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Abstract 
Outliers are a common sight in sta s cal research or data analysis and they can nega vely affect the 

validity of the results of these studies or analyses. Therefore, using methods or sta s cal tests that are 

robust to outliers is important to guarantee validity and reliability.  This thesis aims to provide a direct 

comparison between mul ple sta s cal tests and methods, so researchers can choose the most robust 

method for their study if their data (poten ally) contains outliers. This thesis researches the robustness 

of classical sta s cal methods, the Student’s t-test and the Bonferroni correc on, and permuta on 

methods, the permuta on test and maxT method, in the presence of outliers. Using simula ons on 

height and weight data and the Golub dataset, this research evaluates the influence of outliers by 

comparing results before and a er the introduc on of outliers. The empirical analysis demonstrates 

that the permuta on methods showed be er robustness to outliers due to their flexibility and 

adapta on of the analyzed data. These findings offer a prac cal understanding of these methods for 

researchers in selec ng the appropriate sta s cal method, contribu ng to more reliable data analysis 

and sta s cal studies in various fields. 
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1. Introduc on 
In sta s cal analysis, outliers can have a significant effect on the results and interpreta on of 

hypothesis tests. The error rates can inflate and it could lead to substan al distor ons of parameters 

(Osborne & Overbay, 2004). Hawkins (1980) has defined outliers as follows: “An Observa on which 

deviates so much from other observa on as to arouse suspicions that it was generated by a different 

mechanism.” These outliers could pose a challenge when working with sta s cal measures (Osborne 

& Overbay, 2004). 

Parametric tests, like the Student’s t-test, assume that the observa ons and popula on follow a certain 

distribu on devia ons from this distribu on are considered to be outliers. However, when data or 

samples from the total popula on do not follow the assump on of a normal distribu on or contain 

outliers, parametric tests could result in biased or inaccurate outcomes. 

In contrast, permuta on tests, a non-parametric test introduced back in 1925 by Fisher (Berry et al., 

2014), do not assume that the observa ons or popula on follow any kind of distribu on. The different 

variables of the observa ons are permutated randomly. This could therefore mean that permuta on 

tests are poten ally more robust to outliers.  

Marke ng and business studies commonly use sta s cal methods like the Student’s t-test and 

permuta on tests. Baidun et al. (2022) uses, among others, the t-test to measure the impact of the 

marke ng mix on customer sa sfac on. Eusebio et al. (2006) use the t-test to compare two groups of 

Spanish firms and their marke ng performance. Burk (2006) applied the t-test to A/B split tes ng, even 

sta ng that the results of A/B tes ng are most o en compared using t-tests. Haenlein and Kaplan 

(2011) described permuta on tests and t-tests and analysed their sta s cal power for marke ng 

research. Tempesta et al. (2010) use permuta on tests for rela onship iden fica on for market 

segments. These papers are examples of comparison tests in marke ng studies. This indicates that 

group comparison tests are commonly used for marke ng research purposes. 

Situa ons where mul ple tests are conducted are also becoming more common. Mul ple test 

problems are not very common in economics, however, mul ple tests can be very useful in economic 

studies. Examples of this are studies conducted by Harvey et al. (2020), List et al. (2019), Romano and 

Wolf (2005), and Viviano et al. (2021). This indicates that mul ple test problems are used in economic 

research. 

Thus, this paper could provide marke ng researchers or marketers with useful insights about the most 

robust tests to compare groups. Marketers could use the insights of this paper to select the most robust 

or powerful method for their study or analysis. This indicates that the findings of this paper are also 
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relevant to the marke ng field and could help marketers of businesses improve the validity of their 

analyses. 

A research field where mul ple test problems are commonly used is biomedical sciences. These 

problems could include extracted gene expressions and measured phenotype associa ons (Menyhart 

et al., 2021). Datasets on these topics usually contain a great number of variables. Finding conclusive 

evidence could be of essen al importance in these studies. If these mul ple tests are performed on 

datasets which contain sta s cal outliers this could force errors in the results. Common methods for 

mul ple tests are maxT and Bonferroni (Westphal & Zapf, 2024). Bonferroni divides the wanted 

significance level by the number of tests adjus ng the significance level. The maxT method is a form of 

the permuta on test. The distribu on of the maximum test sta s c is generated under the null 

hypothesis through data permuta ons. It is stated that Bonferroni is more conserva ve than the maxT 

method (John et al., 2022; Nakagawa, 2004).  

Classical sta s cal methods, such as the Student’s t-test, are based on assump ons about the 

distribu ons of the data. The Bonferroni correc on, a classical sta s cal method for mul ple tests, 

does not directly rely on an assump on (Cheverud, 2001). These simple and well-understood methods 

make them useful in many scenarios where the assump ons hold or the data is simple. However, the 

reliance on parametric assump ons can increase the influence of outliers on the test sta s c. 

Bonferroni is considered very conserva ve (Noguchi et al., 2019). This could nega vely influence the 

correctness of the tests’ outcome when outliers are included in the data. On the contrary, permuta on 

methods, like the permuta on test for single comparisons or the maxT method for mul ple tests, could 

offer a more flexible alterna ve since these only rely on the exchangeability assump on. By reshuffling 

the data numerous mes, permuta on tests can result in test sta s cs and conclusions which are more 

reliable when outliers are included in the data. The comparison between classical and permuta on 

methods thus highlights a trade-off between the simplicity of classic methods and the flexibility of 

permuta on methods. 

1.1. Relevance 

Despite the poten al advantages of permuta on tests in handling outliers, there have been limited 

studies conducted in which the robustness of permuta on tests and Student’s t-tests against outliers 

are compared. While individual studies have explored the robustness of each test separately, a direct 

comparison between the two methods regarding their ability to withstand the influence of outliers has 

not been explored extensively. 

Furthermore, the robustness of sta s cal tests in the context of mul ple test scenarios also needs 

a en on. The maxT and Bonferroni methods can both be used to address the issue of mul ple 
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comparisons (Hemerik & Goeman, 2017b; Goeman & Solari, 2014). However, when it comes to 

handling outliers, both methods might react differently. The Bonferroni correc on’s conserva veness 

is caused by Bonferroni adjus ng the significance level for the number of tests, which can lead to an 

overly strict threshold (Noguchi et al., 2019). This could, in theory, increase the chance of Type II errors 

occurring. On the other hand, the maxT method, a permuta on-based approach, generates the 

distribu on of the maximum test sta s c under the null hypothesis through data permuta ons. This 

results in maxT being more flexible and less conserva ve than Bonferroni, albeit in poten al. Some 

studies have researched the robustness of the Bonferroni method, as Ringland (1983) did in his paper. 

However, few papers have looked into the influence of outliers on the outcomes of Bonferroni and 

maxT. A comparison between the two could provide useful insight for future sta s cal implica ons.  

Since outliers can significantly manipulate the results of sta s cal tests, it is important to find proof of 

whether permuta on tests or classical methods are more robust to these outliers. This comparison 

could be essen al for helping researchers select the appropriate sta s cal test technique for analyzing 

data and conduc ng sta s cal studies, par cularly when outliers are prevalent in data. This research 

aims to enhance the general understanding of the robustness of sta s cal tests against outliers by 

filling the exis ng void in the academic literature and, thus, helping improve the reliability and/or 

validity of sta s cal analyses for every kind of research that relies on sta s cal tests.  

1.2. Central Research Ques on 

This thesis aims to inves gate and compare the robustness of permuta on tests, including the maxT 

method for mul ple tests and classical sta s cal tests, in this case, Student’s t-test and the Bonferroni 

method, when outliers are included in the tested data. The research ques on of this thesis is: “Are 

permuta on tests and the maxT method more robust to extreme sta s cal outliers than classical tests, 

especially the Student’s t-test and the Bonferroni correc on?” 

1.3. Sub Ques ons 

This research ques on will be further divided into several sub-ques ons: 

1. How do permuta on tests and the maxT method work? 

2. How do Student’s t-tests and the Bonferroni correc on work? 

3. How robust are permuta on tests to extreme sta s cal outliers and how does this compare to 

Student’s t-tests? 

4. How robust is the maxT method to extreme outliers and how does this compare to the 

Bonferroni method? 

5. What happens to the outcome of the different methods when the outliers become more 

extreme? 
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6. What happens to the outcome of the different methods when the frequency of outliers 

increases? 
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2. Theory 
Student’s t-tests, like other parametric tests, are based on several cri cal assump ons about data 

distribu on. These are among others: normality, homogeneity of variances, and independence of 

observa ons (Keren & Lewis, 1993). The test sta s c is used to calculate the p-value. Therefore, 

standard normal and t-distribu on are an important part of these assump ons (Field, 2018; Tabachnick 

& Fidell, 2019). These assump ons facilitate valid and reliable test results when the analyzed data 

comply with the assump ons. 

On the other hand, permuta on tests are based on almost no assump ons about the distribu on of 

the data (Berry et al., 2014). Instead, permuta on tests rely on a distribu on of the test sta s c 

generated from the observed data (Good, 2013; Edgington & Onghena, 2007; Phipson & Smyth, 2010). 

Next, the propor on of permuta ons that result in a test sta s c as extreme as or more extreme than 

the observed sta s c is used to compute the p-value (Ernst, 2004). This characteris c allows 

permuta on tests to be versa le and could thus be applicable in a wide range of scenarios where the 

assump ons of parametric tests may not hold (Collingridge, 2012).  

2.1. Robustness 

Permuta on tests offer several benefits. These could include robustness to distribu onal assump ons, 

flexibility in handling complex data, and be er control over error rates. For instance, when the data do 

not meet the assump ons, permuta on tests could provide a reliable alterna ve to achieve more 

accurate conclusions (Pesarin & Salmaso, 2010). Due to these proper es, permuta on tests could be 

be er suited for hypothesis tests in situa ons where parametric assump ons are not met or are 

difficult to verify (Ludbrook & Dudley, 1998).  

The t-sta s c in Student’s t-tests represents the difference between sample means that is standardized 

a er being adjusted for the variability within and between groups (Berry et al., 2014). The p-value is 

calculated based on the t-distribu on (Walpole et al., 2006). Since this test relies on assump ons, this 

could form a problem when these assump ons are violated due to the presence of outliers or non-

normal data (Field, 2017). These viola ons could result in the validity of the test results being 

compromised, leading to inaccurate conclusions. Means can rela vely easily be influenced by outliers 

or extreme values (Moore et al., 2016). This could form problems for both Student’s t-tests and 

permuta on tests that measure the differences in means. 

The theore cal arguments stated above suggest that permuta on tests may be more robust to extreme 

sta s cal outliers compared to Student’s t-tests due to their non-parametric nature and reliance on 

empirical distribu ons. Permuta on tests could be less suscep ble to the influence of outliers that 

violate parametric assump ons (Ludbrook & Dudley, 1998). 
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2.2. Scenarios 

On the other hand, permuta on tests are generally considered more robust to outliers due to their 

non-parametric nature and lack of distribu onal assump ons (Keller-Mcnulty & Higgins, 1987). There 

could be possible scenarios in which Student’s t-tests may exhibit greater robustness to outliers.  

Student’s t-tests might be more robust to outliers in larger sample sizes. With larger sample sizes, the 

distribu on of sample means could follow a normal distribu on be er, even in the presence of outliers 

(Kwak & Kim, 2017). This is considered to be true under the Central Limit Theorem. Consequently, the 

t-sta s c used in Student’s t-tests could become more accurate, leading to be er performance. 

Another scenario could be if the underlying distribu on of the data nearly follows a normal 

distribu on. In this situa on, Student’s t-tests may be more robust to outliers, provided that the other 

assump ons of homogeneity of variances are met (Sawilowsky & Blair, 1992) If these assump ons hold, 

the t-tests could offer be er-performing outcomes compared to permuta on tests (Hochberg & 

Tamhane, 1987). 

When the variances of the compared groups are approximately equal, Student’s t-tests could show 

robustness to outliers, as the impact of any single outlier is lowered by the homogeneity of variance 

(Field, 2017). In contrast, permuta on tests are sensi ve to differences in variances between groups 

(Ludbrook & Dudley, 1998). Therefore, in cases of equal variances and sample sizes, Student’s t-tests 

may perform be er due to the homoscedas city assump on (Zimmerman, 2004). 

Overall, while permuta on tests have the advantages of flexibility and minimal assump ons, Student’s 

t-tests could be more efficient under specific condi ons of near-normal distribu on and equal 

variances (Edgington & Onghena, 2007). These different scenarios will all be tested in the thesis. 

2.3. Mul ple Test 

The maxT method is a sta s cal procedure used to control the familywise error rate (FWER) when 

tes ng mul ple hypotheses. The maxT method focuses on the maximum absolute value of test 

sta s cs for mul ple comparisons. This sta s c is used to determine the significance of the tests 

(Dudoit, Shaffer, & Boldrick, 2003). By concentra ng on the maximum sta s c, the maxT method tries 

to control the overall error rate and provide a correc on for mul ple tests. 

The maxT method is poten ally robust to outliers. The maxT method shrinks the impact of outliers on 

Type I error control through its focus on the maximum absolute value of test sta s cs. This offers 

flexibility to handle skewed or tailed distribu ons that may be created by the presence of outliers 

(Wes all & Young, 1993). 
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The Bonferroni method is a straigh orward and commonly used approach for controlling the FWER in 

scenarios where mul ple hypotheses are simultaneously tested. Bonferroni specifically divides, as 

stated before, the significance level (e.g. 0.05) by the number of individual tests. This, albeit, 

conserva vely, controls the Type I Error Rate. However, the influence of outliers on individual tests is 

not directly tackled (Holm, 1979). Bonferroni’s conserva veness is amplified when dealing with a large 

number of tests (Armstrong, 2014). The maxT method, by contrast, provides a more balanced approach 

to error rate control (Romano & Wolf, 2005). 

The Bonferroni method remains widely used due to its simplicity and ease of implementa on. This 

results in lower computa onal intensity, especially compared to the maxT method (Armstrong, 2014). 

The maxT method, permuta ng data numerous mes, requires more computa onal resources and 

most o en takes more me to be calculated.  

