Demand Forecasting: Investigating Effects of TSB and Neural
Networks in Philips’s Demands and an Experiment on the
Demand Category’s Threshold Change.

By Qinyu ZHANG
Student 641309

Supervisor: Prof. dr. ir. R. Dekker

Second assessor: dr. V. Avagyan

Erasmus School of Economics
Erasmus University Rotterdam

Master Thesis for programme: Economics and Business

The views stated in this thesis are those of the author and not necessarily
those of the supervisor, second assessor, Erasmus School of Economics

or Erasmus University Rotterdam.

Final version: August 2024



Chapter 1 Introduction 5

1.1 Introduction 5
1.2 Spare Parts Forecasting and its Relation to Marketing 7
Chapter 2 Background 8
2.1 General Background 8
2.2 Demand Classification 9
2.3 Forecast Methods and Metrics 10
2.4 Forecasting Procedure with Parameters in Servigistics 11
2.5 Bestfit 12
Chapter 3 Literature Review 13
3.1 Parametric Approaches 13
3.2 Non-parametric methods 15
3.3 Forecast improvement strategies 16
Chapter 4 Problem Statement 18

4.1 Research Question 1: What potential new ADI can be proposed to accommodate and optimize the

demand categorization in Philips? 18

4.2 Research Question 2: Do NN (Neural Networks) and TSB (Teunter, Syntetos and Babai)

outperform the existing methods in the Philips context? 19
Chapter 5 Data Description 21
5.1 Original data sets 21
5.2 Processing Data Sets 22
5.3 Data Sets for Experiments 25
Chapter 6 Methodology 29
6.1 Research Design 29
6.2 Forecasting Methods 32
6.3 Selected Performance Measurements 35

Chapter 7 Results 37



7.1 Experiment one: Threshold Experiment
7.2 Experiment two: the performances of TSB and NN
Chapter 8 Discussion and Limitations
Chapter 9 Suggestions for Philips
Appendix 1
Research on Individual Part
Appendix 2

References

37

41

46

50

51

51

55

61



Abstract

This thesis completed two tasks: the first one is proposing a new demand threshold to
accommodate the need of Philips’s future experiments; the second task includes examining five
forecasting methods and comparing their performances and effectiveness. The potential ADI
threshold for optimizing demand categories is proposed using statistical counts and machine
learning methods. Among the forecasting methods, the weighted average shows superior
performance in both accuracy and volatility. TSB, a focus of Philips's supply chain planning,
reduces volatility but has relatively low-accuracy forecasts compared to the weighted average
and single exponential smoothing. The NN model indicates the lowest volatility and relatively
high accuracy compared to the TSB and weighted average. Finally, suggestions for Philips are

brought up for consideration and further research.



Chapter 1 Introduction

1.1 Introduction

Service spare parts are essential in keeping machines or equipment running, and the
management of service spare parts is critical for maintaining efficient operations. As efficient
inventory holding can reduce downtime and holding costs, companies are seeking ways of
accurately predicting demand. Inventory holding costs can range from 5 to 45 percent of the
cost price of the inventory per year, with an often-used average of 25 percent (Durlinger and
Paul, 2012). Koninklijke Philips N.V. (hereafter Philips) is a healthcare technology company
improving people's health and well-being through meaningful innovation (inner files, Philips
Mission, 2024). Philips emphasizes the resilience of its supplier network for critical parts and
prioritizes risk mitigation throughout the supply and demand process. Forecasting demands

stands out as a crucial step in minimizing risks and enhancing the customer experience.

With more attention paid to forecasting accuracy, Philips successfully improved the
accuracy of forecasts. However, the volatility of forecasts has not received as much focus, but
it comes back to the spotlight when they find high fluctuations in forecasts. The volatility of
forecasts refers to the fluctuations of daily or monthly forecasts monitored by planners in SPS
team. Service Part Supply (SPS) team is the demand planning team responsible for meeting the
requests for service spare parts across the globe. High volatility will have several inefficiencies,
including increased setup times and suboptimal utilization of manufacturing capacities. In
addition, the SPS team is confused with the results that came from the system and finds it
difficult to provide accurate explanations and maintain stability. At a higher level, such

unpredictability can increase inventory holding costs and strain supplier relationships.

Furthermore, the SPS team has raised concerns that the current thresholds for categorizing
demands may not be suitable for spare parts that have intermittent patterns. They would like to
change the demand threshold ADI (Average Demand Interval) to include more spare parts in
erratic and smooth categories. This is due to the recent experiments conducted by them that
they applied traditional forecasting methods (i.e., weighted average, single exponential
smoothing, etc) and TSB (Teunter, Syntetos and Babai) in all demand categories. But in the
future, they will apply TSB only to intermittent demand and apply traditional methods to

smooth and erratic demand. Thus, modifying these thresholds can optimize demand



classification, which will improve method selection and forecasting results. Therefore, a
tailored experiment is proposed and conducted to explore potential threshold adjustments

within Philips' data sets.
The main research questions of the research are formulated after discussing with SPS team:

1. What potential new ADI (Average Demand Interval) can be proposed to accommodate
and optimize the demand categorization are Philips?

2. Do Neural Networks (NN) and TSB (Teunter, Syntetos and Babai) outperform the

existing methods in lumpy pattern under the Philips context?

Forecasting lumpy demand and intermittent demand is challenging due to the nature of
their demand patterns. Therefore, it is vital to adopt suitable forecasting methods and accuracy
measurements for these two demand categories. However, within Philips’s Supply Chain
Management (SPM) system, the lumpy category is not identified, and the methods used for
intermittent are used also for lumpy demands. Technically, forecasting methods should be
tailored to accommodate the unique features of intermittent and lumpy demand patterns. For
instance, Croston’s method is more suitable for managing intermittent demand due to its ability
to separately forecast the demand size and interval; lumpy demand may benefit from
bootstrapping techniques or advanced methods such as machine learning models (Kiefer et al.,
2021). Integrating these distinct demand patterns and adopting the same methods for these two
categories can introduce significant forecasting volatilities. Thus, in this thesis, I address this
issue and seek to determine whether specific forecasting methods designed for lumpy demands
are effective for parts categorized as intermittent but exhibiting lumpy demand patterns.
Methods from statistics, machine learning and deep learning have been used to predict such

demand patterns (Kiefer et al., 2021).

The techniques of forecasting are essential for managing inventory holding and
manufacturing plans. With the improvement of artificial intelligence, the application of
machine learning models in the supply chain area for Philips can be useful for future demands
forecasting. This thesis tests the effect of single-layer Neural Networks (NN). The Teunter,
Syntetos, and Babai (TSB) method is another time-series model within the SPM tool, but it has
not been considered and utilized so far. However, during the recent experiment conducted by
Philips, after allowing the system to choose TSB, 97% of spare parts switched to choosing TSB
as best method. In this situation, TSB is another important method to be tested with. This thesis



compared the performance of these methods against the existing forecasting techniques used
by Philips. The main objective is to determine whether TSB and NN offer superior predictive
accuracy in handling Philips' supply chain data. These comparisons are grounded using both

the robustness and accuracy of demand forecasting within the organization.

The structure of the thesis is as follows: Chapter 2 introduces backgrounds of the necessary
facts for experiments, Chapter 3 reviews the literature, details of research questions and
research on an individual spare part are elaborated in Chapter 4. The first research question is
explored using traditional models, including TSB on all demand categories. The second
research question adds machine learning in, only demands exhibiting lumpy pattern are
selected and examined with traditional and NN methods. Steps for processing data sets and the
final data sets used for experiments are demonstrated in Chapter 5. Methodologies of the two
experiments and the outcomes can be found in Chapter 6 and Chapter 7. Chapter 8 includes the
discussion of results, and the suggestions and insights for Philips are in Chapter 9. The supply
chain of spare parts can be extremely complex, and in this thesis, the research on forecasting
only considers the local demands gathered from locations in each business unit, without parts

in reverse logistics or new buy decisions.

1.2 Spare Parts Forecasting and its Relation to Marketing

The SPS team highlights the resilience of its supplier network and the importance of quick
service provision. As spare parts and service provision are significant parts of Philips business,
delays or insufficiencies in spare parts may lead to a decrease in sales. In addition, the
unavailability of spare parts may either result in high emergency costs or increase downtime
waiting times for parts. Forecasting plays an important role in quantifying the demands from
locations and providing the proper products and services on time. Thus, accurate forecasting
has a close relation with the sales and marketing strategies of Philips. This research would

assist in promoting the forecasting performance and future business development of Philips.



Chapter 2 Background

In this chapter, the background of the Philips SPS team is briefly introduced. Demand
classification and forecasting methods are generally described for better understanding the
current situation. Supplementary information such as forecasting procedures in Servigistics and
Bestfit is provided. Other metrics Servigistics has but are not considered in this thesis are

presented for reference.

2.1 General Background

Philips Service Spare Part department takes on the responsibility of providing the right
healthcare equipment’s spare parts to patients, clinicians, and engineers. According to the inner
files, Global Planning Team Mission: the goal of global planning is to achieve the targeted
material availability performance for service parts in support of the customer Fill Rate targets
by optimizing inventory levels and minimizing excess and obsolescence costs through the
entire lifecycle of a service part. The SPS team (Service Parts Supply Chain team) is dedicated
to enhancing customer fill rates and optimizing the service part lifecycle process. The process
of planning plays important roles in supplier, warehouse, and customer service (Global
Planning Team Mission, 2024). The SPS planning team uses Service Part Management (SPM)
tool, named Servigistics, which is a planning tool provided by PTC. PTC (2024) is a third-party
computer software and services company that owns the Servigistics product, which is the
leading supply chain optimization software. Philips acquired the Servigistics tool and utilized
it as the main planning and management tool for service spare parts. The functionalities of
Servigistics include autonomous planning, simulating and predicting model uncertainties,
increasing service levels through purpose-built, Al-powered optimization capabilities, etc. The
SPS Improvement team is part of the SPS team, and its main goals are to support business
development and market understanding through adapting new requirements into the Global
Planning and Supply processes. During the thesis internship, I worked with the SPS
Improvement team to help figure out reasons for forecasting volatility and improvements for

future forecasting.


https://www.ptc.com/en

2.2 Demand Classification

Demand classification involves analyzing demand patterns to enhance forecasting
accuracy. Prior studies identified demand categorization as a key strategy for improving
forecasting effectiveness. There are four categories of demand: erratic, smoothing, intermittent,
and lumpy. Erratic demand describes highly unpredictable fluctuations in demand,
characterized by irregular surges and drops devoid of discernible trends or patterns. Smoothing
demand refers to a relatively stable and constant fluctuation over a given period, and it shows
a more predictable and steady flow of demand requests. Intermittent and lumpy, however,
exhibit irregularity of customer orders. Intermittent demand often with periods of no demand
interspersed with random spikes and lumpy demand refers to a demand pattern with infrequent

but significant spikes.

To determine the spare parts’ pattern, two coefficients are adopted to define categories:
the Squared Coefficient of Variation (CV?) and the Average Demand Interval (ADI). The ADI-
CV demand state space originated from spare parts supply chain research and has been used
by the aerospace, steel and retail industries (Nenni et al., 2013; Neu et al., 2024). ADI measures
the average number of time periods between two successive requests. CV represents the
standard deviation of period requirements divided by the average period. Philips uses squared
CV (CV?) as the threshold measuring the variation of demands. The demands with high
variation in interval between two demands but low variation in demand quantity are classified
as intermittent demand. The demand with high variation and large quantity is lumpy. Demands
with regular quantity and time interval are smooth demands; the erratic demand feature regular
occurrences in time with high quantity variations. Philips sets CV? equals to 0.49 and ADI
equals to 1.32 in Servigistics system for classifying each spare part to categories for further
deployment of the model. As mentioned earlier, Philips excludes lumpy demand and integrates
it into intermittent, therefore, the demand patterns with ADI higher than 1.32 are treated as
intermittent. Figure 2.1 shows the demand category according to Syntetos et al (2005) and the
demand category in Philips planning system. After applying the CV? and ADI thresholds,
97.6% of spare parts fall into intermittent demand in the system, 1.4% of them are erratic, and
0.9% of them are smooth. Most spare parts show intermittent demand pattern, attributed to the
system's policy of excluding lumpy demand. Hence, when the demand category displays

"intermittent" in the system, the demand pattern may be intermittent or lumpy.
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Figure 2.1: Demand category according to Syntetos et al (2005) (left);

Demands into categories in Philips (SPM training, 2023) (right).

