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Abstract

This study aimed to predict Solana’s price trends by integrating traditional stock market in-

dicators, inflation metrics, and blockchain-specific features using the XGBoost model. A com-

prehensive analysis was conducted, examining cumulative SHAP values and individual SHAP

values for the lags of each feature to provide a nuanced understanding of their impacts. The

findings reveal that traditional stock market indicators and blockchain-specific features exhibit

a mixed effect on Solana’s price trends depending on the specific lag considered. However, the

inflation metric consistently shows a clear downward pressure on Solana’s price trends.
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Introduction

2.1. Overview

The cryptocurrency market has experienced explosive growth in recent years, becoming a sig-

nificant component of the global financial system. Cryptocurrencies, which are decentralized

digital assets based on blockchain technology, have revolutionized financial transactions by of-

fering increased security, transparency, and efficiency. Among the myriad of digital assets,

Solana has attracted substantial interest from both retail and institutional investors due to its

high throughput (table 1) and low transaction costs (Yakovenko, 2018). Although Ethereum

leads the altcoin market, Solana is growing rapidly, enjoying $9.6 million in inflows.1 In addi-

tion, Shopify’s recent partnership with Solana to explore new use cases in commerce underscores

Solana’s potential and its growing adoption across industries.2

Table 1: Throughput Comparison of Blockchain Platforms

Blockchain Platform Transactions per Second (TPS) Source

Solana 65,000 (Yakovenko, 2018)
Bitcoin 7 (Nakamoto, 2008)
Ethereum 30 (Buterin, 2013)

The existing body of literature on cryptocurrency price prediction has predominantly centered

on Bitcoin and Ethereum, with assets like Solana receiving considerably less attention. Fur-

thermore, while previous research has utilized various independent variables, such as sentiment

analysis from social media, internal blockchain activity metrics, and historical cryptocurrency

prices (Gurrib, 2022; Olivier Kraaijeveld, 2020), there has been a lack of exploration into integ-

rating traditional financial market indicators and macroeconomic variables with cryptocurrency-

specific data. This study seeks to address this gap by incorporating stock market indices, such

as the S&P 500, macroeconomic indicators like the CPILFESL3 and cryptocurrency prices and

volumes traded from Bitcoin and Ethereum to predict Solana price trends. This multi-faceted

approach will provide an understanding of the links between various financial indicators.

1Ethereum Overtakes Solana With Most Altcoin Inflows Year-to-Date As Positive Sentiment Continues
2Solana Pay Integrates with Shopify as New Payment Option to Transform Commerce
3Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average
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Solana operates in a highly volatile market environment, where prices can fluctuate rapidly due

to several factors. This inherent volatility in the cryptocurrency market presents significant

challenges for price prediction, necessitating the development of robust predictive models cap-

able of handling such complexity. Traditional financial prediction models, such as Holt-Winters

exponential smoothing, which rely on linear assumptions and require data to be divisible into

trend, seasonal, and noise components, have proven less effective in capturing the non-linear

dependencies characteristic of cryptocurrency markets (McNally, 2018). In contrast, machine

learning techniques offer superior performance by effectively modeling these non-linear relation-

ships. This study employs an XGBoost model for its predictive analysis. Additionally, Shapley

values are used to determine the effect of all the features on Solana price trends.

The structure of this study will begin with detailing the research question and hypotheses that

are being addressed. Following this, a comprehensive literature review will be presented, covering

existing studies on cryptocurrency price prediction, the XGBoost model and Shapley values.

The subsequent section will focus on data, describing the various data sources and presenting

descriptive statistics. The methodology section will then cover all data pre-processing steps,

model development, evaluation, result interpretation, and the limitations of the methodology.

Finally, the study will finalise with the results section answering all the hypotheses, followed by

a conclusion.

2.2. Research Question & Hypotheses

The central research question that this study aims to address is:

What is the impact of the U.S. stock market, U.S. inflation, and blockchain

market metrics on Solana’s price trends?

The research question can be investigated through the following hypotheses:

H1: An increase in the S&P 500 index leads to an upward price trend for Solana

The S&P 500 index serves as a widely recognized barometer of the overall health of the stock

market and the broader economy (Hashemi et al., 2017; Mustapa & Ismail, 2019). When the

S&P 500 experiences an upward trend, it generally reflects positive investor sentiment and

favorable economic conditions. This optimistic outlook can extend beyond traditional equities,

influencing investor behavior in other asset classes, including cryptocurrencies. Consequently,

increased investment flows into the cryptocurrency market can elevate the demand and valuation

of Solana, driving up its price. This phenomenon highlights the interconnectedness of financial

markets and underscores how positive developments in the stock market can bolster confidence

and investment in the cryptocurrency sector.
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H2: An increase in transaction volumes for Solana, Bitcoin and Ethereum leads to

an upward price trend for Solana

When metrics such as transaction volume increase, they reflect a growing adoption and usage

of the Solana, Bitcoin, and Ethereum blockchains. As more users and applications find value

in these blockchain capabilities, the demand for the respective cryptocurrencies rises. This

increased activity can enhance the perceived value and utility of Solana, driving up investor

interest and further elevating its market price. This relationship underscores the importance

of network activity as a predictive indicator of market performance for these cryptocurrencies,

highlighting how higher transaction volumes can signal positive market trends and investor

confidence.

H3: Upward price movements of Bitcoin, Ethereum and Solana result in upward

trends in Solana’s market price

Bitcoin and Ethereum, as the two largest cryptocurrencies by market capitalization, often serve

as bellwethers for the broader cryptocurrency market. When Bitcoin and Ethereum experience

positive price movements, they tend to generate favorable market sentiment and increased in-

vestor confidence across the entire cryptocurrency ecosystem. This positive sentiment can lead

investors to explore and invest in other cryptocurrencies, including Solana. This interconnected

market behavior underscores how major cryptocurrencies can influence and propel the market

trends of other digital assets. Furthermore, rising Solana prices are likely to indicate an up-

ward trend for Solana. It is a common and effective practice in price prediction studies to use

historical data to forecast future trends.

