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Abstract 
Outliers are a common sight in staƟsƟcal research or data analysis and they can negaƟvely affect the 

validity of the results of these studies or analyses. Therefore, using methods or staƟsƟcal tests that are 

robust to outliers is important to guarantee validity and reliability.  This thesis aims to provide a direct 

comparison between mulƟple staƟsƟcal tests and methods, so researchers can choose the most robust 

method for their study if their data (potenƟally) contains outliers. This thesis researches the robustness 

of classical staƟsƟcal methods, the Student’s t-test and the Bonferroni correcƟon, and permutaƟon 

methods, the permutaƟon test and maxT method, in the presence of outliers. Using simulaƟons on 

height and weight data and the Golub dataset, this research evaluates the influence of outliers by 

comparing results before and aŌer the introducƟon of outliers. The empirical analysis demonstrates 

that the permutaƟon methods showed beƩer robustness to outliers due to their flexibility and 

adaptaƟon of the analyzed data. These findings offer a pracƟcal understanding of these methods for 

researchers in selecƟng the appropriate staƟsƟcal method, contribuƟng to more reliable data analysis 

and staƟsƟcal studies in various fields. 
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1. IntroducƟon 
In staƟsƟcal analysis, outliers can have a significant effect on the results and interpretaƟon of 

hypothesis tests. The error rates can inflate and it could lead to substanƟal distorƟons of parameters 

(Osborne & Overbay, 2004). Hawkins (1980) has defined outliers as follows: “An ObservaƟon which 

deviates so much from other observaƟon as to arouse suspicions that it was generated by a different 

mechanism.” These outliers could pose a challenge when working with staƟsƟcal measures (Osborne 

& Overbay, 2004). 

Parametric tests, like the Student’s t-test, assume that the observaƟons and populaƟon follow a certain 

distribuƟon deviaƟons from this distribuƟon are considered to be outliers. However, when data or 

samples from the total populaƟon do not follow the assumpƟon of a normal distribuƟon or contain 

outliers, parametric tests could result in biased or inaccurate outcomes. 

In contrast, permutaƟon tests, a non-parametric test introduced back in 1925 by Fisher (Berry et al., 

2014), do not assume that the observaƟons or populaƟon follow any kind of distribuƟon. The different 

variables of the observaƟons are permutated randomly. This could therefore mean that permutaƟon 

tests are potenƟally more robust to outliers.  

MarkeƟng and business studies commonly use staƟsƟcal methods like the Student’s t-test and 

permutaƟon tests. Baidun et al. (2022) uses, among others, the t-test to measure the impact of the 

markeƟng mix on customer saƟsfacƟon. Eusebio et al. (2006) use the t-test to compare two groups of 

Spanish firms and their markeƟng performance. Burk (2006) applied the t-test to A/B split tesƟng, even 

staƟng that the results of A/B tesƟng are most oŌen compared using t-tests. Haenlein and Kaplan 

(2011) described permutaƟon tests and t-tests and analysed their staƟsƟcal power for markeƟng 

research. Tempesta et al. (2010) use permutaƟon tests for relaƟonship idenƟficaƟon for market 

segments. These papers are examples of comparison tests in markeƟng studies. This indicates that 

group comparison tests are commonly used for markeƟng research purposes. 

SituaƟons where mulƟple tests are conducted are also becoming more common. MulƟple test 

problems are not very common in economics, however, mulƟple tests can be very useful in economic 

studies. Examples of this are studies conducted by Harvey et al. (2020), List et al. (2019), Romano and 

Wolf (2005), and Viviano et al. (2021). This indicates that mulƟple test problems are used in economic 

research. 

Thus, this paper could provide markeƟng researchers or marketers with useful insights about the most 

robust tests to compare groups. Marketers could use the insights of this paper to select the most robust 

or powerful method for their study or analysis. This indicates that the findings of this paper are also 
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relevant to the markeƟng field and could help marketers of businesses improve the validity of their 

analyses. 

A research field where mulƟple test problems are commonly used is biomedical sciences. These 

problems could include extracted gene expressions and measured phenotype associaƟons (Menyhart 

et al., 2021). Datasets on these topics usually contain a great number of variables. Finding conclusive 

evidence could be of essenƟal importance in these studies. If these mulƟple tests are performed on 

datasets which contain staƟsƟcal outliers this could force errors in the results. Common methods for 

mulƟple tests are maxT and Bonferroni (Westphal & Zapf, 2024). Bonferroni divides the wanted 

significance level by the number of tests adjusƟng the significance level. The maxT method is a form of 

the permutaƟon test. The distribuƟon of the maximum test staƟsƟc is generated under the null 

hypothesis through data permutaƟons. It is stated that Bonferroni is more conservaƟve than the maxT 

method (John et al., 2022; Nakagawa, 2004).  

Classical staƟsƟcal methods, such as the Student’s t-test, are based on assumpƟons about the 

distribuƟons of the data. The Bonferroni correcƟon, a classical staƟsƟcal method for mulƟple tests, 

does not directly rely on an assumpƟon (Cheverud, 2001). These simple and well-understood methods 

make them useful in many scenarios where the assumpƟons hold or the data is simple. However, the 

reliance on parametric assumpƟons can increase the influence of outliers on the test staƟsƟc. 

Bonferroni is considered very conservaƟve (Noguchi et al., 2019). This could negaƟvely influence the 

correctness of the tests’ outcome when outliers are included in the data. On the contrary, permutaƟon 

methods, like the permutaƟon test for single comparisons or the maxT method for mulƟple tests, could 

offer a more flexible alternaƟve since these only rely on the exchangeability assumpƟon. By reshuffling 

the data numerous Ɵmes, permutaƟon tests can result in test staƟsƟcs and conclusions which are more 

reliable when outliers are included in the data. The comparison between classical and permutaƟon 

methods thus highlights a trade-off between the simplicity of classic methods and the flexibility of 

permutaƟon methods. 

1.1. Relevance 

Despite the potenƟal advantages of permutaƟon tests in handling outliers, there have been limited 

studies conducted in which the robustness of permutaƟon tests and Student’s t-tests against outliers 

are compared. While individual studies have explored the robustness of each test separately, a direct 

comparison between the two methods regarding their ability to withstand the influence of outliers has 

not been explored extensively. 

Furthermore, the robustness of staƟsƟcal tests in the context of mulƟple test scenarios also needs 

aƩenƟon. The maxT and Bonferroni methods can both be used to address the issue of mulƟple 
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comparisons (Hemerik & Goeman, 2017b; Goeman & Solari, 2014). However, when it comes to 

handling outliers, both methods might react differently. The Bonferroni correcƟon’s conservaƟveness 

is caused by Bonferroni adjusƟng the significance level for the number of tests, which can lead to an 

overly strict threshold (Noguchi et al., 2019). This could, in theory, increase the chance of Type II errors 

occurring. On the other hand, the maxT method, a permutaƟon-based approach, generates the 

distribuƟon of the maximum test staƟsƟc under the null hypothesis through data permutaƟons. This 

results in maxT being more flexible and less conservaƟve than Bonferroni, albeit in potenƟal. Some 

studies have researched the robustness of the Bonferroni method, as Ringland (1983) did in his paper. 

However, few papers have looked into the influence of outliers on the outcomes of Bonferroni and 

maxT. A comparison between the two could provide useful insight for future staƟsƟcal implicaƟons.  

Since outliers can significantly manipulate the results of staƟsƟcal tests, it is important to find proof of 

whether permutaƟon tests or classical methods are more robust to these outliers. This comparison 

could be essenƟal for helping researchers select the appropriate staƟsƟcal test technique for analyzing 

data and conducƟng staƟsƟcal studies, parƟcularly when outliers are prevalent in data. This research 

aims to enhance the general understanding of the robustness of staƟsƟcal tests against outliers by 

filling the exisƟng void in the academic literature and, thus, helping improve the reliability and/or 

validity of staƟsƟcal analyses for every kind of research that relies on staƟsƟcal tests.  

1.2. Central Research QuesƟon 

This thesis aims to invesƟgate and compare the robustness of permutaƟon tests, including the maxT 

method for mulƟple tests and classical staƟsƟcal tests, in this case, Student’s t-test and the Bonferroni 

method, when outliers are included in the tested data. The research quesƟon of this thesis is: “Are 

permutaƟon tests and the maxT method more robust to extreme staƟsƟcal outliers than classical tests, 

especially the Student’s t-test and the Bonferroni correcƟon?” 

1.3. Sub QuesƟons 

This research quesƟon will be further divided into several sub-quesƟons: 

1. How do permutaƟon tests and the maxT method work? 

2. How do Student’s t-tests and the Bonferroni correcƟon work? 

3. How robust are permutaƟon tests to extreme staƟsƟcal outliers and how does this compare to 

Student’s t-tests? 

4. How robust is the maxT method to extreme outliers and how does this compare to the 

Bonferroni method? 

5. What happens to the outcome of the different methods when the outliers become more 

extreme? 
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6. What happens to the outcome of the different methods when the frequency of outliers 

increases? 
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2. Theory 
Student’s t-tests, like other parametric tests, are based on several criƟcal assumpƟons about data 

distribuƟon. These are among others: normality, homogeneity of variances, and independence of 

observaƟons (Keren & Lewis, 1993). The test staƟsƟc is used to calculate the p-value. Therefore, 

standard normal and t-distribuƟon are an important part of these assumpƟons (Field, 2018; Tabachnick 

& Fidell, 2019). These assumpƟons facilitate valid and reliable test results when the analyzed data 

comply with the assumpƟons. 

On the other hand, permutaƟon tests are based on almost no assumpƟons about the distribuƟon of 

the data (Berry et al., 2014). Instead, permutaƟon tests rely on a distribuƟon of the test staƟsƟc 

generated from the observed data (Good, 2013; Edgington & Onghena, 2007; Phipson & Smyth, 2010). 

Next, the proporƟon of permutaƟons that result in a test staƟsƟc as extreme as or more extreme than 

the observed staƟsƟc is used to compute the p-value (Ernst, 2004). This characterisƟc allows 

permutaƟon tests to be versaƟle and could thus be applicable in a wide range of scenarios where the 

assumpƟons of parametric tests may not hold (Collingridge, 2012).  

2.1. Robustness 

PermutaƟon tests offer several benefits. These could include robustness to distribuƟonal assumpƟons, 

flexibility in handling complex data, and beƩer control over error rates. For instance, when the data do 

not meet the assumpƟons, permutaƟon tests could provide a reliable alternaƟve to achieve more 

accurate conclusions (Pesarin & Salmaso, 2010). Due to these properƟes, permutaƟon tests could be 

beƩer suited for hypothesis tests in situaƟons where parametric assumpƟons are not met or are 

difficult to verify (Ludbrook & Dudley, 1998).  

The t-staƟsƟc in Student’s t-tests represents the difference between sample means that is standardized 

aŌer being adjusted for the variability within and between groups (Berry et al., 2014). The p-value is 

calculated based on the t-distribuƟon (Walpole et al., 2006). Since this test relies on assumpƟons, this 

could form a problem when these assumpƟons are violated due to the presence of outliers or non-

normal data (Field, 2017). These violaƟons could result in the validity of the test results being 

compromised, leading to inaccurate conclusions. Means can relaƟvely easily be influenced by outliers 

or extreme values (Moore et al., 2016). This could form problems for both Student’s t-tests and 

permutaƟon tests that measure the differences in means. 

The theoreƟcal arguments stated above suggest that permutaƟon tests may be more robust to extreme 

staƟsƟcal outliers compared to Student’s t-tests due to their non-parametric nature and reliance on 

empirical distribuƟons. PermutaƟon tests could be less suscepƟble to the influence of outliers that 

violate parametric assumpƟons (Ludbrook & Dudley, 1998). 
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2.2. Scenarios 

On the other hand, permutaƟon tests are generally considered more robust to outliers due to their 

non-parametric nature and lack of distribuƟonal assumpƟons (Keller-Mcnulty & Higgins, 1987). There 

could be possible scenarios in which Student’s t-tests may exhibit greater robustness to outliers.  

Student’s t-tests might be more robust to outliers in larger sample sizes. With larger sample sizes, the 

distribuƟon of sample means could follow a normal distribuƟon beƩer, even in the presence of outliers 

(Kwak & Kim, 2017). This is considered to be true under the Central Limit Theorem. Consequently, the 

t-staƟsƟc used in Student’s t-tests could become more accurate, leading to beƩer performance. 

Another scenario could be if the underlying distribuƟon of the data nearly follows a normal 

distribuƟon. In this situaƟon, Student’s t-tests may be more robust to outliers, provided that the other 

assumpƟons of homogeneity of variances are met (Sawilowsky & Blair, 1992) If these assumpƟons hold, 

the t-tests could offer beƩer-performing outcomes compared to permutaƟon tests (Hochberg & 

Tamhane, 1987). 

When the variances of the compared groups are approximately equal, Student’s t-tests could show 

robustness to outliers, as the impact of any single outlier is lowered by the homogeneity of variance 

(Field, 2017). In contrast, permutaƟon tests are sensiƟve to differences in variances between groups 

(Ludbrook & Dudley, 1998). Therefore, in cases of equal variances and sample sizes, Student’s t-tests 

may perform beƩer due to the homoscedasƟcity assumpƟon (Zimmerman, 2004). 

Overall, while permutaƟon tests have the advantages of flexibility and minimal assumpƟons, Student’s 

t-tests could be more efficient under specific condiƟons of near-normal distribuƟon and equal 

variances (Edgington & Onghena, 2007). These different scenarios will all be tested in the thesis. 

2.3. MulƟple Test 

The maxT method is a staƟsƟcal procedure used to control the familywise error rate (FWER) when 

tesƟng mulƟple hypotheses. The maxT method focuses on the maximum absolute value of test 

staƟsƟcs for mulƟple comparisons. This staƟsƟc is used to determine the significance of the tests 

(Dudoit, Shaffer, & Boldrick, 2003). By concentraƟng on the maximum staƟsƟc, the maxT method tries 

to control the overall error rate and provide a correcƟon for mulƟple tests. 

The maxT method is potenƟally robust to outliers. The maxT method shrinks the impact of outliers on 

Type I error control through its focus on the maximum absolute value of test staƟsƟcs. This offers 

flexibility to handle skewed or tailed distribuƟons that may be created by the presence of outliers 

(Wesƞall & Young, 1993). 
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The Bonferroni method is a straighƞorward and commonly used approach for controlling the FWER in 

scenarios where mulƟple hypotheses are simultaneously tested. Bonferroni specifically divides, as 

stated before, the significance level (e.g. 0.05) by the number of individual tests. This, albeit, 

conservaƟvely, controls the Type I Error Rate. However, the influence of outliers on individual tests is 

not directly tackled (Holm, 1979). Bonferroni’s conservaƟveness is amplified when dealing with a large 

number of tests (Armstrong, 2014). The maxT method, by contrast, provides a more balanced approach 

to error rate control (Romano & Wolf, 2005). 

The Bonferroni method remains widely used due to its simplicity and ease of implementaƟon. This 

results in lower computaƟonal intensity, especially compared to the maxT method (Armstrong, 2014). 

