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Abstract 

 

This thesis completed two tasks: the first one is proposing a new demand threshold to 

accommodate the need of Philips’s future experiments; the second task includes examining five 

forecasting methods and comparing their performances and effectiveness. The potential ADI 

threshold for optimizing demand categories is proposed using statistical counts and machine 

learning methods. Among the forecasting methods, the weighted average shows superior 

performance in both accuracy and volatility. TSB, a focus of Philips's supply chain planning, 

reduces volatility but has relatively low-accuracy forecasts compared to the weighted average 

and single exponential smoothing. The NN model indicates the lowest volatility and relatively 

high accuracy compared to the TSB and weighted average. Finally, suggestions for Philips are 

brought up for consideration and further research. 

 

 

 

 

 

 

 



Chapter 1 Introduction 
 

1.1 Introduction 
 

Service spare parts are essential in keeping machines or equipment running, and the 

management of service spare parts is critical for maintaining efficient operations. As efficient 

inventory holding can reduce downtime and holding costs, companies are seeking ways of 

accurately predicting demand. Inventory holding costs can range from 5 to 45 percent of the 

cost price of the inventory per year, with an often-used average of 25 percent (Durlinger and 

Paul, 2012). Koninklijke Philips N.V. (hereafter Philips) is a healthcare technology company 

improving people's health and well-being through meaningful innovation (inner files, Philips 

Mission, 2024). Philips emphasizes the resilience of its supplier network for critical parts and 

prioritizes risk mitigation throughout the supply and demand process. Forecasting demands 

stands out as a crucial step in minimizing risks and enhancing the customer experience. 

With more attention paid to forecasting accuracy, Philips successfully improved the 

accuracy of forecasts. However, the volatility of forecasts has not received as much focus, but 

it comes back to the spotlight when they find high fluctuations in forecasts. The volatility of 

forecasts refers to the fluctuations of daily or monthly forecasts monitored by planners in SPS 

team. Service Part Supply (SPS) team is the demand planning team responsible for meeting the 

requests for service spare parts across the globe. High volatility will have several inefficiencies, 

including increased setup times and suboptimal utilization of manufacturing capacities. In 

addition, the SPS team is confused with the results that came from the system and finds it 

difficult to provide accurate explanations and maintain stability. At a higher level, such 

unpredictability can increase inventory holding costs and strain supplier relationships. 

Furthermore, the SPS team has raised concerns that the current thresholds for categorizing 

demands may not be suitable for spare parts that have intermittent patterns. They would like to 

change the demand threshold ADI (Average Demand Interval) to include more spare parts in 

erratic and smooth categories. This is due to the recent experiments conducted by them that 

they applied traditional forecasting methods (i.e., weighted average, single exponential 

smoothing, etc) and TSB (Teunter, Syntetos and Babai) in all demand categories. But in the 

future, they will apply TSB only to intermittent demand and apply traditional methods to 

smooth and erratic demand. Thus, modifying these thresholds can optimize demand 



classification, which will improve method selection and forecasting results. Therefore, a 

tailored experiment is proposed and conducted to explore potential threshold adjustments 

within Philips' data sets. 

The main research questions of the research are formulated after discussing with SPS team: 

1. What potential new ADI (Average Demand Interval) can be proposed to accommodate 

and optimize the demand categorization are Philips? 

2. Do Neural Networks (NN) and TSB (Teunter, Syntetos and Babai) outperform the 

existing methods in lumpy pattern under the Philips context? 

 

Forecasting lumpy demand and intermittent demand is challenging due to the nature of 

their demand patterns. Therefore, it is vital to adopt suitable forecasting methods and accuracy 

measurements for these two demand categories. However, within Philips’s Supply Chain 

Management (SPM) system, the lumpy category is not identified, and the methods used for 

intermittent are used also for lumpy demands. Technically, forecasting methods should be 

tailored to accommodate the unique features of intermittent and lumpy demand patterns. For 

instance, Croston’s method is more suitable for managing intermittent demand due to its ability 

to separately forecast the demand size and interval; lumpy demand may benefit from 

bootstrapping techniques or advanced methods such as machine learning models (Kiefer et al., 

2021). Integrating these distinct demand patterns and adopting the same methods for these two 

categories can introduce significant forecasting volatilities. Thus, in this thesis, I address this 

issue and seek to determine whether specific forecasting methods designed for lumpy demands 

are effective for parts categorized as intermittent but exhibiting lumpy demand patterns. 

Methods from statistics, machine learning and deep learning have been used to predict such 

demand patterns (Kiefer et al., 2021). 

The techniques of forecasting are essential for managing inventory holding and 

manufacturing plans. With the improvement of artificial intelligence, the application of 

machine learning models in the supply chain area for Philips can be useful for future demands 

forecasting. This thesis tests the effect of single-layer Neural Networks (NN).  The Teunter, 

Syntetos, and Babai (TSB) method is another time-series model within the SPM tool, but it has 

not been considered and utilized so far. However, during the recent experiment conducted by 

Philips, after allowing the system to choose TSB, 97% of spare parts switched to choosing TSB 

as best method. In this situation, TSB is another important method to be tested with. This thesis 



compared the performance of these methods against the existing forecasting techniques used 

by Philips. The main objective is to determine whether TSB and NN offer superior predictive 

accuracy in handling Philips' supply chain data. These comparisons are grounded using both 

the robustness and accuracy of demand forecasting within the organization. 

The structure of the thesis is as follows: Chapter 2 introduces backgrounds of the necessary 

facts for experiments, Chapter 3 reviews the literature, details of research questions and 

research on an individual spare part are elaborated in Chapter 4. The first research question is 

explored using traditional models, including TSB on all demand categories. The second 

research question adds machine learning in, only demands exhibiting lumpy pattern are 

selected and examined with traditional and NN methods. Steps for processing data sets and the 

final data sets used for experiments are demonstrated in Chapter 5. Methodologies of the two 

experiments and the outcomes can be found in Chapter 6 and Chapter 7. Chapter 8 includes the 

discussion of results, and the suggestions and insights for Philips are in Chapter 9. The supply 

chain of spare parts can be extremely complex, and in this thesis, the research on forecasting 

only considers the local demands gathered from locations in each business unit, without parts 

in reverse logistics or new buy decisions. 

 

 

1.2 Spare Parts Forecasting and its Relation to Marketing 
 

The SPS team highlights the resilience of its supplier network and the importance of quick 

service provision. As spare parts and service provision are significant parts of Philips business, 

delays or insufficiencies in spare parts may lead to a decrease in sales. In addition, the 

unavailability of spare parts may either result in high emergency costs or increase downtime 

waiting times for parts. Forecasting plays an important role in quantifying the demands from 

locations and providing the proper products and services on time. Thus, accurate forecasting 

has a close relation with the sales and marketing strategies of Philips. This research would 

assist in promoting the forecasting performance and future business development of Philips. 

 

 



Chapter 2 Background 
 

In this chapter, the background of the Philips SPS team is briefly introduced. Demand 

classification and forecasting methods are generally described for better understanding the 

current situation. Supplementary information such as forecasting procedures in Servigistics and 

Bestfit is provided. Other metrics Servigistics has but are not considered in this thesis are 

presented for reference. 

 

2.1 General Background 

 

Philips Service Spare Part department takes on the responsibility of providing the right 

healthcare equipment’s spare parts to patients, clinicians, and engineers. According to the inner 

files, Global Planning Team Mission: the goal of global planning is to achieve the targeted 

material availability performance for service parts in support of the customer Fill Rate targets 

by optimizing inventory levels and minimizing excess and obsolescence costs through the 

entire lifecycle of a service part. The SPS team (Service Parts Supply Chain team) is dedicated 

to enhancing customer fill rates and optimizing the service part lifecycle process. The process 

of planning plays important roles in supplier, warehouse, and customer service (Global 

Planning Team Mission, 2024). The SPS planning team uses Service Part Management (SPM) 

tool, named Servigistics, which is a planning tool provided by PTC. PTC (2024) is a third-party 

computer software and services company that owns the Servigistics product, which is the 

leading supply chain optimization software. Philips acquired the Servigistics tool and utilized 

it as the main planning and management tool for service spare parts. The functionalities of 

Servigistics include autonomous planning, simulating and predicting model uncertainties, 

increasing service levels through purpose-built, AI-powered optimization capabilities, etc. The 

SPS Improvement team is part of the SPS team, and its main goals are to support business 

development and market understanding through adapting new requirements into the Global 

Planning and Supply processes. During the thesis internship, I worked with the SPS 

Improvement team to help figure out reasons for forecasting volatility and improvements for 

future forecasting. 

 

https://www.ptc.com/en


2.2 Demand Classification 

 

Demand classification involves analyzing demand patterns to enhance forecasting 

accuracy. Prior studies identified demand categorization as a key strategy for improving 

forecasting effectiveness. There are four categories of demand: erratic, smoothing, intermittent, 

and lumpy. Erratic demand describes highly unpredictable fluctuations in demand, 

characterized by irregular surges and drops devoid of discernible trends or patterns. Smoothing 

demand refers to a relatively stable and constant fluctuation over a given period, and it shows 

a more predictable and steady flow of demand requests. Intermittent and lumpy, however, 

exhibit irregularity of customer orders. Intermittent demand often with periods of no demand 

interspersed with random spikes and lumpy demand refers to a demand pattern with infrequent 

but significant spikes.  

To determine the spare parts’ pattern, two coefficients are adopted to define categories: 

the Squared Coefficient of Variation (CV2) and the Average Demand Interval (ADI). The ADI-

CV demand state space originated from spare parts supply chain research and has been used 

by the aerospace, steel and retail industries (Nenni et al., 2013; Neu et al., 2024). ADI measures 

the average number of time periods between two successive requests. CV represents the 

standard deviation of period requirements divided by the average period. Philips uses squared 

CV (CV2) as the threshold measuring the variation of demands. The demands with high 

variation in interval between two demands but low variation in demand quantity are classified 

as intermittent demand. The demand with high variation and large quantity is lumpy. Demands 

with regular quantity and time interval are smooth demands; the erratic demand feature regular 

occurrences in time with high quantity variations. Philips sets CV2 equals to 0.49 and ADI 

equals to 1.32 in Servigistics system for classifying each spare part to categories for further 

deployment of the model. As mentioned earlier, Philips excludes lumpy demand and integrates 

it into intermittent, therefore, the demand patterns with ADI higher than 1.32 are treated as 

intermittent. Figure 2.1 shows the demand category according to Syntetos et al (2005) and the 

demand category in Philips planning system. After applying the CV2 and ADI thresholds, 

97.6% of spare parts fall into intermittent demand in the system, 1.4% of them are erratic, and 

0.9% of them are smooth. Most spare parts show intermittent demand pattern, attributed to the 

system's policy of excluding lumpy demand. Hence, when the demand category displays 

"intermittent" in the system, the demand pattern may be intermittent or lumpy.  



 

Figure 2.1: Demand category according to Syntetos et al (2005) (left);  

Demands into categories in Philips (SPM training, 2023) (right). 

 

2.3 Forecast Methods and Metrics 

 

The main forecast methods in Servigistics are average, weighted average, moving 

average, single exponential smoothing, double exponential smoothing, intermittence 

smoothing, and winters multiplicative. In the recent experiment conducted by SPS team, the 

statistics show that 36.6% of spare parts at location level choose intermittence smoothing, 

28.5% of them choose weighted average, 24.9% of them choose single exponential smoothing. 

These three methods can be considered as primary forecasting methods in the system. The 

detailed formulas and explanation for the methods are included in the "Methodology" section. 

Winters multiplicative is applicable to demand patterns that exhibit level, trend, and 

seasonality. This research excluded this method, as it is under investigation by the SPS team 

and applies to only a small subset (that is, 0.2%) of spare parts. 

Forecast metrics are essential and are derived from the data pulled from the platform. 

Apart from MAPE, metrics such as tracking signal and bias are also monitored. Tracking signal 

is used to monitor the accuracy of a forecast by detecting any bias in the forecasting process. 

It is calculated by comparing the cumulative sum of forecast errors to the mean absolute 

deviation (MAD) over a given period. Ideally, while ideally the value of Tracking Signal should 

be zero, a range of 0.5 to 0.5 is used for analytical review (inner file, Philips Forecast version 

13, 2024). The primary metric in the system is the tracking signal, which is calculated using 

the following formula: 

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑆𝑖𝑔𝑛𝑎𝑙 =  
(𝑅𝑆𝐹𝐸/𝐶𝑜𝑢𝑛𝑡)

𝑀𝐴𝐷
 

RSFE: running sum of forecast errors. 



Count: forecast parameter ‘# of Slices for Forecast Error Calculation’ 

MAD: the average of all the forecast errors, disregarding whether the deviations are positive or negative. 

 

Another forecast metric is bias which represents tendency for a forecast to be consistently 

higher or lower than the demand observations. A forecast bias can be low but with a high error. 

For example, a forecast which is half of the time 50% higher and 50% lower than the observed 

demand has no bias; while a forecast which is on average 20% lower than the actual value has 

20% error and 20% bias (inner file, Philips Forecast version 13, 2024). For service spare parts, 

when the demand is intermittent, the bias can be high even though the error may be low. The 

forecast information provided by the SPS team includes all relevant metrics. But in this thesis, 

only Mean Absolute Percentage Error (MAPE) is considered for evaluating performance. The 

formula of MAPE is presented in Methodology chapter. 

