland, spillovers from the

periphery play an important role, but in recent years directional spillovers from Finland to the

periphery have caught up. Overall, the contribution of periphery countries on the net spillovers

has been negative. Up until the sovereign debt crisis, The Netherlands acted as a net transmitter

to periphery countries. However, following the financial crisis, directional spillovers from The
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Figure 13: Directional spillovers from each country’s sovereign yield spreads in the period 08/10/1999

- 01/08/2023, decomposed into the recipients of spillovers. Estimated using the TVP-VAR model.

Note: the plot depicts the transmitted spillover calculated using Equation (21) with time-varying parameter

estimates obtained using TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98, decomposed into the destination

countries of the transmitted spillovers.

Netherlands to periphery countries plummeted, while spillovers from core countries remained

approximately constant. Received spillovers remained low post-crisis, leading The Netherlands

to become a net recipient of spillovers from the periphery.

The decomposition of spillover measures uncovers that the greatest net transmitters of the Euro-

zone periphery, Spain and Italy, transmit the majority of spillovers to other periphery countries.

Spillovers to core countries are also considerable, especially during the financial crisis, sovereign

debt crisis, and during the pandemic period. Moreover, the bilateral relation between Italy and

Spain stands out, as a substantial share of the spillovers to and from Italy originate from Spain,

and vice versa. Another noteworthy bilateral relationship exists between Spain and Portugal,

with Spain primarily influencing directional spillovers to Portugal. Overall, the net spillovers of
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Figure 14: Net spillovers of each country’s sovereign yield spreads in the period 08/10/1999 -

01/08/2023, decomposed into the origin of the net spillovers. Estimated using the TVP-VAR model.

Note: the plot depicts the received spillover calculated using Equation (22) with time-varying parameter estimates

obtained using TVP-VAR with decay factors κ1 = 0.99 and κ2 = 0.98, decomposed into the origin of the net

spillovers.

Portugal are comprised of spillovers to/from both core and periphery countries. The influence

of Spain and Italy can be observed in Ireland, where the received spillovers are disproportion-

ately influenced by Spain and Italy, especially during the sovereign debt crisis. In the period

until 2013, net spillovers of Ireland were negatively influenced by periphery countries, however,

this negative influence substantially declined after the sovereign debt crisis. Finally, before the

sovereign debt crisis, Greece received spillovers from both core and periphery countries, how-

ever, after the crisis spillovers from core countries diminished, while spillovers from periphery

countries remained strong. Although Greece transmitted substantial spillovers to other core and

periphery countries, the influence of Greece plummeted after the sovereign debt crisis. Over-

all, Greece has had negative net spillovers which can mostly be attributed to other periphery

countries, although the influence of core countries cannot be neglected.
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6 Conclusion

To investigate spillover dynamics among sovereign debt markets in the Eurozone since the adop-

tion of the common currency, we measure spillovers using the measures of Diebold and Yilmaz

(2009, 2012). We expend their spillover measurement framework by introducing a novel spillover

measure that enables us to measure spillovers from a group of countries to the remaining coun-

tries. We apply this novel spillover measure to evaluate spillover dynamics between the Eurozone

core and periphery countries, and the other way around. As an accurate and timely measure-

ment of spillovers can be of great importance to banks, investors, and policy-makers, we compare

three distinct methods of estimating dynamic spillovers: the rolling-window approach (Diebold

and Yilmaz, 2009, 2012), the repeated weighted least squares approach (Bataa et al., 2013), and

the TVP-VAR approach (Antonakakis et al., 2020). Moreover, we decompose the directional

spillovers to gain additional insight into the spillover relations in the Eurozone.

