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1 Introduction

Music streaming has become a primary source of music revenue: according to IFPI, 67% of
total industry revenue was generated by streaming in 2022 (IFPI, 2023). The music streaming
market is growing rapidly in revenue and the volume of offerings. At the moment, there are
more than 100 million songs available on Spotify, and 100,000 songs are uploaded to Spotify
every day (Brooks, 2023).

The sheer number of content on a platform can leave the users “paralyzed” as they are sub-
ject to the “paradox of choice” (Schwartz et al., 2002): the relationship between satisfaction
and the number of choice options has an inverted U-shape, with both too few choices and too
many choices leading to user dissatisfaction. Thus, streaming platforms need to find ways to
alleviate this problem, e.g., by better navigating users through their vast libraries of content.
One solution deployed by streaming platforms consists of user-curated playlists, which allow
users to create playlists of songs they like and share them with users who want to discover
new music. Streaming platforms also use data on user preferences to provide (personalized)
recommendations to users, e.g., algorithmic playlists. These recommendations are an impor-
tant factor through which streaming platforms can differentiate, as the song libraries of most
major streaming platforms are nearly identical. The importance of providing relevant and
high-quality recommendations is significant and can impact the company’s market standing.
For example, Spotify, the largest music streaming service, has the music recommendation
algorithm as its unique value proposition relative to other streaming platforms.

Most streaming companies employ a collaborative filtering (CF) approach in their music
recommendation: recommending songs based on what similar users are listening to. CF
is known for its superior accuracy, and will generally outperform content-based approaches
(Slaney, 2011). However, CF suffers from the cold-start problem: Since CF relies solely on
user data, it is impossible to recommend a song that has never been listened to before, and
it is unlikely that a song with few streams will be recommended. According to Luminate
Year-End Music Report (2023), out of 184 million songs that they tracked, 79.7 million were
streamed less than 10 times. For such cases, hybrid approaches to recommendation were
proposed, combining collaborative filtering and content-based recommendation.

Content-based approaches evaluate the content of the song with possible features ranging
from audio features to semantics. As mentioned by Wang & Wang (2014), traditional music
features such as Mel-frequency cepstral coefficients (MFCCs are a way to summarize the key
sounds in a piece of audio and are usually represented as a sequence of vectors) might not be
effective in prediction tasks, as they are high-level descriptors of music concepts such as genre,
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timbre, and melody. Bogdanov et al. (2013) showed that content-based approaches that
include semantic features (i.e., features of music that are not conveyed by musical sounds)
of music outperform those that do not. However, music recommendation using semantic
features might be affected by the semantic gap. The semantic gap is the discrepancy between
what can be extracted from music (i.e., semantic or audio features), and high-level human
perception of these features. For example, two songs with similar timbral features and topics
might be perceived completely differently by a user due to personal tastes and subjective
experiences, which are not accounted for by the algorithms.

One way to come closer to bridging the semantic gap is to capture user preferences for music
more exhaustively. For example, Starr (2014) found that the vividness of imagery consistently
predicts the appeal of a poem. Similarly, Obermeier et al. (2013) show that the meter and
rhyme of a poem significantly influence emotional responses. In this thesis, I focus on the
effect of vividness of imagery, rhyme, meter, and linguistic creativity on the performance of
music recommendation systems.

Research question

• How do poetic features (e.g., vividness of imagery, rhyme, meter, and linguistic cre-
ativity) affect the performance of music recommendation systems?

2 Literature Review

2.1 Algorithmic music recommendation

Music streaming is a relatively new field, which has changed the music industry, especially
after the launch of the streaming platform Spotify in 2008. Today, with tens of millions of
tracks in commercial music libraries (Schedl, 2019), it has become difficult for users to discover
engaging content without incurring high search costs. Over the past decade, recommender
systems (RSs) have emerged and evolved to lessen users’ burden of finding relevant items,
such as tracks, driven by commercial interests (Deldjoo et al., 2024).

Currently, two primary approaches to music recommendation exist. The collaborative fil-
tering approach (CF) (Herlocker et al., 2000) recommends items to a user based on data of
similar user interactions with items, e.g., ratings, likes. The second approach, content-based
filtering (CBF) (Van Meteren & Van Someren, 2000), utilizes the content, i.e., information
about the attributes of songs that a user has consumed, to make recommendations. Further-
more, hybrid systems (Ko et al., 2021), which are called content-driven approaches, combine
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both collaborative filtering and content-based filtering, enhancing recommendation quality.
However, CF and CBF remain fundamental to these systems.

The amount of research on recommender systems has increased significantly since the launch
of services like Spotify and competitions such as the Netflix Prize and the ACM Recommender
Systems Challenge 2018 (Deldjoo et al., 2024). Still, it faces many challenges that are
yet to be tackled. This literature review aims to provide insights into the currently used
approaches and their limitations, particularly the cold start problem (i.e., the inability of CF
recommender systems to make predictions for items with little data), semantic gap (i.e., the
discrepancy between what can be extracted from music and high-level human perceptions),
discuss existing research on features used in music recommendation systems (MRSs), and
introduce a rationale for the use of new semantic features in MRSs.

2.2 The cold start problem of collaborative filtering

Though music recommendation traditionally employed content-based filtering (Deldjoo et
al., 2024), collaborative filtering has gained popularity in recent years (Schedl, 2019). By
design, CF relies on user behavior data as it implies that users who have similar behaviors
act similarly on other items. Due to that design, CF faces several challenges. The cold
start (CS) problem describes situations where classic collaborative filtering recommendation
models cannot provide relevant recommendations due to a lack of observed behavioral user
data. CS is reflected in different problems.

The data sparsity problem is related to the sparsity of user-item interaction matrices. Nat-
urally, a user interaction dataset with a large number of items and users is sparse. It is
common to have a sparse user-item matrix of 1% (or less) coverage (Celma, 2010). Users can
be matched as similar only if they have interacted with the exact same items, and items can
be classified as similar if similar users have interacted with them. Therefore, the CF-based
approach can fail to classify similar items as similar due to the sparsity of the data, which
hinders the recommendation quality.