This results in a trade-off between simplicity and robustness. The Bonferroni method is easier to apply, 

being predominantly conserva ve. The maxT method could offer an approach that is more flexible and 

poten ally less conserva ve, possibly even in datasets with outliers (Wes all & Young, 1993; Romano 

& Wolf, 2005).  



11 
 

3. Data 

3.1. Dataset Overview 

This study aims to empirically research whether permutation tests are more robust to outliers than 

Student’s t-tests. To research this a dataset with weights and heights of 25.000 different humans with 

the age of 18 years old (SOCR Data Dinov 020108 HeightsWeights - Socr, n.d.). This dataset will further 

be referred to as the Hong Kong dataset. Weight and height variables are naturally normally distributed 

(López-Siguero et al., 2008). Therefore they make a useful dataset to use in this research as normal 

distribution is assumed by the Student’s t-test method. The data was used to develop the growth 

charts that are currently used in Hong Kong. The dataset only contains 3 variables. The first variable 

indicates the index of the variable. The second variable states the height of the corresponding 

individual. The height is given in inches, the length measure of the Imperial system. Accordingly, the 

weight of the observations is stated in pounds. This weight is the third and final variable from the 

dataset. 

To investigate the multiple test methods, the Golub dataset will be used. The Golub dataset is widely 

used in the field of bioinformatics and computational biology. It was originally used in a study by Golub 

et al. (1999). This study studied the potential to identify the kind of acute leukaemia patients suffered 

from. This was done by analysing the gene expressions of the patients. The dataset includes 72 samples 

or observations. The samples were taken from patients having two different types of leukaemia: 47 

samples of acute lymphoblastic leukaemia (ALL) and 25 samples of acute myeloid leukaemia (AML). 

Each sample contained the expression levels of 7,129 different genes. 

3.2. Data Processing and Cleaning of the Hong Kong data 

Data cleaning is a critical step to ensure the accuracy and reliability of the analysis. However, the 

dataset was pre-processed and therefore did not require any cleaning. No missing values were 

included in the data.  

Outliers are the focus of this study. However, if there were outliers in the original data, this would not 

be useful. The main analysis of this study requires a normal distribution and the possibility of 

controlling the outliers. Boxplots were drawn up to indicate if any outliers were present in the data. 

The boxplots in Figures A and B (Appendix) indicate that the original dataset included several outliers 

for both the Height and Weight variables. These outliers, however, were not deleted from the dataset, 

since no outliers seem to be an extreme deviation from the rest of the data. Normal distribu ons 

naturally contain outliers, which are not extreme (Wilks, 1963). Therefore, the outliers do not form a 

problem. Additionally, after deleting the outliers both variables did not follow a normal distribution. 

Thus, it was concluded that the initial outliers would not be deleted and remained in the data. 
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3.3. Data Explora on of the Hong Kong data 

Furthermore, for initial exploration of the data summary statistics were calculated for the Height and 

Weight variables. These statistics provide a first insight into the tendencies and variability within the 

data. The summary statistics on the original data are shown in Table 1. 

Table 1 
Overview of summary statistics of Hong Kong data 

Variable Min Median Mean Max Standard 
Deviation 

Variance 

Height (Inches) 60.28 68.00 67.99 75.15 1.90 3.61 

Weight (Pounds) 78.01 127.16 127.08 170.92 11.66 135.98 

Since Student’s t-tests assume a normal distribution (Berry et al., 2014), checking whether the variables 

follow a normal distribu on is useful. Naturally, height tends to follow a normal distribu on for a 

specific age group (López-Siguero et al., 2008). A normal distribu on does not naturally occur for 

weights, however, this does not indicate anything for the weight variable of this study. 

The first method to check for a normal distribu on uses a histogram (Das, 2016). It could provide an 

ini al insight into a possible skewness or distribu on of the data. Figures 1 and 2 show the histograms 

with the distribu ons of the Weight and Height variables respec vely. A line indica ng a normal 

distribu on's ‘bell shape’ was included. This was done to help the interpreta on. 

Figure 1 
Histogram of Height variable of Hong Kong data 

Figure 2 
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Histogram of Weight variable of Hong Kong data 

Both histograms indicate that the Weight and Height variables follow a normal distribu on. There is no 

clear skewness and the bars in the histogram seem to follow the outline of a normal distribu on. The 

second test encompassed a quan le-quan le plot, also known as a Q-Q plot (Das, 2016). A Q-Q plot 

shows a comparison of two distribu ons by evalua ng quan les (Almeida et al., 2018; Lee, 2020). The 

Q-Q plot combines the distribu on of the data and compares it to a normal distribu on. The resul ng 

plot could be used to indicate whether data follows a normal distribu on. If most points follow the 

central line, this indicates that the observa ons for the variables could be considered normally 

distributed (Michael, 1983).  

Figures C and D (Appendix) show a similar pattern. Between the 2.5 quantiles, the observations from 

the Hong Kong data almost perfectly follow the 45-degree line of the Q-Q plot. This indicates that the 

centre fit of the data follows a normal distribution almost perfectly (Almeida et al., 2018; Lee, 2020). 

The tails of the distribution are approximately in the accepted range. This means that according to the 

Q-Q plots almost no observations would be considered outliers (Wilk & Gnanadesikan, 1968). 

Since the Q-Q plot and histograms did not provide a conclusive answer, other statistical tests were 

conducted. These tests included the Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling test. 

These tests are empirical distribution tests or check the regression to decide whether the data is 

normally distributed (Yap & Sim, 2011b).  

The Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling tests are very useful for situations in 

which the normality of datasets needs to be tested (Stephens, 1974). By calculating test statistic W 

against critical values, the Shapiro-Wilk test checks whether data follows a normal distribution by 

comparing (Shapiro & Wilk, 1965). However, this test can only be used on datasets on smaller datasets. 

Therefore, a random sample of 5,000 observations was pulled and used to test whether the overall 

dataset follows a normal distribution. The test statistic W is calculated by the following formula: 



14 
 

𝑊 =  
(∑ 𝑎 𝑥 )

∑ (𝑥 −  �̅�)
 

Where ai is the coefficient calculated as:  (𝑎 , 𝑎 , … , 𝑎 ) =   

With m is the vector and vector norm C is:  𝐶 = (𝑚 𝑉 𝑉 𝑚)  

Kolmogorov-Smirnov and Anderson-Darling for larger datasets are more often used for bigger datasets 

and therefore were used on the complete dataset. The Kolmogorov-Smirnov test measures the 

goodness-of-fit between the functions of the empirical distribution and the cumulative distribution of 

a normal distribution (Stephens, 1974). This test uses the maximum absolute difference, called D and 

is calculated by the following formula:  𝐷 = sup(𝑥) |𝐹 (𝑥) −  𝐹(𝑥)|  

Where F is the distribution function with n number of ordered observations Xi: 𝐹 (𝑥) =  
∑ ( )( ) 

Similarly, the Anderson-Darling test computes A2. A2 is the test statistic and it is compared against 

critical values. This test is mostly known for its sensitivity in detecting deviations in distribution tails. 

A2 is calculated as follows:  𝐴 =  −𝑛 − 𝑆 

Where S is calculated as follows:  𝑆 =  ∑ ln 𝐹(𝑌 ) + ln 1 −  𝐹(𝑌 )   

F  is the cumulative distribution function. 

These tests are very important in determining whether data follows normality. Stephens (1974) 

discusses these methods comprehensively, emphasizing their utility in statistical analyses. Since there 

is no significant difference or preference for any of these tests, all three tests were conducted on the 

data to determine whether the data is normally distributed. The test statistics as well as the 

corresponding p-values for the tests for the Height and Weight variables are shown in Tables 2 and 3. 

Important to note for these p-values is that in the case of the p-value being smaller than 0.05, the null 

hypothesis is rejected. The null hypothesis in this case is that (the sample of) the data is normally 

distributed. So, if the p-value is smaller than 0.05 the data is assumed to not be normally distributed. 

Table 2 
Overview of test statistics for Height with original data 

Test Test Statistic P-value Normality assumed 

Shapiro-Wilk 1.000 0.326 Yes 

Kolmogrov-Smirnov 0,003 0.979 Yes 

Anderson-Darling 0.242 0.771 Yes 

Note: The test statistics and p-values are rounded to three decimals for better readability and interpretability. 

Table 3 
Overview of test statistics for Weight with original data 
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Test Test Statistic P-value Normality assumed 

Shapiro-Wilk 1.000 0.288 Yes 

Kolmogrov-Smirnov 0.004 0.808 Yes 

Anderson-Darling 0.525 0.181 Yes 

Note: The test statistics and p-values are rounded to three decimals for better readability and interpretability. 

The findings from the different normality tests all show a similar picture for both the Height and the 

Weight variables. The Shapiro-Wilks, Kolmogorov-Smirnov, and Anderson-Darling tests all indicate that 

both the Height and Weight variables follow a normal distribution. This could be important as one of 

the scenarios that will later be tested is the robustness of Student’s t-test and permutation tests when 

the tested data follow a normal distribution. Since the Student’s t-test assumes normality, this could 

also help improve the validity of the tests when normality is not specifically checked. 

3.4. Data Processing and Cleaning of the Golub data 

The Golub data contained 72 observations or samples but did contain 7,129 gene probes (T. Golub, 

2024). Furthermore, six other variables were included. These variables were: the sample number, the 

source of the sample, the gender of the patient, the hospital of the sampled patient, a factor indicating 

the source and gender of the patient, and lastly the type of cancer. Except for the last variable, cancer 

type, all variables were deleted, as they would not be used in the maxT and Bonferroni evaluations. 

Initially, the data contained information on 2 different kinds of ALL, ALLt and ALLb. Due to the low 

amount of observations, these were grouped into a single ALL variable. This also would simplify the 

Bonferroni and maxT analyses, as only 2 groups would have to be analyzed. 

The data was loaded by using the GolubEsets package in R. This resulted in the value of the gene probes 

being normalized (Bolstad et al., 2003). This was not expected to form a problem for further analysis, 

therefore the normalized data was used. No missing values were present in the data. 

3.5. Data Explora on of the Golub data 

A goal set for this study was to investigate the potential difference in outlier robustness of maxT and 

Bonferroni. The independence of the tests is an important assumption for the Bonferroni correction. 

It is also important for the maxT method. To check this independence, the correlation between the 

different gene expressions would be of importance. Correlation between variables would also be an 

important factor to measure, as this could influence the power of both Bonferroni and maxT. Thus, the 

correlation between the gene probes of the Golub dataset was checked. This involved examining the 

pairwise relationships between the levels of different gene expression to identify potential causal 

patterns between two variables (Yule, 1897). This analysis can reveal whether genes show similar 

patterns across samples. This might suggest relationships between them. Using the Pearson 

correlation coefficients, the strength and direction of linear relationships between gene pairs could be 
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measured (Benesty et al., 2009). The Pearson correlation works by analyzing the cross-correlation and 

the variances of the variables. This results in the following formula:   𝑟 =  
( ) 

The correlation is indicated by the r. E(ab) is the covariance of the two variables or, in this case, gene 

probes. The product of the standard deviations of both variables is used to divide this covariance. It is 

important to note that the indicated correlation between the variables is stronger if r approaches 1. A 

coefficient of 0 would suggest that there is no correlation. 

In the context of high-dimensional gene expression data, this step could be crucial for understanding 

the underlying biological networks and discovering genes that might be related in some way 

(Langfelder & Horvath, 2008). The Golub dataset has information on over 7 thousand gene probes. 

This means that the data used is extremely high-dimensional and therefore the correlation evaluation 

could provide useful insight.  

Following this, a correlation matrix was computed to evaluate the pairwise correlations between 

genes. This matrix was then visualized into a heatmap, which is shown in Figure 3. This heatmap also 

clustered the genes, but this clustering was not further elaborated upon in this study as, the Bonferroni 

or MaxT procedures only adjust for Type I errors due to a large number of simultaneous comparisons 

(Benjamini & Hochberg, 1995; Dudoit, Shaffer, & Boldrick, 2003).  

Figure 3 
Correla on heatmap of Golub data 

Figure 3 includes the correlation of every individual variable pair. Concluding, all 7,129 gene probes 

were included in this heatmap. Therefore, the heatmap includes over 50 million combinations. This 
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results in a heatmap that does not state a lot about individual pairs and correlations. Figure 3, however, 

offers a general view of different patterns. As is visible, several groups or clusters of gene probes show 

a strong correlation. 170 pairs even had an absolute correlation coefficient of 0.9 or higher. 446.305 

combinations had a Pearson correlation coefficient with an absolute value equal to or higher than 0.5. 

This suggests that there are some strong relationships between gene probes, albeit that the 

correlations only apply to a small margin of the data, respectively 0.0007% and 1.8%.  This could also 

indicate that there is no clear independence between all the tests. 

To further investigate the independence of the Golub data, the Chi-Square test of independence was 

conducted on the data. The Chi-Square test measures a possible significant difference between two 

variables (McHugh, 2013). These two variables, however, should be categorical. Since the gene probe 

variables are numerical, these were first converted into 3 different groups, so the Chi-Square test could 

be conducted and a general conclusion about independence could be found. Chi-square compares the 

observed frequencies against the expected frequencies of the compared variables. The formula of chi-

square is as follows: 𝑋 =  ∑
( )

  

The X2 represents the test statistic. O is the observed frequency, while E is the expected frequency. 

Using the degrees of freedom and the significance interval of 5% the null hypothesis is rejected or 

retained. The null hypothesis of the chi-square states that there is no relation between the variables. 

On the other hand, the alternative hypothesis states that there is a relationship between the variables. 

Thus, if the null hypothesis is rejected this indicates that there is no independence between the 

variables. 

Since multiple variables were compared at once, the p-value was adjusted by the Bonferroni 

correction. This resulted in a very stringent p-value since all 7,129 variables were compared to each 

other. However, the chi-square test was only conducted to get a general overview of any possible 

dependence on the Golub data. Finally, 57,211 pairs were found to have a significant relationship 

between them. While these only were 0.23% of all tested pairs, this does indicate that there is some 

dependence in the data.  

