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Abstract

This study investigates the impact of urban environmental factors on residential property
prices in Rotterdam, leveraging advanced computer vision techniques to extract features
from street-level imagery. We extend traditional hedonic pricing models by incorporating
visual characteristics of the urban environment. Analyzing 6,691 property listings and
over 200,000 street view images, we employ semantic segmentation and object detection
models to quantify urban greenery, pedestrian presence, and transportation infrastruc-
ture. Our methodology compares linear hedonic pricing models with non-linear Random
Forest approaches across multiple spatial scales. Results demonstrate that incorporat-
ing image-derived environmental features significantly improves the predictive accuracy
of property valuation models, with Random Forest models consistently outperforming
traditional linear methods. The Urban Greenery Index exhibits the strongest positive in-
fluence on property values for houses but the weakest for apartments, while the presence
of bicycles shows the largest overall positive effect. We observe non-linear relationships
and threshold effects in the impact of environmental factors, highlighting the complex-
ity of urban housing valuation. This research offers a novel framework for integrating
visual environmental data into property valuation models, providing valuable insights
for urban planning and real estate economics.

Keywords: computer vision, hedonic pricing models, random forest, real estate valua-
tion, street-view imagery, urban environmental factors
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1 Introduction

The housing market has long been a cornerstone of societal wealth and well-being. With
many households holding the majority of their wealth in their primary residence, housing
prices significantly influence the quality of life for a large portion of the population. This
economic reality has sparked interest from various stakeholders, including homeowners,
insurers, policymakers, and real estate tax assessors. Consequently, researchers have
devoted considerable attention to developing accurate property valuation methods, with
hedonic pricing models (HPM) emerging as a predominant approach (Rosen, 1974).
These models estimate a property’s value by analyzing the contributions of its individual
attributes to the overall price, providing a detailed understanding of the factors driving
market values.

In evaluating properties, the considerations of prospective homeowners extend far beyond
the physical attributes of a house. They consider into a multitude of factors that impact
the desirability and perceived value of a home. Guite et al. (2006) finds that the urban
environment directly impacts social, economic, and health outcomes, making its quality
a significant determinant in property values. Traditional HPMs have primarily focused
on easily quantifiable structural attributes such as size, age, and the number of rooms
(Chau and Chin, 2003). However, this approach overlooks critical environmental factors
that significantly influence a property’s desirability and, consequently, its market value
(Chen et al., 2020). Elements such as amenities, neighborhood aesthetics, and the overall
ambiance of a neighborhood contribute to how safe and desirable it feels (Law et al.,
2019).

Some environmental factors, such as air and water quality, have been included in he-
donic pricing models since the late 1960s and are consistently found to significantly
impact property values (Boyle and Kiel, 2001). However, many critical environmental
factors like traffic levels and noise pollution, are very challenging to quantify (Zhang and
Dong, 2018). Recent technological advancements, particularly in machine learning and
computer vision, have opened new avenues for incorporating these previously difficult-
to-quantify environmental factors into real estate valuation models. The proliferation
of unstructured data, such as images and text, has revolutionized our ability to capture
and analyze complex environmental attributes (Potrawa and Tetereva, 2022). Various
approaches have emerged to integrate image data into hedonic pricing models, rang-
ing from classification and segmentation techniques to end-to-end methods that directly
incorporate image data into pricing models (Poursaeed et al., 2018; Zhang and Dong,
2018).

This study builds upon these advancements, proposing a novel framework that leverages
street-level imagery to extract and quantify urban environmental factors influencing
housing prices in Rotterdam. Our approach offers an automated method to include
proxies of human perception of urban surroundings, focusing on two key aspects: visual
appeal (quantified through greenery) and neighborhood vitality (measured by the pres-
ence of people and vehicles). By quantifying these factors, we aim to capture elements
of neighborhood desirability that may significantly influence property values.



Problem Statement

Despite the progress in real estate valuation methods, most studies still fail to adequately
consider the broader environmental context. This oversight can lead to inaccurate val-
uations, as these models often do not capture the full spectrum of elements influencing
buyer decisions. For instance, two properties with identical structural attributes may
have significantly different market values based on their surrounding environment. A
home situated near a serene park might command a premium compared to an otherwise
similar property located beside a busy highway (Chen et al., 2020).

Recent studies have begun to address this gap by incorporating various types of unstruc-
tured data into valuation models. Images, in particular, have emerged as a valuable
resource for capturing previously overlooked aspects of properties and their surround-
ings. Approaches range from analyzing interior images to assess the quality of materials
and design (Poursaeed et al., 2018), examining exterior property images to assess the
exterior appearance of a property (You et al., 2017), utilizing street view images for
neighborhood characteristics (Zhang and Dong, 2018), and employing aerial imagery for
broader urban context (Law et al., 2019).

While these approaches have advanced our understanding, there remains a critical need
for research specifically focusing on the impact of neighborhood-level visual character-
istics on property prices. This study aims to address this gap by leveraging street-level
imagery to extract and quantify urban environmental factors influencing housing prices
in Rotterdam.

This study aims to address the central question:

How do urban environmental factors extracted from street-level
imagery influence residential housing prices in Rotterdam?

This research distinguishes itself from previous studies in several key aspects:

e Focus on Neighborhood Characteristics: Unlike studies that assess the impact of
interior features (Poursaeed et al., 2018) or individual property exteriors (You et
al., 2017), we concentrate on the visual characteristics of the surrounding neigh-
borhood.

o Automated Extraction of Environmental Factors: We systematically extract and
quantify environmental factors from street-level imagery. This approach offers an
objective and scalable method for assessing neighborhood characteristics (Zhang
and Dong, 2018).

o Multi-scale Analysis: We explore how the influence of environmental factors varies
with distance from the property. This addresses the hypothesis proposed by Law
et al. (2019) that buyers might value a visually desirable neighborhood more than
just a visually appealing street. By using different radii to define neighborhood
contexts, we aim to determine the spatial extent of environmental influences on
property values.

e Comprehensive Set of Environmental Factors: Our study examines a range of fac-
tors including greenery, the presence of people, and the prevalence of vehicles. This
combination allows us to capture aspects of both visual appeal and neighborhood
vitality.



e Comparison of Linear and Non-linear Models: We employ both traditional lin-
ear hedonic pricing models and more advanced non-linear techniques, specifically
Random Forest models. This dual approach enables us to capture potential non-
linear relationships and threshold effects in the impact of environmental factors
on housing prices, while also providing a basis for comparison with established
methods.

We utilize state-of-the-art computer vision models for semantic segmentation to quantify
greenery (Cheng et al., 2022) for object detection to count people, cars, and bicycles
(Redmon and Farhadi, 2018). This approach allows us to investigate how the inclusion
of urban environmental factors impacts the accuracy of housing price predictions and
examine the specific effects of various environmental factors on property values.

To address our research question, we employ a comprehensive analytical framework. This
approach begins with acquiring diverse data sources, namely property listings and street
view imagery. We then extract environmental features from the street view images using
the aforementioned techniques, which are subsequently integrated with property data
through spatial interpolation to create a unified dataset. We employ both traditional
linear hedonic models and more advanced Random Forest techniques to analyze their
impact on housing prices, and finally conduct an in-depth interpretation of our results.

By addressing these aspects, our study aims to provide a nuanced and comprehensive
understanding of how urban environmental factors influence property values. This re-
search has the potential to enhance the accuracy of real estate valuation models, inform
urban planning decisions, and provide insights into the complex relationship between
neighborhood characteristics and housing prices.

Relevance

This research occupies a unique intersection of urban planning and real estate valuation,
with potential contributions to both practical applications and theoretical frameworks
in these fields. The findings could benefit various stakeholders, including municipalities,
developers, and real estate professionals, by providing a more objective approach to
property valuation.

In the Netherlands, this study has particular relevance to the Wet waardering onroerende
zaken (WOZ, or Real Estate Valuation Act) system, which forms the basis for property
taxation. Currently, this process often relies heavily on manual assessment and expert
judgment. Our approach offers a potential path towards more objective and consistent
property valuations, which could enhance the fairness and accuracy of property tax
assessments.

For urban planners and policymakers, our research provides insights into how specific
environmental factors contribute to neighborhood desirability and property values. This
knowledge could inform strategies for urban development and regeneration, helping to
create more attractive and valuable urban spaces. For instance, understanding the eco-
nomic impact of green spaces could guide decisions on infrastructure investments and
zoning policies.

Academically, this study extends the discourse on real estate valuation and hedonic
pricing models by proposing a novel framework for incorporating urban environmen-
tal factors derived from unstructured data sources. Using advanced computer vision



techniques, we contribute to computational urban studies and bridge the gap between
theoretical data science and practical applications in urban planning and real estate
economics.

Outline

The remainder of this thesis is structured as follows: The Literature Review provides
a comprehensive examination of previous research on real estate valuation, focusing on
the evolution of hedonic pricing models and the increasing use of unstructured data in
property valuation. It also explores the growing body of work on quantifying urban
environmental factors and their impact on property values. The Hypotheses section
outlines our expectations regarding the influence of environmental factors on housing
prices, based on insights from the literature and the specific context of Rotterdam. The
Data section details our datasets, including property listings from Funda.nl and an ex-
tensive collection of street view images. It explains how these diverse data sources are
integrated to create a comprehensive picture of Rotterdam’s housing market and urban
environment. The Methodology section elucidates our analytical framework, describ-
ing both the linear hedonic and non-linear Random Forest models employed. It also
provides a detailed explanation of the computer vision techniques used to extract envi-
ronmental features from street-level imagery. The Results section presents our findings,
comparing the performance of different models and analyzing the impact of various en-
vironmental factors on housing prices across different spatial scales. The Conclusion
summarizes the key insights of our study, while the Discussion reflects on the implica-
tions of our findings for stakeholders in real estate and urban planning. It also considers
the limitations of our approach and suggests directions for future research.



2 Literature Review

This literature review provides a comprehensive examination of the evolution of real
estate valuation methods, with a focus on integrating urban environmental factors and
applying advanced computational techniques. The review is structured to address key
aspects related to our research question. We begin by exploring the foundations and evo-
lution of the Hedonic Pricing Model, which forms the theoretical basis for our approach.
We then examine the transition from linear models to machine learning approaches, high-
lighting the need for more flexible modeling techniques to capture complex relationships
in housing markets. The review continues with an analysis of how unstructured data,
particularly images, have been integrated into real estate valuation, directly informing
our methodology for extracting environmental factors from street-level imagery. Finally,
we discuss recent advancements in urban environmental factor analysis and computer
vision techniques. Throughout the review, we trace the progression from traditional
valuation methods to modern computational approaches, setting the stage for our study
on housing prices in Rotterdam.

2.1 Hedonic Pricing Model: Foundations and Evolution

The Hedonic Pricing Model (HPM) serves as the basis of our approach to real estate
valuation. The Hedonic Pricing Model (HPM) serves as the cornerstone of our approach
to real estate valuation. Introduced by Lancaster (1966) and further developed by Rosen
(1974), the HPM posits that the value of a good is derived from its constituent charac-
teristics. This concept is particularly relevant to our study as it allows us to decompose
property values into the contributions of various attributes, including the urban envi-
ronmental factors we aim to quantify.

The Hedonic price modeling framework has been extensively applied to real estate val-
uation, where property characteristics are categorized into locational, structural and
neighborhood attributes (Chau and Chin, 2003). This categorization informs our ap-
proach, especially in how we differentiate between property-specific features and broader
environmental factors.

Structural and Locational Attributes

While our study focuses on neighborhood-level environmental factors, understanding
the role of structural and locational attributes is crucial for developing a comprehensive
valuation model. Studies by Rodriguez and Sirmans (1994), Fletcher et al. (2000), and
Garrod and Willis (1992) have consistently shown positive correlations between property
values and features such as floor area, number of rooms, and overall quality. For in-
stance, Garrod and Willis (1992) found that an additional room can increase a property’s
value by about 7%. Additional features such as building age, which negatively impacts



property values (Clark and Herrin, 2000), and the existence of garages and heating sys-
tems also have a significant influence (Forrest et al., 1996; Garrod and Willis, 1992;
Michaels and Smith, 1990). These findings underscore the importance of controlling for
these variables in our model to isolate the effects of environmental factors.

Locational factors have also received considerable research attention. Accessibility, par-
ticularly to the Central Business District (CBD), has been a cornerstone of many studies
(McMillan et al., 1992; Palmquist, 1989). Research consistently shows that improved
accessibility generally correlates positively with property values (So et al., 1997). The
work of Mok et al. (1995) and Rodriguez and Sirmans (1994) on the impact of views on
property values is particularly relevant to our research. Their findings that attractive
views can significantly increase property values (by up to 8% in some cases) support our
hypothesis that visual environmental factors play a crucial role in determining housing
prices.

Beyond geographical attributes within a city, locational attributes also encompass
broader regional or cultural factors. For instance, Bourassa et al. (1999) found that
houses with ‘lucky numbers’ had a significant positive impact on sale prices. Chau et
al. (2001) observed a comparable effect in Hong Kong, although the numbers deemed
fortunate differed due to cultural variations.

Neighborhood Attributes and Environmental Factors

The importance of neighborhood attributes in property valuation, as highlighted by
Goodman (1978) and Linneman (1980), validates our focus on environmental factors at
the neighborhood level. Their work demonstrates that a substantial portion of varia-
tion in property values can be attributed to neighborhood characteristics, especially for
structurally similar houses.

Researchers have typically categorized neighborhood attributes into several key areas:
socio-economic, local government services and externalities (Chau and Chin, 2003).
Socio-economic variables, such as the income of the residents within a neighborhood,
have been shown to influence property values (Richardson et al., 1974). Local govern-
ment services, particularly the quality of public schools, have also been found to possess
a significant impact on house prices (Clark and Herrin, 2000).