 

2.4 Forecasting Procedure with Parameters in Servigistics 

 

The Servigistics's forecasting relies on historical demand data, with method selection 

primarily determined by calculated MAPE. The number of historical slices represents past 

actual demand months; and the number of horizon slices which means forward forecasting 

months. Typically, forecasting is based on 24 or 12 historical slices (including the current 

forecasting month) and predicts demand for the next 12 months (i.e., the upcoming year). For 

simplicity, this research uses historical demands from previous 24 time periods (including the 

current forecasting month) for all spare parts.  

Demands are categorized into three types: erratic, smoothing, and intermittent. All built-

in methods are evaluated, and the one with the lowest MAPE is considered the final forecasting 

method. It is important to note that Servigistic TSB has not been implemented in Servigistics, 

therefore, the system only chooses traditional methods except for Servigistic TSB. Only local 

demand streams are considered, including all location types (i.e., LDC, DC, FSL). Local 

Demand Center (LDC) is the geographic area where customer demand for products or services 

is concentrated. Distribution Center (DC) is a centralized warehouse stores and distributes the 

products. Forward Stocking Location (FSL) is the warehouse close to the end users. Smoothing 

parameters like alpha and beta are selected by system algorithm, and the values are around 0.01 

to 0.3. Servigistics selects the method with the lowest MAPE, resulting in different methods 



being chosen for the same spare part across different locations during daily data monitoring. 

Typically, forecasting for the upcoming year is calculated in each day or month and adjusts 

when additional demands are incorporated during the forecasting month. The SPS team regards 

the forecast on the last day of each month as the forecasts of the year in that month. 

This thesis mimics the forecasting procedures of Servigistics: I used the past 24 months’ 

historical demands including the current forecasting month. This data was used to make 

forecasts for the upcoming year (i.e., 12 months), starting from next month. For each spare part 

in the selected data, the forecasting was conducted each month from January 1, 2023, to 

December 1, 2023. Finally, I obtained 12 months of forecasting information for each spare part, 

each month’s forecast covering a one-year period. 

 

 

2.5 Bestfit 

Apart from MAPE, Philips set Bestfit when selecting forecasting method and it is auto-

approved in Servigistics. Bestfit uses rules to determine whether to replace, eliminate, or keep 

forecast methods in place (inner file, GPS Forecast Training, 2024).  The forecast method that 

results in the smallest forecast error (MAPE) over the specified period is designated by the 

application as the Bestfit forecast method (inner file, GPS Forecast Training, 2024).  The details 

of Bestfit rules are listed in Appendix Table 1. In inner GPS Forecast Training file (2024), it 

introduces Bestfit rules: if Best Fit Analysis encounters a hard rule, the application does not 

generate a forecast; if Bestfit encounters a soft rule, the application generates a forecast and 

MAPE, MAD (Mean Absolute Deviation), and RMSE (Root MeanSquare Error); if no rules 

are encountered, the application generates a normal forecast and forecast errors. This thesis 

considers only MAPE and disregards the Bestfit effect due to the intransparency of the 

Servigistics algorithm. 

 

 

 

 

 



Chapter 3 Literature Review 
 

The literature review of spare parts demand forecasting can be divided into three sections: 

parametric approaches, non-parametric approaches, and forecast improvement strategies. The 

framework for this substantive literature review is adapted from Pinçe et al. (2021). A 

comprehensive review of several time-series methods is in the following sections. Previous 

studies related to non-parametric techniques are also paid attention to. Past research related to 

neural networks is also reviewed in this chapter. 

 

3.1 Parametric Approaches 

 

3.1.1 Simple exponential smoothing (SES) 

Exponential smoothing is a method for smoothing discrete time series to forecast the 

immediate future. Although SES is widely used to forecast intermittent demand, the method 

has important limitations (Syntetos et al., 2015). In the spare parts practice, the SES method 

can produce high bias, since the algorithm weights recent data more heavily. However, in 

intermittent demand situation, the demands vary in each period, which leads to biased forecasts. 

Croston (1972) was the first to notice this, and he noted that the exponential smoothing of 

intermittent demands almost always produces inappropriate stock levels. 

 

3.1.2 Croston’s method and modifications 

In an attempt to compensate for problems addressed in the SES method, the forecasts two 

components of time series start from Croston (Syntetos et al., 2015). Intermittent demand 

appears at random, with many time periods having no demand. Croston’s method relies on 

separate exponentially smoothed estimates of the interval between consecutive demands and 

the size of the demands (Zied Babai et al., 2014). If there is no demand during one period, the 

method will increment the counts of time; the mean and corresponding variance of demand per 

period is calculated for estimating the intermittent future demands. In this way, both time 

interval and demand size are forecast individually using SES, resulting in more accurate and 

smoother estimates. The variance of expected value of demand is lower than that of 



conventional exponential smoothing, but when demand occurs every time interval, the variance 

from the Croston method will be identical to that of conventional exponential smoothing 

(Willemain et al., 1994). Croston’s method provides a relatively accurate estimation when 

several assumptions are held successive demand sizes are identical and independently 

distributed, intervals and sizes are independent of each other, etc. (Willemain et al., 1994). 

However, the real situation can be complicated, and studies have shown that positive bias lies 

in the demand per time unit (Syntetos & Boylan, 2001). In addition, obsolescence becomes an 

issue as the demands of some items decrease over time, but this is not considered in Croston’s 

method. Modifications are made and demonstrate improvements, such as models built by 

Syntetos and Boylan (Syntetos & Boylan, 2001), Snyder (2002), Teunter-Syntetos-Babai 

Method (TSB). 

Syntetos and Boylan (2001) found Croston’s method was biased in 2001 and proposed an 

improved method in 2005 based on Croston’s version. They found the overestimated forecast 

demand has a positive correlation to the smoothing factor for the demand interval. The Syntetos 

Boylan approximation (SBA) added a bias correction term (1 − α/2) with a smoothing constant 

α; and this bias correction means that SBA provides more accurate results for intermittent 

demand. By using a dataset from the automotive industry, Syntetos and Boylan (2001) showed 

that SBA gave more accurate results than Croston. But the study carried out by Pinçe et al. 

(2021) showed that Croston outperformed SBA in terms of service level.  

Another adaptation of Croston's Method is the Teunter-Syntetos-Babai Method (TSB), 

which constructs two separate variables: the demand of the next period (z) and the demand 

probability (p) of that period. As mentioned before, the obsolescence issue is important but not 

considered in Croston’s method. Teunter et al. noted that Croston method cannot be used to 

estimate the risk of obsolescence and deal with the removal of excess/dead stock. TSB 

proposed a new method in which the estimate of the probability of occurrence is updated every 

time period. In this way, bias and obsolescence issues can be dealt with by providing up-to-

date forecasts even after a long period of zero demand. If there is no demand for a period, the 

forecast will be adjusted downward. A numerical investigation confirmed that TSB is suitable 

for situations with both stationary and non-stationary demand (Teunter et al., 2011). However, 

Zied Babai et al. (2014) showed that the performance of TSB was not considerably better than 

that of SBA and Croston, sometimes Croston outperforms TSB. They proposed that there was 

a need for more empirical testing of forecasting methods as the two datasets lead to different 

and sometimes opposite findings. Babai et al. (2019) then proposed a new method that mixes 



SBA and TSB. In periods of positive demand, the method updated demand size and interval in 

the way of SBA; but at any time, if the actual demand interval became higher than the most 

recent estimated demand interval, the updated technique follows TSB. The results showed the 

outperformance of the new forecasting method in many cases dealing with obsolescence.  

In this master thesis, the performances of SES, TSB, and one forecasting method named 

intermittence smoothing are examined and compared. Intermittence smoothing is a 

combination of SES and Croston’s method according to the Philips method definition.  

 

3.2 Non-parametric methods 

 

3.2.1 Bootstrapping and empirical method 

The parametric methods discussed so far assume the lead time demand follows a certain 

probability distribution, but when the demand pattern is not accessible, non-parametric 

methods including bootstrapping and empirical methods can be useful. Nonparametric methods 

are more flexible and can be used with any kind of demand distribution (Altay & Litteral, 

2011). The classic bootstrapping method has been frequently used in the intermittent demand 

context. Bookbinder and Lordahl (1989) applied bootstrapping to inventory management 

context which assumed a standard distribution for re-order points. Willemain et al. (2004) 

modified the classic bootstrapping method that intermittent demands were better modelled with 

three difficult features: autocorrelation, frequently repeated values, and relatively short time 

series. After experimenting in six industrial data sets, they showed that their bootstrapping 

method generates more accurate results than SES or Croston. 

The empirical method as one of the distribution-free methods is also used in previous 

studies. Porras and Dekker (2008) introduced a new nonparametric method where the empirical 

lead time demand was used without taking sample, and two optimization approaches (i.e., ex-

post, ex-ante) were applied. Van Wingerden et al. (2014) extended the empirical method by 

incorporating randomness into lead times and improved the previous empirical method which 

they termed as empirical plus. They found this method outperforms the previous methods when 

the average inter-demand interval was large and the squared coefficient of variation of the 

demand size was small. 

 



3.2.2 Lumpy demand and Neural Networks 

Accurate forecasting is crucial for supply chain efficiency and inventory management of 

spare parts, especially for lumpy demand. Recent studies utilized advanced machine learning 

techniques such as Support Vector Regression (SVR), XGBoost, etc. Hua and Zhang (2006) 

combined the method with a logistic regression approach in which SVR predicted the 

occurrences of non-zero demand of spare parts. Study by Sapankevych and Sankar (2009) 

demonstrated that SVR outperformed deep learning techniques such as Multi-Layer Perceptron 

(MLP). XGBoost, an eXtreme Gradient Boosting framework performs well for electricity 

consumption prediction in a study by Deng et al. (2017). This thesis focuses more on one basic 

machine learning method, single-layer neural network, as the extension of traditional existing 

methods in Servigistics. Single-hidden layer networks trained by back-propagation suggested 

possible ways for practitioners to improve implementation in real environments (Lolli et al., 

2017). In their research, three different single-hidden layer architectures have been adopted 

such as feed-forward neural network, time-delay neural network.  Hoffmann et al. (2022) 

compared Artificial Neural Networks (ANN) with traditional forecasting methods based on 

actual demand data from 29 spare parts of a mechanical engineering company. Their results 

showed that application of neural networks had a high potential for forecasting irregular 

demands in terms of MAPE mean consideration.  

 

3.3 Forecast improvement strategies 

 

The forecast improvement is important when conducting the time series mentioned above, 

especially in the Philips Medical service parts planning process. One key problem detected is 

increasing forecast variability. High forecast variability leads to uncertainty or volatility in 

forecasts, which makes decision-making and resource allocation difficult. In this paper, 

demand classification will be mainly discussed. 

Demand classification is about matching the demand characteristics with the appropriate 

estimation methods to improve forecasts and inventory control. Earlier studies on this topic, 

such as Williams (1984) categorized demands as sporadic, slow-moving, or smooth by 

decomposing lead-time demand variance into causal elements. Numerical comparisons show 

that the proposed demand classification scheme leads to a substantial reduction in inventory 

costs (Williams, 1984). Except for the leading time as one parameter included in the demand 



classification, Syntetos et al. suggesting an additional parameter (i.e., the squared coefficient 

of variation of demand). The cut-off values are first found by comparing MSE using different 

forecasting methods, and then demands are classified into two dimensions based on these 

cutoffs for finding the best forecasting methods. The categorization of alternative demand 

patterns facilitates the selection of a forecasting method (Syntetos et al., 2005). But the research 

also pointed out that the ultimate purpose of inventory management is to reduce stock holdings 

and improve customer service levels; thus, forecast accuracy is not the only categorization 

standard. Additionally, Kostenko and Hyndman (2006) criticized this study by claiming that 

SBA yields smaller MSEs and proposing a more accurate cutoff based on SBA results. 

 

 

 

  



Chapter 4 Problem Statement 
 

This problem statement elaborates research questions presented in Introduction part in 

detail. The first question explores the potential modifications for thresholds of demand category 

to better suit the specific context of Philips. The second question examines the performance of 

NN (neural networks) and TSB (Teunter, Syntetos and Babai) in Philips’s spare parts business 

environment. Both research questions examined forecasting methods 

 

4.1 Research Question 1: What potential new ADI can be proposed 

to accommodate and optimize the demand categorization in 

Philips? 

 

As stated in the Background section, the current thresholds are an ADI of 1.32 and a 

squared CV of 0.49. Recent experiments revealed that most SKUs switch to Servigistics TSB 

method upon its adoption in all demand categories. This finding has prompted the SPS 

improvement team to consider several next steps. They plan to restrict Servigistics algorithm 

to select Servigistics TSB only for intermittent demand categories and allowing erratic and 

smooth demand to choose other forecasting methods. 

Concerns have arisen from including too many spare parts in the intermittent demand 

category, which can introduce complexity and increase the time required to implement the 

Servigistics TSB method. Additionally, for SKUs with erratic and smooth demand, methods 

such as average, weighted average, and single exponential smoothing are more suitable 

according to the previous studies. Implementing TSB for these SKUs may not be necessary for 

these demand categories. While TSB can enhance forecast accuracy, it may also result in 

increased volatility which is undesirable in forecasts. This highlights the need to re-evaluate 

and potentially adjust the demand thresholds to ensure appropriate application of forecasting 

methods, thereby optimizing efficiency and reducing unnecessary complexity. Since the goal 

of this research question is to recategorize demands, and lumpy pattern is excluded from the 

system, ADI is the key threshold proposed to be modified. 