New user and new item problems represent situations where a new user with no or few item
interactions enters the platform or when a new item with no or few user interactions enters
the platform. Due to data scarcity, CF cannot provide useful recommendations in such
cases. More generally, any item with low popularity (whether new or not) also causes similar
problems (Deldjoo et al., 2024), as well as users with atypical taste (known as ‘grey sheep’).
That is, such items, despite not being new, are difficult to match as similar, and users with
less popular tastes are difficult to be matched to many others.
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Recommendations and data sparsity interact in a reinforcing circle: when a new user shows
their preference for multiple tracks, the system tends to recommend more popular items
since popular items of the dataset are similar to lots of items (Celma, 2010). Conversely, less
popular but potentially interesting items are seldom recommended due to the limited data
available about user interactions with them. For music recommender systems, one theory is
that the issue of data sparsity and hence the cold start problem could be mitigated by using
music descriptors with a more uniform distribution.

For example, Deldjoo et al. (2024) propose an “onion model” of the content in the music
domain (Figure 1). They explain that it reflects a path from strictly objective and numeric
descriptors to more subjective properties that stem from cultural practices of dealing with
music. As per the “onion model”, the layers of the music domain are:

• audio data, e.g., MFCCs, timbre, key,

• embedded metadata, such as artist name, lyrics, title,

• expert-generated content, e.g., genre, style, mood,

• user-generated content, such as tags and playlists,

• derivative content, e.g., remixes or parodies.

The authors believe that there is a shift from data sources not suffering from the cold start
problem in the inner layer to the data being more prone to the cold start problem in the
outer layer. In other words, Deldjoo et al. (2024) believe that some forms of content-based
filtering inherently do not suffer from cold start.

Deldjoo et al. (2024) (p. 18) write that the audio signal “constitutes a perfect source to
alleviate CS issues in content-based MRSs, because audio features can always be extracted
from the raw audio, even for content that does not contain any descriptive tags yet”. While
audio data does not suffer from cold start, it does not reflect the whole reason why people
might prefer one song over the other. The reasons behind musical interests are unclear (Ben
Sassi et al., 2021), and features other than audio –which might be more affected by the cold
start problem– might play a key role in user preferences (Deldjoo et al., 2024), therefore
requiring a multifaceted approach.

2.3 Content-based filtering and the semantic gap

Content-based filtering classifies items as similar based on item characteristics. While it is not
as subject to CS as collaborative filtering is, several complications related to feature selection
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Figure 1: An ‘onion model’ of content in the music domain

exist. For example, expert-generated content is richer in semantics, yet also more biased
and difficult to obtain (Deldjoo et al., 2024). User-generated content is not immediately
available after the song’s release, and takes time to be generated. Moreover, the creation
of user-generated content is dependent on the community of listeners and is, therefore, less
reliable than other features in terms of accessibility, quality, and amount. Derivative content
“has, so far, not received as much attention for content-based music recommendation as to
the underlying layers” (Deldjoo et al., 2024, p. 5), and, therefore, research on it is limited.

Moreover, research consistently indicates that low-level audio features are not suitable for
music recommendation. In a study by Barrington et al. (2007), two models aimed at finding
similar tracks were compared: one using audio features, and another utilizing semantic fea-
tures inferred from acoustic data. As an example of a semantic representation, the sound of a
gun might score high in “weapon” and “war,” but low in “quiet” and “whistle”. Their analysis
showed that the model based on semantic features demonstrated a significant improvement in
mean average precision (mAP) compared to the one using purely acoustic features. Mean av-
erage precision is an average precision (i.e., fraction of relevant instances among the retrieved
instances) across multiple queries. At a recall (i.e., the fraction of relevant instances that
were retrieved out of all relevant instances) rate of 0.1, the semantic model showed a relative
improvement of 26%. In a study by Bogdanov et al. (2010), three models were developed
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using inferred semantic characteristics, while two were trained with MFCCs (Mel-Frequency
Cepstral Coefficients). The results showed that all three models using inferred semantics
outperformed those based on MFCCs in terms of “hit” rate. Bogdanov et al. (2010) defined
“hit” as a situation where the recommended track is not very familiar to the listener, yet
is rated highly. While low-level audio features are not subject to cold start, they do not
perform well compared to high-level features. One explanation for the poor recommendation
performance of models using traditional music features might be the semantic gap (Wang &
Wang, 2014). The semantic gap is related to the difficulty in linking low-level features to
high-level human concepts, i.e., emotions, understanding, expectations, etc. Celma (2006)
also argues that only using audio signals does not allow for bridging the semantic gap.

Embedded metadata in the form of lyrics provide a solution. Lyrics are affected by cold start
less than other features, apart from audio data. They are more accessible than UGC, and
EGC, and they offer a source of high-level semantic information that might help bridge the
semantic gap and improve the performance of content-based filtering recommendations.

2.4 A link between music and poetry

According to Schedl (2019), one of the reasons why music recommendation is a fundamentally
different task from that of other services or products is the strong emotions that music evokes
in people. Emotion is a high-level human concept that is hard to model using low-level audio
features. To do so, one needs to create other meaningful descriptors of music. Zeman et al.
(2013) find that the areas of the human brain that send “shivers down the spine” (pp. 140,
148-149) as a reaction to music get aroused as a response to emotionally charged poetry,
therefore linking enjoyment of poetry and music on a biological level. Musical lyrics and
poetry both share the usage of language. Thus, descriptors for poetry such as rhymes, meter
(i.e., the basic rhythmic structure of a verse or lines in a verse, and is characterized by stressed
syllables coming at regular intervals), and expressive language can also be used as high-level
descriptors of music.

These descriptors are largely important in human perception of poetry. According to Belfi et
al. (2018), the vividness of imagery is the most important factor in the appeal towards specific
poems. While the vividness of imagery is subjective, it can be inferred from descriptiveness,
the strength of sentiment, and lexical richness. Obermeier et al. (2013) argue that meter
and rhyme significantly influence emotional responses. As the rules for the identification of
meter and rhyme are objective, it is possible to derive meter and rhyme patterns from musical
lyrics. Similarly, Kshenovskaya (2020) and Hoffmann (2024) suggest that linguistic creativity
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enhances the aesthetic experience of poetry as well as its appeal. Linguistic creativity is the
ability to produce new linguistic units (words, phrases, or sentences) that are novel and
appropriate (Kshenovskaya, 2020). While it is difficult to quantify, it might be possible
to infer it through lexical diversity, density, and sophistication. Singhi (2015) uses rhyme,
meter, and syllable features to predict whether a song would be successful. He reported
that a model using only lyrical features (i.e., rhyme, meter, and syllable features) achieved a
higher precision and recall than the model based on the audio features, setting a precedent
for lyrical features outperforming audio features in popularity prediction tasks.