Applying our novel multiple shock spillover index, we find that over the full sample, the multiple

shock spillover equals 17.1%. That is, 17.1% of forecast error variance can be traced back to

spillovers from simultaneous shocks to sovereign debt markets in the core and periphery of the

Eurozone. Spain and Italy are found to be the most susceptible countries to spillovers from the

core, whereas Belgium and to a lesser extent France are most receptive to spillovers from the

periphery. Moreover, the magnitude of transmitted spillover from a simultaneous shock to the

periphery is only slightly larger than from a shock to the core, showing the lack of an unambigu-

ous conclusion regarding the direction of spillovers from the core to the periphery, or the other

way around. From our bilateral spillover analysis, we obtain a substantially higher spillover

index, amounting to 52.0%. The ordinary and multiple spillover shock differ in the fact that the

multiple shock spillover index does not measure spillovers within the core and periphery, result-

ing in a much lower spillover measure compared to the ordinary spillover index. This indicates

that, although a substantial amount of spillovers is transmitted between the core and periphery,

the lion’s share of spillover occurs within the core and periphery. In both analyses, Belgium,

France, Spain, and Italy are the key players when it comes to spillovers in the Eurozone. These

four countries, characterised by their large economies and their high public debt, are the main

recipients and transmitters of spillovers. The importance of these countries in spillover dynam-

ics in the Eurozone has previously been documented by studies such as Broto and Pérez-Quirós

(2011) and Galariotis et al. (2016) for Spain and Italy, and De Santis (2012) and Metiu (2012)

for Belgium and France. Two of the main suppliers of spillovers belong to the Eurozone core

(Belgium and France), while the other two (Spain and Italy) are part of the periphery, again

reflecting the lack of clear direction of spillovers from the periphery to the core, or the other way

around. The importance of countries in spillover dynamics can mostly be attributed to the size

of the economy and the level of public debt, with large economies with high public debt having

a more prominent role.
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The spillover indices are not constant over time, as we observe several trends and peaks through-

out the sample period, most of which can directly be linked to global events. For example, peaks

around the financial crisis, sovereign debt crisis, and the COVID-19 pandemic can be clearly

observed. Most of the time increases and decreases in the multiple shock spillover index and the

ordinary spillover index take place simultaneously. The only remarkable difference occurred in

the sovereign debt, where the multiple shock spillover index experienced a negative trend, which

stands in contrast to the ordinary spillover index. This shows that during the sovereign debt

crisis, a larger than normal share of spillover occurred within the core and periphery, rather than

between the core and periphery, hence studying the within-effect and bilateral relations is crucial

to understanding the full extent of spillover dynamics of sovereign debt markets in the Eurozone.

These global events are also visible in the directional spillover measurements, especially dur-

ing the sovereign debt crisis, with substantial increases in transmitted spillovers from Austria,

Spain, France, Ireland, and Portugal. During this time period, Italy was also an important

source of spillovers, as it has been consistently since 2005. We observe that spillovers from

Greece and the Netherlands structurally decrease after the sovereign debt crisis, for Greece, this

is due to a strong decrease of spillovers to the core, while for the Netherlands, a strong decrease of

spillovers to the periphery is the cause. In the full sample, we find that Austria, Finland, Greece,

Ireland, the Netherlands, and Portugal are net recipients, whereas Belgium, Spain, France, and

Italy are net transmitters of spillovers. However, we note that most countries are not consis-

tently net recipients nor net transmitters, but they rather switch back and forth between being

a net recipient and net transmitter throughout the sample period. In general, countries tend

to switch back and forth between being net recipients and net transmitters during periods of

crisis. For example, the Netherlands has been a net transmitter throughout the majority of the

period prior the the sovereign debt crisis (1999-2010), but after the sovereign debt crisis, the

Netherlands has mostly been a net recipient of spillovers. Unlike studies such as Antonakakis

and Vergos (2013) and Claeys and Vaš́ıček (2014) that find that periphery countries transmit to

core countries, or studies such as Chatziantoniou and Gabauer (2021) and Umar et al. (2021)

that find core countries to be the main transmitters of shocks, we do not find an unambigu-

ous conclusion on the direction of spillovers from the periphery to core, or the other way around.

We compare three different estimation methods to measure the spillover dynamics: the rolling-

window approach, the repeated weighted least squares approach, and the TVP-VAR approach.

Generally, we find that all methods display very similar time-varying spillover patterns, simulta-

neously detecting peaks and troughs in the spillover indices. However, upon closer inspection, we

see that the spillover index for rolling-window estimates exhibits episodes of increased spillovers

that last for exactly 200 days. These increases arise after a shock, after which the index tends

to remain high as long as the observation that pertains to the day of the shock is included in

the fixed-length rolling window. These 200-day periods of elevated spillovers can be avoided by

using the repeated weighted least squares or TVP-VAR approach. The former produces smooth
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parameter estimates, however, it does not resolve the persistence as old observations still carry

significant weight. The TVP-VAR model on the other hand, albeit being more computationally

intensive, produces smooth parameter estimates while swiftly adjusting to new information. For

the purpose of timely detection of spillovers, the TVP-VAR model appears to be more suitable

than the rolling-window and repeated weighted least squares approach, however, it is difficult

to draw a definite conclusion as the underlying spillovers remain unobserved.