4.2 Research Question 2: Do NN (Neural Networks) and TSB 

(Teunter, Syntetos and Babai) outperform the existing methods in 

the Philips context? 

 

Within Healthcare, Spare Parts Management is directed and managed by the SPS team. 

For the past work, SPS team carried routine work and forecasting tasks on Servigistics, with 

the methods and parameters automatically selected by the system algorithm: the method has 

the lowest MAPE and suitable for the demand classification is chosen as the final forecasting 

methods and return the corresponding values. BestFit is automatically approved by the system 

which contains several other criteria for selecting the best method. However, the foundation of 

BestFit remains MAPE, it uses rules to determine whether to replace, eliminate, or keep 

forecast methods in place (see details in Bestfit in Chapter 2). Thus, in this thesis, I only 

consider the MAPE for picking the methods. During recent work, problems are observed by 

planner that when setting MAPE as the critical standard for selecting method which is supposed 

to lead to high accuracy, the high volatility also happened in the forecasting. As requested by 

the managers of the SPS team, they are figuring out ways of reducing the volatility when 

maintaining the accuracy of forecasting results at the same time.  

As outlined in the Background section, a significant 97.6% of demands are categorized 

as intermittent, yet in practice, they may include lumpy demand integrated into intermittent 

patterns. Currently, no tailored method exists for intermittent or lumpy demand, as method 

selection prioritizes error minimization. For instance, in the forecasts for part 459801352572 

from each warehouse location, the algorithm primarily selects weighted average and single 

exponential smoothing. However, this part falls under lumpy demand, for which these methods 

are generally not well-suited. Though yielding low error rates, these methods exhibit high 

fluctuation. This example was thoroughly examined in Research on Individual Part in 

Appendix 1. The SPS improvement team collaborated with the PTC team to enhance 

forecasting performance, proposing Servigistics TSB as a new method to be adopted in the 

system. Recent experiments conducted by the PTC Servigistics team in the SBOX environment 

(Philips' supply chain experimentation laboratory) revealed that transitioning from existing 

methods to TSB accounted for 97.7% of the total spare parts sample in the experiments. This 

is a significant change and Philips is closely monitoring the impacts of implementing the TSB 

method on both forecasting accuracy and volatility.  



Based on the above scenarios, this research focuses on lumpy demands categorized within 

intermittent demand to investigate forecasting methods and their potential to mitigate 

fluctuations. The development of tailored forecasting methods for intermittent and lumpy 

demands is important, with a need to enrich and enhance the current methods in the system. 

Moreover, exploring Servigistics TSB's performance relative to existing methods is also 

important: assessing its comparative efficacy and its potential to enhance performance for 

lumpy demand. The effect of NN is explored in Philips’s data set, but since the focus of Philips 

Servigistics still lies in the traditional methods, the results of NN serve as an extension and 

reference for future experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 Data Description 
 

This chapter introduces the procedure of processing raw data sets and main characteristics 

of the data sets used for each forecasting method. Since the raw data sets provide limited 

information about SKUs, the process of preparing them for experiments is crucial and is 

outlined in Processing Data Sets. Figure 5.1 illustrates the data preparation process. Section 

Data Sets for Experiments present the final data sets used in the two experiments. All original 

data sets were provided by the Philips SPS team or extracted directly from Servigistics. Some 

of the processes of preparing data sets were conducted under the requirements of SPS team. 

For example, SPS team defines high-value spare parts as parts’ unit cost larger than 100 euros.  

 

 

Figure 5.1: Data sets and processing procedures 

 

 

5.1 Original data sets 

 

In this sub-section, the original data sets provided by Philips Team are elaborated. There 

are two original data sets: Location_Part Demands data set (hereafter “Location_Part 

Demands”) and Forecast Method Tracking (hereafter “Forecast Method Tracking”). 

“Location_Part Demands” represents the historical monthly demands of each part of each 

location. The demands from January 1, 2021, to April 1, 2024, are extracted. The reason why I 

focus on this period is that all spare parts use either 12 or 24 months, and for forecasting metrics 



such as standard deviation of demands, Servigistics uses either 24 or 36 months for calculation. 

Therefore, I included as much information about historical demands as possible (i.e., 3-years 

demands) so that forecasting bases can be easily adjusted. The demands are rolled up to month 

buckets, which means demands for that month are aggregated and shown on the first day of 

that month. In total, there are 2,519,759 observations, 34,749 unique spare parts, and 11 

variables in this data set. The research only considered the local demands stream, which is from 

external demand or customer demands. Additionally, Philips employs a multi-echelon 

inventory optimization approach, which integrates all distribution levels to optimize inventory 

and achieve a balance that meets customer demands. As shown in the “Location.Type”, 

historical demand records for LDC (Local Demand Center), DC (Distribution Center), and FSL 

(Forward Stocking Location) are all included and taken into consideration when conducting 

forecasting.  

The “Forecast Method Tracking” utilizes daily forecasts extracted from Servigistics, and 

SPS team extracted 32 weekdays’ forecasts from February 28, 2024, to April 12, 2024, which 

serves as a sample period to provide insight into the fluctuation of daily forecasts. The 

forecasting process uses historical demand data from the preceding 12 months or 24 months, 

including the current forecasting month. For instance, forecasts in March are derived from 

historical demands from March and the previous 11 months, with forecasts for a year starting 

from April (i.e., 12 months). Each day, approximately 191,440 observations are recorded, with 

each observation representing the forecast from a specific location. Some variables overlap 

with those found in “Location_Part Demand”, such as “Part Number” and “Location Name”. 

The “Forecast.method” is included which indicates the method used for that part in a specific 

location on the day of extracting the data. It is important to highlight that different locations 

may have different forecasting methods on different days. This variation depends on the 

demand patterns of the parts in each location and the system choice of the forecasting. The 

Servigistics adopts MAPE as the primary standard for choosing the forecasting methods.  

 

5.2 Processing Data Sets 

 

This sub-section details the processing and transformation of the original data. For each 

research question, the specific data set containing the actual demands is used. As illustrated in 

Figure 5.1, processed data set Demand_Threshold (hereafter “Demand_Threshold”) is for the 



first research question exploring the potential threshold change, and processed data set 

Demand_Lumpy (hereafter “Demand_Lumpy”) is for the second research question. This 

section explains four steps of processing data. 

 

Step 1: calculating forecast fluctuation for each Stock Keeping Unit (SKU) 

The initial step is identifying the TopX volatile spare parts prior to partitioning them into 

experimental datasets. “Forecast Method Tracking” is transformed to provide insights into 

daily forecast fluctuations of each SKU, which is data set Forecast_fluctuation (hereafter 

“Forecast_fluctuation”) in Figure 5.1.   

The locations of forecasts are ignored since the SPS team's emphasis is on aggregated 

spare parts demand. The average values of daily forecasting fluctuations are calculated for 

further selecting the most fluctuating parts. Daily fluctuation is calculated by taking the 

difference between the forecasts at time t and the previous period t-1, then dividing it by the 

forecast at the previous period t-1 (formula 5.1 as below). The “mean.volatility.day” shown in 

formula 5.2 calulates the average daily forecast fluctuation, where DF represents the mean 

value of daily fluctuations. The “mean.volatility.day” is used for selecting top fluctuating parts. 

The daily forecast fluctuations for each part on the first day, February 28th, are set as 0. The 

formulas for calculating fluctuation are as follows. The maximum and minimum of daily 

forecasting fluctuations are also presented for reference.  

𝐷𝑎𝑖𝑙𝑦 𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 =  
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡−1

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡−1

        

 𝑚𝑒𝑎𝑛. 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦. 𝑑𝑎𝑦 = 𝐷𝐹                           

 

Step 2: Create a historical demand journey for each spare part. 

The “Location_Part Demand” contains historical demand records. This thesis ignores the 

location under instructions from SPS team and aggregates the historical demands from all 

locations for each SKU. The historical demands are shown on the first day of each month in an 

aggregated form. To build the forecasting models, I created a demand journey for each SKU 

which contains spare part number, demand date, and demand quantity on that date. The 

complete demand journey of each SKU is created by filling in the months without demands 

with 0, and demand date is from January 1, 2021, to April 1, 2024. The new data set is shown 

as “Demand Journey” in Figure 5.1. 

(5.1) 

(5.2) 



Step 3: Calculate the squared CV and ADI for each spare part based on the historical 

demand journey. 

For determining the demand categories, squared CVs and ADI were manually calculated 

in step 3. As mentioned in section 2.2 in Chapter 2 , Philips removed lumpy demand and 

classified demands with ADI larger than 1.32 to intermittent demand category. In the parameter 

information provided by Servigistics, I found that around 20% of SKUs are classified into 

demand categories that differ from those they should be placed in if the Servigistics algorithm 

adhered to the previously mentioned thresholds (i.e., ADI = 1.32, CV2 = 0.49). For example, 

the part in one specific location should be classified into “Erratic Demand” but shows as 

“Intermittent Demand” in the data which Servigistics provided. I questioned the incorrect 

categorization of demand to the PTC team, but as of the submission of this thesis, I have not 

received a response from them. Therefore, I didn’t use squared CVs and ADI data provided by 

Servigistics in this thesis. Instead, these two parameters are calculated using the actual demands 

of the past 40 months (more than 3 years) from January 1, 2021, to April 1, 2024.  

The squared of CV is calculated by squaring the ratio of the standard deviation (SD) to 

the mean of the demands (formula 5.3 as below). Zero demand is included in the calculation; 

however, if the demand has been zero for the past 40 months, the spare part is removed from 

consideration. ADI is calculated as the ratio of the total number of months (i.e., 40 months) to 

the number of periods with actual demand (i.e., demand quantity larger than 0). The calculated 

squared CVs and ADI are matched and combined in the “Forecast_fluctuation” using 

corresponding part numbers of each SKU.  

𝐶𝑉2 = (
𝑆𝐷 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑠

𝑚𝑒𝑎𝑛  𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑠
)2                  𝐴𝐷𝐼 =  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑𝑠 𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛𝑠
 

 

Step 4: Select demand samples for two experiments: “Demand_Threshold” for first 

experiment, “Demand_Lumpy” for second experiment. 

Philips team suggested focusing on high-value spare parts that have unit cost of more than 

100 euros. Thus, for both research questions, only spare parts with values exceeding 100 euros 

are selected for model building. In total, there are 9,738 SKUs that have a value of more than 

100 euros. 

For the first experiment, SKUs are sampled from all three categories. Prior to sampling, 

the dataset consists of 850 erratic spare parts, 6,993 intermittent spare parts, and 1,895 

(5.3) (5.4) 



smoothing spare parts. A random sample of SKUs is selected according to the proportions of 

these three categories, resulting in 300 erratic, 1,500 intermittent, and 500 smoothing spare 

parts being chosen for analysis. The “Demand_Threshold” is then formed by extracting 

historical demands journey using part number of the selected SKUs from “Demand Journey”. 

The “Demand_Threshold” has 92,000 observations and three variables: spare part number, 

demand date, and demand quantity.  

For the second experiment, I used “mean.volatility.day”, the average daily fluctuation of 

each spare part, to focus on the top 1,000 most volatile spare parts. Threshold parameters are 

calculated in Step 3. For each SKU, I classified them without removing lumpy demand pattern. 

The results indicate that among the top 1,000 most volatile spare parts, 995 are lumpy demand, 

2 are erratic demand, 1 is smoothing demand, and 2 were removed because demand is zero in 

most months that ADI and CV2 cannot be calculated. The “Demand_Lumpy” is formed by 

extracting demands journey using part number of the selected 995 lumpy SKUs from “Demand 

Journey”. The “Demand_Lumpy” has 40,000 observations and three variables: spare part 

number, demand date, and demand quantity. 

 

5.3 Data Sets for Experiments 

 

As indicated in Figure 5.2, two main data sets are used for applying forecasting models: 

Demand_Threshold and Demand_Lumpy; red line represents ADI=1.32, blue line is 

CV2=0.49. “Demand_Threshold” and “Demand_Lumpy” only contain demand journey of each 

SKU, but the characteristics of these spare parts, such as volatility, ADI, are fetched from the 

“Forecast_fluctuation” using corresponding spare part number and presented in this section. 

 

 

Figure 5.2: distribution of selected SKUs, “Demand_Threshold” (Left), “Demand_Lumpy” (Right). 



Figure 5.2 shows the distribution of the selected SKUs in the two data sets according to 

squared CV and ADI. There are 2,500 SKUs in the “Demand_Threshold” and 995 SKUs in the 

“Demand_Lumpy”. The steps of choosing spare parts are given in section 5.2. A statistical 

overview of characteristics of the spare parts selected in the two data sets can be found in Table 

5.1 and Table 5.2.  

Table 5.1 exhibits spare parts randomly selected for the first experiment, which includes 

three demand categories. In Table 5.1, the average daily fluctuation of spare part demand has a 

median value of 0.012 (1.2%), and mean value of 0.031 (3.1%). This means that, on average, 

the daily forecasts would change 3.1% among all selected spare parts, and more than 50% of 

spare parts have 1.2% change in average volatility of daily forecasts. Among all spare parts, 

more than half of them have a demand mean of more than 0.6, and 25% of them have a demand 

mean of more than 2.35. Table 5.2 shows spare parts with lumpy demand patterns for the second 

experiment, the maximum change of average volatility of daily forecasts is 1.244 (124.4%), 

and more than 50% of them have at least 0.106 (10.6%) of changes. Since all of them belong 

to lumpy demand, the minimum ADI is 1.33, which is larger than traditional threshold (i.e., 

ADI =1.32). The demand mean has a maximum value of 5.675, and more than half of spare 

parts have a demand mean smaller than 0.2.  