Externalities also play a significant role in shaping neighborhood desirability. Crime
rates have been consistently shown to negatively affect property values, with Clark and
Herrin (2000) finding that property prices in California were significantly negatively
correlated with homicide rates. Similarly, various forms of noise and air pollution,
have been extensively studied in the context of property valuation. Research on traf-
fic noise (Palmquist, 1989) and airport noise (Espey and Lopez, 2000) has consistently
demonstrated how environmental disturbances can negatively impact the market value
of residential properties. A similar adverse effect on property values has been observed
in studies examining air pollution levels (Harrison Jr and Rubinfeld, 1978).

Environmental quality, including pleasant surroundings, quietness, unpolluted air and
water, among others, has gained increasing attention in recent years as a crucial neigh-
borhood attribute. Tyrviinen (1997) found that green housing districts and accessibility
to forested recreation areas command higher prices among urban residents in Finland.
Their work offers a historical perspective on quantifying environmental factors. Their



use of manual methods to measure green areas contrasts sharply with our computer vi-
sion approach, highlighting the technological advancements that enable our study, which
will be detailed later.

2.2 From Linear Models to Machine Learning Approaches

The majority of the previously mentioned studies employed the standard linear hedonic
pricing model, which utilizes ordinary least squares (OLS) regression. The simplicity in
formulating, estimating, and interpreting these models allows for straightforward inter-
pretation of the attributes comprising a good.

However, the conventional hedonic pricing model has faced criticism for imposing strong
assumptions that may not always align with real-world complexities. While traditional
linear hedonic models have been widely used, their limitations in capturing complex, non-
linear relationships in real estate markets have been increasingly recognized. Chau and
Chin (2003) and Malpezzi et al. (2003) critique the assumptions of perfect competition
and market equilibrium inherent in linear models, highlighting the need for more flexible
approaches.

The issues of multicollinearity and interaction effects in linear models further justify
our use of advanced modeling techniques. As Butler (1982) pointed out, many hous-
ing characteristics are inherently related. For instance, the number of bedrooms in a
house is typically not independent of the number of bathrooms. So et al. (1997) demon-
strated this in Hong Kong’s housing market, showing that an apartment’s floor level was
significant mainly due to its interaction with the quality of the view. Our approach, par-
ticularly the use of Random Forest models, aims to capture these complex interactions
more effectively.

Studies by Potrawa and Tetereva (2022) and Chen et al. (2020) revealing non-linear
relationships between living space, greenery, and property values are further examples
that housing characteristics may have threshold effects or diminishing returns. Potrawa
and Tetereva (2022) found diminishing returns in the relationship between living area
and property value, with marginal value dropping significantly after 140 square meters —
a nuance missed by linear models. Similarly, Chen et al. (2020) discovered a non-linear
relationship between neighborhood greenery and property values, with positive effects
only emerging after a certain threshold.

These complexities have led researchers to explore non-parametric approaches. Mason
and Quigley (1996) were among the first to employ a generative additive model, success-
fully identifying non-linearities in housing data. Subsequently, numerous studies have
utilized various machine learning algorithms.

Comparative studies have demonstrated the superior predictive performance of machine
learning models. Hong et al. (2020) compared random forest (RF) models to traditional
OLS regression using apartment transaction data in South Korea, finding the RF model
significantly outperformed OLS, with an average percentage deviation of approximately
6% compared to 20% for OLS. Kostic and Jevremovic (2020), Mu et al. (2014), and
Abidoye and Chan (2018) showed similar improvements using gradient boosting models,
support vector machines, and artificial neural networks, respectively, providing a strong
rationale for our use of Random Forest models alongside traditional hedonic pricing
models.



However, these studies primarily focused on predictive performance, often at the ex-
pense of interpretability, which is a key objective in hedonic modeling. To address this,
we incorporate recent developments in model interpretation techniques, such as SHAP
(Shapley Additive exPlanations) values. Doan et al. (2024) employed this technique
to analyze the non-linear effects of air pollution on housing prices in New York City,
revealing that pollution levels had a negligible impact on prices when they were below
the city average. Similarly, Chen et al. (2020) applied SHAP analysis to quantify the
threshold at which greenery began to positively impact property values.

2.3 Integrating Unstructured Data in Real Estate Valuation

The real estate sector has begun to harness the potential of unstructured data, especially
images, to enhance valuation models. The growing interest in leveraging unstructured
data for real estate valuation is driven by the recognition that traditional structured data
often fails to capture the nuanced environmental and aesthetic factors that significantly
impact property desirability and, consequently, its market value (Law et al., 2019).

Recent studies have demonstrated various approaches to incorporating image data into
valuation models, each focusing on different aspects of visual information. Potrawa
and Tetereva (2022) used images looking out from properties, finding that attractive
views (e.g., city or park) significantly predicted rent prices. Poursaeed et al. (2018)
improved predictions by classifying interior images by luxury level. While valuable,
these approaches do not address the broader environmental context that our study aims
to capture.

More aligned with our research is Zhang and Dong (2018)’s use of street-view images to
measure the impact of visible greenery on housing prices in Beijing. Their development
of a specific greenery index integrated into a hedonic regression model serves as a key
precedent for our study. We expand upon this approach by considering a wider range
of environmental factors, aiming to provide a more holistic understanding of how urban
environmental characteristics influence property values.

Yencha (2019) further illustrated the versatility of street-level imagery by assessing walk-
ability and its impact on home prices. Their use of computer vision to identify pedestrian
infrastructure aligns with our methodological approach. Similarly, Law et al. (2019)’s
pipeline for automatically extracting visual features from street-level and aerial imagery
provides a methodological foundation, though our approach differs in focusing on spe-
cific, interpretable environmental factors rather than using an end-to-end model.

Beyond real estate valuation, studies by Garrido-Valenzuela et al. (2023) and Gebru et
al. (2017) demonstrate the broader potential of street-view imagery in urban analysis.
Garrido-Valenzuela et al. (2023) used such images to monitor urban space usage and
assess urban interventions in the Netherlands, finding correlations between urban density
and features like block size and the presence of food establishments and bicycles. Gebru
et al. (2017) employed deep learning on street-view images to estimate neighborhood
demographics across American cities, revealing correlations between vehicle types and
socio-economic indicators.

While these latter studies do not directly address real estate valuation, they highlight
the wealth of socio-economic and urban planning insights that can be extracted from
street-level imagery. This showcases the potential of such data in broader urban analysis



contexts and underscores the value of our approach in leveraging this rich data source
for property valuation.

The Digital Transformation of Real Estate Marketing

While our study primarily focuses on the valuation aspects of real estate, we recognize the
evolving landscape of real estate marketing and its implications for our research. The real
estate industry has undergone significant transformations in recent decades, particularly
in how properties are marketed and how information is conveyed to potential buyers.

Hamilton and Gunesh (2003) highlights a pivotal shift in the real estate industry from
traditional people-mediated interfaces towards a business model that relies heavily on
technology-mediated interaction with customers. As Shaw (2020) argues, these digi-
tal platforms are fundamentally changing how market participants connect and inter-
act. The adoption of digital technologies in real estate marketing has been rapid and
widespread. Bond et al. (2000) found that as early as 2000, the majority of real estate
firms operated their own websites. Since then, driven primarily by the advent of digi-
tal technologies, the evolution of real estate marketing over the past twenty years has
fundamentally transformed the industry (Petermann, 2021), with a shift towards the
dominance of larger aggregated property listing sites.

The shift towards digital platforms in real estate marketing has significant implications
for our research on urban environmental factors. Shaw (2020) suggests that future real
estate markets will increasingly be defined by how online platforms connect market
participants through a digital stack of technology. Moreover, Sihi (2018) utilizes VR
and AR experiences to highlight how digital technologies can enhance the purchase
experience by providing consumers more knowledge and understanding about a product
or service before actually seeing or experiencing it. Petermann (2021) notes that the
future of real estate marketing lies in the integration of even more technologies into
the online marketing presence. Our extraction of objective, data-driven insights about
neighborhood characteristics from street-level imagery exemplifies this trend. It could
enhance the information content available on these platforms, potentially providing a
virtual assessment of the neighborhood before physically visiting a property.

2.4 Quantifying Urban Environmental Factors through
Computer Vision

Urban environmental factors encompass a wide range of characteristics pertaining to the
surrounding area of a property, providing insights into neighborhood quality, aesthetics,
and overall livability. Unlike studies that focus on interior images of properties (e.g.,
Poursaeed et al., 2018) or those that quantify views from specific apartments (e.g., Jim
and Chen, 2006), urban environmental factors are characteristics of the neighborhood
or surrounding area, rather than attributes of the property itself or large-scale regional
features.

A growing body of literature leverages various types of imagery to quantify urban en-
vironmental factors. Studies by Zhang and Dong (2018), Fu et al. (2019), Chen et al.
(2020), and Ye et al. (2019) demonstrate the effectiveness of semantic segmentation
techniques in measuring factors like greenery, sky view, and building density. These
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studies inform our choice of environmental factors and support our hypothesis that they
significantly influence property values.

Zhang and Dong (2018) and Fu et al. (2019) used street-view images to measure visible
greenery and sky view, finding significant positive effects on real estate values. Chen et
al. (2020) expanded this approach by integrating both street-level and satellite imagery,
while Ye et al. (2019) reinforced the positive correlation between street greenery and
property values across different urban contexts. Traditional approaches using Geographic
Information Systems (GIS) data have also been employed. Kolbe and Wiistemann (2014)
uses GIS data to examine the impact of water coverage and green spaces on apartment
prices in Cologne, Germany, providing a valuable comparison point for our image-based
approach. Their findings align with the image-based studies, showing positive effects of
these features on property values.

Our research extends beyond these traditional factors to include measures of urban
vitality. While studies such as Zhao et al. (2023) have relied on human volunteers to
assess perceptions of urban environments (e.g., liveliness, friendliness, interest), we aim
to capture similar information through automated, objective means. By quantifying the
presence of people, cars, and bicycles in street scenes, we gauge neighborhood vitality,
traffic levels, and mobility options. This novel approach advances the field by offering
an objective and scalable method for assessing these urban characteristics.

Some researchers have taken a more holistic approach using satellite imagery. Semnani
and Rezaei (2021) demonstrated improved prediction accuracy by incorporating satellite
images into housing price models. Others, like Muhr et al. (2017) and Bency et al.
(2017), used satellite imagery to extract specific environmental features and explore their
spatial scale. For instance, Bency et al. (2017) employed satellite images at multiple
zoom levels, suggesting that larger neighborhood sizes more accurately predict property
values. These studies motivate our decision to analyze environmental factors at various
radii from each property.

The evolution of these approaches is closely tied to advancements in computer vision and
machine learning techniques, which have dramatically expanded our ability to quantify
and interpret visual data from urban environments. The foundations of modern com-
puter vision are rooted in deep learning, a subset of machine learning that uses artificial
neural networks inspired by the human brain to learn from large amounts of data.
From the introduction of one of the first Convolutional Neural Networks (CNNs) by
LeCun et al. (1998), demonstrating the successful application of CNNs to handwrit-
ten character and word recognition, to the development of more complex architectures
like AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), and
GoogLeNet (Szegedy et al., 2014), algorithmic and computational advancements have
set the stage for more specialized applications. The introduction of the Transformer
architecture (Vaswani et al., 2017) and its adaptation to vision tasks (Dosovitskiy et al.,
2020) further expanded the field’s capabilities.

For our specific needs, segmentation and object detection techniques are particularly
relevant. The introduction of SegNet by Badrinarayanan et al. (2016) represented a ma-
jor advancement in semantic segmentation, enabling pixel-wise classification of images.
This capability was quickly applied in real estate valuation research, as demonstrated by
Zhang and Dong (2018) in their analysis of street-visible greenery’s impact on housing
prices. Our study leverages two state-of-the-art models: YOLO (You Only Look Once)
for object detection (Redmon et al., 2016) and Mask2Former for semantic segmentation
(Cheng et al., 2022). YOLO’s efficiency in processing large volumes of images, even on
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consumer hardware, and Mask2Former’s accuracy in delineating complex urban features
make them ideal for our analysis.

The effectiveness of these advanced models is enhanced by comprehensive datasets like
Cityscapes (Cordts et al., 2016), a large-scale benchmark dataset for urban scene under-
standing, complete with pixel-level annotations for thousands of images collected from
a variety of cities. By using models pre-trained on Cityscapes, we ensure that our fea-
ture extraction techniques are robust and applicable to the diverse urban landscape of
Rotterdam.

Our approach of extracting specific, interpretable environmental factors distinguishes
our study from end-to-end methods that derive latent features directly from images
(Semnani and Rezaei, 2021; Yazdani and Raissi, 2023). This method allows us to main-
tain interpretability in our results, crucial for translating our findings into insights for
urban planning and real estate valuation.

This review reveals several key insights that inform our research. It underscores the
importance of neighborhood-level environmental factors in determining property val-
ues and highlights the potential of unstructured data in enhancing their valuation. It
also showcases the limitations of traditional linear hedonic models in capturing complex
relationships in real estate markets, supporting our use of more advanced machine learn-
ing techniques. However, it also reveals a gap in the literature: while several studies
have incorporated image data into valuation models, few have focused on extracting and
quantifying multiple urban environmental factors from street-level imagery at various
spatial scales. Our study addresses this gap by leveraging computer vision to extract a
comprehensive set of environmental factors from street-view images of Rotterdam. By
doing so, we contribute to the evolving field of computational urban studies and pro-
vide a framework for incorporating visual environmental data into real estate valuation
models.
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3 Hypotheses

Based on existing literature, empirical observations, and logical reasoning concerning
urban environments and real estate valuation, we propose the following hypotheses to
guide our investigation into how urban environmental factors influence housing prices in
Rotterdam:

3.1 Enhanced Predictive Power of Environmental Factors

The inclusion of urban environmental factors extracted from street-level imagery will lead
to more accurate predictions of housing prices compared to models using only traditional
structural and locational attributes.

While these factors are crucial, they do not capture the full range of elements that
affect property values. Environmental factors such as the presence of greenery, traffic
levels, and indicators of urban vitality significantly influence buyer preferences and,
consequently, housing prices.

This hypothesis is supported by several studies in the literature. For instance, Chen et al.
(2020) demonstrated that incorporating environmental features derived from street-view
and satellite imagery significantly improved the predictive accuracy of real estate models
in Shanghai. Similarly, Law et al. (2019) found that augmenting traditional housing
attribute models with visual data enhanced house price estimations in London.

