
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Quantitative Finance

Predicting stock markets using news articles

Virgile Sadri (660856)

Supervisor: Eoghan O’Neill

Second assessor: Anastasija Tetereva

Date final version: 28th January 2024

The content of this thesis is the sole responsibility of the author and does not reflect the

view of the supervisor, second assessor, Erasmus School of Economics or Erasmus

University.

Acknowledgement

I would like to express my gratitude to my thesis supervisor M.O’Neill, for his guidance

and his support throughout my master’s thesis. His guidance and his ideas were helpful

and led to the completion of this master’s thesis.

Abstract

This paper aims at investigating the impact of newspaper articles on stock prices

predictions from big-cap companies. We collect the text data using web scrapping

methods. We transform our news data into embeddings with numerical values.

Then, we use a support vector machine, a random forest, a ridge regression, and a

neural network to predict stock prices using two datasets with one of them containing

news data. We use statistical tests to assess the improvements of the model when

trained on news data. We find that news article data bring slight improvements

to some models but are detrimental to some other models due to the number of

parameters to estimate and the volatility of some stocks.

Contents

1 Introduction 3

2 Literature 6

3 Data 9

3.1 Stock price data . 9

3.2 Quantitative features dataset . 11

3.3 News dataset . 12

4 Methods 14

4.1 Text handling . 14

1

4.1.1 Word2Vec models . 14

4.1.2 Continuous Bag-of-Words . 14

4.1.3 Aggregating to the whole document 16

4.2 Prediction models . 17

4.2.1 Ridge Regression . 19

4.2.2 Variable selection . 21

4.2.3 Support Vector Machine . 23

4.2.4 Neural Network . 25

4.3 Assessing the results . 27

4.3.1 Diebold-Mariano test . 28

4.3.2 Superior predictive ability test with model confidence set 29

5 Results and discussions 31

5.1 One-day horizon accuracy . 31

5.1.1 Apple performance . 31

5.1.2 Microsoft performance . 33

5.1.3 Tesla performance . 34

5.2 Significance of the difference . 36

6 Conclusion 38

2

1 Introduction

Fama (1970) introduced the theory of the efficient market hypothesis, which implies that

all publicly known information about a company impacts its stock price. Nowadays, we

have much more means to understand these markets and more sophisticated models than

Fama (1965), who modeled stock prices as random walks. Nonetheless, we are still unable

to predict financial markets accurately.

Financial markets are essential to the global economy, enabling buyers and sellers to ex-

change various financial instruments such as stocks, bonds, commodities, and currencies.

In particular, stock markets play a crucial role in promoting investments and economic

growth, offering investors opportunities to earn returns on their investments. However,

investing in the stock market is not riskless, and can cause significant losses. This high-

lights the importance of developing an optimized investment strategy. The challenge, yet,

lies in the unpredictability of future returns, making the creation of a reliable strategy

extremely difficult.

Thus, stock return predictions are a vital area of research. The ability to understand

and predict stock market movements is of major importance, but the complex nature

of stock markets makes this a daunting task, as pointed out by Gandhmal and Kumar

(2019). Most existing models for predicting stock prices focus primarily on quantitative

variables, such as historical prices, macroeconomic factors, or Fama-French factors, which

have a direct and measurable impact on stock prices (Jan and Ayub (2019) and Nti et al.

(2019)). However, relying only on these variables may not be sufficient. There is a wealth

of information that these quantitative measures do not capture, leading to gaps in the ac-

curacy of stock price predictions, as explained by Shah et al. (2019). This inaccuracy can

be costly for investors since even small differences in stock prices can result in significant

financial losses.

Recognizing these limitations, it becomes clear that integrating different types of inform-

ation could improve the prediction of stock prices. This is where the value of textual

data becomes evident. Textual data encompasses a broad spectrum of information that

is often missed by quantitative analyses. For instance, market sentiment, influenced by

3

news events such as the outbreak of Covid, can cause significant fluctuations in stock

returns that quantitative factors alone may fail to predict as highlighted by Szczygielski

et al. (2023). Incorporating textual data, such as news articles and financial reports,

into predictive models could provide a wider view of the factors influencing stock prices.

By doing so, these models can adapt more dynamically to a range of events, potentially

outperforming those that rely solely on quantitative data.

Moreover, the use of advanced data analytics techniques, such as natural language pro-

cessing (NLP) and machine learning, can further improve the effectiveness of incorporating

textual data into stock market analysis. NLP can process and interpret vast amounts of

unstructured textual data, extracting relevant information that could impact stock prices.

This information includes management discussions in annual reports, political events, eco-

nomic policies, and even social media trends; all of these pieces of information can provide

valuable insights into market dynamics.

Furthermore, integrating textual data with traditional quantitative analysis can lead to

the development of more robust and adaptable investment strategies, as done by Sun

et al. (2016) with social media text and Khedr et al. (2017) with news sentiment. By

analyzing both structured and unstructured data, investors and financial analysts can

gain a more comprehensive understanding of the market, enabling them to make more

informed decisions. This approach also allows for the identification of emerging trends

and potential risks that might not be obvious through quantitative analysis alone.

Finally, the incorporation of textual data into stock market analysis represents a signific-

ant advancement in the field of financial analytics. By combining the insights gained from

textual data with traditional quantitative methods, investors and analysts can develop

more accurate and effective strategies for alleviating the complexities of the stock mar-

ket. This approach not only could enhance the prediction of stock returns but could also

contribute to a more sophisticated and nuanced understanding of the financial markets

as a whole.

The goal of this paper is to answer the following question:

4

To what extent are stock price predictions impacted by the information coming from news

articles?

In this paper, we first collect some news articles to build our dataset, and we trans-

form this data using a Word2Vec model so that it can be exploited by machine learning

models. Then, we build regression models to predict stock returns by using solely quant-

itative features combined with news data, and we compare it to the benchmark model

regressions which are the same models but using only quantitative features. We use the

following regression models: Ridge regression, support vector regression, random forest,

and a neural network. The accuracies of the models are then compared by using the

root mean squared error and by using different tests such as Diebold-Mariano, intro-

duced by Diebold and Mariano (2002). We also use a Model confidence set based on a

Superior Predictive Ability test, introduced by Hansen et al. (2011), to test the signific-

ance of the results’ difference. Our study differs from priors studies by not evaluating

each text’s sentiment to keep all the the information from the articles, like in Sun et al.

(2016). It also differs by trying to predict stock prices directly instead of predicting stock

price movements, so that we are in a regression framework and not in a classification case.

We find that news data can be detrimental to models due to the amount of features they

bring. In some cases, news data enables to reduce high prediction errors. Nevertheless,

the difference in the prediction observed by adding news data is not significant. Ulti-

mately, models trained with news data are chosen by statistical tests to be among the

best models. This result stands for stocks relatively volatile such as Microsoft or Apple.

The paper is organized as follows. Section 2 highlights the work that has already been

done on the same topic or similar topics, section 3 shows the data that has been used for

this study along with some quick analyses of the data, section 4 explains the methodology

in this paper, which is how we handle textual data and how we predict stock returns.

Then, section 5 shows the results obtained and provides some discussions and some in-

terpretations of the results. Finally, section 6 summarizes the key findings of our study

and suggests possible improvements that could be made to this paper.