H4: An increase in the CPI of the U.S. results in a decrease in Solana’s price trend

The CPI can be used as a measure of inflation in the U.S economy (Bryan & Cecchetti, 1993;

Zellner et al., 1980). When the CPI rises, it signals increasing inflation, which often prompts

the Federal Reserve to implement higher interest rates and tighter monetary policies to curb

inflationary pressures. These measures can negatively impact investor sentiment, as higher

interest rates typically make borrowing more expensive and saving more attractive, thereby re-

ducing the liquidity available for investment in riskier assets like cryptocurrencies. As a result,

investors might shift their capital towards more stable, lower-risk investments, leading to de-

creased demand for cryptocurrencies such as Solana. This hypothesis highlights the sensitivity

of cryptocurrency markets to macroeconomic indicators and their potential inverse relationship.
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Literature Review

3.1. Cryptocurrency Price Prediction

Prediction efforts for established financial markets, such as the stock market, are well-documented.

Similarly, recent research has increasingly focused on predicting cryptocurrency prices, particu-

larly Bitcoin and Ethereum, by leveraging various machine learning techniques and performing

sentiment analysis. Below, we delve into several such studies, showcasing the diverse approaches

and findings within this field.

McNally, 2018 critiques traditional time series models like Holt-Winters exponential smoothing,

which rely on linear assumptions and require data divisible into trend, seasonal, and noise

components. Due to the high volatility of the cryptocurrency market, these methods prove less

effective. In his study, McNally focused on predicting Bitcoin price trends, using Bitcoin’s closing

price on Coindesk as the dependent variable, with opening price, daily high, daily low, mining

difficulty, and hash rate as independent variables. He found that the LSTM model achieved an

accuracy of 52%.

Wu et al., 2022 explores the challenges associated with predicting the highly volatile crypto-

currency market, noting that it is more difficult to forecast compared to traditional financial

products like stocks due to the susceptibility of cryptocurrency prices to various economic, polit-

ical, and other factors. This paper leverages the XGBoost algorithm to predict the short-term

returns of 14 different cryptocurrency markets. The authors conducted experiments using data

from the KAGGLE competition platform and enhanced the dataset through feature engineer-

ing. The findings demonstrate that the XGBoost model significantly outperformed traditional

machine learning algorithms, showing 12.5%, 16.6%, and 43.3% higher prediction performance

than Gradient Boosting, SVM, and Linear Regression models, respectively. This highlights the

effectiveness of advanced machine learning techniques, particularly XGBoost, in improving the

accuracy of cryptocurrency market predictions.

Srivastava et al., 2023 present an advanced model for predicting cryptocurrency prices, address-

ing the high volatility inherent in digital currencies like Bitcoin, Dogecoin, and Ethereum. The

study integrates a regression algorithm and Particle Swarm Optimization (PSO) with XGBoost

7



algorithm to enhance prediction accuracy. The approach uses time series data consisting of daily

cryptocurrency prices. Comparative assessments indicate that the proposed model outperforms

traditional methods, showing lower values for Root Mean Squared Error (RMSE), Mean Ab-

solute Error (MAE), and Mean Squared Error (MSE). The results underscore the XGBoost

model’s superior efficiency and accuracy in predicting cryptocurrency closing prices.

In their study, Z. Chen et al., 2020 examined the prediction of Bitcoin prices using various ma-

chine learning techniques, highlighting the importance of sample dimension engineering. They

differentiated Bitcoin price prediction into daily and high-frequency (5-minute interval) cat-

egories. The study utilized high-dimension features such as property, network, trading, market

attention, and gold spot price for daily predictions, achieving an accuracy of 66% with statistical

methods like Logistic Regression and Linear Discriminant Analysis. Notably, machine learning

models such as Random Forest, XGBoost, Quadratic Discriminant Analysis, Support Vector

Machine, and Long Short-Term Memory outperformed statistical methods for 5-minute interval

predictions, achieving an accuracy of 67.2%.

Kim H., 2021 delve into the relationship between inherent Ethereum Blockchain information

and Ethereum prices. Moreover, they examine how Blockchain information from other publicly

available cryptocurrencies is associated with Ethereum prices. The key findings indicate that

macroeconomic factors, Ethereum-specific Blockchain data, and the Blockchain information of

other cryptocurrencies play critical roles in predicting Ethereum prices. This research under-

scores the importance of considering a broad array of factors, including inter-cryptocurrency

Blockchain dynamics, for accurate cryptocurrency price predictions.

Gurrib, 2022 investigates Bitcoin price prediction using sentiment analysis. The authors trained

a Latent Dirichlet Allocation (LDA)-based classifier that utilized current BTC price data and

news headlines to predict the next day’s BTC price movement. Their results were compared

with a Support Vector Machine (SVM) model and a random guessing approach. The SVM

model outperformed the LDA classifier in predicting next-day BTC price trends. All models

more accurately forecasted increases rather than decreases in BTC prices. Incorporating news

sentiment data significantly improved the forecast accuracy, yielding a 0.585 accuracy score

on the test data, outperforming random guessing. The LDA (with asset-specific features) and

SVM (with both news sentiment and asset-specific features) models ranked highest within their

classifier categories, indicating that both BTC news sentiment and asset-specific features are

key factors in predicting next-day price direction.

Wo lk, 2020 believed that Bitcoin, being one of the largest cryptocurrencies in terms of mar-

ket capitalization, often sees its price influenced by public sentiment rather than institutional

regulations. Wo lk, 2020 explores this phenomenon by proposing that sentiment analysis can be

effectively utilized as a computational tool to predict cryptocurrency prices. The study leverages

data from Twitter and Google Trends to forecast short-term prices for major cryptocurrencies,

demonstrating that psychological and behavioral attitudes of individuals have a substantial im-

pact on the speculative nature of cryptocurrency prices.
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Abraham et al., 2018 explored the predictive power of social media and web search data on

the price changes of Bitcoin and Ethereum, the two largest cryptocurrencies by market capit-

alization. Their study utilized Twitter data and Google Trends to develop a model capable of

predicting the direction of cryptocurrency price changes. Contrary to previous research that

focused on sentiment analysis, their findings revealed that tweet volume, rather than sentiment,

was a more reliable predictor of price direction. This insight is attributed to the inherently pos-

itive bias in cryptocurrency-related tweets. By incorporating tweet volumes and Google Trends

data into a linear regression model with lagged variables, they achieved accurate predictions of

future price movements. This approach underscores the importance of overall interest metrics,

such as search volume and tweet frequency, in forecasting cryptocurrency prices.