Concluding, the correlation and chi-square tests indicate that there are some relationships and 

correlations between different variables. Therefore, the tests suggest that there is no complete 

independence between the variables. This could thus influence the power of the Bonferroni correction 

and maxT method. However, the proportions of the correlation are very small and are not considered 

to form problems for further study.  
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4. Methods 
The methods chapter will take a deeper dive into the math and statistics behind the researched 

methods. The methods will be discussed in the following order: Student’s t-test, permutation test, 

Bonferroni correction, and maxT. Furthermore, based on the math and statistical properties of the 

methods the robustness to outliers will be estimated. After going into the methods separately, the 

processes of empirically comparing the methods will be explained. This explanation will contain the 

measures that were used to compare the methods will be elaborated upon. 

4.1. Student’s t-test 

Student's t-tests, also referred to as t-tests, are commonly used statistical tools which check if there is 

a significant difference between the distributions of two groups, this is done by comparing the means 

of both groups (Livingston, 2004). T-tests offer a simple way to compare two groups. The null 

hypothesis of t-tests states that there is no significant difference between the groups being compared. 

The alternative hypothesis is that there is a difference.  

There are two primary types of t-tests: 

Independent two-sample t-test: This test is the standard form of the t-test and is based on multiple 

assumptions. One of these assumptions is independence between the groups.  

Paired t-test: This form of t-test is used when the groups are related.  

As stated before, t-tests rely on different assumptions to enable valid conclusions based on the test 

statistics and p-values. These assumptions are what make the t-test simple to use. However, they can 

be a major limitation to the usefulness, power and even robustness of the tests. The different 

assumptions that must be met in order to generate valid results with t-tests are (Widerberg, 2019):  

Normality: The data should be normally distributed. This is further elaborated in the Data chapter.  

Independence: Observations or samples for both groups should be independent. This assumption, 

however, does not apply to paired t-tests.  

Homogeneity of Variance: For independent two-sample t-tests, the variances of the two groups should 

be the same. T-tests, thus, require homoskedasticity.  

Equal sample sizes: If the sample sizes differ relatively much between the two groups, this could have 

a direct effect on the equality of the variances. 
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So, independent two-sample t-tests compare the observed means of two groups which are unrelated 

to each other. The formula for the t-test statistic when the variances of the two groups are assumed 

to be equal (pooled t-test) is (Teh & Abdul Rahman, 2009): 𝑡 =  
  

In this formula, M1 and M2 are the means of groups 1 and 2. They are divided by the standard error (S) 

to compute the test statistic t. To calculate the standard error, the standard deviation of group 1 (s1) 

is divided by the square root of the number of observations in group 1 (N1). This is then squared. This 

is then added to the square root of the same calculations for group 2. The standard error is finally 

derived by square rooting the sum of the measures of groups 1 and 2. This is also illustrated by the 

following formula: 𝑆 =  
√

+  
√

 

Interpreting the t-test results requires the degrees of freedom, n - 1. With the degrees of freedom and 

test statistic, using the t-distribution the corresponding p-value can be found. If this p-value is lower 

than the chosen significance level, 5%, the null hypothesis is rejected. In that case, the alternative 

hypothesis is accepted and it can be concluded that the groups differ significantly. 

Some advantages and limitations of the test should be considered before the simulation results are 

discussed, this could provide better insights into the underlying components that influence the results 

of the simulation. It could also help when comparing the results of the difference in the simulations. 

The advantages of Student’s t-test are: 

Simplicity and Interpretability: Student’s t-tests are straightforward to perform, requiring little 

computational resources. Interpreting the results is also relatively easy (Ruxton, 2006). 

Power with Small Sample Sizes: T-tests can be powerful even with a relatively low number of 

observations included in the samples, providing valid results (Derrick et al., 2016). 

Robust to Deviations from Normality: T-tests are relatively robust to moderate deviations from 

normality when the sample sizes are relatively large. This is due to the Central Limit Theorem (Lumley 

et al., 2002). 

Naturally, Student’s t-tests have limitations too, some of these limitations are: 

Assumption Sensitivity: T-tests are based on several assumptions. Violations of these assumptions 

could lead to inaccurate and invalid results (Zimmerman, 2004). 

Limitation with Non-Normal Data: When variables are not normally distributed and the sample sizes 

are relatively small, non-parametric tests might be a better fit (Gibbons & Chakraborti, 2011). 
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Concluding, Student's t-tests are a useful and versatile tool in statistical and data analysis. By allowing 

a comparison of means between groups when several assumptions are met. However, the presence 

of outliers could cause violations of these assumptions. This could lead to inaccurate or invalid results. 

Additionally, Student’s t-tests heavily rely on means and variances. These statistics are more sensitive 

to outliers or extreme values than other statistics, like medians (Moore et al., 2016). This could reduce 

robustness. Outliers can inflate or shrink the t-sta s c and p-value due to the shi  in variance and 

means (Wilcox, 2012).  

4.2. Permuta on Tests 

Permuta on tests are non-parametric methods, meaning that they are not based on assump ons 

(Berry et al., 2014). They are used to determine if the distribu ons are equal between two groups. 

Their goal is thus similar to the Student’s t-test (Hemerik & Goeman, 2017a). This study will solely focus 

on exact permuta on and will disregard any other types of permuta on tests. Permuta on tests are 

based on reshuffling the observa ons or samples several mes and evalua ng the reshuffled data. 

Permuta on tests are not based on an underlying distribu on, like Student’s t-tests. Similar to t-tests 

the null hypothesis says that the groups do not significantly differ. The alterna ve hypothesis states 

that there is a significant difference between the compared groups.  

Permuta on tests ‘permute’ or shuffle the labels of all data points. A er each permuta on, the desired 

test sta s c is obtained. Permuta on tests can focus on different test sta s cs, like differences in 

means or medians (Good, 2000). The possibility of focusing on medians instead of means could provide 

be er robustness to outliers, as medians are more resistant than means (Moore et al., 2016). Means 

tend to follow outliers or extreme values towards the skewness of the data. In the further parts of this 

study, the permuta on test measuring the differences in means will be referred to as the ‘mean 

permuta on test’. The permuta on test measuring the differences in medians will be referred to as the 

‘median permuta on test’. The test sta s cs are used to determine the distribu on of the test 

sta s cs. This is done by taking a sample of all possible permuta ons, as calcula ng all possible 

permuta ons would take an extremely long me, this is called approximate randomiza on tests. The 

p-value then is derived from the mes that the permutated test sta s c is bigger than the observed 

test sta s c. This p-value can then be compared to the significance level, usually 0.05 (Noble, 2009). if 

the p-value is smaller than the p-value, the null hypothesis is rejected. 

Permuta on tests are based on only two assump ons: 

Exchangeability: The data points must be able to be exchanged for both labels of the data.  
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Independence: Data observa ons must be independent of each other. This assump on is similar to the 

one for Student’s t-tests (Ernst, 2004). 

The procedure to execute a permuta on test consists of 5 different steps: 

1. Defini on of test sta s c: A test sta s c T should be selected. This test sta s c needs to be 

appropriate with regard to the tested hypothesis (Pesarin & Salmaso, 2010). For this study, the 

test sta s cs that will be used are the differences in means and medians between groups. 

2. Calcula on of observed test sta s c: The test sta s c for the observed data Tobs is calculated. 

3. Execu on of permuta ons: The (sampled) data is permuted n number of mes. The level for 

n that will be used in the simula ons for this study is 1.000 permuta ons. For each permuta on 

the test sta s c is calculated, Ti, where i is the itera on of the permuta on. 

4. Formula on of distribu on: All test sta s cs of the permuta ons (T1, T2,..., Tn) are compiled 

to construct the null distribu on of the test sta s c. 

5. Calcula on of p-value: The p-value is derived from the propor on of the permuted test 

sta s cs that are as extreme or more extreme than the observed test sta s c. This can also be 

formulated by the following formula (Ernst, 2004): 𝑝 =  
∑ ( ) 

Where I is the indicator func on measuring if Ti is as extreme or more extreme than the 

observed test sta s c Tobs. 

The calculated p-value is then compared to the significance level. And depending on the p-value being 

smaller than the significance level the null hypothesis will be accepted or rejected. And thus the 

conclusion about the similari es or differences between the groups will be drawn. 

Like all other forms of sta s cal tests, permuta ons have advantages when compared to other 

methods, but the advantages will mostly be considered concerning a comparison with Student’s t-tests. 

However, permuta on tests have some limita ons that need to be considered. 

Some advantages of permuta on tests are:  

Non-parametric: Permuta on tests are a non-parametric test, this implies that they do not rely on 

assump ons about, among others, the distribu ons. This makes them useful for non-normal data 

(Good, 2000). This could help the performance of the tests when outliers are included in the data. 

Permuta on tests provide a distribu on of test sta s cs. This discrete distribu on offers a be er 

approach than approximately probability values based on certain distribu ons. 
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Versa lity: Permuta on tests can measure different test sta s cs, like differences in means and 

medians. This provides a different approach compared to t-tests, which could be useful for certain 

situa ons. Medians are less likely to be influenced by outliers than means. 

Resistance to extreme values: Appropriate permuta on tests can be be er resistant to values that can 

be considered extreme (Mielke & Berry, 2013). This could also apply to outliers that are generated by 

faults in the data gathering or cases with significantly different values than most other observa ons. 

Some limita ons of permuta on tests are: 

Computa onal Intensiveness: Permuta on tests can require high computa onal resources as more 

calcula ons are executed to compute the p-values. This is especially true for large data sets (Ernst, 

2004). Since the Hong Kong data has a lot of observa ons, the permuta on test could require many 

resources and therefore take rela vely longer to be executed. 

Approximate randomiza on: Using a limited number of permuta ons instead of execu ng all possible 

permuta ons increases the chance of Type I errors. Therefore, comparing the Type I error of Student’s 

t-tests and permuta on tests on the same data could provide useful insights. Addi onally, the sampling 

could cause different results to be generated even though iden cal protocols were followed (Mielke & 

Berry, 1994). 

So, permuta on tests could offer a flexible alterna ve to Student’s t-tests. They allow assessments 

without relying on distribu onal assump ons which nega vely impact the usefulness or validity. 

Permuta on tests are possibly more robust to outliers as they are considered to be resistant to extreme 

values. However, only using a sample of all possible permuta ons could limit results. Since permuta on 

tests can focus on different sta s cal differences between groups, like means and medians, 

permuta on tests could offer versa lity when a sta s c is skewed due to outliers. Student’s t-tests only 

focus on means, so permuta on tests could gain power from using less sensi ve sta s cs as a basis for 

the evalua ons. 

4.3. Mul ple Test 

The methods that have yet been discussed can be applied to determine any possible similari es or 

differences between 2 groups. Both Student’s t-tests and permuta on tests can, however, only be 

applied to test a single variable at a me. In some situa ons, it can be required to test differences or 

similari es between groups based on mul ple variables. These situa ons require a form of mul ple 

test (Jafari & Ansari-Pour, 2019). Mul ple test allows the analyst to compare groups based on the values 

of mul ple variables. So, the difference between groups can be determined by a wider range of factors. 
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This could provide useful insights when the evaluated data consists of a rela vely bigger number of 

variables. 

Important to note when discussing mul ple tests is the increased possibility of Type I errors. Each single 

sta s cal test bears upon it the chance to result in a false posi ve (Lin, 2015). When the null hypothesis 

is rejected when it should not have been rejected, this is called a false posi ve. The chance of a false 

posi ve occurring is equal to the significance level, mostly 5% (Noble, 2009). This chance is for a single 

test. So naturally, when mul ple tests are conducted simultaneously, the results probably include one 

or more false posi ves (Jafari & Ansari-Pour, 2019). This is called the mul ple comparisons problem 

(MCP). For example, if each test is conducted at a significance level of α and the tests are all 

independent, the chance of the results including at least one Type I error in m number of tests is (Bland 

& Altman, 1995): 1 − (1 −  𝛼)  

If α = 0.05 and 20 variables are tested, so m = 20. This results in (0.95)20 = 0.36. This is the chance that 

no Type I error will occur. This is nearly one-third of the original chance of 0.95 of a Type I error 

occurring. The chance of at least one significant error occurring is then 1 - 0.36 = 0.64. Then the chance 

of at least one significant Type I error is 0.64. This is almost 13 mes higher than the original chance of 

0.05. 

In order to combat this increase in the probability of false posi ves, methods were created to lower 

the chance of false posi ves. Two examples of these methods are the Bonferroni correc on by Dunn 

(1961) and the maxT method by Wes all and Young (1993). these methods are used to control the 

familywise error rate (FWER). Mul ple test methods are widely used in studies using data on genes as 

these datasets o en consist of a large number of variables (Jafari & Ansari-Pour, 2019). 

Important to note is that mul ple tests, in principle, are not test methods. Mul ple test methods only 

help with controlling the FWER. So, it is used as an extension of a sta s cal test, like the t-test or 

permuta on test. Therefore, the Bonferroni and maxT methods were based on the Student’s t-test in 

the simula ons part of this study. 

4.4. Bonferroni Correc on 

The Bonferroni correc on is a classical sta s cal method used to correct the MCP (Benjamini & 

Hochberg, 1995). This is done by adjus ng the significance threshold. The Bonferroni correc on helps 

to control the FWER, so the desired level of significance is maintained across mul ple tests. Specifically, 

if m independent tests are conducted, the Bonferroni correc on adjusts the significance level for each 

test to be 𝛼’. And 𝛼’ is calculated by the following formula (Jafari & Ansari-Pour, 2019): 𝛼 =   
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Where 𝛼 is the desired overall significance level, in most situa ons this would be 5% or 0.05 (Noble, 

2009). This means that each hypothesis test is conducted with a more restricted significance level. This 

restricts the otherwise increased risk of Type I errors that occur with mul ple tests. 

If the previous example of 20 tests with a significance level of 0.05 is now analyzed with the Bonferroni 

correc on. This would result in the following adjusted p-value: α’ =  
.

= 0.0025 

So, each test will be conducted and the null hypothesis is only rejected when the p-value is equal or 

lower than 0.0025 instead of the original 0.05 level. The chance of no Type I error occurring among all 

tests is:  1 − (1 −  𝛼) = (1 − 0.0025)  ≈ 0.951 

Thus, the chance of at least one Type I error occurring is (1 – 0.951) = 0.049. This is approximately equal 

to the original 0.05 chance for a single test. Without adjus ng the p-value the chance of at least one 

Type I error was 0.64. Using this adjusted threshold, the Bonferroni correc on ensures that the 

probability of making one or more Type I errors across all tests is maintained at the desired 𝛼 level.  