In summary, content-based music recommendation approach helps alleviate the cold start
problem. However, finding the right set of features and bridging the semantic gap is an issue.
An important contribution of this thesis is to identify which lyrical features help improve
recommendation quality. In this thesis, I introduce new lyrical features of songs to assess
their effect on the performance of music recommender systems. These features build on
the link between music and poetry, and, more precisely, on human enjoyment of music and
poetry.

3 Data

As discussed above, the focus of this thesis is to assess the effect of lyrical features on the
performance of music recommendation systems. Audio features were retrieved from The
Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011). Lyrical features are engineered
from the lyrics extracted from lyrical databases. User stream counts are extracted from the
The Echo Nest Taste Profile Subset, which is also a part of The Million Song Dataset. The
Echo Nest Taste Profile Subset includes user streaming data for more than a million users
in the form of user-song-play count triplets. A random sample of 2000 users (later shrunk
to 1993 users due to low stream count of seven users) is drawn from the subset, and 40627
songs, which the sampled users streamed, are selected for analysis.

Songs with no lyrics are not considered as they are irrelevant to the posed hypothesis. More-
over, songs in any language other than English are not included as well in order to make the
engineering of lyrical features feasible.

Below, data sources and how the data was accessed is discussed in greater detail. Also,
features and how they were engineered is explained.
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3.1 Data sources

Audio features and metadata are extracted from the Million Song Dataset (MSD) (Bertin-
Mahieux et al., 2011). MSD is a large dataset containing a million songs and various features
related to those songs. It was compiled by a music intelligence and data platform, The
Echo Nest, which is currently owned by Spotify, and The Laboratory for the Recognition
and Organization of Speech and Audio in 2011. It also includes data on user behavior,
user-created song-level tags, etc.

At the moment, a full copy of MSD is only accessible through Amazon Web Services (AWS).
In order to extract only relevant data from the dataset, an SQLite database, provided on the
Million Song Dataset website, is used to extract track IDs belonging to the relevant songs
by matching song IDs from the The Echo Nest Taste Profile Subset and song ids from the
database. This step is essential as MSD files containing song features are named based on
the track ID of the song. Finally, relevant files containing audio data and metadata are
extracted from MSD using a virtual machine and obtained track IDs. The files, which are
in an h5 format initially, are processed using the rhdf5 R package, and relevant features
are extracted. Most of these features are not altered and are used in the format they are
presented in the dataset. A list of those features, as well as their descriptions, are presented
in the next section.

The Million Song Dataset includes lyrics for more than 230 thousand songs in a bags-of-words
format. However, due to the nature of some of the lyrical features that are engineered, a
bags-of-words format is not sufficient. Full lyrics are extracted from multiple databases (i.e.
Musixmatch, Genius, NetEase, LRCLIB, and Deezer) using the syncedlyrics Python package
(Momeni, 2022). A search for the lyrics is conducted using the song’s title and the name of
the artist. Before conducting the search, song titles are cleaned by removing parentheses and
contents inside of the parentheses in order to omit irrelevant details (e.g. “Live” or “Session
Version”) which can prevent the song from being found in the databases. As a result, lyrics
are obtained in a plain text format.

Finally, 27 lyrical features are calculated using “Rhyme Analyzer” software created by Hirjee
and Brown (2009). Rhyme Analyzer calculates “a variety of statistical features about the
detected rhymes in the input lyrics, providing a quantitative characterization of rhyming
style” (Hirjee, 2009). The application’s back-end is public and can be accessed via GitHub.
It includes a command line interface (CLI) application which can be used to output several
of the lyrical features in the command line. Two modifications of the CLI application were
created to retrieve the lyrical features as well as the transcriptions of the lyrics. R was used
to pass the lyrics of each song to the created CLI applications and obtain the required data.
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3.2 Feature engineering and variable descriptions

Audio and metadata features

The following section provides brief descriptions of audio features retrieved from the Million
Song Dataset (MSD). Feature descriptions are taken from the MSD website and adjusted for
better explanatory value.

Pitch_1:12 and timbre_1:12 are features related to twelve different pitch and timbre mea-
surements. In MSD, pitch and timbre are given per segment, and each song has a different
number of segments. In order to aggregate these measures, an average per feature was taken,
which resulted in 12 pitch and timbre features per song. The rest of the features were not
altered.

As can be seen, MSD features, apart from “hotttnesss” and “familiarity” features, represent
low-level concepts, which, as mentioned above, might be unsuitable for content-based rec-
ommendation and do not allow for bridging the semantic gap (i.e., the discrepancy between
what can be extracted from music and high-level human perceptions) (Barrington et al.,
2007; Bogdanov et al., 2010; Celma, 2006; Wang & Wang, 2014).

Table 1: Audio features and metadata

Source Variable Description

MSD duration Duration of the track in seconds
MSD end_of_fade_in Time of the end of the fade in, at the

beginning of the song, according to The
Echo Nest

MSD start_of_fade_out Start time of the fade out, in seconds, at
the end of the song, according to The
Echo Nest

MSD key Estimation of the key the song is in by
The Echo Nest

MSD mode Estimation of the mode the song is in by
The Echo Nest

MSD loudness General loudness of the track
MSD tempo Tempo in BPM according to The Echo

Nest
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Source Variable Description

MSD time_signature Time signature of the song according to
The Echo Nest, i.e. usual number of
beats per bar

MSD song_hotttnesss Indication of how much attention the
song is getting at the moment according
to The Echo Nest in December 2010, on
a scale from 0 to 1

MSD artist_hottness Indication of how much attention the
artist is getting at the moment according
to The Echo Nest in December 2010, on
a scale from 0 to 1;

MSD artist_familiarity Indication of how well-known the artist
generally is according to The Echo Nest
in December 2010, on a scale from 0 to 1

MSD pitch_1:12 Twelve chroma features (tone, retrieved
from the audio signal) averaged across
all segments of the song

MSD timbre_1:12 Twelve MFCC-like (Mel-Frequency
Cepstral Coefficients) features averaged
across all segments of the song

Lyrical features

A table summarizing lyrical features is presented below. These features were selected based
on the conducted review of the literature, both related to recommender systems as well as
to literature and poetry. While the chosen set of features is not exhaustive, it extensively
covers multiple facets of lyrics: rhythmic structure, metric structure, and lexical richness.
Descriptions of features, calculated using Rhyme Analyzer, are taken from the paper written
by one of the creators of Rhyme Analyzer, Hirjee (2009). A discussion of the features follows
the table.