Our research contributes to the understanding of spillover dynamics in sovereign debt mar-

kets in the Eurozone in a number of ways. First, we introduce a novel multiple shock spillover

index that enables us to analyse spillover dynamics between groups of countries. In our case,

we use the multiple shock spillover measures to analyse spillovers from a simultaneous shock to

the Eurozone core to periphery countries, and the other way around. Furthermore, we analyse

dynamic spillovers in the sovereign debt market in the Eurozone using rolling-window, repeated

weighted least squares, and TVP-VAR approach and we compare the estimates, finding that

for the purpose of timely detection of spillovers, the TVP-VAR is most suitable. Finally, we

deconstruct received, transmitted, and net spillover into the origin/destination of spillovers, pro-

viding further insight into bilateral spillover dynamics in the Eurozone. For future research, the

multiple shock spillover measures could be used to improve understanding of spillovers between

the banking system and sovereign yield spreads (Tamakoshi and Hamori, 2013; Alter and Beyer,

2014; Kallestrup et al., 2016), or between international financial markets and sovereign bond

markets in the Eurozone Codogno et al. (2003); Bernoth et al. (2012). Furthermore, the multiple

shock spillover measures could be used to study spillovers between any set of variables in a time

series analysis context.
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A Data

Table 5: List of 10-year benchmark government yields used for the spillover analysis

Country Mnemonic Name Frequency Source

Austria TROE10T RF AUSTRIA GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Belgium TRBG10T RF BELGIUM GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Spain TRES10T RF SPAIN GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Finland TRFN10T RF FINLAND GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

France TRFR10T RF FRANCE GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Germany TRBD10T RF GERMANY GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Greece TRGR10T RF GREECE GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Ireland TRIE10T RF IRELAND GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Italy TRIT10T RF ITALY GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Netherlands TRNL10T RF NETHERLANDS GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

Portugal TRPT10T RF PORTUGAL GVT BMK BID YLD 10Y - RED. YIELD Daily Datastream

B Sensitivity Analysis

B.1 VAR order

To assess the sensitivity of the spillover measurements to the selection of VAR order p, we com-

pare the estimates of the total spillover index and the multiple shock spillover index estimated

with VAR orders p = 1, 2, and 4 for the rolling-window, repeated weighted least squares, and

TVP-VAR approach. In our analysis, we opt for VAR order p = 2, following studies such as

Claeys and Vaš́ıček (2014). However, the analysis can be conducted using any VAR order, e.g.

in the original paper of Diebold and Yilmaz (2009, 2012) the VAR order of choice is p = 4.

Figure 15: Sensitivity of the total spillover index to the VAR order in the rolling-window approach.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using 200-day rolling-window estimated with VAR orders p = 1, 2, and 4.
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Figure 16: Sensitivity of the multiple shock spillover index to the VAR order in the rolling-window

approach.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying pa-

rameter estimates obtained using 200-day rolling-window estimated with VAR orders p = 1, 2, and 4.

Figure 17: Sensitivity of the total spillover index to the VAR order in the repeated weighted least

squares approach.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using repeated weighted least squares where a k-day-old observation is assigned weight λk

where λ = 0.995 estimated with VAR orders p = 1, 2, and 4.

The total spillover indices and multiple shock spillover indices computed using p = 1, 2, and 4

are exhibited in Figures 15 and 16 for the rolling-window approach, 17 and 18 for the repeated

weighted least squares approach, and 19 and 20 for the TVP-VAR approach. In general, we

note that the total spillover indices and multiple shock spillover indices are not very sensitive

to the choice of VAR order p. The differences between the multiple shock spillover indices for
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Figure 18: Sensitivity of the multiple shock spillover index to the VAR order in the repeated weighted

least squares approach.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying param-

eter estimates obtained using repeated weighted least squares where a k-day-old observation is assigned weight

λk where λ = 0.995 estimated with VAR orders p = 1, 2, and 4.