The Bonferroni correc on is straigh orward and simple to implement. This simplicity has a downside, 

Bonferroni is also to be (very) conserva ve (VanderWeele & Mathur, 2018). This conserva ve effect is 

magnified when the number of tests increases as 𝛼’ will shrink in size. The conserva sm and shrinkage 

of 𝛼’ poten ally lead to a sta s cal power reduc on, which in turn increases the likelihood of Type II 

errors (false nega ves). This is when true effects are missed, so the null hypothesis is accepted while it 

should have been rejected. Despite this conserva veness, the Bonferroni correc on is widely used 

because of its simplicity and effec veness in controlling the FWER.  

The implementa on of the Bonferroni correc on only requires three steps: 

1. Iden fica on of the number of tests: The first step to applying the Bonferroni correc on is to 

determine how many tests will be simultaneously conducted. In the simula ons of this study, 

all gene probes of the Golub dataset will be tested at once, so 7,129 tests (m). 

2. Calcula on of adjusted significance level: The desired significance level should be calculated 

using the stated formula:  𝛼 =   

So, the desired level of 𝛼 should be divided by the number of tests. 

3. Applica on of the adjusted significance with tests: The acquired significance level 𝛼’ should 

next be applied to evaluate the hypotheses of each individual test. This test could be any 

sta s cal test that works with a p-value and significance level. 

Some advantages of the Bonferroni correc on are: 
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Simplicity: Understanding and implemen ng the Bonferroni correc on is rela vely easy, as it requires 

a single ac on or calcula on to implement over a large number of tests (Armstrong, 2014). 

Conserva veness: Bonferroni provides strict control over the Type I error rate. This ensures that the 

desired level α is not exceeded (Nakagawa, 2004). 

Some limita ons of the Bonferroni correc on are: 

Conserva veness: While conserva veness is a strength of Bonferroni correc on controlling the Type I 

error rate, the conserva veness can also have a nega ve effect when the number of tests increases. 

This can lead to an increasingly higher risk of Type Type errors. Thus, the chance of overlooking 

meaningful effects increases (Perneger, 1998). 

Independence: Bonferroni assumes that all tests are independent. When there is a correla on 

between the tests, Bonferroni could be too stringent. This unnecessarily reduces sta s cal power 

(Holm, 1979). 

In conclusion, the Bonferroni correc on is a classic method for handling the mul ple comparisons 

problem in situa ons with mul ple tests, as it ensures control over the overall Type I error rate. While 

its simplicity and conserva veness form advantages, the method's conserva ve nature can be a 

limita on in scenarios with a large number of tests, especially when they are also correlated. The 

Bonferroni correc on does not have a direct influence on the robustness of outliers, as it is a rela vely 

passive method. Bonferroni adjusts the significance level based on the number of tests. Since 

Bonferroni does not look at values in the data, it does not offer much robustness. If the p-value from 

the t-test is shrunken due to outliers, this shrinkage could cause the p-value to pass the adjusted 

significance level. Furthermore, if the p-value is inflated due to the outlier, the Bonferroni 

conserva veness causes the null hypothesis to be incorrectly accepted.  

4.5. MaxT 

The maxT method, like Bonferroni, is a technique used to control the FWER in MCP situa ons (Wes all 

& Young, 1993). Unlike the simpler Bonferroni correc on, which applies a single adjustment to all 

significance levels of all individual tests by adjus ng α for the number of tests, the step-down maxT 

method uses the data to find the distribu on of the test sta s cs. Therefore, maxT is considered to be 

more powerful than the Bonferroni correc on (Goeman & Solari, 2014). The method adjusts p-values 

by permuta ng the data and compu ng a distribu on of the maximum test sta s cs for each 

permuta on. This approach takes into account the structure of tests. This offers more efficient control 

over the FWER when compared to simpler methods like the Bonferroni correc on (Wes all & Young, 

1993). 
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The maxT method is based on an assump on: 

Subset pivotality: The maxT method considers subset pivotality. This means that for each subset of the 

hypotheses, the distribu on would be the same as the distribu on of all the hypotheses (Dudoit et al., 

2003 & Wes all & Young, 1993). It could be that subset pivotality holds when each individual test only 

depends on the observa ons for the variable tested. However the correctness of this statement is 

disputed (Rempala & Yang, 2013). 

The procedure of conduc ng the maxT method for mul ple tests has several steps (Wes all & Young, 

1993): 

1. Defini on of the test sta s c: The appropriate test sta s c hypothesis test should be selected, 

as stated before for this study the test sta s c was the t-sta s c derived from the Student’s t-

test. 

2. Calcula on of the observed test sta s cs: The test sta s c for each hypothesis test, e.g. the 

t-sta s c for every variable/gene probe analyzed, using the original data. These sta s cs are 

named T1, T2,…, Tm, where m is the total number of tests or variables. 

3. Genera on of permuta ons: The labels for the original data are reshuffled or ‘permuted’ n  

mes. For each permuta on the test sta s cs are calculated, resul ng in a vector of sta s c 

of T1
1, T2

1,…, Tm
1.  

4. Computa on of the maxT distribu on: For each permuta on the maximum test sta s c is 

selected. This can be denoted as the following formula: 𝑇 = max (𝑇 , 𝑇 , … ,  𝑇 )  

From these maximum test sta s cs from each permuta on, the null distribu on of the maxT 

distribu on is created. The distribu on would be made up of all the permuted maximum test 

sta s cs for all permuta ons (n): Tmax
1, Tmax

2,…, Tmax
n. 

5. Sor ng of observed test sta s cs: The test sta s cs that were computed using the original 

data should be sorted in descending order: 𝑇  ≥  𝑇  ≥ ⋯  ≥  𝑇  

6. Adjustment of p-values: For every observed test sta s c the adjusted p-value is calculated. 

The adjusted p-value is the propor on of permuted maximum test sta s c values (Tmax
n) that 

are bigger than the observed test sta s cs divided by the total number of permuta ons (n). 

This results in the following formula for the adjusted p-values (Wes all & Young, 1993): 

𝑝 =  
∑ 𝐼(𝑇  ≥ 𝑇 )

𝑛
 

Where I( ) is an indicator func on that checks whether the permuted test sta s c Tmax
n is bigger 

than the observed sta s c Ti. 

7. Rejec on of hypotheses using step-down method: The adjusted p-values are then evaluated 

using the original significance level α1. If the adjusted p-value is smaller than the significance 
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level, the hypothesis is rejected. The values corresponding to the rejected hypotheses are 

removed and the new significance level α2 is calculated. All adjusted p-values that are smaller 

than α2 are rejected and their values are removed. This process is repeated un l the removal 

does not lead to new rejec ons. 

The maxT method is considered a powerful tool for controlling the FWER in scenarios that test mul ple 

hypotheses at once. The adjustment is stringent by using permuta ons and focussing on the maximum 

test sta s cs of these permuta ons. The step-down procedure ensures that the hypotheses are 

rejected in a downward step-wise manner, ending when stepping down does not result in extra 

rejec ons. This helps maintain the overall error rate while providing a clear criterion for sta s cal 

significance. This method is a good fit for high-dimensional data. The Golub data used in the simula ons 

has 7,129 gene probes and is thus highly dimensional.  

Some advantages of the maxT method are: 

Correla on allowance: The maxT method is more powerful than simpler methods like the Bonferroni 

correc on. Its increased power is due to the method considering the correla on structure among tests 

(Dudoit et al., 2003). 

Adap on of data: MaxT uses permuta ons to compute a distribu on of the test sta s cs. This makes 

the adjusted p-value and significance level more accurate compared to those derived from the stringent 

and conserva ve Bonferroni correc on (Wes all & Young, 1993). 

Some limita ons of the maxT method are: 

Computa onal Intensity: The maxT method requires extensive computa onal resources. This is 

par cularly true when used for large datasets or when the selected number of permuta ons is high 

(Nichols & Hayasaka, 2003). Since, maxT requires more calcula ons than Bonferroni, and the datasets 

used for, for example, research into gene expressions are commonly large, this could limit usefulness. 

Use of maximum sta s cs: MaxT relies on the maximum values and this could pose a problem when 

outliers inflate these maximum sta s cs (Wes all & Young, 1993). Furthermore, outliers in the original 

could nega vely affect the distribu ons of the permuted test sta s cs and thus the results of the 

sta s cal analysis. 

The maxT method is, poten ally, a flexible and powerful tool for controlling the family-wise error rate 

in mul ple hypothesis test scenarios. When test sta s cs are correlated maxT offers more sta s cal 

power than the Bonferroni method. Since the Golub data included some correlated gene expressions 

this could affect the power and robustness of outliers too when compared to Bonferroni. Since maxT 
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evaluates the data, the effect of outliers on the original t-sta s c is poten ally weakened. This is 

because the same effect applies to the permuted sta s cs. 

4.6. Simula on of Single Comparison Tests 

Since the principles of the research methods are discussed, the protocols used to evaluate the 

robustness of these methods to outliers are laid out. The first simula ons were used to compare and 

evaluate the robustness of Student’s t-tests and permuta on tests. In the Theory chapter of this study, 

two scenarios were laid out in which the robustness should be compared. The first scenario that was 

laid out, stated that the data should follow a normal distribu on because this could have a posi ve 

effect on the power of Student’s tests. The second scenario that was proposed, was a comparison with 

the data having equal variances between the groups being compared. Simula ons for both scenarios 

were included in the data analysis. However, the first simula ons included no special tests. All 

simula ons were conducted for both the Height and Weight variables, in order to evaluate and 

compare possible differences. Possible differences could provide useful insights. Addi onally, since the 

Height and Weight variables included in the Hong Kong data differed slightly, this could also confirm 

the hypotheses for different variable types.  

The base for all simula ons was the same and included the following steps: 

Step 1: For all simula ons, samples of the observa ons for the corresponding variable were selected. 

The selec on was conducted randomly. First, from the 25,000 observa ons of the Hong Kong data 

1,000 were randomly selected for group 1. Group 2 consisted of 1,000 observa ons that were randomly 

picked from the remaining 24,000 observa ons, ensuring no overlap between groups (Ripley, 2009). 

Step 2: To establish a baseline for the simula on, an ini al hypothesis test was conducted on the two 

groups for both the Student’s t-test and the permuta on test. The Student's t-test assessed the 

difference in means between the two groups. Addi onally, two permuta on tests were performed, 

evalua ng the differences in means and medians. Both permuta on tests used 1,000 permuta ons. 

The p-value resul ng from the three different tests was stored for later comparison a er the outliers 

were added. 

Step 3: To examine the robustness of the tests, an extreme outlier was introduced into Group 1. This 

introduced outlier had a size of 10 mes the maximum value found in Group 1. This addi on was 

intended to simulate a typo or error in the data-gathering process resul ng in an extreme data point. 

By adding an extreme value the effect of outliers could be enlarged which could have highlighted the 

effect.  
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Step 4: A er adding the outlier, the three tests, Student’s t-test, mean permuta on test, and median 

permuta on test, were conducted again. This me the tests used the data that included the outlier. 

Both permuta on tests used 1,000 permuta ons again. The p-values of the tests were stored.  

Step 5: Next to the change in p-value, the number of mes the significance was changed due to the 

addi on of the (extra) outlier was stored as output. This number of changes in significance stated the 

Type I errors that occurred due to the addi on of an (extra) outlier. If the test before the addi on of 

the (extra) outlier did not state a significant test sta s c or p-value, but the test a er the addi on of 

an (extra) outlier did indicate a significant test sta s c or p-value, this would mean that the addi on of 

the outlier had a direct result on the result and therefore the conclusion of the test. In other words, if 

the test would be robust to outliers the addi on of an (extra) outlier should not be able to cause a 

difference in the result of the test. If the significance of the test result was changed by the addi on of 

an (extra) outlier, this would mean that the test result was a false posi ve or Type I error. 

All simula ons tested the robustness in the different scenarios and included 200 itera ons. These 

itera ons ensured reliability and generalizability. For each itera on, the steps were conducted and the 

differences in p-values were stored. This means that the output of the simula on included 200 

calculated differences (Efron & Tibshirani, 1994). 

A er the simula ons were run, the difference in p-values could be used to evaluate if there was a 

significant effect of the outlier on the results of the three tests. To evaluate the poten al significance 

of these differences, the Wilcoxon signed-rank test, which measures differences between two values, 

was applied This test uses (Wilcoxon, 1945). The formula of the Wilcoxon signed-rank test sta s c W 

is: 𝑊 = min(𝑊 , 𝑊 ) 

Where W + is the sum of the posi ve difference and W - is the sum of the nega ve differences. 

This test was chosen because it allows researchers to determine if there is a significance in the 

differences between the two groups (Gibbons & Chakrabor , 2011). The Wilcoxon signed-rank test was 

used on the differences in p-values between the tests before and a er adding the outlier. Thus, the 

Wilcoxon test assesses whether the introduc on of the outlier led to significant changes in the p-values 

of the respec ve tests. The results from the simula ons highlighted the robustness of the permuta on 

tests compared to the Student's t-test.  

The first simula on included no further tests and consisted of only this process. This simula on was, 

like all other simula ons, conducted using both the Weight and Height variables. The second simula on 

tested the robustness of the tests when the sampled data was normally distributed. Student’s t-tests 
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could be more robust to outliers in larger sample sizes. With data samples including 1,000 observa ons, 

the sampled data could follow a normal distribu on be er (Kwak & Kim, 2017). 

In order to test normality, the Shapiro-Wilk tests were performed on both groups 1 and 2 (Shapiro & 

Wilk, 1965). The Shapiro-Wilk test is further elaborated upon in the data chapter of this study. The 

normality test was conducted between Step 1 and Step 2 of the base simula on. When the output 

from the Shapiro-Wilk test states that one or two groups of the itera on did not follow a normal 

distribu on, the itera on was skipped. This step is crucial as the Student's t-test assumes normality, 

thus checking whether the analysed data is normally distributed could improve the robustness to 

outliers. This could even cause a difference in the comparison between the Student’s t-test and the 

permuta on tests.  