The maxT method, permutaƟng data numerous Ɵmes, requires more computaƟonal resources and 

most oŌen takes more Ɵme to be calculated.  

This results in a trade-off between simplicity and robustness. The Bonferroni method is easier to apply, 

being predominantly conservaƟve. The maxT method could offer an approach that is more flexible and 

potenƟally less conservaƟve, possibly even in datasets with outliers (Wesƞall & Young, 1993; Romano 

& Wolf, 2005).  
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3. Data 

3.1. Dataset Overview 

This study aims to empirically research whether permutation tests are more robust to outliers than 

Student’s t-tests. To research this a dataset with weights and heights of 25.000 different humans with 

the age of 18 years old (SOCR Data Dinov 020108 HeightsWeights - Socr, n.d.). This dataset will further 

be referred to as the Hong Kong dataset. Weight and height variables are naturally normally distributed 

(López-Siguero et al., 2008). Therefore they make a useful dataset to use in this research as normal 

distribution is assumed by the Student’s t-test method. The data was used to develop the growth 

charts that are currently used in Hong Kong. The dataset only contains 3 variables. The first variable 

indicates the index of the variable. The second variable states the height of the corresponding 

individual. The height is given in inches, the length measure of the Imperial system. Accordingly, the 

weight of the observations is stated in pounds. This weight is the third and final variable from the 

dataset. 

To investigate the multiple test methods, the Golub dataset will be used. The Golub dataset is widely 

used in the field of bioinformatics and computational biology. It was originally used in a study by Golub 

et al. (1999). This study studied the potential to identify the kind of acute leukaemia patients suffered 

from. This was done by analysing the gene expressions of the patients. The dataset includes 72 samples 

or observations. The samples were taken from patients having two different types of leukaemia: 47 

samples of acute lymphoblastic leukaemia (ALL) and 25 samples of acute myeloid leukaemia (AML). 

Each sample contained the expression levels of 7,129 different genes. 

3.2. Data Processing and Cleaning of the Hong Kong data 

Data cleaning is a critical step to ensure the accuracy and reliability of the analysis. However, the 

dataset was pre-processed and therefore did not require any cleaning. No missing values were 

included in the data.  

Outliers are the focus of this study. However, if there were outliers in the original data, this would not 

be useful. The main analysis of this study requires a normal distribution and the possibility of 

controlling the outliers. Boxplots were drawn up to indicate if any outliers were present in the data. 

The boxplots in Figures A and B (Appendix) indicate that the original dataset included several outliers 

for both the Height and Weight variables. These outliers, however, were not deleted from the dataset, 

since no outliers seem to be an extreme deviation from the rest of the data. Normal distribuƟons 

naturally contain outliers, which are not extreme (Wilks, 1963). Therefore, the outliers do not form a 

problem. Additionally, after deleting the outliers both variables did not follow a normal distribution. 

Thus, it was concluded that the initial outliers would not be deleted and remained in the data. 
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3.3. Data ExploraƟon of the Hong Kong data 

Furthermore, for initial exploration of the data summary statistics were calculated for the Height and 

Weight variables. These statistics provide a first insight into the tendencies and variability within the 

data. The summary statistics on the original data are shown in Table 1. 

Table 1 
Overview of summary statistics of Hong Kong data 

Variable Min Median Mean Max Standard 
Deviation 

Variance 

Height (Inches) 60.28 68.00 67.99 75.15 1.90 3.61 

Weight (Pounds) 78.01 127.16 127.08 170.92 11.66 135.98 

Since Student’s t-tests assume a normal distribution (Berry et al., 2014), checking whether the variables 

follow a normal distribuƟon is useful. Naturally, height tends to follow a normal distribuƟon for a 

specific age group (López-Siguero et al., 2008). A normal distribuƟon does not naturally occur for 

weights, however, this does not indicate anything for the weight variable of this study. 

The first method to check for a normal distribuƟon uses a histogram (Das, 2016). It could provide an 

iniƟal insight into a possible skewness or distribuƟon of the data. Figures 1 and 2 show the histograms 

with the distribuƟons of the Weight and Height variables respecƟvely. A line indicaƟng a normal 

distribuƟon's ‘bell shape’ was included. This was done to help the interpretaƟon. 

Figure 1 
Histogram of Height variable of Hong Kong data 

Figure 2 
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Histogram of Weight variable of Hong Kong data 

Both histograms indicate that the Weight and Height variables follow a normal distribuƟon. There is no 

clear skewness and the bars in the histogram seem to follow the outline of a normal distribuƟon. The 

second test encompassed a quanƟle-quanƟle plot, also known as a Q-Q plot (Das, 2016). A Q-Q plot 

shows a comparison of two distribuƟons by evaluaƟng quanƟles (Almeida et al., 2018; Lee, 2020). The 

Q-Q plot combines the distribuƟon of the data and compares it to a normal distribuƟon. The resulƟng 

plot could be used to indicate whether data follows a normal distribuƟon. If most points follow the 

central line, this indicates that the observaƟons for the variables could be considered normally 

distributed (Michael, 1983).  

Figures C and D (Appendix) show a similar pattern. Between the 2.5 quantiles, the observations from 

the Hong Kong data almost perfectly follow the 45-degree line of the Q-Q plot. This indicates that the 

centre fit of the data follows a normal distribution almost perfectly (Almeida et al., 2018; Lee, 2020). 

The tails of the distribution are approximately in the accepted range. This means that according to the 

Q-Q plots almost no observations would be considered outliers (Wilk & Gnanadesikan, 1968). 

Since the Q-Q plot and histograms did not provide a conclusive answer, other statistical tests were 

conducted. These tests included the Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling test. 

These tests are empirical distribution tests or check the regression to decide whether the data is 

normally distributed (Yap & Sim, 2011b).  

The Shapiro-Wilk, Kolmogorov-Smirnov, and Anderson-Darling tests are very useful for situations in 

which the normality of datasets needs to be tested (Stephens, 1974). By calculating test statistic W 

against critical values, the Shapiro-Wilk test checks whether data follows a normal distribution by 

comparing (Shapiro & Wilk, 1965). However, this test can only be used on datasets on smaller datasets. 

Therefore, a random sample of 5,000 observations was pulled and used to test whether the overall 

dataset follows a normal distribution. The test statistic W is calculated by the following formula: 
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Where ai is the coefficient calculated as:  (𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  
௠೅௏షభ

஼
 

With m is the vector and vector norm C is:  𝐶 = (𝑚்𝑉ିଵ𝑉ିଵ𝑚)ଶ 

Kolmogorov-Smirnov and Anderson-Darling for larger datasets are more often used for bigger datasets 

and therefore were used on the complete dataset. The Kolmogorov-Smirnov test measures the 

goodness-of-fit between the functions of the empirical distribution and the cumulative distribution of 

a normal distribution (Stephens, 1974). This test uses the maximum absolute difference, called D and 

is calculated by the following formula:  𝐷௡ = sup(𝑥) |𝐹௫(𝑥) −  𝐹(𝑥)|  

Where F is the distribution function with n number of ordered observations Xi: 𝐹௡(𝑥) =  
∑ ଵ(ିஶ)(௑೔)೙

೔సభ

௡
 

Similarly, the Anderson-Darling test computes A2. A2 is the test statistic and it is compared against 

critical values. This test is mostly known for its sensitivity in detecting deviations in distribution tails. 

A2 is calculated as follows:  𝐴ଶ =  −𝑛 − 𝑆 

Where S is calculated as follows:  𝑆 =  ∑
ଶ௜ିଵ

௡
ൣln൫𝐹(𝑌௜)൯ + ln൫1 −  𝐹(𝑌௡ାଵି௜)൯ ൧௡

௜ୀଵ  

F  is the cumulative distribution function. 

These tests are very important in determining whether data follows normality. Stephens (1974) 

discusses these methods comprehensively, emphasizing their utility in statistical analyses. Since there 

is no significant difference or preference for any of these tests, all three tests were conducted on the 

data to determine whether the data is normally distributed. The test statistics as well as the 

corresponding p-values for the tests for the Height and Weight variables are shown in Tables 2 and 3. 

Important to note for these p-values is that in the case of the p-value being smaller than 0.05, the null 

hypothesis is rejected. The null hypothesis in this case is that (the sample of) the data is normally 

distributed. So, if the p-value is smaller than 0.05 the data is assumed to not be normally distributed. 

Table 2 
Overview of test statistics for Height with original data 

Test Test Statistic P-value Normality assumed 

Shapiro-Wilk 1.000 0.326 Yes 

Kolmogrov-Smirnov 0,003 0.979 Yes 

Anderson-Darling 0.242 0.771 Yes 

Note: The test statistics and p-values are rounded to three decimals for better readability and interpretability. 

Table 3 
Overview of test statistics for Weight with original data 
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Test Test Statistic P-value Normality assumed 

Shapiro-Wilk 1.000 0.288 Yes 

Kolmogrov-Smirnov 0.004 0.808 Yes 

Anderson-Darling 0.525 0.181 Yes 

Note: The test statistics and p-values are rounded to three decimals for better readability and interpretability. 

The findings from the different normality tests all show a similar picture for both the Height and the 

Weight variables. The Shapiro-Wilks, Kolmogorov-Smirnov, and Anderson-Darling tests all indicate that 

both the Height and Weight variables follow a normal distribution. This could be important as one of 

the scenarios that will later be tested is the robustness of Student’s t-test and permutation tests when 

the tested data follow a normal distribution. Since the Student’s t-test assumes normality, this could 

also help improve the validity of the tests when normality is not specifically checked. 

3.4. Data Processing and Cleaning of the Golub data 

The Golub data contained 72 observations or samples but did contain 7,129 gene probes (T. Golub, 

2024). Furthermore, six other variables were included. These variables were: the sample number, the 

source of the sample, the gender of the patient, the hospital of the sampled patient, a factor indicating 

the source and gender of the patient, and lastly the type of cancer. Except for the last variable, cancer 

type, all variables were deleted, as they would not be used in the maxT and Bonferroni evaluations. 

Initially, the data contained information on 2 different kinds of ALL, ALLt and ALLb. Due to the low 

amount of observations, these were grouped into a single ALL variable. This also would simplify the 

Bonferroni and maxT analyses, as only 2 groups would have to be analyzed. 

The data was loaded by using the GolubEsets package in R. This resulted in the value of the gene probes 

being normalized (Bolstad et al., 2003). This was not expected to form a problem for further analysis, 

therefore the normalized data was used. No missing values were present in the data. 

3.5. Data ExploraƟon of the Golub data 

A goal set for this study was to investigate the potential difference in outlier robustness of maxT and 

Bonferroni. The independence of the tests is an important assumption for the Bonferroni correction. 

It is also important for the maxT method. To check this independence, the correlation between the 

different gene expressions would be of importance. Correlation between variables would also be an 

important factor to measure, as this could influence the power of both Bonferroni and maxT. Thus, the 

correlation between the gene probes of the Golub dataset was checked. This involved examining the 

pairwise relationships between the levels of different gene expression to identify potential causal 

patterns between two variables (Yule, 1897). This analysis can reveal whether genes show similar 

patterns across samples. This might suggest relationships between them. Using the Pearson 

correlation coefficients, the strength and direction of linear relationships between gene pairs could be 
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measured (Benesty et al., 2009). The Pearson correlation works by analyzing the cross-correlation and 

the variances of the variables. This results in the following formula:   𝑟 =  
ா(௔௕)

ఙೌఙ್
 

The correlation is indicated by the r. E(ab) is the covariance of the two variables or, in this case, gene 

probes. The product of the standard deviations of both variables is used to divide this covariance. It is 

important to note that the indicated correlation between the variables is stronger if r approaches 1. A 

coefficient of 0 would suggest that there is no correlation. 

In the context of high-dimensional gene expression data, this step could be crucial for understanding 

the underlying biological networks and discovering genes that might be related in some way 

(Langfelder & Horvath, 2008). The Golub dataset has information on over 7 thousand gene probes. 

This means that the data used is extremely high-dimensional and therefore the correlation evaluation 

could provide useful insight.  

Following this, a correlation matrix was computed to evaluate the pairwise correlations between 

genes. This matrix was then visualized into a heatmap, which is shown in Figure 3. This heatmap also 

clustered the genes, but this clustering was not further elaborated upon in this study as, the Bonferroni 

or MaxT procedures only adjust for Type I errors due to a large number of simultaneous comparisons 

(Benjamini & Hochberg, 1995; Dudoit, Shaffer, & Boldrick, 2003).  

Figure 3 
CorrelaƟon heatmap of Golub data 

Figure 3 includes the correlation of every individual variable pair. Concluding, all 7,129 gene probes 

were included in this heatmap. Therefore, the heatmap includes over 50 million combinations. This 
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results in a heatmap that does not state a lot about individual pairs and correlations. Figure 3, however, 

offers a general view of different patterns. As is visible, several groups or clusters of gene probes show 

a strong correlation. 170 pairs even had an absolute correlation coefficient of 0.9 or higher. 446.305 

combinations had a Pearson correlation coefficient with an absolute value equal to or higher than 0.5. 

This suggests that there are some strong relationships between gene probes, albeit that the 

correlations only apply to a small margin of the data, respectively 0.0007% and 1.8%.  This could also 

indicate that there is no clear independence between all the tests. 

To further investigate the independence of the Golub data, the Chi-Square test of independence was 

conducted on the data. The Chi-Square test measures a possible significant difference between two 

variables (McHugh, 2013). These two variables, however, should be categorical. Since the gene probe 

variables are numerical, these were first converted into 3 different groups, so the Chi-Square test could 

be conducted and a general conclusion about independence could be found. Chi-square compares the 

observed frequencies against the expected frequencies of the compared variables. The formula of chi-

square is as follows: 𝑋ଶ =  ∑
(ைିா)మ

ா
  

The X2 represents the test statistic. O is the observed frequency, while E is the expected frequency. 

Using the degrees of freedom and the significance interval of 5% the null hypothesis is rejected or 

retained. The null hypothesis of the chi-square states that there is no relation between the variables. 

On the other hand, the alternative hypothesis states that there is a relationship between the variables. 

Thus, if the null hypothesis is rejected this indicates that there is no independence between the 

variables. 

Since multiple variables were compared at once, the p-value was adjusted by the Bonferroni 

correction. This resulted in a very stringent p-value since all 7,129 variables were compared to each 

other. However, the chi-square test was only conducted to get a general overview of any possible 

dependence on the Golub data. Finally, 57,211 pairs were found to have a significant relationship 

between them. While these only were 0.23% of all tested pairs, this does indicate that there is some 

dependence in the data.  

Concluding, the correlation and chi-square tests indicate that there are some relationships and 

correlations between different variables. Therefore, the tests suggest that there is no complete 

independence between the variables. This could thus influence the power of the Bonferroni correction 

and maxT method. However, the proportions of the correlation are very small and are not considered 

to form problems for further study.  
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4. Methods 
The methods chapter will take a deeper dive into the math and statistics behind the researched 

methods. The methods will be discussed in the following order: Student’s t-test, permutation test, 

Bonferroni correction, and maxT. Furthermore, based on the math and statistical properties of the 

methods the robustness to outliers will be estimated. After going into the methods separately, the 

processes of empirically comparing the methods will be explained. This explanation will contain the 

measures that were used to compare the methods will be elaborated upon. 