3.2 Directional Influence of Environmental Features

Specific environmental factors extracted from street-level imagery will have directional
effects on housing prices, with these effects potentially differing between houses and
apartments.

1. Greenery Index: Higher levels of visible greenery are expected to positively affect
property values, with a more pronounced effect for houses compared to apartments.
Studies by Zhang and Dong (2018) and Jim and Chen (2006) have consistently
found that properties with higher levels of visible greenery command higher prices.
The stronger effect on houses is expected because they are typically located in less
dense areas, where inhabitants place greater value on the surrounding nature.

2. Presence of People: A higher count of people is hypothesized to have a positive
effect on property values, because the presence of people can indicate the vitality
and vibrancy of an area. This aligns with Garrido-Valenzuela et al. (2023), who
found that urban density correlates with various positive urban characteristics.
We expect this effect to be more pronounced for apartments, which are typically
located in more densely populated, urban areas where vibrancy might be more
highly valued.
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3. Number of Cars: A higher number of cars is expected to negatively impact
housing prices, with potentially stronger effects for houses. High traffic levels are
associated with noise, air pollution, and reduced safety, making neighborhoods less
desirable. This is supported by studies such as Espey and Lopez (2000), which
found noise significantly negatively impacts prices in less dense areas. Conversely,
Jim and Chen (2006) found noise had no impact on property values in a densely
populated area in China. However, we acknowledge the potential for a non-linear
relationship, as a moderate number of cars might indicate good accessibility or
commercial activity, which could be valued positively, especially for apartments.

4. Number of Bicycles: A higher count of bicycles is hypothesized to have a positive
impact on property values, particularly for apartments. Garrido-Valenzuela et
al. (2023) found that the presence of bicycles is an indicator of a vibrant area.
Additionally, it may serve as a proxy for good pedestrian and cycling infrastructure,
which could be positively valued. We expect this effect to be more pronounced for
apartments, which are often located in more central, bicycle-reliant urban areas.

These directional effects might vary depending on local cultural and socio-economic
contexts. For instance, in some densely populated urban areas of Rotterdam, high
traffic might be less of a deterrent if the neighborhood is otherwise highly desirable.

3.3 Spatial Decay of Environmental Influences

The impact of environmental factors on housing prices is expected to decrease with
increasing distance from the property.

We anticipate that the influence of environmental features will be more pronounced when
they are in close proximity to a property. This hypothesis aligns with findings from Ye
et al. (2019), who observed that the impact of green spaces on property values is more
significant within closer proximity.

To test this hypothesis, we analyze environmental factors at multiple radii (250m, 500m,
and 1000m) around each property. This multi-scale approach allows us to capture the
spatial decay of environmental effects and identify the most relevant neighborhood size
for different factors. Our expectation of decreasing influence with distance is based on the
assumption that potential buyers are more concerned with the immediate surroundings
of a property.

However, we acknowledge that this relationship may not be universal and can depend
on the environmental features studies. As noted by Bency et al. (2017), who explored
the spatial scale of environmental factors using satellite images at multiple zoom levels,
larger neighborhood contexts can provide better predictions of property values. Certain
features, such as large parks or significant water bodies, may have a broader radius of
influence, affecting property values over larger distances.

3.4 ldentifying Non-Linear and Threshold Effects in Property
Valuation

The relationships between environmental factors and housing prices are expected to
exhibit non-linear patterns and threshold effects.
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Real estate markets are complex systems, and the impact of environmental factors on
housing prices is unlikely to be straightforward or linear. We anticipate non-linear
relationships and potential threshold effects for several reasons:

1. Greenery: Based on findings from Chen et al. (2020), we expect that the positive
effect of greenery on property values may exhibit diminishing returns beyond a
certain level.

2. Traffic (Cars): We hypothesize that the impact of traffic on property values may
follow a threshold pattern. A low to moderate number of cars might not signif-
icantly affect prices, but beyond a certain threshold, increased traffic could lead
to a sharp decline in property values due to noise, pollution, and safety concerns.
This effect may be more acute for houses, which are often valued for their quieter
surroundings.

3. Urban Vitality (People and Bicycles): The relationship between these in-
dicators of urban vitality and property values may follow an inverse U-shaped
curve. Very low levels might indicate a lack of amenities or accessibility, mod-
erate levels could be optimal, while very high levels might suggest overcrowding
or over-commercialization. Different patterns might emerge for apartments and
houses.

These types of effects are supported by various studies in the literature. For instance,
Doan et al. (2024) found non-linear effects of air pollution on housing prices in New
York City, revealing that pollution levels had a negligible impact on prices when they
were below the city average, but their influence increased gradually when exceeding this
threshold. Potrawa and Tetereva (2022) observed diminishing returns in the relationship
between living area and property value beyond a certain size.

The hypotheses guide our investigation into the direct effects of environmental factors,
their spatial influence at various scales, and potential non-linear relationships. By exam-
ining these aspects for both apartments and houses, we aim to uncover how the valuation
of environmental characteristics might differ based on property type. This approach ac-
knowledges that apartment dwellers and house owners may prioritize and value urban
environmental features differently.
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4 Data

4.1 Study Area

This study focuses on Rotterdam, the second-largest city in the Netherlands, as its area
of investigation.

Rotterdam’s urban landscape is characterized by a distinctive blend of modern archi-
tecture and historical elements, providing a diverse range of urban environments within
a single metropolitan area. This diversity is crucial for our study, as it allows us to
examine how different urban contexts within the same city affect property values. The
city’s housing market offers a broad spectrum of property types, from high-rise apart-
ments in the city center to single-family homes in residential neighborhoods, enabling
a comprehensive analysis of environmental factors across various property types and
locations.

The city’s geography features significant environmental diversity, including substantial
green spaces, numerous water bodies (most notably the Nieuwe Maas river), and vary-
ing urban densities. This variability in urban form and environmental features makes
Rotterdam an excellent case study for investigating the impact of urban environmental
factors on housing prices.

Data availability was a crucial consideration in selecting Rotterdam for this study. The
city benefits from comprehensive and accessible datasets, including a large number of
property listings from Funda.nl, the Netherlands’ largest real estate website. Addition-
ally, through collaboration with local researchers, this study has access to an extensive
street view image dataset of Rotterdam. This allows for a detailed exploration of the
city’s visual landscape as experienced by its residents and visitors.
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Figure 4.1: Property Listings Colored by the Property Type.

As illustrated in Figure 4.1 , the property listings in our dataset are distributed across
central Rotterdam, ensuring comprehensive coverage of the city’s diverse neighborhoods
while maintaining a focus on the more densely populated urban core.

The choice of a Dutch city makes our findings particularly relevant in the context of
governmental property valuations. As previously mentioned, municipalities annually
determine the Wet waardering onroerende zaken (WOZ) value, which serves as the basis
for various taxes. While we’ve previously discussed the WOZ’s role in property taxation,
it’s worth emphasizing how our research methodology aligns with potential improve-
ments to this system. By quantifying the impact of environmental features on property
values using an automated approach, our study offers a practical demonstration of how
municipalities might enhance their valuation processes. This is especially pertinent for
Rotterdam, a city known for its innovative urban planning and development strategies.
Our findings could provide local policymakers with empirical evidence to support more
nuanced, objective assessments of property values, potentially leading to more equitable
taxation and informed urban planning decisions.

4.2 Property Listings

The foundation of this study is a comprehensive dataset of property listings scraped from
Funda.nl, the Netherlands’ preeminent real estate platform. Funda’s market dominance
is significant: it attracts 4-6 times more unique visitors than its closest rivals and is
majority-owned by NVM (Dutch Association of Real Estate Agents), which represents
approximately 60% of estate agents in the Netherlands. This ownership structure gives
Funda a substantial advantage in terms of listings. According to Niels (2018), 87% of
house sellers consider advertising on Funda crucial, and an equal percentage of home-
buyers use it as their primary search platform. This market position ensures our dataset
offers a highly representative view of Rotterdam’s housing market.

Our dataset comprises 6.691 unique property listings in Rotterdam, collected between
March and May 2024, representing past listings of properties where the sale has already
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occurred. This includes 5.009 apartments and 1.682 houses, with a mean property price
of €417749 (apartments averaging €367.786 and houses €566.539). Each listing contains
a rich set of variables primarily representing structural characteristics, aligning with one
of the three main categories of housing attributes defined by Chau and Chin (2003).
These variables include, but are not limited to, number of bedrooms, bathrooms, year
of construction, energy label, and precise geolocation. Table 4.1 provides a detailed
breakdown of the dataset:

Table 4.1: Overview of Structural Housing Attributes Differentiated by House Type.

Variable Apartments, N = 5009 (75%) Houses, N = 1682 (25%)
Price (€) 367786 (335000); [75000, 1895000] 566539 (485000); [150000, 2495000]
Living Area (m?) 85 (80); [15, 342] 135 (127); [54, 461]
Rooms 3 (3); [1, 9] 5 (5); [2, 14]
Construction Year 1961 (1957); [1855, 2026] 1969 (1978); [1649, 2025]
Energy Label

Higher (A+, A, B, C) 3176 (63%) 1290 (77%)

Lower (D, E, F, G) 1833 (37%) 392 (23%)
Insulation

Double Glass 3031 (61%) 897 (53%)

Fully Insulated 1012 (20%) 454 (27%)

Other 966 (19%) 331 (20%)
Heating

Central Heating 2925 (58%) 1208 (72%)

District Heating 1106 (22%) 321 (19%)

Other 978 (20%) 153 (9%)

! Mean (Median); [Range]; n (%)

To ensure data integrity, we applied several processing steps. Only listings with com-
plete information for all variables were included. Properties with asking prices below
€50,000 were excluded as they typically represented non-residential structures, and an
upper price cap of €2.500.000 was applied to eliminate rare outliers. All properties
were successfully geocoded using the Google Maps API, providing precise latitude and
longitude coordinates for each listing.

While our dataset provides rich insights into Rotterdam’s real estate market, it’s im-
portant to acknowledge its limitations. The property prices in our dataset represent the
last known listing prices, which may not always reflect the final transaction values. This
potential discrepancy between listed and actual sale prices introduces a degree of uncer-
tainty into our analysis. Additionally, as web-scraped data, the listings may occasionally
contain inaccuracies inherent in online platforms.

It’s worth noting that access to official transaction data from the Kadaster (the Dutch
land registry) would provide a more precise picture of actual sale prices. While such
data was not available for this study, future research could benefit from incorporating
Kadaster records to further validate and refine the findings presented here. In the liter-
ature, both types of data - official transaction records and listing prices - are commonly
used. For instance, Hong et al. (2020) utilizes governmental transaction records for
apartments in South Korea, covering about 40% of all apartment transactions. On the
other hand, numerous studies have successfully employed real estate listing data, similar
to ours (Potrawa and Tetereva, 2022; Ye et al., 2019; Zhang and Dong, 2018).
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Despite these constraints, our dataset aligns well with the hedonic modeling context of
this study, capturing the market’s perception of property values based on the attributes
visible to consumers during their home search process.

4.3 Street View Images

To enrich our analysis of Rotterdam’s real estate market and address our research ques-
tion on urban environmental factors, we incorporate a vast dataset of street view images
(SVI). These images provide a visual representation of the urban environment, allowing
us to quantify various aspects of the streetscape that may influence property values.
As noted by Ye et al. (2019), SVI have been widely accepted as an effective means to
quantify the built environment of streets, offering insights that traditional data sources
often miss.

Our SVI dataset, initially sourced from Google Street View (GSV), was obtained through
collaboration with researchers who had previously utilized this data (Garrido-Valenzuela
et al., 2023). The image collection process followed a systematic approach to ensure
comprehensive coverage of Rotterdam. A grid of points, each separated by 50 meters,
was overlaid on the city map. This grid spacing is consistent with methods used in
similar studies, such as Chen et al. (2020), ensuring a balance between granularity and
computational feasibility.

For each grid point, a unique 360-degree panorama was captured at street level, which
was then divided into four individual images: front, back, and two side views. This
division allows for a more regular angle of view in the images subject to analysis. The
resulting dataset consists of RGB images, each with a resolution of 900x600 pixels.

To align with our property listings data and minimize seasonal biases, particularly for
metrics like the greenery index, we applied several filters to the initial dataset:

1. We restricted our analysis to images taken between June and September, ensuring
consistent representation of vegetation.

2. Only images from 2017 or newer were included, better aligning with the timeframe
of our property listings.

3. We focused on images captured during daylight hours to ensure visibility and
consistency.

These filtering steps, while necessary for data quality, do introduce certain limitations.
For instance, the Google Maps API does not provide granular timing information, pre-
venting us from differentiating between weekdays and weekends. This could potentially
bias calculations of metrics such as the number of cars present in images.
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Figure 4.2: Distribution of Greenery across Rotterdam.

After applying these filters, our final dataset comprises 57,495 unique panoramas, cor-
responding to 229,980 individual images. Figure 4.2 provides a map illustrating the
distribution of these images across Rotterdam, demonstrating comprehensive coverage
of the city, particularly in areas where our property listings are located.

To further ensure data quality, we implemented a two-stage cleaning process. First,
we employed CNN classifiers to automatically identify and remove invalid images, such
as those that were too dark. This was followed by a manual review process to catch
any remaining issues, such as images where large vehicles blocked the entire view. This
approach is similar to that used by Law et al. (2019) in their study of London’s housing
market, ensuring the reliability of our visual data for subsequent analysis. Figure 4.3
presents examples of both valid and invalid images from our dataset.

Figure 4.3: Example Street View Images: Valid (top) and Invalid (bottom).