The next simula on compared the robustness of the tests in scenarios when the variances of both 

groups were equal. The possible equality of variances was tested using Levene’s test (Levene, 1961). 

Levene’s test is a widely used method to determine equality between group variances (Brown & 

Forsythe, 1974). The test sta s c W is calculated as follows: 𝑊 =
( )

( )
=  

∑ ( …)

∑ ∑ ( …)
 

Where k is the number of different groups, N is the number of observa ons, ni is the observa on in 

group I, Zi is the mean of the absolute devia on in group I, and Z is the sum of all Zij.  

Whether the outcome of Levene’s test is significant, and it can be concluded that there are significant 

differences between the variances of the group, is determined by evalua ng the test sta s c W against 

the cri cal value derived from the F-distribu on with k – 1 and N – k degrees of freedom. The p-value 

can be derived from calcula ng the right-tail probability of the corresponding F-distribu on. If the p-

value is smaller than the significance level of 0.05, the variances of the groups are not equal. If the 

output from Levene’s test concluded that the variances were not equal the itera on was skipped. 

The simula ons explained above were all used to answer sub-ques on 3, which researched the 

robustness of both methods and the comparison between the two single comparison tests. However, 

sub-ques ons 5 and 6 focused on the effect of an increasing number of outliers and an outlier growing 

in size on the results from the tests. Two different simula ons were conducted to test these effects. 

These simula ons were based on the same basis as the other simula ons. However, these simula ons 

include 50 itera ons of the base simula on which also tested the normality of the data. 

The simula on that tested the effect of an increasing amount of outliers, consisted of 50 itera ons, 

where an extra outlier was added every itera on. For every outlier adding itera on, a simula on of 100 

itera ons was conducted. The 50 outliers were all added to group 1. For each outlier added, the average 
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p-value for each of the three tests compared of the 100 itera ons was stored. Furthermore, the number 

of changes in significance stated the Type I errors that occurred due to the addi on of an (extra) outlier.  

This concept was applied the same way when the simula ons focused on a growing outlier. But instead 

of an extra outlier being added, the single outlier grew a factor. The outlier grew exponen ally. The size 

of the single outlier was calculated as follows: 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2  

Where i is the itera on of the simula on. The ini al was defined as the maximum value of the variables 

of the original dataset, including 25,000 observa ons. This simula on was run 51 mes. For the first 

itera on, the value of i is zero. So, the outlier was exactly the same as the ini al outlier for the itera on. 

From the ini al itera on, the outlier doubled in size. 

4.7. Simula on of Mul ple Comparison Tests 

The mul ple comparison tests were compared using the Golub dataset. Important to note is the fact 

that the data consists of 72 observa ons which are divided into 2 groups: AML consis ng of 47 

observa ons and ALL consis ng of 25 observa ons. This indicates an unequal division between the two 

groups as the propor on between the two groups is 65%-35%. So, if a single outlier was randomly 

added to either one of the groups, the results could differ depending on which group the outlier was 

introduced to. In order to test if there is a difference between the two groups and to validate results, 

every simula on comparing the maxT and Bonferroni methods was conducted twice. In the first 

simula on, the outliers were added to the AML group and the second run introduced the outlier to the 

ALL group. 

Contrary to the single comparison tests no specific situa ons were set out to test, so the simula ons 

for maxT and Bonferroni did not include specific tests about the data. The simula ons about maxT and 

Bonferroni did not sample the data. Instead, the en re Golub dataset was used, so all 72 observa ons 

and 7,129 gene probes were used to compare the robustness of the methods. Since no specific 

scenarios would have been researched, the same simula on was used for all tested applica ons. These 

applica ons are the robustness to a single outlier, the effect of an increasing number of outliers, and 

the effect of an outlier growing in size. Thus, a base simula on was constructed, it consisted of several 

steps: 

Step 1: First, the baseline p-values were conducted. The Student’s t-test was used for this. This test was 

used because of its simplicity and because it requires rela vely li le computa onal resources. The 

ini al test tested the difference between both groups for all gene probes. The values of the gene probes 

were normalized, so the assump ons of the Student’s t-test should hold. 
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Step 2: Using the Bonferroni correc on and maxT method, which used 1000 permuta ons, the p-values 

were adjusted. These adjusted p-values were used to find the baseline significant genes. This baseline 

stated the number of genes that showed a significant difference between the two groups. The adjusted 

p-values and the number of significant gene expressions were stored for later comparison. 

Step 3: A er determining the baseline, the outlier was introduced into the specified group. The outlier 

was added as an extra observa on. The gene probe values of a randomly selected observa on were 

mul plied by the outlier factor and the label of the predefined group was added. The outlier factor was 

set as 10 for the single outlier simula ons, but for the increasing number of outliers, the factor was set 

as 2. For the growing outlier simula on, the factor had other sizes.  

Step 4: A er adding the outlier, the Student’s t-test was conducted again, now using the dataset 

including the outlier. The adjusted p-values were also redetermined. 

Step 5: The differences in the average and median p-values between the baseline and outlier test 

results were calculated and stored. A possible difference in the number of significant was also 

calculated and stored. This difference would indicate the Type II errors that were caused by the outlier. 

Step 6: The Wilcoxon signed-rank test was used to determine if the differences calculated in step 5 

were significant (Wilcoxon, 1945). The significance level for this test was set at 0.05. 

The output of this simula on contained the outlier size and number of outliers, the number of 

significant genes for both the baseline and final version, the mean and median p-value differences, and 

the Wilcoxon test result. 

This simula on was used to answer sub-ques on 4. To answer sub-ques on 5 a simula on was run 

where the number of outliers was increased. For this simula on, the group to which the outliers were 

added was not predefined, so each outlier added was given a random label. In total 50 observa ons 

containing outliers were added. Each itera on introduced an extra outlier. The factor with which the 

values of the selected observa on were added was set to 2. 

To answer sub-ques on 6 a single outlier was mul plied with a bigger factor every itera on. So, in the 

first itera on the gene probe values of the selected outlier were mul plied by one, and the itera on 

a er the values of the original observa on were mul plied by two. For the last itera on, the values 

were mul plied by 50, as 50 itera ons were conducted. This simula on was once run where the 

growing outlier was given the AML label and once where the outlier was added to group ALL. 

All simula ons used in this were run in the sta s cal compu ng so ware package R (R Core Team, 

2024). Different R packages were used for the calcula ons of this study. The packages used included: 
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‘mul est’ (Pollard et al., 2005), ‘golubEsets’ (T. Golub, 2024), ‘ggplot2’ (Wickham, 2009), ‘reshape2’ 

(Wickham, 2007), ‘beepr’ (Bååth & Dobbyn, 2024), ‘pheatmap’ (Kolde, 2019), ‘corrplot’ (Wei & Simko, 

2019), ‘ggpubr’ (Kassambara, 2023), ‘nortest’ (Gross et al., 2015), ‘stats’ (R Core Team, 2024)., ‘dplyr’ 

(Wickham et al, 2023), ‘xtable’ (Dahl et al., 2000), ‘car’ (Fox & Weisberg, 2020). 
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5. Results 
The Results chapter presents the findings of the simula on study evalua ng the robustness of classical 

sta s cal methods: the Student’s t-test and the Bonferroni method, against permuta on methods: 

permuta on test and maxT method. This chapter will first discuss the single comparison methods, 

Student’s t-tests and permuta on tests. Next, the mul ple comparison test methods will be discussed. 

5.1. Single Comparison Robustness 

The first simula on conducted did not consider any addi onal tests when comparing the Student’s t-

test, mean permuta on test, and median permuta on test. So, the data samples used in the 

simula ons could s ll follow assump ons like normality and variance equality, but this was not verified. 

A single outlier was added to a group of 1,000 observa ons. This outlier was the maximum value of 

group 1 mul plied by 10. 

In total 200 itera ons were run. To determine the impact of the outlier, the differences in p-values of 

the tests conducted before and a er adding the outliers were calculated for every itera on. The 

simula on, thus, resulted in a list of 200 differences for all three tests. To determine whether the 

differences in p-values were significantly bigger than zero, the Wilcoxon signed-rank test was 

conducted. 

Table 4 
Overview of results of simulation without test, including Wilcoxon signed-rank test on p-value differences, 
average difference in p-value and Type I error rate caused by the addition of the outlier for the Student’s t-test, 
mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.197 0% No Test 
Permutation  test, Mean Height 0.207 0.007 1% No Test 

Permutation  test, Median Height 0.414 -0.002 0% No Test 

Student’s t-test Weight 0.000*** -0.118 0% No Test 
Permutation  test, Mean Weight 0.130 0.005 1.5% No Test 

Permutation  test, Median Weight 0.580 -0.001 0.5% No Test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 

levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate indicates the proportion 

of the iterations where a false positive was caused by the introduction of the outlier. 

The p-values in Table 4 show that the test results and p-values for the Student’s t-test were significantly 

different after adding the outlier. This is true for both the Height and Weight variables. This indicates 

that the results of the Student’s t-tests were significantly influenced by the outliers. Possible 

explanations for the effect of the outlier could be that the outlier inflates the mean of group 1 while 

the mean of group 2 remains unchanged. The extreme outlier could also result in a violation of the 

assumptions of Student’s t-test. However, according to Lumley et al. (2002), normality is not 
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necessarily needed for large samples, as t-tests could be valid for large samples for any distribution. 

However, no extra Type I error was caused by the addition of the outlier. 

No significant difference was found for the permutation tests, thus, the outlier did not have a 

significant effect on the p-value. A few Type I errors occurred for the permutation tests, but these are 

relatively uncommon, occurring in approximately 1% of the iterations. So, if no tests on the sampled 

data are conducted the permutation tests are more robust to outliers than the Student’s t-test. 

Building on the ini al robustness assessment, the next simula ons run included normality tests about 

the sampled data before the outlier was added. If either group did not follow normality, the itera on 

was skipped. This resulted in, respec vely, 17 and 18 itera ons being skipped. This also indicates that 

some itera ons in the simula on without tests contained groups which were not normally distributed.  

Table 5 
Overview of results of simulation with normality test, including Wilcoxon signed-rank test on p-value differences, 
average difference in p-value and Type I error rate caused by the addition of the outlier for the Student’s t-test, 
mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.170 0% Normality Test 
Permutation  test, Mean Height 0.754 0.029 2.2% Normality Test 

Permutation  test, Median Height 0.366 0.002 1.1% Normality Test 

Student’s t-test Weight 0.000*** -0.133 0% Normality Test 
Permutation  test, Mean Weight 0.130 0.001 5.5% Normality Test 

Permutation  test, Median Weight 0.580 0.002 1.6% Normality Test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 
levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate indicates the proportion 
of the iterations where a false positive was caused by the introduction of the outlier. 
Table 5 shows that the p-values of the Student’s t-test were significantly influenced by the addi on of 

a single outlier. Even though the normality assump on holds, before adding the outlier, the Student’s 

t-test is s ll not more robust to outliers compared to the permuta on tests. The mean permuta on 

test, however, shows a rela vely high Type I error rate being caused by the addi on of an outlier 

compared to the other tests. Indica ng that the test results are also influenced by the addi on of the 

outlier. This is especially true for the Weight variable where Type I errors were triggered in about 5,5% 

of the conducted itera ons. This is a substan al propor on which could indicate weaker robustness to 

the extreme outliers. For the Height variable, this propor on is approximately 2.2%, which is higher 

than the other two tests. This will be further inves gated in the simula on adding mul ple outliers. 

The median permuta on test shows no explicit effect of the outlier, apart from a rela vely low Type I 

error rate. The difference between the Type I errors of the mean and median permuta on tests could 

be explained by medians being less affected by extreme values than means (Moore et al., 2016). 
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So, when the normality assump on holds for the data, both types of permuta on tests, are more 

robust to outliers than the Student’s t-test. But, the mean permuta on tests show a tendency to 

produce more Type I errors. 

An addi onal scenario in which the robustness of the Student’s t-test could be be er than that of 

permuta on tests could be when the variances of both groups were (approximately) equal (Sawilowsky 

& Blair, 1992 & Field, 2017).  For this simula on, the same principle as the normality test was used, so 

if Levene's test indicated that the variance between groups was unequal, the itera on was skipped. For 

the simula on using the Height variable 190 itera ons were completed, so in 10 itera ons the 

variances were unequal. The simula on analyzing the Weight variable skipped 7 of the 200 itera ons, 

comple ng 193 itera ons. 

Table 6 
Overview of results of simulation with variance equality test, including Wilcoxon signed-rank test on p-value 
differences, average difference in p-value and Type I error rate caused by the addition of the outlier for the 
Student’s t-test, mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.192 0% Variance test 
Permutation  test, Mean Height 0.050* -0.009 2.1% Variance test 

Permutation  test, Median Height 0.957 0.000 0% Variance test 

Student’s t-test Weight 0.000*** -0.133 0% Variance test 
Permutation  test, Mean Weight 0.1966 0.005 3.1% Variance test 

Permutation  test, Median Weight 0.1279 -0.002 1.0% Variance test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 
levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate states the proportion of 
the iterations where the null hypothesis was rejected after adding the outlier(s) when the null hypothesis was accepted 
before adding the outlier(s). 
The Student’s t-test again saw that the added outlier influenced the test sta s c and p-value. The 

Wilcoxon test indicates that for both the Height and Weight variables the difference in -p-value was 

significant. Addi onally, the mean permuta on test was significantly influenced by the outlier. This is 

the only simula on that resulted in a significant difference in p-values for a permuta on test. A possible 

explana on for this could be that adding an outlier has a bigger effect on the mean if the variance 

between groups is equal (Good, 2005). The addi on of an outlier could have a more pronounced effect 

on the distribu on of the permuted means. 

However, an interes ng sta s c is the Type I error rate. For all simula ons introducing a single outlier, 

the Student’s t-test did not have any instances where a result was insignificant before the outlier 

addi on but was significant a er the outlier addi on. The p-value has, however, been significantly 

affected by the addi on of an outlier. This could be due to the Student’s t-test resul ng in mostly 

significant p-values before adding the outlier, so the addi on would not cause a Type I error. Another 
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possible explana on could be that the p-values for the Student’s t-test were higher for the baseline 

group. Then a big change could fail to make the p-value cross the significance level threshold. 