4.1. Student’s t-test 

Student's t-tests, also referred to as t-tests, are commonly used statistical tools which check if there is 

a significant difference between the distributions of two groups, this is done by comparing the means 

of both groups (Livingston, 2004). T-tests offer a simple way to compare two groups. The null 

hypothesis of t-tests states that there is no significant difference between the groups being compared. 

The alternative hypothesis is that there is a difference.  

There are two primary types of t-tests: 

Independent two-sample t-test: This test is the standard form of the t-test and is based on multiple 

assumptions. One of these assumptions is independence between the groups.  

Paired t-test: This form of t-test is used when the groups are related.  

As stated before, t-tests rely on different assumptions to enable valid conclusions based on the test 

statistics and p-values. These assumptions are what make the t-test simple to use. However, they can 

be a major limitation to the usefulness, power and even robustness of the tests. The different 

assumptions that must be met in order to generate valid results with t-tests are (Widerberg, 2019):  

Normality: The data should be normally distributed. This is further elaborated in the Data chapter.  

Independence: Observations or samples for both groups should be independent. This assumption, 

however, does not apply to paired t-tests.  

Homogeneity of Variance: For independent two-sample t-tests, the variances of the two groups should 

be the same. T-tests, thus, require homoskedasticity.  

Equal sample sizes: If the sample sizes differ relatively much between the two groups, this could have 

a direct effect on the equality of the variances. 
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So, independent two-sample t-tests compare the observed means of two groups which are unrelated 

to each other. The formula for the t-test statistic when the variances of the two groups are assumed 

to be equal (pooled t-test) is (Teh & Abdul Rahman, 2009): 𝑡 =  
ெభି ெమ

ௌ
 

In this formula, M1 and M2 are the means of groups 1 and 2. They are divided by the standard error (S) 

to compute the test statistic t. To calculate the standard error, the standard deviation of group 1 (s1) 

is divided by the square root of the number of observations in group 1 (N1). This is then squared. This 

is then added to the square root of the same calculations for group 2. The standard error is finally 

derived by square rooting the sum of the measures of groups 1 and 2. This is also illustrated by the 

following formula: 𝑆 =  ටቀ
௦భ

√௡భ
ቁ

ଶ
+  ቀ

௦మ

√௡మ
ቁ

ଶ
 

Interpreting the t-test results requires the degrees of freedom, n - 1. With the degrees of freedom and 

test statistic, using the t-distribution the corresponding p-value can be found. If this p-value is lower 

than the chosen significance level, 5%, the null hypothesis is rejected. In that case, the alternative 

hypothesis is accepted and it can be concluded that the groups differ significantly. 

Some advantages and limitations of the test should be considered before the simulation results are 

discussed, this could provide better insights into the underlying components that influence the results 

of the simulation. It could also help when comparing the results of the difference in the simulations. 

The advantages of Student’s t-test are: 

Simplicity and Interpretability: Student’s t-tests are straightforward to perform, requiring little 

computational resources. Interpreting the results is also relatively easy (Ruxton, 2006). 

Power with Small Sample Sizes: T-tests can be powerful even with a relatively low number of 

observations included in the samples, providing valid results (Derrick et al., 2016). 

Robust to Deviations from Normality: T-tests are relatively robust to moderate deviations from 

normality when the sample sizes are relatively large. This is due to the Central Limit Theorem (Lumley 

et al., 2002). 

Naturally, Student’s t-tests have limitations too, some of these limitations are: 

Assumption Sensitivity: T-tests are based on several assumptions. Violations of these assumptions 

could lead to inaccurate and invalid results (Zimmerman, 2004). 

Limitation with Non-Normal Data: When variables are not normally distributed and the sample sizes 

are relatively small, non-parametric tests might be a better fit (Gibbons & Chakraborti, 2011). 
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Concluding, Student's t-tests are a useful and versatile tool in statistical and data analysis. By allowing 

a comparison of means between groups when several assumptions are met. However, the presence 

of outliers could cause violations of these assumptions. This could lead to inaccurate or invalid results. 

Additionally, Student’s t-tests heavily rely on means and variances. These statistics are more sensitive 

to outliers or extreme values than other statistics, like medians (Moore et al., 2016). This could reduce 

robustness. Outliers can inflate or shrink the t-staƟsƟc and p-value due to the shiŌ in variance and 

means (Wilcox, 2012).  

4.2. PermutaƟon Tests 

PermutaƟon tests are non-parametric methods, meaning that they are not based on assumpƟons 

(Berry et al., 2014). They are used to determine if the distribuƟons are equal between two groups. 

Their goal is thus similar to the Student’s t-test (Hemerik & Goeman, 2017a). This study will solely focus 

on exact permutaƟon and will disregard any other types of permutaƟon tests. PermutaƟon tests are 

based on reshuffling the observaƟons or samples several Ɵmes and evaluaƟng the reshuffled data. 

PermutaƟon tests are not based on an underlying distribuƟon, like Student’s t-tests. Similar to t-tests 

the null hypothesis says that the groups do not significantly differ. The alternaƟve hypothesis states 

that there is a significant difference between the compared groups.  

PermutaƟon tests ‘permute’ or shuffle the labels of all data points. AŌer each permutaƟon, the desired 

test staƟsƟc is obtained. PermutaƟon tests can focus on different test staƟsƟcs, like differences in 

means or medians (Good, 2000). The possibility of focusing on medians instead of means could provide 

beƩer robustness to outliers, as medians are more resistant than means (Moore et al., 2016). Means 

tend to follow outliers or extreme values towards the skewness of the data. In the further parts of this 

study, the permutaƟon test measuring the differences in means will be referred to as the ‘mean 

permutaƟon test’. The permutaƟon test measuring the differences in medians will be referred to as the 

‘median permutaƟon test’. The test staƟsƟcs are used to determine the distribuƟon of the test 

staƟsƟcs. This is done by taking a sample of all possible permutaƟons, as calculaƟng all possible 

permutaƟons would take an extremely long Ɵme, this is called approximate randomizaƟon tests. The 

p-value then is derived from the Ɵmes that the permutated test staƟsƟc is bigger than the observed 

test staƟsƟc. This p-value can then be compared to the significance level, usually 0.05 (Noble, 2009). if 

the p-value is smaller than the p-value, the null hypothesis is rejected. 

PermutaƟon tests are based on only two assumpƟons: 

Exchangeability: The data points must be able to be exchanged for both labels of the data.  
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Independence: Data observaƟons must be independent of each other. This assumpƟon is similar to the 

one for Student’s t-tests (Ernst, 2004). 

The procedure to execute a permutaƟon test consists of 5 different steps: 

1. DefiniƟon of test staƟsƟc: A test staƟsƟc T should be selected. This test staƟsƟc needs to be 

appropriate with regard to the tested hypothesis (Pesarin & Salmaso, 2010). For this study, the 

test staƟsƟcs that will be used are the differences in means and medians between groups. 

2. CalculaƟon of observed test staƟsƟc: The test staƟsƟc for the observed data Tobs is calculated. 

3. ExecuƟon of permutaƟons: The (sampled) data is permuted n number of Ɵmes. The level for 

n that will be used in the simulaƟons for this study is 1.000 permutaƟons. For each permutaƟon 

the test staƟsƟc is calculated, Ti, where i is the iteraƟon of the permutaƟon. 

4. FormulaƟon of distribuƟon: All test staƟsƟcs of the permutaƟons (T1, T2,..., Tn) are compiled 

to construct the null distribuƟon of the test staƟsƟc. 

5. CalculaƟon of p-value: The p-value is derived from the proporƟon of the permuted test 

staƟsƟcs that are as extreme or more extreme than the observed test staƟsƟc. This can also be 

formulated by the following formula (Ernst, 2004): 𝑝 =  
∑ ூ(்೔ஹ்೚್ೞ)೙

೔సభ

௡
 

Where I is the indicator funcƟon measuring if Ti is as extreme or more extreme than the 

observed test staƟsƟc Tobs. 

The calculated p-value is then compared to the significance level. And depending on the p-value being 

smaller than the significance level the null hypothesis will be accepted or rejected. And thus the 

conclusion about the similariƟes or differences between the groups will be drawn. 

Like all other forms of staƟsƟcal tests, permutaƟons have advantages when compared to other 

methods, but the advantages will mostly be considered concerning a comparison with Student’s t-tests. 

However, permutaƟon tests have some limitaƟons that need to be considered. 

Some advantages of permutaƟon tests are:  

Non-parametric: PermutaƟon tests are a non-parametric test, this implies that they do not rely on 

assumpƟons about, among others, the distribuƟons. This makes them useful for non-normal data 

(Good, 2000). This could help the performance of the tests when outliers are included in the data. 

PermutaƟon tests provide a distribuƟon of test staƟsƟcs. This discrete distribuƟon offers a beƩer 

approach than approximately probability values based on certain distribuƟons. 
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VersaƟlity: PermutaƟon tests can measure different test staƟsƟcs, like differences in means and 

medians. This provides a different approach compared to t-tests, which could be useful for certain 

situaƟons. Medians are less likely to be influenced by outliers than means. 

Resistance to extreme values: Appropriate permutaƟon tests can be beƩer resistant to values that can 

be considered extreme (Mielke & Berry, 2013). This could also apply to outliers that are generated by 

faults in the data gathering or cases with significantly different values than most other observaƟons. 

Some limitaƟons of permutaƟon tests are: 

ComputaƟonal Intensiveness: PermutaƟon tests can require high computaƟonal resources as more 

calculaƟons are executed to compute the p-values. This is especially true for large data sets (Ernst, 

2004). Since the Hong Kong data has a lot of observaƟons, the permutaƟon test could require many 

resources and therefore take relaƟvely longer to be executed. 

Approximate randomizaƟon: Using a limited number of permutaƟons instead of execuƟng all possible 

permutaƟons increases the chance of Type I errors. Therefore, comparing the Type I error of Student’s 

t-tests and permutaƟon tests on the same data could provide useful insights. AddiƟonally, the sampling 

could cause different results to be generated even though idenƟcal protocols were followed (Mielke & 

Berry, 1994). 

So, permutaƟon tests could offer a flexible alternaƟve to Student’s t-tests. They allow assessments 

without relying on distribuƟonal assumpƟons which negaƟvely impact the usefulness or validity. 

PermutaƟon tests are possibly more robust to outliers as they are considered to be resistant to extreme 

values. However, only using a sample of all possible permutaƟons could limit results. Since permutaƟon 

tests can focus on different staƟsƟcal differences between groups, like means and medians, 

permutaƟon tests could offer versaƟlity when a staƟsƟc is skewed due to outliers. Student’s t-tests only 

focus on means, so permutaƟon tests could gain power from using less sensiƟve staƟsƟcs as a basis for 

the evaluaƟons. 

4.3. MulƟple Test 

The methods that have yet been discussed can be applied to determine any possible similariƟes or 

differences between 2 groups. Both Student’s t-tests and permutaƟon tests can, however, only be 

applied to test a single variable at a Ɵme. In some situaƟons, it can be required to test differences or 

similariƟes between groups based on mulƟple variables. These situaƟons require a form of mulƟple 

test (Jafari & Ansari-Pour, 2019). MulƟple test allows the analyst to compare groups based on the values 

of mulƟple variables. So, the difference between groups can be determined by a wider range of factors. 
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This could provide useful insights when the evaluated data consists of a relaƟvely bigger number of 

variables. 

Important to note when discussing mulƟple tests is the increased possibility of Type I errors. Each single 

staƟsƟcal test bears upon it the chance to result in a false posiƟve (Lin, 2015). When the null hypothesis 

is rejected when it should not have been rejected, this is called a false posiƟve. The chance of a false 

posiƟve occurring is equal to the significance level, mostly 5% (Noble, 2009). This chance is for a single 

test. So naturally, when mulƟple tests are conducted simultaneously, the results probably include one 

or more false posiƟves (Jafari & Ansari-Pour, 2019). This is called the mulƟple comparisons problem 

(MCP). For example, if each test is conducted at a significance level of α and the tests are all 

independent, the chance of the results including at least one Type I error in m number of tests is (Bland 

& Altman, 1995): 1 − (1 −  𝛼)௠ 

If α = 0.05 and 20 variables are tested, so m = 20. This results in (0.95)20 = 0.36. This is the chance that 

no Type I error will occur. This is nearly one-third of the original chance of 0.95 of a Type I error 

occurring. The chance of at least one significant error occurring is then 1 - 0.36 = 0.64. Then the chance 

of at least one significant Type I error is 0.64. This is almost 13 Ɵmes higher than the original chance of 

0.05. 

In order to combat this increase in the probability of false posiƟves, methods were created to lower 

the chance of false posiƟves. Two examples of these methods are the Bonferroni correcƟon by Dunn 

(1961) and the maxT method by Wesƞall and Young (1993). these methods are used to control the 

familywise error rate (FWER). MulƟple test methods are widely used in studies using data on genes as 

these datasets oŌen consist of a large number of variables (Jafari & Ansari-Pour, 2019). 

Important to note is that mulƟple tests, in principle, are not test methods. MulƟple test methods only 

help with controlling the FWER. So, it is used as an extension of a staƟsƟcal test, like the t-test or 

permutaƟon test. Therefore, the Bonferroni and maxT methods were based on the Student’s t-test in 

the simulaƟons part of this study. 

4.4. Bonferroni CorrecƟon 

The Bonferroni correcƟon is a classical staƟsƟcal method used to correct the MCP (Benjamini & 

Hochberg, 1995). This is done by adjusƟng the significance threshold. The Bonferroni correcƟon helps 

to control the FWER, so the desired level of significance is maintained across mulƟple tests. Specifically, 

if m independent tests are conducted, the Bonferroni correcƟon adjusts the significance level for each 

test to be 𝛼’. And 𝛼’ is calculated by the following formula (Jafari & Ansari-Pour, 2019): 𝛼ᇱ =  
ఈ

௠
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Where 𝛼 is the desired overall significance level, in most situaƟons this would be 5% or 0.05 (Noble, 

2009). This means that each hypothesis test is conducted with a more restricted significance level. This 

restricts the otherwise increased risk of Type I errors that occur with mulƟple tests. 

If the previous example of 20 tests with a significance level of 0.05 is now analyzed with the Bonferroni 

correcƟon. This would result in the following adjusted p-value: α’ =  
଴.଴ହ

ଶ଴
= 0.0025 

So, each test will be conducted and the null hypothesis is only rejected when the p-value is equal or 

lower than 0.0025 instead of the original 0.05 level. The chance of no Type I error occurring among all 

tests is:  1 − (1 −  𝛼)௠ = (1 − 0.0025)ଶ଴  ≈ 0.951 

Thus, the chance of at least one Type I error occurring is (1 – 0.951) = 0.049. This is approximately equal 

to the original 0.05 chance for a single test. Without adjusƟng the p-value the chance of at least one 

Type I error was 0.64. Using this adjusted threshold, the Bonferroni correcƟon ensures that the 

probability of making one or more Type I errors across all tests is maintained at the desired 𝛼 level.  