2.3 Forecast Methods and Metrics

The main forecast methods in Servigistics are average, weighted average, moving
average, single exponential smoothing, double exponential smoothing, intermittence
smoothing, and winters multiplicative. In the recent experiment conducted by SPS team, the
statistics show that 36.6% of spare parts at location level choose intermittence smoothing,
28.5% of them choose weighted average, 24.9% of them choose single exponential smoothing.
These three methods can be considered as primary forecasting methods in the system. The
detailed formulas and explanation for the methods are included in the "Methodology" section.
Winters multiplicative is applicable to demand patterns that exhibit level, trend, and
seasonality. This research excluded this method, as it is under investigation by the SPS team

and applies to only a small subset (that is, 0.2%) of spare parts.

Forecast metrics are essential and are derived from the data pulled from the platform.
Apart from MAPE, metrics such as tracking signal and bias are also monitored. Tracking signal
is used to monitor the accuracy of a forecast by detecting any bias in the forecasting process.
It is calculated by comparing the cumulative sum of forecast errors to the mean absolute
deviation (MAD) over a given period. Ideally, while ideally the value of Tracking Signal should
be zero, a range of 0.5 to 0.5 is used for analytical review (inner file, Philips Forecast version
13, 2024). The primary metric in the system is the tracking signal, which is calculated using
the following formula:

(RSFE /Count)

Tracking Signal = WMAD

RSFE: running sum of forecast errors.



Count: forecast parameter ‘# of Slices for Forecast Error Calculation’

MAD: the average of all the forecast errors, disregarding whether the deviations are positive or negative.

Another forecast metric is bias which represents tendency for a forecast to be consistently
higher or lower than the demand observations. A forecast bias can be low but with a high error.
For example, a forecast which is half of the time 50% higher and 50% lower than the observed
demand has no bias; while a forecast which is on average 20% lower than the actual value has
20% error and 20% bias (inner file, Philips Forecast version 13, 2024). For service spare parts,
when the demand is intermittent, the bias can be high even though the error may be low. The
forecast information provided by the SPS team includes all relevant metrics. But in this thesis,
only Mean Absolute Percentage Error (MAPE) is considered for evaluating performance. The

formula of MAPE is presented in Methodology chapter.

2.4 Forecasting Procedure with Parameters in Servigistics

The Servigistics's forecasting relies on historical demand data, with method selection
primarily determined by calculated MAPE. The number of historical slices represents past
actual demand months; and the number of horizon slices which means forward forecasting
months. Typically, forecasting is based on 24 or 12 historical slices (including the current
forecasting month) and predicts demand for the next 12 months (i.e., the upcoming year). For
simplicity, this research uses historical demands from previous 24 time periods (including the

current forecasting month) for all spare parts.

Demands are categorized into three types: erratic, smoothing, and intermittent. All built-
in methods are evaluated, and the one with the lowest MAPE is considered the final forecasting
method. It is important to note that Servigistic TSB has not been implemented in Servigistics,
therefore, the system only chooses traditional methods except for Servigistic TSB. Only local
demand streams are considered, including all location types (i.e., LDC, DC, FSL). Local
Demand Center (LDC) is the geographic area where customer demand for products or services
is concentrated. Distribution Center (DC) is a centralized warehouse stores and distributes the
products. Forward Stocking Location (FSL) is the warehouse close to the end users. Smoothing
parameters like alpha and beta are selected by system algorithm, and the values are around 0.01

to 0.3. Servigistics selects the method with the lowest MAPE, resulting in different methods



being chosen for the same spare part across different locations during daily data monitoring.
Typically, forecasting for the upcoming year is calculated in each day or month and adjusts
when additional demands are incorporated during the forecasting month. The SPS team regards

the forecast on the last day of each month as the forecasts of the year in that month.

This thesis mimics the forecasting procedures of Servigistics: I used the past 24 months’
historical demands including the current forecasting month. This data was used to make
forecasts for the upcoming year (i.e., 12 months), starting from next month. For each spare part
in the selected data, the forecasting was conducted each month from January 1, 2023, to
December 1, 2023. Finally, I obtained 12 months of forecasting information for each spare part,

each month’s forecast covering a one-year period.

2.5 Bestfit

Apart from MAPE, Philips set Bestfit when selecting forecasting method and it is auto-
approved in Servigistics. Bestfit uses rules to determine whether to replace, eliminate, or keep
forecast methods in place (inner file, GPS Forecast Training, 2024). The forecast method that
results in the smallest forecast error (MAPE) over the specified period is designated by the
application as the Bestfit forecast method (inner file, GPS Forecast Training, 2024). The details
of Bestfit rules are listed in Appendix Table 1. In inner GPS Forecast Training file (2024), it

introduces Bestfit rules: if Best Fit Analysis encounters a hard rule, the application does not
generate a forecast; if Bestfit encounters a soft rule, the application generates a forecast and
MAPE, MAD (Mean Absolute Deviation), and RMSE (Root MeanSquare Error); if no rules
are encountered, the application generates a normal forecast and forecast errors. This thesis
considers only MAPE and disregards the Bestfit effect due to the intransparency of the

Servigistics algorithm.



Chapter 3 Literature Review

The literature review of spare parts demand forecasting can be divided into three sections:
parametric approaches, non-parametric approaches, and forecast improvement strategies. The
framework for this substantive literature review is adapted from Pinge et al. (2021). A
comprehensive review of several time-series methods is in the following sections. Previous
studies related to non-parametric techniques are also paid attention to. Past research related to

neural networks is also reviewed in this chapter.

3.1 Parametric Approaches

3.1.1 Simple exponential smoothing (SES)

Exponential smoothing is a method for smoothing discrete time series to forecast the
immediate future. Although SES is widely used to forecast intermittent demand, the method
has important limitations (Syntetos et al., 2015). In the spare parts practice, the SES method
can produce high bias, since the algorithm weights recent data more heavily. However, in
intermittent demand situation, the demands vary in each period, which leads to biased forecasts.
Croston (1972) was the first to notice this, and he noted that the exponential smoothing of

intermittent demands almost always produces inappropriate stock levels.

3.1.2 Croston’s method and modifications

In an attempt to compensate for problems addressed in the SES method, the forecasts two
components of time series start from Croston (Syntetos et al., 2015). Intermittent demand
appears at random, with many time periods having no demand. Croston’s method relies on
separate exponentially smoothed estimates of the interval between consecutive demands and
the size of the demands (Zied Babai et al., 2014). If there is no demand during one period, the
method will increment the counts of time; the mean and corresponding variance of demand per
period is calculated for estimating the intermittent future demands. In this way, both time
interval and demand size are forecast individually using SES, resulting in more accurate and

smoother estimates. The variance of expected value of demand is lower than that of



conventional exponential smoothing, but when demand occurs every time interval, the variance
from the Croston method will be identical to that of conventional exponential smoothing
(Willemain et al., 1994). Croston’s method provides a relatively accurate estimation when
several assumptions are held successive demand sizes are identical and independently
distributed, intervals and sizes are independent of each other, etc. (Willemain et al., 1994).
However, the real situation can be complicated, and studies have shown that positive bias lies
in the demand per time unit (Syntetos & Boylan, 2001). In addition, obsolescence becomes an
i1ssue as the demands of some items decrease over time, but this is not considered in Croston’s
method. Modifications are made and demonstrate improvements, such as models built by
Syntetos and Boylan (Syntetos & Boylan, 2001), Snyder (2002), Teunter-Syntetos-Babai
Method (TSB).

Syntetos and Boylan (2001) found Croston’s method was biased in 2001 and proposed an
improved method in 2005 based on Croston’s version. They found the overestimated forecast
demand has a positive correlation to the smoothing factor for the demand interval. The Syntetos
Boylan approximation (SBA) added a bias correction term (1 — o/2) with a smoothing constant
a; and this bias correction means that SBA provides more accurate results for intermittent
demand. By using a dataset from the automotive industry, Syntetos and Boylan (2001) showed
that SBA gave more accurate results than Croston. But the study carried out by Pinge et al.

(2021) showed that Croston outperformed SBA in terms of service level.

Another adaptation of Croston's Method is the Teunter-Syntetos-Babai Method (TSB),
which constructs two separate variables: the demand of the next period (z) and the demand
probability (p) of that period. As mentioned before, the obsolescence issue is important but not
considered in Croston’s method. Teunter et al. noted that Croston method cannot be used to
estimate the risk of obsolescence and deal with the removal of excess/dead stock. TSB
proposed a new method in which the estimate of the probability of occurrence is updated every
time period. In this way, bias and obsolescence issues can be dealt with by providing up-to-
date forecasts even after a long period of zero demand. If there is no demand for a period, the
forecast will be adjusted downward. A numerical investigation confirmed that TSB is suitable
for situations with both stationary and non-stationary demand (Teunter et al., 2011). However,
Zied Babai et al. (2014) showed that the performance of TSB was not considerably better than
that of SBA and Croston, sometimes Croston outperforms TSB. They proposed that there was
a need for more empirical testing of forecasting methods as the two datasets lead to different

and sometimes opposite findings. Babai et al. (2019) then proposed a new method that mixes



SBA and TSB. In periods of positive demand, the method updated demand size and interval in
the way of SBA; but at any time, if the actual demand interval became higher than the most
recent estimated demand interval, the updated technique follows TSB. The results showed the

outperformance of the new forecasting method in many cases dealing with obsolescence.

In this master thesis, the performances of SES, TSB, and one forecasting method named
intermittence smoothing are examined and compared. Intermittence smoothing is a

combination of SES and Croston’s method according to the Philips method definition.

3.2 Non-parametric methods

3.2.1 Bootstrapping and empirical method

The parametric methods discussed so far assume the lead time demand follows a certain
probability distribution, but when the demand pattern is not accessible, non-parametric
methods including bootstrapping and empirical methods can be useful. Nonparametric methods
are more flexible and can be used with any kind of demand distribution (Altay & Litteral,
2011). The classic bootstrapping method has been frequently used in the intermittent demand
context. Bookbinder and Lordahl (1989) applied bootstrapping to inventory management
context which assumed a standard distribution for re-order points. Willemain et al. (2004)
modified the classic bootstrapping method that intermittent demands were better modelled with
three difficult features: autocorrelation, frequently repeated values, and relatively short time
series. After experimenting in six industrial data sets, they showed that their bootstrapping

method generates more accurate results than SES or Croston.

The empirical method as one of the distribution-free methods is also used in previous
studies. Porras and Dekker (2008) introduced a new nonparametric method where the empirical
lead time demand was used without taking sample, and two optimization approaches (i.e., ex-
post, ex-ante) were applied. Van Wingerden et al. (2014) extended the empirical method by
incorporating randomness into lead times and improved the previous empirical method which
they termed as empirical plus. They found this method outperforms the previous methods when
the average inter-demand interval was large and the squared coefficient of variation of the

demand size was small.



3.2.2 Lumpy demand and Neural Networks

Accurate forecasting is crucial for supply chain efficiency and inventory management of
spare parts, especially for lumpy demand. Recent studies utilized advanced machine learning
techniques such as Support Vector Regression (SVR), XGBoost, etc. Hua and Zhang (2006)
combined the method with a logistic regression approach in which SVR predicted the
occurrences of non-zero demand of spare parts. Study by Sapankevych and Sankar (2009)
demonstrated that SVR outperformed deep learning techniques such as Multi-Layer Perceptron
(MLP). XGBoost, an eXtreme Gradient Boosting framework performs well for electricity
consumption prediction in a study by Deng et al. (2017). This thesis focuses more on one basic
machine learning method, single-layer neural network, as the extension of traditional existing
methods in Servigistics. Single-hidden layer networks trained by back-propagation suggested
possible ways for practitioners to improve implementation in real environments (Lolli et al.,
2017). In their research, three different single-hidden layer architectures have been adopted
such as feed-forward neural network, time-delay neural network. Hoffmann et al. (2022)
compared Artificial Neural Networks (ANN) with traditional forecasting methods based on
actual demand data from 29 spare parts of a mechanical engineering company. Their results
showed that application of neural networks had a high potential for forecasting irregular

demands in terms of MAPE mean consideration.