In conclusion, the Student’s t-test p-value is significantly changed by the addi on of an outlier. The 

median permuta on test is the most robust to outliers in the case of homogeneity. The mean 

permuta on test is less robust than the median version because, in the Height simula on, the p-values 

were significantly changed. Furthermore, the mean permuta on test is more prone to result in Type I 

errors than both the median permuta on test and the t-test. 

5.2. Single Comparison Robustness with Increasing Number of Outliers 

The previous simula ons focused on adding a single outlier in some special situa ons. These 

simula ons showed a clear rank in the robustness of the different tests. The median permuta on test 

was the most robust. And the Student’s t-test was the least robust. 

This study also aimed to research the effect of adding mul ple outliers on the outcome of the tests. 

The propor on of the outliers of the en re group 1, including the outliers, ranged from about 0.1% to 

about 4.8%. So, the outliers made up a rela vely small part of group 1. Figure 4 shows the outcome of 

the simula on for Height, the outcome for the Weight variables is shown in Figure 5. 

Figure 4 
Overview of results of simula on with increasing number of outliers for Height, including average p-values and 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test 

Note: The Type I error rate states the propor on of the itera ons where the null hypothesis was rejected a er adding the outlier(s) when 

the null hypothesis was accepted before adding the outlier(s). 

Figure 5 
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Overview of results of simula on with increasing number of outliers for Weight, including average p-values and 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test  

Note: The Type I error rate states the propor on of the itera ons where the null hypothesis was rejected a er adding the 

outlier(s) when the null hypothesis was accepted before adding the outlier(s). 

Both figures show a similar pa ern. The Student’s t-test and mean permuta on test perform similarly 

to the Type I error and average p-value. The average p-values shrink when extra outliers are added. 

While the average p-value of the Student’s t-test is lower for the first outlier, the p-value of the mean 

permuta on test shrinks faster, equaling zero when the 11th outlier is added. The p-value of the t-test 

equals zero a er the 13th outlier is added. The average p-value equals zero for every extra outlier added. 

This is exactly the same for both the Weight and Height variables. 

A similar pa ern can be seen with the Type I error rate. The average propor on of Type I errors caused 

by the outliers quickly rose and the propor on surpassed the 75%-threshold for both tests for both 

variables when the 5th outlier was added. The average propor on seems to fluctuate around 90% for 

the itera ons when more than 5 outliers were added. 

The median permuta on test could be considered the most robust to a single outlier in different 

scenarios. This conclusion can also be drawn when extra outliers are added. The average p-value slightly 

shrinks, but this effect is smaller than the effect of the other tests. The lowest average p-value for the 

median permuta on test is 0.283 for Height and 0.336 for Weight. The average p-values stay on level 

for the first 20 outliers added. The propor ons of the Type I errors rose when the number of outliers 

increased, but the rate at which the propor ons rose is significantly lower than those of the other tests. 

The median permuta on test outperforming the other tests could be explained by the lower sensi vity 
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of medians to outliers. Both the Student’s t-test and mean permuta on test use means to compute the 

test sta s cs and p-values. And means are more sensi ve to extreme values than medians (Moore et 

al., 2016).  The slight shrinkage of the p-value could be caused by the outliers being added making 

group 1 grow from 1000 observa ons to 1050 observa ons, so the median of group 1 for the ini al 

itera on and the final itera on could differ. The growth of the number of observa ons could cause a 

difference in the medians. Addi onally, since the added observa ons are all outliers, slowly increases 

the medians of the groups.  

Contrary to the simula ons introducing a single outlier, mul ple outliers do cause Type I errors for the 

Student’s t-test. A possible explana on could be that a single outlier causes a significant shi  but the 

ini al p-values were rela vely high. Only a er mul ple outliers are added, do the outliers cause the p-

value to cross the significance threshold. 

So, if mul ple outliers are or could be present in the data a permuta on test measuring the differences 

between medians is the most robust. Both the Student’s t-test and mean permuta on test perform 

worse when mul ple outliers are present. Both perform almost the same for both the average p-values 

and Type I errors. 

5.3. Single Comparison Robustness with Growing Outlier 

Along with test the effect of an increasing number of outliers, this study aims to measure the effect of 

an outlier that increases in size on the outcome of the Student’s t-test and permuta on tests. The ini al 

size of the outlier was the maximum value of the original Height and Variables. The next itera on the 

outlier was doubled in size. This doubling process was repeated 50 mes. As a result, the outliers' final 

sizes were 8e16 inches and 2e17 pounds. The outliers had extreme sizes but were less than 0.01% of the 

observa ons in group 1. 

Figure 6 
Overview of results of simula on with growing outlier sizes for Height, including average p-values and average 

Type I error rate (%) caused by the addi on of the outlier for the Student’s t-test, mean permuta on test and 

median permuta on test 
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Note: The Outlier Factor value states the factor of i in the following formula 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2 . The Type I 

error rate states the propor on of the itera ons where the null hypothesis was rejected a er adding the outlier(s) when the 

null hypothesis was accepted before adding the outlier(s). 

Figure 7 
Overview of results of simula on with growing outlier sizes for Weight, including average p-values and average 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test  

Note: The Outlier Factor value states the factor of i in the following formula 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2 . The Type I 

error rate states the propor on of the itera ons where the null hypothesis was rejected a er adding the outlier(s) when the 

null hypothesis was accepted before adding the outlier(s). 

As with the increasing number of outliers, both simula ons for Height and Weight show a similar 

pa ern. The first difference with the increasing number of outliers is the fact that the growing outliers 
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do not cause a high Type I error rate. The Type I error rate stays about the same for the en re 

simula on, never exceeding 5%. So, a massive outlier has li le effect on the validity of the test 

concerning the Type I error rate. 

Where the average p-values of the Student’s t-test and mean permuta on tests for the simula ons 

introducing mul ple outliers followed a similar pa ern, the tests show a different pa ern for the 

growing simula ons. The average p-value of the t-test shrinks when the size of the outlier grows. For 

both variables the p-value of the t-tests shrinks and levels off at 0.318 a er the outlier was doubled for 

the 9th me. This could be explained by the outlier infla ng the es mated standard devia on of group 

1. This causes the S or the denominator of the Student’s t-test formula to rise significantly. Therefore, 

the p-value of the t-test shrinks. The levelling off at 0.318 could be a result of the es mated standard 

devia on and the mean of group 1 both infla ng and finally reaching a point where a doubled outlier 

does not change the values. 

The p-value of the mean permuta on test increased and se led around 0.750 a er 15 itera ons. A 

possible explana on for the fact that the p-values did not rise anymore could be that the outliers are 

already very extreme and mul plying the outlier more does not cause the mean to shi  further towards 

the outlier. 

The median permuta on tests seemed to perform the same for the different sizes of the outlier. 

Contrary to the increasing number of outliers, almost no increase or decrease pa ern can be seen. The 

median permuta on test results in an average p-value of around 0.5 for all itera ons. This could be 

explained by the median not being sensi ve to extreme values. The simula on adding an increasing 

number of outliers saw a slight decrease in the average p-values. Since the growing outlier simula on 

only increases the number of observa ons by a small margin, the median is less likely to change before 

and a er adding the outlier.  

The median permuta on test does, however, result in a few Type I errors. The other tests do not result 

in any Type I errors a er they have se led around the observed levels of 0.318 and 0.750 for the t-test 

and mean permuta on test, respec vely. So, if the p-values of the tests a er the outliers shi  towards 

insignificant levels, fewer or no cases of the test outcomes changing from insignificant to significant 

a er adding the outlier will occur. The Type I error rate decreasing could also suggest that the Type II 

error rate increases. Since the p-values level off at insignificant levels, the outlier could cause the tests 

to result in the null hypothesis being accepted when it should have been rejected. However, the Type 

II error rate was not measured in the simula on. A sugges on for further research could be to research 

the effect of an increasing outlier on the Type II error rate. 
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In conclusion, the median permuta on performs best when an outlier increasing in size is added. This 

type of test is not affected by the outlier concerning the average p-value or Type I error rate. The 

average p-value of the mean permuta on test is inflated while the Student’s t-test experiences a 

shrinking p-value. The infla ng or shrinking effects level off when the outlier is 512 mes its original 

size. The growing outlier does decrease the Type I error rate but could cause an increase in Type II 

errors. 

5.4. Mul ple Comparison Robustness 

As well as comparing classical methods and permuta on methods for single comparison tests, this 

study also set a goal to compare the classical and permuta on methods for mul ple comparison 

methods. For mul ple tests two methods were compared, the Bonferroni correc on and the maxT 

method. Even though the p-values could differ before and a er adding the outlier, this is not the most 

important measurement as the Type II error or change in the number of genes that were found to be 

significant is a be er measure to test robustness.  

Since the simula on uses the en re Golub dataset to perform a t-test for all 7,129 gene expressions, a 

single baseline was established. The result from the ini al t-test with a significance level adjusted by 

the Bonferroni method stated that 143 genes were significant. This means that 143 genes, almost 2% 

of all gene probes, had a significant difference between the AML and ALL groups. The p-values adjusted 

by the maxT method used on the outcome of the same t-test resulted in 167, 2.3%, having a significant 

difference between the ALL and AML samples. This already showed why Bonferroni is considered to be 

more conserva ve. In a similar situa on, the Bonferroni correc on results in fewer gene probes being 

significant than the maxT method. 

Table 7 
Overview of results of single outlier robustness simulations, including the number of significant genes before 

(Baseline) and after outlier addition and Type II error rate 

Group Significant genes 
Bonferroni 

Baseline 

Significant 
genes maxT 

Baseline 

Significant 
genes 

Bonferroni 

Significant 
genes maxT 

Type II error 
rate 

Bonferroni 

Type II 
error rate 

maxT 
ALL 143 167 24 59 83.2% 64.7% 
AML 143 167 89 141 37.8% 15.6% 

Note: The Type II error rate indicates the proportion of differences in the number of significant genes compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
Even though the ALL and AML simula ons show different results, they show a similar pa ern. The 

Bonferroni method is most influenced by the addi on of an outlier. The Type II error rate of Bonferroni 

is higher in both simula ons. This indicates that the Bonferroni correc on is less robust than the maxT 

method. A nega ve change in significance could be considered a Type II error as some null hypotheses 

are accepted when they should be rejected.  
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Concluding, the maxT method is more robust to outliers than the Bonferroni method. 

5.5. Mul ple Comparison Robustness with Increasing Number of Outliers 

These simula ons aimed to measure the effect of an increasing number of outliers on the outcome of 

the Bonferroni correc on and maxT method. The baseline derived in 5.6, also applied to the 

simula ons that tested the effect of an increasing number of outliers. So, without any outliers, 

Bonferroni stated that 143 gene probes significantly differed between the cancer types. 167 gene 

expressions saw a significant difference between the ALL and AML types of cancer according to the 

maxT method. 

Figure 8 

Overview of Type II error rate with increasing number of outliers 

The first conclusion that can be drawn from Figure 8 is that both methods lack the power to be robust 

to a large number of outliers. However, this can be explained by the rela vely small number of original 

observa ons. The data originally contained 72 observa ons, so every outlier adds about 1,5% to the 

original observa ons. The Type II error rate slowly rose a er each extra outlier was added. A er the 

30th outlier was added the Type II error rate levels off around 99-100%. This can be explained by the 

outliers making up almost 30% of the total number of observa ons evaluated by the methods. So, both 

methods are affected by mul ple outliers that are present in the data. 

To compare the robustness of the Bonferroni and maxT methods, the Type II error rates should be 

compared. The method with the lowest percentages could be considered the most robust. A er 50 

itera ons, the error rate was equal for both methods 6 mes all of these 6 mes the Type II error rate 

for both methods was 100%. These 6 mes all occurred a er 30 or more outliers were introduced. The 

Bonferroni correc on performed be er only 3 mes or 6% of the total itera ons. The maxT method 
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performed be er in 41 itera ons 82% of the me. On average, the Type II error rate of the maxT 

method is 5 percentage points higher than that of the Bonferroni correc on. 

A Wilcoxon test was conducted to test whether the difference in significant features between 

Bonferroni and maxT was significant. Addi onally, the differences in Type II error rates for the different 

itera ons were also tested using the Wilcoxon test. Both tests stated that the differences were 

significantly different. 

In conclusion, when mul ple outliers are introduced to the data the maxT method is significantly more 

robust than the Bonferroni correc on. However, the Type II error rate tends to rise towards 100% if 

more outliers are present in the data. This is true for both methods. 

5.6. Mul ple Comparison Robustness with Growing Outlier 

Finally, the robustness of mul ple comparisons against a single progressively growing outlier is 

assessed. This simula on was conducted twice. The outlier was once introduced to the ALL group and 

once was the label AML given. Again the baselines to which the number of significant genes from the 

simula ons will be compared are 143 for the Bonferroni correc on and 167 significant genes for the 

maxT result.  

Figure 9 

Overview of Type II Error Rates for AML Group with Growing Outlier 

Note: The Outlier Factor value states the factor with which the gene expressions of the outlier were mul plied. The Type II 

error rate indicates the proportion of differences in the number of significant genes compared to the baseline. These Type II 

errors were false negatives caused by the introduction of the outlier. 

Figure 10 
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Overview of Type II Error Rates for ALL Group with Growing Outlier 

Note: The Outlier Factor value states the factor with which the outlier was mul plied. The Type II error rate indicates the 

proportion of differences in the number of significant genes compared to the baseline. These Type II errors were false 

negatives caused by the introduction of the outlier. 

Figures 9 and 10 show a similar pa ern for the Type II error rates for the different outlier factors for 

both simula ons. The growing outlier caused the Type II error rate to rise. Figures 9 and 10 show that 

the Bonferroni correc on had a higher Type II error rate than maxT for every itera on in both 

simula ons. This suggests that the maxT method is more robust to outliers than the Bonferroni 

correc on, even if the outliers are bigger. The maxT method had a Type II error rate that was 

approximately 14.6 percentage points lower than that of the Bonferroni correc on on average. There 

was a slight difference between the simula ons where the outlier was given the label ALL or AML. 

These results resulted in a Type II error rate of, respec vely, 14.0 and 15.1 percentage point difference 

on average. 