The Bonferroni correcƟon is straighƞorward and simple to implement. This simplicity has a downside, 

Bonferroni is also to be (very) conservaƟve (VanderWeele & Mathur, 2018). This conservaƟve effect is 

magnified when the number of tests increases as 𝛼’ will shrink in size. The conservaƟsm and shrinkage 

of 𝛼’ potenƟally lead to a staƟsƟcal power reducƟon, which in turn increases the likelihood of Type II 

errors (false negaƟves). This is when true effects are missed, so the null hypothesis is accepted while it 

should have been rejected. Despite this conservaƟveness, the Bonferroni correcƟon is widely used 

because of its simplicity and effecƟveness in controlling the FWER.  

The implementaƟon of the Bonferroni correcƟon only requires three steps: 

1. IdenƟficaƟon of the number of tests: The first step to applying the Bonferroni correcƟon is to 

determine how many tests will be simultaneously conducted. In the simulaƟons of this study, 

all gene probes of the Golub dataset will be tested at once, so 7,129 tests (m). 

2. CalculaƟon of adjusted significance level: The desired significance level should be calculated 

using the stated formula:  𝛼ᇱ =  
ఈ

௠
 

So, the desired level of 𝛼 should be divided by the number of tests. 

3. ApplicaƟon of the adjusted significance with tests: The acquired significance level 𝛼’ should 

next be applied to evaluate the hypotheses of each individual test. This test could be any 

staƟsƟcal test that works with a p-value and significance level. 

Some advantages of the Bonferroni correcƟon are: 



25 
 

Simplicity: Understanding and implemenƟng the Bonferroni correcƟon is relaƟvely easy, as it requires 

a single acƟon or calculaƟon to implement over a large number of tests (Armstrong, 2014). 

ConservaƟveness: Bonferroni provides strict control over the Type I error rate. This ensures that the 

desired level α is not exceeded (Nakagawa, 2004). 

Some limitaƟons of the Bonferroni correcƟon are: 

ConservaƟveness: While conservaƟveness is a strength of Bonferroni correcƟon controlling the Type I 

error rate, the conservaƟveness can also have a negaƟve effect when the number of tests increases. 

This can lead to an increasingly higher risk of Type Type errors. Thus, the chance of overlooking 

meaningful effects increases (Perneger, 1998). 

Independence: Bonferroni assumes that all tests are independent. When there is a correlaƟon 

between the tests, Bonferroni could be too stringent. This unnecessarily reduces staƟsƟcal power 

(Holm, 1979). 

In conclusion, the Bonferroni correcƟon is a classic method for handling the mulƟple comparisons 

problem in situaƟons with mulƟple tests, as it ensures control over the overall Type I error rate. While 

its simplicity and conservaƟveness form advantages, the method's conservaƟve nature can be a 

limitaƟon in scenarios with a large number of tests, especially when they are also correlated. The 

Bonferroni correcƟon does not have a direct influence on the robustness of outliers, as it is a relaƟvely 

passive method. Bonferroni adjusts the significance level based on the number of tests. Since 

Bonferroni does not look at values in the data, it does not offer much robustness. If the p-value from 

the t-test is shrunken due to outliers, this shrinkage could cause the p-value to pass the adjusted 

significance level. Furthermore, if the p-value is inflated due to the outlier, the Bonferroni 

conservaƟveness causes the null hypothesis to be incorrectly accepted.  

4.5. MaxT 

The maxT method, like Bonferroni, is a technique used to control the FWER in MCP situaƟons (Wesƞall 

& Young, 1993). Unlike the simpler Bonferroni correcƟon, which applies a single adjustment to all 

significance levels of all individual tests by adjusƟng α for the number of tests, the step-down maxT 

method uses the data to find the distribuƟon of the test staƟsƟcs. Therefore, maxT is considered to be 

more powerful than the Bonferroni correcƟon (Goeman & Solari, 2014). The method adjusts p-values 

by permutaƟng the data and compuƟng a distribuƟon of the maximum test staƟsƟcs for each 

permutaƟon. This approach takes into account the structure of tests. This offers more efficient control 

over the FWER when compared to simpler methods like the Bonferroni correcƟon (Wesƞall & Young, 

1993). 
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The maxT method is based on an assumpƟon: 

Subset pivotality: The maxT method considers subset pivotality. This means that for each subset of the 

hypotheses, the distribuƟon would be the same as the distribuƟon of all the hypotheses (Dudoit et al., 

2003 & Wesƞall & Young, 1993). It could be that subset pivotality holds when each individual test only 

depends on the observaƟons for the variable tested. However the correctness of this statement is 

disputed (Rempala & Yang, 2013). 

The procedure of conducƟng the maxT method for mulƟple tests has several steps (Wesƞall & Young, 

1993): 

1. DefiniƟon of the test staƟsƟc: The appropriate test staƟsƟc hypothesis test should be selected, 

as stated before for this study the test staƟsƟc was the t-staƟsƟc derived from the Student’s t-

test. 

2. CalculaƟon of the observed test staƟsƟcs: The test staƟsƟc for each hypothesis test, e.g. the 

t-staƟsƟc for every variable/gene probe analyzed, using the original data. These staƟsƟcs are 

named T1, T2,…, Tm, where m is the total number of tests or variables. 

3. GeneraƟon of permutaƟons: The labels for the original data are reshuffled or ‘permuted’ n  

Ɵmes. For each permutaƟon the test staƟsƟcs are calculated, resulƟng in a vector of staƟsƟc 

of T1
1, T2

1,…, Tm
1.  

4. ComputaƟon of the maxT distribuƟon: For each permutaƟon the maximum test staƟsƟc is 

selected. This can be denoted as the following formula: 𝑇௠௔௫
ଵ = max (𝑇ଵ

ଵ, 𝑇ଶ
ଵ, … ,  𝑇௠

ଵ)  

From these maximum test staƟsƟcs from each permutaƟon, the null distribuƟon of the maxT 

distribuƟon is created. The distribuƟon would be made up of all the permuted maximum test 

staƟsƟcs for all permutaƟons (n): Tmax
1, Tmax

2,…, Tmax
n. 

5. SorƟng of observed test staƟsƟcs: The test staƟsƟcs that were computed using the original 

data should be sorted in descending order: 𝑇ଵ  ≥  𝑇ଶ  ≥ ⋯  ≥  𝑇௠ 

6. Adjustment of p-values: For every observed test staƟsƟc the adjusted p-value is calculated. 

The adjusted p-value is the proporƟon of permuted maximum test staƟsƟc values (Tmax
n) that 

are bigger than the observed test staƟsƟcs divided by the total number of permutaƟons (n). 

This results in the following formula for the adjusted p-values (Wesƞall & Young, 1993): 

𝑝௜
௔ௗ௝

=  
∑ 𝐼(𝑇௠௔௫

௡  ≥ 𝑇௜)௡
௡ୀଵ

𝑛
 

Where I( ) is an indicator funcƟon that checks whether the permuted test staƟsƟc Tmax
n is bigger 

than the observed staƟsƟc Ti. 

7. RejecƟon of hypotheses using step-down method: The adjusted p-values are then evaluated 

using the original significance level α1. If the adjusted p-value is smaller than the significance 
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level, the hypothesis is rejected. The values corresponding to the rejected hypotheses are 

removed and the new significance level α2 is calculated. All adjusted p-values that are smaller 

than α2 are rejected and their values are removed. This process is repeated unƟl the removal 

does not lead to new rejecƟons. 

The maxT method is considered a powerful tool for controlling the FWER in scenarios that test mulƟple 

hypotheses at once. The adjustment is stringent by using permutaƟons and focussing on the maximum 

test staƟsƟcs of these permutaƟons. The step-down procedure ensures that the hypotheses are 

rejected in a downward step-wise manner, ending when stepping down does not result in extra 

rejecƟons. This helps maintain the overall error rate while providing a clear criterion for staƟsƟcal 

significance. This method is a good fit for high-dimensional data. The Golub data used in the simulaƟons 

has 7,129 gene probes and is thus highly dimensional.  

Some advantages of the maxT method are: 

CorrelaƟon allowance: The maxT method is more powerful than simpler methods like the Bonferroni 

correcƟon. Its increased power is due to the method considering the correlaƟon structure among tests 

(Dudoit et al., 2003). 

AdapƟon of data: MaxT uses permutaƟons to compute a distribuƟon of the test staƟsƟcs. This makes 

the adjusted p-value and significance level more accurate compared to those derived from the stringent 

and conservaƟve Bonferroni correcƟon (Wesƞall & Young, 1993). 

Some limitaƟons of the maxT method are: 

ComputaƟonal Intensity: The maxT method requires extensive computaƟonal resources. This is 

parƟcularly true when used for large datasets or when the selected number of permutaƟons is high 

(Nichols & Hayasaka, 2003). Since, maxT requires more calculaƟons than Bonferroni, and the datasets 

used for, for example, research into gene expressions are commonly large, this could limit usefulness. 

Use of maximum staƟsƟcs: MaxT relies on the maximum values and this could pose a problem when 

outliers inflate these maximum staƟsƟcs (Wesƞall & Young, 1993). Furthermore, outliers in the original 

could negaƟvely affect the distribuƟons of the permuted test staƟsƟcs and thus the results of the 

staƟsƟcal analysis. 

The maxT method is, potenƟally, a flexible and powerful tool for controlling the family-wise error rate 

in mulƟple hypothesis test scenarios. When test staƟsƟcs are correlated maxT offers more staƟsƟcal 

power than the Bonferroni method. Since the Golub data included some correlated gene expressions 

this could affect the power and robustness of outliers too when compared to Bonferroni. Since maxT 
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evaluates the data, the effect of outliers on the original t-staƟsƟc is potenƟally weakened. This is 

because the same effect applies to the permuted staƟsƟcs. 

4.6. SimulaƟon of Single Comparison Tests 

Since the principles of the research methods are discussed, the protocols used to evaluate the 

robustness of these methods to outliers are laid out. The first simulaƟons were used to compare and 

evaluate the robustness of Student’s t-tests and permutaƟon tests. In the Theory chapter of this study, 

two scenarios were laid out in which the robustness should be compared. The first scenario that was 

laid out, stated that the data should follow a normal distribuƟon because this could have a posiƟve 

effect on the power of Student’s tests. The second scenario that was proposed, was a comparison with 

the data having equal variances between the groups being compared. SimulaƟons for both scenarios 

were included in the data analysis. However, the first simulaƟons included no special tests. All 

simulaƟons were conducted for both the Height and Weight variables, in order to evaluate and 

compare possible differences. Possible differences could provide useful insights. AddiƟonally, since the 

Height and Weight variables included in the Hong Kong data differed slightly, this could also confirm 

the hypotheses for different variable types.  

The base for all simulaƟons was the same and included the following steps: 

Step 1: For all simulaƟons, samples of the observaƟons for the corresponding variable were selected. 

The selecƟon was conducted randomly. First, from the 25,000 observaƟons of the Hong Kong data 

1,000 were randomly selected for group 1. Group 2 consisted of 1,000 observaƟons that were randomly 

picked from the remaining 24,000 observaƟons, ensuring no overlap between groups (Ripley, 2009). 

Step 2: To establish a baseline for the simulaƟon, an iniƟal hypothesis test was conducted on the two 

groups for both the Student’s t-test and the permutaƟon test. The Student's t-test assessed the 

difference in means between the two groups. AddiƟonally, two permutaƟon tests were performed, 

evaluaƟng the differences in means and medians. Both permutaƟon tests used 1,000 permutaƟons. 

The p-value resulƟng from the three different tests was stored for later comparison aŌer the outliers 

were added. 

Step 3: To examine the robustness of the tests, an extreme outlier was introduced into Group 1. This 

introduced outlier had a size of 10 Ɵmes the maximum value found in Group 1. This addiƟon was 

intended to simulate a typo or error in the data-gathering process resulƟng in an extreme data point. 

By adding an extreme value the effect of outliers could be enlarged which could have highlighted the 

effect.  
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Step 4: AŌer adding the outlier, the three tests, Student’s t-test, mean permutaƟon test, and median 

permutaƟon test, were conducted again. This Ɵme the tests used the data that included the outlier. 

Both permutaƟon tests used 1,000 permutaƟons again. The p-values of the tests were stored.  

Step 5: Next to the change in p-value, the number of Ɵmes the significance was changed due to the 

addiƟon of the (extra) outlier was stored as output. This number of changes in significance stated the 

Type I errors that occurred due to the addiƟon of an (extra) outlier. If the test before the addiƟon of 

the (extra) outlier did not state a significant test staƟsƟc or p-value, but the test aŌer the addiƟon of 

an (extra) outlier did indicate a significant test staƟsƟc or p-value, this would mean that the addiƟon of 

the outlier had a direct result on the result and therefore the conclusion of the test. In other words, if 

the test would be robust to outliers the addiƟon of an (extra) outlier should not be able to cause a 

difference in the result of the test. If the significance of the test result was changed by the addiƟon of 

an (extra) outlier, this would mean that the test result was a false posiƟve or Type I error. 

All simulaƟons tested the robustness in the different scenarios and included 200 iteraƟons. These 

iteraƟons ensured reliability and generalizability. For each iteraƟon, the steps were conducted and the 

differences in p-values were stored. This means that the output of the simulaƟon included 200 

calculated differences (Efron & Tibshirani, 1994). 

AŌer the simulaƟons were run, the difference in p-values could be used to evaluate if there was a 

significant effect of the outlier on the results of the three tests. To evaluate the potenƟal significance 

of these differences, the Wilcoxon signed-rank test, which measures differences between two values, 

was applied This test uses (Wilcoxon, 1945). The formula of the Wilcoxon signed-rank test staƟsƟc W 

is: 𝑊 = min(𝑊ା, 𝑊ି) 

Where W + is the sum of the posiƟve difference and W - is the sum of the negaƟve differences. 

This test was chosen because it allows researchers to determine if there is a significance in the 

differences between the two groups (Gibbons & ChakraborƟ, 2011). The Wilcoxon signed-rank test was 

used on the differences in p-values between the tests before and aŌer adding the outlier. Thus, the 

Wilcoxon test assesses whether the introducƟon of the outlier led to significant changes in the p-values 

of the respecƟve tests. The results from the simulaƟons highlighted the robustness of the permutaƟon 

tests compared to the Student's t-test.  

The first simulaƟon included no further tests and consisted of only this process. This simulaƟon was, 

like all other simulaƟons, conducted using both the Weight and Height variables. The second simulaƟon 

tested the robustness of the tests when the sampled data was normally distributed. Student’s t-tests 
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could be more robust to outliers in larger sample sizes. With data samples including 1,000 observaƟons, 

the sampled data could follow a normal distribuƟon beƩer (Kwak & Kim, 2017). 

In order to test normality, the Shapiro-Wilk tests were performed on both groups 1 and 2 (Shapiro & 

Wilk, 1965). The Shapiro-Wilk test is further elaborated upon in the data chapter of this study. The 

normality test was conducted between Step 1 and Step 2 of the base simulaƟon. When the output 

from the Shapiro-Wilk test states that one or two groups of the iteraƟon did not follow a normal 

distribuƟon, the iteraƟon was skipped. This step is crucial as the Student's t-test assumes normality, 

thus checking whether the analysed data is normally distributed could improve the robustness to 

outliers. This could even cause a difference in the comparison between the Student’s t-test and the 

permutaƟon tests.  