3.3 Forecast improvement strategies

The forecast improvement is important when conducting the time series mentioned above,
especially in the Philips Medical service parts planning process. One key problem detected is
increasing forecast variability. High forecast variability leads to uncertainty or volatility in
forecasts, which makes decision-making and resource allocation difficult. In this paper,

demand classification will be mainly discussed.

Demand classification is about matching the demand characteristics with the appropriate
estimation methods to improve forecasts and inventory control. Earlier studies on this topic,
such as Williams (1984) categorized demands as sporadic, slow-moving, or smooth by
decomposing lead-time demand variance into causal elements. Numerical comparisons show
that the proposed demand classification scheme leads to a substantial reduction in inventory

costs (Williams, 1984). Except for the leading time as one parameter included in the demand



classification, Syntetos et al. suggesting an additional parameter (i.e., the squared coefficient
of variation of demand). The cut-off values are first found by comparing MSE using different
forecasting methods, and then demands are classified into two dimensions based on these
cutoffs for finding the best forecasting methods. The categorization of alternative demand
patterns facilitates the selection of a forecasting method (Syntetos et al., 2005). But the research
also pointed out that the ultimate purpose of inventory management is to reduce stock holdings
and improve customer service levels; thus, forecast accuracy is not the only categorization
standard. Additionally, Kostenko and Hyndman (2006) criticized this study by claiming that
SBA yields smaller MSEs and proposing a more accurate cutoff based on SBA results.



Chapter 4 Problem Statement

This problem statement elaborates research questions presented in Introduction part in
detail. The first question explores the potential modifications for thresholds of demand category
to better suit the specific context of Philips. The second question examines the performance of
NN (neural networks) and TSB (Teunter, Syntetos and Babai) in Philips’s spare parts business

environment. Both research questions examined forecasting methods

4.1 Research Question 1: What potential new ADI can be proposed
to accommodate and optimize the demand categorization in
Philips?

As stated in the Background section, the current thresholds are an ADI of 1.32 and a
squared CV of 0.49. Recent experiments revealed that most SKUSs switch to Servigistics TSB
method upon its adoption in all demand categories. This finding has prompted the SPS
improvement team to consider several next steps. They plan to restrict Servigistics algorithm
to select Servigistics TSB only for intermittent demand categories and allowing erratic and

smooth demand to choose other forecasting methods.

Concerns have arisen from including too many spare parts in the intermittent demand
category, which can introduce complexity and increase the time required to implement the
Servigistics TSB method. Additionally, for SKUs with erratic and smooth demand, methods
such as average, weighted average, and single exponential smoothing are more suitable
according to the previous studies. Implementing TSB for these SKUs may not be necessary for
these demand categories. While TSB can enhance forecast accuracy, it may also result in
increased volatility which is undesirable in forecasts. This highlights the need to re-evaluate
and potentially adjust the demand thresholds to ensure appropriate application of forecasting
methods, thereby optimizing efficiency and reducing unnecessary complexity. Since the goal
of this research question is to recategorize demands, and lumpy pattern is excluded from the

system, ADI is the key threshold proposed to be modified.



4.2 Research Question 2: Do NN (Neural Networks) and TSB
(Teunter, Syntetos and Babai) outperform the existing methods in
the Philips context?

Within Healthcare, Spare Parts Management is directed and managed by the SPS team.
For the past work, SPS team carried routine work and forecasting tasks on Servigistics, with
the methods and parameters automatically selected by the system algorithm: the method has
the lowest MAPE and suitable for the demand classification is chosen as the final forecasting
methods and return the corresponding values. BestFit is automatically approved by the system
which contains several other criteria for selecting the best method. However, the foundation of
BestFit remains MAPE, it uses rules to determine whether to replace, eliminate, or keep

forecast methods in place (see details in Bestfit in Chapter 2). Thus, in this thesis, I only

consider the MAPE for picking the methods. During recent work, problems are observed by
planner that when setting MAPE as the critical standard for selecting method which is supposed
to lead to high accuracy, the high volatility also happened in the forecasting. As requested by
the managers of the SPS team, they are figuring out ways of reducing the volatility when

maintaining the accuracy of forecasting results at the same time.

As outlined in the Background section, a significant 97.6% of demands are categorized
as intermittent, yet in practice, they may include lumpy demand integrated into intermittent
patterns. Currently, no tailored method exists for intermittent or lumpy demand, as method
selection prioritizes error minimization. For instance, in the forecasts for part 459801352572
from each warehouse location, the algorithm primarily selects weighted average and single
exponential smoothing. However, this part falls under lumpy demand, for which these methods
are generally not well-suited. Though yielding low error rates, these methods exhibit high

fluctuation. This example was thoroughly examined in Research on Individual Part in

Appendix 1. The SPS improvement team collaborated with the PTC team to enhance
forecasting performance, proposing Servigistics TSB as a new method to be adopted in the
system. Recent experiments conducted by the PTC Servigistics team in the SBOX environment
(Philips' supply chain experimentation laboratory) revealed that transitioning from existing
methods to TSB accounted for 97.7% of the total spare parts sample in the experiments. This
is a significant change and Philips is closely monitoring the impacts of implementing the TSB

method on both forecasting accuracy and volatility.



Based on the above scenarios, this research focuses on lumpy demands categorized within
intermittent demand to investigate forecasting methods and their potential to mitigate
fluctuations. The development of tailored forecasting methods for intermittent and lumpy
demands is important, with a need to enrich and enhance the current methods in the system.
Moreover, exploring Servigistics TSB's performance relative to existing methods is also
important: assessing its comparative efficacy and its potential to enhance performance for
lumpy demand. The effect of NN is explored in Philips’s data set, but since the focus of Philips
Servigistics still lies in the traditional methods, the results of NN serve as an extension and

reference for future experiments.



Chapter 5 Data Description

This chapter introduces the procedure of processing raw data sets and main characteristics
of the data sets used for each forecasting method. Since the raw data sets provide limited
information about SKUs, the process of preparing them for experiments is crucial and is

outlined in Processing Data Sets. Figure 5.1 illustrates the data preparation process. Section

Data Sets for Experiments present the final data sets used in the two experiments. All original

data sets were provided by the Philips SPS team or extracted directly from Servigistics. Some
of the processes of preparing data sets were conducted under the requirements of SPS team.

For example, SPS team defines high-value spare parts as parts’ unit cost larger than 100 euros.

(Original Data Sets) (Processing Data Sets) (Data sets for experiments)

1

l

i History Demands
! (40 months)
1

1

1

1

1

Forecast Method ADI and CV?

H Fluctuation l
| :
1 Demands ‘ '
1
|

Demands High-value
(> $100)

Figure 5.1: Data sets and processing procedures

5.1 Original data sets

In this sub-section, the original data sets provided by Philips Team are elaborated. There
are two original data sets: Location Part Demands data set (hereafter “Location Part

Demands”) and Forecast Method Tracking (hereafter “Forecast Method Tracking”).

“Location_Part Demands” represents the historical monthly demands of each part of each
location. The demands from January 1, 2021, to April 1, 2024, are extracted. The reason why I

focus on this period is that all spare parts use either 12 or 24 months, and for forecasting metrics



such as standard deviation of demands, Servigistics uses either 24 or 36 months for calculation.
Therefore, I included as much information about historical demands as possible (i.e., 3-years
demands) so that forecasting bases can be easily adjusted. The demands are rolled up to month
buckets, which means demands for that month are aggregated and shown on the first day of
that month. In total, there are 2,519,759 observations, 34,749 unique spare parts, and 11
variables in this data set. The research only considered the local demands stream, which is from
external demand or customer demands. Additionally, Philips employs a multi-echelon
inventory optimization approach, which integrates all distribution levels to optimize inventory
and achieve a balance that meets customer demands. As shown in the “Location.Type”,
historical demand records for LDC (Local Demand Center), DC (Distribution Center), and FSL
(Forward Stocking Location) are all included and taken into consideration when conducting

forecasting.

The “Forecast Method Tracking” utilizes daily forecasts extracted from Servigistics, and
SPS team extracted 32 weekdays’ forecasts from February 28, 2024, to April 12, 2024, which
serves as a sample period to provide insight into the fluctuation of daily forecasts. The
forecasting process uses historical demand data from the preceding 12 months or 24 months,
including the current forecasting month. For instance, forecasts in March are derived from
historical demands from March and the previous 11 months, with forecasts for a year starting
from April (i.e., 12 months). Each day, approximately 191,440 observations are recorded, with
each observation representing the forecast from a specific location. Some variables overlap
with those found in “Location_Part Demand”, such as “Part Number” and “Location Name”.
The “Forecast.method” is included which indicates the method used for that part in a specific
location on the day of extracting the data. It is important to highlight that different locations
may have different forecasting methods on different days. This variation depends on the
demand patterns of the parts in each location and the system choice of the forecasting. The

Servigistics adopts MAPE as the primary standard for choosing the forecasting methods.

5.2 Processing Data Sets

This sub-section details the processing and transformation of the original data. For each
research question, the specific data set containing the actual demands is used. As illustrated in

Figure 5.1, processed data set Demand Threshold (hereafter “Demand Threshold”) is for the



first research question exploring the potential threshold change, and processed data set
Demand Lumpy (hereafter “Demand Lumpy”) is for the second research question. This

section explains four steps of processing data.

Step 1: calculating forecast fluctuation for each Stock Keeping Unit (SKU)

The initial step is identifying the TopX volatile spare parts prior to partitioning them into
experimental datasets. “Forecast Method Tracking” is transformed to provide insights into
daily forecast fluctuations of each SKU, which is data set Forecast fluctuation (hereafter

“Forecast_fluctuation”) in Figure 5.1.

The locations of forecasts are ignored since the SPS team's emphasis is on aggregated
spare parts demand. The average values of daily forecasting fluctuations are calculated for
further selecting the most fluctuating parts. Daily fluctuation is calculated by taking the
difference between the forecasts at time t and the previous period t-1, then dividing it by the
forecast at the previous period t-1 (formula 5.1 as below). The “mean.volatility.day” shown in
formula 5.2 calulates the average daily forecast fluctuation, where DF represents the mean
value of daily fluctuations. The “mean.volatility.day” is used for selecting top fluctuating parts.
The daily forecast fluctuations for each part on the first day, February 28th, are set as 0. The
formulas for calculating fluctuation are as follows. The maximum and minimum of daily

forecasting fluctuations are also presented for reference.

Forecast, — Forecast,_,

(5.1)

Daily Fluctuation =
s Forecast,_4

mean. volatility.day = DF (5.2)

Step 2: Create a historical demand journey for each spare part.

The “Location_Part Demand” contains historical demand records. This thesis ignores the
location under instructions from SPS team and aggregates the historical demands from all
locations for each SKU. The historical demands are shown on the first day of each month in an
aggregated form. To build the forecasting models, I created a demand journey for each SKU
which contains spare part number, demand date, and demand quantity on that date. The
complete demand journey of each SKU is created by filling in the months without demands
with 0, and demand date is from January 1, 2021, to April 1, 2024. The new data set is shown

as “Demand Journey” in Figure 5.1.



Step 3: Calculate the squared CV and ADI for each spare part based on the historical
demand journey.

For determining the demand categories, squared CVs and ADI were manually calculated
in step 3. As mentioned in section 2.2 in Chapter 2 , Philips removed lumpy demand and
classified demands with ADI larger than 1.32 to intermittent demand category. In the parameter
information provided by Servigistics, I found that around 20% of SKUs are classified into
demand categories that differ from those they should be placed in if the Servigistics algorithm
adhered to the previously mentioned thresholds (i.e., ADI = 1.32, CV? = 0.49). For example,
the part in one specific location should be classified into “Erratic Demand” but shows as
“Intermittent Demand” in the data which Servigistics provided. I questioned the incorrect
categorization of demand to the PTC team, but as of the submission of this thesis, I have not
received a response from them. Therefore, I didn’t use squared CVs and ADI data provided by
Servigistics in this thesis. Instead, these two parameters are calculated using the actual demands

of the past 40 months (more than 3 years) from January 1, 2021, to April 1, 2024.