 

        
Variables Min Q1 Median Mean Q3 Max SD 
Unit.Cost 100.09 199.282 442.38 1642.044 1268.358 274629.52 5490.535 

Mean.volatility.day 0 0.007 0.012 0.031 0.023 4.626 0.086 
Min.volatility.day 0 0.009 0.04 0.088 0.147 6.745 0.167 
Max.volatility.day 0 0.105 0.198 0.724 0.403 70.562 2.247 

ADI 1 1.212 2.5 6.748 6.667 40 9.753 
demandmean 0.025 0.175 0.6 3.892 2.35 443.75 13.997 

CV2 0.014 0.692 2.314 6.512 7.179 40 9.987 
Table 5.1: statistical overview of SKUs in data set Demand_Threshold. 

        

Variables Min Q1 Median Mean Q3 Max SD 
Unit.Cost 100.100 180.075 387.390 1342.075 1003.640 57719.480 3630.862 

Mean.volatility.day 0.048 0.066 0.106 0.18 0.256 1.244 0.156 
Min.volatility.day 0.001 0.089 0.162 0.216 0.204 6.745 0.419 
Max.volatility.day 0.446 1.427 2.583 4.9 6.988 37.944 4.852 

ADI 1.333 4 6.667 10.079 13.333 40 10.115 
demandmean 0.025 0.1 0.2 0.302 0.375 5.675 0.359 

CV2 0.747 3.497 6.347 9.924 12.333 39 10.041 
Table 5.2: statistical overview of SKUs in data set Demand_Lumpy. 

 



Data sets Demand_Threshold and Demand_Lumpy contain part number of spare parts, 

demand date, and demand quantity on that date. Table 5.3 shows the descriptive information of 

spare parts in three demand categories in Demand_Threshold data set. Variable “Demand” is 

the average demand over 40 periods, “Mean.V.” is the mean of volatility according to 32 days 

tracking provided by SPS team. From the table, it can be found that intermittent demand 

category has more fluctuating SKUs since the max and average of “Mean.V” are much higher 

than other two categories. In addition, the demands in intermittent category exhibit sporadic 

patterns: the minimum demand is close to 0 and maximum demand is around 35, but the 

average demand among all intermittent SKUs are much smaller than other two categories.  

 

Variables Erratic  Smooth  Intermittent  

min max mean min max mean min max mean 
CV2 0.49 3.98 0.75 0.02 0.49 0.23 0.60 28.03 4.70 

ADI 1.00 1.29 1.17 1.00 1.25 1.02 0.60 28.03 4.70 

Unit.Cost 100.16 31748.19 1391.15 100.28 68060.70 2473.01 100.16 54922.07 1416.28 

Demand 1.23 34.52 3.60 1.43 328.50 15.90 0.07 35.35 0.69 

Mean.V. 0.00 0.07 0.01 0.00 0.03 0.01 0.00 4.63 0.04 

Table 5.3: descriptive statistics of SKUs in “Demand_Threshold”. 

 

 

Figure 5.3 to 5.6 shows three examples of distribution of demands over 40 months with 

ADI = 1.33, ADI = 3.33, ADI = 10, and ADI = 40 in “Demand_Lumpy”. The example SKU is 

randomly selected to illustrate how demands are distributed in lumpy demand category. The 

demands follow a sporadic pattern with some periods when there is zero demand.  

 

 

Figure 5.3: demands bar chart of part 459801658621 (ADI =1.33) 



  

Figure 5.4: demands bar chart of part 451213376211 (ADI =3.33) 

 

Figure 5.5: demands bar chart of part 459800422471 (ADI =10) 

 

Figure 5.6: demands bar chart of part 453567451632 (ADI = 40) 

 

  



Chapter 6 Methodology  
 

 

In this section, the experimental designs for two research questions are illustrated with 

Figure 6.1 and Figure 6.2. The first set of experiments focuses on ADI threshold modifications 

corresponding to the first research question. The second experiment examines the performance 

of the TSB method and NN in relation to the second research question. Additionally, the 

selected forecasting methods, as mentioned in the Background section, are introduced and 

described. The metrics and criteria used to measure performance are also elaborated. 

 
 
 

6.1 Research Design 

 

6.1.1 Experiment one: Threshold Modifications 

 

 

Figure 6.1: the first experiment design. 

 

In the first experiment, SKUs are sampled from erratic, smooth, and intermittent demand 

categories under definition of Philips for further application of forecasting methods. The 

methods adopted include Weighted Average (WA), Single Exponential Smoothing (SES), 

Intermittent Smoothing (IS), and the TSB method. The methodologies of forecasting methods 

are in section 6.2, the details of implementation of these methods are explained in this section.  



To evaluate both accuracy and volatility in selecting the best method for each spare part, 

I assigned rank scores to methods based on their performance in two dimensions: MAPE and 

volatility of forecasting. The methods were first implemented in all demand categories, then 

the MAPE and volatility of forecasting of each spare part were calculated. The details of 

calculations of accuracy and volatility are in section 6.3. Subsequently, all forecasting methods 

were ranked separately using MAPE and volatility. The method leading to the lowest MAPE 

was assigned to a score of 1, the second lowest received a score of 2, and the third received a 

score of 3. Same as MAPE, the methods were ranked again using volatility: the lowest volatility 

was assigned to a score of 1, the second lowest received a score of 2, and the third one received 

a score of 3. I suggested a metric to balance the weights of the two dimensions: a weight number 

0.6 was assigned to the volatility rank score and 0.4 was assigned to MAPE rank score. A 

weighted rank score was then calculated for each forecasting method of each spare part using 

the following formula 6.1: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑟𝑎𝑛𝑘 𝑠𝑐𝑜𝑟𝑒 = 0.4 × 𝑀𝐴𝑃𝐸 𝑠𝑐𝑜𝑟𝑒 + 0.6 × 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 

For example, for one specific spare part, WA gets score of 3 according to accuracy and score 

of 1 according to volatility, the weighted rank score of WA of that spare part is 1.8. The 

calculation itinerated until all spare parts got weighted rank score for four forecasting methods. 

Finally, the method with the lowest weighted rank score was chosen as the best method for that 

spare part.  

To identify the potential thresholds, statistical counts and a simple machine learning 

algorithm k-means method were used. First, the methods of spare parts which have ADI larger 

than a certain number were counted.  For example, set ADI larger than 2, then the spare parts 

that have ADI larger than 2 are considered, and final best methods these spare parts choose are 

counted. The potential ADI change is the switch point when counts from traditional methods 

(i.e., WA, SES, IS) exceed TSB. As previously mentioned in Literature, Weighted Average 

(WA), Single Exponential Smoothing (SES), and Intermittent Smoothing (IS) are generally 

more effective for erratic and smooth demand patterns, whereas the Teunter, Syntetos, and 

Babai (TSB) method is proven to be more effective for intermittent and lumpy demand patterns. 

Thus, it is assumed that SKUs selecting WA, SES, and IS are more suitable for classification 

into erratic demand, while those selecting TSB are more appropriate for intermittent or lumpy 

demand. The Servigistics system allows SKUs to select all forecasting methods, including 

TSB. Thus, by analyzing the statistical counts, when the counts of spare parts choosing WA, 

(6.1) 



SES, and IS exceed those of TSB under a certain ADI, it is preferable to classify spare parts 

with ADIs smaller than this threshold as having erratic or smoothing demand. Conversely, 

when the counts for the spare parts choosing TSB method exceed those for the other three 

methods, this indicates that more parts are choosing TSB as the final method. Corresponding 

ADI can be identified as the switch point and considered as a potential ADI threshold change.  

The K-means method is an unsupervised machine learning clustering method that 

identifies similar groups of data points. The algorithm is easy to implement and only requires 

that a kd-tree be built once for the data points (Kanungo et al., 2000). The algorithm aims to 

minimize the distance between points in a cluster with their centroid. K-means has been widely 

used in a great deal of research from both optimization and data perspectives, and it was 

examined on data stream and high-dimensional data. The k-means method can give brief 

overviews of characteristics of each cluster (Wu, 2012). For clustering the spare parts and 

highlighting the characteristics of them, I made clusters using squared CV, ADI, and final 

chosen forecasting method of each SKU as the criterion. Silhouette shows which objects lie 

well within their cluster, and which ones are merely somewhere in between clusters 

(Rousseeuw, 1987). In this thesis, R package “factoextra” was used for determining the optimal 

clusters in silhouette plot. Since the k-means clustering is adopted for reference, it is not the 

focus of the first experiment.  

 

 

6.1.2 Experiment two: the performance of TSB and NN 

 

 

Figure 6.2: the second experiment design. 



The second experiment design targets a demand category identified by Philips as 

intermittent but exhibiting lumpy patterns. In addition to the existing forecasting methods, a 

machine learning approach using neural networks (NN) is adopted to compare performance 

with the four traditional methods. The details of forecasting techniques and performance 

measurements are in section 6.2 and 6.3 of this chapter.  

 

 

6.2 Forecasting Methods 

 

In this section, five forecasting models applied in this thesis are introduced, along with 

their detailed implementation parameters. It is important to note that all models are 

implemented using R packages through their respective function commands. Additionally, 

smoothing parameters such as alpha are optimized for each method. The forecasting procedures 

are mentioned in Forecasting Procedure in Chapter 2. 

Weighted Average (WA) and Single Exponential Smoothing (SES) models were used 

directly according to the documentations in SPS team. Intermittence smoothing (IS) is 

described in PTC website (2024) as “this method generates a modified Croston forecast, and 

when demand is not intermittent, this method behaves much like Single Exponential 

Smoothing”. Due to the intransparency of Servigistics’s models of IS, I assume that Croston’s 

method is used when encountering intermittent demand pattern, and for erratic and smooth 

pattern, SES is used. Servigistics TSB is interpreted as the Teunter, Syntetos & Babai (TSB) 

method because of invisible Servigistics’s algorithm. 

 

 

Weighted Average 

The Weighted Average (WA) method refers to the average values scaled by their 

importance. The formula is provided below (formula 6.2). Since forecasts are made for the 

entire year, monthly forecasts are multiplied by 12 to represent the annual forecast. The weights 

assigned to each period correspond to the period number, meaning the demand in the first 

month is multiplied by 1, the demand in the second month by 2, and so on according to Philips 

https://trne-prod.ptcmanaged.com/servigistics_help/en/index.html#page/PTC_Servigistics_Help_Center/glossary/intermittence_smoothing_forecast_method.html


training slides (SPS training, 2024). This approach ensures that more recent demand data has 

a greater influence on the forecast, reflecting its increased relevance. 

𝑊𝐴𝑡 =
(𝐷𝑡−24 × 1) +  (𝐷𝑡−23 × 2) + ⋯ +  (𝐷𝑡 × 24)

(1 + 2 + 3 + ⋯ + 24)
 

 Dt: historical demand in that forecasting month t. 

 

 

Croston’s method and SES 

Croston’s method is elaborated in detail in Croston (1972) and is built on the Simple 

Exponential Smoothing method (SES). In this thesis, the "tsintermittent" R-package by 

Kourentzes (2014) was used. Croston (1972) focuses on two separate components: the non-

zero demand size 𝑧𝑡 and inter-demand interval 𝑝𝑡. The prediction from Croston’s method is 

given by: 𝑦𝑡̂ =
𝑧̂𝑡

𝑝𝑡
. The initial value for predictions and both 𝑧𝑡 and 𝑝𝑡 are using SES, the final 

output from Croston is the average estimated demand for each period in the forecasting horizon 

Kourentzes (2014). 𝑧𝑡 has to be non-zero in at least two periods because the predictions are 

updated only when demand occurs. For optimizing the parameters, 𝛼 values equal to 0.05, 0.1, 

0.15, and 0.2 are tried, and the parameter is for both demand and intervals. The sum of forecasts 

is compared to actual demand in past 12 months and the 𝛼 which results in least forecasting 

error MSE is selected as best 𝛼. Sum of 12 months’ forecasts (that is, the forecasting for the 

upcoming year) from best 𝛼 are considered the final forecasts in that forecasting month. 

The SES method uses a single smoothing parameter alpha (α) to control the effect of past 

observations. This smoothing parameter is usually set somewhere between 0.1 and 0.3 in a 

setting with intermittent demand (Syntetos and Boylan, 2005). The theoretical equation shown 

below is a simple formular to calculate the forecast for the current period using previous values 

(both the actual and forecasting values). Same as Croston’s method, 𝛼 values equal to 0.05, 

0.1, 0.15, and 0.2 are tried and forecast horizon is set to 12; the results with best performing 𝛼 

will be used as final forecast in that month. 

𝑦𝑡̂ =  𝛼𝑦𝑡 + (1 − 𝛼)𝑦̂𝑡−1 

𝑦𝑡̂: forecast for current forecasting month t. 

𝑦̂𝑡−1: forecast for previous forecasting month t-1. 