Table 2: Lyrical features

Variable Description

Syllables per Line Average number of syllables per line
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Variable Description

Syllables per Word Average word length in syllables
Syllable Variation Standard deviation of line lengths in syllables
Novel Word Proportion Average percentage of words in the second line not

appearing in the first
Rhymes per Line Average number of detected rhymes per line
Rhymes per Syllable Average number of detected rhymes per syllable
Rhyme Density Total number of rhymed syllables divided by total

number of syllables
End Pairs per Line Percentage of lines ending with a line-final rhyme
End Pairs Grown Percentage of rhyming couplets where the second line is

more than 15% longer in syllables than the first
End Pairs Shrunk Percentage of rhyming couplets where the second line is

more than 15% shorter in syllables than the first
End Pairs Even Percentage of rhyming couplets neither grown nor

shrunk
Average End Score Average similarity score of line-final rhymes
Average End Syl Score Average similarity score per syllable in line final rhymes
Singles per Rhyme Percentage of rhymes being one syllable long
Doubles per Rhyme Percentage of rhymes being two syllables long
Triples per Rhyme Percentage of rhymes being three syllables long
Quads per Rhyme Percentage of rhymes being four syllables long
Longs per Rhyme Percentage of rhymes being longer than four syllables
Perfect Rhymes Percentage of rhymes with identical vowels and codas
Line Internals per Line Number of rhymes with both parts falling in the same

line divided by the total number of lines
Links per Line Average number of link rhymes per line
Bridges per Line Average number of bridge rhymes per line
Compounds per Line Average number of compound rhymes per line
Chaining per Line Total number of words or phrases involved in chain

rhymes divided by total number of lines
Iambic proportion Percentage of lines in iambic meter
Trochaic proportion Percentage of line in trochaic meter
Spondaic proportion Percentage of line in spondaic meter
Anapestic proportion Percentage of line in anapestic meter
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Variable Description

Dactylic proportion Percentage of line in dactylic meter
Amphibrachic proportion Percentage of line in amphibrachic meter
Pyrrhic proportion Percentage of line in pyrrhic meter
Number of Lines Absolute number of lines in the lyrics
Number of Syllables Absolute number of syllables in the lyrics
Number of Rhymes Absolute number of rhymes in the lyrics
MTLD score A measure of textual lexical diversity
Descriptiveness ratio A proportion of descriptive words out of all words
Polarity Overall sentiment of the lyrics
Lexical density Proportion of functional words out of all words
Lexical sophistication Percentage of words not in 5000 most used words
Iambic meter proportion Proportion of iambic meter of all meters
Trochaic meter proportion Proportion of trochaic meter of all meters
Spondaic meter proportion Proportion of spondaic meter of all meters
Anapestic meter proportion Proportion of anapestic meter of all meters
Dactylic meter proportion Proportion of dactylic meter of all meters
Pyrrhic meter proportion Proportion of pyrrhic meter of all meters
Amphibrachic meter proportion Proportion of amphibrachic meter of all meters

Lyrics of relevant songs were retrieved from several large databases. Instrumental songs
(those with no lyrics) were omitted as their presence could have skewed the results of the
experiment.

Songs in languages other than English were also not included in the analysis due to the
specificity of the feature engineering methods. For example, as will be discussed in more detail
below, features related to rhymes were extracted from a pre-made application, which only
supports English. The language of a given lyrics was determined using the cld3 (Compact
Language Detector 3 by Google) package in R.

Rhyme features

Rhymes are a correspondence of sounds between words or the endings of words. As discussed
above, 27 features (25 rhyme-related features and two representing a number of lines and a
number of syllables) were calculated using Rhyme Analyzer.

Meter

Meter is the basic rhythmic structure of a verse or lines in a verse, and is characterized by
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stressed syllables coming at regular intervals. In the table below, the stress patterns of all
meters used in this thesis are briefly explained (Singhi, 2015).

In poetry, various verse forms prescribe a specific meter or a combination of meters. For
instance, the novel Eugene Onegin by Alexandr Pushkin is mostly written in a combination
of iambic meters. In musical lyrics, however, there are no strict rules that artists adhere
to. Therefore, identifying the “main” meter by finding the most common meter can lead to
meaningless results. In this thesis, each lyric is assigned the proportion of each meter out of
all meters observed.

Meters are identified using a transcription of the lyrics, which is extracted from the Rhyme
Analyzer software. Transcriptions of the lyrics include lexical stress markers, i.e. indication
of which syllable is stressed, which can equal zero, one, or two. Zero indicates no stress, while
one and two indicate primary and secondary stress respectively. Syllables that are under a
secondary stress are considered stressed in this thesis.

Rhyme Analyzer uses the CMU Pronunciation Dictionary (CMU, 2019) in order to produce
the transcriptions. The CMU Pronunciation Dictionary contains 134000 words for North
American English and was created at the Carnegie Mellon University. While the CMU
Pronunciation Dictionary is extensive, it does not account for the context in which the word
is pronounced, only providing the correct transcription. However, both in musical lyrics and
poetry, words can be pronounced differently from the norm in order to produce a better
rhythm. Therefore, this approach imposes a limitation on the quality of the identified metric
patterns.