3.2. XGBoost and Shapley Additive Values

Tree boosting is a highly effective and widely used machine learning method, extensively applied

in diverse fields, including spam detection, advertising systems, fraud detection, and anomaly

event detection in experimental physics. It is particularly valued for its ability to capture

complex data dependencies and for its scalability in learning from large datasets. Among the

various tree boosting methods, gradient tree boosting stands out for its application in many

machine learning challenges, often achieving state-of-the-art results in classification benchmarks

and ranking problems.

T. Chen and Guestrin, 2016 introduced and invented XGBoost, a scalable end-to-end tree boost-

ing system that has gained widespread recognition in the machine learning community. The

system has been highly effective, winning numerous machine learning competitions and consist-

ently delivering top-tier results. XGBoost incorporates several innovative features, including a

sparsity-aware algorithm for handling sparse data and a theoretically justified weighted quantile

sketch for approximate tree learning. These innovations enable XGBoost to scale efficiently,

handling billions of examples while using fewer resources than other systems. The system’s

scalability is further enhanced by its ability to exploit parallel and distributed computing, as

well as out-of-core computation, allowing data scientists to process hundreds of millions of ex-

amples on a desktop. These capabilities make XGBoost an ideal choice for handling large

datasets and complex machine learning tasks.

The empirical analysis conducted by Bentéjac et al., 2021 provides an in-depth evaluation of

XGBoost, particularly focusing on its performance in terms of training speed, accuracy, and

parameter tuning compared to gradient boosting and random forest. The study highlights

that while gradient boosting showed the highest accuracy across various classification tasks, the

differences between XGBoost and gradient boosting were not statistically significant in terms

of average ranks. The research emphasizes the importance of meticulous parameter tuning for

achieving optimal results with XGBoost, a necessity not as critical for random forests, which

performed well with default settings.
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One of the key findings is that parameter tuning for XGBoost, particularly the subsampling rate

and the number of features selected at each split, significantly improves its performance. The

study found that fixing the subsampling rate to 0.75 and the number of features to the square

root of the total features reduced the parameter grid search size and enhanced the average

performance of XGBoost. Additionally, the tuning phase accounted for the majority of the

computational effort in training gradient boosting or XGBoost models.

The Shapley value, a concept from cooperative game theory, has gained significant traction in

machine learning over recent years, demonstrating its utility across a variety of applications. In

their comprehensive review, Rozemberczki et al., 2022 discuss fundamental concepts of cooper-

ative game theory and elucidate the axiomatic properties of the Shapley value, such as fairness,

symmetry, and efficiency. The Shapley value has been employed in diverse areas within machine

learning, including feature selection, explainability, multi-agent reinforcement learning, ensemble

pruning, and data valuation. This approach offers a theoretically motivated solution to meas-

uring importance and attributing gains, central problems in many machine learning tasks. For

instance, it provides a rigorous method to evaluate the contribution of individual features, data

points, or models within an ensemble, facilitating more transparent and interpretable machine

learning models.

3.3. Gaps in the Current Literature

Despite advancements in cryptocurrency price prediction using historical price, volume data, and

sentiment analysis from social media and news sources, critical gaps remain. One significant gap

is the insufficient incorporation of traditional financial market indicators and macroeconomic

variables. Limited research investigates the relationship between cryptocurrency prices and

broader market indices like the S&P 500 and macroeconomic indicators such as the CPILFESL

in the U.S. Addressing these gaps could enhance the accuracy of predictive models.

Another significant gap is the focus on improving predictive models rather than understanding

the features impacting cryptocurrency prices. Many studies aim to enhance predictive accuracy

using multiple machine learning models. However, there is a lack of studies identifying and

analyzing the importance of different features. This study addresses this gap by using Shapley

Additive Explanations (SHAP) values to determine each feature’s impact on cryptocurrency

price prediction.

There is also a notable lack of academic focus on Solana compared to Bitcoin and Ethereum,

despite Solana being a significant player in the blockchain space. This study aims to fill this

gap by focusing on Solana, analyzing the factors influencing its price trends, and expanding

academic research to include this important cryptocurrency. By addressing these gaps, this

research will contribute to a more holistic understanding of cryptocurrency markets and enhance

the predictive capabilities of financial models.
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Data

4.1. Data Sources

4.1.1. COMPUSTAT

COMPUSTAT, part of S&P Global Market Intelligence, offers standardized North American

and global financial statement and market data for over 80,000 active and inactive publicly

traded companies, a resource that financial professionals have trusted for more than 50 years.

The COMPUSTAT database used in this study has been accessed through Wharton Research

Data Services (WRDS). WRDS is renowned for providing reliable access to a comprehensive

range of business data, including financial, economic, and marketing information.

A component of COMPUSTAT is Compustat Daily Updates - Index Daily Prices, which provides

detailed information on index prices. For this study, the closing prices of the S&P 500 index

from April 2020 to June 2024 were sourced from here. Data source can be accessed here - S&P

500 Data (WRDS). The closing price, represented by the mnemonic PRCCD, reflects the last

trade price with volume for the day for the security. This means that the closing price is the

price at which the last transaction occurred on that trading day, ensuring that there was actual

trading activity at that price.

4.1.2. FRED (Federal Reserve Economic Data)

Federal Reserve Economic Data (FRED) is an extensive online database created and maintained

by the Research Department at the Federal Reserve Bank of St. Louis since the early 1990s.

FRED provides access to a vast array of economic data time series, encompassing hundreds of

thousands of data points from a multitude of national, international, public, and private sources.

In this study, FRED was utilized to obtain the Consumer Price Index for All Urban Consumers:

All Items Less Food & Energy (CPILFESL) data from April 2020 to June 2024. Data source

can be accessed here - CPILFESL Data (FRED). The CPILFESL is an aggregate measure of

the prices paid by urban consumers for a typical basket of goods and services, excluding the
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highly volatile categories of food and energy. Commonly referred to as the ”Core CPI,” this

index is widely utilized by economists and policymakers to assess underlying inflation trends

without the noise caused by the frequent price fluctuations in food and energy.

4.1.3. Yahoo Finance

Yahoo Finance is a comprehensive financial news and data platform operated by Yahoo. It

provides real-time and historical data on stock prices, indices, commodities, and cryptocurren-

cies, making it a valuable resource for investors, researchers, and financial analysts.

For this analysis, closing prices and trading volumes for Solana, Bitcoin, and Ethereum from

April 2020 to June 2024 were collected. Data source can be accessed here - Cryptocurrency

Data (Yahoo Finance).