The squared of CV is calculated by squaring the ratio of the standard deviation (SD) to
the mean of the demands (formula 5.3 as below). Zero demand is included in the calculation;
however, if the demand has been zero for the past 40 months, the spare part is removed from
consideration. ADI is calculated as the ratio of the total number of months (i.e., 40 months) to
the number of periods with actual demand (i.e., demand quantity larger than 0). The calculated
squared CVs and ADI are matched and combined in the “Forecast fluctuation” using

corresponding part numbers of each SKU.

SD of demands
mean of demands

Total number of months

vz = ( )? (53 ADI= (5.4)

Number of non—zero demands occasions

Step 4: Select demand samples for two experiments: “Demand_Threshold” for first
experiment, “Demand_Lumpy” for second experiment.

Philips team suggested focusing on high-value spare parts that have unit cost of more than
100 euros. Thus, for both research questions, only spare parts with values exceeding 100 euros
are selected for model building. In total, there are 9,738 SKUs that have a value of more than

100 euros.

For the first experiment, SKUs are sampled from all three categories. Prior to sampling,

the dataset consists of 850 erratic spare parts, 6,993 intermittent spare parts, and 1,895



smoothing spare parts. A random sample of SKUs is selected according to the proportions of
these three categories, resulting in 300 erratic, 1,500 intermittent, and 500 smoothing spare
parts being chosen for analysis. The “Demand Threshold” is then formed by extracting
historical demands journey using part number of the selected SKUs from “Demand Journey”.
The “Demand Threshold” has 92,000 observations and three variables: spare part number,

demand date, and demand quantity.

For the second experiment, I used “mean.volatility.day”, the average daily fluctuation of
each spare part, to focus on the top 1,000 most volatile spare parts. Threshold parameters are
calculated in Step 3. For each SKU, I classified them without removing lumpy demand pattern.
The results indicate that among the top 1,000 most volatile spare parts, 995 are lumpy demand,
2 are erratic demand, 1 is smoothing demand, and 2 were removed because demand is zero in
most months that ADI and CV? cannot be calculated. The “Demand Lumpy” is formed by
extracting demands journey using part number of the selected 995 lumpy SKUs from “Demand
Journey”. The “Demand Lumpy” has 40,000 observations and three variables: spare part

number, demand date, and demand quantity.

5.3 Data Sets for Experiments

As indicated in Figure 5.2, two main data sets are used for applying forecasting models:
Demand Threshold and Demand Lumpy; red line represents ADI=1.32, blue line is
CV?=0.49. “Demand_Threshold” and “Demand_Lumpy” only contain demand journey of each
SKU, but the characteristics of these spare parts, such as volatility, ADI, are fetched from the

“Forecast fluctuation” using corresponding spare part number and presented in this section.

cvr2
V!

- o
-

Figure 5.2: distribution of selected SKUs, “Demand_Threshold” (Left), “Demand Lumpy” (Right).



Figure 5.2 shows the distribution of the selected SKUs in the two data sets according to
squared CV and ADI. There are 2,500 SKUs in the “Demand Threshold” and 995 SKUs in the
“Demand Lumpy”. The steps of choosing spare parts are given in section 5.2. A statistical
overview of characteristics of the spare parts selected in the two data sets can be found in Table

5.1 and Table 5.2.

Table 5.1 exhibits spare parts randomly selected for the first experiment, which includes
three demand categories. In Table 5.1, the average daily fluctuation of spare part demand has a
median value of 0.012 (1.2%), and mean value of 0.031 (3.1%). This means that, on average,
the daily forecasts would change 3.1% among all selected spare parts, and more than 50% of
spare parts have 1.2% change in average volatility of daily forecasts. Among all spare parts,
more than half of them have a demand mean of more than 0.6, and 25% of them have a demand
mean of more than 2.35. Table 5.2 shows spare parts with lumpy demand patterns for the second
experiment, the maximum change of average volatility of daily forecasts is 1.244 (124.4%),
and more than 50% of them have at least 0.106 (10.6%) of changes. Since all of them belong
to lumpy demand, the minimum ADI is 1.33, which is larger than traditional threshold (i.e.,
ADI =1.32). The demand mean has a maximum value of 5.675, and more than half of spare

parts have a demand mean smaller than 0.2.

Variables Min Q1 Median Mean Q3 Max SD

Unit.Cost 100.09  199.282 442.38 1642.044 1268.358 274629.52 5490.535
Mean.volatility.day 0 0.007 0.012 0.031 0.023 4.626 0.086
Min.volatility.day 0 0.009 0.04 0.088 0.147 6.745 0.167
Max.volatility.day 0 0.105 0.198 0.724 0.403 70.562 2.247
ADI 1 1.212 2.5 6.748 6.667 40 9.753
demandmean 0.025 0.175 0.6 3.892 2.35 443.75 13.997
Cv2 0.014 0.692 2.314 6.512 7.179 40 9.987

Table 5.1: statistical overview of SKUs in data set Demand_Threshold.

Variables Min Q1 Median Mean Q3 Max SD

Unit.Cost 100.100  180.075  387.390  1342.075 1003.640 57719.480 3630.862
Mean.volatility.day | 0.048 0.066 0.106 0.18 0.256 1.244 0.156
Min.volatility.day 0.001 0.089 0.162 0.216 0.204 6.745 0.419
Max.volatility.day 0.446 1.427 2.583 4.9 6.988 37.944 4.852
ADI 1.333 4 6.667 10.079 13.333 40 10.115
demandmean 0.025 0.1 0.2 0.302 0.375 5.675 0.359
Cv2 0.747 3.497 6.347 9.924 12.333 39 10.041

Table 5.2: statistical overview of SKUs in data set Demand Lumpy.



Data sets Demand Threshold and Demand Lumpy contain part number of spare parts,
demand date, and demand quantity on that date. Table 5.3 shows the descriptive information of
spare parts in three demand categories in Demand Threshold data set. Variable “Demand” is
the average demand over 40 periods, “Mean.V.” is the mean of volatility according to 32 days
tracking provided by SPS team. From the table, it can be found that intermittent demand
category has more fluctuating SKUs since the max and average of “Mean.V” are much higher
than other two categories. In addition, the demands in intermittent category exhibit sporadic
patterns: the minimum demand is close to 0 and maximum demand is around 35, but the

average demand among all intermittent SKUSs are much smaller than other two categories.

Variables Erratic Smooth Intermittent
min max mean min max mean min max mean
CV2 0.49 3.98 0.75 0.02 0.49 0.23 0.60 28.03 4.70
ADI 1.00 1.29 1.17 1.00 1.25 1.02 0.60 28.03 4.70
Unit.Cost | 100.16  31748.19 1391.15 100.28  68060.70 2473.01 100.16  54922.07 1416.28
Demand 1.23 34.52 3.60 1.43 328.50 15.90 0.07 35.35 0.69
Mean.V. 0.00 0.07 0.01 0.00 0.03 0.01 0.00 4.63 0.04

Table 5.3: descriptive statistics of SKUs in “Demand_Threshold”.

Figure 5.3 to 5.6 shows three examples of distribution of demands over 40 months with
ADI=1.33, ADI =3.33, ADI = 10, and ADI =40 in “Demand Lumpy”. The example SKU is
randomly selected to illustrate how demands are distributed in lumpy demand category. The

demands follow a sporadic pattern with some periods when there is zero demand.
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Figure 5.3: demands bar chart of part 459801658621 (ADI =1.33)
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Chapter 6 Methodology

In this section, the experimental designs for two research questions are illustrated with
Figure 6.1 and Figure 6.2. The first set of experiments focuses on ADI threshold modifications
corresponding to the first research question. The second experiment examines the performance
of the TSB method and NN in relation to the second research question. Additionally, the
selected forecasting methods, as mentioned in the Background section, are introduced and

described. The metrics and criteria used to measure performance are also elaborated.

6.1 Research Design

6.1.1 Experiment one: Threshold Modifications

Choose the Best
Method

Apply all methods Calculate MAPE and Volatility and

give ranks

Choose the Best

Weighted Average - Methods:
Single Ex ! MAPE & Rank scores using 0.6*Volatility
E'e CXp; . two metrics
Demand_Threshold I- Intermittent - Volatility of (Volatility & Rank Score +
Smoothing, Forecasts Accura:y 0.4*Accuracy
TSB Rank Score

_\_________________

l

Best method for
each spare part

}

Counts and k-means |

Figure 6.1: the first experiment design.

In the first experiment, SKUs are sampled from erratic, smooth, and intermittent demand
categories under definition of Philips for further application of forecasting methods. The
methods adopted include Weighted Average (WA), Single Exponential Smoothing (SES),
Intermittent Smoothing (IS), and the TSB method. The methodologies of forecasting methods

are in section 6.2, the details of implementation of these methods are explained in this section.



To evaluate both accuracy and volatility in selecting the best method for each spare part,
I assigned rank scores to methods based on their performance in two dimensions: MAPE and
volatility of forecasting. The methods were first implemented in all demand categories, then
the MAPE and volatility of forecasting of each spare part were calculated. The details of
calculations of accuracy and volatility are in section 6.3. Subsequently, all forecasting methods
were ranked separately using MAPE and volatility. The method leading to the lowest MAPE
was assigned to a score of 1, the second lowest received a score of 2, and the third received a
score of 3. Same as MAPE, the methods were ranked again using volatility: the lowest volatility
was assigned to a score of 1, the second lowest received a score of 2, and the third one received
ascore of 3. [ suggested a metric to balance the weights of the two dimensions: a weight number
0.6 was assigned to the volatility rank score and 0.4 was assigned to MAPE rank score. A
weighted rank score was then calculated for each forecasting method of each spare part using

the following formula 6.1:
weighted rank score = 0.4 X MAPE score + 0.6 X volatility score (6.1)

For example, for one specific spare part, WA gets score of 3 according to accuracy and score
of 1 according to volatility, the weighted rank score of WA of that spare part is 1.8. The
calculation itinerated until all spare parts got weighted rank score for four forecasting methods.
Finally, the method with the lowest weighted rank score was chosen as the best method for that

spare part.

To identify the potential thresholds, statistical counts and a simple machine learning
algorithm k-means method were used. First, the methods of spare parts which have ADI larger
than a certain number were counted. For example, set ADI larger than 2, then the spare parts
that have ADI larger than 2 are considered, and final best methods these spare parts choose are
counted. The potential ADI change is the switch point when counts from traditional methods
(i.e., WA, SES, IS) exceed TSB. As previously mentioned in Literature, Weighted Average
(WA), Single Exponential Smoothing (SES), and Intermittent Smoothing (IS) are generally
more effective for erratic and smooth demand patterns, whereas the Teunter, Syntetos, and
Babai (TSB) method is proven to be more effective for intermittent and lumpy demand patterns.
Thus, it is assumed that SKUs selecting WA, SES, and IS are more suitable for classification
into erratic demand, while those selecting TSB are more appropriate for intermittent or lumpy
demand. The Servigistics system allows SKUs to select all forecasting methods, including

TSB. Thus, by analyzing the statistical counts, when the counts of spare parts choosing WA,



SES, and IS exceed those of TSB under a certain ADI, it is preferable to classify spare parts
with ADIs smaller than this threshold as having erratic or smoothing demand. Conversely,
when the counts for the spare parts choosing TSB method exceed those for the other three
methods, this indicates that more parts are choosing TSB as the final method. Corresponding

ADI can be identified as the switch point and considered as a potential ADI threshold change.

The K-means method is an unsupervised machine learning clustering method that
identifies similar groups of data points. The algorithm is easy to implement and only requires
that a kd-tree be built once for the data points (Kanungo et al., 2000). The algorithm aims to
minimize the distance between points in a cluster with their centroid. K-means has been widely
used in a great deal of research from both optimization and data perspectives, and it was
examined on data stream and high-dimensional data. The k-means method can give brief
overviews of characteristics of each cluster (Wu, 2012). For clustering the spare parts and
highlighting the characteristics of them, I made clusters using squared CV, ADI, and final
chosen forecasting method of each SKU as the criterion. Silhouette shows which objects lie
well within their cluster, and which ones are merely somewhere in between clusters
(Rousseeuw, 1987). In this thesis, R package “factoextra” was used for determining the optimal
clusters in silhouette plot. Since the k-means clustering is adopted for reference, it is not the

focus of the first experiment.