 

(6.2) 

(6.3) 



TSB method 

The TSB model comprises two main components: the probability of demand occurrence 

and the interval between positive demands. Unlike Croston's method, TSB does not alter the 

level estimation and uses 𝑑𝑡 as the probability of the demand occurrence. 𝑑𝑡 is 1 when demand 

does occur and otherwise it is 0. For optimizing the parameters, 𝛼 values equal to 0.05, 0.1, 

0.15, and 0.2 are tried, and the parameter is for both probability and demand. The 

"tsintermittent" R package is utilized, with the cost function set to mean squared rate (MSR), 

which is most suitable for TSB, yielding more reasonable forecasts. The forecast horizon is set 

to 12 periods, and the results are summed to represent the annual forecast. The predictions by 

TSB are given by the calculation formula: 

𝑦𝑡̂ =  𝑑̂𝑡𝑧̂𝑡 

 

 

Neural Network (NN) 

  NN was found to generally perform better than the traditional methods (Gutierrez et al., 

2008). To align with the research goal and offer a potential approach for Philips future 

experiments, this thesis adopted a single-hidden layer neural network to give a glimpse of the 

effect of NN. The functions in “nnfor” R package are used. Feedforward neural networks are 

applied for time series forecasts. The algorithm follows a single-layered network with N hidden 

neurons and activation function G as follows, where input weight vector is 𝑤𝑖 =

 (𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑛)𝑇: 

𝐺𝑁(𝑥𝑡) =  ∑ 𝛽𝑖𝑔(𝑤𝑖

𝑁

𝑖=1

𝑥𝑡 + 𝑏𝑖) 𝑤𝑖𝑡ℎ 𝑡 = 1, … . , 𝑇 

Given a set of T samples, {(𝑥𝑡,𝑑𝑡)t = 1, …, T}, 𝑥𝑡 represents input vector and 𝑑𝑡 is the target 

vector for the supervised learning. The weight vector connects the hidden nodes to the output 

neurons and 𝑏𝑖 is the bias. Figure 6.3 illustrates the algorithm of feedforward neural networks.  

In this thesis, the 18 months of historical demands were used to train NN model, and the 

rest of 6 months were considered as test set. For measuring the accuracy of model, Mean 

Absolute Error (MAE) within “accuracy” function is used. The mean value of MAE is used to 

assess the accuracy of the NN model for all spare parts. The hidden nodes are set to number of 

3 as it is a reasonably low number to approximate any complex function; maximum number of 

(6.4) 

(6.5) 



iterations for training is set to 150. No seasonal lags are considered, and regularization 

parameter “decay” is 0.8. In this thesis, high “decay” is chosen for preventing overfiting, other 

values of parameters can be tried in future experiments. 

 

 

Figure 6.3: the feedforward neural network. 

 

 

6.3 Selected Performance Measurements 

 

To assess the forecasting and model performance, accuracy and robustness of forecasts 

are measured. The accuracy metrics give insights into the deviation between forecasting 

amounts and the actual values of demands; robustness in this thesis refers to the volatility of 

forecasts. For accuracy metrics, MAPE, MAD, and RMSE are tested; for volatility, the standard 

deviation (SD) of forecasts is utilized.  

The actual demands are calculated under Formula 6.6. I balanced the past first 12 months 

and last 12 month of past 24 months and assigned a weight number 0.3 to the first 12 months, 

0.7 to the last 12 month. The “last 12 months” refers to the 12 months preceding the current 

forecasting month, including the current month itself. The “first 12 months” refers to the 12 

months preceding the “last 12 months”. 𝑦𝑡 is the actual demands at time period t.  

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 = ∑ 0.3 × 𝑦𝑡−𝑖 +  ∑ 0.7 × 𝑦𝑡−𝑗
11
𝑗=0

23
𝑖=12  

In Philips’s Servigistics, they mainly use the mean absolute percentage error (MAPE) as 

the accuracy measurement. MAPE is the average of the absolute differences between actual 

and forecasted values 𝑦𝑡 , expressed as a percentage format. Formula 6.7 is the traditional 

MAPE (i.e., 𝑀𝐴𝑃𝐸1). Given that lumpy demand includes many periods with zero demand, the 

(6.6) 



traditional form of MAPE may fail. Therefore, I adopted an adjustment for MAPE which is 

given by Formula 6.8 below (Gilliland, 2002). 𝑦̂𝑡 is the forecasting demands at time period t. 

 

𝑀𝐴𝑃𝐸1 =
1

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
|

𝑛

𝑡=1
                                        𝑀𝐴𝑃𝐸2 =

∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛
𝑡=1

∑ 𝑦𝑡
𝑛
𝑡=1

 

 

The Mean Absolute Deviation (MAD) takes the average of the absolute differences between 

the forecasted and actual values. MAPE is built under the MAD and actual demands 𝑦𝑡, this 

metric is calculated as a reference. 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 

Pinçe et al. (2021) also find that the most common forecasting accuracy measures used in recent 

spare parts demand literature are the absolute accuracy measures. The Root Mean Square Error 

(RMSE) measures the average magnitude of the errors between forecasts and actual values. 

The metric formula is presented in Formula 6.10 as below: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1     

 

For measuring the robustness of model performance, volatility of forecasts is used. Standard 

deviation of forecasts serves as the main measure of volatility (Formula 6.11). 𝑦̅̂ is the mean of 

forecasts, and the calculation of SD takes mean of deviation between the mean of forecasts and 

the forecast at time t. n is the number of periods, and in this thesis, the total forecasting 

periods are 12 months. 

𝜎𝑖 = √
1

𝑛 − 1
∑(𝑦̂𝑡 − 𝑦̅̂)

2
𝑛

𝑡=1

 

 

 

 

 

(6.7) 

(6.9) 

(6.10) 

(6.11) 
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Chapter 7 Results 
 

This chapter presents results from the experiments for two research questions. The 

potential ADI thresholds are included in in section 7.1. Forecasting performances of each 

method are demonstrated in section 7.2. Forecastings are based on the best performance 

parameters, details of parameters chosing are in section 6.2. 

 

 

7.1 Experiment one: Threshold Experiment 

 

The first experiment proposed potential ADI thresholds to change in Servigistics. Table 

7.1 presents several examples for explaining the outputs of weighted rank score of each 

forecasting methods for each spare part. The column “Category” refers to demand category, 

“WA.W” indicates the weighted rank score of the weighted average method, “SES.W” is the 

weighted rank score of single exponential smoothing, “IS.W” is the weighted rank score of 

intermittence smoothing, “TSB.W” is the weighted rank score of TSB. “Final.Method” refers 

to the best method the spare part chose based on weighted rank. The calculation formula of 

weighted rank score is in Formular 6.1, the method that results in the lowest rank score is 

chosen as the final method. Examples are randomly selected from three demand categories. 

 

Part.Number ADI Category WA.W SES.W IS.W TSB.W Final.Method 

459800931362 1.026 E 1 2 3 5 WA 
453566489171 1.111 E 1.6 2.6 4.2 2.6 WA 
453567552651 1.111 E 1 3 5 2 WA 
452215021961 1.081 S 1 2.6 4.2 3.2 WA 
453567306162 1.081 S 1 2.4 3.8 3.8 WA 
459800336413 1.143 S 3.4 2 3 2.6 SES 
459801685051 3.636 I 1 4.2 2 3.8 WA 
452215031292 4.444 I 2.4 5 2.2 1.4 TSB 
453560068371 10.000 I 2.4 3.4 3.8 1.4 TSB 

Table 7.1: examples for weighted rank scores of spare parts. 

 

Table 7.2 indicates the first evidence of new ADI: counts of spare parts under different 

forecasting methods when changing ADI thresholds. As shown in Table 7.1, each spare part 



has the final method based on the calculated rank scores. For deciding a potential new 

threshold, ADI values were tried, the spare parts which have ADI larger or equal to that ADI 

were considered for statistical counting. For example, when ADI is larger than or equal to 1.5, 

733 spare parts choose WA, SES, and IS as final method, while 631 spare parts choose TSB as 

final method.  

As explained in the Methodology section 6.1.1, the switch point is when the count of 

spare parts using TSB exceeds counts of the other methods chosen by the rest of spare parts. 

This may indicate that TSB is becoming more dominant among SKUs, as an increasing number 

of spare parts are being selected for this final method. “ADI” refers to the ADI values tried for 

finding potential new threshold. In the “ExceptTSB” column, it is the sum of spare parts 

adopting weighted average, single exponential smoothing, and intermittence smoothing; the 

“TSB” column represents the number of parts that pick TSB as the final method.  

 

ADI WA SES IS TSB ExceptTSB TSB 

>=1.3 746 34 52 663 832 663 
>=1.5 651 34 48 631 733 631 
>=1.9 542 30 42 567 614 567 
>=2 519 28 41 549 588 549 

>=2.5 432 26 35 486 493 486 
>=3 355 25 31 426 411 426 

>=3.5 308 20 25 381 353 381 
>=4 283 17 24 363 324 363 

Table 7.2: statistical counts of spare parts under certain forecasting methods. 

 

 

From Table 7.2, there is a switch point when ADI equals or is larger than 3. When ADI is 

smaller than 3, the counts of parts using TSB are fewer than counts of parts using WA, SES, 

and IS. This means that if ADI is set under 3, if the system allows to choose TSB, most of the 

SKUs will still choose weighted average, single exponential smoothing, and intermittence 

smoothing as the best method. When ADI is larger than 3, more spare parts were included in 

erratic and smooth demand categories; and from Table 7.2, I found that most of the spare parts 

chose TSB as the best method. There are 426 spare parts choose TSB and 411 spare parts 

choose WA, SES, and IS. As ADI increases, TSB becomes preferable among spare parts, with 

an increasing number of them being selected as the final best method. 



Therefore, the potential threshold of ADI is proposed to be 3 or more than 3 using 

statistical counting as evidence. The key behind logic is to classify more SKUs earlier marked 

as intermittent demand to erratic or smooth demand. Within erratic and smooth categories, TSB 

is not necessary to be implemented in Servigistics since traditional methods like WA are more 

effective than TSB according to results from the experiment. 

 

Second evidence for choosing new ADI is through k-means clustering. Figure 7.1 

indicates the optimal clusters result from silhouette plot. The plot suggests that three clusters 

are suitable for clustering, but to include more information, I used four clusters. In Figure 7.2, 

each SKU in squared CV and ADI dimensions is labelled with different colors according to the 

assigned clusters. The “+” sign marks center of that cluster, red line is “ADI=1.32”, blue line 

is “CV2= 0.49”. Table 7.3 gives a detailed description of characteristics of each cluster. From 

four clusters segmented by algorithm, generally the possibility of choosing TSB as best method 

increases when ADI increases. When ADI is equals to 4.58, the percentage of TSB selected as 

final best method exceed that weighted average. Thus, the ADI modified to around 4.5 can be 

a potential threshold for future Philips’s experiments. 

Additionally, since I set the algorithm balancing volatility and accuracy of the forecasts 

when choosing the methods, the final methods involved a fluctuation factor (i.e., volatility). 

Thus, the results can be more convincing according to the requirements from Philips. However, 

I observed that half of the SKUs chose WA as the final method when ADI is smaller than 3. It 

can be addressed that WA is a crucial method in the experiment. The further performance of 

WA is investigated in experiment two in the next section. Moreover, TSB takes a large part of 

all chosen methods, the effectiveness and performance of TSB is elaborated in experiment two. 

 

 

 

 

 

 

 



 

 

 

Figure 7.1: distribution of spare parts with assigned clusters. 

 

 

 

Figure 7.2: distribution of spare parts with assigned clusters. 

 

 

Center ADI CV2 IS SES TSB WA 

1 3.415 3.119 0.033 0.028 0.348 0.590 

2 3.504 3.179 0.026 0.068 0.350 0.556 

3 3.482 3.160 0.043 0.025 0.413 0.519 

4 4.583 4.353 0.040 0.051 0.485 0.424 

Table 7.3: clusters information from k-means clustering. 

 



 

7.2 Experiment two: the performances of TSB and NN 

 

The second experiment examines the performance of TSB and NN in Philips’s lumpy 

demand data sets.  The results from WA, SES, IS, TSB, and NN are presented and compared. 

Results are presented in two ways: at an aggregated level and each part level. “At an aggregated 

level” means summing up the forecasts from all spare parts for each forecasting month. "At a 

part level" means forecasts are evaluated for each individual spare part, with key metrics like 

MAPE and RMSE calculated for each one of them. 

 

7.2.1 Results at an aggregated level 

Table 7.4 shows the aggregated amount of forecasted demand from all SKUs of each 

forecasting month. The aggregated amounts from different forecasting methods are compared 

and analyzed. Absolute errors of each method, shown as “Error” in Table 7.4, are the difference 

between actual historical demands and the forecasts. The actual historical demands were 

calculated by assigning a weight value of 0.4 to the first year’s actual demands and weight 

value of 0.6 to the second year’s actual demands. The calculation formula is given in section 

6.3. The average of each month of forecasts are presented as a reference. Table 7.5 shows 

various key metrics on the aggregated demands.  

Neural networks perform well considering volatility and accuracy: it has the lowest 

MAPE and standard deviation, which means that the results from NN are closer to the real 

demands and the fluctuations are relatively stable. The WA method is important as many spare 

parts choose it as the final method in Servigistics, and the performances using the top 

fluctuating parts show that WA is important in forecasting. It is ranked as second best according 

to MAPE, but WA exhibits volatile forecasting demands. TSB is another focus of this research, 

but the evidence shows that the accuracy it achieves is relatively low (i.e., 7.3%, 6% higher 

than MAPE of NN). However, TSB exhibits less volatile forecast results, with a standard 

deviation of 219.65, it is the second smallest among the traditional methods. 