While this extensive dataset provides a rich source of information, it also presented
significant computational challenges. The initial collection of over one million images
occupied more than 100GB of storage, making it infeasible to run complex models on
the entire set. Our filtering and cleaning processes not only improved data quality but
also reduced computational demands to a manageable level.
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In the subsequent analysis, these images will be related to our property listings through
a process of spatial interpolation, which will be detailed in the methodology section.
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5 Methodology

5.1 Research Design and Analytical Approach

Our research design integrates traditional real estate valuation techniques with advanced
computer vision and machine learning methods, allowing for a comprehensive analysis
of both structural and environmental determinants of property values. The analytical
framework of this study can be conceptualized in five main stages. This multi-stage
process, illustrated in Figure 5.1, enables us to systematically address our research ques-
tions and test our hypotheses regarding the impact of urban environmental factors on
housing prices.

Data Acquisition Feature Extraction Data Integration Analysis Model Interpretation

Model Comparison

Variable
I Importance I
SHAP
=t

Dependence

Real Estate Data Housing Website / Basic Housing OLS Regression '—
Transaction Data Characteristics /'y
Unified Dataset

Urban Greenery
Index
Image Data S‘I‘;ﬁ:‘g\eﬁiw '
Count of Objects Random Forest

Spatial Interpolation

Figure 5.1: Research Design Framework.

The analytical framework consists of five stages:

1. Data Acquisition: Collecting property listings and street view images.

2. Feature Extraction: Deriving environmental variables from street view images
using computer vision techniques.

3. Data Integration: Combining extracted features with property data into a uni-
fied dataset through spatial interpolation.

4. Modeling: Employing both linear hedonic and Random Forest models to analyze
the impact of environmental factors on housing prices.

5. Interpretation: Assessing model performance and interpreting results using var-
ious techniques.

The following sections will detail the components of our methodology. We begin with our
approach to visual feature extraction, a critical and innovative aspect of this study. Fol-
lowing the visual feature extraction, we will discuss our modeling approaches, comparing
traditional linear hedonic models with more advanced machine learning techniques. We
then outline our methods for model assessment and interpretation, which enable us to
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evaluate the performance of our models and gain insights into the relative importance
of different factors in determining property values.

5.2 Extracting Visual Environmental Features

Our study analyzes Rotterdam’s housing market dynamics by extracting four key urban
environmental features from street-level imagery: greenery, people, cars, and bicycles.
These features, selected based on existing literature and our research objectives, aim
to capture both the physical and social aspects of urban environments that influence
property values. The pre-processed street-view images, as detailed in the Data section,
form the basis of our analysis.

Quantifying Urban Greenery through Semantic Segmentation

The quantification of urban greenery from street-level imagery forms a crucial component
of our study, requiring us to accurately segment and classify vegetation in complex urban
scenes. To accomplish this task, we employ Mask2Former, a state-of-the-art universal
image segmentation model developed by Cheng et al. (2022). This section outlines its
theoretical underpinnings, architecture, and application to our specific use case.

Mask2Former: Advancing Semantic Segmentation

At its core, Mask2Former is a mask classification architecture that uses a fixed number
(N) of “object queries,” which can be thought of as learnable templates or detectors.
Fach object query, represented as a C-dimensional feature vector, starts randomly but
becomes specialized through training. Processed by a Transformer decoder, these queries
interact with input image features and learn to detect various objects or object parts
without being pre-assigned specific types. The model uses the ground truth category
labels to learn how to map the refined object queries to specific categories.

The key innovation here is that instead of using predefined anchor boxes or region
proposals, the model learns to use these queries flexibly. Some queries might specialize
in finding large objects, others in small objects, and some in specific shapes or textures.
This flexibility enables the model to handle varying numbers and types of objects in
different images, all with the same fixed set of queries.

During inference, Mask2Former processes these N object queries to predict N binary
masks, each indicating which pixels belong to the respective object it has “found”, along
with IV corresponding category labels. The model always outputs N predictions, even if
there are fewer actual objects in the image. It learns to produce ‘no object’ predictions
for unused queries, effectively ignoring them in the final output.
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Figure 5.2: Mask2Former Architecture. Source: Cheng et al. (2022).

The architecture of Mask2Former, as illustrated in Figure 5.2, consists of three main
components:

1. Backbone: The backbone of a neural network can be thought of as its core
feature extractor. In our implementation, we utilize the SWIN-Small (Shifted
Window Transformer) backbone (Liu et al., 2021). SWIN belongs to the class of
Vision Transformers (ViTs), which have recently shown remarkable performance in
various computer vision tasks. Unlike traditional Convolutional Neural Networks
(CNNs), ViTs process images as a sequence of patches, allowing them to capture
both local and global dependencies more effectively.

2. Pixel Decoder: This component progressively upsamples the low-resolution fea-
tures from the backbone to generate high-resolution per-pixel embeddings. Cru-
cially, it produces a feature pyramid with resolutions of 1/32, 1/16, and 1/8 of
the original image. The Transformer decoder then processes these multi-scale fea-
tures, with each layer operating on a different resolution. This approach enables
Mask2Former to capture both fine-grained details and broader contextual infor-
mation while balancing computational efficiency.

3. Transformer Decoder: This module processes image features to refine object
queries and produce final segmentation masks. It incorporates a novel masked
attention mechanism, which is key to the model’s performance.

The masked attention mechanism in the Transformer decoder is a critical innovation
in Mask2Former. It constrains the cross-attention to focus on relevant image regions,
significantly improving both efficiency and accuracy. Mathematically, the process can
be described as follows:

Query Feature Processing:

For layer [, the query features X, € RV*C (where N is the number of queries and C' is
the feature dimension) are processed as:

Q= fQ(lel) € RN*C (5.1)

where fg, is a linear transformation.

Masked Attention:
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The masked attention operation is defined as:

X, =o(M_,+QKV,+ X, , (5.2)

where K, V, € RELIWi*C are the image features under transformations fy and fi, re-
spectively. H; and W, are the spatial dimensions of the image features at layer [, and C'
is the feature dimension.

The softmax function o normalizes the attention weights, converting raw attention scores
into probabilities that sum to 1. For a vector of scores z = [z, 29, ..., 2,,], the softmax
function is defined as:

e~
o(z) = 5 (5.3)
The attention mask M, ; at feature location (z,y) is defined as:
0 if M, 4 (z,y) =1
M (z,y) = { : g (5.4)
—o0 otherwise

Setting the attention mask to —oo for non-relevant pixels effectively zeroes out their
contribution in the softmax operation, forcing the model to completely ignore these
areas.

Segmentation Head:

The final segmentation output S is produced by applying a series of operations to the
refined features from the last Transformer decoder layer:

S =o(fu(fe(X1))) (5:5)

where L is the total number of Transformer decoder layers, and:

o f,. represents a series of 3x3 convolutional layers with batch normalization and
ReLU activation between them,

o f, denotes upsampling operations to restore the spatial resolution to that of the
original input image,

e 0 is the softmax activation function applied per-pixel across C,,,; classes.

The output S € RF*W*Cout provides a probability distribution over C,,,, classes for each
pixel in the H x W image.

This sophisticated architecture enables Mask2Former to synthesize fine-grained local
details with broader contextual information, resulting in highly accurate semantic seg-
mentation even in complex urban environments.
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Urban Greenery Index Calculation

To translate the model’s output into a quantifiable measure of urban greenery, we in-
troduce the Urban Greenery Index (UGI). This index leverages the segmentation masks
produced by Mask2Former, specifically focusing on the ‘vegetation’ and ‘terrain’ classes
to capture a comprehensive view of urban green spaces. This approach provides a nu-
merical representation of urban greenery and follows the method proposed by Zhang
and Dong (2018), adapted for our Mask2Former output. Our UGI calculation combines
vegetation and terrain categories to capture overall greenery in urban environments.
This decision acknowledges that grass, classified as terrain by the model, is a significant
component of urban green spaces. By including both categories, we achieve a more
comprehensive assessment of urban greenery.

Formally, for an image j, let S; € RH>*W>Cout he the softmax output of the segmentation

head. We define p, as the class with the highest probability for pixel i:

p; = argmax S, (i, c) (5.6)

where S;(i, ) is the probability of class ¢ for pixel i in image j.

The Urban Greenery Index for image j is then computed as:

UGl 21111 1(p; € vegetation, terrain)

j N (5.7)

where N is the total number of pixels in the image, and 1(-) is an indicator function
that equals 1 if the condition is true, and 0 otherwise.

This approach provides a straightforward yet effective measure of greenery presence in
urban environments. By applying this calculation to our extensive dataset of street-
view images, we generate a comprehensive representation of urban greenery distribution
across Rotterdam, as depicted in Figure 4.2.

Implementation

For our specific application, we utilize a Mask2Former model pretrained on the
Cityscapes dataset (Cordts et al., 2016). This approach aligns with common practices
in the literature (Fu et al., 2019; Ye et al., 2019) and is particularly suitable given the
similarities between Cityscapes street scenes and our street-view imagery. We specifi-
cally use the Mask2Former for Semantic Segmentation model (Model ID: 48333149 3),
which is available in the model zoo.
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166.63%

Figure 5.3: Original Images (Top) and their Segmented Masks (Bottom) reveal the extent
of greenery in different urban settings. The percentages represent the Urban
Greenery Index (UGI) for each scene.

Choosing a pretrained model balances computational efficiency and data constraints.
Training Mask2Former from scratch demands significant computational power and a
vast, annotated dataset of urban street scenes. Leveraging a pretrained model offers
state-of-the-art performance without extensive fine-tuning or manual dataset annotation.
Mask2Former’s performance on the Cityscapes test set achieves a Mean Intersection-
Over-Union (Mean IoU) of 84.3% (Cheng et al., 2022), representing the current state-
of-the-art for semantic segmentation on this benchmark. The Mean IoU metric, widely
used in the field, measures the overlap between predicted and ground truth segmentation
masks, providing a robust indication of segmentation accuracy. Ground truth segmen-
tation masks are accurately labeled images created by humans to serve as references for
evaluating the performance of segmentation models.

While direct evaluation of the model’s performance on our street-view images isn’t feasi-
ble without ground truth annotations, our visual inspection of the segmentation results
indicates strong accuracy in detecting vegetation. This qualitative assessment, though
less rigorous than quantitative methods, is commonly used in comparable studies (Fu et
al., 2019; Ye et al., 2019), especially with novel, unannotated datasets. Figure 5.3 shows
example images alongside their corresponding masks.

The computational resources required for this analysis are significant. Using an M1
Pro processor and leveraging PyTorch’s Metal Performance Shaders (MPS) backend for
GPU training acceleration and multithreading capabilities in Python where possible,
the Mask2Former inference process took approximately 140 hours (~6 days), equating
to roughly 2.2 seconds of processing time per image.

Urban Activity Metrics: Detection of People, Cars, and Bicycles

To complement our analysis of urban greenery, we employ the YOLO (You Only Look
Once) object detection model to quantify the presence of people, cars, and bicycles
in our street-view images. YOLO, introduced by Redmon et al. (2016) and further
developed in YOLO-v3 by Redmon and Farhadi (2018), which is the version we will be
using, represents a paradigm shift in object detection. Unlike traditional methods that
repurpose classifiers for detection, YOLO frames object detection as a single regression
problem, enabling end-to-end training and real-time performance. This unified approach
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allows YOLO to reason globally about the image, making it particularly suitable for
analyzing complex urban scenes.

YOLO Architecture and Mathematical Framework

The YOLO model divides the input image into an S'x .S grid. Each grid cell is responsible
for detecting objects whose center falls within its boundaries. This grid-based approach
allows YOLO to process the entire image in a single forward pass, contributing to its
speed and efficiency.

While the specific objects in an image do not need to be defined beforehand, the classes
of objects that YOLO can detect are defined during the training phase. The model is
trained on a dataset containing labeled objects, and it learns to recognize and detect
only those classes present in the training set. Consequently, during inference, the model’s
ability to identify objects is contingent upon the classes included in its training dataset.

For each grid cell (i,j), YOLO predicts B bounding boxes and C conditional class prob-
abilities. Each bounding box prediction consists of five components:

B, ;»= (z,y,w,h,conf; ; ), bel, .. B (5.8)

Here, (x,y) are the center coordinates of the box, normalized to be offsets within the
grid cell (between 0 and 1), while w and h represent the width and height of the box
relative to the whole image. The confidence score conf; ; , reflects the model’s estimate
of how likely it is that the box contains an object.

Class probability map

Figure 5.4: YOLO Model Framework. Source: Redmon et al. (2016).

Alongside these bounding boxes, YOLO predicts a set of conditional class probabilities
for each grid cell:

= P(class.|Object), cel,...,C (5.9)

17]76

These probabilities represent the likelihood of the object belonging to each class, given
that an object is present.
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The interaction between bounding boxes and class probabilities is key to YOLO’s func-
tionality. While each grid cell predicts B bounding boxes, it only predicts one set of class
probabilities, assuming each grid cell will contain at most one object. During inference,
the confidence score conf; ;, for each bounding box can be interpreted as P(Object),
representing the model’s estimate of the likelihood of an object’s presence.

To obtain the final class-specific confidence scores for each box, YOLO multiplies the
conditional class probabilities by the individual box confidence predictions:

score; jp. = P j.

* conf; ; p (5.10)

This computation yields a confidence score for each class ¢ in each bounding box b of grid
cell (i, j), effectively indicating how confident the model is that a particular box contains
an object of a specific class. This detection process is visualized in Figure 5.4.

The model then eliminates low-scoring boxes and applies non-maximum suppression
to remove duplicate detections. While these steps allow YOLO to efficiently predict
multiple objects in various locations within the image, further specifics of this process
are beyond the scope of this paper.

Model Network

The YOLO-v3 architecture, as illustrated in Supplementary Figure S8.1, is built upon a
deep convolutional neural network called Darknet-53 (Redmon and Farhadi, 2018). This
backbone network comprises 53 convolutional layers, strategically employing a combi-
nation of 3 x 3 and 1 x 1 convolutions. The network is organized into five main stages,
each downsampling the input by a factor of 2, resulting in feature maps at different
scales. YOLO-v3 capitalizes on this multi-scale feature hierarchy by making predictions
at three different scales: 32 x 32, 16 x 16, and 8 x 8 grid cells for the input image. This
multi-scale approach allows the network to detect objects across a wide range of sizes,
with smaller objects benefiting from the higher resolution feature maps earlier in the
network.