Thus, the maxT method is more robust to a bigger outlier than the Bonferroni correc on. However, if 

the outlier gets more extreme values, the Type II error rate rises for both methods.  
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6. Conclusion and Discussion 
This study researched the robustness of permuta on tests and the maxT method compared to classical 

sta s cal tests, especially the Student’s t-test and Bonferroni correc on when (extreme) sta s cal 

outliers are included in the analysed data. This research directly compares the robustness of these 

methods against outliers, a comparison not yet made in the exis ng literature. 

The literature review concluded that the permuta on tests could be more robust because of their 

versa lity and possibility to adapt to the data. For the single comparison tests, the Student’s t-test is 

limited by the dependence on assump ons and the use of the mean to compute the test sta s c. The 

permuta on test that measured the differences between means is more robust than the Student’s t-

test. However, the permuta on test also can be based on the differences between the medians of 

groups. Medians are less sensi ve to extreme values and can thus be more robust. The empirical 

analysis of this study using weight and height data confirmed these findings. The median permuta on 

test is more robust to outliers than the classical Student’s t-test and the mean permuta on test. Even 

in situa ons where the assump ons of Student’s t-test hold before the outlier was introduced the 

permuta on tests were more robust. However, the mean permuta on test resulted in the highest Type 

I error rate a er the outlier was added. The Type I error rate of the median permuta on test was 

rela vely lower compared to the mean permuta on test. Even though the p-value of the Student’s t-

test was significantly altered by the addi on of an outlier, this did not result in an increased Type I error 

rate. 

The empirical analysis also showed that the median permuta on test is most robust when mul ple 

outliers are included. The p-values of both the Student’s t-test and mean permuta on test were 

eventually shrunken to zero a er mul ple outliers were added. The Type I error rates of these tests 

were inflated to 90-100% a er the addi on of mul ple outliers. The p-value and Type I error rate of 

the median permuta on were influenced less by the outliers. So, if mul ple outliers are included in the 

data the use of the median permuta on test is recommended as this test would provide the most 

robust outcome. 

The same was concluded for a situa on where a bigger outlier was introduced to the data. The outlier 

influenced the p-values and Type I error rates of the Student’s t-test and mean permuta on test 

significantly. However, the growing outlier had a small effect on the Type I error rate, shrinking the rate 

to zero for the t-test and mean permuta on test. This was caused by the p-values of these tests levelling 

off respec vely 0.318 and 0.700. The median permuta on test showed almost no effect of the growing 

outlier. The p-value and Type 1 error rate remained about the same for the different sizes of the outlier. 
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So, if a single extreme outlier is included in the data the outcome of the median permuta on remains 

valid while the other tests were significantly affected by an extreme outlier. 

For mul ple comparison methods, the literature indicated that the versa lity and data adop on of the 

maxT method poten ally could provide the method more robustness compared to the Bonferroni 

method. The Bonferroni method could mostly be restricted by its conserva veness. The empirical 

simula ons which analysed the Golub data confirmed the literature findings showing that the maxT 

had a lower Type II error rate than the Bonferroni correc on. 

In scenarios where mul ple outliers are or a rela vely larger outlier is present in the data, the results 

of the maxT method showed a significantly lower Type II error rate than the results of the Bonferroni 

correc on. However, when the number of outliers increases or an outlier grows in size, the Type II error 

rate increases towards 100%. This is true for both the maxT and Bonferroni methods. 

In conclusion, the permuta on-based methods, permuta on tests and maxT method, are more robust 

to outliers than the classical sta s c methods, Student’s t-test and Bonferroni correc on. So, if 

researchers analyse data or conduct a sta s cal study and use data that could be outlier-infested, they 

are advised to use permuta on-based methods as they provide more robustness to these outliers. 

These findings can be useful for marketers or marke ng researchers who have to select a method for 

their group comparison analyses or studies. Selec ng permuta on-based methods over classical 

methods could provide more robust and valid results. 

6.1. Discussion 

While this study provides insights into the robustness of permuta on tests compared to classical 

sta s cal methods when outliers are present in the data, recognizing its limita ons and poten al areas 

for improvement is an important step. 

This study used real-world data but introduced simulated outliers. These outliers could not represent 

realis c outliers that could be encountered in real data analyses. Addi onally, the Golub dataset that 

was used to compare the mul ple comparison methods saw some correla ons and dependence 

between different gene probes. Even though these only applied to a marginal part of the data, these 

could be considered a viola on of the assump ons of the Bonferroni correc on. 

This study focused on the Type I error of the single comparison methods when an increasing number 

of outliers were added. The Type I error was shrunken to zero a er mul ple outliers were introduced. 

This could have affected the Type II error rate, but this was not measured. So, if researchers use data 

that could be clu ered with outliers, they should be aware that the Type II error rate could be higher 

than desired. This study did not measure the sta s cal power of the single comparison tests but instead 
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focused on the shi  in p-values. Future research could study the influence of outliers on the power of 

the single comparison methods. 

While this study used simula ons to test the robustness of mul ple methods. These basic simula ons 

introducing a single outlier consisted of 200 itera ons. The simula ons which added mul ple outliers 

or a growing outlier consisted of 50 mes 100 itera ons. These simula ons used rela vely small 

numbers of itera ons due to the computa onally intensive methods being used. Due to the long me 

these simula ons took to run, the number of itera ons was not increased. 

Future studies could focus on other comparisons between the methods analysed or methods not 

included in this study. Addi onally, researching the impact of different types of outliers and 

distribu ons on the performance of these tests could be used as a topic of further research. The 

outliers in this study were mostly bigger versions of exis ng observa ons. Researchers could explore 

the impact of smaller outliers on the outcome of tests.  
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7.2. Appendix A: Figures and Tables 

Figure A 

Boxplot of Height variable from the Hong Kong data 

Figure B 

Boxplot of Weight variable from the Hong Kong data  

Figure C 

Q-Q plot of Height of Hong Kong data 
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Figure D 

Q-Q plot of Weight of Hong Kong data 

Table A 
Overview of results of simulation for single comparison with increasing number of outliers for Height, including 
Wilcoxon signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by 
the addition of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Number of 
outliers 

Average p-
value t-test 

Average p-
value 

permutation 
test, mean 

Average p-
value 

permutation 
test, median 

Type I error 
t-test 

Type I error 
permutation 
test, mean 

Type I error 
permutation 
test, median 

1 0.333 0.547 0.495 0.0% 2.2% 0.0% 
2 0.157 0.232 0.515 0.0% 7.8% 0.0% 
3 0.082 0.110 0.443 0.0% 19.8% 1.0% 
4 0.046 0.065 0.576 79.1% 33.0% 0.0% 
5 0.026 0.035 0.454 95.8% 73.7% 0.0% 
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6 0.014 0.016 0.520 94.7% 94.7% 0.0% 
7 0.008 0.009 0.460 92.6% 91.5% 1.1% 
8 0.005 0.005 0.482 100% 100% 3.2% 
9 0.003 0.002 0.533 96.8% 96.8% 0.0% 

10 0.002 0.001 0.562 99.0% 99.0% 1.0% 
11 0.001 0.000 0.451 93.3% 93.3% 3.4% 
12 0.001 0.000 0.519 93.4% 92.3% 0.0% 
13 0.000 0.000 0.513 93.7% 93.7% 1.1% 
14 0.000 0.000 0.436 96.8% 95.7% 4.3% 
15 0.000 0.000 0.478 94.7% 94.7% 3.2% 
16 0.000 0.000 0.477 98.9% 97.8% 2.2% 
17 0.000 0.000 0.434 93.5% 92.4% 1.1% 
18 0.000 0.000 0.503 96.8% 95.8% 2.1% 
19 0.000 0.000 0.520 95.6% 94.4% 2.2% 
20 0.000 0.000 0.540 92.4% 92.4% 4.3% 
21 0.000 0.000 0.503 94.3% 94.3% 3.4% 
22 0.000 0.000 0.508 93.5% 93.5% 3.2% 
23 0.000 0.000 0.486 95.6% 95.6% 3.3% 
24 0.000 0.000 0.444 94.6% 94.6% 3.3% 
25 0.000 0.000 0.450 91.6% 91.6% 4.2% 
26 0.000 0.000 0.457 90.0% 91.1% 5.6% 
27 0.000 0.000 0.417 93.8% 93.8% 9.4% 
28 0.000 0.000 0.485 97.8% 96.7% 3.3% 
29 0.000 0.000 0.478 96.7% 94.6% 6.5% 
30 0.000 0.000 0.497 97.8% 97.8% 4.3% 
31 0.000 0.000 0.484 94.6% 95.7% 3.2% 
32 0.000 0.000 0.432 95.5% 95.5% 13.5% 
33 0.000 0.000 0.418 95.7% 96.8% 14.0% 
34 0.000 0.000 0.452 92.7% 92.7% 5.2% 
35 0.000 0.000 0.424 92.0% 90.9% 13.6% 
36 0.000 0.000 0.452 97.9% 97.9% 10.6% 
37 0.000 0.000 0.391 96.8% 95.7% 2.1% 
38 0.000 0.000 0.408 95.5% 96.6% 4.5% 
39 0.000 0.000 0.367 93.0% 94.2% 9.3% 
40 0.000 0.000 0.369 94.6% 93.5% 8.7% 
41 0.000 0.000 0.395 97.9% 97.9% 16.8% 
42 0.000 0.000 0.411 96.9% 96.9% 10.4% 
43 0.000 0.000 0.340 96.6% 96.6% 15.7% 
44 0.000 0.000 0.381 92.3% 92.3% 12.1% 
45 0.000 0.000 0.352 91.2% 91.2% 16.5% 
46 0.000 0.000 0.349 91.0% 91.0% 12.4% 
47 0.000 0.000 0.398 96.6% 97.8% 14.6% 
48 0.000 0.000 0.329 97.8% 97.8% 12.2% 
49 0.000 0.000 0.318 93.7% 92.6% 25.3% 
50 0.000 0.000 0.283 93.5% 93.5% 22.8% 
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Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table B 
Overview of results of simulation for single comparison with increasing number of outliers for Weight, including 
Wilcoxon signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by 
the addition of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Number of 
outliers 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

1 0.364 0.494 0.499 0.0% 5.4% 1.1% 
2 0.167 0.225 0.493 0.0% 9.5% 1.1% 
3 0.091 0.118 0.504 7.9% 19.1% 0.0% 
4 0.055 0.070 0.486 40.9% 28.0% 0.0% 
5 0.028 0.030 0.546 90.6% 83.5% 1.2% 
6 0.016 0.015 0.486 92.5% 94.6% 0.0% 
7 0.010 0.008 0.478 92.4% 93.5% 1.1% 
8 0.006 0.004 0.477 92.0% 90.9% 1.1% 
9 0.003 0.002 0.492 90.8% 90.8% 0.0% 

10 0.002 0.001 0.422 92.0% 92.0% 0.0% 
11 0.001 0.000 0.479 95.7% 95.7% 1.1% 
12 0.001 0.000 0.496 94.6% 94.6% 2.2% 
13 0.000 0.000 0.453 89.1% 90.2% 1.1% 
14 0.000 0.000 0.452 96.6% 97.7% 3.4% 
15 0.000 0.000 0.457 90.8% 93.1% 4.6% 
16 0.000 0.000 0.549 97.7% 96.6% 3.4% 
17 0.000 0.000 0.528 97.8% 97.8% 3.3% 
18 0.000 0.000 0.476 95.7% 94.6% 5.4% 
19 0.000 0.000 0.448 96.7% 96.7% 3.3% 
20 0.000 0.000 0.468 95.4% 95.4% 1.1% 
21 0.000 0.000 0.420 96.6% 95.5% 5.6% 
22 0.000 0.000 0.485 95.6% 95.6% 6.7% 
23 0.000 0.000 0.411 93.5% 94.6% 5.4% 
24 0.000 0.000 0.453 94.3% 94.3% 6.8% 
25 0.000 0.000 0.473 94.4% 92.1% 3.4% 
26 0.000 0.000 0.453 90.1% 90.1% 3.3% 
27 0.000 0.000 0.490 95.5% 95.5% 3.4% 
28 0.000 0.000 0.440 95.3% 95.3% 7.1% 
29 0.000 0.000 0.463 95.6% 95.6% 4.4% 
30 0.000 0.000 0.417 97.6% 97.6% 9.4% 
31 0.000 0.000 0.419 94.4% 94.4% 3.4% 
32 0.000 0.000 0.463 92.9% 92.9% 3.5% 
33 0.000 0.000 0.440 93.0% 95.3% 3.5% 
34 0.000 0.000 0.436 98.9% 98.9% 6.5% 
35 0.000 0.000 0.416 93.9% 93.9% 8.5% 
36 0.000 0.000 0.359 91.0% 91.0% 13.5% 
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37 0.000 0.000 0.423 97.8% 97.8% 8.8% 
38 0.000 0.000 0.419 94.3% 94.3% 10.3% 
39 0.000 0.000 0.385 93.6% 95.7% 8.5% 
40 0.000 0.000 0.426 98.9% 97.8% 17.2% 
41 0.000 0.000 0.382 94.0% 95.2% 9.6% 
42 0.000 0.000 0.424 94.0% 92.9% 13.1% 
43 0.000 0.000 0.355 93.1% 93.1% 10.3% 
44 0.000 0.000 0.339 92.8% 92.8% 15.7% 
45 0.000 0.000 0.428 93.0% 93.0% 12.8% 
46 0.000 0.000 0.340 94.3% 95.5% 14.8% 
47 0.000 0.000 0.400 96.7% 95.6% 12.2% 
48 0.000 0.000 0.359 90.4% 89.4% 16.0% 
49 0.000 0.000 0.382 97.7% 97.7% 17.2% 
50 0.000 0.000 0.336 94.4% 95.5% 18.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table C 
Overview of results of simulation for single comparison with growing outlier sizes for Height, including Wilcoxon 
signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by the addition 
of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Outlier size 
factor 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