SES is one of the traditional methods in Servigistics, and experiment outcomes support 

that SES leads to 4.8% of MAPE, which is relatively low. But when it comes to volatility, SES 

has 328.55 of standard deviation in forecasting, which is the most fluctuating among other 



methods. The Philips experiment shows that 24.9% of spare parts choose SES as their method. 

From the above results, it suggests that the application of SES can be one of the reasons causing 

high fluctuating forecasts.  

As stated in Table 7.4, the intermittence smoothing method results in the highest MAPE 

at 9.8% and RMSE at 359.1. But when considering the volatility of forecasting, the standard 

deviation of intermittence smoothing method is the smallest, only 131.26. The deficiencies of 

the IS model may be attributed to the algorithm’s setups of my implementation. But due to the 

invisible operation of Servigistics, this stands as the constraints of the thesis. 

Figure 7.3 illustrates trends of aggregated amounts of forecasts, WA, SES, TSB, and NN 

display a drop in February’s forecast and an increase in March’s forecast; however, only IS 

shows an opposite trend (i.e., a rise in February and a drop in March). Line “histdemand” 

represents the actual historical demands, the calculation can be found in section 6.3. Lines from 

NN, WA, and TSB are close to line of historical demands, this reveals that forecasts from these 

methods are more accurate. The forecasts from SES, however, display a volatile trend and are 

not as accurate as the other three methods during February to August.  

 

 

 

 

 

 

 

 



 

Figure 7.3: line plot of aggregated amounts of forecasts in each month from five methods. 

 

Date 
(Mm/Dd/YY) 

WA SES IS TSB NN 
Actual 

Demand 

Error 

(WA) 

Error 

(SES) 

Error 

(IS) 

Error 

(TSB) 

Error 

(NN) 

01/01/2023 3388.9 3627.9 3978.1 3319.8 3604.1 3487.4 98.5 140.5 490.7 167.6 116.7 

02/01/2023 3338.2 3585.8 4016.1 3257.8 3538.7 3456.6 118.4 129.2 559.5 198.8 82.1 

03/01/2023 3622.6 4009.4 3947.4 3522.3 3680.8 3603.5 19.1 405.9 343.9 81.2 77.3 

04/01/2023 3786.8 4143.0 3959.9 3502.7 3769.5 3761.3 25.5 381.7 198.6 258.6 8.2 

05/01/2023 3719.6 3997.7 3898.5 3465.9 3713.0 3677.6 42.0 320.1 220.9 211.7 35.4 

06/01/2023 3649.7 3848.8 3822.8 3409.1 3671.7 3625.3 24.4 223.5 197.5 216.2 46.4 

07/01/2023 3557.2 3710.3 3835.2 3315.9 3602.5 3585.6 28.4 124.7 249.6 269.7 16.9 

08/01/2023 3501.4 3671.2 3838.9 3265.0 3571.1 3555.5 54.1 115.7 283.4 290.5 15.6 

09/01/2023 3367.6 3484.2 3817.8 3158.6 3456.8 3470.5 102.9 13.7 347.3 311.9 13.7 

10/01/2023 3256.6 3390.0 3832.7 3014.7 3368.5 3379.2 122.6 10.8 453.5 364.5 10.7 

11/01/2023 3114.2 3199.6 3654.0 2952.2 3269.7 3294.3 180.1 94.7 359.7 342.1 24.6 

12/01/2023 2970.6 3059.6 3565.6 2851.3 3223.2 3178.6 208.0 119.0 387.0 327.3 44.6 

Average 3439.5 3644.0 3847.3 3252.9 3539.1 3506.3 85.3 173.3 341.0 253.3 41.0 

Table 7.4: aggregated amounts of forecasts. 

 

Metrics WA SES IS TSB NN 

MAD 85.3 173.3 341.0 253.3 41.0 

RMSE 104.9 214.4 359.1 265.2 52.6 

MAPE (%) 0.025 0.048 0.098 0.073 0.012 

SD 247.08 328.55 131.26 219.65 175.42 

Table 7.5: measurements result of each forecasting method. 

 



7.2.2 Results at a part level 

The measurements are also compared at a part level where each SKU’s forecasting 

accuracy and volatility are calculated, and the statistical information is indicated in Table 7.6 

to Table 7.8. Table 7.6 indicates the MAPE results: WA has the highest accuracy if comparing 

the mean of MAPE.  TSB performs well as it has the third lowest average MAPE.  

NN model was tested with the model accuracy using testing data, and the mean MAE 

result is 0.42. This indicates that the forecasts deviate from the actual demand by approximately 

0.412 units. NN has an average MAPE of 22.18% and median MAPE of 18.71%, which means 

50% of spare parts have a mean absolute error less than 18.71%. Compared to previous 

outcomes at an aggregated level, the MAPE results show that TSB, WA, or SES outperform 

NN at a part level.  RMSE measures the deviation of actual and forecasts and Table 7.7 shows 

the statistical overview of RMSE in all SKUs.  

IS has the lowest accuracy and the highest fluctuation across all three metrics. WA is the 

most accurate method, and NN performs better when comparing RMSE: 0.74 of RMSE, which 

is 0.15 higher than RMSE of WA. Overall, the performance of TSB is satisfactory that it has 

the relatively high accuracy and low fluctuation. TSB has a MAPE of 21.28, which is 3% higher 

than MAPE of WA; its volatility is 0.9, which is 0.2 higher than NN. From the results of two 

experiments, the accuracy performances of TSB are comparable to those of WA and SES. 

However, TSB does reduce volatility to some extent at both the aggregated and part levels.  

Volatility is another focus of this thesis which measures the fluctuation of forecasts. Under 

this situation, NN becomes the least fluctuating method, WA performs well in minimizing the 

volatility of forecasts, and TSB has standard deviation of 0.9 which is also a small fluctuation. 

SES demonstrates high fluctuation which is consistent with the previous findings at an 

aggregated level. 

 

 

 

 

 

 



 

 

Method Min Q1 Median Mean Q3 MAX 

WA 2.792 10.524 14.338 16.01 17.428 93.333 

SES 1.043 12.878 17.67 19.97 24.077 65.501 

IS 0 15.25 27.492 41.553 46.572 697.232 

TSB 5.287 14.867 19.471 21.286 26.782 204.29 

NN 4.321 13.027 18.712 22.183 25.436 511.835 

Table 7.6: MAPE (%) result of each forecasting method at part level. 

 

 

Method Min Q1 Median Mean Q3 MAX 

WA 0.086 0.258 0.401 0.546 0.642 9.117 

SES 0.015 0.348 0.586 0.777 0.957 11.689 

IS 0.154 0.851 1.208 1.631 1.805 16.8 

TSB 0 0.316 0.526 0.806 0.921 11.374 

NN 0.001 0.312 0.507 0.691 0.822 12.927 

Table 7.7: RMSE result of each forecasting method at part level. 

 

 

Method Min Q1 Median Mean Q3 MAX 

WA 0 0.363 0.592 0.821 0.944 9.177 

SES 0 0.487 0.769 1.045 1.233 13.713 

IS 0.193 0.75 1.055 1.388 1.577 12.061 

TSB 0 0.322 0.576 0.901 1.029 10.181 

NN 0 0.268 0.482 0.743 0.836 10.246 

Table 7.8: Volatility result of each forecasting method at part level. 

  



Chapter 8 Discussion and Limitations 
 

This section discusses the results from the previous chapter and provides insights into the 

research questions. Besides, another potential factor named “Archived Forecast” is discussed. 

Thorough research was conducted on one spare part for explaining “Archived Forecast” and 

this research is included in Appendix 1 as reference. The thresholds suggested for Philips are 

reviewed, and the performances of five methods in the lumpy pattern are discussed further 

under Philips situation. The limitations of this research and problems that occur during the 

thesis are also pointed out.  

 

8.1 The effects of “Archived Forecast” and the research on an individual spare part. 

During the exploration of Servigistics, I found that a variable named “Archived Forecast” 

may have an important effect on the forecasts. SPS team had provided several spare parts as 

examples when stating problems and one of the spare parts, part 459801352572, was used by 

me for examining the problems of adopting “Archived Forecast”. 

“Archived Forecast” is the stored forecast in Servigistics based on the previous forecast 

or demands. I questioned the function and calculation logic of the "Archived Forecast" with 

PTC team, but by the time this thesis was completed, no response had been received. Thus, the 

discussion was based on my assumptions and results from implementation of assumed 

forecasting logics. 

I observed that the daily forecasts in April 2024 in an aggregated amount (that is, sum of 

forecasts from all locations) were absurdly volatile (Appendix Figure 1.1). After closely 

examining the forecasts and facts in Servigistics, I assumed: due to Servigistics’s algorithm, 

forecasts are using “Archived Forecast” for forecasting instead of historical actual demands 

and forecasting models.  

The detailed investigation on part 459801352572 is included in Appendix 1. The results 

confirm that the assumption is valid. The Servigistics algorithm can cause significant forecast 

fluctuations, partly due to the use of “Archived Forecast”. Some calculations of forecasts do 

not follow the Servigistics 's forecasting methodology but instead rely on archived forecasts. 

For example, in February, the forecasts of the year are calculated by “Archived Forecast” times 

12 months.  



8.2 Thresholds for categorization.  

Philips sets a threshold of ADI to 1.32 to distinguish smooth from intermittent demand, 

which includes more SKUs as intermittent demand items. The research goal is to explore the 

possibility of increasing ADI. For the scope of this thesis, the effects of adopting a new ADI 

cannot be easily researched after discussing with SPS team. Instead, SPS can implement the 

recommended ADI in SBOX to accurately determine its effects.  

This thesis created a simple experiment to propose potential changes in thresholds. The 

key idea of this experiment is finding the switch point of SKUs choosing forecasting methods. 

Finally, ADI equals 3 is a possible number when using statistical counting. K-means is adopted 

for reference and suggests an ADI equalling 4.5 to be a viable option. But according to the 

outcomes listed in Table 7.3, there is no obvious change in ADI after comparing the methods 

used in different clusters. Therefore, I would suggest ADI equals to 3 as the most likely new 

ADI. When increasing ADI to 3 or 4.5, 35% more SKUs categorized as intermittent demand 

are dealt with by methods for erratic and smooth demand. TSB is planned to implement only 

in intermittent demand. By increasing the ADI threshold, the number of SKUs in intermittent 

demand are reduced by 35% which streamlines the process.  

 

8.3 Methods discussion: the performances of TSB and NN implementation in lumpy 

pattern.  

In Servigistics, WA, SES, and IS are the top three methods in forecasting; TSB is another 

important focus that the performance on the lumpy or intermittent demand pattern has a 

significant impact on the further Philips’s experiments. NN is suggested by previous studies 

and has also been investigated in Philips data set as well. 

The second experiment examined the main five forecasting models on the lumpy demand 

pattern, especially on those most fluctuating spare parts. Three measurements were used to 

evaluate the forecasts, MAPE and SD are the key metrics. From the results at a part level, WA 

achieves the highest accuracy, with a MAPE of 16.1% and an RMSE of 0.54, which are less 

than half of the values obtained from other methods. During the recent experiment conducted 

by Philips, 28.5% of the spare parts chose WA as the main method before the simulation. The 

results from my experiment echo the previous findings in Philips that WA is a crucial technique 

in forecasting. This also resonates with some studies on intermittent demand patterns. Ghobbar 

(2004) conducted a study on aircraft operators in their components that have intermittent 



pattern. The results show continued superiority of weighted average, Holt, and Croston 

methods (Ghobbar, 2004).  

TSB and NN are explored and performance of these two methods are compared with the 

traditional methods in the system. TSB has not been implemented in the system, and Philips 

pays attention to the effectiveness of this method. From the results shown above, TSB 

performed worse compared to WA and SES when considering MAPE and volatility metric. The 

mean of MAPE for TSB in all spare parts is 21.28% which is 7% higher than WA and 1% 

higher than SES. The standard deviation is 0.901 across all spare parts, which is 0.1 higher than 

WA and indicates that the fluctuation of forecasts from this method is relatively low. Therefore, 

though TSB is comparable to WA or SES in terms of accuracy, TSB can still be considered as 

one option for lumpy or intermittent demand. Doszyn (2020) conducted research on SBA, 

Croston, TSB, and SES, he found that TSB method outperforms other methods for all products. 

In case of erratic and smooth items, TSB method yielded the poorest results (Doszyn, 2020). 

Another research modified TSB, and TSB method achieves the best results on MASE and 

RMASE among all comparison methods (Yang et al., 2021). 

NN is a machine learning method and has been proved to perform well in some previous 

studies. Results from Shahwan & Said (2012) assure that when the demand data is more 

sporadic, i.e. have more zero values, then neural network becomes a better forecasting tool.  

This research carried out NN in the most fluctuating SKUs exhibit lumpy pattern. The MAPE 

value of NN is 22.18% which did not show the better performance of NN compared to TSB, 

WA, or SES. But when considering RMSE and volatility, NN outperformed WA, SES, and 

TSB. NN has mean values of 0.69 in RMSE and mean volatility value of 0.743 across all spare 

parts. The volatility of NN is around 0.2 to 0.3 lower than other methods. In addition, when 

focusing on the aggregated amounts, it is noteworthy that the results of NN exhibit the highest 

accuracy and the lowest volatility at an aggregated level (i.e., MAPE equals to 1.8%).  