6.1.2 Experiment two: the performance of TSB and NN

Apply methods | | Performance Measurements |
Weighted Average, | MAPE |
Single Exp,
Demand_Lumpy Intermittent
Smoothing
| RMSE |
S8 —
NN |/ [ voutiiy |

Figure 6.2: the second experiment design.



The second experiment design targets a demand category identified by Philips as
intermittent but exhibiting lumpy patterns. In addition to the existing forecasting methods, a
machine learning approach using neural networks (NN) is adopted to compare performance
with the four traditional methods. The details of forecasting techniques and performance

measurements are in section 6.2 and 6.3 of this chapter.

6.2 Forecasting Methods

In this section, five forecasting models applied in this thesis are introduced, along with
their detailed implementation parameters. It is important to note that all models are
implemented using R packages through their respective function commands. Additionally,

smoothing parameters such as alpha are optimized for each method. The forecasting procedures

are mentioned in Forecasting Procedure in Chapter 2.

Weighted Average (WA) and Single Exponential Smoothing (SES) models were used
directly according to the documentations in SPS team. Intermittence smoothing (IS) is
described in PTC website (2024) as “this method generates a modified Croston forecast, and
when demand is not intermittent, this method behaves much like Single Exponential
Smoothing”. Due to the intransparency of Servigistics’s models of IS, I assume that Croston’s
method is used when encountering intermittent demand pattern, and for erratic and smooth
pattern, SES is used. Servigistics TSB is interpreted as the Teunter, Syntetos & Babai (TSB)

method because of invisible Servigistics’s algorithm.

Weighted Average

The Weighted Average (WA) method refers to the average values scaled by their
importance. The formula is provided below (formula 6.2). Since forecasts are made for the
entire year, monthly forecasts are multiplied by 12 to represent the annual forecast. The weights
assigned to each period correspond to the period number, meaning the demand in the first

month is multiplied by 1, the demand in the second month by 2, and so on according to Philips


https://trne-prod.ptcmanaged.com/servigistics_help/en/index.html#page/PTC_Servigistics_Help_Center/glossary/intermittence_smoothing_forecast_method.html

training slides (SPS training, 2024). This approach ensures that more recent demand data has

a greater influence on the forecast, reflecting its increased relevance.

WA _ (Dt—24» X 1) + (Dt—23 X 2) + A + (Dt X 24’)
L (1+2+3++24)

(6.2)

D¢: historical demand in that forecasting month t.

Croston’s method and SES

Croston’s method is elaborated in detail in Croston (1972) and is built on the Simple
Exponential Smoothing method (SES). In this thesis, the "tsintermittent" R-package by
Kourentzes (2014) was used. Croston (1972) focuses on two separate components: the non-

zero demand size z; and inter-demand interval p,. The prediction from Croston’s method is

given by: y, = ?. The initial value for predictions and both z; and p, are using SES, the final
t

output from Croston is the average estimated demand for each period in the forecasting horizon
Kourentzes (2014). z; has to be non-zero in at least two periods because the predictions are
updated only when demand occurs. For optimizing the parameters, a values equal to 0.05, 0.1,
0.15, and 0.2 are tried, and the parameter is for both demand and intervals. The sum of forecasts
is compared to actual demand in past 12 months and the a which results in least forecasting
error MSE is selected as best a. Sum of 12 months’ forecasts (that is, the forecasting for the

upcoming year) from best @ are considered the final forecasts in that forecasting month.

The SES method uses a single smoothing parameter alpha (o) to control the effect of past
observations. This smoothing parameter is usually set somewhere between 0.1 and 0.3 in a
setting with intermittent demand (Syntetos and Boylan, 2005). The theoretical equation shown
below is a simple formular to calculate the forecast for the current period using previous values
(both the actual and forecasting values). Same as Croston’s method, o values equal to 0.05,
0.1, 0.15, and 0.2 are tried and forecast horizon is set to 12; the results with best performing a

will be used as final forecast in that month.

Ve= aye + (1 —a)f (6.3)
¥¢: forecast for current forecasting month t.

Y¢—1: forecast for previous forecasting month t-1.



TSB method

The TSB model comprises two main components: the probability of demand occurrence
and the interval between positive demands. Unlike Croston's method, TSB does not alter the
level estimation and uses d; as the probability of the demand occurrence. d; is 1 when demand
does occur and otherwise it is 0. For optimizing the parameters, « values equal to 0.05, 0.1,
0.15, and 0.2 are tried, and the parameter is for both probability and demand. The
"tsintermittent" R package is utilized, with the cost function set to mean squared rate (MSR),
which is most suitable for TSB, yielding more reasonable forecasts. The forecast horizon is set
to 12 periods, and the results are summed to represent the annual forecast. The predictions by

TSB are given by the calculation formula:

7, = d.2, (6.4)

Neural Network (NN)

NN was found to generally perform better than the traditional methods (Gutierrez et al.,
2008). To align with the research goal and offer a potential approach for Philips future
experiments, this thesis adopted a single-hidden layer neural network to give a glimpse of the
effect of NN. The functions in “nnfor” R package are used. Feedforward neural networks are
applied for time series forecasts. The algorithm follows a single-layered network with N hidden

neurons and activation function G as follows, where input weight vector is w; =

(Wit Wiz, oo, Win) "

N
Gy (x,) = Zﬁig(wi Xe +b) witht =1,...,T 6.5)

i=1
Given a set of T samples, {(x;,d: )t =1, ..., T}, x; represents input vector and d; is the target
vector for the supervised learning. The weight vector connects the hidden nodes to the output

neurons and b; is the bias. Figure 6.3 illustrates the algorithm of feedforward neural networks.

In this thesis, the 18 months of historical demands were used to train NN model, and the
rest of 6 months were considered as test set. For measuring the accuracy of model, Mean
Absolute Error (MAE) within “accuracy” function is used. The mean value of MAE is used to
assess the accuracy of the NN model for all spare parts. The hidden nodes are set to number of

3 as it is a reasonably low number to approximate any complex function; maximum number of



iterations for training is set to 150. No seasonal lags are considered, and regularization
parameter “decay” is 0.8. In this thesis, high “decay” is chosen for preventing overfiting, other

values of parameters can be tried in future experiments.

Figure 6.3: the feedforward neural network.

6.3 Selected Performance Measurements

To assess the forecasting and model performance, accuracy and robustness of forecasts
are measured. The accuracy metrics give insights into the deviation between forecasting
amounts and the actual values of demands; robustness in this thesis refers to the volatility of
forecasts. For accuracy metrics, MAPE, MAD, and RMSE are tested; for volatility, the standard

deviation (SD) of forecasts is utilized.

The actual demands are calculated under Formula 6.6. I balanced the past first 12 months
and last 12 month of past 24 months and assigned a weight number 0.3 to the first 12 months,
0.7 to the last 12 month. The “last 12 months” refers to the 12 months preceding the current
forecasting month, including the current month itself. The “first 12 months” refers to the 12

months preceding the “last 12 months”. y, is the actual demands at time period t.
weighted actual demand = %73,,03 X y,_; + Xi1,07 X y._;  (6.6)

In Philips’s Servigistics, they mainly use the mean absolute percentage error (MAPE) as
the accuracy measurement. MAPE is the average of the absolute differences between actual
and forecasted values y;, expressed as a percentage format. Formula 6.7 is the traditional

MAPE (i.e., MAPE;). Given that lumpy demand includes many periods with zero demand, the



traditional form of MAPE may fail. Therefore, I adopted an adjustment for MAPE which is
given by Formula 6.8 below (Gilliland, 2002). ¥, is the forecasting demands at time period t.

I e — 9 i1 1ye — V¢l
MAPE, =—Z || 6.7) MAPE, = =574 (6.8)

n
N b—it=1 Vi t=1Yt

The Mean Absolute Deviation (MAD) takes the average of the absolute differences between
the forecasted and actual values. MAPE is built under the MAD and actual demands y,, this

metric is calculated as a reference.

n
1
MAD = Ez lye = Vel (6.9)
t=1

Pinge et al. (2021) also find that the most common forecasting accuracy measures used in recent
spare parts demand literature are the absolute accuracy measures. The Root Mean Square Error
(RMSE) measures the average magnitude of the errors between forecasts and actual values.

The metric formula is presented in Formula 6.10 as below:

1 ~
RMSE = \/; Y1 (e — Pe)? (6.10)

For measuring the robustness of model performance, volatility of forecasts is used. Standard
deviation of forecasts serves as the main measure of volatility (Formula 6.11). 9 is the mean of
forecasts, and the calculation of SD takes mean of deviation between the mean of forecasts and
the forecast at time t. n is the number of periods, and in this thesis, the total forecasting

periods are 12 months.

n—1

n
1 _
0 = Z(?t -3 6.11)
t=1



Chapter 7 Results

This chapter presents results from the experiments for two research questions. The

potential ADI thresholds are included in in section 7.1. Forecasting performances of each

method are demonstrated in section 7.2. Forecastings are based on the best performance

parameters, details of parameters chosing are in section 6.2.

7.1 Experiment one: Threshold Experiment

The first experiment proposed potential ADI thresholds to change in Servigistics. Table

7.1 presents several examples for explaining the outputs of weighted rank score of each

forecasting methods for each spare part. The column “Category” refers to demand category,

“WA.W” indicates the weighted rank score of the weighted average method, “SES.W” is the

weighted rank score of single exponential smoothing, “IS.W” is the weighted rank score of

intermittence smoothing, “TSB.W” is the weighted rank score of TSB. “Final.Method” refers

to the best method the spare part chose based on weighted rank. The calculation formula of

weighted rank score is in Formular 6.1, the method that results in the lowest rank score is

chosen as the final method. Examples are randomly selected from three demand categories.

Part.Number ADI Category WA.W  SES.W IS.W TSB.W Final.Method
459800931362 1.026 E 1 2 3 5 WA
453566489171 1.111 E 1.6 2.6 4.2 2.6 WA
453567552651 1.111 E 1 3 5 2 WA
452215021961 1.081 S 1 2.6 4.2 3.2 WA
453567306162 1.081 S 1 2.4 3.8 3.8 WA
459800336413 1.143 S 3.4 2 3 2.6 SES
459801685051 3.636 I 1 4.2 2 3.8 WA
452215031292 4.444 I 2.4 5 2.2 1.4 TSB
453560068371 10.000 I 2.4 3.4 3.8 1.4 TSB

Table 7.1: examples for weighted rank scores of spare parts.

Table 7.2 indicates the first evidence of new ADI: counts of spare parts under different

forecasting methods when changing ADI thresholds. As shown in Table 7.1, each spare part



has the final method based on the calculated rank scores. For deciding a potential new
threshold, ADI values were tried, the spare parts which have ADI larger or equal to that ADI
were considered for statistical counting. For example, when ADI is larger than or equal to 1.5,
733 spare parts choose WA, SES, and IS as final method, while 631 spare parts choose TSB as
final method.

As explained in the Methodology section 6.1.1, the switch point is when the count of
spare parts using TSB exceeds counts of the other methods chosen by the rest of spare parts.
This may indicate that TSB is becoming more dominant among SKUs, as an increasing number
of spare parts are being selected for this final method. “ADI” refers to the ADI values tried for
finding potential new threshold. In the “ExceptTSB” column, it is the sum of spare parts
adopting weighted average, single exponential smoothing, and intermittence smoothing; the

“TSB” column represents the number of parts that pick TSB as the final method.

ADI WA SES IS TSB ExceptTSB TSB
>=1.3 746 34 52 663 832 663
>=1.5 651 34 48 631 733 631
>=1.9 542 30 42 567 614 567
>=2 519 28 41 549 588 549
>=2.5 432 26 35 486 493 486
>=3 355 25 31 426 411 426
>=3.5 308 20 25 381 353 381
>=4 283 17 24 363 324 363

Table 7.2: statistical counts of spare parts under certain forecasting methods.