The next simulaƟon compared the robustness of the tests in scenarios when the variances of both 

groups were equal. The possible equality of variances was tested using Levene’s test (Levene, 1961). 

Levene’s test is a widely used method to determine equality between group variances (Brown & 

Forsythe, 1974). The test staƟsƟc W is calculated as follows: 𝑊 =
(ேି௞)

(௞ିଵ)
=  

∑ ே೔(௓೔ି௓…)మೖ
೔సభ

∑ ∑ ே೔(௓೔ೕି௓…)మಿ೔
ೕసభ

ೖ
೔సభ

 

Where k is the number of different groups, N is the number of observaƟons, ni is the observaƟon in 

group I, Zi is the mean of the absolute deviaƟon in group I, and Z is the sum of all Zij.  

Whether the outcome of Levene’s test is significant, and it can be concluded that there are significant 

differences between the variances of the group, is determined by evaluaƟng the test staƟsƟc W against 

the criƟcal value derived from the F-distribuƟon with k – 1 and N – k degrees of freedom. The p-value 

can be derived from calculaƟng the right-tail probability of the corresponding F-distribuƟon. If the p-

value is smaller than the significance level of 0.05, the variances of the groups are not equal. If the 

output from Levene’s test concluded that the variances were not equal the iteraƟon was skipped. 

The simulaƟons explained above were all used to answer sub-quesƟon 3, which researched the 

robustness of both methods and the comparison between the two single comparison tests. However, 

sub-quesƟons 5 and 6 focused on the effect of an increasing number of outliers and an outlier growing 

in size on the results from the tests. Two different simulaƟons were conducted to test these effects. 

These simulaƟons were based on the same basis as the other simulaƟons. However, these simulaƟons 

include 50 iteraƟons of the base simulaƟon which also tested the normality of the data. 

The simulaƟon that tested the effect of an increasing amount of outliers, consisted of 50 iteraƟons, 

where an extra outlier was added every iteraƟon. For every outlier adding iteraƟon, a simulaƟon of 100 

iteraƟons was conducted. The 50 outliers were all added to group 1. For each outlier added, the average 
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p-value for each of the three tests compared of the 100 iteraƟons was stored. Furthermore, the number 

of changes in significance stated the Type I errors that occurred due to the addiƟon of an (extra) outlier.  

This concept was applied the same way when the simulaƟons focused on a growing outlier. But instead 

of an extra outlier being added, the single outlier grew a factor. The outlier grew exponenƟally. The size 

of the single outlier was calculated as follows: 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2௜ 

Where i is the iteraƟon of the simulaƟon. The iniƟal was defined as the maximum value of the variables 

of the original dataset, including 25,000 observaƟons. This simulaƟon was run 51 Ɵmes. For the first 

iteraƟon, the value of i is zero. So, the outlier was exactly the same as the iniƟal outlier for the iteraƟon. 

From the iniƟal iteraƟon, the outlier doubled in size. 

4.7. SimulaƟon of MulƟple Comparison Tests 

The mulƟple comparison tests were compared using the Golub dataset. Important to note is the fact 

that the data consists of 72 observaƟons which are divided into 2 groups: AML consisƟng of 47 

observaƟons and ALL consisƟng of 25 observaƟons. This indicates an unequal division between the two 

groups as the proporƟon between the two groups is 65%-35%. So, if a single outlier was randomly 

added to either one of the groups, the results could differ depending on which group the outlier was 

introduced to. In order to test if there is a difference between the two groups and to validate results, 

every simulaƟon comparing the maxT and Bonferroni methods was conducted twice. In the first 

simulaƟon, the outliers were added to the AML group and the second run introduced the outlier to the 

ALL group. 

Contrary to the single comparison tests no specific situaƟons were set out to test, so the simulaƟons 

for maxT and Bonferroni did not include specific tests about the data. The simulaƟons about maxT and 

Bonferroni did not sample the data. Instead, the enƟre Golub dataset was used, so all 72 observaƟons 

and 7,129 gene probes were used to compare the robustness of the methods. Since no specific 

scenarios would have been researched, the same simulaƟon was used for all tested applicaƟons. These 

applicaƟons are the robustness to a single outlier, the effect of an increasing number of outliers, and 

the effect of an outlier growing in size. Thus, a base simulaƟon was constructed, it consisted of several 

steps: 

Step 1: First, the baseline p-values were conducted. The Student’s t-test was used for this. This test was 

used because of its simplicity and because it requires relaƟvely liƩle computaƟonal resources. The 

iniƟal test tested the difference between both groups for all gene probes. The values of the gene probes 

were normalized, so the assumpƟons of the Student’s t-test should hold. 
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Step 2: Using the Bonferroni correcƟon and maxT method, which used 1000 permutaƟons, the p-values 

were adjusted. These adjusted p-values were used to find the baseline significant genes. This baseline 

stated the number of genes that showed a significant difference between the two groups. The adjusted 

p-values and the number of significant gene expressions were stored for later comparison. 

Step 3: AŌer determining the baseline, the outlier was introduced into the specified group. The outlier 

was added as an extra observaƟon. The gene probe values of a randomly selected observaƟon were 

mulƟplied by the outlier factor and the label of the predefined group was added. The outlier factor was 

set as 10 for the single outlier simulaƟons, but for the increasing number of outliers, the factor was set 

as 2. For the growing outlier simulaƟon, the factor had other sizes.  

Step 4: AŌer adding the outlier, the Student’s t-test was conducted again, now using the dataset 

including the outlier. The adjusted p-values were also redetermined. 

Step 5: The differences in the average and median p-values between the baseline and outlier test 

results were calculated and stored. A possible difference in the number of significant was also 

calculated and stored. This difference would indicate the Type II errors that were caused by the outlier. 

Step 6: The Wilcoxon signed-rank test was used to determine if the differences calculated in step 5 

were significant (Wilcoxon, 1945). The significance level for this test was set at 0.05. 

The output of this simulaƟon contained the outlier size and number of outliers, the number of 

significant genes for both the baseline and final version, the mean and median p-value differences, and 

the Wilcoxon test result. 

This simulaƟon was used to answer sub-quesƟon 4. To answer sub-quesƟon 5 a simulaƟon was run 

where the number of outliers was increased. For this simulaƟon, the group to which the outliers were 

added was not predefined, so each outlier added was given a random label. In total 50 observaƟons 

containing outliers were added. Each iteraƟon introduced an extra outlier. The factor with which the 

values of the selected observaƟon were added was set to 2. 

To answer sub-quesƟon 6 a single outlier was mulƟplied with a bigger factor every iteraƟon. So, in the 

first iteraƟon the gene probe values of the selected outlier were mulƟplied by one, and the iteraƟon 

aŌer the values of the original observaƟon were mulƟplied by two. For the last iteraƟon, the values 

were mulƟplied by 50, as 50 iteraƟons were conducted. This simulaƟon was once run where the 

growing outlier was given the AML label and once where the outlier was added to group ALL. 

All simulaƟons used in this were run in the staƟsƟcal compuƟng soŌware package R (R Core Team, 

2024). Different R packages were used for the calculaƟons of this study. The packages used included: 
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‘mulƩest’ (Pollard et al., 2005), ‘golubEsets’ (T. Golub, 2024), ‘ggplot2’ (Wickham, 2009), ‘reshape2’ 

(Wickham, 2007), ‘beepr’ (Bååth & Dobbyn, 2024), ‘pheatmap’ (Kolde, 2019), ‘corrplot’ (Wei & Simko, 

2019), ‘ggpubr’ (Kassambara, 2023), ‘nortest’ (Gross et al., 2015), ‘stats’ (R Core Team, 2024)., ‘dplyr’ 

(Wickham et al, 2023), ‘xtable’ (Dahl et al., 2000), ‘car’ (Fox & Weisberg, 2020). 
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5. Results 
The Results chapter presents the findings of the simulaƟon study evaluaƟng the robustness of classical 

staƟsƟcal methods: the Student’s t-test and the Bonferroni method, against permutaƟon methods: 

permutaƟon test and maxT method. This chapter will first discuss the single comparison methods, 

Student’s t-tests and permutaƟon tests. Next, the mulƟple comparison test methods will be discussed. 

5.1. Single Comparison Robustness 

The first simulaƟon conducted did not consider any addiƟonal tests when comparing the Student’s t-

test, mean permutaƟon test, and median permutaƟon test. So, the data samples used in the 

simulaƟons could sƟll follow assumpƟons like normality and variance equality, but this was not verified. 

A single outlier was added to a group of 1,000 observaƟons. This outlier was the maximum value of 

group 1 mulƟplied by 10. 

In total 200 iteraƟons were run. To determine the impact of the outlier, the differences in p-values of 

the tests conducted before and aŌer adding the outliers were calculated for every iteraƟon. The 

simulaƟon, thus, resulted in a list of 200 differences for all three tests. To determine whether the 

differences in p-values were significantly bigger than zero, the Wilcoxon signed-rank test was 

conducted. 

Table 4 
Overview of results of simulation without test, including Wilcoxon signed-rank test on p-value differences, 
average difference in p-value and Type I error rate caused by the addition of the outlier for the Student’s t-test, 
mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.197 0% No Test 
Permutation  test, Mean Height 0.207 0.007 1% No Test 

Permutation  test, Median Height 0.414 -0.002 0% No Test 

Student’s t-test Weight 0.000*** -0.118 0% No Test 
Permutation  test, Mean Weight 0.130 0.005 1.5% No Test 

Permutation  test, Median Weight 0.580 -0.001 0.5% No Test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 

levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate indicates the proportion 

of the iterations where a false positive was caused by the introduction of the outlier. 

The p-values in Table 4 show that the test results and p-values for the Student’s t-test were significantly 

different after adding the outlier. This is true for both the Height and Weight variables. This indicates 

that the results of the Student’s t-tests were significantly influenced by the outliers. Possible 

explanations for the effect of the outlier could be that the outlier inflates the mean of group 1 while 

the mean of group 2 remains unchanged. The extreme outlier could also result in a violation of the 

assumptions of Student’s t-test. However, according to Lumley et al. (2002), normality is not 
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necessarily needed for large samples, as t-tests could be valid for large samples for any distribution. 

However, no extra Type I error was caused by the addition of the outlier. 

No significant difference was found for the permutation tests, thus, the outlier did not have a 

significant effect on the p-value. A few Type I errors occurred for the permutation tests, but these are 

relatively uncommon, occurring in approximately 1% of the iterations. So, if no tests on the sampled 

data are conducted the permutation tests are more robust to outliers than the Student’s t-test. 

Building on the iniƟal robustness assessment, the next simulaƟons run included normality tests about 

the sampled data before the outlier was added. If either group did not follow normality, the iteraƟon 

was skipped. This resulted in, respecƟvely, 17 and 18 iteraƟons being skipped. This also indicates that 

some iteraƟons in the simulaƟon without tests contained groups which were not normally distributed.  

Table 5 
Overview of results of simulation with normality test, including Wilcoxon signed-rank test on p-value differences, 
average difference in p-value and Type I error rate caused by the addition of the outlier for the Student’s t-test, 
mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.170 0% Normality Test 
Permutation  test, Mean Height 0.754 0.029 2.2% Normality Test 

Permutation  test, Median Height 0.366 0.002 1.1% Normality Test 

Student’s t-test Weight 0.000*** -0.133 0% Normality Test 
Permutation  test, Mean Weight 0.130 0.001 5.5% Normality Test 

Permutation  test, Median Weight 0.580 0.002 1.6% Normality Test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 
levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate indicates the proportion 
of the iterations where a false positive was caused by the introduction of the outlier. 
Table 5 shows that the p-values of the Student’s t-test were significantly influenced by the addiƟon of 

a single outlier. Even though the normality assumpƟon holds, before adding the outlier, the Student’s 

t-test is sƟll not more robust to outliers compared to the permutaƟon tests. The mean permutaƟon 

test, however, shows a relaƟvely high Type I error rate being caused by the addiƟon of an outlier 

compared to the other tests. IndicaƟng that the test results are also influenced by the addiƟon of the 

outlier. This is especially true for the Weight variable where Type I errors were triggered in about 5,5% 

of the conducted iteraƟons. This is a substanƟal proporƟon which could indicate weaker robustness to 

the extreme outliers. For the Height variable, this proporƟon is approximately 2.2%, which is higher 

than the other two tests. This will be further invesƟgated in the simulaƟon adding mulƟple outliers. 

The median permutaƟon test shows no explicit effect of the outlier, apart from a relaƟvely low Type I 

error rate. The difference between the Type I errors of the mean and median permutaƟon tests could 

be explained by medians being less affected by extreme values than means (Moore et al., 2016). 
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So, when the normality assumpƟon holds for the data, both types of permutaƟon tests, are more 

robust to outliers than the Student’s t-test. But, the mean permutaƟon tests show a tendency to 

produce more Type I errors. 

An addiƟonal scenario in which the robustness of the Student’s t-test could be beƩer than that of 

permutaƟon tests could be when the variances of both groups were (approximately) equal (Sawilowsky 

& Blair, 1992 & Field, 2017).  For this simulaƟon, the same principle as the normality test was used, so 

if Levene's test indicated that the variance between groups was unequal, the iteraƟon was skipped. For 

the simulaƟon using the Height variable 190 iteraƟons were completed, so in 10 iteraƟons the 

variances were unequal. The simulaƟon analyzing the Weight variable skipped 7 of the 200 iteraƟons, 

compleƟng 193 iteraƟons. 

Table 6 
Overview of results of simulation with variance equality test, including Wilcoxon signed-rank test on p-value 
differences, average difference in p-value and Type I error rate caused by the addition of the outlier for the 
Student’s t-test, mean permutation test and median permutation test 

Test Variable Wilcoxon 
P-value 

Average difference in  
p-value 

Type I error rate Test type 

Student’s t-test Height 0.000*** -0.192 0% Variance test 
Permutation  test, Mean Height 0.050* -0.009 2.1% Variance test 

Permutation  test, Median Height 0.957 0.000 0% Variance test 

Student’s t-test Weight 0.000*** -0.133 0% Variance test 
Permutation  test, Mean Weight 0.1966 0.005 3.1% Variance test 

Permutation  test, Median Weight 0.1279 -0.002 1.0% Variance test 
Note: The p-values are rounded to three decimals for better readability and interpretability. The stars indicate significance 
levels: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05. The Type I error rate states the proportion of 
the iterations where the null hypothesis was rejected after adding the outlier(s) when the null hypothesis was accepted 
before adding the outlier(s). 
The Student’s t-test again saw that the added outlier influenced the test staƟsƟc and p-value. The 

Wilcoxon test indicates that for both the Height and Weight variables the difference in -p-value was 

significant. AddiƟonally, the mean permutaƟon test was significantly influenced by the outlier. This is 

the only simulaƟon that resulted in a significant difference in p-values for a permutaƟon test. A possible 

explanaƟon for this could be that adding an outlier has a bigger effect on the mean if the variance 

between groups is equal (Good, 2005). The addiƟon of an outlier could have a more pronounced effect 

on the distribuƟon of the permuted means. 