After balancing the results at an aggregated level and part level, NN did lead to the best 

forecasting results; and for TSB, it has the lowest fluctuation which indicates that adopting 

TSB method may improve volatility to some extent. WA has the highest accuracy at an 

aggregated level, but the volatility is not desirable compared to TSB. Since in Servigistics, it is 

not possible to adopt NN, thus TSB is a potential method for reducing the volatility of 

forecasting. The main aspects Philips focuses on regarding the forecasting are accuracy and 

volatility. As stated before, they would like to know methods that improve accuracy while 



decreasing the fluctuations to some extent. TSB has results that indicate that TSB ranks third 

in accuracy and second in volatility. SES has relatively high accuracy, which is only 0.8% lower 

MAPE than TSB, but it has 0.1 higher volatility compared to TSB. After balancing the effects, 

TSB still stands out and it is meaningful to apply in intermittent demand in Philips system. 

 

8.3 Limitations 

The primary and most significant limitation of this thesis is the model building for the 

demand forecasting. PTC is the third-party IT service company for Philips; thus, the operation 

of Servigistics is unseeable which cause obstacles to the research. The models of forecasting 

and calculation formulas are constructed under documented instructions from SPS team. The 

Servigistics algorithms created by PTC especially for Philips’s demand forecasting are not 

included, this may contribute to the inaccuracies in results compared to forecasts number 

observed in planning platform.  

In addition, this research applied NN in the simplest form, which is a single layer neural 

network. MAPE and volatility are the main measurements to echo with the settings in the 

system. The future research area can adopt multi-layered networks and select more metrics for 

evaluating the performance of models. Furthermore, due to the limited capacity of software, 

only a small subset of parameter values was tested. Expanding the range of values can provide 

more insights into model performance.  

The intransparency of Servigistics operation hampered the research. For example, some 

of the spare parts are classified into different categories when relying on the documented 

definition of demand pattern. Archived forecast mentioned in part research is a potential reason 

for fluctuating forecasts. The requests for the definition and implementation scenarios of 

archived forecast are not answered by PTC team. This serves as another limitation of this thesis. 

 

  



Chapter 9 Suggestions for Philips  
 

This chapter presents the suggestions after experimenting with Philips’s data sets. The 

suggestions are in two aspects: Servigistics algorithm and forecasting methods selection. 

Regarding the Servigistics algorithm, I observed on Servigistics online platform that, 

variables like “Archived Forecast” are used for getting yearly forecasts. This can simplify the 

forecasting process since only the “Archived Forecast” are calculated based on historical 

demands and yearly forecasts are equal to “Archived Forecast” times 12 periods. However, the 

usage of “Archived Forecast” may lead to difficulties explaining the forecasts in each month. 

Moreover, forecasting results from “Archived Forecast” may cause fluctuations in forecasts. 

From my observations, for some spare parts in certain locations, the forecasts may shift from 

using embedded Servigistics forecasting methods to "Archived Forecast" calculations. This 

contributes to some of the volatility in forecasting. The future work can be conducted to reduce 

the fluctuations on such reasons.  

For forecasting methods, Philips is experimenting with TSB in intermittent demand SKUs. 

From results of this research, TSB exhibits relatively high accuracy and low volatility 

compared to SES and IS. Thus, it is worth noting that TSB implementing in intermittent 

demand may lead to better performance of forecasts. WA is another aspect that Philips should 

pay attention to since WA has more stable and accurate forecasts. The calculation of WA is 

easier to implement in Servigistics. Therefore, I suggest that WA can be the second option to 

consider except for TSB when figuring out methods used for intermittent demand. 

 

  



Appendix 1 
 

Research on Individual Part 

 

This section is on research for an individual part, some facts are included in Appendix. 

To better understand Philips' inquiries and the demand forecasting issue, I researched a specific 

spare part with abnormal fluctuations. The part number is 459801352572, and this spare part 

is also indicated in the problematic parts reported by Philips.  

 

Characteristics of Part 459801352572 

Part 459801352572 is the chosen part for investigation, with product price of €15,490. It 

represents the service spare part Detector PX3040, and the warehouse locations are in China 

(see Appendix Table 1). The demand data from January 1, 2021, to April 1, 2024, was extracted, 

with demands rolling up to the first day of each month. A zero in the demand record indicates 

that there may have been demand, but the product was out of stock, preventing any sales. The 

records of demand without zero values are listed in Table 3.2, the months with no records in 

the system means there is no demand during that period. From the demand record, this spare 

part has a max demand of 2 and minimum demand of 1, with most of the time being no demand 

(that is, zero demand).  

Parameters related to CV2 and ADI are presented in Table 3.1. These are calculated and 

queried from database of PTC or copied from the online platform. CV2 and ADI are not 

calculated for certain locations due to insufficient demand history information. According to 

theory, part 459801352572 should be categorized as lumpy demand, but it is shown as 

intermittent since Philips excludes lumpy demand. In addition, this section uses existing 

demand thresholds, CV2 and ADI, for exploring potential reasons and research directions. For 

the experiments of the thesis, CV2 and ADI are manually calculated using the past 40 periods 

historical demands.  

Philips SPS team provided daily forecasts information pulled from PTC system from 

February 28, 2024, and April 12, 2024, to illustrate the volatility of forecasting. Daily forecasts 

information pulled from PTC planning platform is in Figure 3.1, which shows an unstable 



forecasting line. Regarding the forecasting methods of part 459801352572, the algorithms 

select four methods: average, weighted average, single exponential smoothing, and intermittent 

smoothing. The forecasting numbers of Figure 3.1 for this are shown Appendix, which is the 

aggregated number of forecasts of each location.  

After closely examining the forecasts from each location over the period, I have identified 

two potential reasons for the fluctuations: Firstly, it could be attributed to the system algorithm 

within PTC’s planning platform, which may not be accessible to the SPS team. Secondly, 

significant fluctuations in forecasts may be due to changes in forecasting methods. The 

subsequent sections provide a detailed explanation of these two reasons. A preliminary 

experiment is conducted, and results are demonstrated for elaborating the assumptions and 

research directions of the thesis. 

 

Location Part Number SD Mean CV2 ADI 

CN6SU690U 459801352572 0.61 0.28 4.82 4.67 
CN6SU687U 459801352572 0.20 0.04 25 14 
CN6SU688U 459801352572 0.28 0.08 11.30 2 
CN93U632U 459801352572 0.41 0.17 5.82 4 

Appendix Table 1.1: parameters information of part 459801352572. 

 

Location Part Number Unit Cost Location Type Demand Type Quantity Demand Date 

CN6SU690U 459801352572 15490 LDC Local Demand 2 2021-06-01  

CN6SU690U 459801352572 15490 LDC Local Demand 2 2021-09-01  

CN6SU690U 459801352572 15490 LDC Local Demand 1 2021-10-01  

CN6SU690U 459801352572 15490 LDC Local Demand 1 2022-05-01  

CN6SU690U 459801352572 15490 LDC Local Demand 1 2022-10-01  

CN6SU690U 459801352572 15490 LDC Local Demand 1 2023-01-01  

CN6SU687U 459801352572 15490 DC Local Demand 1 2023-02-01  

CN6SU690U 459801352572 15490 LDC Local Demand 2 2023-05-01  

CN6SU688U 459801352572 15490 LDC Local Demand 1 2023-10-01  

CN6SU688U 459801352572 15490 LDC Local Demand 1 2023-11-01  

CN93U632U 459801352572 15490 FSL Local Demand 1 2023-12-01  

Appendix Table 1.2: historical demands of part 459801352572. 

 



 

Appendix Figure 1.1: daily forecasts of part 459801352572 (aggregated). 

 

Assumption: Servigistics algorithm may cause the fluctuation of forecasting. 

Upon careful examination of forecasts from each location, it was observed that in location 

"CN93U632U", the forecasted values were significantly higher than the actual demands 

recorded over the past three years. Specifically, the actual demand from "Location_Part 

Demand" (see Data section) in the past three years has consistently been only 1, which is further 

supported by information obtained from online platforms. However, the forecasts for this 

location are consistently around 2. The variability in forecasting, fluctuating from 2.86 to 2.29 

to 1.71, can partially account for the fluctuations observed.  

After consulting with the SPS team, it has been suggested that this discrepancy may arise 

from the presence of an "archived forecast" setting in the system. In this particular location, 

each month's archived forecast is saved and presumed to be the forecast for the subsequent 12 

periods. Consequently, the forecasting for a given year is calculated by multiplying the archived 

forecast by 12 months. The proposed calculations are outlined in Table 3.3, where "assumed 

forecasts" represent the calculated values under my assumption, while "actual forecasts" are 

the forecasts provided directly by the SPS team. The assumed forecasts under assumption one 

match with the actual forecasts extracted from the system. 

 

Month Archived Forecast Assumed Forecast Actual Forecasts 

February 0.24 2.88 2.88 
March 0.19 2.28 2.28 
April 0.14 1.71 1.71 

Appendix Table 1.3: test assumption.  
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Summary of Individual Part Research 

Part 459801352572 is investigated, and two assumptions are examined. The results 

confirm that both assumptions are valid. The Servigistics algorithm can cause significant 

forecast fluctuations, partly due to the use of "archived forecasts". Some calculations do not 

follow Servigistics forecasting methodology and instead rely on archived forecasts. Appendix 

Table 1.3 supports the first assumption. Due to the intransparency of Servigistics problem, 

further research can be conducted to looks into the effectiveness of "archived forecasts". 
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Appendix 2 Table 1: Bestfit Rules 

 

 

 

 



 

Appendix 2 Table 2: Aggregated forecasts from system during February 28 and April 12 on part level. 

 

Part Number Date Total
459801352572 28/02/2024 8.63
459801352572 29/02/2024 8.63
459801352572 01/03/2024 6.45
459801352572 04/03/2024 6.95
459801352572 05/03/2024 6.95
459801352572 07/03/2024 5.63
459801352572 08/03/2024 6.95
459801352572 11/03/2024 8
459801352572 12/03/2024 5.71
459801352572 13/03/2024 8
459801352572 14/03/2024 8
459801352572 15/03/2024 8
459801352572 18/03/2024 5.13
459801352572 19/03/2024 7.42
459801352572 20/03/2024 5.13
459801352572 22/03/2024 5.13
459801352572 25/03/2024 5.13
459801352572 26/03/2024 6.45
459801352572 27/03/2024 7.42
459801352572 28/03/2024 5.13
459801352572 29/03/2024 7.42
459801352572 01/04/2024 5.71
459801352572 02/04/2024 5.71
459801352572 03/04/2024 5.71
459801352572 04/04/2024 6.58
459801352572 05/04/2024 4.87
459801352572 08/04/2024 4.69
459801352572 09/04/2024 6.05
459801352572 10/04/2024 6.05
459801352572 11/04/2024 6.05
459801352572 12/04/2024 4.69



 
Appendix 2 Table 3: actual demand for past 3 years. 

 
Appendix 2 Table 4: Daily forecasts in location CN6SU687U. 

Location Part.Number Unit.Cost Quantity Demand.Extended.CostDemand.Date Quantity.Filled

CN6SU687U 459801352572 15490 0 0 2021-06-01 00:00:00.0

CN6SU688U 459801352572 15490 0 0 2021-06-01 00:00:00.0

CN6SU690U 459801352572 15490 2 0 2021-06-01 00:00:00.0

CN6SU687U 459801352572 15490 0 0 2021-09-01 00:00:00.0

CN6SU688U 459801352572 15490 0 0 2021-09-01 00:00:00.0

CN6SU690U 459801352572 15490 2 0 2021-09-01 00:00:00.0

CN6SU688U 459801352572 15490 0 0 2021-10-01 00:00:00.0

CN6SU690U 459801352572 15490 1 0 2021-10-01 00:00:00.0

CN6SU688U 459801352572 15490 0 0 2022-05-01 00:00:00.0

CN6SU690U 459801352572 15490 1 0 2022-05-01 00:00:00.0

CN6SU690U 459801352572 15490 1 0 2022-10-01 00:00:00.0

CN6SU687U 459801352572 15490 0 0 2023-01-01 00:00:00.0

CN6SU690U 459801352572 15490 1 0 2023-01-01 00:00:00.0

CN6SU687U 459801352572 15490 1 0 2023-02-01 00:00:00.0

CN6SU690U 459801352572 15490 0 0 2023-02-01 00:00:00.0

CN6SU687U 459801352572 15490 0 0 2023-05-01 00:00:00.0

CN6SU690U 459801352572 15490 2 0 2023-05-01 00:00:00.0

CN6SU688U 459801352572 15490 1 15490 2023-10-01 00:00:00.0

CN6SU688U 459801352572 15490 1 15490 2023-11-01 00:00:00.0

CN93U632U 459801352572 15490 1 15490 2023-12-01 00:00:00.0

CN6SU688U 459801352572 15490 0 0 2023-12-01 00:00:00.0

Part Number Location Name Forecast Method Total Date

459801352572 CN6SU687U Single Exp Smoothing 0.34 2024-02-28 00:00:00

459801352572 CN6SU687U Single Exp Smoothing 0.34 2024-02-29 00:00:00

459801352572 CN6SU687U Weighted Average 1.08 2024-03-11 00:00:00

459801352572 CN6SU687U Weighted Average 1.08 2024-03-12 00:00:00

459801352572 CN6SU687U Weighted Average 1.08 2024-03-13 00:00:00

459801352572 CN6SU687U Weighted Average 1.08 2024-03-14 00:00:00

459801352572 CN6SU687U Weighted Average 1.08 2024-03-15 00:00:00

459801352572 CN6SU687U Weighted Average 1 2024-04-01 00:00:00

459801352572 CN6SU687U Weighted Average 1 2024-04-02 00:00:00

459801352572 CN6SU687U Weighted Average 1 2024-04-03 00:00:00

459801352572 CN6SU687U Weighted Average 1 2024-04-04 00:00:00

459801352572 CN6SU687U Weighted Average 1 2024-04-05 00:00:00



 

Appendix 2 Table 5: Daily forecasts in location CN6SU688U. 