From Table 7.2, there is a switch point when ADI equals or is larger than 3. When ADI is
smaller than 3, the counts of parts using TSB are fewer than counts of parts using WA, SES,
and IS. This means that if ADI is set under 3, if the system allows to choose TSB, most of the
SKUs will still choose weighted average, single exponential smoothing, and intermittence
smoothing as the best method. When ADI is larger than 3, more spare parts were included in
erratic and smooth demand categories; and from Table 7.2, I found that most of the spare parts
chose TSB as the best method. There are 426 spare parts choose TSB and 411 spare parts
choose WA, SES, and IS. As ADI increases, TSB becomes preferable among spare parts, with

an increasing number of them being selected as the final best method.



Therefore, the potential threshold of ADI is proposed to be 3 or more than 3 using
statistical counting as evidence. The key behind logic is to classify more SKUs earlier marked
as intermittent demand to erratic or smooth demand. Within erratic and smooth categories, TSB
is not necessary to be implemented in Servigistics since traditional methods like WA are more

effective than TSB according to results from the experiment.

Second evidence for choosing new ADI is through k-means clustering. Figure 7.1
indicates the optimal clusters result from silhouette plot. The plot suggests that three clusters
are suitable for clustering, but to include more information, I used four clusters. In Figure 7.2,
each SKU in squared CV and ADI dimensions is labelled with different colors according to the
assigned clusters. The “+” sign marks center of that cluster, red line is “ADI=1.32”, blue line
is “CV?= 0.49”. Table 7.3 gives a detailed description of characteristics of each cluster. From
four clusters segmented by algorithm, generally the possibility of choosing TSB as best method
increases when ADI increases. When ADI is equals to 4.58, the percentage of TSB selected as
final best method exceed that weighted average. Thus, the ADI modified to around 4.5 can be

a potential threshold for future Philips’s experiments.

Additionally, since I set the algorithm balancing volatility and accuracy of the forecasts
when choosing the methods, the final methods involved a fluctuation factor (i.e., volatility).
Thus, the results can be more convincing according to the requirements from Philips. However,
I observed that half of the SKUs chose WA as the final method when ADI is smaller than 3. It
can be addressed that WA is a crucial method in the experiment. The further performance of
WA is investigated in experiment two in the next section. Moreover, TSB takes a large part of

all chosen methods, the effectiveness and performance of TSB is elaborated in experiment two.
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Figure 7.2: distribution of spare parts with assigned clusters.
Center ADI CVv2 IS SES TSB WA
1 3.415 3.119 0.033 0.028 0.348 0.590
2 3.504 3.179 0.026 0.068 0.350 0.556
3 ‘ 3.482 3.160 0.043 0.025 0.413 0.519
4 ‘ 4.583 4.353 0.040 0.051 0.485 0.424

Table 7.3: clusters information from k-means clustering.



7.2 Experiment two: the performances of TSB and NN

The second experiment examines the performance of TSB and NN in Philips’s lumpy
demand data sets. The results from WA, SES, IS, TSB, and NN are presented and compared.
Results are presented in two ways: at an aggregated level and each part level. “At an aggregated
level” means summing up the forecasts from all spare parts for each forecasting month. "At a
part level" means forecasts are evaluated for each individual spare part, with key metrics like

MAPE and RMSE calculated for each one of them.

7.2.1 Results at an aggregated level

Table 7.4 shows the aggregated amount of forecasted demand from all SKUs of each
forecasting month. The aggregated amounts from different forecasting methods are compared
and analyzed. Absolute errors of each method, shown as “Error” in Table 7.4, are the difference
between actual historical demands and the forecasts. The actual historical demands were
calculated by assigning a weight value of 0.4 to the first year’s actual demands and weight
value of 0.6 to the second year’s actual demands. The calculation formula is given in section
6.3. The average of each month of forecasts are presented as a reference. Table 7.5 shows

various key metrics on the aggregated demands.

Neural networks perform well considering volatility and accuracy: it has the lowest
MAPE and standard deviation, which means that the results from NN are closer to the real
demands and the fluctuations are relatively stable. The WA method is important as many spare
parts choose it as the final method in Servigistics, and the performances using the top
fluctuating parts show that WA is important in forecasting. It is ranked as second best according
to MAPE, but WA exhibits volatile forecasting demands. TSB is another focus of this research,
but the evidence shows that the accuracy it achieves is relatively low (i.e., 7.3%, 6% higher
than MAPE of NN). However, TSB exhibits less volatile forecast results, with a standard

deviation of 219.65, it is the second smallest among the traditional methods.

SES is one of the traditional methods in Servigistics, and experiment outcomes support
that SES leads to 4.8% of MAPE, which is relatively low. But when it comes to volatility, SES

has 328.55 of standard deviation in forecasting, which is the most fluctuating among other



methods. The Philips experiment shows that 24.9% of spare parts choose SES as their method.
From the above results, it suggests that the application of SES can be one of the reasons causing

high fluctuating forecasts.

As stated in Table 7.4, the intermittence smoothing method results in the highest MAPE
at 9.8% and RMSE at 359.1. But when considering the volatility of forecasting, the standard
deviation of intermittence smoothing method is the smallest, only 131.26. The deficiencies of
the IS model may be attributed to the algorithm’s setups of my implementation. But due to the

invisible operation of Servigistics, this stands as the constraints of the thesis.

Figure 7.3 illustrates trends of aggregated amounts of forecasts, WA, SES, TSB, and NN
display a drop in February’s forecast and an increase in March’s forecast; however, only IS
shows an opposite trend (i.e., a rise in February and a drop in March). Line “histdemand”
represents the actual historical demands, the calculation can be found in section 6.3. Lines from
NN, WA, and TSB are close to line of historical demands, this reveals that forecasts from these
methods are more accurate. The forecasts from SES, however, display a volatile trend and are

not as accurate as the other three methods during February to August.
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Figure 7.3: line plot of aggregated amounts of forecasts in each month from five methods.

Actual Error Error Error Error  Error

(Mml/)]gt; /YY) WA SES IS TSB NN Demand (WA) (SES) (S) (TSB) (NN)

01/01/2023 3388.9 36279 3978.1 3319.8 3604.1  3487.4 98.5 140.5  490.7 167.6 116.7
02/01/2023 3338.2 3585.8 4016.1 3257.8 3538.7  3456.6 1184 1292  559.5 198.8 82.1
03/01/2023 3622.6  4009.4 3947.4 35223 3680.8  3603.5 19.1 405.9  343.9 81.2 77.3
04/01/2023 3786.8 4143.0 39599 3502.7 3769.5 3761.3 25.5 381.7  198.6 258.6 8.2
05/01/2023 3719.6 3997.7 3898.5 34659 3713.0 3677.6 42.0 3201 2209 211.7 35.4
06/01/2023 3649.7 3848.8 3822.8 3409.1 3671.7  3625.3 244 2235 1975 216.2 46.4
07/01/2023 3557.2  3710.3 3835.2 33159 3602.5 3585.6 28.4 1247 249.6 269.7 16.9
08/01/2023 3501.4 3671.2 38389 3265.0 3571.1  3555.5 54.1 115.7 2834 2905 15.6
09/01/2023 3367.6 34842 3817.8 3158.6 3456.8  3470.5 102.9 13.7 347.3 311.9 13.7
10/01/2023 3256.6  3390.0 3832.7 3014.7 3368.5  3379.2 122.6 10.8 453.5 364.5 10.7
11/01/2023 31142 3199.6 3654.0 29522 3269.7  3294.3 180.1 94.7 359.7 342.1 24.6
12/01/2023 2970.6  3059.6 3565.6 2851.3 32232  3178.6 208.0 119.0 387.0 327.3 44.6
Average 3439.5 3644.0 3847.3 32529 3539.1  3506.3 85.3 1733 341.0 253.3 41.0

Table 7.4: aggregated amounts of forecasts.

Metrics WA SES IS TSB NN
MAD 85.3 173.3 341.0 253.3 41.0
RMSE 104.9 2144 359.1 265.2 52.6

MAPE (%) ‘ 0.025 0.048 0.098 0.073 0.012
SD ‘ 247.08 328.55 131.26 219.65 175.42

Table 7.5: measurements result of each forecasting method.



7.2.2 Results at a part level

The measurements are also compared at a part level where each SKU’s forecasting
accuracy and volatility are calculated, and the statistical information is indicated in Table 7.6
to Table 7.8. Table 7.6 indicates the MAPE results: WA has the highest accuracy if comparing
the mean of MAPE. TSB performs well as it has the third lowest average MAPE.

NN model was tested with the model accuracy using testing data, and the mean MAE
result is 0.42. This indicates that the forecasts deviate from the actual demand by approximately
0.412 units. NN has an average MAPE of 22.18% and median MAPE of 18.71%, which means
50% of spare parts have a mean absolute error less than 18.71%. Compared to previous
outcomes at an aggregated level, the MAPE results show that TSB, WA, or SES outperform
NN at a part level. RMSE measures the deviation of actual and forecasts and Table 7.7 shows

the statistical overview of RMSE in all SKUs.

IS has the lowest accuracy and the highest fluctuation across all three metrics. WA is the
most accurate method, and NN performs better when comparing RMSE: 0.74 of RMSE, which
is 0.15 higher than RMSE of WA. Overall, the performance of TSB is satisfactory that it has
the relatively high accuracy and low fluctuation. TSB has a MAPE of 21.28, which is 3% higher
than MAPE of WA; its volatility is 0.9, which is 0.2 higher than NN. From the results of two
experiments, the accuracy performances of TSB are comparable to those of WA and SES.

However, TSB does reduce volatility to some extent at both the aggregated and part levels.

Volatility is another focus of this thesis which measures the fluctuation of forecasts. Under
this situation, NN becomes the least fluctuating method, WA performs well in minimizing the
volatility of forecasts, and TSB has standard deviation of 0.9 which is also a small fluctuation.
SES demonstrates high fluctuation which is consistent with the previous findings at an

aggregated level.



Method Min Q1 Median Mean Q3 MAX
WA 2792 10.524 14338  16.01 17.428 93333
SES 1.043 12878 17.67  19.97 24077  65.501

IS 0 1525 27492 41.553 46.572 697.232
TSB 5287 14867 19.471 21286 26782  204.29
NN 4321 13.027 18712 22183 25436 511.835

Table 7.6: MAPE (%) result of each forecasting method at part level.
Method Min Q1 Median Mean Q3 MAX
WA 0.086 0258 0401 0546 0.642  9.117
SES 0.015 0348 0586 0777 0957 11.689
IS 0.154 0851 1208 1.631 1805  16.8
TSB 0 0316 0526 0.806 0921 11.374
NN 0.001 0312 0507  0.691 0.822 12.927
Table 7.7: RMSE result of each forecasting method at part level.
Method Min Q1 Median Mean Q3 MAX
WA 0 0363 0592 0821 0944 9177
SES 0 0487 0769 1045 1233 13.713
IS 0193 075  1.055 1.388 1.577 12.061
TSB 0 0322 0576 0901 1.029 10.181
NN 0 0268  0.482  0.743 0.836 10.246

Table 7.8: Volatility result of each forecasting method at part level.



Chapter 8 Discussion and Limitations

This section discusses the results from the previous chapter and provides insights into the
research questions. Besides, another potential factor named “Archived Forecast” is discussed.
Thorough research was conducted on one spare part for explaining “Archived Forecast” and
this research is included in Appendix 1 as reference. The thresholds suggested for Philips are
reviewed, and the performances of five methods in the lumpy pattern are discussed further
under Philips situation. The limitations of this research and problems that occur during the

thesis are also pointed out.

8.1 The effects of “Archived Forecast” and the research on an individual spare part.

During the exploration of Servigistics, I found that a variable named “Archived Forecast”
may have an important effect on the forecasts. SPS team had provided several spare parts as
examples when stating problems and one of the spare parts, part 459801352572, was used by

me for examining the problems of adopting “Archived Forecast”.

“Archived Forecast” is the stored forecast in Servigistics based on the previous forecast
or demands. I questioned the function and calculation logic of the "Archived Forecast" with
PTC team, but by the time this thesis was completed, no response had been received. Thus, the
discussion was based on my assumptions and results from implementation of assumed

forecasting logics.

I observed that the daily forecasts in April 2024 in an aggregated amount (that is, sum of
forecasts from all locations) were absurdly volatile (Appendix Figure 1.1). After closely
examining the forecasts and facts in Servigistics, I assumed: due to Servigistics’s algorithm,
forecasts are using “Archived Forecast” for forecasting instead of historical actual demands

and forecasting models.