Furthermore, YOLO-v3 introduces several improvements over its predecessors, enabling
the detection of overlapping objects, as well as objects that can belong to multiple
categories simultaneously. This architecture, with its deep feature extraction and multi-
scale predictions, and advanced training techniques, enables YOLO-v3 to achieve high
accuracy and real-time performance in object detection tasks.

Object Counting Methodology

To analyze urban environments, we count specific objects such as people, cars, and
bicycles using the output from YOLO. We ensure high-quality detections by applying
a confidence score threshold 7 = 0.95. The final count for each class ¢ is calculated as
follows:

|D|
Count(class,) = Z 1(d; = class,) - 1(score(d;) > 7) (5.11)

i=1

where:
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e 1(-) is the indicator function, equal to 1 if the condition is true and 0 otherwise.
 d; represents a detected object in the set of detections D.
o score(d;) is the confidence score for detection d;.

The robustness and efficacy of the YOLO model in detecting various urban object types
are well-supported by recent studies, such as Naik et al. (2021), which demonstrated
impressive accuracy and sensitivity in urban traffic video surveillance. Their study, which
included the same object classes used here, achieved an average precision of 98.32%
in detecting multiple object categories, validating the model’s effectiveness in similar
applications.

Implementation

In our implementation, we utilize a YOLO-v3 model pre-trained on the COCO (Com-
mon Objects in Context) dataset (Lin et al., 2014). The COCO dataset, developed by
Microsoft, is particularly suitable for our urban analysis due to its diverse collection of
objects in everyday scenes, including the categories of interest in our study.

Figure 5.5: Visual representation of our Object Detection results, showcasing bounding
boxes highlighting People (yellow), Cars (red), and Bicycles (blue).

The choice of a pre-trained model, which was used as-is and was not fine-tuned or
updated during our application, offers several advantages. Firstly, it circumvents the
need for a large, annotated dataset of street-view images, which would be resource-
intensive to create. Secondly, it leverages the robust performance of YOLO-v3 on the
COCO dataset, which has been extensively validated. The COCO dataset’s focus on
common objects in context aligns well with our task of detecting people, cars, and
bicycles in urban environments.

While we cannot perform quantitative evaluation on our specific street-view dataset
due to the lack of ground truth annotations, visual inspection of the detection results
indicates high accuracy in identifying and localizing the objects of interest Figure 5.5.
This qualitative assessment approach, though less rigorous than quantitative metrics, is
common in studies working with novel, unannotated datasets (e.g., Garrido-Valenzuela
et al., 2023; Xu et al., 2022).
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The computational efficiency of YOLO is particularly beneficial for our study, as it allows
for the rapid processing of large volumes of street-view images. YOLO achieves high
frames per second (fps) during detection, outperforming other models in terms of speed
while maintaining comparable or superior accuracy (Redmon et al., 2016). Although
our study does not require real-time object detection since we work with static images
rather than video, the model’s ability to process data quickly and efficiently is essential
due to our reliance on consumer-grade hardware and large-scale image analysis needs.

The YOLO inference process, conducted on the same hardware setup (M1 Pro processor
with PyTorch’s Metal Performance Shaders (MPS) backend for GPU training acceler-
ation and multithreading in Python), required approximately 64 hours (~2.67 days) to
process our dataset of 229,980 images. This translates to roughly 1 second of processing
time per image, demonstrating the computational efficiency of the YOLO architecture
for our large-scale urban analysis.

5.3 Spatial Integration of Street View Data with Property
Listings

To investigate the impact of urban environmental factors on property prices, we must
establish a method to associate the features extracted from street-view images with
individual property listings. This section outlines our spatial interpolation approach,
which defines the neighborhood context for each property.

Our method involves defining circular neighborhoods of varying radii around each prop-
erty listing and aggregating the features from all images within these areas. We in-
vestigate three neighborhood sizes with radii of 250m, 500m, and 1000m (illustrated
in Figure 5.6). These radii were chosen to capture a range of spatial scales, from the
immediate vicinity of a property to a broader neighborhood context.

While we developed this specific implementation ourselves, our method draws inspiration
from and extends concepts found in related studies. The use of multiple spatial scales
in our approach was inspired by Bency et al. (2017); although their study focused on
satellite imagery and used multiple zoom levels to capture different scales, we applied this
multi-scale concept to street-view images using varying radii. Our definition of circular
neighborhoods aligns with the method used by Fu et al. (2019). However, where they
employed a single set radius, we extend this concept by incorporating multiple radii.
This approach not only captures a more comprehensive range of neighborhood effects
but also facilitates meaningful comparisons across different spatial extents.

The spatial interpolation process can be formally described as follows:
1. Let L =1, ...,1 be the set of N property listings, where each [; is associated with
coordinates (z;,;).

2. Let P = pq,...,py be the set of M panoids (street-view image loca-
tions), each with coordinates (7, y;) and associated feature vector f; =
(UGI j» CaTS ;, PETSON bicyclej) representing the greenery index, car count, people
count, and bicycle count, respectively.

3. For each listing [, and radius r € 100, 250, 500, 1000, we define the set of nearby
panoids P ,. as:
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P.=p;eP: \/(xi_$j)2+(yz’_yj>2 <r (5.12)

4. We then compute the aggregated features for listing [, at radius r as:

= > (5.13)

| i, pjepi,r

where |P,; | is the number of panoids within radius r of listing /,.

5. The resulting F; . is a vector containing the average greenery index, car count,
people count, and bicycle count for the neighborhood defined by radius r around
listing ;.

To efficiently perform these spatial queries, we employ a k-d tree data structure, which
allows for fast nearest-neighbor searches. The k-d tree is constructed using the coordi-
nates of the panoids, enabling quick identification of all panoids within a given radius
of each property listing.
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Figure 5.6: Stylized visualization of the Spatial Association (with a chosen radius of
250m).

Our approach differs from some previous studies in its flexibility and comprehensive
treatment of neighborhood sizes. For instance, Fu et al. (2019) used a single fixed
radius of 800m based on estimated walking ranges, while we test multiple radii to capture
varying scales of neighborhood influence. In contrast to Bency et al. (2017), who used
satellite imagery at different zoom levels, our method leverages street-level imagery to
capture more granular, ground-level environmental features.

In contrast to our multi-scale analysis, Fu et al. (2019) utilized a single fixed radius of
800m, based on estimated walking ranges, to define their neighborhoods. Zhang and
Dong (2018) similarly used a fixed radius of 400m, again based on qualitative judgment
and experience, rather than empirical testing of multiple radii.
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Bency et al. (2017) investigated neighborhood size using satellite images at multiple
zoom levels, corresponding to increasingly larger neighborhoods centered around prop-
erties. Their findings indicated that larger neighborhood contexts provided better pre-
dictions of property prices. However, the interpolation and neighborhood definitions in
their study differed significantly from ours, as they simply adjusted the zoom levels of
the satellite images.

An et al. (2023) took a different approach by using a predefined number of associated
images (e.g., 100, 200) to define neighborhoods. This method, while distinct, does not
provide a spatially continuous measure of neighborhood context and can be less precise,
particularly when considering our hypothesis that the impact of environmental factors
decreases with distance from the property.

It’s important to note that as the radius increases, the number of associated images per
property listing also increases. This has implications for our analysis, particularly in
relation to our hypothesis that the impact of environmental factors decreases with dis-
tance from the property. While larger radii provide more comprehensive neighborhood
coverage, they also potentially dilute the influence of immediate surroundings. Con-
versely, smaller radii offer a more focused view of the property’s immediate environment
but may be more susceptible to local anomalies or unrepresentative samples.

Nonetheless, using different radii allows us to comprehensively investigate how the in-
fluence of environmental factors varies with distance. This multi-scale approach helps
us identify the most relevant neighborhood size for different environmental features. In
the next section, we will discuss our modeling approaches, including both linear and
non-linear methods, to analyze the impact of these environmental features on property
prices.

5.4 Modeling Framework

Linear Hedonic Pricing Model: Baseline Approach

As mentioned earlier, the hedonic pricing model posits that the price of a heterogeneous
good can be decomposed into the implicit prices of its constituent characteristics (Rosen,
1974). This approach allows us to estimate the marginal contribution of various property
attributes to its overall value. We begin with a standard linear hedonic pricing model
as our baseline, which we then augment with visual features extracted from street-level
imagery.

The general form of our hedonic pricing model can be expressed as:

K
In(P,) = By + Y B X, + (5.14)
=1

where:

o In(P,) is the natural logarithm of the price of property i,
o X, represents the k-th characteristic of property 1,
o [, is the corresponding coefficient and

o ¢, is the error term.
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The use of the semi-logarithmic functional form is common in hedonic price models
(Malpezzi et al., 2003; Sirmans et al., 2005) as it allows for a non-linear relationship
between price and housing characteristics while maintaining linearity in parameters.
This specification also provides a convenient interpretation of the coefficients: a one-
unit change in X, is associated with an approximate (5, x 100% change in price, ceteris
paribus.

Our baseline model incorporates standard structural and locational attributes, which
we denote collectively as X. To investigate our hypothesis that the inclusion of image-
derived environmental factors significantly improves model performance compared to the
baseline model with, we extend it to include our image-derived features F'

K M
In(F;) = By + Z BreXir + Z Y Fim,r T € (5.15)
k=1 m=1
Here, F},, ,. represents the m-th environmental feature for property i, calculated within

radius 7. The coefficient 7, captures the marginal effect of these environmental factors
on the log-price. To investigate how the influence of environmental factors varies with
distance, we estimate separate models for each radius r and compare their performance
and coefficient estimates.

In vector notation, this extended model can be written as:

In(P) =X+ F,v+e (5.16)
where:

o In(P) is an N x 1 vector of the natural logarithms of property prices,

e X isan N x K matrix of property characteristics,

e [isan K x 1 vector of coefficients,

o F,_isan N x M matrix of environmental features for each property within radius
T,

e visan M x 1 vector of coefficients for the environmental features,

e cisan N x 1 vector of error terms.

The Ordinary Least Squares (OLS) method is employed to estimate these models, under
the standard assumptions of linearity, independence, homoscedasticity, and normality
of residuals. While OLS provides easily interpretable results and has been widely used
in hedonic pricing literature, it’s important to note its limitations. In particular, the
assumption of linearity may be overly restrictive, as Rosen (1974) already pointed out
that the true relationship between housing characteristics and prices is likely to be non-
linear. Moreover, the potential presence of multicollinearity among predictor variables,
especially when incorporating multiple environmental factors, may affect the stability
and interpretability of our estimates. To address this, we conduct Variance Inflation
Factor (VIF) analysis to assess the degree of multicollinearity in our models.

While this linear hedonic model provides a solid foundation for our analysis, it may not
capture complex, non-linear relationships between environmental factors and housing
prices. Furthermore, potential interaction effects between variables might be overlooked.
To address these limitations and test our hypothesis regarding the superior predictive
performance of non-linear models, we also employ a Random Forest model, which will
be introduced in the next section.

34



Random Forest: Capturing Non-Linear Relationships

To address the potential non-linearities and complex interactions in housing price deter-
minants, we employ the Random Forest (RF) model as a non-parametric alternative to
the linear hedonic pricing model. Introduced by Breiman (2001), Random Forest is an
ensemble learning method that combines multiple decision trees to improve predictive
performance and control overfitting. Several studies have utilized the Random Forest
model for property valuation, finding it to outperform traditional OLS models. Hong et
al. (2020) and Potrawa and Tetereva (2022) demonstrated the superior predictive accu-
racy of Random Forests in this context, highlighting their capability to capture complex
interactions and non-linearities in housing data.

The Random Forest model can be formalized as follows:

Let {T,}2 | represent the ensemble of B decision trees in the Random Forest. For a
given property i with features Z; = [X,, F, .|, where X, are the structural and locational
attributes and F, . are the image-derived features at radius r, the prediction from the

b-th tree is denoted as ]ADi(b) (Z,). The final prediction of the Random Forest is the average
of all individual tree predictions:

B=<Y Pz, (5.17)

B
B b=1

Each tree in the forest is constructed using the following procedure:

1. Bootstrap Sampling: A bootstrap sample of size N is drawn with replacement
from the training data.

2. Tree Growing: At each node:

e Randomly select m <« K features from the full set of K features.

e Choose the best split among these m features based on the mean squared
error criterion.

e Split the node into two child nodes.

3. Maximization: The tree is grown to its maximum size, typically until a minimum
node size is reached.

This process is repeated B times to create the forest. The randomness introduced in
both the bootstrap sampling and feature selection at each split contributes to the model’s
robustness and generalization ability.

One of the key advantages of Random Forest in our context is its ability to capture non-
linear relationships and interactions between variables without explicit specification.
This is particularly valuable for modeling the complex interplay between environmental
factors and housing prices, which may not follow simple linear patterns.
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Implementation

To ensure a fair comparison with the linear hedonic model, we use the same set of
features X and F, in our Random Forest models. The implementation of our Random
Forest models follow these steps:

1. Data Splitting: The dataset is randomly divided into training (80%) and testing
(20%) sets. This split is consistent across all models.

2. Cross-Validation: We employ 5-fold cross-validation on the training set to tune
hyperparameters and assess model stability.

3. Hyperparameter Tuning: An exhaustive grid search is conducted to optimize
key hyperparameters, including the number of trees (B), the maximum depth of
each tree, and the number of features m considered for splitting at each node.

By employing both linear hedonic and Random Forest models, we are able to lever-
age the interpretability of linear models while capturing potential non-linearities and
interactions through Random Forests, thereby addressing our research questions from
multiple perspectives.

To realize the benefits of this dual approach, careful evaluation and interpretation of both
models is critical. In the following sections, we will discuss the interpretation techniques
used to assess and compare the performance of our linear and non-linear models.

Model Interpretation Techniques
Feature Importance

Feature importance provides a measure of each variable’s contribution to the model’s
predictions. For Random Forests, we use the impurity-based feature importance, also
known as Mean Decrease in Impurity (MDI). This method calculates the total decrease
in node impurity (measured by Mean Squared Error for regression) averaged over all
trees of the forest. Impurity refers to the uncertainty or disorder in the data at a
particular node. When training a decision tree within a Random Forest, the model aims
to minimize this impurity at each node by making splits based on different features.