Figure 19: Sensitivity of the total spillover index to the VAR order in the TVP-VAR approach.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98 estimated with VAR

orders p = 1, 2, and 4.

different VAR orders p are larger than the differences between the ordinary spillover indices,

showing that the multiple shock spillover index is relatively more sensitive to the choice of VAR

order p, albeit sensitivity still being low. For both indices, the rolling-window approach appears

to be more sensitive to the choice of VAR order p than the repeated weighted least squares and

TVP-VAR approach.
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Figure 20: Sensitivity of the multiple shock spillover index to the VAR order in the TVP-VAR approach.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying pa-

rameter estimates obtained using TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98 estimated with

VAR orders p = 1, 2, and 4.

B.2 Fixed-length window size

The rolling-window estimation approach is subject to the choice of window size. Diebold and

Yilmaz (2009, 2012) propose a 200-day rolling window, which is followed by other studies such

as Claeys and Vaš́ıček (2014) and Fernández-Rodŕıguez et al. (2015). Other studies, such as

Antonakakis and Vergos (2013) deviate from this standard, opting for a 120-day rolling window.

In this section, we compare spillover measures computed using 50, 100, 200, and 500-day rolling

windows estimates.

Figure 21: Sensitivity of the total spillover index to the window length.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using 50, 100, 200, and 500-day rolling-window estimates.
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Figure 22: Sensitivity of received spillovers to the window length.

Note: the plot depicts the received spillover calculated using Equation (20) with time-varying parameter estimates

obtained using 50, 100, 200, and 500-day rolling-window estimates.

Figure 21 presents the total spillover index estimates using 50, 100, 200, and 500-day rolling-

window. The choice of window-length is an important matter, as the resulting total spillover

index is very sensitive to the chosen window-length. A short rolling-window results in unsta-

ble measurements, resulting in frequent short-lived spikes, impeding one from the ability to

see the ’big picture’. However, if the window-size is too large the spillover index becomes very

time-invariant and slow-responding to new developments, resulting in a spillover index that only

captures big developments such as the financial crisis and the COVID-19 pandemic. Addition-

ally, the choice for a large rolling window leads to a spillover index that depicts longer episodes

of elevated spillovers as the observation that pertains to a shock remains in the fixed-length

rolling window longer. In general, spillover indices estimated with short window-length tend to

overestimate their counterparts estimated with larger rolling windows.
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Figure 23: Sensitivity of transmitted spillovers to the window length.

Note: the plot depicts the transmitted spillover calculated using Equation (21) with time-varying parameter

estimates obtained using 50, 100, 200, and 500-day rolling-window estimates.

The received, transmitted, and net spillovers are exhibited in Figures 22, 23, and 24 respec-

tively. Similarly to the total spillover index, we find that the received, transmitted, and net

spillovers to/from each country are very volatile when estimated with small window-length,

making it difficult to draw conclusions on the overall trend in spillovers. However, longer rolling

windows result in indices that only capture the main trend and hardly reflect any short-term

developments that occur throughout the sample period. The observation that spillover mea-

sures with longer rolling windows underestimate their counterparts with short rolling windows

is less pronounced in the received, transmitted, and net spillover measures compared to the total

spillover index.

51



Figure 24: Sensitivity of the net spillovers to the window length.

Note: the plot depicts the net spillover calculated using Equation (22) with time-varying parameter estimates

obtained using 50, 100, 200, and 500-day rolling-window estimates.

.
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Figure 25: Sensitivity of the multiple shock spillover index to the window length.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying pa-

rameter estimates obtained using 50, 100, 200, and 500-day rolling-window estimates.

Figure 25 displays the multiple shock spillover index computed using parameter estimates ob-

tained using a 50, 100, 200, and 500-day rolling-window approach. Compared to the ordinary

spillover index, the multiple shock spillover index is even more sensitive to the choice of window-

length. In the multiple shock spillover index estimated with a 50-day rolling window, we can

hardly distinguish medium- and long-term trends and the index achieves magnitudes sometimes

twice as high as the multiple shock spillover indices estimates with 100- and 200-day rolling win-

dows. On the other hand, the multiple shock spillover index estimated with a 500-day rolling

window is only able to medium- and long-term developments, neglecting short-term changes.