The detailed investigation on part 459801352572 is included in Appendix 1. The results
confirm that the assumption is valid. The Servigistics algorithm can cause significant forecast
fluctuations, partly due to the use of “Archived Forecast”. Some calculations of forecasts do
not follow the Servigistics 's forecasting methodology but instead rely on archived forecasts.
For example, in February, the forecasts of the year are calculated by “Archived Forecast” times

12 months.



8.2 Thresholds for categorization.

Philips sets a threshold of ADI to 1.32 to distinguish smooth from intermittent demand,
which includes more SKUs as intermittent demand items. The research goal is to explore the
possibility of increasing ADI. For the scope of this thesis, the effects of adopting a new ADI
cannot be easily researched after discussing with SPS team. Instead, SPS can implement the

recommended ADI in SBOX to accurately determine its effects.

This thesis created a simple experiment to propose potential changes in thresholds. The
key idea of this experiment is finding the switch point of SKUs choosing forecasting methods.
Finally, ADI equals 3 is a possible number when using statistical counting. K-means is adopted
for reference and suggests an ADI equalling 4.5 to be a viable option. But according to the
outcomes listed in Table 7.3, there is no obvious change in ADI after comparing the methods
used in different clusters. Therefore, I would suggest ADI equals to 3 as the most likely new
ADI. When increasing ADI to 3 or 4.5, 35% more SKUs categorized as intermittent demand
are dealt with by methods for erratic and smooth demand. TSB is planned to implement only
in intermittent demand. By increasing the ADI threshold, the number of SKUs in intermittent

demand are reduced by 35% which streamlines the process.

8.3 Methods discussion: the performances of TSB and NN implementation in lumpy
pattern.

In Servigistics, WA, SES, and IS are the top three methods in forecasting; TSB is another
important focus that the performance on the lumpy or intermittent demand pattern has a
significant impact on the further Philips’s experiments. NN is suggested by previous studies

and has also been investigated in Philips data set as well.

The second experiment examined the main five forecasting models on the lumpy demand
pattern, especially on those most fluctuating spare parts. Three measurements were used to
evaluate the forecasts, MAPE and SD are the key metrics. From the results at a part level, WA
achieves the highest accuracy, with a MAPE of 16.1% and an RMSE of 0.54, which are less
than half of the values obtained from other methods. During the recent experiment conducted
by Philips, 28.5% of the spare parts chose WA as the main method before the simulation. The
results from my experiment echo the previous findings in Philips that WA is a crucial technique
in forecasting. This also resonates with some studies on intermittent demand patterns. Ghobbar

(2004) conducted a study on aircraft operators in their components that have intermittent



pattern. The results show continued superiority of weighted average, Holt, and Croston

methods (Ghobbar, 2004).

TSB and NN are explored and performance of these two methods are compared with the
traditional methods in the system. TSB has not been implemented in the system, and Philips
pays attention to the effectiveness of this method. From the results shown above, TSB
performed worse compared to WA and SES when considering MAPE and volatility metric. The
mean of MAPE for TSB in all spare parts is 21.28% which is 7% higher than WA and 1%
higher than SES. The standard deviation is 0.901 across all spare parts, which is 0.1 higher than
WA and indicates that the fluctuation of forecasts from this method is relatively low. Therefore,
though TSB is comparable to WA or SES in terms of accuracy, TSB can still be considered as
one option for lumpy or intermittent demand. Doszyn (2020) conducted research on SBA,
Croston, TSB, and SES, he found that TSB method outperforms other methods for all products.
In case of erratic and smooth items, TSB method yielded the poorest results (Doszyn, 2020).
Another research modified TSB, and TSB method achieves the best results on MASE and
RMASE among all comparison methods (Yang et al., 2021).

NN is a machine learning method and has been proved to perform well in some previous
studies. Results from Shahwan & Said (2012) assure that when the demand data is more
sporadic, i.e. have more zero values, then neural network becomes a better forecasting tool.
This research carried out NN in the most fluctuating SKUs exhibit lumpy pattern. The MAPE
value of NN is 22.18% which did not show the better performance of NN compared to TSB,
WA, or SES. But when considering RMSE and volatility, NN outperformed WA, SES, and
TSB. NN has mean values of 0.69 in RMSE and mean volatility value of 0.743 across all spare
parts. The volatility of NN is around 0.2 to 0.3 lower than other methods. In addition, when
focusing on the aggregated amounts, it is noteworthy that the results of NN exhibit the highest
accuracy and the lowest volatility at an aggregated level (i.e., MAPE equals to 1.8%).

After balancing the results at an aggregated level and part level, NN did lead to the best
forecasting results; and for TSB, it has the lowest fluctuation which indicates that adopting
TSB method may improve volatility to some extent. WA has the highest accuracy at an
aggregated level, but the volatility is not desirable compared to TSB. Since in Servigistics, it is
not possible to adopt NN, thus TSB is a potential method for reducing the volatility of
forecasting. The main aspects Philips focuses on regarding the forecasting are accuracy and

volatility. As stated before, they would like to know methods that improve accuracy while



decreasing the fluctuations to some extent. TSB has results that indicate that TSB ranks third
in accuracy and second in volatility. SES has relatively high accuracy, which is only 0.8% lower
MAPE than TSB, but it has 0.1 higher volatility compared to TSB. After balancing the effects,

TSB still stands out and it is meaningful to apply in intermittent demand in Philips system.

8.3 Limitations

The primary and most significant limitation of this thesis is the model building for the
demand forecasting. PTC is the third-party IT service company for Philips; thus, the operation
of Servigistics is unseeable which cause obstacles to the research. The models of forecasting
and calculation formulas are constructed under documented instructions from SPS team. The
Servigistics algorithms created by PTC especially for Philips’s demand forecasting are not
included, this may contribute to the inaccuracies in results compared to forecasts number

observed in planning platform.

In addition, this research applied NN in the simplest form, which is a single layer neural
network. MAPE and volatility are the main measurements to echo with the settings in the
system. The future research area can adopt multi-layered networks and select more metrics for
evaluating the performance of models. Furthermore, due to the limited capacity of software,
only a small subset of parameter values was tested. Expanding the range of values can provide

more insights into model performance.

The intransparency of Servigistics operation hampered the research. For example, some
of the spare parts are classified into different categories when relying on the documented
definition of demand pattern. Archived forecast mentioned in part research is a potential reason
for fluctuating forecasts. The requests for the definition and implementation scenarios of

archived forecast are not answered by PTC team. This serves as another limitation of this thesis.



Chapter 9 Suggestions for Philips

This chapter presents the suggestions after experimenting with Philips’s data sets. The

suggestions are in two aspects: Servigistics algorithm and forecasting methods selection.

Regarding the Servigistics algorithm, I observed on Servigistics online platform that,
variables like “Archived Forecast” are used for getting yearly forecasts. This can simplify the
forecasting process since only the “Archived Forecast” are calculated based on historical
demands and yearly forecasts are equal to “Archived Forecast” times 12 periods. However, the
usage of “Archived Forecast” may lead to difficulties explaining the forecasts in each month.
Moreover, forecasting results from “Archived Forecast” may cause fluctuations in forecasts.
From my observations, for some spare parts in certain locations, the forecasts may shift from
using embedded Servigistics forecasting methods to "Archived Forecast" calculations. This
contributes to some of the volatility in forecasting. The future work can be conducted to reduce

the fluctuations on such reasons.

For forecasting methods, Philips is experimenting with TSB in intermittent demand SKUs.
From results of this research, TSB exhibits relatively high accuracy and low volatility
compared to SES and IS. Thus, it is worth noting that TSB implementing in intermittent
demand may lead to better performance of forecasts. WA is another aspect that Philips should
pay attention to since WA has more stable and accurate forecasts. The calculation of WA is
easier to implement in Servigistics. Therefore, I suggest that WA can be the second option to

consider except for TSB when figuring out methods used for intermittent demand.



Appendix 1

Research on Individual Part

This section is on research for an individual part, some facts are included in Appendix.
To better understand Philips' inquiries and the demand forecasting issue, I researched a specific
spare part with abnormal fluctuations. The part number is 459801352572, and this spare part
is also indicated in the problematic parts reported by Philips.

Characteristics of Part 459801352572

Part 459801352572 is the chosen part for investigation, with product price of €15,490. It
represents the service spare part Detector PX3040, and the warehouse locations are in China
(see Appendix Table 1). The demand data from January 1, 2021, to April 1, 2024, was extracted,
with demands rolling up to the first day of each month. A zero in the demand record indicates
that there may have been demand, but the product was out of stock, preventing any sales. The
records of demand without zero values are listed in Table 3.2, the months with no records in
the system means there is no demand during that period. From the demand record, this spare
part has a max demand of 2 and minimum demand of 1, with most of the time being no demand

(that is, zero demand).

Parameters related to CV? and ADI are presented in Table 3.1. These are calculated and
queried from database of PTC or copied from the online platform. CV? and ADI are not
calculated for certain locations due to insufficient demand history information. According to
theory, part 459801352572 should be categorized as lumpy demand, but it is shown as
intermittent since Philips excludes lumpy demand. In addition, this section uses existing
demand thresholds, CV? and ADI, for exploring potential reasons and research directions. For
the experiments of the thesis, CV? and ADI are manually calculated using the past 40 periods

historical demands.

Philips SPS team provided daily forecasts information pulled from PTC system from
February 28, 2024, and April 12, 2024, to illustrate the volatility of forecasting. Daily forecasts

information pulled from PTC planning platform is in Figure 3.1, which shows an unstable



forecasting line. Regarding the forecasting methods of part 459801352572, the algorithms
select four methods: average, weighted average, single exponential smoothing, and intermittent
smoothing. The forecasting numbers of Figure 3.1 for this are shown Appendix, which is the

aggregated number of forecasts of each location.

After closely examining the forecasts from each location over the period, I have identified
two potential reasons for the fluctuations: Firstly, it could be attributed to the system algorithm
within PTC’s planning platform, which may not be accessible to the SPS team. Secondly,
significant fluctuations in forecasts may be due to changes in forecasting methods. The
subsequent sections provide a detailed explanation of these two reasons. A preliminary
experiment is conducted, and results are demonstrated for elaborating the assumptions and

research directions of the thesis.

Location Part Number SD Mean Cv2 ADI
CN6SU690U | 459801352572 0.61 0.28 4.82 4.67
CN6SUG687U | 459801352572 0.20 0.04 25 14
CN6SU688U | 459801352572 0.28 0.08 11.30 2
CNI3U632U | 459801352572 0.41 0.17 5.82 4

Appendix Table 1.1: parameters information of part 459801352572.

Location Part Number Unit Cost Location Type Demand Type Quantity Demand Date
CN6SUG690U | 459801352572 15490 LDC Local Demand 2 2021-06-01
CN6SUGIOU | 459801352572 15490 LDC Local Demand 2 2021-09-01
CN6SUG690U | 459801352572 15490 LDC Local Demand 1 2021-10-01
CN6SUGIOU | 459801352572 15490 LDC Local Demand 1 2022-05-01
CN6SUG690U | 459801352572 15490 LDC Local Demand 1 2022-10-01
CN6SUGIOU | 459801352572 15490 LDC Local Demand 1 2023-01-01
CN6SUG87U | 459801352572 15490 DC Local Demand 1 2023-02-01
CN6SUGIOU | 459801352572 15490 LDC Local Demand 2 2023-05-01
CN6SUG88U | 459801352572 15490 LDC Local Demand 1 2023-10-01
CN6SUG688U | 459801352572 15490 LDC Local Demand 1 2023-11-01
CN93U632U | 459801352572 15490 FSL Local Demand 1 2023-12-01

Appendix Table 1.2: historical demands of part 459801352572.
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Appendix Figure 1.1: daily forecasts of part 459801352572 (aggregated).

Assumption: Servigistics algorithm may cause the fluctuation of forecasting.

Upon careful examination of forecasts from each location, it was observed that in location
"CN93U632U", the forecasted values were significantly higher than the actual demands
recorded over the past three years. Specifically, the actual demand from "Location Part
Demand" (see Data section) in the past three years has consistently been only 1, which is further
supported by information obtained from online platforms. However, the forecasts for this
location are consistently around 2. The variability in forecasting, fluctuating from 2.86 to 2.29

to 1.71, can partially account for the fluctuations observed.