5

2 Literature

As explained in the introduction, being able to predict stock returns and understand

their variations is crucial to building an investment strategy. The literature on this sub-

ject is large. Sun et al. (2016) try to predict price movements of stocks by using text

data retrieved from social media due to its relation with financial markets. They use a

sparse matrix factorization to handle textual data and select their features. However,

while their model using textual data outperforms their benchmark model, it has a low

accuracy. Their paper differs in two ways from other papers. They use social media

data instead of news data and they do not evaluate the sentiment of their textual data.

They finally use their predictions to build a trading strategy that has better returns than

their benchmark trading strategies. Wu et al. (2022) predict stock prices from the China

Shanghai A-share market. They use financial text data, historical prices and technical

indicators. They use a word2vec model combined with a convolutional neural network

to get investor’s sentiments. Then, they use a long short-term memory neural network

to predict stock prices. They find that their model outperforms traditional models that

use a single data source. Hagenau et al. (2013) emphasize on the importance of feature

selection when using textual data. They try different feature extraction methods such as

the dictionary approach, the n-gram and the bag-of-words. They also use two different

feature selection methods that are the chi-square and the bi-normal-separation. Then,

they represent their text using the tf-idf method and predict stock prices using an artifi-

cial neural network, a support vector machine and a naive Bayes classifier. They find an

improvement in models when a proper feature selection is performed. Kalra and Prasad

(2019) use companies-specific news articles to predict future price movements of stocks.

They first perform a sentiment analysis on their textual data to categorize them into two

categories: positive sentiment and negative sentiment. Nonetheless, they use the count of

positive sentiment and negative sentiment text instead of text sentiment directly. After

that, they use machine learning models such as k-nearest neighbor, support vector ma-

chine, neural network and naive Bayes to predict future price movements. The use of

these data to train classifiers gives a significant enhancement compared to state of art

methods.

Text data is also used in the economic context to predict economic variables. The first

6

issue met with text data is the number of features coming from it. As one word is seen

as one feature, it is crucial to find ways to deal with the amount of features. Gentzkow

et al. (2019) provide a complete review to the use of text as an input to economic research

by explaining the steps to transform text data and the existing methods to extract the

relevant data from the text. They also focus on the case of stock price prediction and

explain the three ways to handle textual data when predicting stock prices. These meth-

ods consist of a dictionary-based approach to get a text sentiment, linear regressions with

a penalization term and generative language models such as latent Dirichlet allocation.

Mikolov et al. (2013) introduce a method to create word representation in a vector space,

called word2vec, enabling maths calculations on words such as additions. Ash and Hansen

(2023) give a review of the existing methods to represent words as numerical vectors with

modern methods. These methods imply the simple bag-of-words to the word2vec model

and the GloVe model, giving a representation of a word with respect to its context. Fi-

nally, some richer models declined from the word2vec model give the best models that

exist known as GPT and PALM. These models differ from the word2vec model by ad-

justing the weight of the context words when computing the probability of a word given

its context. They finally address four issues that are often met in most of the research

dealing with textual data in economy and explain the approaches that have been taken

to tackle these issues.

Kalamara et al. (2022) provide a comparison of different machine learning models to

predict macroeconomic variables using economic signals from newspapers by extracting

term frequencies from it and assessing if the models are improved by adding newspaper

information to an autoregressive model with a single lag. They observe an improvement

of the results with the Neural Network and the Ridge Regression by assessing a signi-

ficant difference of the root mean squared error by using a Diebold-Mariano test and a

Superior predictive ability test. Their conclusion leads to an improvement in the predic-

tion, especially in periods of economic crises. Gardner et al. (2022) provides a study on

the influence of FOMC statements on equity prices and compares it to the influence of

macroeconomic news announcements on equity prices. They use FOMC statements to

describe the state of the economy and compute the sentiment of these statements. They

conclude that statements have a bigger impact on equity prices during bad states of the

7

economy (i.e. high unemployment rates and economic recessions) times. They also find

that the FOMC statement is the best variable to explain the variation in stock prices due

to macroeconomic news. They describe better the state of the economy than macroeco-

nomic news announcements. However, they find that during uncertain periods, like the

covid pandemic, stock prices are more driven by uncertainty than FOMC statements.

8

3 Data

3.1 Stock price data

The dataset contains stock prices from the New York Stock Exchange (NYSE) and Nas-

daq of three different companies namely Apple, Microsoft, and Tesla. It is a time-series

dataset going from 1st January 2018 to 30th December 2021 with a daily frequency. The

dataset contains 1045 observations, which does not correspond to the number of days

between the date ranges since there are some days when stock prices are not actualized.

The dataset has been collected on the eikon datastream (Reuters, 2022).

The three companies are chosen so that we have news articles available every day. Apple

and Microsoft are two of the largest companies in the world, we can find press articles

talking of them nearly every day. Tesla is also a large company and has been chosen

because even if it is not one of the largest companies in the world, it often appears in

news articles, especially during the studied period. Tesla has also very volatile stocks,

and we want to see if our models can be suited to predict volatile stocks.

Figure 1: Daily stock returns over the studied period

According to figure 1, the stock data collected is quite volatile and has somewhat similar

9

trends for Apple and Microsoft. However, we see that Tesla had a huge increase in stock

returns during the studied period especially after 2020 during the Covid outbreak with a

lot of peaks and variations in the returns. We see that Tesla had the steepest rise, while

Apple and Microsoft had a steady rise. We then can see if the news dataset can have a

better prediction on stocks with high volatility like Tesla or stocks with low volatility like

Apple, or if it does not have any incidence.

We have the autocorrelation plot of each company’s stock return below:

Figure 2: Autocorrelation plots of companies’ stock returns

According to figure 2, the autocorrelations have a slow decay and are not quickly declin-

ing to 0. Furthermore, the confidence band shows that the correlations are statistically

significant for the first hundred lags. Consequently, our stock returns are not stationary.

Yet, we can focus on the difference in prices from one day to another. We integrate

our stock prices by subtracting the price of the stock the day before from the price of

the actual day. By doing this, we want to transform our series into stationary ones.

We have the autocorrelation plot of the difference in stock prices presented in figure 3.

The figure below shows a straight decline in the autocorrelation for all the companies’

10

stocks. Additionally, we observe that the vast majority of autocorrelation lags are inside

the confidence band, thus they are statistically not significant. This indicates we have

a stationary time series and that stock prices are integrated into order one. By making

these times-series stationary, we make them more predictable as they have a fixed mean

and variance (Hyndman and Athanasopoulos, 2018).

Figure 3: Autocorrelation plots of companies’ stock price difference

3.2 Quantitative features dataset

The second dataset contains four different macroeconomic features, found in Andersen

et al. (2007), that are namely the GDP, the unemployment rate, the consumer price index

(CPI), and the retail sales in the United States since the three companies are American,

and we focus on American stock markets. We chose these features because they are one

of the few attributes available at a daily frequency, and they have an impact on stock

markets according to Srivastava (2010) and Verma and Bansal (2021). It is a time-series

dataset going from 1st January 2018 to 30th December 2021 with a daily frequency and

the dataset contains 1045 observations. In addition to these macroeconomic factors, the

dataset contains the Fama-French 3 research factors from Fama and French (1996) for the

corresponding date range. This dataset contains 1008 observations. The final dataset,

11

obtained by merging the two datasets, contains 1008 observations. The macroeconomic

factors have been collected from the eikon datastream Reuters (2022).

3.3 News dataset

The news dataset contains news articles every day from 1st January 2018 to 30th Decem-

ber 2021. The news articles come from many sources such as The New York Times or

Wall Street Journal. The data also contains company-specific news on Apple, Microsoft,

and Tesla but also some news about stock markets such as Nasdaq or NYSE as done in

Khedr et al. (2017).