Meter Stress pattern

Iambic Unstressed + Stressed
Trochaic Stressed + Unstressed
Spondaic Stressed + Stressed
Anapestic Unstressed + Unstressed + Stressed
Dactylic Stressed + Unstressed + Unstressed
Pyrrhic Unstressed + Unstressed
Amphibrachic Unstressed + Stressed + Unstressed

Table 3: Stress patterns of different metrical feet

Measure of textual lexical diversity (MTLD)

“Lexical diversity (LD) refers to the range of different words used in a text, with a greater
range indicating a higher diversity” (McCarthy & Jarvis, 2010, p. 381). A lexical diversity
measure, namely MTLD, is calculated for each lyric as it, along with other measures, might
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aid in portraying the linguistic creativity of the artist, which is important for the perception of
the lyrics. MTLD is an approach to lexical diversity assessment, proven to correlate highly
with established sophisticated approaches and produce consistent results regardless of the
length of the text (McCarthy & Jarvis, 2010).

MTLD is calculated by sequentially calculating a text’s type-token ratio (i.e. total number
of unique words divided by the total number of words) until a specific threshold is reached
(TTR of 0.72 by default (McCarthy & Jarvis, 2010)). When the threshold is reached, the
TTR evaluation is reset, and the factor count increases by 1. In case at the end of the
sentence there are words left that do not form a full factor, they are accounted for by adding
a partial factor to the sum of full factors. By definition, the TTR of such a segment is higher
than the chosen threshold. A partial factor is then calculated as a percentage of the range
between one and the chosen threshold that is filled in by the TTR of a partial segment, going
from one to the threshold, divided by 100. For example, a TTR of 0.8 forms 71.4% of the
range between 1 and the threshold of 0.72, calculated as (1 − 0.8)/(1 − 0.72) ∗ 100 and a
value of 0.714 will be added to the sum of full factors. Finally, the total number of words is
divided by the factor count to arrive at the MTLD value.

In this thesis, MTLD was calculated using the koRpus R package (Michalke, 2021), and the
default threshold value of 0.72 was used.

Descriptiveness ratio

Vividness of imagery, as discussed in the literature review, is an important factor in the
reason for the appeal of specific poems. While it is inherently subjective, it is reinforced by
how descriptive the text is, as descriptions drive the author’s ability to convey emotional
contexts, and the reader’s ability to form mental images of those contexts. Descriptiveness
of the text is calculated as a proportion of descriptive words from all words.

Adjectives are used to modify nouns, and adverbs can be used to modify verbs, adjectives,
adverbs, or whole sentences. Therefore, to calculate the descriptiveness ratio of a lyrics, the
number of adjectives and adverbs is divided by the total number of words in the lyrics. To
identify the parts of speech in the lyrics, a pre-trained open-source part-of-speech (POS)
tagging model provided by the UDPipe community is used (Wijffels, 2024).

Lexical density

Lexical density measures the complexity of human communication in language (Halliday,
1985). In this thesis, it is used as one of the metrics to infer the author’s linguistic creativity
from, as linguistic creativity is an abstract and multifaceted concept. To calculate lexical
density, the number of lexical units, or functional words, is divided by the total number of
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words. Functional words are nouns, adjectives, verbs, and adverbs. The calculation of lexical
density relies on the same POS tagging model used to calculate the descriptiveness ratio.

Lexical sophistication

Lexical sophistication refers to the use of rare words by the author. In this thesis, a rare word
is defined as a word that is not among 5000 most common words in the English language,
similarly to the definition of a rare word of a typing assistant Grammarly.

Before rare words can be identified, it is ensured that all words that are present in the lyrics
exist in the English language. Lyrics are first lemmatized (i.e., brought to their dictionary
form, or lemma) using the textstem R package (Rinker, 2018). Afterward, lyrics are matched
with a comprehensive list of English words from the SCOWL (Spell Checker Oriented Word
Lists) database, and words that are not in the list are omitted. The list includes more than
152000 words.

Most common words are extracted from The Corpus of Contemporary American English or
COCA (Davies, 2015). COCA provides word frequencies, or lemma frequencies, for the most
common 5050 words in the English language. Finally, lexical sophistication is calculated as
a proportion of non-common words in the total word count of a lyrics.

Polarity

Sentiment score, or polarity, is a measure of the sentiment of a document. A negative polarity
value indicates a negative sentiment, a positive polarity value indicates a positive sentiment,
and, finally, a polarity of zero indicates that the document is neutral in terms of the sentiment.
The strength of the sentiment is a relevant variable as it can refer to the vividness of imagery,
portrayed by the lyrics.

Polarity is calculated using the qdap R package (Rinker, 2023). Each word in the document
is assigned a polarity score of one, negative one, or zero based on whether the word is
tagged as positive, negative, or neutral (e.g., the word “cheer” has a positive sentiment, and
the word “chore” has a negative sentiment, and the word “item” is neutral). A sentiment
dictionary by Hu and Liu (2004) is used to tag polarized words with those values. Around
each polarized word, a window of six words (four before and two after) is investigated to
find valence shifters. Valence shifters affect the score of the polarized words: negators (e.g.,
not, didn’t, isn’t) reverse the score of a word, amplifiers (e.g., quite, really, very) increase
the intensity of a word, and deamplifiers (e.g., barely, only, rarely) decrease the intensity of
a word. Amplifiers and deamplifiers cause the polarity of the word to be multiplied by 1.8
or by 0.2 respectively.
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The final polarity score (δ) is calculated as:

δ = xT
i√
n

Where:

xT
i =

∑ (
(1 + c(xA

i − xD
i )) · w(−1)

∑
xN

i

)
Individual components:

xA
i =

∑
(wneg · xa

i )

xD
i = max(xD′

i , −1)

xD′

i =
∑

(−wneg · xa
i + xd

i )

wneg =
(∑

xN
i

)
mod 2

Where:

• xT
i is the total adjusted sentiment score for a given polarized word,

• xA
i is the sum of amplifier weights,

• xD
i equals the adjusted de-amplifier value,

• xD′
i refers to the intermediate de-amplifier value calculation,

• wneg is the negator weight,
• ∑

xN
i is the sum of negator values,

• c is the weight for amplifiers and de-amplifiers (i.e., 0.8),
• w is the weight of a polarized word based on the dictionary,
• n indicates the word count.