However, an interesƟng staƟsƟc is the Type I error rate. For all simulaƟons introducing a single outlier, 

the Student’s t-test did not have any instances where a result was insignificant before the outlier 

addiƟon but was significant aŌer the outlier addiƟon. The p-value has, however, been significantly 

affected by the addiƟon of an outlier. This could be due to the Student’s t-test resulƟng in mostly 

significant p-values before adding the outlier, so the addiƟon would not cause a Type I error. Another 
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possible explanaƟon could be that the p-values for the Student’s t-test were higher for the baseline 

group. Then a big change could fail to make the p-value cross the significance level threshold. 

In conclusion, the Student’s t-test p-value is significantly changed by the addiƟon of an outlier. The 

median permutaƟon test is the most robust to outliers in the case of homogeneity. The mean 

permutaƟon test is less robust than the median version because, in the Height simulaƟon, the p-values 

were significantly changed. Furthermore, the mean permutaƟon test is more prone to result in Type I 

errors than both the median permutaƟon test and the t-test. 

5.2. Single Comparison Robustness with Increasing Number of Outliers 

The previous simulaƟons focused on adding a single outlier in some special situaƟons. These 

simulaƟons showed a clear rank in the robustness of the different tests. The median permutaƟon test 

was the most robust. And the Student’s t-test was the least robust. 

This study also aimed to research the effect of adding mulƟple outliers on the outcome of the tests. 

The proporƟon of the outliers of the enƟre group 1, including the outliers, ranged from about 0.1% to 

about 4.8%. So, the outliers made up a relaƟvely small part of group 1. Figure 4 shows the outcome of 

the simulaƟon for Height, the outcome for the Weight variables is shown in Figure 5. 

Figure 4 
Overview of results of simulaƟon with increasing number of outliers for Height, including average p-values and 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test 

Note: The Type I error rate states the proporƟon of the iteraƟons where the null hypothesis was rejected aŌer adding the outlier(s) when 

the null hypothesis was accepted before adding the outlier(s). 

Figure 5 



38 
 

Overview of results of simulaƟon with increasing number of outliers for Weight, including average p-values and 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test  

Note: The Type I error rate states the proporƟon of the iteraƟons where the null hypothesis was rejected aŌer adding the 

outlier(s) when the null hypothesis was accepted before adding the outlier(s). 

Both figures show a similar paƩern. The Student’s t-test and mean permutaƟon test perform similarly 

to the Type I error and average p-value. The average p-values shrink when extra outliers are added. 

While the average p-value of the Student’s t-test is lower for the first outlier, the p-value of the mean 

permutaƟon test shrinks faster, equaling zero when the 11th outlier is added. The p-value of the t-test 

equals zero aŌer the 13th outlier is added. The average p-value equals zero for every extra outlier added. 

This is exactly the same for both the Weight and Height variables. 

A similar paƩern can be seen with the Type I error rate. The average proporƟon of Type I errors caused 

by the outliers quickly rose and the proporƟon surpassed the 75%-threshold for both tests for both 

variables when the 5th outlier was added. The average proporƟon seems to fluctuate around 90% for 

the iteraƟons when more than 5 outliers were added. 

The median permutaƟon test could be considered the most robust to a single outlier in different 

scenarios. This conclusion can also be drawn when extra outliers are added. The average p-value slightly 

shrinks, but this effect is smaller than the effect of the other tests. The lowest average p-value for the 

median permutaƟon test is 0.283 for Height and 0.336 for Weight. The average p-values stay on level 

for the first 20 outliers added. The proporƟons of the Type I errors rose when the number of outliers 

increased, but the rate at which the proporƟons rose is significantly lower than those of the other tests. 

The median permutaƟon test outperforming the other tests could be explained by the lower sensiƟvity 
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of medians to outliers. Both the Student’s t-test and mean permutaƟon test use means to compute the 

test staƟsƟcs and p-values. And means are more sensiƟve to extreme values than medians (Moore et 

al., 2016).  The slight shrinkage of the p-value could be caused by the outliers being added making 

group 1 grow from 1000 observaƟons to 1050 observaƟons, so the median of group 1 for the iniƟal 

iteraƟon and the final iteraƟon could differ. The growth of the number of observaƟons could cause a 

difference in the medians. AddiƟonally, since the added observaƟons are all outliers, slowly increases 

the medians of the groups.  

Contrary to the simulaƟons introducing a single outlier, mulƟple outliers do cause Type I errors for the 

Student’s t-test. A possible explanaƟon could be that a single outlier causes a significant shiŌ but the 

iniƟal p-values were relaƟvely high. Only aŌer mulƟple outliers are added, do the outliers cause the p-

value to cross the significance threshold. 

So, if mulƟple outliers are or could be present in the data a permutaƟon test measuring the differences 

between medians is the most robust. Both the Student’s t-test and mean permutaƟon test perform 

worse when mulƟple outliers are present. Both perform almost the same for both the average p-values 

and Type I errors. 

5.3. Single Comparison Robustness with Growing Outlier 

Along with test the effect of an increasing number of outliers, this study aims to measure the effect of 

an outlier that increases in size on the outcome of the Student’s t-test and permutaƟon tests. The iniƟal 

size of the outlier was the maximum value of the original Height and Variables. The next iteraƟon the 

outlier was doubled in size. This doubling process was repeated 50 Ɵmes. As a result, the outliers' final 

sizes were 8e16 inches and 2e17 pounds. The outliers had extreme sizes but were less than 0.01% of the 

observaƟons in group 1. 

Figure 6 
Overview of results of simulaƟon with growing outlier sizes for Height, including average p-values and average 

Type I error rate (%) caused by the addiƟon of the outlier for the Student’s t-test, mean permutaƟon test and 

median permutaƟon test 
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Note: The Outlier Factor value states the factor of i in the following formula 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2௜. The Type I 

error rate states the proporƟon of the iteraƟons where the null hypothesis was rejected aŌer adding the outlier(s) when the 

null hypothesis was accepted before adding the outlier(s). 

Figure 7 
Overview of results of simulaƟon with growing outlier sizes for Weight, including average p-values and average 

Type I error rate (%) caused by the addition of the outlier for the Student’s t-test, mean permutation test and 

median permutation test  

Note: The Outlier Factor value states the factor of i in the following formula 𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ∗ 2௜. The Type I 

error rate states the proporƟon of the iteraƟons where the null hypothesis was rejected aŌer adding the outlier(s) when the 

null hypothesis was accepted before adding the outlier(s). 

As with the increasing number of outliers, both simulaƟons for Height and Weight show a similar 

paƩern. The first difference with the increasing number of outliers is the fact that the growing outliers 
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do not cause a high Type I error rate. The Type I error rate stays about the same for the enƟre 

simulaƟon, never exceeding 5%. So, a massive outlier has liƩle effect on the validity of the test 

concerning the Type I error rate. 

Where the average p-values of the Student’s t-test and mean permutaƟon tests for the simulaƟons 

introducing mulƟple outliers followed a similar paƩern, the tests show a different paƩern for the 

growing simulaƟons. The average p-value of the t-test shrinks when the size of the outlier grows. For 

both variables the p-value of the t-tests shrinks and levels off at 0.318 aŌer the outlier was doubled for 

the 9th Ɵme. This could be explained by the outlier inflaƟng the esƟmated standard deviaƟon of group 

1. This causes the S or the denominator of the Student’s t-test formula to rise significantly. Therefore, 

the p-value of the t-test shrinks. The levelling off at 0.318 could be a result of the esƟmated standard 

deviaƟon and the mean of group 1 both inflaƟng and finally reaching a point where a doubled outlier 

does not change the values. 

The p-value of the mean permutaƟon test increased and seƩled around 0.750 aŌer 15 iteraƟons. A 

possible explanaƟon for the fact that the p-values did not rise anymore could be that the outliers are 

already very extreme and mulƟplying the outlier more does not cause the mean to shiŌ further towards 

the outlier. 

The median permutaƟon tests seemed to perform the same for the different sizes of the outlier. 

Contrary to the increasing number of outliers, almost no increase or decrease paƩern can be seen. The 

median permutaƟon test results in an average p-value of around 0.5 for all iteraƟons. This could be 

explained by the median not being sensiƟve to extreme values. The simulaƟon adding an increasing 

number of outliers saw a slight decrease in the average p-values. Since the growing outlier simulaƟon 

only increases the number of observaƟons by a small margin, the median is less likely to change before 

and aŌer adding the outlier.  

The median permutaƟon test does, however, result in a few Type I errors. The other tests do not result 

in any Type I errors aŌer they have seƩled around the observed levels of 0.318 and 0.750 for the t-test 

and mean permutaƟon test, respecƟvely. So, if the p-values of the tests aŌer the outliers shiŌ towards 

insignificant levels, fewer or no cases of the test outcomes changing from insignificant to significant 

aŌer adding the outlier will occur. The Type I error rate decreasing could also suggest that the Type II 

error rate increases. Since the p-values level off at insignificant levels, the outlier could cause the tests 

to result in the null hypothesis being accepted when it should have been rejected. However, the Type 

II error rate was not measured in the simulaƟon. A suggesƟon for further research could be to research 

the effect of an increasing outlier on the Type II error rate. 
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In conclusion, the median permutaƟon performs best when an outlier increasing in size is added. This 

type of test is not affected by the outlier concerning the average p-value or Type I error rate. The 

average p-value of the mean permutaƟon test is inflated while the Student’s t-test experiences a 

shrinking p-value. The inflaƟng or shrinking effects level off when the outlier is 512 Ɵmes its original 

size. The growing outlier does decrease the Type I error rate but could cause an increase in Type II 

errors. 

5.4. MulƟple Comparison Robustness 

As well as comparing classical methods and permutaƟon methods for single comparison tests, this 

study also set a goal to compare the classical and permutaƟon methods for mulƟple comparison 

methods. For mulƟple tests two methods were compared, the Bonferroni correcƟon and the maxT 

method. Even though the p-values could differ before and aŌer adding the outlier, this is not the most 

important measurement as the Type II error or change in the number of genes that were found to be 

significant is a beƩer measure to test robustness.  

Since the simulaƟon uses the enƟre Golub dataset to perform a t-test for all 7,129 gene expressions, a 

single baseline was established. The result from the iniƟal t-test with a significance level adjusted by 

the Bonferroni method stated that 143 genes were significant. This means that 143 genes, almost 2% 

of all gene probes, had a significant difference between the AML and ALL groups. The p-values adjusted 

by the maxT method used on the outcome of the same t-test resulted in 167, 2.3%, having a significant 

difference between the ALL and AML samples. This already showed why Bonferroni is considered to be 

more conservaƟve. In a similar situaƟon, the Bonferroni correcƟon results in fewer gene probes being 

significant than the maxT method. 

Table 7 
Overview of results of single outlier robustness simulations, including the number of significant genes before 

(Baseline) and after outlier addition and Type II error rate 

Group Significant genes 
Bonferroni 

Baseline 

Significant 
genes maxT 

Baseline 

Significant 
genes 

Bonferroni 

Significant 
genes maxT 

Type II error 
rate 

Bonferroni 

Type II 
error rate 

maxT 
ALL 143 167 24 59 83.2% 64.7% 
AML 143 167 89 141 37.8% 15.6% 

Note: The Type II error rate indicates the proportion of differences in the number of significant genes compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
Even though the ALL and AML simulaƟons show different results, they show a similar paƩern. The 

Bonferroni method is most influenced by the addiƟon of an outlier. The Type II error rate of Bonferroni 

is higher in both simulaƟons. This indicates that the Bonferroni correcƟon is less robust than the maxT 

method. A negaƟve change in significance could be considered a Type II error as some null hypotheses 

are accepted when they should be rejected.  
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Concluding, the maxT method is more robust to outliers than the Bonferroni method. 

5.5. MulƟple Comparison Robustness with Increasing Number of Outliers 

These simulaƟons aimed to measure the effect of an increasing number of outliers on the outcome of 

the Bonferroni correcƟon and maxT method. The baseline derived in 5.6, also applied to the 

simulaƟons that tested the effect of an increasing number of outliers. So, without any outliers, 

Bonferroni stated that 143 gene probes significantly differed between the cancer types. 167 gene 

expressions saw a significant difference between the ALL and AML types of cancer according to the 

maxT method. 

Figure 8 

Overview of Type II error rate with increasing number of outliers 

The first conclusion that can be drawn from Figure 8 is that both methods lack the power to be robust 

to a large number of outliers. However, this can be explained by the relaƟvely small number of original 

observaƟons. The data originally contained 72 observaƟons, so every outlier adds about 1,5% to the 

original observaƟons. The Type II error rate slowly rose aŌer each extra outlier was added. AŌer the 

30th outlier was added the Type II error rate levels off around 99-100%. This can be explained by the 

outliers making up almost 30% of the total number of observaƟons evaluated by the methods. So, both 

methods are affected by mulƟple outliers that are present in the data. 

To compare the robustness of the Bonferroni and maxT methods, the Type II error rates should be 

compared. The method with the lowest percentages could be considered the most robust. AŌer 50 

iteraƟons, the error rate was equal for both methods 6 Ɵmes all of these 6 Ɵmes the Type II error rate 

for both methods was 100%. These 6 Ɵmes all occurred aŌer 30 or more outliers were introduced. The 

Bonferroni correcƟon performed beƩer only 3 Ɵmes or 6% of the total iteraƟons. The maxT method 
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performed beƩer in 41 iteraƟons 82% of the Ɵme. On average, the Type II error rate of the maxT 

method is 5 percentage points higher than that of the Bonferroni correcƟon. 

A Wilcoxon test was conducted to test whether the difference in significant features between 

Bonferroni and maxT was significant. AddiƟonally, the differences in Type II error rates for the different 

iteraƟons were also tested using the Wilcoxon test. Both tests stated that the differences were 

significantly different. 

In conclusion, when mulƟple outliers are introduced to the data the maxT method is significantly more 

robust than the Bonferroni correcƟon. However, the Type II error rate tends to rise towards 100% if 

more outliers are present in the data. This is true for both methods. 

5.6. MulƟple Comparison Robustness with Growing Outlier 

Finally, the robustness of mulƟple comparisons against a single progressively growing outlier is 

assessed. This simulaƟon was conducted twice. The outlier was once introduced to the ALL group and 

once was the label AML given. Again the baselines to which the number of significant genes from the 

simulaƟons will be compared are 143 for the Bonferroni correcƟon and 167 significant genes for the 

maxT result.  

Figure 9 

Overview of Type II Error Rates for AML Group with Growing Outlier 

Note: The Outlier Factor value states the factor with which the gene expressions of the outlier were mulƟplied. The Type II 

error rate indicates the proportion of differences in the number of significant genes compared to the baseline. These Type II 

errors were false negatives caused by the introduction of the outlier. 

Figure 10 
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Overview of Type II Error Rates for ALL Group with Growing Outlier 

Note: The Outlier Factor value states the factor with which the outlier was mulƟplied. The Type II error rate indicates the 

proportion of differences in the number of significant genes compared to the baseline. These Type II errors were false 

negatives caused by the introduction of the outlier. 