For a feature j, its importance is calculated as:

1 B
Importance(j) = B Z Z AMSE, (j) (5.18)
b=1teT,,

where:

e B is the number of trees in the forest

o T, is the set of nodes in tree b

o AMSE,(j) is the decrease in mean squared error resulting from splits on feature j
in node t.
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This measure quantifies how much each feature contributes to reducing the prediction
error across all trees in the forest. Features that result in larger decreases in MSE are
considered more important, as they play a more significant role in improving the model’s
predictions.

Partial Dependence Plots

Partial Dependence Plots (PDPs) illustrate the marginal effect of a feature on the pre-
dicted outcome of a machine learning model. They aid in visualizing and understanding
the relationship between individual features and the model’s predictions, especially in
capturing non-linearities and interactions.

For a feature X, the partial dependence function is defined as:

PD,(X,) = Ex [f(X,, Xc)] (5.19)

where X represents all other features, and f is the machine learning model’s prediction

function. This function gives us the expected value of f when varying X, averaging
over all possible values of X .
In practice, this expectation is approximated using the training dataset:
1 n
PDS(XS> ~ EZf(XsaJ:zC) (520)
i=1

Here, z,~ denotes the values of all features except X, for the i-th instance in the dataset,
and n is the number of instances.

PDPs are effective tools for understanding how changing X, affects the model’s pre-
dictions, showcasing whether the relationship is linear, non-linear, monotonic, or more
complex.

SHAP (SHapley Additive exPlanations) Values

SHAP values, introduced by Lundberg and Lee (2017), provide a sophisticated method
for understanding feature importance and interpreting machine learning models, leverag-
ing principles from cooperative game theory. They offer both global insights into feature
relevance across the dataset and local explanations for individual predictions, making
them invaluable for understanding complex model behaviors.

For an instance z, the SHAP value for feature j is calculated as:

oy = S BHINIZISIZ D, o () - £(9) (5.21)

|
SCN\{j} IV

where:

e N represents the set of all features.
e S is any subset of features excluding j.
o f,(9) is the model’s prediction when using only the features in S.
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To better understand SHAP values, they offer:

Local Interpretation: For a specific prediction z, SHAP values quantify how
much each feature contributes to the difference between the actual prediction f(z)
and the model’s average prediction.

Global Interpretation: By aggregating SHAP values across all instances in
the dataset, we gain insights into the overall impact of each feature on model
predictions.

Key advantages of SHAP values include their ability to:

Capture Feature Interaction: They account for interactions between features,
providing a nuanced view of how combinations of features influence predictions.
Model Non-linearity: SHAP values capture non-linear relationships between
features and predictions, offering insights into complex model behaviors that linear
methods may overlook.

Theoretical Foundation: Grounded in game theory, SHAP values ensure con-
sistent and fair attribution of feature importance across different contexts and
datasets.

In the following Analysis and Results section, we will apply these evaluation metrics
and interpretation techniques to our models, presenting a comprehensive assessment
of how urban environmental factors influence property values in Rotterdam. We will
compare the performance of the linear hedonic and Random Forest models, analyze the
importance and effects of different environmental features, and discuss the implications
of our findings for urban planning and real estate valuation.
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6 Results

This chapter presents the empirical findings of our study on the impact of urban envi-
ronmental factors, extracted from street-level imagery, on residential property prices in
Rotterdam. Our analysis is structured to address the four main hypotheses proposed
earlier: The inclusion of urban environmental factors will enhance housing price pre-
dictions; specific environmental factors will have directional effects on housing prices,
potentially differing between houses and apartments; the impact of environmental fac-
tors will depend on the distance from a property that they are being studied at; and the
relationships between environmental factors and housing prices will exhibit non-linear
patterns and threshold effects.

To comprehensively examine these hypotheses, we employ a multi-faceted modeling ap-
proach. Our analysis compares two distinct model types: Ordinary Least Squares (OLS)
regression, representing a traditional linear approach, and Random Forest (RF), a non-
linear machine learning method. This comparison allows us to assess whether the com-
plex relationships between environmental factors and property prices are better captured
by more flexible models.

Furthermore, we investigate the spatial scale of environmental effects by analyzing data
at different radii around each property. This approach enables us to determine the most
relevant neighborhood size for different environmental features and to test our proximity
effects hypothesis.

Lastly, we conduct separate analyses for the entire dataset, as well as for houses and
apartments individually. This stratification helps us uncover potential differences in how
environmental factors influence property values across different property types.

Distribution of Urban Environmental Features

Before delving into our model results, it’s crucial to understand the spatial distribution
of the key environmental features across Rotterdam. Figure 6.1 provides a visual rep-
resentation of how our image-derived neighborhood features are distributed across the
city of Rotterdam.
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Figure 6.1: Distribution of Urban Environmental Features across Rotterdam.

Greenery (UGI): The map reveals a clear pattern of green space distribution. Rot-
terdam Centrum exhibits notably low levels of greenery, which is typical of dense urban
cores. As we move outward, particularly towards the north, the presence of greenery
increases significantly.

People: The distribution of people captured in street-view images closely aligns with
urban density patterns. The city center shows the highest concentration, gradually
decreasing as we move towards the periphery. This pattern likely reflects the bustling
nature of Rotterdam’s central business and commercial districts, contrasting with the
quieter residential areas surrounding them.

Cars: Interestingly, the car distribution presents almost an inverse pattern to that of
people. While one might expect a high concentration in the city center, we observe
fewer cars in central areas, possibly due to pedestrianized zones and public transport
efficiency. Notably, Rotterdam Noord shows a surprisingly high car presence, which
could be indicative of commuter patterns or parking policies in these areas.

Bicycles: The bicycle distribution partially mirrors the people distribution, with con-
centrations in central and mixed-use areas. However, suburban regions show lower bicy-
cle presence, likely due to a combination of factors: lower population density, increased
private storage options (garages, sheds), and potentially different commuting habits.

These distributions provide valuable context for interpreting our subsequent analyses,
highlighting the spatial heterogeneity of urban environmental features across Rotterdam.
They underscore the importance of considering location-specific factors when analyzing
property prices and urban dynamics.

Throughout this chapter, we present our results using a combination of tables and figures,
evaluating model performance through metrics such as R-squared, Mean Squared Error
(MSE), and Mean Absolute Percentage Error (MAPE). We also employ visualization
techniques including partial dependence plots and SHAP values to interpret the complex
relationships uncovered by our models.

6.1 Comparative Analysis of Model Performance

We begin our analysis by examining the overall performance of our models and assess-
ing the impact of incorporating image-derived environmental features. For this initial
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overview, we focus on models using the large 1000m radius, trained on 80% of the data
(5319 observations), with performance metrics (R? and MSE) calculated on the held-out
test set (20% , 1330 observations).

Table 6.1 presents a comparison of OLS and RF models, showing their performance
with different combinations of features. The baseline models include only structural
attributes, while subsequent models incrementally incorporate individual image features
(UGI, People, Cars, Bicycles) before combining all features. To ensure the validity of our
models, we assessed multicollinearity among predictors using Variance Inflation Factors
(VIF), the results of which can be found in Supplementary Figure S8.2.

Table 6.1: Comparison of OLS and RF models across various features.

Baseline UGI People Cars Bicycles All
Model R? MSE R? MSE Rz MSE R? MSE R? MSE R? MSE

OLS 0.725 1.000 0.726 1.032 0.753 1.077 0.733 0.963 0.757 1.131 0.775 1.021
RF 0.788 0.695 0.824 0.570 0.834 0.585 0.818 0.604 0.842 0.592 0.905 0.349

Note:
MSE values are relative to the OLS Baseline, which is set to 1. Lower is better.

Examining the baseline models, which include only structural attributes, we observe that
the RF model (R? = 0.788, MSE = 0.695) outperforms the OLS model (R? = 0.725, MSE
= 1). This initial difference suggests that even with traditional housing characteristics,
the RF model is better at capturing the patterns present in the data. Notably, the MSE
for the OLS baseline model is set at 1, with all other values presented relative to this
baseline.

As we incorporate image features, the performance disparity between OLS and RF mod-
els becomes more pronounced. For RF models, each image feature contributes to im-
proved performance. The Urban Greenery Index (UGI) provides the largest individual
improvement, increasing R? from 0.788 to 0.824 and decreasing MSE from 0.695 to 0.570.
This substantial improvement underscores the importance of green spaces in determin-
ing property values, aligning with findings from previous studies (Ye et al., 2019; Zhang
and Dong, 2018).

Conversely, OLS models show only marginal improvements with the addition of individ-
ual image features. The inclusion of the Cars variable yields a slight MSE improvement
(from 1.000 to 0.963), while other features show minimal impact. While R? values for
OLS models do increase slightly with each feature addition, this suggests that linear
models may struggle to capture the complex relationships between these environmental
factors and property prices.

The most striking contrast between OLS and RF performance is evident when all image
features are included. The RF model with all features demonstrates the best overall
performance (R? = 0.905, MSE = 0.349), representing a substantial improvement over
the baseline. In contrast, the OLS model with all features shows a more modest im-
provement in R? (0.775) and a slightly worse MSE (1.021) compared to its baseline.
This discrepancy suggests that OLS models may struggle to effectively incorporate the
complex information provided by image features, possibly due to interactions that the
linear model cannot capture.

The relative importance of different image features also varies between model types.
For RF models, UGI appears to be the most influential individual feature, followed by
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Bicycles, People, and Cars. However, the best performance is achieved when all fea-
tures are combined, indicating that these environmental factors provide complementary
information about property values.

These findings support our first hypothesis regarding enhanced predictive accuracy, par-
ticularly for RF models. The substantial improvements in both R? and MSE when incor-
porating image features demonstrate the value of including urban environmental factors
in property valuation models. However, this hypothesis is only partially supported for
OLS models, which show limited ability to leverage the additional information effec-
tively.

The significant performance difference between OLS and RF models when incorporating
image features has important implications for real estate valuation. It shows that the
relationships between visual environmental factors and property prices are likely com-
plex, requiring more flexible models to capture these dynamics accurately, aligning with
the findings by Hong et al. (2020). In the following section, we will explore the specific
directional effects of each environmental factor on property prices, examining how these
impacts differ between houses and apartments.

6.2 Directional Impacts of Environmental Features

Building upon our initial model performance analysis, we now delve into the specific di-
rectional effects of environmental features on housing prices, which addresses our second
hypothesis.

To investigate these effects, we estimated Ordinary Least Squares (OLS) models for the
entire dataset (N = 6,649), as well as separate models for apartments (N = 5,001) and
houses (N = 1,648). All models use a 1000m radius for environmental features, with coef-
ficients and other statistics calculated on the full respective datasets. Table 6.2 presents
the coeflicients for different house types, while Figure 6.2 visualizes the standardized
coefficients of image-derived features for direct comparability.
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Table 6.2: OLS Coefficients across House Types.

All Data Apartments Only Houses Only

Variable Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI
(Intercept) 10.657%%*  (10.247, 11.068)  10.310***  (9.866, 10.754)  11.503***  (10.620, 12.386)
Living Area (m?) 0.009%*** (0.008, 0.009) 0.009%** (0.009, 0.010) 0.007*** (0.007, 0.008)
Energy Label

Higher (A+, A, B, C) — — — — — —

Lower (D, E, F, G) -0.050***  (-0.062, -0.038)  -0.060***  (-0.072, -0.047) 0.043** (0.011, 0.074)
Rooms -0.012%%*  (-0.018, -0.005)  -0.037***  (-0.044, -0.029) 0.010 (-0.003, 0.022)
Construction Year 0.001*** (0.000, 0.001) 0.001*** (0.001, 0.001) 0.000 (0.000, 0.001)
Insulation

Double Glass = = == = = =

Fully Insulated 0.171%%* (0.155, 0.187) 0.165%** (0.148, 0.183) 0.174%%* (0.139, 0.209)

Other 0.007 (-0.006, 0.021) 0.008 (-0.006, 0.022) -0.019 (-0.049, 0.012)
Heating

Central Heating — — — — — —

District Heating 0.044%** (0.027, 0.060) 0.053%** (0.036, 0.071) 0.015 (-0.020, 0.050)

Other -0.047*%%  (-0.062, -0.032)  -0.027***  (-0.042, -0.011) 0.016 (-0.026, 0.058)
UGI 0.490*** (0.410, 0.571) 0.219%** (0.128, 0.309) 0.894%** (0.733, 1.055)
People 0.000 (-0.007, 0.008)  -0.019***  (-0.028, -0.011) 0.020 (-0.015, 0.056)
Cars -0.021%%*  (-0.024, -0.018) ~ -0.025***  (-0.028, -0.022) -0.008* (-0.015, -0.002)
Bicycles 0.091*** (0.084, 0.098) 0.106*** (0.099, 0.113) 0.078%** (0.051, 0.105)
R? 0.777 0.772 0.702
R? (adj.) 0.776 0.771 0.700
p-value <0.001 <0.001 <0.001
N 6649 5001 1648

1 p<0.05; p<0.01; p<0.001
2 CI = Confidence Interval

Structural Attributes

Before examining our primary variables of interest, we first consider the effects of struc-
tural attributes across different property types. Most coefficients align with expectations
from the literature, but several noteworthy patterns emerge:

1.

Living Area: Positive and significant across all models, confirming then expected
premium for larger properties.

Energy Label: The lower (worse) energy label category negatively impacts prices
for apartments and the complete data but shows a positive coefficient for houses.
This might reflect that older, less energy-efficient houses command higher prices
due to their location in prime areas of the city or unique architectural features.

. Number of Rooms: Negative and significant for apartments and overall, indi-

cating a preference for fewer, larger rooms. This effect is not significant for houses.

. Year Built: Significant and positive for apartments and overall, but not for

houses, suggesting the age of a house may be less important. However, as Supple-
mentary Figure S8.3 implies, the impact on house prices is U-shaped, where both
very old and very new houses are valued highly.