0 0.546 0.545 0.452 0.0% 0.0% 0.0% 
1 0.495 0.514 0.560 0.0% 0.0% 0.0% 
2 0.363 0.480 0.456 0.0% 3.0% 0.0% 
3 0.337 0.521 0.499 0.0% 4.0% 1.0% 
4 0.326 0.539 0.522 0.0% 2.0% 0.0% 
5 0.317 0.493 0.498 0.0% 2.0% 0.0% 
6 0.318 0.515 0.460 0.0% 2.0% 0.0% 
7 0.317 0.486 0.532 0.0% 1.0% 0.0% 
8 0.317 0.491 0.515 0.0% 1.0% 0.0% 
9 0.318 0.569 0.500 0.0% 1.0% 1.0% 

10 0.318 0.627 0.492 0.0% 0.0% 1.0% 
11 0.318 0.717 0.526 0.0% 0.0% 0.0% 
12 0.318 0.768 0.473 0.0% 0.0% 0.0% 
13 0.318 0.746 0.525 0.0% 0.0% 0.0% 
14 0.318 0.742 0.523 0.0% 0.0% 2.0% 
15 0.318 0.775 0.459 0.0% 0.0% 0.0% 
16 0.318 0.741 0.498 0.0% 0.0% 1.0% 
17 0.318 0.756 0.506 0.0% 0.0% 0.0% 
18 0.318 0.736 0.499 0.0% 0.0% 2.0% 
19 0.318 0.761 0.536 0.0% 0.0% 0.0% 
20 0.318 0.763 0.461 0.0% 0.0% 0.0% 
21 0.318 0.763 0.509 0.0% 0.0% 0.0% 
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22 0.318 0.770 0.534 0.0% 0.0% 0.0% 
23 0.318 0.740 0.431 0.0% 0.0% 0.0% 
24 0.318 0.736 0.549 0.0% 0.0% 0.0% 
25 0.318 0.747 0.432 0.0% 0.0% 2.0% 
26 0.318 0.757 0.500 0.0% 0.0% 1.0% 
27 0.318 0.722 0.526 0.0% 0.0% 0.0% 
28 0.318 0.772 0.533 0.0% 0.0% 1.0% 
29 0.318 0.791 0.482 0.0% 0.0% 1.0% 
30 0.318 0.753 0.490 0.0% 0.0% 0.0% 
31 0.318 0.760 0.503 0.0% 0.0% 0.0% 
32 0.318 0.769 0.546 0.0% 0.0% 0.0% 
33 0.318 0.773 0.488 0.0% 0.0% 0.0% 
34 0.318 0.736 0.486 0.0% 0.0% 1.0% 
35 0.318 0.752 0.518 0.0% 0.0% 0.0% 
36 0.318 0.751 0.517 0.0% 0.0% 1.0% 
37 0.318 0.751 0.464 0.0% 0.0% 0.0% 
38 0.318 0.737 0.488 0.0% 0.0% 0.0% 
39 0.318 0.747 0.455 0.0% 0.0% 1.0% 
40 0.318 0.762 0.454 0.0% 0.0% 1.0% 
41 0.318 0.758 0.451 0.0% 0.0% 0.0% 
42 0.318 0.743 0.524 0.0% 0.0% 0.0% 
43 0.318 0.749 0.508 0.0% 0.0% 0.0% 
44 0.318 0.765 0.515 0.0% 0.0% 0.0% 
45 0.318 0.753 0.518 0.0% 0.0% 1.0% 
46 0.318 0.752 0.517 0.0% 0.0% 1.0% 
47 0.318 0.745 0.523 0.0% 0.0% 0.0% 
48 0.318 0.755 0.491 0.0% 0.0% 1.0% 
49 0.318 0.768 0.518 0.0% 0.0% 0.0% 
50 0.318 0.753 0.508 0.0% 0.0% 0.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table D 
Overview of results of simulation for single comparison with growing outlier sizes for Weight, including Wilcoxon 
signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by the addition 
of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Outlier size 
factor 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

0 0.504 0.502 0.483 0.0% 2.0% 1.0% 
1 0.456 0.455 0.492 1.0% 2.0% 0.0% 
2 0.507 0.539 0.483 1.0% 2.0% 2.0% 
3 0.377 0.489 0.500 0.0% 4.0% 1.0% 
4 0.331 0.486 0.454 0.0% 1.0% 0.0% 
5 0.318 0.475 0.515 0.0% 3.0% 1.0% 
6 0.318 0.481 0.482 0.0% 4.0% 0.0% 
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7 0.315 0.440 0.534 0.0% 3.0% 1.0% 
8 0.319 0.548 0.511 0.0% 0.0% 0.0% 
9 0.318 0.537 0.524 0.0% 2.0% 0.0% 

10 0.318 0.576 0.529 0.0% 0.0% 1.0% 
11 0.318 0.627 0.505 0.0% 0.0% 0.0% 
12 0.318 0.667 0.490 0.0% 0.0% 0.0% 
13 0.318 0.756 0.505 0.0% 0.0% 0.0% 
14 0.318 0.750 0.476 0.0% 0.0% 0.0% 
15 0.318 0.756 0.532 0.0% 0.0% 0.0% 
16 0.318 0.777 0.501 0.0% 0.0% 0.0% 
17 0.318 0.756 0.465 0.0% 0.0% 0.0% 
18 0.318 0.752 0.496 0.0% 0.0% 0.0% 
19 0.318 0.749 0.493 0.0% 0.0% 0.0% 
20 0.318 0.764 0.518 0.0% 0.0% 2.0% 
21 0.318 0.754 0.481 0.0% 0.0% 0.0% 
22 0.318 0.750 0.496 0.0% 0.0% 1.0% 
23 0.318 0.753 0.496 0.0% 0.0% 0.0% 
24 0.318 0.751 0.501 0.0% 0.0% 1.0% 
25 0.318 0.759 0.505 0.0% 0.0% 1.0% 
26 0.318 0.761 0.503 0.0% 0.0% 0.0% 
27 0.318 0.760 0.487 0.0% 0.0% 2.0% 
28 0.318 0.755 0.486 0.0% 0.0% 1.0% 
29 0.318 0.769 0.500 0.0% 0.0% 0.0% 
30 0.318 0.746 0.493 0.0% 0.0% 0.0% 
31 0.318 0.741 0.493 0.0% 0.0% 1.0% 
32 0.318 0.741 0.503 0.0% 0.0% 0.0% 
33 0.318 0.752 0.493 0.0% 0.0% 0.0% 
34 0.318 0.736 0.509 0.0% 0.0% 0.0% 
35 0.318 0.729 0.515 0.0% 0.0% 0.0% 
36 0.318 0.753 0.537 0.0% 0.0% 1.0% 
37 0.318 0.736 0.482 0.0% 0.0% 1.0% 
38 0.318 0.739 0.501 0.0% 0.0% 0.0% 
39 0.318 0.745 0.485 0.0% 0.0% 1.0% 
40 0.318 0.760 0.487 0.0% 0.0% 0.0% 
41 0.318 0.753 0.521 0.0% 0.0% 0.0% 
42 0.318 0.749 0.569 0.0% 0.0% 0.0% 
43 0.318 0.756 0.488 0.0% 0.0% 1.0% 
44 0.318 0.780 0.518 0.0% 0.0% 0.0% 
45 0.318 0.754 0.460 0.0% 0.0% 1.0% 
46 0.318 0.754 0.467 0.0% 0.0% 0.0% 
47 0.318 0.743 0.490 0.0% 0.0% 1.0% 
48 0.318 0.746 0.510 0.0% 0.0% 0.0% 
49 0.318 0.741 0.528 0.0% 0.0% 1.0% 
50 0.318 0.738 0.553 0.0% 0.0% 2.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 
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Table E 
Overview of results of single outlier robustness simulations with increasing number of outliers, including the 

number of significant genes after outlier addition and Type II error rate 

Number of 
outliers 

Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 3 9 2.1% 5.4% 
2 73 57 51.0% 34.1% 
3 105 113 73.4% 67.7% 
4 78 86 54.5% 51.5% 
5 114 113 79.7% 67.7% 
6 107 109 74.8% 65.3% 
7 73 80 51.0% 47.9% 
8 92 79 64.3% 47.3% 
9 103 106 72.0% 63.5% 

10 122 130 85.3% 77.8% 
11 126 139 88.1% 83.2% 
12 127 139 88.8% 83.2% 
13 100 92 69.9% 55.1% 
14 119 133 83.2% 79.6% 
15 135 146 94.4% 87.4% 
16 96 94 67.1% 56.2% 
17 137 151 95.8% 90.4% 
18 138 153 96.5% 91.6% 
19 122 110 85.3% 65.9% 
20 128 131 89.5% 78.4% 
21 141 164 98.6% 98.2% 
22 139 156 97.2% 93.4% 
23 98 54 68.5% 32.3% 
24 135 145 94.4% 86.8% 
25 142 163 99.3% 97.6% 
26 142 165 99.3% 98.8% 
27 142 166 99.3% 99.4% 
28 125 140 87.4% 83.8% 
29 135 141 94.4% 84.4% 
30 142 165 99.3% 98.8% 
31 142 163 99.3% 97.6% 
32 143 167 100.0% 100.0% 
33 143 166 100.0% 99.4% 
34 141 162 98.6% 97.0% 
35 140 158 97.9% 94.6% 
36 143 165 100.0% 98.8% 
37 143 167 100.0% 100.0% 
38 142 164 99.3% 98.2% 
39 143 167 100.0% 100.0% 
40 143 166 100.0% 99.4% 
41 142 165 99.3% 98.8% 
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42 143 167 100.0% 100.0% 
43 142 162 99.3% 97.0% 
44 143 167 100.0% 100.0% 
45 142 166 99.3% 99.4% 
46 136 147 95.1% 88.0% 
47 143 167 100.0% 100.0% 
48 142 163 99.3% 97.6% 
49 143 164 100.0% 98.2% 
50 143 163 100.0% 97.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

Table F 
Overview of results of single outlier robustness simulations with single outlier growing in size for AML, including 

the number of significant genes after outlier addition and Type II error rate 

Outlier factor Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 140 169 2.1% 1.2% 
2 67 93 53.1% 44.3% 
3 89 133 37.8% 20.4% 
4 30 66 79.0% 60.5% 
5 61 112 57.3% 32.9% 
6 37 78 74.1% 53.3% 
7 34 69 76.2% 58.7% 
8 91 146 36.4% 12.6% 
9 44 78 69.2% 53.3% 

10 39 83 72.7% 50.3% 
11 31 58 78.3% 65.3% 
12 17 49 88.1% 70.7% 
13 20 53 86.0% 68.3% 
14 21 52 85.3% 68.9% 
15 28 58 80.4% 65.3% 
16 7 31 95.1% 81.4% 
17 21 54 85.3% 67.7% 
18 17 51 88.1% 69.5% 
19 53 111 62.9% 33.5% 
20 18 53 87.4% 68.3% 
21 14 47 90.2% 71.9% 
22 23 47 83.9% 71.9% 
23 14 51 90.2% 69.5% 
24 25 62 82.5% 62.9% 
25 16 33 88.8% 80.2% 
26 42 96 70.6% 42.5% 
27 14 29 90.2% 82.6% 
28 55 105 61.5% 37.1% 
29 21 56 85.3% 66.5% 
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30 15 48 89.5% 71.3% 
31 3 19 97.9% 88.6% 
32 17 50 88.1% 70.1% 
33 12 24 91.6% 85.6% 
34 6 16 95.8% 90.4% 
35 10 38 93.0% 77.2% 
36 9 25 93.7% 85.0% 
37 19 58 86.7% 65.3% 
38 9 27 93.7% 83.8% 
39 21 50 85.3% 70.1% 
40 8 20 94.4% 88.0% 
41 18 40 87.4% 76.0% 
42 7 30 95.1% 82.0% 
43 11 27 92.3% 83.8% 
44 20 60 86.0% 64.1% 
45 10 27 93.0% 83.8% 
46 14 35 90.2% 79.0% 
47 8 30 94.4% 82.0% 
48 9 33 93.7% 80.2% 
49 10 37 93.0% 77.8% 
50 5 19 96.5% 88.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

Table G 
Overview of results of single outlier robustness simulations with single outlier growing in size for ALL, including 

the number of significant genes after outlier addition and Type II error rate 

Outlier factor Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 101 127 29.4% 24.0% 
2 139 168 2.8% 0.6% 
3 101 132 29.4% 21.0% 
4 45 81 68.5% 51.5% 
5 119 145 16.8% 13.2% 
6 78 124 45.5% 25.7% 
7 56 84 60.8% 49.7% 
8 78 131 45.5% 21.6% 
9 46 80 67.8% 52.1% 

10 18 39 87.4% 76.6% 
11 13 38 90.9% 77.2% 
12 49 108 65.7% 35.3% 
13 44 97 69.2% 41.9% 
14 21 52 85.3% 68.9% 
15 8 27 94.4% 83.8% 
16 20 60 86.0% 64.1% 
17 34 61 76.2% 63.5% 
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18 23 59 83.9% 64.7% 
19 7 25 95.1% 85.0% 
20 13 47 90.9% 71.9% 
21 22 43 84.6% 74.3% 
22 3 25 97.9% 85.0% 
23 9 29 93.7% 82.6% 
24 13 39 90.9% 76.6% 
25 30 60 79.0% 64.1% 
26 16 34 88.8% 79.6% 
27 31 65 78.3% 61.1% 
28 13 44 90.9% 73.7% 
29 11 39 92.3% 76.6% 
30 15 51 89.5% 69.5% 
31 38 80 73.4% 52.1% 
32 31 80 78.3% 52.1% 
33 11 33 92.3% 80.2% 
34 12 23 91.6% 86.2% 
35 9 20 93.7% 88.0% 
36 17 43 88.1% 74.3% 
37 15 45 89.5% 73.1% 
38 6 20 95.8% 88.0% 
39 8 25 94.4% 85.0% 
40 13 35 90.9% 79.0% 
41 11 21 92.3% 87.4% 
42 10 35 93.0% 79.0% 
43 3 26 97.9% 84.4% 
44 9 34 93.7% 79.6% 
45 18 42 87.4% 74.9% 
46 7 16 95.1% 90.4% 
47 28 57 80.4% 65.9% 
48 9 29 93.7% 82.6% 
49 15 48 89.5% 71.3% 
50 8 29 94.4% 82.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

 