The data has been collected using the New York Times API by Den Heijer (2024) and

the Googlesearch API by Hseb (2017). We use multiple queries such as ‘Microsoft’, and

‘NYSE’ for the corresponding date range. Once a result is found, the link of the article

is extracted from the API and then scrapped using the requests package Chandra and

Varanasi (2015), which gives the HTML code of the webpage. The article is then extrac-

ted from this code using the BautifulSoup package (Richardson, 2007). Each article is

stored as one value in the dataset; an article can be found with its index being the date

and the column being the query used to find it. This gives five columns since there are

five different queries and 1460 observations, which correspond to the total number of days

between 1st January 2018 and 30th December 2021.

However, the data presents some missing values since there are no news articles about

every company every day and the proportion of missing data is relatively large since

1041 observations out of 1460 have at least one missing value. The number of missing

articles is 1779 out of 7300 articles. Moreover, some articles contained some part of the

text that did not seem to be part of the original article like warning messages such as

‘Please subscribe to our newsletter for more articles from The Times’ so we cleaned the

data by filtering some words. However, the cleaning step cannot be perfect and there are

still some articles with unrelated text. The missing data handling is treated in section 4.2.

Then, we also clean the data by transforming the text corpus as done in Ash and Hansen

12

(2023), we first tokenize (splitting on whitespace/punctuation) and put all the texts in

lowercase, we then remove the punctuation and all the symbols from the articles. Addi-

tionally, we remove all the English stop words that are present in a predefined list provided

by the nltk Python package Bird et al. (2009). We can find words like the/is/so, and we

lemmatize the words to remove suffixes for example doing becomes do, in the end all

of these steps enable to have only the important tokens that are relevant to understand

articles. The lemmatization removes suffixes of words with respect to their context, their

meaning in the sentence, and the word’s part of speech, and they enable a feature selection

in the text data to lower the computation expenses and also avoid the loss of meaning of

the sentences. The tale 1 summarizes the different datasets explained in this section.

Stock prices dataset News articles dataset Quantitative factors dataset

Number of observations 1045 1460 1008
Frequency Daily Daily Daily

Number of variables 3 5 7
Type of data Numeric String Numeric
Start date 1st January 2018 1st January 2018 2nd January 2018
End date 31st December 2021 31st December 2021 31st December 2021

Table 1: Table summarizing the data

13

4 Methods

4.1 Text handling

4.1.1 Word2Vec models

Numerous models enable textual data handling. We want a way to convert textual data

into a numeric component, and that’s why we chose the Word2Vec models.

The Word2Vec model represents each word in a vector space of 100 dimensions where

each word is represented by a linear combination of these 100 vectors and thus, it enables

us to do calculations on our words. For example, if we make an addition of the word cat

and baby, we get an embedding that is very close to the one of the word kitten. Therefore,

this model allows us to do some calculations on words and thus, we can make an average

of the words to get the representation of one sentence.

However, Word2Vec models are a family of models that represent words to embeddings

and the most common ones are the Skip-Gram and the Continuous Bag-of-Word (CBOW).

Since we are dealing with news articles, according to Jang et al. (2019), it is better to use

the CBOW method as the Skip-Gram is better for smaller texts.

4.1.2 Continuous Bag-of-Words

The CBOW model predicts a target word based on the context of the surrounding words

in a sentence or text. It is trained using a feedforward neural network with three layers

where the input is a set of context words in a sentence, and the output is the target word.

The model learns to adjust the weights of the neurons in the hidden layer to produce an

output that is most likely to be the target word. Let N be the number of words in the

corpus. The input layer takes a representation of every word in the corpus by a one-hot

encoded vector denoted xw ∈ RN where ∀i ∈ [1, N], xw[i] = 1 if i is the index of the word

w in the vocabulary and zero otherwise.

Then for each word, we define a context composed by C surrounding words, which we

note w1, w2, ..., wC represented by their respective vectors xw1 , xw2 , ..., xwC
. Furthermore,

14

in the hidden layer, we define a weight matrix W ∈ RN×M that we initialize with random

values, M being the dimension of the embedding space. We then compute the average of

the context word embeddings, this step gives the hidden layer representation:

h =
1

C
W T

C∑
i=1

xwi
(1)

Finally, in the output layer, we define a second weight matrix called V ∈ RM×N that we

also initialize with random values. Then, for each word w with index i in the vocabulary,

we define a score by:

ui = V T
:,i ∗ h (2)

The notation V:,i indicates the ith column of the matrix V

We then use these scores to build a probability distribution using the Softmax function:

p(wi|w1, ..., wC) =
exp(ui)∑N
j=1 exp(uj)

(3)

and the word with the highest probability is chosen to be the target word.

We then want to find estimates for the matrixes W and V , firstly, the CBOW tries to

maximize the likelihood of the correct target word given the context which is:

L =
∑

w∈Vocabulary

log(p(w|w1, ..., wC)) (4)

Now, we compute the errors between the observed probability distribution and the pre-

dicted probability distribution, and we use backpropagation to compute the gradients of

W and V noted ▽WL and ▽VL. We finally update the matrixes using stochastic gradi-

ent descent, and we repeat this for the number of epochs we want. The explanation of

stochastic gradient descent is given in section 4.2.4. In the end, we can find words’ em-

beddings inside the matrix W , each line of the matrix corresponds to the embedding of

15

one word.

For the hyperparameter values which are the size of the window for context words, the

dimension of the embedding, and the epochs, we followed the common values for these

parameters explained in Major et al. (2018) and we take a window of five words with a

100 dimension in the embeddings and 100 epochs. We use the gensim package on Python

introduced by Řehřek and Sojka (2010) to fit our Word2Vec model.

4.1.3 Aggregating to the whole document

Now that we have embeddings for each word in our vocabulary, we want to find embed-

dings for our article so that we have a way to quantify them. A simple method would be

to average the words’ embeddings inside an article to get an embedding for the article,

but this implies that each word has the same weight no matter their frequencies. This

implies that a redundant term has the same weight as any word and thus less weight than

two words that are synonyms. Therefore, it is necessary to account for the frequency, it

also outperforms the average approach according to Zhu et al. (2016).

Instead, we use a weighted average, where the weight of each word depends on its occur-

rence. To measure this occurrence, we use the Term Frequency-Index document frequency

(tf-idf) score as in Ash and Hansen (2023) which gives better results than the simple av-

erage.

The tf-idf score is a score that enables the measurement of the frequency of a word in a

corpus and is computed the following way, we first compute the term frequency in the

document by:

TF =
number of times the word appears in the document

number of words in the document
(5)

and we compute the inverse document frequency by:

IDF = log

(
number of documents in the corpus

number of documents where the term appears

)
(6)

16

In the end, we combine the two equations 5 and 6 to get the tf-idf score of a word in a

document:

TF -IDF = TF× IDF (7)

Finally, for an article indexed by subscript a containing words w1, ..., wn with their re-

spective embeddings noted ew1 , ..., ewn , we compute its embeddings using the formula 7

to get:

ea =

∑n
i=1 TF − IDF a

wi
× ewi∑n

i=1 TF − IDF a
wi

(8)

with TF − IDF a
wi

being the TF-IDF score of the ith word in article a.

4.2 Prediction models

After transforming our news articles into numerical vectors, we can now merge our data

frame to have one data frame being the combination of news article embeddings and

quantitative features and a second data frame containing only the quantitative features.