Insulation: Full Insulation is preferred across all datasets, highlighting the value
of energy efficiency.

Heating: Significant for apartments with district heating, possibly due to its
convenience and cost-efficiency in densely populated areas, but not significant for
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houses, which may be due to buyers’ flexibility to choose or upgrade their heating
systems over time, reducing the relative impact of heating type.

These variations in structural attribute effects highlight the importance of considering
property type in valuation models, as buyers of houses and apartments appear to value
features differently.

Image-Derived Environmental Features

Turning to our primary focus, we analyze the effects of image-derived environmental
features across different property types:

Variable

UGI ° ’
People- ‘@
ars o
. i @
Bicycles+ i PY
-0.05 0.00 0.05 0.10

1. Urban Greenery Index (UGI): The UGI shows a positive and significant effect

across all datasets, strongly supporting our hypothesis. As expected, the effect is
most pronounced for houses, with a coefficient approximately four times larger than
for apartments (3fg4°°% = 0.894 vs. ﬁ{}gaftmems = 0.219). This substantial differ-
ence suggests that house buyers place a higher premium on surrounding greenery,
possibly due to lifestyle preferences, such as a desire for family-friendly environ-
ments, which they value more highly compared to apartment buyers. To put this
in perspective, a 0.1 increase in the UGI is associated with an approximately 9.4%
increase in house prices, ceteris paribus.

. Presence of People: Contrary to our initial hypothesis, the effect
of People is only significant for apartments, and unexpectedly negative
(6£§g;f?e”ts = —0.019). In the context of Rotterdam, a higher concentra-

tion of people in apartment-dominated areas might be associated with issues such
as noise, lack of privacy, or overcrowding. For houses, the coefficient is positive
but not significant, suggesting that in less dense areas, the presence of people
might indeed indicate neighborhood vitality as initially hypothesized. We will
explore this variable further in the context of different radii in a subsequent
section.

Image Feature Coefficients Across House Types

Coefficient Estimate

Model @ All Data Apartments Only @ Houses Only

Figure 6.2: OLS Coeflicients Plot across House Types.
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3. Number of Cars: The presence of cars shows a significant negative effect across
all models, supporting our hypothesis. However, contrary to our expectations, the
effect is about three times stronger for apartments (ﬁéﬁfgtmems = —0.025) com-
pared to houses ( ggﬁ;es = —0.008). This stronger negative effect for apartments

might reflect several factors:

a) Apartment dwellers may be less likely to own cars and thus more sensitive
to the negative externalities of high car presence (e.g., noise, air pollution,
reduced pedestrian safety).

b) Areas with high car presence might correlate with busy roads or commercial
areas, which could be less desirable for residential apartments.

c) Houses in car-dense areas might have offsetting benefits (e.g., better accessi-
bility, larger plots) that partially mitigate the negative effects.

4. Number of Bicycles: The presence of bicycles shows a positive and signifi-
cant effect across all datasets, supporting our hypothesis. As expected, the effect
is more pronounced for apartments (ﬁgfgf&ems = 0.106) compared to houses
(Bgfczsjjs = 0.078). This aligns with our expectation that apartments, often lo-
cated in more central, bicycle-reliant urban areas, would benefit more. Specifi-
cally, the presence of one more bicycle is associated with an approximately 10.6%
increase in apartment prices, ceteris paribus. The positive effect likely captures

several desirable neighborhood characteristics:

a) Good cycling infrastructure, which may correlate with overall neighborhood
quality and sustainability.

b) Proximity to amenities, as areas with high bicycle use often have mixed land
use and good local services.

Figure 6.2 reveals additional insights into the relative importance of these environmental
features across property types. Notably, the houses-only model consistently shows the
highest degree of uncertainty, as evidenced by the wider confidence intervals. This
increased uncertainty stems from the smaller sample size (N = 1,648) compared to the
apartments and overall datasets. Across all models, the People variable demonstrates a
relatively small effect. Interestingly, while the Urban Greenery Index (UGI) exhibits the
largest effect among all features for houses, it shows the smallest impact for apartments.
This stark contrast validates our initial expectations. Despite these differences, the
R? and adjusted R? values are similar across the three models, indicating consistent
explanatory power despite the different subsets of data. The lower R? for houses might
reflect greater heterogeneity in this subset or the influence of unobserved factors not
captured by our current set of variables.

Implications

These findings highlight the complexity of how environmental features impact property
values and underscore the importance of differentiating between property types in urban
planning and real estate valuation.

The strong positive effect of the Urban Greenery Index (UGI), particularly for houses,
highlights the critical role of green space in urban development. The availability and
extent of green spaces should be a focus of urban planners, especially in areas with
single-family homes. The differing effects of transportation infrastructure on houses and
apartments reflect distinct transportation needs and preferences. In apartment-focused
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developments, prioritizing bicycle infrastructure and reducing car presence could en-
hance property values. Conversely, for areas with more single-family houses, a balanced
approach also accommodating cars might be more suitable.

The varying impacts of environmental features on houses versus apartments likely mirror
differing buyer preferences and lifestyles. House buyers may value green spaces and
quieter environments more, while apartment buyers might prioritize urban amenities
and sustainable transport options. In the next section, we will examine how these effects
vary across different spatial scales, focusing on the changing impact of environmental
factors at various distances from the property.

6.3 Spatial Variation in Environmental Effects

Building on our analysis of directional effects, we now examine how the impact of envi-
ronmental features varies across different spatial scales.

To investigate these spatial effects, we estimated both OLS and Random Forest (RF)
models for three different radii: 250m, 500m, and 1000m. Table 6.3 presents the perfor-
mance metrics (MAPE and R?) for both model types across these radii, calculated on
the 20% test set. Additionally, Figure 6.3 illustrates the standardized OLS coefficients
for image-derived features at different radii, estimated on the full dataset to provide a
clear interpretation of how these effects change with distance.

Model Performance Across Spatial Scales

Examining Table 6.3, we observe a consistent trend of improving model performance as
the radius increases, for both OLS and RF models: For the former, the R? increases
from 0.749 at 250m to 0.775 at 1000m, while the MAPE decreases from 0.172 to 0.162,
while the latter RF models’ R? rises from 0.874 at 250m to 0.905 at 1000m, with the
MAPE dropping from 0.114 to 0.098.

These results suggest that broader neighborhood characteristics captured by larger radii
provide more explanatory power for housing prices. This trend contradicts our initial
hypothesis of decreasing influence with distance and aligns more closely with findings
from Bency et al. (2017), who observed that larger neighborhood contexts often yield
better predictions of property values.

Table 6.3: Comparing OLS and RF Models across Different Radii.

OLS RF
Metric 250m  500m 1000m 250m 500m  1000m

MAPE 0.172 0.168 0.162 0.114 0.105 0.098
R? 0.749 0.761 0.775 0.874 0.891 0.905

Comparing OLS and RF models, we note that RF outperforms OLS across all radii,
with consistently higher R? and lower MAPE values. Moreover, the performance gap
between RF and OLS widens as the radius increases, with a difference in R? of 0.125 at
250m vs. 0.130 at 1000m.
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Spatial Variation of Environmental Effects

Figure 6.3 illustrates how the effects of different environmental features change across
spatial scales, allowing for a clearer interpretation of spatial trends. The standardization
of coeflicients enables direct comparison of effect sizes across features and radii.

Variable

UGIH
People- i
Cars
ars
. 00—
Bicycles-
0.00 0.05

1. Urban Greenery Index (UGI): The effect of UGI becomes more pronounced

and statistically significant as the radius increases. At 250m, the effect is not
significant, but it becomes strongly positive at 500m and 1000m. This pattern
suggests that the overall green character of a broader neighborhood is more influ-
ential on property values than immediate green spaces. This could reflect buyers’
preference for generally greener areas, where they can benefit from larger parks or
green corridors that might not be captured in smaller radii.

. Presence of People: Interestingly, this variable shows a different pattern com-

pared to other features. It has a significant positive effect at smaller scales but
becomes insignificant at 1000m. This unique trend might indicate that the vital-
ity and liveliness of the immediate neighborhood (as proxied by the presence of
people) positively influences property values, but this effect diminishes at larger
scales. Buyers might value a lively local environment but be less concerned with
activity levels in the broader area.

Image Feature Coefficients Across Different Radii

Coefficient Estimate

Radius @ 250m 500m @ 1000m

Figure 6.3: OLS Coefficients Plot across Different Radii.

3. Number of Cars: The negative effect of cars becomes slightly stronger as the

radius increases, with the largest effect at 1000m. This could suggest that while
local traffic might be a concern, the overall car presence in a broader area has a
more significant impact on property values. This might reflect buyers’ consider-
ations of general congestion levels, air quality, or the car-dependency of a larger
neighborhood.

. Number of Bicycles: The positive effect of bicycles also intensifies with in-

creasing radius, showing the strongest effect at 1000m. This trend validates our
interpretation of bicycle presence as a proxy for cycling infrastructure. Buyers
appear to value good cycling connectivity across a broader area, not just in the
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immediate vicinity of a property. This aligns with the idea that the utility of
extensive cycling infrastructure extends well beyond the local street level.

Controlling for Area Effects

To further investigate spatial effects and control for potential area-related con-
founders, we integrated the “Area” variable (defined as Rotterdam’s Wijken, aligned
with those depicted in Figure 6.1) into all model specifications outlined in Table 6.3.
This analysis aimed to discern whether model enhancements were primarily driven by
image-derived features or broader neighborhood characteristics.

As Table 6.4 reveals, including the “Area” variable significantly boosted OLS model per-
formance. The baseline OLS model, incorporating area but excluding image features, out-
performed models with image features but without area. This suggests that area-level
factors explain more of the variance in property values than image-derived features within
the OLS framework. Specifically, introducing the area variable increased the baseline
model’s goodness of fit by over 10 percentage points (from 0.725 to 0.829), while subse-
quently incorporating environmental factors yielded only marginal improvements.

Table 6.4: Comparing OLS and Random Forest Models across Different Radii and Sub-
sets of the Data.

OLS RF
Data Metric None 250m 500m 1000m None 250m 500m 1000m

Area Excluded
MAPE 0.188 0.172 0.168 0.162 0.159 0.114 0.105 0.098
R? 0.725 0.749 0.761 0.775 0.788 0.874 0.891 0.905

Area Included
MAPE 0.139 0.139 0.138 0.137 0.150 0.102 0.100 0.097

R? 0.829 0.830 0.831 0.834 0.797 0.902 0.904 0.908
Area 'Noord’

MAPE 0.122 0.120 0.118 0.116 0.117 0.098 0.100 0.101

R? 0.678 0.689 0.696 0.710 0.705 0.769 0.761 0.767

Random Forest models presented a contrasting picture. In the baseline scenario with-
out image features, adding the area variable resulted in a modest R? increase from
0.788 to 0.797. Introducing image features substantially improved performance across
all radii, with minimal variation between radii. Regardless, the model with the 1000m
radius consistently exhibited the highest performance based on both MAPE and R2. No-
tably, at this radius, incorporating the area variable did not significantly enhance model
performance compared to using image features alone.

Interestingly, the relationship between model performance and radius size changed when
controlling for the area. In models using only image features, performance generally in-
creased with larger radii, suggesting that these models were partially capturing area-level
effects. However, when area was included as a control variable, this pattern disappeared.
To further assess the specific impact of the environmental features themselves, we further
conducted an analysis focusing on a specific area.
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Evidence from Rotterdam Noord

To isolate the impact of environmental features and delve deeper into the spatial effects
within a more homogenous context, we conducted a focused analysis on Rotterdam
Noord. This Wijk has the largest number of properties (1021) in our dataset, providing
a robust sample size for our analysis. By examining a single area, we mitigate the
influence of broader area-level factors and concentrate on the impact of environmental
features on property values within a more localized setting.

As the bottom section of Table 6.4 indicates, OLS models exhibited slight improvements
when including environmental features, mirroring the city-wide analysis without the area
variable. Performance gradually increased with larger radii.

Conversely, Random Forest models revealed a different pattern. While environmental
features still significantly improved performance, the best-performing model shifted to
the smallest radius (250m), contrary to the city-wide results. This suggests that within a
single area, where confounding effects are minimized, environmental features at smaller
radii exert a more substantial influence on property values, supporting our initial hypoth-
esis that people prioritize their immediate surroundings over the broader neighborhood
context.

Implications

Contrary to our initial hypothesis, the impact of most environmental factors appears
to increase with distance rather than decrease, suggesting that broader neighborhood
characteristics may be more influential than immediate surroundings for most features.
The presence of people stands out as the exception, showing the strongest proximity
effect.

These findings have several implications for real estate valuation and urban planning.
Our performance metrics show that models consistently extract additional relevant in-
formation from most environmental features as the radius increases. Future research
could also explore even larger radii to determine an upper limit to this effect. Addition-
ally, developing models that allow for different optimal scales depending on the variable
could further refine our understanding of these spatial relationships.

The focused analysis on Rotterdam Noord provides critical insights into how environmen-
tal features affect property values at a more localized level and challenges our city-wide
findings. The result that smaller radii are more influential in this specific area suggests
that local environmental characteristics have a substantial impact on housing prices
when controlling for larger-scale area differences.

Urban planners should consider these broader impacts when designing neighborhoods
or implementing infrastructure improvements. Our findings suggest that larger-scale
initiatives, such as extensive cycling networks and broader green space planning, could
have significant positive impacts on property values across wider areas. Conversely, in
specific neighborhoods like Rotterdam Noord, enhancing local features such as greenery
and pedestrian-friendly spaces might yield more immediate benefits.

There is an important caveat to our analysis at varying spatial scales. As the radius
increases, the average number of images associated with each property also rises (208
at 250m, 780 at 500m, 2824 at 1000m). This increase in data points per property at
larger radii has both statistical and practical implications: The larger number of images
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at greater radii may contribute to more stable and precise estimates of environmental
features, potentially explaining some of the improved model performance at larger scales.
Future work might explore different aggregation methods, such as setting a fixed number
of associated images or weighted averages based on distance, to refine the capture of
spatial effects.