Figures 9 and 10 show a similar paƩern for the Type II error rates for the different outlier factors for 

both simulaƟons. The growing outlier caused the Type II error rate to rise. Figures 9 and 10 show that 

the Bonferroni correcƟon had a higher Type II error rate than maxT for every iteraƟon in both 

simulaƟons. This suggests that the maxT method is more robust to outliers than the Bonferroni 

correcƟon, even if the outliers are bigger. The maxT method had a Type II error rate that was 

approximately 14.6 percentage points lower than that of the Bonferroni correcƟon on average. There 

was a slight difference between the simulaƟons where the outlier was given the label ALL or AML. 

These results resulted in a Type II error rate of, respecƟvely, 14.0 and 15.1 percentage point difference 

on average. 

Thus, the maxT method is more robust to a bigger outlier than the Bonferroni correcƟon. However, if 

the outlier gets more extreme values, the Type II error rate rises for both methods.  
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6. Conclusion and Discussion 
This study researched the robustness of permutaƟon tests and the maxT method compared to classical 

staƟsƟcal tests, especially the Student’s t-test and Bonferroni correcƟon when (extreme) staƟsƟcal 

outliers are included in the analysed data. This research directly compares the robustness of these 

methods against outliers, a comparison not yet made in the exisƟng literature. 

The literature review concluded that the permutaƟon tests could be more robust because of their 

versaƟlity and possibility to adapt to the data. For the single comparison tests, the Student’s t-test is 

limited by the dependence on assumpƟons and the use of the mean to compute the test staƟsƟc. The 

permutaƟon test that measured the differences between means is more robust than the Student’s t-

test. However, the permutaƟon test also can be based on the differences between the medians of 

groups. Medians are less sensiƟve to extreme values and can thus be more robust. The empirical 

analysis of this study using weight and height data confirmed these findings. The median permutaƟon 

test is more robust to outliers than the classical Student’s t-test and the mean permutaƟon test. Even 

in situaƟons where the assumpƟons of Student’s t-test hold before the outlier was introduced the 

permutaƟon tests were more robust. However, the mean permutaƟon test resulted in the highest Type 

I error rate aŌer the outlier was added. The Type I error rate of the median permutaƟon test was 

relaƟvely lower compared to the mean permutaƟon test. Even though the p-value of the Student’s t-

test was significantly altered by the addiƟon of an outlier, this did not result in an increased Type I error 

rate. 

The empirical analysis also showed that the median permutaƟon test is most robust when mulƟple 

outliers are included. The p-values of both the Student’s t-test and mean permutaƟon test were 

eventually shrunken to zero aŌer mulƟple outliers were added. The Type I error rates of these tests 

were inflated to 90-100% aŌer the addiƟon of mulƟple outliers. The p-value and Type I error rate of 

the median permutaƟon were influenced less by the outliers. So, if mulƟple outliers are included in the 

data the use of the median permutaƟon test is recommended as this test would provide the most 

robust outcome. 

The same was concluded for a situaƟon where a bigger outlier was introduced to the data. The outlier 

influenced the p-values and Type I error rates of the Student’s t-test and mean permutaƟon test 

significantly. However, the growing outlier had a small effect on the Type I error rate, shrinking the rate 

to zero for the t-test and mean permutaƟon test. This was caused by the p-values of these tests levelling 

off respecƟvely 0.318 and 0.700. The median permutaƟon test showed almost no effect of the growing 

outlier. The p-value and Type 1 error rate remained about the same for the different sizes of the outlier. 
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So, if a single extreme outlier is included in the data the outcome of the median permutaƟon remains 

valid while the other tests were significantly affected by an extreme outlier. 

For mulƟple comparison methods, the literature indicated that the versaƟlity and data adopƟon of the 

maxT method potenƟally could provide the method more robustness compared to the Bonferroni 

method. The Bonferroni method could mostly be restricted by its conservaƟveness. The empirical 

simulaƟons which analysed the Golub data confirmed the literature findings showing that the maxT 

had a lower Type II error rate than the Bonferroni correcƟon. 

In scenarios where mulƟple outliers are or a relaƟvely larger outlier is present in the data, the results 

of the maxT method showed a significantly lower Type II error rate than the results of the Bonferroni 

correcƟon. However, when the number of outliers increases or an outlier grows in size, the Type II error 

rate increases towards 100%. This is true for both the maxT and Bonferroni methods. 

In conclusion, the permutaƟon-based methods, permutaƟon tests and maxT method, are more robust 

to outliers than the classical staƟsƟc methods, Student’s t-test and Bonferroni correcƟon. So, if 

researchers analyse data or conduct a staƟsƟcal study and use data that could be outlier-infested, they 

are advised to use permutaƟon-based methods as they provide more robustness to these outliers. 

These findings can be useful for marketers or markeƟng researchers who have to select a method for 

their group comparison analyses or studies. SelecƟng permutaƟon-based methods over classical 

methods could provide more robust and valid results. 

6.1. Discussion 

While this study provides insights into the robustness of permutaƟon tests compared to classical 

staƟsƟcal methods when outliers are present in the data, recognizing its limitaƟons and potenƟal areas 

for improvement is an important step. 

This study used real-world data but introduced simulated outliers. These outliers could not represent 

realisƟc outliers that could be encountered in real data analyses. AddiƟonally, the Golub dataset that 

was used to compare the mulƟple comparison methods saw some correlaƟons and dependence 

between different gene probes. Even though these only applied to a marginal part of the data, these 

could be considered a violaƟon of the assumpƟons of the Bonferroni correcƟon. 

This study focused on the Type I error of the single comparison methods when an increasing number 

of outliers were added. The Type I error was shrunken to zero aŌer mulƟple outliers were introduced. 

This could have affected the Type II error rate, but this was not measured. So, if researchers use data 

that could be cluƩered with outliers, they should be aware that the Type II error rate could be higher 

than desired. This study did not measure the staƟsƟcal power of the single comparison tests but instead 
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focused on the shiŌ in p-values. Future research could study the influence of outliers on the power of 

the single comparison methods. 

While this study used simulaƟons to test the robustness of mulƟple methods. These basic simulaƟons 

introducing a single outlier consisted of 200 iteraƟons. The simulaƟons which added mulƟple outliers 

or a growing outlier consisted of 50 Ɵmes 100 iteraƟons. These simulaƟons used relaƟvely small 

numbers of iteraƟons due to the computaƟonally intensive methods being used. Due to the long Ɵme 

these simulaƟons took to run, the number of iteraƟons was not increased. 

Future studies could focus on other comparisons between the methods analysed or methods not 

included in this study. AddiƟonally, researching the impact of different types of outliers and 

distribuƟons on the performance of these tests could be used as a topic of further research. The 

outliers in this study were mostly bigger versions of exisƟng observaƟons. Researchers could explore 

the impact of smaller outliers on the outcome of tests.  
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7.2. Appendix A: Figures and Tables 

Figure A 

Boxplot of Height variable from the Hong Kong data 

Figure B 

Boxplot of Weight variable from the Hong Kong data  

Figure C 

Q-Q plot of Height of Hong Kong data 
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Figure D 

Q-Q plot of Weight of Hong Kong data 

Table A 
Overview of results of simulation for single comparison with increasing number of outliers for Height, including 
Wilcoxon signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by 
the addition of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Number of 
outliers 

Average p-
value t-test 

Average p-
value 

permutation 
test, mean 

Average p-
value 

permutation 
test, median 

Type I error 
t-test 

Type I error 
permutation 
test, mean 

Type I error 
permutation 
test, median 

1 0.333 0.547 0.495 0.0% 2.2% 0.0% 
2 0.157 0.232 0.515 0.0% 7.8% 0.0% 
3 0.082 0.110 0.443 0.0% 19.8% 1.0% 
4 0.046 0.065 0.576 79.1% 33.0% 0.0% 
5 0.026 0.035 0.454 95.8% 73.7% 0.0% 
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6 0.014 0.016 0.520 94.7% 94.7% 0.0% 
7 0.008 0.009 0.460 92.6% 91.5% 1.1% 
8 0.005 0.005 0.482 100% 100% 3.2% 
9 0.003 0.002 0.533 96.8% 96.8% 0.0% 

10 0.002 0.001 0.562 99.0% 99.0% 1.0% 
11 0.001 0.000 0.451 93.3% 93.3% 3.4% 
12 0.001 0.000 0.519 93.4% 92.3% 0.0% 
13 0.000 0.000 0.513 93.7% 93.7% 1.1% 
14 0.000 0.000 0.436 96.8% 95.7% 4.3% 
15 0.000 0.000 0.478 94.7% 94.7% 3.2% 
16 0.000 0.000 0.477 98.9% 97.8% 2.2% 
17 0.000 0.000 0.434 93.5% 92.4% 1.1% 
18 0.000 0.000 0.503 96.8% 95.8% 2.1% 
19 0.000 0.000 0.520 95.6% 94.4% 2.2% 
20 0.000 0.000 0.540 92.4% 92.4% 4.3% 
21 0.000 0.000 0.503 94.3% 94.3% 3.4% 
22 0.000 0.000 0.508 93.5% 93.5% 3.2% 
23 0.000 0.000 0.486 95.6% 95.6% 3.3% 
24 0.000 0.000 0.444 94.6% 94.6% 3.3% 
25 0.000 0.000 0.450 91.6% 91.6% 4.2% 
26 0.000 0.000 0.457 90.0% 91.1% 5.6% 
27 0.000 0.000 0.417 93.8% 93.8% 9.4% 
28 0.000 0.000 0.485 97.8% 96.7% 3.3% 
29 0.000 0.000 0.478 96.7% 94.6% 6.5% 
30 0.000 0.000 0.497 97.8% 97.8% 4.3% 
31 0.000 0.000 0.484 94.6% 95.7% 3.2% 
32 0.000 0.000 0.432 95.5% 95.5% 13.5% 
33 0.000 0.000 0.418 95.7% 96.8% 14.0% 
34 0.000 0.000 0.452 92.7% 92.7% 5.2% 
35 0.000 0.000 0.424 92.0% 90.9% 13.6% 
36 0.000 0.000 0.452 97.9% 97.9% 10.6% 
37 0.000 0.000 0.391 96.8% 95.7% 2.1% 
38 0.000 0.000 0.408 95.5% 96.6% 4.5% 
39 0.000 0.000 0.367 93.0% 94.2% 9.3% 
40 0.000 0.000 0.369 94.6% 93.5% 8.7% 
41 0.000 0.000 0.395 97.9% 97.9% 16.8% 
42 0.000 0.000 0.411 96.9% 96.9% 10.4% 
43 0.000 0.000 0.340 96.6% 96.6% 15.7% 
44 0.000 0.000 0.381 92.3% 92.3% 12.1% 
45 0.000 0.000 0.352 91.2% 91.2% 16.5% 
46 0.000 0.000 0.349 91.0% 91.0% 12.4% 
47 0.000 0.000 0.398 96.6% 97.8% 14.6% 
48 0.000 0.000 0.329 97.8% 97.8% 12.2% 
49 0.000 0.000 0.318 93.7% 92.6% 25.3% 
50 0.000 0.000 0.283 93.5% 93.5% 22.8% 
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Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table B 
Overview of results of simulation for single comparison with increasing number of outliers for Weight, including 
Wilcoxon signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by 
the addition of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Number of 
outliers 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

1 0.364 0.494 0.499 0.0% 5.4% 1.1% 
2 0.167 0.225 0.493 0.0% 9.5% 1.1% 
3 0.091 0.118 0.504 7.9% 19.1% 0.0% 
4 0.055 0.070 0.486 40.9% 28.0% 0.0% 
5 0.028 0.030 0.546 90.6% 83.5% 1.2% 
6 0.016 0.015 0.486 92.5% 94.6% 0.0% 
7 0.010 0.008 0.478 92.4% 93.5% 1.1% 
8 0.006 0.004 0.477 92.0% 90.9% 1.1% 
9 0.003 0.002 0.492 90.8% 90.8% 0.0% 

10 0.002 0.001 0.422 92.0% 92.0% 0.0% 
11 0.001 0.000 0.479 95.7% 95.7% 1.1% 
12 0.001 0.000 0.496 94.6% 94.6% 2.2% 
13 0.000 0.000 0.453 89.1% 90.2% 1.1% 
14 0.000 0.000 0.452 96.6% 97.7% 3.4% 
15 0.000 0.000 0.457 90.8% 93.1% 4.6% 
16 0.000 0.000 0.549 97.7% 96.6% 3.4% 
17 0.000 0.000 0.528 97.8% 97.8% 3.3% 
18 0.000 0.000 0.476 95.7% 94.6% 5.4% 
19 0.000 0.000 0.448 96.7% 96.7% 3.3% 
20 0.000 0.000 0.468 95.4% 95.4% 1.1% 
21 0.000 0.000 0.420 96.6% 95.5% 5.6% 
22 0.000 0.000 0.485 95.6% 95.6% 6.7% 
23 0.000 0.000 0.411 93.5% 94.6% 5.4% 
24 0.000 0.000 0.453 94.3% 94.3% 6.8% 
25 0.000 0.000 0.473 94.4% 92.1% 3.4% 
26 0.000 0.000 0.453 90.1% 90.1% 3.3% 
27 0.000 0.000 0.490 95.5% 95.5% 3.4% 
28 0.000 0.000 0.440 95.3% 95.3% 7.1% 
29 0.000 0.000 0.463 95.6% 95.6% 4.4% 
30 0.000 0.000 0.417 97.6% 97.6% 9.4% 
31 0.000 0.000 0.419 94.4% 94.4% 3.4% 
32 0.000 0.000 0.463 92.9% 92.9% 3.5% 
33 0.000 0.000 0.440 93.0% 95.3% 3.5% 
34 0.000 0.000 0.436 98.9% 98.9% 6.5% 
35 0.000 0.000 0.416 93.9% 93.9% 8.5% 
36 0.000 0.000 0.359 91.0% 91.0% 13.5% 
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37 0.000 0.000 0.423 97.8% 97.8% 8.8% 
38 0.000 0.000 0.419 94.3% 94.3% 10.3% 
39 0.000 0.000 0.385 93.6% 95.7% 8.5% 
40 0.000 0.000 0.426 98.9% 97.8% 17.2% 
41 0.000 0.000 0.382 94.0% 95.2% 9.6% 
42 0.000 0.000 0.424 94.0% 92.9% 13.1% 
43 0.000 0.000 0.355 93.1% 93.1% 10.3% 
44 0.000 0.000 0.339 92.8% 92.8% 15.7% 
45 0.000 0.000 0.428 93.0% 93.0% 12.8% 
46 0.000 0.000 0.340 94.3% 95.5% 14.8% 
47 0.000 0.000 0.400 96.7% 95.6% 12.2% 
48 0.000 0.000 0.359 90.4% 89.4% 16.0% 
49 0.000 0.000 0.382 97.7% 97.7% 17.2% 
50 0.000 0.000 0.336 94.4% 95.5% 18.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table C 
Overview of results of simulation for single comparison with growing outlier sizes for Height, including Wilcoxon 
signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by the addition 
of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Outlier size 
factor 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