Then, we scale both of these datasets using a MinMax scaler. It is necessary to scale

our data for many reasons. First, it reduces the computation time and enables regression

models to converge faster. Secondly, it puts the same variance on all features and this is

also necessary for the models that use distance measures such as support vector machine.

Having different variances for each feature could lead to giving more importance to fea-

tures having a bigger magnitude. The MinMaxscaler scales each observation xij with the

following formula:

x̂ij =
xij −mini∈[1,N] xij

maxi∈[1,N] xij −mini∈[1,N] xij

(9)

In addition, we handle the missingness of news articles mentioned in section 3.3 after

quantifying articles. Since we have time-series data, we want to pay attention to data

leakage so we cannot use future observations to impute a missing value for a present

17

observation. Hence, we use the previous observation to handle missing values, with the

method called last observation carried forward. This method consists of taking the pre-

vious observation’s value if there is a missing value. That way we ensure that we do not

have future information inside the present information and we assume that if there is not

any news on a company at a certain day then nothing important happened, and thus we

keep the same information as yesterday.

Furthermore, since we have time-series data, a lot of issues arise if we want to use cross-

validation such as the non-stationarities, the use of future observations in the training

step, or the serial correlation in the data. Cross-validation is still possible according

to Bergmeir and Beńıtez (2012) for purely autoregressive series. For stationary series,

Bergmeir et al. (2018) show that standard cross-validation is possible, but not as robust

as other types of cross-validations. As shown in section 3, our stock returns are stationary

but they are not purely autoregressive. Therefore, we chose to implement a nested rolling

window to train our model and prevent the issue of data leakage and dependent data.

We divide our data frames into 30 windows with 400 observations to train the model on

a one-day prediction and one observation to test it in each window. We choose these

numbers so we have enough observations to train our models in each window, and we

predict the one-day ahead prediction on the next day after the training set to see the

performance of our model to give a one-day ahead prediction in the short-term. We focus

the analysis on the next day after the training set, as the models are trained to predict

this observation specifically. We also impose a gap of 20 days between each window. The

gap of 20 days also enables us to use every observation of the dataset without having too

many windows.

The first window starts on 11th January 2018 and ends on 14th August 2019. The first

window does not start on 1st of January because the observations are removed due to

missing values. The last window starts on 4th May 2020 and ends on 1st December 2021.

The gap between each window is 20 days.

For each of the following prediction models, each model is fitted with the dataset contain-

ing news and quantitative features. The benchmark is the same model with solely the

quantitative features.

18

4.2.1 Ridge Regression

Our first model to predict stock prices is Ridge regression, introduced by Hoerl and

Kennard (1970), which gives some of the best prediction results according to Kalamara

et al. (2022) when using textual data. Here we use a ridge regression where the features

are the macroeconomic variables and the news embeddings to predict the stock returns.

Our benchmark is the same model but only with the quantitative dataset. The ridge

regression model is a linear model written the following way:

yt+1 − yt = α + νTXt + µTSt + ϵt+1 (10)

We compare the performance of this model to the same one without the text information

present in St.

However, unlike ordinary least squares, the ridge regression has the following cost function:

J(θ) =
1

N
(yi −

N∑
i=1

(α + νTXt + µTSt)
2) + λ||θ||2 (11)

with θ = [α, ν, µ]

The ridge regression has an explicit solution for the estimate of the parameters, displayed

in equation 12. While this formula is straightforward, it is not the one used in real-life

scenarios when we have large datasets. The large number of observations and features

makes the computation relatively long. Furthermore, the inversion of the matrix is com-

putationally expensive and unstable. Hence, we use another method to estimate the

parameters, that is less computationally intensive.

θ̂ = [(JTJ + λI)−1JTy, (XTX + λI)−1XTy, (STS + λI)−1STy] (12)

with J = [1, 1, ..., 1]T

We minimize this cost function to find the optimal parameter α, ν, µ by using a Stochastic

Average Gradient Accelerated method (SAGA) described in Defazio et al. (2014). First,

19

we initialize the parameters α, ν, µ and another vector, g ∈ RN and we compute ḡ =∑N
i=1 gi. Then for each iteration, we choose a random observation i and we compute the

loss gradient function at this point without the penalty term:

▽Ji(α, ν, µ) = [
∂Ji(θ)

∂α
,
∂Ji(θ)

∂ν
,
∂Ji(θ)

∂µ
]

= −2(yi − α− νTXt − µTSt)[1, Xt, St]
T

(13)

Then, we adjust the gradient and include the penalty term

g̃ = ▽Ji(θ)− gi + ḡ + 2λθ (14)

and we update the parameter vector θ = θ − g̃. Finally, we update the value of gi by

▽Ji(θ) and we also update ḡ by ḡ = ḡ+ 1
N
(▽Ji(θ)−gi). We continue this process until we

reach the maximum number of iterations or until the change of θ between two iterations

becomes very small.

The regularization term, which is the sum of the squared parameters, enables the model to

shrink the coefficients, especially the large ones. The ridge regression tends to shrink the

coefficients towards 0, but none of the coefficients are set to 0. λ represents the strength

of the regularization and needs to have the right value so that the model reduces the

training error and also shrinks the parameters. If λ is close or equal to 0, we will just

get the OLS estimate, however, if λ ↪→ ∞ then the parameters will be close to 0 and the

regression will not try to reduce the training error term.

To find the optimal value for λ, we use a grid search with a time-series cross-validation,

as explained in Hart (1994). A time-series cross-validation solves the issue of dependent

data due to its temporality and works by splitting the data into k equal folds and when

the ith fold is used as the validation set, the training set is all the folds from the first to

the i − 1th, with i ∈ [2, k]. Since we predict at a one-day horizon, we train our model

to predict the next day so we need one observation in the validation set and we use ten

folds. The figure below shows the functioning of time-series cross-validation.

20

Figure 4: The different folds in time-series cross validation

Then, we measure the error inside the validation set with the following formula:

Error =
1

k − 1

k∑
i=2

|yi − ŷi| (15)

we take the λ corresponding to the smallest cross-validated error.

We do this for both datasets, the one with news information and the one without. The

two datasets are trained with the same observations and test the same observations.

4.2.2 Variable selection

For the other models, our news dataset embeddings contain hundreds of features thus,

it is necessary to apply some feature selection, and we do this by using Random forest

(Breiman, 2001). Random forest is a supervised learning method that consists of combin-

ing multiple decision trees to build a model, which makes it a type of bagging. Random

forests are used for regression and classification tasks, they can even be used for variable

selection, as explained in Breiman (2017). Firstly, the dataset is divided into subsets

using bootstrap sampling, we note N the number of subsets, which is also the number

of trees in the random forest. Each subset is used to train one tree. The randomness

of the random forest comes from the split of the decision trees. At each split, only a

random subset of features is used. This creates diversity among the trees and reduces the

21

correlation between them.

Then, each tree is trained until it reaches its maximum depth, or the minimum number of

terminal node observations, so it can catch complex relationships. Finally, the prediction

is done by computing the average of each tree’s prediction. By taking the average of

multiple trees’ prediction, the model is less likely to overfit the training data.

The random forest requires tuning its hyperparameters, which are the depth of the trees,

the number of trees, the number of features we use at each split, the minimum number

of observations in a leaf (i.e terminal node), and the minimum number of observations to

perform a split. These hyperparameters are tuned using a random grid search through

the possible values of the hyperparameters. We use a time-series cross-validation like in

4.2.1 to define the training set and the validation set, and we take the hyperparameters

leading to the lowest error in the validation set.