Moreover, the index depicts episodes of elevated spillovers lasting for 500 days. Similarly to the

ordinary spillover index, the multiple shock spillover indices estimated with short window-length

tend to overestimate their counterparts estimated with larger rolling windows.

A similar pattern can be found in the received and transmitted spillovers from a simultane-

ous shock to the core and periphery in Figures 26 and 27. In these figures, measures computed

with short window-length produce volatile spillover measures from which hardly any informa-

tion can be obtained, and which overestimate their counterparts that are estimated with larger

rolling windows. The episodes in which the spillover measure remains high for 500 days are less

pronounced than in the multiple shock spillover indices, but they remain visible in the spillover

measures.
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Figure 26: Sensitivity of received spillovers from a simultaneous shock to core and periphery to the

window length.

Note: the plot depicts the multiple shock received spillover measure calculated using Equation (28) with time-

varying parameter estimates obtained using 50, 100, 200, and 500-day rolling-window estimates.

In conclusion, short rolling windows produce very volatile spillover measures from which hardly

any information regarding the ’big picture’ can be obtained. On the other hand, if the window-

length is too high, the spillover measures only capture long-term trends and react very slowly

to changes making it impossible to detect spillovers in a timely manner. Generally, measures

estimated with short rolling windows tend to overestimate their counterparts estimated with

larger window-lengths.

54



Figure 27: Sensitivity of transmitted spillovers from a simultaneous shock to core and periphery to the

window length.

Note: the plot depicts the multiple shock transmitted spillover measure calculated using Equation (29) and (30)

with time-varying parameter estimates obtained using 50, 100, 200, and 500-day rolling-window estimates.

B.3 Weighting

In the repeated weighted least squares approach, each observation is assigned a weight based

on how old an observation is. By doing so, we give less weight to older observations, without

entirely discarding these potentially informative observations. That is, we estimate the VAR

Figure 28: Sensitivity of the total spillover index to the weighting of observations.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter

estimates obtained using repeated weighted least squares where a k-day-old observation is assigned weight λk

with λ = 0.98, 0.99, 0.995, and 0.998.
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Figure 29: Sensitivity of received spillovers to the weighting of observations.

Note: the plot depicts received spillovers calculated using Equation (20) with time-varying parameter estimates

obtained using repeated weighted least squares where a k-day-old observation is assigned weight λk with λ =

0.98, 0.99, 0.995, and 0.998.

model using weighted least squares, such that the observation at time τ−k is given weight λk for

k = 0, 1, 2, . . . , and weight zero for k < 0, with 0 < λ < 1, resulting in VAR estimates for t = τ .

Repeating this for τ = 1, 2, . . . , T yields a sequence of VARs with smoothly time-varying param-

eter estimates. In this section, we evaluate the sensitivity of the resulting spillover measures to

the choice of λ, hence we compare spillover measures estimated using λ = 0.98, 0.99, 0.995, and

0.998.
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Figure 30: Sensitivity of transmitted spillovers to the weighting of observations.

Note: the plot depicts transmitted spillovers calculated using Equation (21) with time-varying parameter estimates

obtained using repeated weighted least squares where a k-day-old observation is assigned weight λk with λ =

0.98, 0.99, 0.995, and 0.998.

Figure 28 presents the total spillover index computed using parameter estimates obtained from

the repeated weighted least squares approach with λ = 0.98, 0.99, 0.995, and 0.998. In all in-

dices, changes appear to occur simultaneously, but a lower value of λ results in greater increases

compared to the indices based on higher values of λ, which only experience small increases.

Due to these frequent peaks, it is difficult to measure medium- and long-term trends in the total

spillover indices computed with smaller values of λ. The index with λ = 0.998 on the other hand

captures medium- and long-term trends very well, but hardly measures short-term increases in

spillovers. In general, spillover indices estimated with smaller values of λ tend to overestimate

their counterparts computed with λ closer to 1.
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Figure 31: Sensitivity of net spillovers to the weighting of observations.

Note: the plot depicts net spillovers calculated using Equation (22) with time-varying parameter estimates

obtained using repeated weighted least squares where a k-day-old observation is assigned weight λk with

λ = 0.98, 0.99, 0.995, and 0.998.