Polarity is calculated per each lyrics, or document. Since the polarity algorithm, implemented
in qdap, treats documents as large sentences, removing and ignoring periods, it can lead to
unexpected results. For instance, the polarity of “very. Good” is equal to that of “very
good”. In the first example, the word “Good” refers to the second sentence and should not
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be amplified by the word “very” which comes from the sentence before. Commas, however,
do separate the context clusters, and, therefore, all periods are replaced with commas in
order to ensure a correct calculation of the polarity score.

3.3 Descriptive analytics

In this section, descriptive analytics is presented in order to gain insight into the data at
hand. Given a large number of features, only some are going to be discussed.

A histogram of the total number of unique songs streamed by each user is shown below. The
red line represents the average number of songs streamed, and the green line represents the
median number of songs streamed. On the right, a table with summary statistics is presented.

An average user streamed a total of 58 unique songs. The distribution is skewed to the
right, therefore median is lower and equals 38. The most active user streamed 849 unique
songs. The variation is very large with a standard deviation higher than the mean, yet it
represents real user behavior. It is important to mention that the values below correspond
to the sample. The population mean is lower and equal to 47 songs, and the population
standard deviation is around the same and equal to 57.
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In the second histogram depicts the average number of streams per song. Red and green lines
indicate the mean and median, respectively. Most users in the sample streamed a song, on
average, around three times, while, as can be seen from the minimum, some users streamed
all the songs they listened to only once. Once again, variation of the metric is high and
indicates largely varying user behaviors. The population mean is around the same and is
equal to 2.9.
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Due to the large number of features, a correlation table depicted below only features variables
which correlate strongly (absolute correlation coefficient above 0.7) with at least one other
variable. The numbers inside the squares refer to the Pearson correlation coefficient. Pearson
correlation coefficient measures linear correlation between sets of data and ranges from -1
to 1, where -1 indicates a perfect negative linear relationship between the variables, and 1
indicates a perfect positive linear relationship.

Noticeably, correlations between the meter proportions are rather strong and logically consis-
tent. For instance, the iambic meter, which follows a pattern of a stressed syllable following
an unstressed syllable, correlates negatively with anapestic, dactylic, and pyrrhic meters,
none of which correspond to that pattern. Also, it looks like one of the twelve timbre vari-
ables represents loudness as they are almost perfectly correlated. Generally, there are many
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strong correlations between rhyming features, such as, for instance, rhymes per line, syllables
per line, compounds per line, and line internals per line. This makes sense as compounds per
line represent compound rhymes, which are characterized by containing two or more sylla-
bles, therefore increasing the number of syllables. Line internals per line, i.e., the number of
rhymes that fit on the same line divided by the number of lines, are, by definition, connected
to rhymes per line.
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High Correlations in Song Features

Finally, a short table with summary statistics of some features is presented below. Only
features that can be intuitively understood and assessed are included, so, for example, timbre
and pitch features are excluded as they represent low-level audio signals, and their values are
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not meaningful without context.

It can be noticed that some variables have a high standard deviation, such as, for example,
the number of syllables. In fact, the maximum number of syllables of 11434 refers to the
song by DJ Kay Slay, which lasts for 40 minutes and includes 110 verses. The song with
1102 syllables per line is actually a track by a comedian Lewis Black, and, while it is just a
clipped recording of his show, it is considered a song. This table shows the large variability
in the content as well as potential data issues (e.g., a live show recording labelled as a song
in music databases).

Table 4: Summary statistics

N Mean SD Median Min Max
duration 40627 242.20 91.72 230.16 2.17 3024.67
end_of_fade_in 40627 0.81 3.26 0.18 0.00 399.99
start_of_fade_out 40627 232.86 89.78 220.65 2.17 3020.30
MTLD_score 40627 42.14 27.12 36.51 2.57 468.23
descriptiveness_ratio 40627 0.12 0.05 0.11 0.00 0.65
polarity 40627 0.00 0.81 0.00 -14.27 29.00
lexical_density 40627 0.43 0.06 0.43 0.00 0.89
lexical_sophistication 40627 0.36 0.30 0.28 0.00 3.03
iambic 40627 0.27 0.03 0.27 0.00 1.00
trochaic 40627 0.25 0.03 0.25 0.00 0.69
spondaic 40627 0.10 0.05 0.09 0.00 0.93
anapestic 40627 0.08 0.02 0.08 0.00 0.32
dactylic 40627 0.07 0.02 0.07 0.00 0.24
pyrrhic 40627 0.10 0.03 0.10 0.00 0.43
amphibrachic 40627 0.11 0.02 0.12 0.00 0.28
Num_Lines 40627 40.08 24.00 36.00 1.00 967.00
Num_Syllables 40627 319.71 241.96 274.00 6.00 11434.00
Num_Rhymes 40627 47.95 58.08 34.00 1.00 2475.00
Syllables_per_Line 40627 8.41 12.02 7.70 1.59 1102.00
Syllables_per_Word 40627 1.24 0.37 1.22 0.87 29.62
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4 Method

In order to assess the impact of the engineered lyrical features on the performance of music
recommender systems, a content-based recommendation system was built. Below, the design
of the model is justified and explained, the metric used to assess the results is presented, and
the experiment setup is described.

A content-based music recommendation system provides recommendations utilizing exclu-
sively the information about the attributes of the songs consumed by a user. In the data
section, audio and lyrical features to be used to make recommendations were described.
Moreover, it was mentioned, that stream count is treated as an indicator of a user’s pref-
erences. A content-based recommendation system was built in accordance with the design
proposed by Leskovec et al. (2020): attributes of the items that the user had interacted with
were aggregated to form a vector, indicating the user’s preferences and cosine similarity was
calculated between the user’s preference vector, i.e., user profile, and song attribute vectors,
i.e. song profiles.

Cosine similarity was chosen to generate recommendations for the following reasons:

1. When creating regression models in a high-dimensional space, one needs an appropriate
number of observations in order to avoid overfitting. As shown in the data section, the
number of songs a user streamed can be as low as 5, while more than 30 features are used
when generating recommendations in each experimental setup. While utilizing tuning
and dimensionality reduction to avoid overfitting is possible, it presents significant
limitations in terms of efficiency. An approach featuring vector similarity measures,
however, is less prone to overfitting and does not suffer as much as the former from a
large number of features combined with a small number of observations, also sometimes
referred to as the Curse of Dimensionality.