Random forest has many advantages compared to single trees and other machine learning

models. First, it gives a feature importance evaluation, giving the most prominent fea-

tures used for the prediction. Secondly, it reduces the variance and the risk of overfitting

compared to a single tree without increasing bias.

The feature importance is computed by computing the impurity at each node for each tree.

The impurity is a measure of how accurate the node prediction is. For a regression task,

we take the mean squared error (MSE) as the impurity. And we compute the decrease in

MSE due to a split on feature F . We note Nparent node the number of observations in the

parent node, and we keep the same notations for the other nodes.

MSE =
1

Nnode

Nnode∑
i=1

(yi − ŷi)
2 (16)

∆MSE(F)

= MSEparent node − (
Nleft node

Nparent node

×MSEright node +
Nright node

Nparent node

×MSEright node)

(17)

The importance of the feature is then computed by averaging the MSE decrease over the

22

trees.

Importance(F) =
1

Ntrees

Ntrees∑
i=1

∑
nodej∈tree i

∆MSE(F, i, j) (18)

With Ntrees being the number of trees, ∆MSE(F, i, j) is the MSE decrease of variable

F in tree i at node j. If the split at node j in tree i is not performed on the feature F,

then ∆MSE(F, i, j) = 0. The importance is then normalized across features to have a

value between 0 and 1, by dividing each variable’s importance by the sum of the features’

importance.

Finally, we fit a random forest using the whole dataset, and we take the most important

variables to perform the feature selection. After that, we fit another random forest using

only the important features, and we fit the other models with these important features.

4.2.3 Support Vector Machine

After selecting our variables, we use a support vector machine (SVM) to predict the stock

returns because it can detect non-linear relations between the target and the features us-

ing different kernels. SVM is designed to find the best hyperplane to fit the target. They

are initially made for classification, but a variant introduced by Drucker et al. (1996), can

be used for regression. The goal of SVM is to find a function noted f that can predict

a continuous variable y with a set of variables noted X (this time X denotes the entire

dataset that contains the lag return, articles’ embeddings, and the quantitative features)

with a degree of tolerance noted ϵ. However, this function must have a prediction error

inferior to ϵ for each training data point and must be the flattest. We also introduce slack

variables that we add to the degree of tolerance to allow for errors and approximations.

Let’s denote w a weight vector and b ∈ R such that:f(x) = wTx + b. The minimization

problem of SVM is the following:

23

min
W

1

2
wTw + C

N∑
i=1

(ξi + ξ∗i)

subject to

yi − wTx− b ≤ ϵ+ ξi

wTx+ b− yi ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0

(19)

with ξi and ξ∗i being slack variables measuring the violation of the degree of tolerance

and C being the parameter measuring the trade-off between the goodness of fit and the

flatness of f .

We compute the Lagrangian of this minimization problem by denoting the Lagrange

multipliers by α and α∗:

L(w, b, ξi, ξ
∗
i , αi, α

∗
i , µi, µ

∗
i) =

1

2
W TW + C

N∑
i=1

(ξi + ξ∗i)−
N∑
i=1

αi[yi − (w · xi + b)− ϵ− ξi]

−
N∑
i=1

α∗
i [(w · xi + b)− yi − ϵ− ξ∗i]−

N∑
i=1

(µiξi + µ∗
i ξ

∗
i)

(20)

Then we use the following equalities ∂L
∂W

= 0, ∂L
∂b

= 0, ∂L
∂ξi

= 0, ∂L
∂xi∗i

= 0 to get:

W =
N∑
i=1

(αi − α∗
i)xi

N∑
i=1

(αi − α∗
i) = 0

C = αi + µi = α∗
i + µ∗

i

(21)

We can now write f(x) =
∑N

i=1(αi − α∗
i)x

T
i x + b. Thus, the function f is determined

by finding the values of αi and α∗
i . We also introduce a kernel function K(xi, xj) that

measures the similarity of two observations in higher dimensions. This kernel function is

necessary when dealing with non-linearly separable data, it represents data in a higher

dimensional space where the data becomes linearly separable. The different kernels func-

tion considered is the linear kernel which is the simple dot product K(xi, xj) = xT
i xj, the

polynomial kernel K(xi, xj) = (1 + xT
i xj)

d with d being the degree of the kernel, the ra-

24

dial kernel K(xi, xj) = exp−γ||xi−xj ||2 with γ ≥ 0. With this kernel function, the objective

function becomes

f(x) =
N∑
i=1

(αi − α∗
i)K(xi, x) + b (22)

The coefficients αi and α∗
i are determined during the training of the model by solving the

minimization problem using sequential minimal optimization (SMO) explained in Fan

et al. (2005).

Finally, we tune the hyperparameters of the model, which are the kernel, the degree of

tolerance for the error ϵ, and C the regularization parameter. We find these parameters

using a random grid search. We define a grid of values for each hyperparameter, and

we take random combinations of these values. We try 100 different combinations of

hyperparameters and we do not go over this number so that the computation time is

not too long. These combinations are then used to train the model, and we use time-

series cross-validation to define multiple pairs of training and validation sets. We take the

combination of hyperparameters giving the lowest average error (defined in 15) over the

validation sets.

4.2.4 Neural Network

Neural networks are powerful methods to find the relation between a variable and a set

of features. Neural networks work like human neurons: they consist of layers of neurons

with nodes that are connected. The first layer is the input layer that contains as many

neurons as there are features in the dataset. Then, neural networks are composed of

hidden layers, where the computations are done. Each neuron takes multiple inputs and

uses a linear combination to give an output. We note a
(k)
j the output of the jth neuron in

the kth hidden layer. We have the following equality:

a
(k)
j = h(z

(k)
j) = h(

M(k)∑
i=1

β
(k)
ji a

(k−1)
i + b

(k)
j) (23)

with M (k) being the number of neurons in the kth layer, h being the activation function,

b
(k)
j being the bias term of neuron j in the kth layer, the term between brackets being the

25

layer and β
(k)
ji being the weight of observation i in neuron j in the kth layer.

For the first hidden layer, the equation is:

a
(1)
j = h(z

(1)
j)

= h(
T∑
t=1

β
(1)
jt xt + b

(1)
j)

(24)

Finally, we have the output layer, which is composed of only one neuron and takes the

outputs of the last hidden layer as an input to give a prediction. The aggregation of the

inputs to get the output is the same as in the hidden layers, and the output layer has also

an activation function.

Then, once our network architecture is chosen, we initialize the parameters β and b with

random values and we make predictions with the observations in the training set. Having

this, we can compute the loss, which is the root mean squared error in our case, and

measure the difference between the predicted value and the actual value. The goal is to

find the values of β and b that minimize this loss. Thus, we compute the gradient of the

loss with respect to the parameters using the chain rule with the following formula:

∂L

∂β
=

∂L

∂ŷ
× ∂ŷ

∂z
× ∂z

∂β
(25)

with L being the loss function, ŷ the predicted value, z the output of the neuron and β a

parameter.

We find these optimal parameters by using the gradient descent algorithm. We update

the weights with the following formula:

βij = βij − η
∂L

∂βij

bj = bj +
∂L

∂bj

(26)

with η being the learning rate. The learning rate scales the size of the update and de-

termines how much the weights are updated. When the update of the weight is too small

26

(i.e. the gradient is getting close to 0), the algorithm stops.