Figures 29, 30, and 31 present the received, transmitted, and net spillover measures calcu-

lated with λ = 0.98, 0.99, 0.995, and 0.998. Although the received spillovers computed with

λ = 0.98 appear to produce stable estimates capturing received spillovers for each country, the

transmitted and net spillover measures are very volatile, capturing short-term changes very well,

but making it difficult to distinguish real shifts in spillover dynamics from noise. The spillover

measures computed with λ = 0.998 depict only the long-term trends in bilateral spillover dy-

namics, without any regard for short-term developments.
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Figure 32: Sensitivity of the multiple shock spillover index to the weighting of observations.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying param-

eter estimates obtained using repeated weighted least squares where a k-day-old observation is assigned weight

λk with λ = 0.98, 0.99, 0.995, and 0.998.

Figure 32 exhibits the multiple shock spillover index estimated with repeated weighted least

squares approach with λ = 0.98, 0.99, 0.995, and 0.998. The multiple shock index computed

with λ = 0.98 is very volatile and strongly overestimates spillovers compared to the indices

computed with values of λ closer to 1. Additionally, responses to changes occur with peaks of

much greater magnitude than the other indices. Furthermore, the measured magnitude of the

indices can tell opposing stories, for example, in 2014 the index computed with λ = 0.98 reaches

a peak, while the index computed with λ = 0.995 reaches an all-time low.

The received and transmitted spillovers from a simultaneous shock to the core and periphery

are displayed in Figures 33 and 34. These measures paint a picture similar, showing the index

with λ = 0.98 to be very volatile and overestimating the other indices. On the other hand, the

index with λ = 0.998 is very time-invariant hence resulting in short-term developments being

difficult to detect.

In conclusion, the spillover measures calculated using the parameter estimates obtained us-

ing the repeated weighted least squares approach with λ = 0.98 are very volatile making it

difficult to detect medium- and long-term trends. Furthermore, the lower values of λ result in

overestimation of spillovers compared to values of λ closer to 1. The closer the value of λ is

to 1, the more time-invariant the resulting spillover measure will be, hence creating a trade-off

between measuring every short-term development and being able to distinguish medium- and

long-term trends.

59



Figure 33: Sensitivity of received spillovers from a simultaneous shock to core and periphery to the

weighting of observations.

Note: the plot depicts the multiple shock received spillover measure calculated using Equation (28) with time-

varying parameter estimates obtained using repeated weighted least squares where a k-day-old observation is

assigned weight λk with λ = 0.98, 0.99, 0.995, and 0.998.

.
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Figure 34: Sensitivity of transmitted spillovers from a simultaneous shock to core and periphery to the

weighting of observations.

Note: the plot depicts he multiple shock transmitted spillover measure calculated using Equation (29) and (30)

with time-varying parameter estimates obtained using repeated weighted least squares where a k-day-old obser-

vation is assigned weight λk with λ = 0.98, 0.99, 0.995, and 0.998.

B.4 Forgetting factors

To estimate the TVP-VAR model, we use the Kalman filter with forgetting factors, in the spirit

of Koop and Korobilis (2013, 2014). In this section, we assess the sensitivity of spillover

Figure 35: Sensitivity of the total spillover index to the choice of forgetting factors.

Note: the plot depicts the total spillover index calculated using Equation (19) with time-varying parameter esti-

mates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99),

(0.98, 0.98), and (0.98, 0.96).
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Figure 36: Sensitivity of received spillovers to the choice of forgetting factors.

Note: the plot depicts the received spillovers calculated using Equation (20) with time-varying parameter esti-

mates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99),

(0.98, 0.98), and (0.98, 0.96).

measurements to the choice of forgetting factors. To do so, we compute the spillover measures

using parameter estimates obtained from a TVP-VAR model estimated with forgetting factors

(κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99), (0.98, 0.98), and (0.98, 0.96).

Figure 35 presents the total spillover index estimated using the TVP-VAR approach with

forgetting factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99), (0.98, 0.98), and

(0.98, 0.96). In this figure, we note that the total spillover indices are very similar, and hence

relatively insensitive to the choice of the specification. Especially the choice of κ1 seems to have

relatively little impact on the total spillover index. For κ2, we see that indices with κ2 = 0.96

have peaks of greater magnitude than the other indices.
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Figure 37: Sensitivity of transmitted spillovers to the choice of forgetting factors.