After consulting with the SPS team, it has been suggested that this discrepancy may arise
from the presence of an "archived forecast" setting in the system. In this particular location,
each month's archived forecast is saved and presumed to be the forecast for the subsequent 12
periods. Consequently, the forecasting for a given year is calculated by multiplying the archived
forecast by 12 months. The proposed calculations are outlined in Table 3.3, where "assumed
forecasts" represent the calculated values under my assumption, while "actual forecasts" are
the forecasts provided directly by the SPS team. The assumed forecasts under assumption one

match with the actual forecasts extracted from the system.

Month Archived Forecast Assumed Forecast Actual Forecasts
February | 0.24 2.88 2.88
March | 0.19 2.28 2.28
April | 0.14 1.71 1.71

Appendix Table 1.3: test assumption.



Summary of Individual Part Research

Part 459801352572 is investigated, and two assumptions are examined. The results
confirm that both assumptions are valid. The Servigistics algorithm can cause significant
forecast fluctuations, partly due to the use of "archived forecasts". Some calculations do not
follow Servigistics forecasting methodology and instead rely on archived forecasts. Appendix
Table 1.3 supports the first assumption. Due to the intransparency of Servigistics problem,

further research can be conducted to looks into the effectiveness of "archived forecasts".



Appendix 2

Rule

Type

Soft

Soft
Hard
Hard
Hard

Soft
Soft
Hard

Hard
Soft
Soft
Hard
Hard
Hard
Hard

Hard

Status

Trend detected
LastYearAvg < 3
NumHistDemands < 2
#StreamHistSlices < 12
Insufficient History

#HistSlices < x
Not intermittent
#StreamHistSlices < x

#HistSlices < y
#HistSlices < z
TotalDemandSlices < 5
LastYearAverage < 2
#StreamHistSlices < 12
#HistSlices < x

Not seasonal

#Slides< 1

Eliminate forecast Methods

Trend detected. Average eliminated, Weighted Average Eliminated, Moving Average
eliminated. Single Exponential eliminated.

LastYearAverage less than 3. Moving Average eliminated.
Total number of historical demands less than 2. Intermittence Smoothing eliminated.

Stream config history slices less than 12. Intermittence Smoothing eliminated.
# of history slices less than 12. Intermittence Smoothing eliminated. Winters
Multiplicative eliminated.

Number of history slices less than value. Intermittence Smoothing eliminated.

Intermittency test failed. Intermittence Smoothing eliminated.

Stream config history slices less than global setting INIT_EXPSMOOTHING_MONTHS+3.
Double Exponential eliminated.

# of history slices less than global setting INIT_EXPSMOOTHING_MONTHS+3. Double
Exponential eliminated.

Number of history slices less than val(minDoubleExpHistory). Double Exponential
eliminated.

Number of history slices less than 5. Double Exponential eliminated.

LastYearAverage less than 2. Winters Multiplicative eliminated.

Stream config history slices less than 12. Winters Multiplicative eliminated.

Number of history slices less than val(minWintersHist). Winters Multiplicative eliminated.
Auto correlation test failed. Winters Multiplicative eliminated.

Number of slides less than 1. All forecast methods eliminated.

The number of times that MAPE, MAD, and RMSE are calculated using the holdout
window positioned within the forecast window. The holdout window is initially aligned
with the first time slice in the forecast window, and the error values are calculated. Best
Fit will then "slide" the holdout window one time slice later and recalculate the error
values until the number of slides is reached. The resulting error values are averaged
over the number of slides.

Appendix 2 Table 1: Bestfit Rules



Part Number

459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572
459801352572

¥ Date

- | Total

28/02/2024
29/02/2024
01/03/2024
04/03/2024
05/03/2024
07/03/2024
08/03/2024
11/03/2024
12/03/2024
13/03/2024
14/03/2024
15/03/2024
18/03/2024
19/03/2024
20/03/2024
22/03/2024
25/03/2024
26/03/2024
27/03/2024
28/03/2024
29/03/2024
01/04/2024
02/04/2024
03/04/2024
04/04/2024
05/04/2024
08/04/2024
09/04/2024
10/04/2024
11/04/2024
12/04/2024

b

8.63
8.63
6.45
6.95
6.95
5.63
6.95

5.71

8

8

8
5.13
7.42
5.13
5.13
5.13
6.45
7.42
5.13
7.42
5.71
5.71
5.71
6.58
4.87
4.69
6.05
6.05
6.05
4.69

Appendix 2 Table 2: Aggregated forecasts from system during February 28 and April 12 on part level.



Location v Part.Number ~ |Unit.Cost ~ |Quantity ~ Demand.Exte| * |Demand.Date ~  Quantity.Fille( =
CN6SU687U "459801352572 15490 0 0 2021-06-01 00:00:00.0
CN6SU688U "459801352572 15490 0 0 2021-06-01 00:00:00.0
CN6SU690U "459801352572 15490 2 0 2021-06-01 00:00:00.0
CN6SU687U "459801352572 15490 0 0 2021-09-01 00:00:00.0
CN6SU688U "459801352572 15490 0 0 2021-09-01 00:00:00.0
CN6SU690U "459801352572 15490 2 0 2021-09-01 00:00:00.0
CN6SU688U "459801352572 15490 0 0 2021-10-01 00:00:00.0
CN6SU690U "459801352572 15490 1 0 2021-10-01 00:00:00.0
CN6SU688U "459801352572 15490 0 0 2022-05-01 00:00:00.0
CN6SU690U "459801352572 15490 1 0 2022-05-01 00:00:00.0
CN6SU690U "459801352572 15490 1 0 2022-10-01 00:00:00.0
CN6SU687U "459801352572 15490 0 0 2023-01-01 00:00:00.0
CN6SU690U "459801352572 15490 1 0 2023-01-01 00:00:00.0
CN6SU687U "459801352572 15490 1 0 2023-02-01 00:00:00.0
CN6SU690U "459801352572 15490 0 0 2023-02-01 00:00:00.0
CN6SU687U "459801352572 15490 0 0 2023-05-01 00:00:00.0
CN6SU690U "459801352572 15490 2 0 2023-05-01 00:00:00.0
CN6SU688U "459801352572 15490 1 15490 2023-10-01 00:00:00.0
CN6SU688U "459801352572 15490 1 15490 2023-11-01 00:00:00.0
CN93U632U "459801352572 15490 1 15490 2023-12-01 00:00:00.0
CN6SU688U 459801352572 15490 0 0 2023-12-01 00:00:00.0

Appendix 2 Table 3: actual demand for past 3 yeats.

Part Number | ~ Location Nam-¥|Forecast Method | ~ Total ~ | Date v
459801352572 CN6SU687U Single Exp Smoothing 0.34 2024-02-28 00:00:00
459801352572 CN6SU687U Single Exp Smoothing 0.34 2024-02-29 00:00:00
459801352572 CN6SU687U Weighted Average 1.08 2024-03-11 00:00:00
459801352572 CN6SU687U Weighted Average 1.08 2024-03-12 00:00:00
459801352572 CN6SU687U Weighted Average 1.08 2024-03-13 00:00:00
459801352572 CN6SU687U Weighted Average 1.08 2024-03-14 00:00:00
459801352572 CN6SU687U Weighted Average 1.08 2024-03-15 00:00:00
459801352572 CN6SU687U Weighted Average 1 2024-04-01 00:00:00

459801352572 CN6SU687U Weighted Average
459801352572 CN6SU687U Weighted Average
459801352572 CN6SU687U Weighted Average
459801352572 CN6SU687U Weighted Average

2024-04-02 00:00:00
2024-04-03 00:00:00
2024-04-04 00:00:00
2024-04-05 00:00:00

el

Appendix 2 Table 4: Daily forecasts in location CN6SU687U.



Part Number | ~ | Location Nam-¥ | Forecast Method

459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U
459801352572 CN6SU688U

~ | Total
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Intermittence Smoott
Intermittence Smoott
Intermittence Smoott
Intermittence Smoott
Intermittence Smoott

+ Date M

2.93
2.93
1.66
1.66
1.66
2.63
1.66
2.63
2.63
2.63
2.63
2.63
2.63
2.63
2.63
2.63
2.63
1.66
2.63
2.63
2.63

1.5

1.5

1.5
2.37
2.37

1.5
3.43
3.43
3.43
2.07

Appendix 2 Table 5: Daily forecasts in location CN6SU688U.

2024-02-28 00:00:00
2024-02-29 00:00:00
2024-03-01 00:00:00
2024-03-04 00:00:00
2024-03-05 00:00:00
2024-03-07 00:00:00
2024-03-08 00:00:00
2024-03-11 00:00:00
2024-03-12 00:00:00
2024-03-13 00:00:00
2024-03-14 00:00:00
2024-03-15 00:00:00
2024-03-18 00:00:00
2024-03-19 00:00:00
2024-03-20 00:00:00
2024-03-22 00:00:00
2024-03-25 00:00:00
2024-03-26 00:00:00
2024-03-27 00:00:00
2024-03-28 00:00:00
2024-03-29 00:00:00
2024-04-01 00:00:00
2024-04-02 00:00:00
2024-04-03 00:00:00
2024-04-04 00:00:00
2024-04-05 00:00:00
2024-04-08 00:00:00
2024-04-09 00:00:00
2024-04-10 00:00:00
2024-04-11 00:00:00
2024-04-12 00:00:00



Part Number | ~ | Location Nam-¥ | Forecast Method

459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U
459801352572 CN6SU690U

~ | Total
Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Average

Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing
Single Exp Smoothing

+ Date M

2.5
2.5
2.5

3

N N NN W WWw

2
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
1.5
1.5
1.5
1.5
1.5

0.91
0.91
0.91
0.91
0.91

Appendix 2 Table 6: Daily forecasts in location CN6SU690U.

2024-02-28 00:00:00
2024-02-29 00:00:00
2024-03-01 00:00:00
2024-03-04 00:00:00
2024-03-05 00:00:00
2024-03-07 00:00:00
2024-03-08 00:00:00
2024-03-11 00:00:00
2024-03-12 00:00:00
2024-03-13 00:00:00
2024-03-14 00:00:00
2024-03-15 00:00:00
2024-03-18 00:00:00
2024-03-19 00:00:00
2024-03-20 00:00:00
2024-03-22 00:00:00
2024-03-25 00:00:00
2024-03-26 00:00:00
2024-03-27 00:00:00
2024-03-28 00:00:00
2024-03-29 00:00:00
2024-04-01 00:00:00
2024-04-02 00:00:00
2024-04-03 00:00:00
2024-04-04 00:00:00
2024-04-05 00:00:00
2024-04-08 00:00:00
2024-04-09 00:00:00
2024-04-10 00:00:00
2024-04-11 00:00:00
2024-04-12 00:00:00



Part Number |~ |Location Nam-¥
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U
459801352572 CN93U632U

Forecast Method

Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average
Weighted Average

+ Total

v Date -

2.86
2.86
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
2.29
1.71
1.71
1.71
1.71
1.71
1.71
1.71
1.71
1.71

2024-02-28 00:00:00
2024-02-29 00:00:00
2024-03-01 00:00:00
2024-03-04 00:00:00
2024-03-05 00:00:00
2024-03-08 00:00:00
2024-03-11 00:00:00
2024-03-13 00:00:00
2024-03-14 00:00:00
2024-03-15 00:00:00
2024-03-19 00:00:00
2024-03-26 00:00:00
2024-03-27 00:00:00
2024-03-29 00:00:00
2024-04-01 00:00:00
2024-04-02 00:00:00
2024-04-03 00:00:00
2024-04-04 00:00:00
2024-04-08 00:00:00
2024-04-09 00:00:00
2024-04-10 00:00:00
2024-04-11 00:00:00
2024-04-12 00:00:00

Appendix 2 Table 7: Daily forecasts in location CN93U632U.

Forecast Rollup
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Local Demand Forecast stream: external demand or customer demand
Demand Rollup: internal demand coming from child locations

Appendix 2 Table 8: Demand Roll-up, from Philips SPM trainings by PTC.
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