0 0.546 0.545 0.452 0.0% 0.0% 0.0% 
1 0.495 0.514 0.560 0.0% 0.0% 0.0% 
2 0.363 0.480 0.456 0.0% 3.0% 0.0% 
3 0.337 0.521 0.499 0.0% 4.0% 1.0% 
4 0.326 0.539 0.522 0.0% 2.0% 0.0% 
5 0.317 0.493 0.498 0.0% 2.0% 0.0% 
6 0.318 0.515 0.460 0.0% 2.0% 0.0% 
7 0.317 0.486 0.532 0.0% 1.0% 0.0% 
8 0.317 0.491 0.515 0.0% 1.0% 0.0% 
9 0.318 0.569 0.500 0.0% 1.0% 1.0% 

10 0.318 0.627 0.492 0.0% 0.0% 1.0% 
11 0.318 0.717 0.526 0.0% 0.0% 0.0% 
12 0.318 0.768 0.473 0.0% 0.0% 0.0% 
13 0.318 0.746 0.525 0.0% 0.0% 0.0% 
14 0.318 0.742 0.523 0.0% 0.0% 2.0% 
15 0.318 0.775 0.459 0.0% 0.0% 0.0% 
16 0.318 0.741 0.498 0.0% 0.0% 1.0% 
17 0.318 0.756 0.506 0.0% 0.0% 0.0% 
18 0.318 0.736 0.499 0.0% 0.0% 2.0% 
19 0.318 0.761 0.536 0.0% 0.0% 0.0% 
20 0.318 0.763 0.461 0.0% 0.0% 0.0% 
21 0.318 0.763 0.509 0.0% 0.0% 0.0% 



60 
 

22 0.318 0.770 0.534 0.0% 0.0% 0.0% 
23 0.318 0.740 0.431 0.0% 0.0% 0.0% 
24 0.318 0.736 0.549 0.0% 0.0% 0.0% 
25 0.318 0.747 0.432 0.0% 0.0% 2.0% 
26 0.318 0.757 0.500 0.0% 0.0% 1.0% 
27 0.318 0.722 0.526 0.0% 0.0% 0.0% 
28 0.318 0.772 0.533 0.0% 0.0% 1.0% 
29 0.318 0.791 0.482 0.0% 0.0% 1.0% 
30 0.318 0.753 0.490 0.0% 0.0% 0.0% 
31 0.318 0.760 0.503 0.0% 0.0% 0.0% 
32 0.318 0.769 0.546 0.0% 0.0% 0.0% 
33 0.318 0.773 0.488 0.0% 0.0% 0.0% 
34 0.318 0.736 0.486 0.0% 0.0% 1.0% 
35 0.318 0.752 0.518 0.0% 0.0% 0.0% 
36 0.318 0.751 0.517 0.0% 0.0% 1.0% 
37 0.318 0.751 0.464 0.0% 0.0% 0.0% 
38 0.318 0.737 0.488 0.0% 0.0% 0.0% 
39 0.318 0.747 0.455 0.0% 0.0% 1.0% 
40 0.318 0.762 0.454 0.0% 0.0% 1.0% 
41 0.318 0.758 0.451 0.0% 0.0% 0.0% 
42 0.318 0.743 0.524 0.0% 0.0% 0.0% 
43 0.318 0.749 0.508 0.0% 0.0% 0.0% 
44 0.318 0.765 0.515 0.0% 0.0% 0.0% 
45 0.318 0.753 0.518 0.0% 0.0% 1.0% 
46 0.318 0.752 0.517 0.0% 0.0% 1.0% 
47 0.318 0.745 0.523 0.0% 0.0% 0.0% 
48 0.318 0.755 0.491 0.0% 0.0% 1.0% 
49 0.318 0.768 0.518 0.0% 0.0% 0.0% 
50 0.318 0.753 0.508 0.0% 0.0% 0.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 

Table D 
Overview of results of simulation for single comparison with growing outlier sizes for Weight, including Wilcoxon 
signed-rank test on p-value differences, average difference in p-value and Type I error rate caused by the addition 
of the outlier for the Student’s t-test, mean permutation test and median permutation test 

Outlier size 
factor 

Average p-
value t-test 

Average p-
value 

permutation 
test. mean 

Average p-
value 

permutation 
test. median 

Type I error 
t-test 

Type I error 
permutation 
test. mean 

Type I error 
permutation 
test. median 

0 0.504 0.502 0.483 0.0% 2.0% 1.0% 
1 0.456 0.455 0.492 1.0% 2.0% 0.0% 
2 0.507 0.539 0.483 1.0% 2.0% 2.0% 
3 0.377 0.489 0.500 0.0% 4.0% 1.0% 
4 0.331 0.486 0.454 0.0% 1.0% 0.0% 
5 0.318 0.475 0.515 0.0% 3.0% 1.0% 
6 0.318 0.481 0.482 0.0% 4.0% 0.0% 
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7 0.315 0.440 0.534 0.0% 3.0% 1.0% 
8 0.319 0.548 0.511 0.0% 0.0% 0.0% 
9 0.318 0.537 0.524 0.0% 2.0% 0.0% 

10 0.318 0.576 0.529 0.0% 0.0% 1.0% 
11 0.318 0.627 0.505 0.0% 0.0% 0.0% 
12 0.318 0.667 0.490 0.0% 0.0% 0.0% 
13 0.318 0.756 0.505 0.0% 0.0% 0.0% 
14 0.318 0.750 0.476 0.0% 0.0% 0.0% 
15 0.318 0.756 0.532 0.0% 0.0% 0.0% 
16 0.318 0.777 0.501 0.0% 0.0% 0.0% 
17 0.318 0.756 0.465 0.0% 0.0% 0.0% 
18 0.318 0.752 0.496 0.0% 0.0% 0.0% 
19 0.318 0.749 0.493 0.0% 0.0% 0.0% 
20 0.318 0.764 0.518 0.0% 0.0% 2.0% 
21 0.318 0.754 0.481 0.0% 0.0% 0.0% 
22 0.318 0.750 0.496 0.0% 0.0% 1.0% 
23 0.318 0.753 0.496 0.0% 0.0% 0.0% 
24 0.318 0.751 0.501 0.0% 0.0% 1.0% 
25 0.318 0.759 0.505 0.0% 0.0% 1.0% 
26 0.318 0.761 0.503 0.0% 0.0% 0.0% 
27 0.318 0.760 0.487 0.0% 0.0% 2.0% 
28 0.318 0.755 0.486 0.0% 0.0% 1.0% 
29 0.318 0.769 0.500 0.0% 0.0% 0.0% 
30 0.318 0.746 0.493 0.0% 0.0% 0.0% 
31 0.318 0.741 0.493 0.0% 0.0% 1.0% 
32 0.318 0.741 0.503 0.0% 0.0% 0.0% 
33 0.318 0.752 0.493 0.0% 0.0% 0.0% 
34 0.318 0.736 0.509 0.0% 0.0% 0.0% 
35 0.318 0.729 0.515 0.0% 0.0% 0.0% 
36 0.318 0.753 0.537 0.0% 0.0% 1.0% 
37 0.318 0.736 0.482 0.0% 0.0% 1.0% 
38 0.318 0.739 0.501 0.0% 0.0% 0.0% 
39 0.318 0.745 0.485 0.0% 0.0% 1.0% 
40 0.318 0.760 0.487 0.0% 0.0% 0.0% 
41 0.318 0.753 0.521 0.0% 0.0% 0.0% 
42 0.318 0.749 0.569 0.0% 0.0% 0.0% 
43 0.318 0.756 0.488 0.0% 0.0% 1.0% 
44 0.318 0.780 0.518 0.0% 0.0% 0.0% 
45 0.318 0.754 0.460 0.0% 0.0% 1.0% 
46 0.318 0.754 0.467 0.0% 0.0% 0.0% 
47 0.318 0.743 0.490 0.0% 0.0% 1.0% 
48 0.318 0.746 0.510 0.0% 0.0% 0.0% 
49 0.318 0.741 0.528 0.0% 0.0% 1.0% 
50 0.318 0.738 0.553 0.0% 0.0% 2.0% 

Note: The average p-values are rounded to three decimals for better readability and interpretability. The Type I error values 

are percentages. 
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Table E 
Overview of results of single outlier robustness simulations with increasing number of outliers, including the 

number of significant genes after outlier addition and Type II error rate 

Number of 
outliers 

Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 3 9 2.1% 5.4% 
2 73 57 51.0% 34.1% 
3 105 113 73.4% 67.7% 
4 78 86 54.5% 51.5% 
5 114 113 79.7% 67.7% 
6 107 109 74.8% 65.3% 
7 73 80 51.0% 47.9% 
8 92 79 64.3% 47.3% 
9 103 106 72.0% 63.5% 

10 122 130 85.3% 77.8% 
11 126 139 88.1% 83.2% 
12 127 139 88.8% 83.2% 
13 100 92 69.9% 55.1% 
14 119 133 83.2% 79.6% 
15 135 146 94.4% 87.4% 
16 96 94 67.1% 56.2% 
17 137 151 95.8% 90.4% 
18 138 153 96.5% 91.6% 
19 122 110 85.3% 65.9% 
20 128 131 89.5% 78.4% 
21 141 164 98.6% 98.2% 
22 139 156 97.2% 93.4% 
23 98 54 68.5% 32.3% 
24 135 145 94.4% 86.8% 
25 142 163 99.3% 97.6% 
26 142 165 99.3% 98.8% 
27 142 166 99.3% 99.4% 
28 125 140 87.4% 83.8% 
29 135 141 94.4% 84.4% 
30 142 165 99.3% 98.8% 
31 142 163 99.3% 97.6% 
32 143 167 100.0% 100.0% 
33 143 166 100.0% 99.4% 
34 141 162 98.6% 97.0% 
35 140 158 97.9% 94.6% 
36 143 165 100.0% 98.8% 
37 143 167 100.0% 100.0% 
38 142 164 99.3% 98.2% 
39 143 167 100.0% 100.0% 
40 143 166 100.0% 99.4% 
41 142 165 99.3% 98.8% 
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42 143 167 100.0% 100.0% 
43 142 162 99.3% 97.0% 
44 143 167 100.0% 100.0% 
45 142 166 99.3% 99.4% 
46 136 147 95.1% 88.0% 
47 143 167 100.0% 100.0% 
48 142 163 99.3% 97.6% 
49 143 164 100.0% 98.2% 
50 143 163 100.0% 97.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

Table F 
Overview of results of single outlier robustness simulations with single outlier growing in size for AML, including 

the number of significant genes after outlier addition and Type II error rate 

Outlier factor Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 140 169 2.1% 1.2% 
2 67 93 53.1% 44.3% 
3 89 133 37.8% 20.4% 
4 30 66 79.0% 60.5% 
5 61 112 57.3% 32.9% 
6 37 78 74.1% 53.3% 
7 34 69 76.2% 58.7% 
8 91 146 36.4% 12.6% 
9 44 78 69.2% 53.3% 

10 39 83 72.7% 50.3% 
11 31 58 78.3% 65.3% 
12 17 49 88.1% 70.7% 
13 20 53 86.0% 68.3% 
14 21 52 85.3% 68.9% 
15 28 58 80.4% 65.3% 
16 7 31 95.1% 81.4% 
17 21 54 85.3% 67.7% 
18 17 51 88.1% 69.5% 
19 53 111 62.9% 33.5% 
20 18 53 87.4% 68.3% 
21 14 47 90.2% 71.9% 
22 23 47 83.9% 71.9% 
23 14 51 90.2% 69.5% 
24 25 62 82.5% 62.9% 
25 16 33 88.8% 80.2% 
26 42 96 70.6% 42.5% 
27 14 29 90.2% 82.6% 
28 55 105 61.5% 37.1% 
29 21 56 85.3% 66.5% 
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30 15 48 89.5% 71.3% 
31 3 19 97.9% 88.6% 
32 17 50 88.1% 70.1% 
33 12 24 91.6% 85.6% 
34 6 16 95.8% 90.4% 
35 10 38 93.0% 77.2% 
36 9 25 93.7% 85.0% 
37 19 58 86.7% 65.3% 
38 9 27 93.7% 83.8% 
39 21 50 85.3% 70.1% 
40 8 20 94.4% 88.0% 
41 18 40 87.4% 76.0% 
42 7 30 95.1% 82.0% 
43 11 27 92.3% 83.8% 
44 20 60 86.0% 64.1% 
45 10 27 93.0% 83.8% 
46 14 35 90.2% 79.0% 
47 8 30 94.4% 82.0% 
48 9 33 93.7% 80.2% 
49 10 37 93.0% 77.8% 
50 5 19 96.5% 88.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

Table G 
Overview of results of single outlier robustness simulations with single outlier growing in size for ALL, including 

the number of significant genes after outlier addition and Type II error rate 

Outlier factor Significant genes 
Bonferroni 

Significant genes 
maxT 

Type II error rate 
Bonferroni 

Type II error rate 
maxT 

1 101 127 29.4% 24.0% 
2 139 168 2.8% 0.6% 
3 101 132 29.4% 21.0% 
4 45 81 68.5% 51.5% 
5 119 145 16.8% 13.2% 
6 78 124 45.5% 25.7% 
7 56 84 60.8% 49.7% 
8 78 131 45.5% 21.6% 
9 46 80 67.8% 52.1% 

10 18 39 87.4% 76.6% 
11 13 38 90.9% 77.2% 
12 49 108 65.7% 35.3% 
13 44 97 69.2% 41.9% 
14 21 52 85.3% 68.9% 
15 8 27 94.4% 83.8% 
16 20 60 86.0% 64.1% 
17 34 61 76.2% 63.5% 
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18 23 59 83.9% 64.7% 
19 7 25 95.1% 85.0% 
20 13 47 90.9% 71.9% 
21 22 43 84.6% 74.3% 
22 3 25 97.9% 85.0% 
23 9 29 93.7% 82.6% 
24 13 39 90.9% 76.6% 
25 30 60 79.0% 64.1% 
26 16 34 88.8% 79.6% 
27 31 65 78.3% 61.1% 
28 13 44 90.9% 73.7% 
29 11 39 92.3% 76.6% 
30 15 51 89.5% 69.5% 
31 38 80 73.4% 52.1% 
32 31 80 78.3% 52.1% 
33 11 33 92.3% 80.2% 
34 12 23 91.6% 86.2% 
35 9 20 93.7% 88.0% 
36 17 43 88.1% 74.3% 
37 15 45 89.5% 73.1% 
38 6 20 95.8% 88.0% 
39 8 25 94.4% 85.0% 
40 13 35 90.9% 79.0% 
41 11 21 92.3% 87.4% 
42 10 35 93.0% 79.0% 
43 3 26 97.9% 84.4% 
44 9 34 93.7% 79.6% 
45 18 42 87.4% 74.9% 
46 7 16 95.1% 90.4% 
47 28 57 80.4% 65.9% 
48 9 29 93.7% 82.6% 
49 15 48 89.5% 71.3% 
50 8 29 94.4% 82.6% 

Note: The Type II error rate indicates the proportion of the genes that were found to be significant compared to the 
baseline. These Type II errors were false negatives caused by the introduction of the outlier. 
 

 