4.2. Descriptive Statistics

Below tables showcase the descriptive statistics for all variables in this study. This includes

metrics such as the minimum, 1st quartile, median, mean, 3rd quartile, maximum value, and

standard deviation. These are crucial for understanding the distribution, central tendency, and

variability of the dataset. Additionally, a correlation matrix will be presented to illustrate the

relationships between the variables.4

Table 2: Descriptive Statistics for Volumes (in Hundreds of Millions)

Solana Bitcoin Ethereum

Min. 0.007 53.31 20.82
1st Qu. 1.98 196.29 88.75
Median 6.93 282.24 141.56
Mean 13.11 318.66 161.48
3rd Qu. 19.24 389.32 202.58
Max. 170.69 3509.68 844.83
Std.Dev. 16.74 188.77 103.19

Solana’s trading volume ranges from 700,000 to 17.07 billion, with a mean of 1.31 billion, in-

dicating significant variability in trading activity. This high variability suggests that Solana

experiences periods of intense trading activity, likely driven by market events or investor sen-

timent. Bitcoin’s trading volume exhibits an even broader range, from 5.33 billion to 350.97

billion, with a mean of 31.87 billion. The extensive range and high mean volume highlight Bit-

coin’s status as the most actively traded cryptocurrency, often serving as a market leader and

influencer. Ethereum’s trading volume ranges from 2.08 billion to 84.48 billion, with a mean of

4The data pre-processing steps conducted prior to calculating the descriptive statistics are detailed in the
Methodology section (5.2). Note that the presented descriptive statistics were calculated before applying Z-scale
normalization.
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16.15 billion, reflecting somewhat lower trading activity compared to Bitcoin but still substan-

tial. This indicates that Ethereum maintains a strong presence in the market, likely due to its

widespread use in decentralized applications and smart contracts. To visually observe the flow

of data, time series plots of the volumes are included in the Appendix (see figures 8 to 10).

Table 3: Descriptive Statistics for Closing Prices (USD) and CPILFESL

Solana Bitcoin Ethereum SP&P 500 CPILFESL

Min. 0.52 6642.11 153.29 2736.56 265.46
1st Qu. 14.12 20200.05 1286.48 3841.71 275.16
Median 30.05 30139.05 1831.12 4167.59 292.50
Mean 54.64 33299.88 1957.74 4143.93 291.80
3rd Qu. 90.87 44140.57 2727.20 4479.62 308.02
Max. 258.93 73083.50 4812.09 5321.41 318.35
Std.Dev. 59.22 16486.20 1086.44 538.62 17.13

Solana’s closing prices exhibit significant variability, ranging from a minimum of $0.52 to a

maximum of $258.93, with a mean of $54.64, reflecting the high volatility and dynamic nature

of the cryptocurrency market. Bitcoin and Ethereum also show substantial ranges and volatility,

with Bitcoin’s closing prices spanning from $6642.11 to $73083.50, and Ethereum’s from $153.29

to $4812.09, with means of $33299.88 and $1957.74, respectively. In contrast, the S&P 500

index’s closing prices range from $2736.56 to $5321.41, with a mean of $4143.93, highlighting

the relative stability of the traditional stock market. The CPILFESL for the U.S. shows values

ranging from 265.46 to 318.35, with a mean of 291.80, indicating moderate inflation over the

study period. To visually observe the flow of data, time series plots of the closing prices and

CPILFESL are included in the Appendix (see figures 11 to 15).

Figure 1: Correlation Matrix
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Notably, all cryptocurrency closing prices—Solana, Bitcoin, and Ethereum—exhibit high pos-

itive correlations with each other. For instance, Solana’s closing price (sol close) shows a cor-

relation of 0.77 with Bitcoin’s closing price (btc close) and 0.88 with Ethereum’s closing price

(eth close). This strong positive correlation indicates that the price movements of these crypto-

currencies are closely aligned, suggesting that they often move in tandem, likely due to shared

market factors and investor sentiment affecting the broader cryptocurrency market. Further-

more, Solana’s trading volume (sol volume) has a significant positive correlation with its closing

price (0.73), implying that higher trading volumes are often associated with higher prices for

Solana. Bitcoin and Ethereum also show similar patterns, though with varying correlation

strengths.

The S&P 500 closing price (sp close) also shows moderate to strong positive correlations with

the cryptocurrency closing prices, particularly with Bitcoin (0.81) and Ethereum (0.84). This

suggests that there may be some degree of co-movement between the stock market and crypto-

currency markets, although the correlation is not as strong as within the cryptocurrencies them-

selves.

Interestingly, CPILFESL shows a moderate positive correlation with the S&P 500 closing price

(0.68) and weaker correlations with cryptocurrency closing prices, such as Solana (0.29) and

Ethereum (0.35). This indicates that while inflation measures might influence traditional stock

markets significantly, their impact on cryptocurrency markets is less direct.

The strong positive correlations observed among the cryptocurrency closing prices can poten-

tially lead to issues of multicollinearity. Multicollinearity can adversely affect the performance

and interpretability of traditional linear models, as it can inflate the variance of coefficient es-

timates and make it difficult to determine the individual effect of each predictor. However, the

XGBoost model used in this study, a gradient boosting framework, is robust to such correlations.

The framework of this model will be explored in detail in the Methodology (5).
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Methodology

5.1. Introduction

This study adopts an explanatory approach, aiming to develop an XGBoost model to elucidate

Solana price trends. The objective is to create a robust predictive model that not only forecasts

price movements but also identifies the key variables driving these trends using Shapley Additive

explanations (SHAP) values. Ultimately, this interpretation method will address the research

question and hypotheses detailed in the introduction (2.2).

The resources used for this study include Python 3.12.4 and several libraries such as Scikit-

learn (Sklearn), XGBoost, Optuna, and Shap. The development and testing of models were

conducted using Jupyter Lab, providing an interactive environment for data analysis and model

building. The algorithms were executed on a Windows desktop equipped with an AMD Ryzen

5 3600 6-Core Processor, 16 GB of RAM, and a 2060 GPU. This computational setup ensured

efficient processing and model training, allowing for extensive hyperparameter tuning and model

evaluation.