2. As many experiments need to be run on large amounts of data, cosine similarity provides
a more feasible solution compared to regression or classification models. Moreover,
cosine similarity is less computationally expensive in high dimensions than, for instance,
Euclidean distance.

3. Cosine similarity is a popular choice in content-based recommender systems literature
and research (Gorakala & Usuelli, 2015; Leskovec et al., 2020; Niyazov et al., 2021).
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Cosine similarity is the cosine of the angle between two vectors in a multi-dimensional
space. Cosine similarity between two n-dimensional vectors A and B is represented by:

cos(θ) = A · B
∥A∥∥B∥

=
∑n

i=1 AiBi√∑n
i=1 A2

i ·
√∑n

i=1 B2
i

Where n is the number of dimensions, Ai and Bi are the ith components of vectors A and B
respectively. Cosine similarity ranges from -1 to 1, where 1 indicates that the vectors point
in the same direction, or the angle between them is equal to 0 degrees, -1 indicates that the
vectors are opposite, or that the angle between them is 180 degrees, and 0 indicates that
the vectors are perpendicular. In the context of this thesis, the higher the cosine similarity
between a user’s preferences and song attributes, the more similar they are.

4.1 Recommender system design

Below is a high-level conceptual model representing the structure of the recommendation
system to be built. The explanation of the elements, in order, is the following:

1. The recommendation system takes historical user activity data as input. User prefer-
ences are inferred from observed user behavior. User activity data is formatted as a
vector populated with the count of streams per song, and is called a user utility vector.

2. Two groups of data are extracted: audio data and metadata, extracted from the Million
Song Dataset, and lyrics as plain text, from various lyrical databases (i.e. Musixmatch,
Genius, NetEase, LRCLIB, Deezer).

3. Audio and metadata from the Million Song Dataset do not need to be processed, while
lyrics are used to create lyrical features (e.g. lyrical sophistication, rhyme features,
etc.). Combined, these constitute a table with song features. Each row represents a
vector of features for a specific song and is called a song profile, or an item profile.
The song feature table is then standardized to ensure that no feature dominates the
calculation of the cosine similarity due to differences in the scales of the features.

4. Then, the user profile is created by averaging song features, i.e., song profiles, weighted
by the stream counts, i.e., user utility vector. This step ensures that features belonging
to songs that the user streamed more have a higher impact on the final user preferences
vector. The user profile represents the aggregate musical preference of the user.
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5. Finally, cosine similarity is calculated between feature vectors of all songs the user has
not listened to (and that are not used for training, in case of testing), and the user
profile. A sorted list of songs is returned, starting with the highest cosine similarity.
Those songs on top of the list are assumed to be most likely preferred by the user.

Figure 2: Conceptual Model

4.2 Model performance assessment

Mean average precision at 500 (MAP@500) was chosen as a metric to assess and compare
the performances of various iterations of the recommender system. MAP@500 was also used
as the evaluation measure in the Million Song Dataset Challenge, which posed a similar
challenge of predicting users’ missing listening history based on available streaming data. K
was set to 500 in order to capture most users’ entire libraries.

Mean average precision at K is calculated as following:

MAP@K = 1
U

U∑
u=1

AP@Ku

Where:

• K represents the chosen cutoff point,

• U is the total number of users,

• AP is the average precision.
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Average precision at K is defined as:

AP@K = 1
N

K∑
k=1

Precision(k) × rel(k)

Where:

• N is the total number of relevant items for a particular user,

• Precision(k) is the precision calculated at each item position,

• rel(k) is an indicator of the relevance of the item, equals 1 if the item at position k is
relevant, and 0 if not.

Finally, precision at K is calculated as:

Precision@K = Total number of relevant items in K

Total number of items in K

Where K is the cutoff point.

To summarize, MAP@K evaluates the quality of the recommendations by both, measuring
the relevance of the recommended items as well as their placement. MAP@K ranges from
0 to 1, where 1 can be achieved by placing all the relevant items as close to the top of the
list as possible. It is important to mention that relevant items are all assumed to have equal
relevance, and, therefore, interchanging the items themselves within the recommendation
does not have an effect on the MAP@K.

4.3 Experimental setup

In order to conclude that lyrical features can have a positive impact on the performance of
the recommender system that was built, at least a single feature that significantly improves
the performance of the baseline model needs to be found. To do so, several iterations of the
recommender system were created. In order to achieve a more robust result, MAP@K was
cross-validated. Each user’s streaming library was divided into five folds, and users with less
than five unique streamed songs were omitted. Four folds were used for training, and one
fold was used for testing. Each user’s final AP@K was calculated as an average of AP@Ks
across all five folds.

The following models were created and assessed: a baseline model employing exclusively audio
features retrieved from The Million Song Dataset. A model using all features available, both
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audio and lyrical. A model per lyrical feature, which used all baseline features as well as one
of the lyrical features. Finally, to ensure the model built is relevant, its performance is also
compared to the recommender system that gives random recommendations.

5 Results

A content-based music recommendation system that uses user stream counts and cosine sim-
ilarity to produce recommendations was built and tested with multiple variations of features.
Table 5 shows train and test MAP@K for four models. It includes a baseline model, built
on audio features only and referred to as “audio”, a model built solely on lyrical features
and referred to as “lyrical”, a model built on both sets of features and referred to as “all
variables”, and a model that gives random recommendations.

As can be seen, models using only lyrical data tend to perform worse than models using audio
features and models using a combination of features. On train data, the highest MAP@K
of 0.0389 is achieved by using both lyrical and audio features. However, on test data audio
features alone perform better than a combination of lyrical and audio features. It might be
due to the model failing to generalize to unseen data. In fact, lyrical features might have
introduced noise that decreased the performance of the combined feature set to be lower
than that of audio features only. Random recommendations, on the other hand, yielded a
MAP@K of zero.