6.4 Uncovering Non-Linear and Threshold Effects

Our analysis thus far has revealed complex relationships between environmental features
and property values, varying across housing types and spatial scales. Building on these
insights, we now examine how the impact of environmental factors may shift at different
levels of intensity or prevalence, aiming to uncover potential tipping points or saturation
levels in their influence on housing prices.

To investigate these nuanced relationships, we employ a Random Forest model, comple-
mented by SHAP analysis and Partial Dependence Plots. This approach allows us to
capture and visualize complex, non-linear patterns that may not be apparent in linear
models. We trained our RF model using 80% of the dataset, with environmental fea-
tures calculated at a 1000m radius - the specification identified in the preceding section
as the most accurate model configuration. SHAP values and partial dependence func-
tions were computed using the 20% test data, though our experiments showed similar
results when utilizing the training data or the entire dataset, indicating the robustness
of these findings.

Variable Importance

Figure 6.4 presents the variable importance for our RF model, utilizing the impurity-
based importance method. This approach measures the average reduction in node impu-
rity (in this case, the mean squared error for our regression task) achieved by splitting on
each feature across all trees in the forest. Features that consistently lead to larger reduc-
tions in impurity are considered more important, as they contribute more significantly
to the model’s predictive accuracy.

The plot reveals a clear hierarchy of feature importance in determining housing prices.
Living area emerges as the most crucial predictor, followed by the number of rooms and
construction year. This aligns with traditional real estate valuation principles, affirming
the primacy of core structural attributes in determining property values.
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Figure 6.4: Variable Importance Plot for Random Forest model.

Strikingly, all four image-derived environmental features (Bicycles, UGI, People, and
Cars) rank among the top seven most important variables. This high ranking under-
scores the substantial role these environmental factors play in explaining housing price
variations, surpassing several traditional features.

The prominence of these environmental features, particularly the bicycle count and UGI,
aligns with our earlier findings from the OLS models. This consistency across our mod-
eling approaches reinforces the robustness of our results, providing evidence for the value
of incorporating these image-derived features into housing price prediction models, sug-
gesting that they capture important aspects of property valuation that might be missed
by relying solely on traditional attributes.

SHAP and PDP Analysis

To investigate non-linear effects and potential thresholds, we employ SHAP plots and
Partial Dependence Plots (PDPs) for each of our four main environmental features.
Figure 6.5 presents a grid of these plots, allowing for direct comparison.

SHAP plots visualize how each feature impacts the model’s predictions across its range
of values. Each point represents a single prediction, with the x-axis showing the feature
value and the y-axis indicating the SHAP value (impact on the prediction). The color
of each point represents the count of people associated with that property, allowing us
to observe potential interaction effects. Partial Dependence Plots (PDP), shown below
each SHAP plot, illustrate the marginal effect of a feature on the predicted outcome,
averaging over the effects of all other features.

We now analyze each environmental feature in detail:
Urban Greenery Index

The UGI analysis reveals a complex, non-linear relationship between greenery and hous-
ing prices. At very low UGI values, we observe slightly positive SHAP values, which
particularly coincide with properties with high people counts associated with them. This
counterintuitive finding likely reflects the high value of central, densely populated areas
where even minimal greenery is rare. The model associates the presence of (almost) no
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greenery with higher property values, not because of absence of the greenery itself, but
due to the desirability of the location.

As UGI increases, we see a strong positive trend, especially in the mid-range values,
indicating that increases in greenery generally correspond to higher property values. The
partial dependence plot corroborates this, showing a sharp initial increase in predicted
price as UGI rises from very low values. Notably, there’s a clear threshold at around 40%
UGI, after which the positive impact on price levels off, suggesting diminishing returns
to increasing greenery beyond this point.

These findings diverge from those by Chen et al. (2020). While they found that home-
buyers are only willing to pay more when UGI is sufficiently high, our results indicate
the presence of a saturation point beyond which additional green space may not signif-
icantly increase property values. This nuanced relationship suggests that the value of
urban greenery is highly context-dependent.

Presence of People

The people count exhibits a nuanced, non-linear relationship with housing prices. The
SHAP plot shows a mix of positive and negative values at low people counts, transitioning
to a general positive trend as the count increases. This trend is not uniform, with
considerable dispersion in SHAP values at higher counts.

The partial dependence plot reveals an initial increase in predicted price as people count
rises from very low values, followed by a plateau between approximately 2 and 4 people
per image, and then a more gradual rise. This pattern suggests an initial premium for an
“optimal” range of urban activity, and potentially a secondary premium for very busy,
possibly commercial or central areas.
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Figure 6.5: Grid of PDP and SHAP plots for all image features. The SHAP Plots are
colored by the count of people associated with each property.

Number of Cars

Car count demonstrates a predominantly negative relationship with housing prices. The
SHAP plot shows decreasing values as the number of cars increases, indicating a negative
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impact on property values. This relationship appears relatively linear, with some disper-
sion at lower car counts. The partial dependence plot confirms this negative relationship,
showing a consistent decrease in predicted price as car count increases.

While these findings support our initial hypothesis about the negative impact of cars on
property values, we don’t observe the hypothesized threshold effect. Notably, low vehicle
densities appear to be inversely correlated with pedestrian presence, as evidenced by the
lighter coloration of numerous high SHAP values. These data points, concentrated in the
upper left quadrant of the plot, are indicative of high-value, centrally located properties
in areas of high foot traffic. However, the negative effect of vehicle presence does not
exhibit any plateau across the observed range, suggesting that the preference for lower
car density is not limited to urban centers but appears to be consistent across the entire
study area.

Number of Bicycles

Bicycle count exhibits a strong positive relationship with housing prices. The SHAP
plot reveals a non-linear pattern, with a steep initial increase followed by a more gradual
positive trend. Properties with high bicycle counts and high SHAP values often coin-
cide with high people counts, indicating that areas with many bicycles and people are
generally associated with higher property values.

The partial dependence plot confirms this relationship, showing a sharp initial increase in
predicted price as the bicycle count rises from 0 to about 2 bicycles per image, followed by
a much more gradual increase. This threshold effect suggests that the presence of bicycles
is highly valued, possibly as an indicator of cycling infrastructure and neighborhood
quality, but with diminishing marginal benefits beyond a certain point. These findings
support our hypothesis about the positive impact of bicycles on property values while
revealing a more nuanced relationship than initially expected.

Implications

As we move towards our conclusions, from our initial exploration of directional effects
across housing types, through the investigation of spatial scales, to the uncovering of
non-linear and threshold effects, we have demonstrated that the influence of urban en-
vironmental features on housing prices is far from straightforward. Our findings chal-
lenge simplistic assumptions about the value of environmental amenities, revealing that
their impacts can be highly context-dependent and often non-linear. These findings col-
lectively underscore the limitations of one-size-fits-all urban planning approaches and
highlight the potential for targeted interventions to significantly impact property values
and urban livability.

For instance, the strong positive effect of bicycle presence, with a clear threshold, sug-
gests that even modest investments in cycling infrastructure could yield significant ben-
efits. The varying impacts of greenery, human presence, and transportation-related
factors across different property types and spatial scales highlight the need for differ-
entiated approaches. The consistent outperformance of non-linear models, particularly
Random Forests, in capturing these complex relationships underscores the limitations of
traditional linear approaches in this domain.
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7 Conclusions

This study set out to investigate how urban environmental factors, extracted from street-
level imagery, influence residential property prices in Rotterdam. Our research con-
tributes to the growing body of literature on real estate valuation by incorporating
unstructured visual data to capture nuanced aspects of urban environments.

Our findings largely support our initial hypotheses while revealing some unexpected in-
sights. The inclusion of image-derived environmental factors significantly enhanced the
predictive accuracy of our housing price models, with the model specifications incorpo-
rating all features demonstrating a substantial improvement over the baseline models.

The directional effects of environmental features on housing prices varied, with some
notable differences between houses and apartments. The Urban Greenery Index (UGI)
and the presence of bicycles were identified as particularly influential factors that pos-
itively impact property values, with the former having a stronger effect on houses and
the latter having a stronger effect on apartments.

Our analysis of spatial scales revealed that the impact of most environmental factors in-
creases with distance, contradicting our hypothesis of decreasing influence. This suggests
that broader neighborhood characteristics may be more influential than immediate sur-
roundings in determining property values in Rotterdam. The non-linear and threshold
effects uncovered in our analysis, particularly for the UGI and bicycle presence, sup-
port our fourth hypothesis and highlight the complexity of Rotterdam’s urban housing
market.

Methodologically, this study demonstrates the potential of leveraging street-level im-
agery and advanced computer vision techniques to enhance our understanding of urban
property valuation. By extracting specific, interpretable environmental factors from
images, we provide a more nuanced and comprehensive assessment of neighborhood
characteristics.

These findings have important implications for urban planning and real estate prac-
tices. The strong positive effect of greenery on property values, particularly for houses,
supports policies promoting the preservation and creation of urban green spaces. The
negative impact of car presence and positive effect of bicycle presence on property val-
ues indicate urban living preferences that could inform future developments, encouraging
designs that prioritize pedestrian and cyclist-friendly spaces over car-centric infrastruc-
ture. Furthermore, the increasing impact of environmental factors at larger spatial scales
emphasizes the importance of cohesive, city-wide urban planning strategies.

This study demonstrates the significant potential of leveraging unstructured data and
advanced analytical techniques to enhance our understanding of urban housing markets,
potentially aiding informed decision making by city planners and policymakers. As Rot-
terdam continues to evolve, these findings provide a data-driven foundation for creating
a more attractive and valuable urban environment.
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8 Discussion

While this study has provided valuable insights, it is important to acknowledge its lim-
itations and consider directions for future research.

Our reliance on listing prices rather than actual transaction data may introduce some
bias. While listing prices generally reflect market values reasonably well, future studies
could benefit from access to official transaction data from the Kadaster to validate and
refine our findings. Given the dynamic nature of urban environments and evolving
societal preferences, using data from multiple periods would be valuable for comparing
how the influence of environmental factors on property values changes over time.

Our approach of using fixed radii for spatial association, while providing valuable in-
sights, has limitations. The varying number of associated images at different radii may
influence our results. Alternative methods, such as distance-weighted approaches, could
provide a more nuanced understanding of spatial effects.

Future research could extend this study to other Dutch or international cities, providing
valuable insights into the generalizability of our findings and distinguishing universal
trends from location-specific effects.

Our study identifies correlations between environmental factors and property values but
does not establish causation. Future research could employ causal inference techniques
to better isolate these effects. Studying the impact of new green space developments
or cycling infrastructure projects on nearby property values over time could provide
stronger evidence of causal relationships.

Comparing our method of extracting specific environmental factors with end-to-end
frameworks that use images to represent overall neighborhood attractiveness could be
valuable. While end-to-end approaches might be less interpretable, such comparisons
could shed light on the trade-offs between interpretability and predictive power in prop-
erty valuation models.

Furthermore, future studies could use our methodology to assess the impact of specific
urban interventions or policy changes. For example, researchers could investigate how
the introduction of a new park or a major change in transportation infrastructure affects
property values in surrounding areas, providing valuable feedback for urban planning
decisions.

While our study showcases the potential of leveraging street-level imagery and advanced
computer vision techniques to enhance our understanding of urban property valuation,
it also opens up a wealth of new questions and research directions. As cities continue
to evolve and face new challenges, from climate change to changing demographics, the
need for data-driven insights to inform urban planning and real estate decisions will only
grow. We hope that the scalable and objective methods developed in this study serve
as a foundation for further research and provide valuable insights for urban planners,
policymakers, and real estate professionals.
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Supplementary Figures

Darknet-53 Architecture

Type Filters Size Output

Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128x128

Convolutional 32 1x1
1x  Convolutional 64 3x3
Residual 128 x 128

Convolutional 128 3x3/2 64x64

Convolutional 64 1x1
2x  Convolutional 128 3x3
Residual 64 x 64

Convolutional 256 3x3/2 32x32

Convolutional 128 1x1
8x  Convolutional 256 3x3
Residual 32 x 32

Convolutional 512 3x3/2 16x16

Convolutional 256 1x1
8x  Convolutional 512 3x3
Residual 16 x 16

Convolutional 1024 3x3/2 8x 8

Convolutional 512 1x1
4x  Convolutional 1024 3x3
Residual 8x 8
Avgpool Global
Connected 1000
Softmax

Supplementary Figure S8.1: Darknet-53 Network Design, which is the YOLO-v3 back-
bone.
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Variable Coefficient 95% CI Adjusted GVIF

(Intercept) 10.657*%F  (10.247, 11.068)
Living Area (m2) 0.009%**  (0.008, 0.009) 1.7
Energy Label 1.2
Higher (A+, A, B, C) — —
Lower (D, E, F, G) -0.050***  (-0.062, -0.038)
Rooms -0.012%** (-0.018, -0.005) 1.7
Construction Year 0.001%** (0.000, 0.001) 1.5
Insulation 1.1
Double Glass — —
Fully Insulated 0.171%%* (0.155, 0.187)
Other 0.007 (-0.006, 0.021)
Heating 1.2
Central Heating — —
District Heating 0.044*+* (0.027, 0.060)
Other ~0.047%%% (-0.062, -0.032)
UGI 0.490%** (0.410, 0.571) 1.5
People 0.000 (-0.007, 0.008) 2.0
Cars -0.0217%** (-0.024, -0.018) 14
Bicycles 0.091*** (0.084, 0.098) 1.8
R? 0.777
R? (adj.) 0.776
p-value <0.001
N 6649

! p<0.05; p<0.01; p<0.001
2 CI = Confidence Interval, GVIF = Generalized Variance Inflation Factor
3 GVIF[1/(2*df)]

Supplementary Figure S8.2: The table presents the adjusted generalized variance infla-
tion factor (aGVIF) for each variable in the OLS model.
Variables with high aGVIF values are typically considered
influential and may pose potential issues for the model’s
performance. However, none of the variables in our model
exhibit such problematic levels of multicollinearity.
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Supplementary Figure S8.3: The impact of construction year on house prices is U-
shaped, where the age of both very old and very new houses

is being valued positively.
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