Note: the plot depicts transmitted spillovers calculated using Equation (21) with time-varying parameter esti-

mates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99),

(0.98, 0.98), and (0.98, 0.96).

The received, transmitted, and net spillovers estimated using parameter estimates from the

TVP-VAR models with different specifications are depicted in Figures 36, 37, and 38. Again,

we find that the differences between the spillover measures obtained from different specifications

are subtle.
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Figure 38: Sensitivity of net spillovers to the choice of forgetting factors.

Note: the plot depicts net spillovers calculated using Equation (22) with time-varying parameter estimates

obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99),

(0.98, 0.98), and (0.98, 0.96).

The multiple shock spillover index calculated with parameter estimates from TVP-VAR models

with forgetting factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96), (0.98, 0.99), (0.98, 0.98),

and (0.98, 0.96) is depicted in Figure 39. We observe that the multiple shock spillover index is

more sensitive to the choice of forgetting factors than the ordinary spillover index. Especially the

indices computed with κ2 = 0.96 can be seen to be more volatile, and in general, overestimating

the other indices. However, compared to the rolling-window and repeated weighted least squares

approaches, the choice of specifications is much less influential on the resulting spillover measures.
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Figure 39: Sensitivity of the multiple shock spillover index to the choice of forgetting factors.

Note: the plot depicts the multiple shock spillover index calculated using Equation (27) with time-varying pa-

rameter estimates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98), (0.99, 0.96),

(0.98, 0.99), (0.98, 0.98), and (0.98, 0.96).

Figure 40: Sensitivity of transmitted spillovers from a simultaneous shock to the core and periphery to

the choice of forgetting factors.

Note: the plot depicts the multiple shock transmitted spillover measure calculated using Equation (29) and (30)

with time-varying parameter estimates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99),

(0.99, 0.98), (0.99, 0.96), (0.98, 0.99), (0.98, 0.98), and (0.98, 0.96).

The transmitted and received spillovers from a simultaneous shock to the core and periphery are

exhibited in Figures 40 and 41. Again, the differences between indices are subtle and insensitive

to the choice of forgetting factors κ1 and κ2.
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Figure 41: Sensitivity of received spillovers from a simultaneous shock to the core and periphery to the

choice of forgetting factors.

Note: the plot depicts the multiple shock received spillover measure calculated using Equation (28) with time-

varying parameter estimates obtained from a TVP-VAR with decay factors (κ1, κ2) = (0.99, 0.99), (0.99, 0.98),

(0.99, 0.96), (0.98, 0.99), (0.98, 0.98), and (0.98, 0.96).

.
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C Robustness Check

In the period during and after the sovereign debt crisis, the Greek sovereign yield spread expe-

rienced a turbulent episode. In this section, we check whether the spillover measures are robust

to the influence of Greece’s turbulence by comparing estimation results including and

Table 6: Spillover table, excluding Greece

AT BE FI FR NL ES IE IT PT Received

AT 43.4 13.8 2.6 13.0 8.6 7.7 2.5 6.7 1.9 56.6

BE 10.8 33.2 1.9 14.6 8.4 11.8 4.9 11.1 3.3 66.8

FI 3.7 3.7 77.9 3.8 4.5 2.2 1.2 2.2 0.7 22.1

FR 10.5 15.1 2.1 34.9 14.1 9.4 2.6 9.1 2.2 65.1

NL 8.4 10.5 3.1 17.2 44.6 7.2 2.3 5.7 1.2 55.4

ES 5.9 11.7 1.3 9.1 5.8 33.1 6.9 19.7 6.6 66.9

IE 2.9 7.7 1.0 4.0 2.8 11.2 51.4 8.8 10.1 48.6

IT 5.5 11.5 1.3 9.4 4.9 20.6 5.6 35.2 5.9 64.8

PT 2.4 5.8 0.7 3.4 1.6 10.7 11.1 9.5 55.0 45.0

Transmitted 50.1 79.8 13.9 74.4 50.7 80.7 37.1 72.8 31.8
Total spillover

index = 54.6%
Transmitted,

including own
93.4 113.0 91.8 109.3 95.3 113.8 88.6 108.0 86.9

Net -6.6 13.0 -8.2 9.3 -4.7 13.8 -11.4 8.0 -13.1

Note: Spillover measures, based on Equations (18)-(22), calculated from generalised forecast error variance

decompositions based on 10-step-ahead forecasts. The received, transmitted, and net spillovers displayed in

the table are N times larger than the ones computed using Equations (20)-(22). Abbreviations: AT, Austria;