This section will first cover all the data pre-processing methods, ensuring the dataset is suitable

for analysis. Following this, the design and implementation of the XGBoost model will be dis-

cussed, highlighting its robustness against multicollinearity due to its ability to handle correlated

features effectively. The model evaluation will be detailed next, explaining the metrics used to

assess model performance and the rationale behind selecting these metrics. The use of SHAP

values for interpreting the model’s results will then be explored, illustrating how these methods

provide insights into the key variables influencing Solana price trends. Finally, the limitations

of the employed methodology will be addressed, discussing potential biases and areas for future

improvement.
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5.2. Data Pre-Processing

Data preprocessing is a crucial step in ensuring the datasets are suitable for analysis and mod-

eling. In this study, various preprocessing techniques were applied to handle differences in data

frequency, missing values, and synchronization of time series.

5.2.1. Handling Missing Values

The datasets for the S&P 500, Solana, Bitcoin, and Ethereum all consist of daily data, whereas

the CPILFESL data is available on a monthly basis. To harmonize these datasets, the monthly

CPILFESL values were linearly interpolated to generate daily values. This method assumes

that CPILFESL exhibits smooth changes between monthly observations, allowing for a more

accurate alignment of different temporal frequencies. Linear interpolation is a common practice

in economic research for aligning datasets with varying frequencies and ensuring that all data

points are synchronized for robust analysis (Lepot et al., 2017).

The S&P 500 dataset contained missing values corresponding to weekends and public holidays

when the stock market was closed. In contrast, the cryptocurrency market operates 24/7,

resulting in a continuous dataset without such gaps. To address the missing values in the S&P

500 data, forward filling was implemented. This technique involves carrying the last observed

value forward to fill the missing entries, ensuring continuity in the dataset. Given that the

missing days in the S&P 500 dataset are weekends and holidays when the market is closed and

no price fluctuations occur, forward filling is particularly appropriate. Additionally, Kamalov

and Sulieman, 2021 found that forward and backward fill methods are well-suited for time series

with large positive correlations, further validating the use of forward filling for this study (see

figure 1).

5.2.2. Feature Engineering

Solana Price Trend

To determine Solana’s price trends from its closing prices, a binary feature was created using

the Moving Average Convergence Divergence (MACD) method, which is a widely recognized

momentum indicator in technical analysis.

The first step involved calculating the MACD line, which is the difference between the 6-day Ex-

ponential Moving Average (EMA) and the 13-day EMA of Solana’s closing price. Subsequently,

the Signal Line was computed as the 9-day EMA of the MACD line. The formula used to

calculate the EMA is as follows:
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EMAt = α · Pt + (1 − α) · EMAt−1 (5.1)

where:

• EMAt is the EMA at time t

• Pt is the price at time t

• α is the smoothing factor, calculated as 2
N+1 , where N is the number of periods

• EMAt−1 is the EMA at time t− 1

The trend classes were defined based on the relationship between the MACD line and the Signal

Line. Specifically, when the MACD line was above the Signal Line, it indicated an upward

movement, and the trend was marked with a value of 1. Conversely, when the MACD line was

below the Signal Line, it indicated a downward or stable movement, and the trend was marked

with a value of 0.

The resulting class distribution (figure 2) shows negligible class imbalance, which brings several

benefits. Firstly, improved model performance is achieved, as models trained on balanced data-

sets are less likely to be biased towards the majority class, leading to more accurate and fair

predictions. Secondly, the training process is simplified since there is no need for special tech-

niques to address imbalance, such as oversampling, undersampling, or adjusting class weights.

Thirdly, performance metrics like accuracy, precision, recall, and F1-score provide a more reliable

evaluation of the model’s performance when classes are balanced. Lastly, a model trained on

balanced data is more likely to generalize well to new, unseen data, ensuring robust performance

in real-world applications.

Figure 2: Solana Trend Distribution
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Lagged Features

Creating explicit lagged features can enhance model performance; however, it also increases the

complexity of feature interpretability. Different lags may have varying impacts on Solana trends,

complicating the generalization of the impact of the original feature.

Another consideration is autocorrelation, the inherent correlation of time series features with

their own past values. Autocorrelation can pose challenges in time series analysis. Thus, XG-

Boost was chosen for this study due to its ability to effectively handle autocorrelated features

and its resilience against multicollinearity.

Considering these factors, the final decision was made to implement 10 lags for all features. Each

lag in this study represents a day, so the 10th lag corresponds to data from 10 days ago. This

approach ensures that the temporal nature of the data is accounted for, leveraging XGBoost’s

strengths in handling highly correlated variables while enhancing performance through the in-

clusion of more lags. However, interpreting results will necessitate a more nuanced analysis of

the impacts of all the lags on Solana price trends to adequately address the hypotheses.

5.2.3. Z-Scale Normalization

Z-scale normalization, also known as standardization, is a technique used to transform data

into a standard normal distribution with a mean of zero and a standard deviation of one. This

method is particularly useful in machine learning and statistical analysis as it ensures that each

feature contributes equally to the model, preventing features with larger scales from dominating

the learning process. The formula for z-scale normalization is:

z =
x− µ

σ
(5.2)

where z is the standardized value, x is the original value, µ is the mean of the dataset, and σ is

the standard deviation of the dataset. This technique is essential for improving the performance

and convergence of gradient-based optimization algorithms like XGBoost. (Abdi, 2022).

Z-scale normalization was applied to the entire feature set except for the Solana trend variable,

which is a binary indicator and does not require normalization. This step was crucial due to the

significant differences in the scales of the feature set, with volumes traded ranging in the billions

and other features like prices, S&P 500 index, and CPILFESL ranging in the hundreds and

thousands. Normalizing these features ensures that they contribute equally to the predictive

model, avoiding bias towards features with larger scales.
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5.2.4. Data Split

The dataset was split into a training set and a test set in an 80-20 ratio, maintaining the temporal

order of the data. This approach ensures that the last 20 percent of the data, representing the

most recent time period, is used as the test set.

5.3. Model Development

5.3.1. XGBoost

XGBoost, short for eXtreme Gradient Boosting, is a powerful and efficient implementation of

gradient boosting algorithms. It has gained popularity for its scalability, speed, and performance

in machine learning tasks (T. Chen & Guestrin, 2016). XGBoost enhances traditional gradi-

ent boosting methods by incorporating several algorithmic optimizations and system design

improvements.

XGBoost is designed to handle a variety of predictive modeling tasks, including regression,

classification, and ranking, by building an ensemble of decision trees sequentially, where each

tree corrects the errors of its predecessors. The primary goal of XGBoost is to minimize the loss

function by iteratively adding new trees that predict the residuals of the previous trees. The

overall prediction is given by:

ŷi =
K∑
k=1

fk(xi) (5.3)

where ŷi is the predicted value for instance i, K is the number of trees, and fk represents the

k-th decision tree.