We also divide the training data into batches. For each batch, the algorithm updates the

weights so that the updating does not use all data points at once and uses subsets. This

makes the training less time-consuming and gives better results. We repeat all these steps

for the number of epochs chosen. The number of epochs is the number of times we use

each data point. If the algorithm does not converge with the weight update, it stops when

it reaches the number of epochs.

The number of neurons in the hidden layers and the number of hidden layers is something

we decide, but the more neurons we have in a layer the more capable it will be of catching

linear patterns, and we choose these parameters in accordance with Heaton (2008). The

activation function is also something we need to choose. Since we are performing a

regression, we choose the Relu function in the hidden layers and the identity for the

output layer. We set the batch size at either 16 or 32 observations so that our updates

are not noisy, but we do not increase the batch size further due to limited computational

resources. The hyperparameter we need to tune is the learning rate, which plays a crucial

role. If the learning rate is too low, our gradient descent algorithm might take a very long

time to converge, and if it is too large the algorithm might not be able to find the optimal

parameters.

4.3 Assessing the results

After fitting all our models in each window, we compute the root mean squared error

(RMSE) at horizon h through all the windows with the following formula:

RMSEh =

√√√√ 1

Nwindows

Nwindows∑
i=1

(yhi − ŷhi)
2 : (27)

The RMSE is used to compare the accuracy of the models. The model with the biggest

RMSE is the least effective one and thus, we can see if adding news data improves our

predictions.

We also use a second metric called the mean absolute error (MAE), which also measures

27

the effectiveness of a model. It is less influenced by outliers. We compute the MAE

through all the windows with the following formula:

MAE =
1

Nwindows

Nwindows∑
i=1

|yhi − ŷhi | (28)

We also look at the absolute error of each model in each window to see if the performance

differs from one window to another. The different windows have a different economic

context and therefore, we can see which model is more or less dependent on the economic

context.

4.3.1 Diebold-Mariano test

The Diebold-Mariano test is a statistical test. It gives a way to compare two forecasting

models by assessing if their errors are significantly different.

We build this test the following way. First, we take the error in each window for each

horizon and each model.

ek1h = ykh − ŷk1h

ek2h = ykh − ŷk2h

(29)

where ek1h is the error for the observation in the kth window at horizon h for the model

trained on the quantitative dataset and ek2h is the error for the observation in the kth

window at horizon h for the model trained on the complete dataset.

Then, we take the squared error and compute the difference between these squared errors.

We then sum these errors over the windows:

d̄h =
1

K

K∑
k=1

(ek1h
2 − ek2h

2
) =

1

K

K∑
k=1

dkh (30)

Having dh, we can now set up the test. The test is built as follows. The null hypothesis

is that the two models have the same forecasting error (H0 : Ek[d
k
h] = 0). We build the

following test statistic:

DM =
d̄h√
σ̂2

K

(31)

28

with σ̂2 being the sample variance of dkh, so σ̂2 = 1
K

∑K
k=1(d

k
h − dh)

2. Usually, the term

σ̂2 is the long-term variance, like in Diebold and Mariano (2002), which includes a term

for the autocorrelation, but in this case, the errors are not correlated with each other

because of the nature of the sets. There are at least 20 days between each window so we

can consider that there is no issue linked to the temporality of the data. therefore, we

take the sample variance.

Under the hypothesis H0, the test statistic DM , defined in 31, asymptotically follows a

normal law N(0, 1). Thus, we compute the p-value, which is the probability of getting a

result at least as extreme as the observation under H0. If we have a low p-value, it means

that our test statistic is an extreme value and that the hypothesis H0 may not be true.

4.3.2 Superior predictive ability test with model confidence set

Another possible test is the Superior Predictive Ability (SPA) test, introduced by Hansen

(2005). The SPA test can compare two models to test if one model is better than the

benchmark. It uses a blocked bootstrap method. First, we create bootstrap samples and

for each sample, we compute the values d̄h and dkh defined in 31. We compute the test

statistic:

Sh =
d̄h
dkh

(32)

We take the number of bootstrap samples to be 1000 so we have 1000 values for Sh. These

1000 values define the distribution of Sh. The value of Sh on the test set is computed

and compared to the bootstrap distribution. The p-value is computed by calculating the

proportion of the bootstrap values greater than the observed test statistic.

p-value =
1

Nb

Nb∑
i=1

1(Sh ≥ Si
h) (33)

with Nb being the number of bootstrap samples,Si
h the test statistic in the bootstrap

sample i and Sh the test statistic in the test set.

However, SPA test does not handle the issue of data snooping. Data snooping can happen

when we perform a lot of tests and one of them gives a significant difference in the predic-

tion performance. Nonetheless, it is not because one test says there is a significance that

29

it is true because the test has a probability of being wrong: when we perform multiple

tests, the likelihood of having one false positive becomes non-negligible. We alleviate

this by implementing a model confidence test based on a SPA test. The model confid-

ence set (MCS) is introduced by Hansen et al. (2011). Another advantage of the MCS

is that it gives a set of models that are considered to be the best given a level of confidence.

We start with a set of models M, containing all the models, thus we have 8 models in

this set. Now, we test each model pairwise using the SPA test, and we remove the least

performing model from the set M. We reiterate this step until we have only one model

remaining in the set. Then, we want a p-value for each model to know which models stand

out. We perform the following hypothesis at every step H0 : E(dij,k) = 0∀i, j ∈ M with

dij,k = eki1−ekj1 by taking the notations from equation 29. We use the SPA test to perform

the test, and we compute p-values for each model. The best models have a p-value of

1 and the least performing models have p-values close to 0. The p-values of the MCS

are computed using the p-values of the SPA test at each iteration, and the computation

is explained in Hansen et al. (2011). The model confidence set is then built by taking

models with p-values higher than the level of significance.

30

5 Results and discussions

5.1 One-day horizon accuracy

We analyze the accuracy of the one-day prediction on the stock price following the training

set in each window.

5.1.1 Apple performance

The results are presented in Table 2 and Table 3, where we can see the MAE and the RMSE

for each model and each dataset. We see that the models have similar performances,

except for the neural network and the ridge regression. In general, the quantitative

dataset gives better performance than when it is combined with news. One reason is that

news brings a lot of variables and therefore, the models need more observations and time

to be fitted. Moreover, it could mean that the information given by the news data is

not very informative or does not add any information to the dataset. Finally, there is an

improvement of the MAE using news data with the SVR, but the RMSE is larger with

the news dataset, meaning that on average, predictions are more accurate when using

news data, but they are also more volatile.

Quantitative dataset News dataset
Ridge regression 1.09 1.52

Support Vector Machine 1.35 1.27
Random Forest 1.21 1.38
Neural Network 1.21 1.36

Table 2: MAE of the one-day ahead prediction for Apple stocks

Quantitative dataset News dataset
Ridge regression 1.50 1.80

Support Vector Machine 1.88 2.07
Random Forest 1.62 1.79
Neural Network 1.61 2.08

Table 3: RMSE of the one-day ahead prediction for Apple stocks

We also look at the performance in each window, and we have the absolute error in each

window for each model presented in figure 7. SVR and ridge give very volatile results

compared to the random forest and the neural network but have slightly lower RMSE and

MAE. We also see a peak for every model at the 21th window where news data perform

31

worse than the quantitative data. There is another peak at the 16th window where news

data bring improvements to the models. We also have higher errors from the 16th to the

21th window. These windows have a large part of their training set during the beginning

of the Covid outbreak, when financial markets were uncertain and volatile. During this

period, some models using non-text data reach their highest peak, and these are some-

times lower for the same model using text data (e.g. random forest, SVR). This indicates

that news can add some information to the dataset and enable models to limit their errors

when they have poor performances. Thus, the addition of news data does not bring a

direct improvement to the forecasts but enables the models to be more robust during

uncertain contexts.