BE, Belgium; ES, Spain; FI, Finland; FR, France; IE, Ireland; IT, Italy; NL, the Netherlands; PT, Portugal.

Figure 42: Comparison of the total spillover index computed including and excluding Greece

Note: the plot depicts the total spillover index calculated using Equation (19) with parameter estimates obtained

from a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and excluding Greece.
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Figure 43: Comparison of received spillovers computed including and excluding Greece

Note: the plot depicts received spillovers calculated using Equation (20) with parameter estimates obtained from

a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and excluding Greece.

Figure 44: Comparison of transmitted spillovers computed including and excluding Greece

Note: the plot depicts transmitted spillovers calculated using Equation (21) with parameter estimates obtained

from a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and excluding Greece.
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Figure 45: Comparison of net spillovers computed including and excluding Greece

Note: the plot depicts net spillovers calculated using Equation (22) with parameter estimates obtained from a

TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and excluding Greece.

excluding Greece. The full-sample spillover table is exhibited in Table 6. The spillover measures

look very similar to the spillover table including Greece, identifying the same net recipients and

net transmitters, and the total spillover index being 54.6% compared to 52.0%.

Figure 42 presents the total spillover index computed including and excluding Greece. In this

figure, we can see that the difference between including and excluding is minimal, with both

indices only deviating slightly during the financial and sovereign debt crisis. The received,

transmitted, and net spillovers, depicted in Figures 43, 44, and 45 also show minimal difference

between the spillover measures including and excluding Greece.

Table 7 presents the multiple shock spillover index, again, very similar to the multiple shock

spillover table including Greece. The multiple shock spillover index equals 17.1%, compared to

17.0% including Greece. The received and transmitted spillovers in Figures 47 and 48 also look

very similar. One interesting difference to note is in the upper graph of Figure 48, where we

see that the transmitted spillover from a shock to the core is slightly higher during the financial

crisis in the index in which Greece is included.

From the comparison of spillover measures including and excluding Greece, we conclude that

Greece does not have a disproportionate influence on the spillover measures.
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Table 7: Multiple shock spillover table, excluding Greece

C P Received

AT 84.0 16.0 16.0

BE 70.9 29.1 29.1

FI 96.5 3.5 3.5

FR 76.6 23.4 23.4

NL 85.2 14.8 14.8

ES 28.5 71.5 28.5

IE 13.7 86.3 13.7

IT 27.0 73.0 27.0

PT 11.0 89.0 11.0

Transmitted 80.2 86.9
Spillover index

=17.1%

Note: Multiple shock spillover measures, based on Equations (26)-(30), calculated from multiple shock forecast

error variance decompositions based on 10-step-ahead forecasts. Abbreviations: AT, Austria; BE, Belgium;

ES, Spain; FI, Finland; FR, France; IE, Ireland; IT, Italy; NL, the Netherlands; PT, Portugal.

Figure 46: Comparison of the multiple shock spillover index computed including and excluding Greece

Note: the plot depicts the multiple shock spillover index calculated using Equation (19) with parameter estimates

obtained from a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and excluding

Greece.
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Figure 47: Comparison of received spillovers from a simultaneous shock to core and periphery computed

including and excluding Greece

Note: the plot depicts multiple shock received spillover measure calculated using Equation (28) with parameter

estimates obtained from a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated including and

excluding Greece.

Figure 48: Comparison of transmitted spillovers from a simultaneous shock to core and periphery

computed including and excluding Greece

Note: the plot depicts multiple shock transmitted spillover measure calculated using Equation (29) and (30) with

parameter estimates obtained from a TVP-VAR model with decay factors κ1 = 0.99 and κ2 = 0.98, estimated

including and excluding Greece.
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