The objective function to be minimized in XGBoost consists of two parts: the loss function and

the regularization term. The objective function is given by:

Obj =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (5.4)

where l is the loss function that measures the difference between the actual and predicted values,

and Ω is the regularization term that penalizes the complexity of the model to avoid overfitting.
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The regularization term Ω(fk) is defined as:

Ω(fk) = γT +
1

2
λ

T∑
j=1

w2
j (5.5)

where γ is a parameter that controls the complexity of the tree (number of leaves T ), λ is a

regularization parameter, and wj are the leaf weights.

XGBoost was selected for this study due to its numerous advantageous properties, making it an

ideal choice for predicting Solana price trends. Its efficiency, scalability, and high performance are

well-documented, allowing it to handle large datasets and complex models with ease. XGBoost

has been successfully employed in previous studies on cryptocurrency price prediction, as detailed

in the literature review (3), validating its effectiveness in this domain. Additionally, XGBoost’s

ability to handle autocorrelated values and multicollinearity is particularly beneficial for this

study, given the presence of such characteristics in the feature set. This capability ensures that

the model can manage complex interactions within the data without compromising accuracy or

stability.

5.3.2. Hyperparameter Tuning

Hyperparameter tuning is a critical step in optimizing the performance of the XGBoost model.

In this study, hyperparameters were tuned using Bayesian optimization and cross-validation with

the goal of maximizing accuracy. The final model was selected based on the best performance

metrics obtained from the training set. The hyperparameters used in this study are detailed

below and shown in table 4.

Tree-specific hyperparameters control the construction and complexity of the decision trees:

• Maximum Depth: This parameter defines the maximum depth of a tree. Deeper trees

have the capability to capture more intricate patterns within the data, but they also run

the risk of overfitting.

• Minimum Leaf Weight: This parameter establishes the minimum sum of instance

weight (hessian) required in a child node. It controls the complexity of the decision tree

by preventing the formation of overly small leaves.

• Subsample Ratio: This parameter specifies the percentage of rows utilized for the con-

struction of each tree. Reducing this value can help prevent overfitting by training on a

smaller subset of the data.

• Feature Subsample Ratio: This parameter determines the percentage of columns used

for each tree construction. Lowering this value can prevent overfitting by training on a

subset of the features.
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Learning task-specific hyperparameters govern the overall behavior of the model and the learning

process:

• Learning Rate: Also known as the step size shrinkage, this parameter is used in updates

to mitigate overfitting. Smaller values make the model more robust by taking smaller steps

during training.

• Gamma: This parameter sets the minimum loss reduction necessary to make an additional

partition on a leaf node of the tree. Higher values enhance the regularization.

• Lambda: This is the L2 regularization term on weights. Increasing this value strengthens

the regularization.

• Alpha: This is the L1 regularization term on weights. Higher values enhance the regu-

larization.

Table 4: Hyperparameters Tuned in XGBoost Model

Hyperparameter Range Optimal Value

Maximum Depth [3, 10] 7.00
Min Leaf Weight [1, 10] 6.00
Subsample Ratio [0.5, 1.0] 0.98
Feature Subsample Ratio [0.5, 1] 0.69
Learning Rate [0.01, 0.3] 0.01
Gamma (γ) [0, 5] 1.32
Lambda (λ) [0.1, 10] 0.26
Alpha (α) [0, 10] 2.72
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5.4. Model Evaluation

The tuned XGBoost model will be fitted on the training set and used to make predictions on

the test set. The performance of the model will be evaluated using several key metrics such as

the confusion matrix, accuracy, precision, recall, F1-score and specificity.

The confusion matrix provides a detailed breakdown of the model’s performance, showing the

number of true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN). This allows for a clear visualization of how well the model distinguishes between classes.

Accuracy represents the proportion of correctly predicted instances (both true positives and true

negatives) out of the total instances. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision measures the accuracy of positive predictions, defined as the ratio of true positive

predictions to the total positive predictions:

Precision =
TP

TP + FP

Recall indicates the model’s ability to correctly identify positive instances, calculated as the

ratio of true positive predictions to the actual positives:

Recall =
TP

TP + FN

The F1-score, the harmonic mean of precision and recall, provides a balance between the two.

It is particularly useful when the class distribution is relatively balanced, as it considers both

false positives and false negatives:

F1-Score = 2 · Precision · Recall

Precision + Recall

Specificity measures the proportion of actual negatives that are correctly identified, providing

insight into the model’s ability to detect negative instances:

Specificity =
TN

TN + FP
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5.5. Model Interpretation

The interpretation of the XGBoost model is a crucial aspect of this study, enabling us to un-

derstand the influence of various features on Solana’s price trends. To achieve this, Shapley

Additive Explanations (SHAP) values are employed, as explained below.

SHAP values are a unified measure of feature importance based on cooperative game theory.

They provide a way to explain the output of any machine learning model by attributing the

contribution of each feature to the prediction. The core idea of SHAP values is to fairly dis-

tribute the prediction among the features, ensuring that the sum of the feature contributions

equals the actual prediction minus the mean prediction. This is achieved by considering all

possible combinations of features and calculating the average contribution of a feature across

these combinations (Rozemberczki et al., 2022).

Mathematically, the SHAP value for a feature i in a given prediction is defined as:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ {i}) − f(S)] (5.6)

where:

• ϕi is the SHAP value for feature i,

• N is the set of all features,

• S is any subset of N that does not include feature i,

• f(S) is the prediction for the subset of features S,

• |S| is the number of features in subset S,

• |N | is the total number of features.

SHAP values are particularly useful for interpreting machine learning models because they

provide a clear and consistent method for understanding the impact of each feature on the

model’s predictions. By decomposing the prediction into contributions from each feature, SHAP

values allow us to see how individual features influence the model’s output, which is essential for

gaining insights into the underlying data and the model’s behavior. In this study, SHAP values

will be calculated for all lags of all features to obtain a nuanced understanding of their impact

on Solana price trends.

Additionally, to capture the aggregated effects of all lags per feature, a cumulative SHAP value

plot will also be derived. This cumulative SHAP value is calculated by summing the SHAP

values of all lags for each feature, providing a holistic view of the feature’s overall impact on the

model’s predictions. The formula for the aggregated SHAP value for a group of features G is:
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ϕG =
∑
i∈G

ϕi (5.7)

where each ϕi represents the SHAP value for a specific lag of a feature.