Figure 5: Absolute errors in each window for Ridge (top left), SVR (top right), random
forest (bottom left), and neural network (bottom right) to predict Apple stocks

32

5.1.2 Microsoft performance

We also look at the performance of the models on Microsoft stocks, presented in table 4

and table 5. We have a pattern similar to the Apple stocks. We find that adding news

data is detrimental to the models for the same reasons as explained in the previous sec-

tion. However, we see that the errors for Microsoft stocks are slightly larger than Apple

stock’s predictions errors, but this is explained by the difference of scales between stock

prices.

Quantitative dataset News dataset
Ridge regression 2.08 2.63

Support Vector Machine 2.20 2.83
Random Forest 2.15 2.56
Neural Network 2.06 2.56

Table 4: MAE of the one-day ahead prediction for Microsoft stocks

Quantitative dataset News dataset
Ridge regression 2.92 3.52

Support Vector Machine 2.95 3.80
Random Forest 2.82 3.37
Neural Network 2.90 3.45

Table 5: RMSE of the one-day ahead prediction for Microsoft stocks

The absolute error through the windows is presented in table 6. We see the errors of the

models with the different datasets are similar except in some windows where the errors

with the news datasets are larger. These errors explain the difference in the RMSE and

the MAE between the two datasets in the tables above. We also observe higher peaks

during the period of the Covid outbreak from the 12th window to the 21th window. During

this period, there are higher peaks for all models and all datasets used. However, in the

Microsoft case, it seems that the hypothesis made with Apple predictions does not stand

for all cases, especially for the ridge regression or the SVR. However, we see the same phe-

nomenon with the neural network and random forest. Some peaks with the non-textual

data are alleviated by news data.

33

Figure 6: Absolute errors in each window for Ridge (top left), SVR (top right), random
forest (bottom left) and neural network (bottom right) to predict Microsoft stocks

5.1.3 Tesla performance

We finally look at the Tesla stock’s prediction. The MAE and the RMSE are presented in

table 7 and table 6. The scale of the RMSE and the MAE are much larger than previous

companies: this is due to the Tesla stock being much more volatile than the two other

companies and therefore having a larger scale than other companies when we take the

price change. There is an improvement in using news data when using random forest.

The model using news data has a lower MAE using random forest, but its RMSE is larger.

Therefore, the predictions are on average better, but they are also more volatile. For the

other models, the use of text data seems detrimental to the predictions.

Quantitative dataset News dataset
Ridge regression 6 6.74

Support Vector Machine 5.69 6.84
Random Forest 6.09 6
Neural Network 6.34 6.61

Table 6: MAE of the one-day ahead prediction for Microsoft stocks

34

Quantitative dataset News dataset
Ridge regression 10.85 12.48

Support Vector Machine 10.49 12.90
Random Forest 10.76 11
Neural Network 11.79 11.98

Table 7: RMSE of the one-day ahead prediction for Microsoft stocks

We then look at the absolute error through the windows. In the Tesla case, news data do

not add much information. During the Covid outbreak period, the peaks of the error are

larger than the peaks of the other companies due to the volatility of Tesla stock during

the Covid period. This volatility makes it very hard for models to predict stock prices.

News data do not alleviate those peaks, the curve of the absolute error is very similar for

both datasets. In this case, we cannot find any improvement due to news data. However,

it seems we need a more complex model to predict Tesla stocks because all the models

considered have poor performances due to the nature of Tesla stocks.

Figure 7: Absolute errors in each window for Ridge (top left), SVR (top right), random
forest (bottom left) and neural network (bottom right) to predict Tesla stocks

35

5.2 Significance of the difference

We use the tests explained above to test whether our predictions are significantly different.

We represent the p-value of the Diebold-Mariano test in table 8. The p-values show a

significant result when they are lower than the level of significance. We fix the level of

significance at 0.05. We find that the results are significantly different using news data

for Microsoft stocks using random forest. The use of random forest to predict Microsoft

stocks led to an improvement when not using news data. Additionally, this improvement

is significant. For the other models, the difference observed when adding news data is not

significant

Apple Microsoft Tesla
Ridge 0.13 0.061 0.32
SVR 0.83 0.23 0.23

Random Forest 0.39 0.021 0.52
Neural Network 0.45 0.096 0.075

Table 8: P-values of the Diebold-Mariano test for each model and each company

We also look at the p-values of the model confidence set based on a SPA test in table

9. For each company, have the p-value of each model. A higher p-value means a better

model compared to the others from the set. We find that the best models for Apple and

Microsoft are random forest and ridge regression trained with text data. However, for

Tesla, the best models are the ones trained without text data. The models trained with

text data are among the worst for Tesla. For Apple and Tesla, random forest and ridge

regression receive an upgrade when they are trained with text data. However, training

neural networks and SVR with text data is detrimental to these models, as they may

not be able to use the information from it. Another reason could be that these models

need more computational power than we have to be trained using text data. Adding

variables to the dataset with news articles constrains models to fit more parameters, and

thus models such as neural networks need much more power in terms of computations to

find the optimal parameters.

In the end, news data bring an improvement to models trying to predict some stock prices.

Tesla stocks are very volatile and, therefore hard to predict, and news data does not help.

However, for stocks with no big movements from one day to another, news data brings

36

an improvement.

Apple Microsoft Tesla
Text data Non-text data text data Non-text data text data Non-text data

SVR 0.069 0 0 0.005 0.01 0.343
RF 0.765 0.021 0 0.42 0.01 0.004
NN 0 0.206 0 0.01 0 1
Ridge 1 0 1 0 0.004 0

Table 9: p-values of the model confidence set based on SPA test

37

6 Conclusion

This paper focuses on three mega-cap companies and tries to predict their one-day-ahead

stock prices using news data. In the beginning, we find that training on news data does

not bring much improvement than training it on a dataset with quantitative features.

Nevertheless, we have some slight improvements for some models: news data enables us

to reduce some high errors when predicting some stock prices. This stands for big cap

companies with not many fluctuations in their stock returns, but in case of very volatile

returns, news data bring a very slight improvement that is negligible. Finally, we per-

formed tests to assess the significance of this difference to evaluate if news data brings an

improvement. The results of the statistical tests show an improvement in models when

they are trained with news data. Models trained with news data are among the best

models in our set of models for two out of the three companies. Nonetheless, some models

seem unchanged or have less predictive power.

However, this paper presents some limitations. Firstly, the paper focuses only on mega-

cap stocks from three of the biggest companies in the world, while it would have been

relevant to see the impact of news data in predicting middle or small-cap companies’

stocks. This was impossible due to the difficulty of finding news data every day for a

company, and that is why we chose some massive companies. Moreover, the quality of

news data was not the best possible, since it was retrieved from the web by scrapping

news articles. The database had some missing values and some text unrelated to the

articles. Moreover, the collection of these articles was very long. The study could give

different results with a dataset retrieved from the Dow Jones database API, since the

articles are already cleaned, the collection is straightforward, and we could collect more

articles. The Dow Jones database API could have also give access to labeled data and

consequently grant us sentiment of news articles. It could be relevant to use other more

modern methods to handle text data, like the ones used in large language models such as

GPT or Llama. However, these models do not provide free resources for sentiment ana-

lysis. Furthermore, these models could have been used to handle missing text data and

generate new data based on the other news articles. Yet, models could be more trained

and have better hyperparameter optimizations by using more powerful machines. Having

more powerful machines would enable to find optimal hyperparameters for our models and

38

to use more observations to train our models. With better training on our models, the

difference between models trained with and without news data could be clearer. Finally,

it could be relevant to predict with different horizons to see if information brought by

news data is pertinent for short-term or long-term predictions.