Table 5: Models featuring full sets of variables

Data Feature set MAP@K
audio 0.0249
lyrics 0.0136train

audio_and_lyrics 0.0389
audio 0.0039
lyrics 0.0007test

audio_and_lyrics 0.0038
random 0.0000

Table 6 shows the MAP@K of an audio feature set combined with individual lyrical features,
on test data. Features marked in bold are those which, in combination with audio features,
yield a result higher than that of audio features only on test data, and features with a cyan
background are those which, according to a paired t-test, increase MAP@K on a statisti-
cally significant level. Therefore, combining audio features with the MTLD score or lexical
sophistication score increases MAP@K by approximately 7.7%.
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Table 6: Models featuring single lyrical features

MAP@K
MTLD_score 0.0042
descriptiveness_ratio 0.0040
polarity 0.0039
lexical_density 0.0040
lexical_sophistication 0.0042
Num_Lines 0.0040
Num_Syllables 0.0040
Syllables_per_Line 0.0039
Syllables_per_Word 0.0040
Novel_Word_Proportion 0.0039
Singles_per_Rhyme 0.0040
Doubles_per_Rhyme 0.0038
Quads_per_Rhyme 0.0039
Longs_per_Rhyme 0.0040
Line_Internals_per_Line 0.0039
Links_per_Line 0.0040
Bridges_per_Line 0.0039
Compounds_per_Line 0.0039
Chaining_per_Line 0.0039
iambic 0.0039
trochaic 0.0039
spondaic 0.0040
anapestic 0.0039
dactylic 0.0039
pyrrhic 0.0039
amphibrachic 0.0039
Perfect_Rhymes 0.0039
Rhyme_Density 0.0039
Triples_per_Rhyme 0.0039
Num_Rhymes 0.0039
Syllable_Variation 0.0039
Rhymes_per_Line 0.0039
Rhymes_per_Syllable 0.0038
End_Pairs_per_Line 0.0039
End_Pairs_Grown 0.0038
End_Pairs_Shrunk 0.0038
End_Pairs_Even 0.0038
Average_End_Score 0.0038
Average_End_Syl_Score 0.0039
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Table 7 shows the MAP@K of an audio feature set compared to that of a combined set of
audio features and those lyrical features that statistically significantly improved MAP@K
as shown in Table 5. An achieved MAP@K of 0.0045 indicates an increase of 15.4% to the
MAP@K of exclusively audio features.

Table 7: Models featuring audio and best lyrical features

Feature set MAP@K
audio 0.0039

audio_and_best_lyrical 0.0045

6 Conclusion

The research objective of this thesis was to investigate the impact of lyrical features on
content-based music recommendation systems. To achieve this objective, 39 unique lyrical
features were introduced into a content-based music recommendation system and results were
evaluated across 1993 users and 40627 songs.

6.1 Discussion

Including all 39 generated features into a content-based music recommendation system did
not yield a positive result, and, in fact, decreased the mean average precision. However, four
features were found to statistically significantly increase MAP@K: MTLD score, which is
a measure of textual lexical diversity; lexical sophistication, which is the percentage of the
lyrics that consists of words that are not in 5000 most used words in the English language;
number of syllables, which is the total number of syllables in the lyrics, and syllables per
word, which is the average number of syllables per word in the lyrics. Combining these fea-
tures with audio variables produces an increase in MAP@K of 15.4%. Therefore, it can be
concluded that poetic lyrical features can improve the performance of content-based music
recommendation systems. Including such features can increase the quality of the representa-
tion of a user’s preferences, and, therefore, increase the precision with which relevant songs
are recommended.

Notably, MTLD score and lexical sophistication, if taken separately, increased MAP@K to
approximately 0.0042, which is the highest increase among all variables. Both MTLD score
and lexical sophistication can be categorized as measures of lexical richness: how unique and
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non-repetitive the lyrics are, and how uncommon the words in the lyrics are. It can be then
stated that users seem to have a stronger preference for lexical richness than other features
when it comes to their music taste.

At the same time, no features that directly represent rhyme, meter, or vividness of imagery
were found to significantly improve MAP@K. While the number of syllables and syllables per
word were in fact statistically significant and introduced by the Rhyme Analyzer software,
they are not directly related to rhyme, i.e., correspondence of sounds that is meant to enhance
the listener’s experience. Intuitively, number of syllables and syllables per word should not
directly be in a user’s preferences but can represent a higher-level preference. For example,
there is a positive correlation between the number of syllables and lexical sophistication.

6.2 Contributions to theory and practice

This thesis contributes to the existing literature on content-based music recommendation
systems and specifically on the issue of cold start (i.e., the inability of CF recommender
systems to make predictions for items with little data) in music recommendation. It presents
a new approach in tackling the cold start problem and bridging the semantic gap (i.e., the
discrepancy between what can be extracted from music and high-level human perceptions) by
introducing new lyrical features that can be used to increase the performance of content-based
music recommendation systems.

The results of this thesis also carry practical implications for companies that have to do with
music recommendation. As it was demonstrated that the inclusion of lyrical features into
content-based recommendation systems improves their performance, companies can improve
the user experience they provide as well as their position in the market through a relatively
undemanding adjustment.

6.3 Limitations and future research

Arguably, the most challenging limitation of this thesis lies in the features it aims to introduce.
As mentioned in the literature review, modelling the vividness of imagery or lexical creativity
is rather difficult, as such concepts are subjective and multifaceted. Features that were meant
to represent the vividness of imagery did not prove to significantly improve MAP@K, and
it can be argued that the reason for that is poor choice of features. Future research is
necessary to identify whether and how such concepts can be modelled to make use of them
more effectively.
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Next, the approach employed in this thesis aggregates user profiles into a single vector which
is meant to represent a user’s set of preferences. However, it is somewhat obvious how such an
approach can yield unreasonable results: let’s assume a user listened to songs that are more
or less polar opposites of each other the same number of times. Then, a vector representing
his or her preferences is going to lie in the middle, essentially failing to account for the user’s
varying and unique taste.

Finally, the approach used in this thesis applies the same feature set to all users, disregarding
what they might consider more or less important. People’s preferences in music are driven by
different factors (sometimes, audio and lyrics are even proposed to be the opposites of each
other in that sense), and, therefore, it makes sense to account for such individual differences,
algorithmically or through user feedback. Further research could focus on the identification
of the strength of the user preferences and their implementation in content-based music
recommendation systems.
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