This approach ensures that we capture the temporal dynamics and their combined influence on

the prediction. In this formulation, we do not take the absolute values of the individual SHAP

values, thus maintaining the correct attribution of feature interactions and their directions. This

method allows us to understand not only the impact of individual lags but also the aggregated

influence of a feature over time, providing deeper insights into the factors driving Solana price

trends.

5.6. Limitations in Methodology

Despite the comprehensive approach adopted in this study, several limitations must be acknow-

ledged to provide a balanced perspective on the findings and the methodologies employed.

Firstly, the dataset includes a range of features such as cryptocurrency prices, trading volumes,

the S&P 500 index, and the CPILFESL. While these features provide a comprehensive view

of market factors, they may not cover all relevant variables that influence Solana price trends.

Factors such as regulatory changes, technological advancements, and macroeconomic policies

were not included, potentially limiting the model’s explanatory power.

Secondly, the creation of 10 lagged features, while intended to capture temporal dependencies,

introduces the challenge of multicollinearity. Although XGBoost is relatively robust to multicol-

linearity, the presence of highly correlated lagged features can still impact the interpretability

of the model outputs, particularly when using interpretation methods such as SHAP values.

Thirdly, the study uses a train-test split of 80-20 to maintain the temporal order of the data,

with the last 20 percent being the most recent data. While this approach preserves the sequential

nature of time series data, it may not account for potential structural breaks or regime shifts

within the dataset. Such events could affect the stability and predictability of the model.

Lastly, the generalizability of the findings might be limited by the specific timeframe and market

conditions considered in this study. The data spans from April 2020 to June 2024, a period

characterized by significant economic and market events that may not be representative of other

time periods. As such, the model’s applicability to different market conditions or future scenarios

remains to be validated.

In summary, while the methodologies employed in this study are robust and well-supported by

existing research, these limitations highlight the need for careful interpretation of the results

and suggest areas for future research to address these constraints.
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Results

6.1. Model Assessment

Table 5: Model Evaluation Metrics

Metric Value

Accuracy 0.73
Precision 0.75
Recall 0.75
F1 Score 0.75
Specificity 0.71

The evaluation metrics for the XGBoost model indicate solid performance in predicting Solana

price trends. An accuracy of 0.73 means the model correctly classified 73 percent of all instances,

which is a strong indication of its reliability. With precision, recall and F1 score at 0.75, the

model shows a good balance between identifying true positives and minimizing false positives.

In addition, the specificity of 0.71 suggests the model also performs well in correctly identifying

negative instances. A confusion matrix for visual representation is provided in the Appendix

(figure 16).

6.2. Hypotheses

The cumulative SHAP values plot offers a comprehensive insight into the overall impact of each

feature on the model’s predictions for Solana’s price trends. Using insights from the cumulative

SHAP values, as well as the individual SHAP values of each feature’s lags, we can address the

following hypotheses with detailed analysis.
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Figure 3: Cumulative SHAP Values

6.2.1. H1: An increase in the S&P 500 index results in an upward price for

Solana

Figure 4: S&P 500 SHAP Values
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The S&P 500 index (sp close) feature has a high positive cumulative SHAP value, suggesting

that an increase is likely to result in an upward trend for Solana’s price. This highlights the

broader stock market’s health has a significant influence on Solana’s price trends.

In the SHAP values plot for individual lags of the sp close feature, we observe that higher values

(represented in red) of lag 1 and lag 2 are associated with positive SHAP values, indicating a

strong positive impact on the prediction of an upward trend. This implies that recent increases

in the S&P 500 index are strong indicators of a positive trend in Solana’s price.

In contrast, medium-term lags such as lag 3 to lag 7 show mixed impacts. These lags exhibit

both positive and negative SHAP values, suggesting that these past values have a less consistent

effect on Solana’s price trends. Additionally, the SHAP values for these medium-term lags are

very low and negligible compared to the other terms, indicating that their overall impact on the

model’s predictions is minimal. This may indicate that while immediate changes in the S&P

500 index have a clear and strong impact, the influence of medium-term values is more variable,

context-dependent, and generally less significant.

The later lags, such as lag 8 to lag 10, show significant negative impacts with higher values.

This suggests that higher values of the S&P 500 index in the more distant past are associated

with a downward trend in Solana’s price. This might be interpreted as a correction or market

adjustment effect where past high values eventually lead to a decrease in Solana’s price.

In summary, the overall effect of the S&P 500 index, particularly its most recent lags, supports

the hypothesis that it influences Solana’s price trends positively. However, the S&P 500 index

in the long term seems to have a negative influence, indicating that the effect on Solana’s price

trends is multifaceted and varies across different time horizons.

6.2.2. H2: An increase in transaction volumes for Solana, Bitcoin and Eth-

ereum leads to an upward price trend for Solana

The volume feature of Solana (sol volume) exhibits a strong positive cumulative SHAP value,

suggesting that an increase in volume is associated with an upward price trend. This indicates

that heightened network activity correlates with increased demand for Solana, thereby driving

its price trends upward.

Higher values of Solana’s volume lag 1 consistently correspond to high positive SHAP values,

whereas lower values are associated with negative SHAP values. This indicates that an increase

in transaction volume at lag 1 strongly suggests an upward price trend for Solana. Lag 2 follows

a similar pattern, though with comparatively lower SHAP values, emphasizing the significant

positive impact of recent transaction volumes on Solana’s price movements. Lags 3 to 5 present

mixed SHAP values for both high and low feature values, and their overall low SHAP values

suggest that mid-term transaction volumes have a minimal impact on the model’s predictions.

Interestingly, lags 6 to 10 of Solana’s volume display an inverse effect compared to lags 1 and
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(a) Solana Lags (b) Ethereum Lags

(c) Bitcoin Lags

Figure 5: Solana, Ethereum & Bitcoin Volumes SHAP Values

2, with higher transaction volumes indicating a downward price trend for Solana. Notably, lags

6 and 7 have relatively high negative SHAP values, illustrating that in the long term, increased

transaction volumes are associated with a downward price trend for Solana.