References

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Vega, C. (2007). Real-time price

discovery in global stock, bond and foreign exchange markets. Journal of international

Economics, 73(2):251–277.

Ash, E. and Hansen, S. (2023). Text algorithms in economics. Annual Review of Eco-

nomics, 15:659–688.

Bergmeir, C. and Beńıtez, J. M. (2012). On the use of cross-validation for time series

predictor evaluation. Information Sciences, 191:192–213.

Bergmeir, C., Hyndman, R. J., and Koo, B. (2018). A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Computational Statistics

& Data Analysis, 120:70–83.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python:

analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”.

Breiman, L. (2001). Random forests. Machine learning, 45:5–32.

Breiman, L. (2017). Classification and regression trees. Routledge.

Chandra, R. V. and Varanasi, B. S. (2015). Python requests essentials. Packt Publishing

Ltd.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient

method with support for non-strongly convex composite objectives. Advances in neural

information processing systems, 27.

Den Heijer, M. (2024). pynytimes. Available at https://github.com/michadenheijer/

pynytimes.

39

https://github.com/michadenheijer/pynytimes
https://github.com/michadenheijer/pynytimes

Diebold, F. X. and Mariano, R. S. (2002). Comparing predictive accuracy. Journal of

Business & economic statistics, 20(1):134–144.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and Vapnik, V. (1996). Support

vector regression machines. Advances in neural information processing systems, 9.

Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business,

38(1):34–105.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work.

The journal of Finance, 25(2):383–417.

Fama, E. F. and French, K. R. (1996). Multifactor explanations of asset pricing anomalies.

The Journal of Finance, 51(1):55–84.

Fan, R.-E., Chen, P.-H., Lin, C.-J., and Joachims, T. (2005). Working set selection using

second order information for training support vector machines. Journal of machine

learning research, 6(12).

Gandhmal, D. P. and Kumar, K. (2019). Systematic analysis and review of stock market

prediction techniques. Computer Science Review, 34:100190.

Gardner, B., Scotti, C., and Vega, C. (2022). Words speak as loudly as actions: Central

bank communication and the response of equity prices to macroeconomic announce-

ments. Journal of Econometrics, 231(2):387–409.

Gentzkow, M., Kelly, B., and Taddy, M. (2019). Text as data. Journal of Economic

Literature, 57(3):535–574.

Hagenau, M., Liebmann, M., and Neumann, D. (2013). Automated news reading: Stock

price prediction based on financial news using context-capturing features. Decision

support systems, 55(3):685–697.

Hansen, P. R. (2005). A test for superior predictive ability. Journal of business & economic

statistics, pages 365–380.

Hansen, P. R., Lunde, A., and Nason, J. M. (2011). The model confidence set. Econo-

metrica, 79(2):453–497.

40

Hart, J. D. (1994). Automated kernel smoothing of dependent data by using time series

cross-validation. Journal of the Royal Statistical Society Series B: Statistical Methodo-

logy, 56(3):529–542.

Heaton, J. (2008). Introduction to neural networks with Java. Heaton Research, Inc.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67.

Hseb, A. (2017). google-search. Available at https://github.com/anthonyhseb/

googlesearch.

Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice.

OTexts.

Jan, M. N. and Ayub, U. (2019). Do the fama and french five-factor model forecast well

using ann? Journal of Business Economics and Management, 20(1):168–191.

Jang, B., Kim, I., and Kim, J. W. (2019). Word2vec convolutional neural networks for

classification of news articles and tweets. PloS one, 14(8):e0220976.

Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., and Kapadia, S. (2022). Making text

count: economic forecasting using newspaper text. Journal of Applied Econometrics,

37(5):896–919.

Kalra, S. and Prasad, J. S. (2019). Efficacy of news sentiment for stock market prediction.

In 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing (COMITCon), pages 491–496. IEEE.

Khedr, A. E., Yaseen, N., et al. (2017). Predicting stock market behavior using data

mining technique and news sentiment analysis. International Journal of Intelligent

Systems and Applications, 9(7):22.

Major, V., Surkis, A., and Aphinyanaphongs, Y. (2018). Utility of general and specific

word embeddings for classifying translational stages of research. In AMIA Annual

Symposium Proceedings, volume 2018, page 1405. American Medical Informatics Asso-

ciation.

41

https://github.com/anthonyhseb/googlesearch
https://github.com/anthonyhseb/googlesearch

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Nti, K. O., Adekoya, A., and Weyori, B. (2019). Random forest based feature selection

of macroeconomic variables for stock market prediction. American Journal of Applied

Sciences, 16(7):200–212.

Řehřek, R. and Sojka, P. (2010). Software framework for topic modelling with large

corpora.

Reuters, T. (2022). Annual economic indicators 2022. Eikon Datastream.

Richardson, L. (2007). Beautiful soup package on python. Available at https://github.

com/wention/BeautifulSoup4.

Shah, D., Isah, H., and Zulkernine, F. (2019). Stock market analysis: A review and

taxonomy of prediction techniques. International Journal of Financial Studies, 7(2):26.

Srivastava, A. (2010). Relevance of macro economic factors for the indian stock market.

Decision, 37(3):69.

Sun, A., Lachanski, M., and Fabozzi, F. J. (2016). Trade the tweet: Social media text min-

ing and sparse matrix factorization for stock market prediction. International Review

of Financial Analysis, 48:272–281.

Szczygielski, J. J., Charteris, A., Bwanya, P. R., and Brzeszczyński, J. (2023). Which

covid-19 information really impacts stock markets? Journal of International Financial

Markets, Institutions and Money, 84:101592.

Verma, R. K. and Bansal, R. (2021). Impact of macroeconomic variables on the per-

formance of stock exchange: a systematic review. International Journal of Emerging

Markets, 16(7):1291–1329.

Wu, S., Liu, Y., Zou, Z., and Weng, T.-H. (2022). S i lstm: stock price prediction based

on multiple data sources and sentiment analysis. Connection Science, 34(1):44–62.

Zhu, W., Zhang, W., Li, G.-Z., He, C., and Zhang, L. (2016). A study of damp-heat syn-

drome classification using word2vec and tf-idf. In 2016 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), pages 1415–1420.

42

https://github.com/wention/BeautifulSoup4
https://github.com/wention/BeautifulSoup4

	Introduction
	Literature
	Data
	Stock price data
	Quantitative features dataset
	News dataset

	Methods
	Text handling
	Word2Vec models
	Continuous Bag-of-Words
	Aggregating to the whole document

	Prediction models
	Ridge Regression
	Variable selection
	Support Vector Machine
	Neural Network

	Assessing the results
	Diebold-Mariano test
	Superior predictive ability test with model confidence set

	Results and discussions
	One-day horizon accuracy
	Apple performance
	Microsoft performance
	Tesla performance

	Significance of the difference

	Conclusion