Part Number Location Name Forecast Method Total Date

459801352572 CN6SU688U Single Exp Smoothing 2.93 2024-02-28 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.93 2024-02-29 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.66 2024-03-01 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.66 2024-03-04 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.66 2024-03-05 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-07 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.66 2024-03-08 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-11 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-12 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-13 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-14 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-15 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-18 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-19 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-20 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-22 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-25 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.66 2024-03-26 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-27 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-28 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.63 2024-03-29 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.5 2024-04-01 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.5 2024-04-02 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 1.5 2024-04-03 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.37 2024-04-04 00:00:00

459801352572 CN6SU688U Single Exp Smoothing 2.37 2024-04-05 00:00:00

459801352572 CN6SU688U Intermittence Smoothing 1.5 2024-04-08 00:00:00

459801352572 CN6SU688U Intermittence Smoothing 3.43 2024-04-09 00:00:00

459801352572 CN6SU688U Intermittence Smoothing 3.43 2024-04-10 00:00:00

459801352572 CN6SU688U Intermittence Smoothing 3.43 2024-04-11 00:00:00

459801352572 CN6SU688U Intermittence Smoothing 2.07 2024-04-12 00:00:00



 

Appendix 2 Table 6: Daily forecasts in location CN6SU690U. 

Part Number Location Name Forecast Method Total Date

459801352572 CN6SU690U Average 2.5 2024-02-28 00:00:00

459801352572 CN6SU690U Average 2.5 2024-02-29 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-01 00:00:00

459801352572 CN6SU690U Average 3 2024-03-04 00:00:00

459801352572 CN6SU690U Average 3 2024-03-05 00:00:00

459801352572 CN6SU690U Average 3 2024-03-07 00:00:00

459801352572 CN6SU690U Average 3 2024-03-08 00:00:00

459801352572 CN6SU690U Average 2 2024-03-11 00:00:00

459801352572 CN6SU690U Average 2 2024-03-12 00:00:00

459801352572 CN6SU690U Average 2 2024-03-13 00:00:00

459801352572 CN6SU690U Average 2 2024-03-14 00:00:00

459801352572 CN6SU690U Average 2 2024-03-15 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-18 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-19 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-20 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-22 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-25 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-26 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-27 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-28 00:00:00

459801352572 CN6SU690U Average 2.5 2024-03-29 00:00:00

459801352572 CN6SU690U Average 1.5 2024-04-01 00:00:00

459801352572 CN6SU690U Average 1.5 2024-04-02 00:00:00

459801352572 CN6SU690U Average 1.5 2024-04-03 00:00:00

459801352572 CN6SU690U Average 1.5 2024-04-04 00:00:00

459801352572 CN6SU690U Average 1.5 2024-04-05 00:00:00

459801352572 CN6SU690U Single Exp Smoothing 0.91 2024-04-08 00:00:00

459801352572 CN6SU690U Single Exp Smoothing 0.91 2024-04-09 00:00:00

459801352572 CN6SU690U Single Exp Smoothing 0.91 2024-04-10 00:00:00

459801352572 CN6SU690U Single Exp Smoothing 0.91 2024-04-11 00:00:00

459801352572 CN6SU690U Single Exp Smoothing 0.91 2024-04-12 00:00:00



 
Appendix 2 Table 7: Daily forecasts in location CN93U632U. 

 

 

 
Appendix 2 Table 8: Demand Roll-up, from Philips SPM trainings by PTC. 

 

Part Number Location Name Forecast Method Total Date

459801352572 CN93U632U Weighted Average 2.86 2024-02-28 00:00:00

459801352572 CN93U632U Weighted Average 2.86 2024-02-29 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-01 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-04 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-05 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-08 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-11 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-13 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-14 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-15 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-19 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-26 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-27 00:00:00

459801352572 CN93U632U Weighted Average 2.29 2024-03-29 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-01 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-02 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-03 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-04 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-08 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-09 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-10 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-11 00:00:00

459801352572 CN93U632U Weighted Average 1.71 2024-04-12 00:00:00



References 
 

Altay, N., & Litteral, L. A. (2011). Service Parts Management Demand Forecasting and 

inventory control. Springer.  

Babai, M. Z., Dallery, Y., Boubaker, S., & Kalai, R. (2019). A new method to forecast 

intermittent demand in the presence of inventory obsolescence. International Journal 

of Production Economics, 209, 30–41. https://doi.org/10.1016/j.ijpe.2018.01.026 

Bookbinder, J. H., & Lordahl, A. E. (1989). Estimation of inventory re-order levels using the 

bootstrap statistical procedure. IIE Transactions, 21(4), 302–312. 

https://doi.org/10.1080/07408178908966236 

Cheng, C.-Y., Chiang, K.-L., & Chen, M.-Y. (2016). Intermittent demand forecasting in a 

tertiary pediatric intensive care unit. Journal of Medical Systems, 40(10), 217. 

https://doi.org/10.1007/s10916-016-0571-9 

Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of the 

Operational Research Society, 23(3), 289–303. https://doi.org/10.1057/jors.1972.50 

Deng, W., Lyu, G., Shi, Y., & Wang, W. (2017, September). Electricity consumption 

prediction using XGBoost based on discrete wavelet transform. In 2nd International 

Conference on Artificial Intelligence and Engineering Applications (pp. 716–729). 

Guilin, China. 

Doszyn, M. (2020). Accuracy of intermittent demand forecasting systems in the enterprise. 

EUROPEAN RESEARCH STUDIES JOURNAL, XXIII(Issue 4), 912–930. 

https://doi.org/10.35808/ersj/1723 

Durlinger, P., & Paul, I. (2012). Inventory and holding costs. Durlinger Consultant. 

Gilliland, M., 2002. Is forecasting a waste of time? Supply Chain Management Review 6 (4), 

16–23.  

Global leader in product lifecycle management software. PTC. (2024, April 24). 

https://www.ptc.com/en  

Ghobbar, A. A. (2004). Forecasting intermittent demand for aircraft spare parts: A 

comparative evaluation of methods. Journal of Aircraft, 41(3), 665–673. 

https://doi.org/10.2514/1.851 

Gutierrez, R. S., Solis, A. O., & Mukhopadhyay, S. (2008). Lumpy demand forecasting using 

neural networks. International Journal of Production Economics, 111(2), 409–420. 

https://doi.org/10.1016/j.ijpe.2007.01.007 

Hoffmann, M. A., Lasch, R., & Meinig, J. (2022). Forecasting irregular demand using single 

hidden layer neural networks (6th ed.). Bundesvereinigung Logistik (BVL) e.V. 

https://doi.org/10.23773/2022_6 



Hua, Z., & Zhang, B. (2006). A hybrid support vector machines and logistic regression 

approach for forecasting intermittent demand of spare parts. Applied Mathematics and 

Computation, 181(2), 1035–1048. https://doi.org/10.1016/j.amc.2005.11.157 

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C., Silverman, R., & Wu, A. Y. 

(2000). The analysis of a simple k -means clustering algorithm. Proceedings of the 

Sixteenth Annual Symposium on Computational Geometry, 100–109. 

https://doi.org/10.1145/336154.336189 

Kiefer, D., Grimm, F., Bauer, M., & Van, D. (2021). Demand forecasting intermittent and 

lumpy time series: Comparing statistical, machine learning and deep learning 

methods. http://hdl.handle.net/10125/70784 

Kostenko, A. V., & Hyndman, R. J. (2006). A note on the categorization of demand patterns. 

Journal of the Operational Research Society, 57(10), 1256–1257. 

https://doi.org/10.1057/palgrave.jors.2602211 

Kourentzes, N. (2014). On intermittent demand model optimisation and selection. 

International Journal of Production Economics, 156, 180–190. 

https://doi.org/10.1016/j.ijpe.2014.06.007 

Lengu, D., Syntetos, A. A., & Babai, M. Z. (2014). Spare parts management: Linking 

distributional assumptions to demand classification. European Journal of Operational 

Research, 235(3), 624–635. https://doi.org/10.1016/j.ejor.2013.12.043 

Lolli, F., Gamberini, R., Regattieri, A., Balugani, E., Gatos, T., & Gucci, S. (2017). Single-

hidden layer neural networks for forecasting intermittent demand. International 

Journal of Production Economics, 183, 116–128. 

https://doi.org/10.1016/j.ijpe.2016.10.021 

Martin, D., Spitzer, P., & Kühl, N. (2020). A new metric for lumpy and intermittent demand 

forecasts: Stock-keeping-oriented prediction error costs. Hawaii International 

Conference on System Sciences. https://doi.org/10.24251/HICSS.2020.121 

Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand forecasting in the fashion 

industry: A review. International Journal of Engineering Business Management, 5, 

37. https://doi.org/10.5772/56840 

Neu, Z., Hicks, B., & Gopsill, J. (2024). Operating minimally intelligent agent-based 

manufacturing systems across the Average demand Interval – coefficient of variation 

(Adi-cv) demand state space. Production & Manufacturing Research, 12(1), 2323479. 

https://doi.org/10.1080/21693277.2024.2323479 

Pinçe, Ç., Turrini, L., & Meissner, J. (2021). Intermittent demand forecasting for spare parts: 

A Critical review. Omega, 105, 102513. https://doi.org/10.1016/j.omega.2021.102513 

Porras, E., & Dekker, R. (2008). An inventory control system for spare parts at a refinery: An 

empirical comparison of different re-order point methods. European Journal of 

Operational Research, 184(1), 101–132. https://doi.org/10.1016/j.ejor.2006.11.008 



PTC help center. (n.d.). https://trne-

prod.ptcmanaged.com/servigistics_help/en/index.html#page/PTC_Servigistics_Help_C

enter/glossary/intermittence_smoothing_forecast_method.html  

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of 

cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. 

https://doi.org/10.1016/0377-0427(87)90125-7 

Sapankevych, N., & Sankar, R. (2009). Time series prediction using support vector machines: 

A survey. IEEE Computational Intelligence Magazine, 4(2), 24–38. 

https://doi.org/10.1109/MCI.2009.932254 

Shahwan, T., & Said, R. (2012). A comparison of bayesian methods and artificial neural 

networks for forecasting chaotic financial time series. Journal of Statistics 

Applications & Probability, 1(2), 89–100. https://doi.org/10.12785/jsap/010202 

Snyder, R. (2002). Forecasting sales of slow and fast moving inventories. European Journal 

of Operational Research, 140(3), 684–699. https://doi.org/10.1016/S0377-

2217(01)00231-4 

Syntetos, A. A., & Boylan, J. E. (2001). On the bias of intermittent demand estimates. 

International Journal of Production Economics, 71(1–3), 457–466. 

https://doi.org/10.1016/S0925-5273(00)00143-2 

Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand 

patterns. Journal of the Operational Research Society, 56(5), 495–503. 

https://doi.org/10.1057/palgrave.jors.2601841 

Syntetos, A. A., Zied Babai, M., & Gardner, E. S. (2015). Forecasting intermittent inventory 

demands: Simple parametric methods vs. bootstrapping. Journal of Business 

Research, 68(8), 1746–1752. https://doi.org/10.1016/j.jbusres.2015.03.034 

Teunter, R. H., Syntetos, A. A., & Zied Babai, M. (2011). Intermittent demand: Linking 

forecasting to inventory obsolescence. European Journal of Operational Research, 

214(3), 606–615. https://doi.org/10.1016/j.ejor.2011.05.018 

Van Wingerden, E., Basten, R. J. I., Dekker, R., & Rustenburg, W. D. (2014). More grip on 

inventory control through improved forecasting: A comparative study at three 

companies. International Journal of Production Economics, 157, 220–237. 

https://doi.org/10.1016/j.ijpe.2014.08.018 

Willemain, T. R., Smart, C. N., & Schwarz, H. F. (2004). A new approach to forecasting 

intermittent demand for service parts inventories. International Journal of 

Forecasting, 20(3), 375–387. https://doi.org/10.1016/S0169-2070(03)00013-X 

Willemain, T. R., Smart, C. N., Shockor, J. H., & DeSautels, P. A. (1994). Forecasting 

intermittent demand in manufacturing: A comparative evaluation of Croston’s 

method. International Journal of Forecasting, 10(4), 529–538. 

https://doi.org/10.1016/0169-2070(94)90021-3 



Williams, T. M. (1984). Stock control with sporadic and slow-moving demand. Journal of the 

Operational Research Society, 35(10), 939–948. https://doi.org/10.1057/jors.1984.185 

Wu, J. (2012). Advances in K-means clustering: A data mining thinking. Springer. 

Yang, Y., Ding, C., Lee, S., Yu, L., & Ma, F. (2021). A modified Teunter-Syntetos-Babai 

method for intermittent demand forecasting. Journal of Management Science and 

Engineering, 6(1), 53–63. https://doi.org/10.1016/j.jmse.2021.02.008 

Zied Babai, M., Syntetos, A., & Teunter, R. (2014). Intermittent demand forecasting: An 

empirical study on accuracy and the risk of obsolescence. International Journal of 

Production Economics, 157, 212–219. https://doi.org/10.1016/j.ijpe.2014.08.019 

 