Ethereum’s volume (eth volume) feature has a high negative cumulative SHAP value, second

only to its closing price, indicating that higher trading volumes for Ethereum may be associated

with a downward trend in Solana’s price. Similarly, Bitcoin’s volume (btc volume) feature also

shows a negative cumulative SHAP value, though with a lesser impact compared to Ethereum.

When users engage more with Ethereum or Bitcoin, there may be a corresponding decrease in

Solana’s user base, leading to downward pressure on Solana’s price. This dynamic highlights

how interdependencies and competition within the cryptocurrency market can affect individual

blockchain networks.

The SHAP plot for Ethereum’s volume lags reveals that higher values across almost all lags

are associated with positive SHAP values, suggesting that increase corresponds to an upward

trend in Solana’s price. This observation contrasts with the cumulative SHAP values plot, which

indicates a negative overall impact for Ethereum’s volume. The most recent lags for Bitcoin’s

volume (btc volume), lag 1 and lag 2, show a positive trend, suggesting that an increase in Bitcoin

trading volume leads to an upward trend in Solana’s price. However, the other lags display

mixed or negative trends. Overall, the SHAP values for Bitcoin volume’s lags are relatively low,

indicating a minimal effect on predicting Solana’s price trends.
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In summary, the recent lags of Bitcoin, Ethereum, and Solana support the hypothesis that these

factors positively influence Solana’s price trends, with Solana’s cumulative SHAP value further

reinforcing this positive impact. However, in the long term, the influence appears to be negative,

and the cumulative SHAP values for Bitcoin and Ethereum also indicate a negative impact. This

suggests that the effect on Solana’s price trends is varied between cryptocurrencies and changes

across different time horizons.

6.2.3. H3: Upward price movements of Bitcoin, Ethereum and Solana result

in upward trends in Solana’s market price

(a) Bitcoin Lags (b) Ethereum Lags

(c) Solana Lags

Figure 6: Bitcoin, Ethereum and Solana Prices SHAP Values

Bitcoin’s closing price (btc close) feature shows a small positive cumulative SHAP value, indic-

ating that higher Bitcoin closing prices tend to predict an upward trend for Solana. Considering

Bitcoin is the leading cryptocurrency on the broader market, it’s price increase may signal

investors in the health of the overall cryptocurrency market leading to more investments in

solana. Ethereum’s closing price (eth close) feature exhibits the highest absolute cumulative

SHAP value, suggesting it is the most influential factor in predicting Solana’s price trends. The

negative cumulative SHAP value for eth close indicates that higher values are generally associ-

ated with a downward trend in Solana’s price. This significant influence may be attributed to the

interconnectedness and competitive dynamics within the cryptocurrency market. Surprisingly,

Solana’s closing price (sol close) feature also shows a small negative cumulative SHAP value,

29



indicating that higher historical closing prices of Solana itself are predictors of a downward trend

in its future prices.

No consistent trend can be discerned from the individual lags of Bitcoin, Solana and Ethereum.

They all show a mixed effect, with both lower and higher values of the closing price leading to up-

ward and downward trend predictions. This underscores the complex and nuanced relationship

between the historical prices of these cryptocurrencies and Solana’s price trends.

In summary, this hypothesis is invalid as cumulative SHAP values indicate that Ethereum and

Solana’s historical prices lead to downward price trends for Solana. Although Bitcoin does show

a positive impact, its SHAP value is very low. Furthermore, the individual lags present a mixed

effect with no discernible trend.

6.2.4. H4: An increase in the CPI of the U.S. results in a decrease in Solana’s

price trend

Figure 7: CPILFESL SHAP Values

The CPILFESL exhibits a negative cumulative SHAP value, indicating that increases in the

CPILFESL of the U.S. are associated with a decrease in Solana’s price. Additionally, the SHAP

values for its individual lags are predominantly negative or zero, with very few positive val-

ues, reinforcing this negative correlation. Given these insights, there is substantial evidence

to support the hypothesis that higher CPILFESL values lead to downward trends in Solana’s

price. This relationship may stem from investors’ tendencies to shift towards more stable as-

sets during inflationary periods, thereby reducing demand for more volatile investments like

cryptocurrencies.
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Conclusion

This study sought to answer the research question:

What is the impact of the U.S. stock market, U.S. inflation, and blockchain

market metrics on Solana’s price trends?

Using the S&P 500 index as a proxy for the U.S. stock market health, the analysis revealed a

mixed effect on Solana’s price trends. When considering individual lags, the impact was varied,

but the cumulative effect of the S&P 500 index on Solana’s trends was positive, suggesting that

overall, movements in the U.S. stock market have a positive influence on Solana’s price trends.

Regarding blockchain metrics, the study examined the closing prices and trading volumes of

Bitcoin, Ethereum, and Solana. Ethereum’s closing price had the strongest negative impact on

Solana’s price trends, followed by Solana’s own historical prices. Conversely, Bitcoin’s closing

prices had a positive cumulative effect on Solana, though individual lags for all blockchains

showed mixed results. In terms of trading volumes, recent lags of Bitcoin, Ethereum, and Solana

positively influenced Solana’s price trends, with Solana’s cumulative SHAP value reinforcing

this positive impact. However, the long-term influence of these volumes appeared negative, with

cumulative SHAP values for Bitcoin and Ethereum also indicating a negative impact. This

variability underscores the complex relationships within the cryptocurrency market.

U.S. inflation, proxied by the Consumer Price Index for All Urban Consumers: All Items Less

Food and Energy (CPILFESL), had the clearest effect on Solana’s price trends. Both cumulative

and individual lag analyses showed that increases in inflation led to downward trends in Solana’s

prices, suggesting a strong inverse relationship.

In conclusion, this research contributes to the existing literature by incorporating a broader

range of influential factors and leveraging advanced machine learning techniques for enhanced

interpretability. The findings highlight the complex interplay between stock market indicators,

macroeconomic indicators, and cryptocurrency-specific metrics. Future studies should continue

to explore these relationships to refine predictive models and support better-informed investment

decisions in the volatile cryptocurrency market.
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Appendix

Figure 8: Solana Trading Volume Over Time
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Figure 9: Bitcoin Trading Volume Over Time

Figure 10: Ethereum Trading Volume Over Time
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Figure 11: Solana Closing Prices Over Time

Figure 12: Bitcoin Closing Prices Over Time
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Figure 13: Ethereum Closing Prices Over Time

Figure 14: S&P 500 Closing Prices Over Time
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Figure 15: CPI US Over Time

Figure 16: Confusion Matrix
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