
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Master Thesis Data Science & Marketing Analytics

IBACE: An Algorithm for Instance-Based Actionable Counterfactual

Explanations

Name student: Rutger Thijmen Johannes Mostert

Student ID number: 637267

Supervisor: Dr. Eran Raviv

Second assessor: TBD

Date final version: 23-07-2024

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam

1

Abstract

The increasing utilization of Machine Learning (ML) and Artificial Intelligence (AI) across various

industries has led to the development of highly accurate predictive models that support decision-

making processes. Despite their accuracy, many of these models function as black-boxes, providing

little transparency into their decision-making processes. This lack of transparency can have

significant negative consequences, driving the need for eXplainable Artificial Intelligence (XAI)

methods. Among the various XAI approaches, Counterfactual Explanations (CEs) are particularly

notable for their ability to suggest actionable changes to input variables to achieve a different

prediction outcome. This research focuses on instance-based CEs, which are advantageous due to

their coherence, plausibility, and model-agnostic nature.

However, existing instance-based approaches often lack actionability, a critical attribute for

practical applications. To address this gap, this paper proposes the Instance-Based Actionable

Counterfactual Explanations (IBACE) algorithm. IBACE aims to generate CEs that are valid,

plausible, sparse, and actionable by leveraging the nearest unlike neighbors approach and

integrating principles from multiple existing algorithms. The results demonstrate that IBACE

achieves high coverage and computational efficiency, making it practical for real-world

applications.

Despite its promising results, the study is limited by its reliance on a single dataset and ruleset,

which restricts generalizability. Future research should focus on validating IBACE with diverse

datasets and real-world applications and refining the interpretability of features for actionable CEs.

This paper contributes to the field of XAI by demonstrating that actionable insights can be

effectively integrated into instance-based counterfactual explanations, thereby enhancing the

transparency of black-box models and providing actionable insights for data subjects.

2

Table of Contents

Table of Abbreviations 3

1. Introduction 4

2. Literature Review 6

2.1 An Introduction to Counterfactual Reasoning in Machine Learning 6

2.2 Desirable Counterfactual Explanation Properties 7

2.3 Desirable Counterfactual Explainer Properties 8

2.4 Instance-Based Counterfactual Explanations Algorithms 9

2.5 Considering Feature Interactions 11

3. Data 12

4. Methodology 17

4.1 Algorithm Development 18

4.1.1 Nearest Instance Counterfactual Explanations 18

4.1.2 Identifying Limitations of NICE 20

4.1.3 Instance-Based Actionable Counterfactual Explanations 20

4.2 The Binary Classification Model 30

4.3 Implementing, Testing and Benchmarking of IBACE 30

4.3.1 Implementation of IBACE 30

4.3.2 Testing IBACE 31

4.3.3 Benchmarking IBACE 31

5. Results 33

5.1 Test Results of IBACE 33

5.2 Benchmark Results of IBACE 34

6. Discussion 37

7. IBACE Improvements, Limitations and Future Research 39

8. Conclusions 40

References 42

3

Table of Abbreviations

AI Artificial intelligence

AUC Area under the curve

CBCE Case-based counterfactual explainer

CE Counterfactual explanation

CRUDS Counterfactual recourse using disentangled subspaces

FACE Feasible and actionable counterfactual explanations

IBACE Instance-based actionable counterfactual explanations

LIME Local interpretable model-agnostic explanations

ML Machine learning

NICE Nearest instance counterfactual explanations

NNCE Nearest-neighbor counterfactual explainer

NUN Nearest unlike neighbor

ROC Receiver operating characteristic curve

SHAP Shapley additive explanations

XAI Explainable artificial intelligence

XC Explanation case

4

1. Introduction

Machine Learning (ML) and Artificial Intelligence (AI) are increasingly being utilized across various

industries to build predictive models that support decision-making processes. These models have

achieved high levels of accuracy in numerous applications (Angelov et al., 2021). However, many

ML models function as black-boxes, providing predictions without explaining the underlying

decision-making process in a way that is understandable to humans. This lack of transparency can

have negative consequences (Rudin, 2019). Explanations of ML models are fundamental for both

those implementing the models and the individuals affected by the decisions (Guidotti, 2022). As

the adoption of ML models has surged due to their high accuracy, so has the need for model

explanations. This issue has led to the emergence of the field of eXplainable Artificial Intelligence

(XAI) (Angelov et al., 2021).

There are various approaches to explain predictive models. For example, SHapley Additive

exPlanations (SHAP) (Lundberg & Lee, 2017) determine the contribution of each feature to a

prediction using principles from game theory. Another approach is Local Interpretable Model-

agnostic Explanations (LIME) (Ribeiro et al., 2016), which creates a surrogate model around the

observation of interest, making it easier to interpret, such as a linear regression.

The method of interest in this paper is called “Counterfactual Explanations” (CEs). A CE is a local

explanation, meaning that it explains a single data point of interest. It does so by generating a data

point that is similar to the data point of interest, but with a different predicted outcome by the

black-box model. In contrast to other explainability methods (such as SHAP and LIME), CEs can

provide suggestions to achieve a desired outcome, by suggesting changes to the feature values

(Verma et al., 2020). For example, assume an individual who applies for a loan at a bank. If the loan

is denied, based on the prediction of a black-box model, CEs could potentially provide the individual

with actionable feedback. The individual could make changes to their feature values based on the

CE, helping them to effectively cross the decision boundary of the black-box model, i.e. receiving the

loan. Hence, the question that can be answered by a CE is: “What changes to the input variables

would have resulted in a different prediction by the black-box model?”. These types of explanations

come naturally to humans, as it helps establish a cause-effect relation (Byrne, 2019), where the

cause is the feature values, and the effect is the predicted outcome, making them suitable in the

realm of XAI. CEs are not limited to the field of finance; they are applicable across various domains

that demand actionable insights. In marketing, for instance, CEs can clarify the reasons behind

5

customer churn and suggest measures for customer retention. They can also identify strategies that

could transform a disengaging customer experience into an engaging one, among numerous other

potential applications.

There are several strategies for retrieving CEs, categorized into five main approaches. The first is

the brute force approach, which involves a grid search on feature values. Secondly, optimization

strategies aim to minimize a loss function that accounts for various desirable properties of CEs,

which will be detailed in this paper. These optimization strategies work on differentiable models,

using the gradients, such as neural networks. Thirdly, heuristic search strategies are used to find

good CEs. The remaining two strategies are subcategories of heuristic search. One involves

approximating the black-box model with a decision tree and using its structure to find CEs. The

other strategy, called instance-based CEs, leverages the most similar observations from the dataset

to the observation of interest (Guidotti, 2022). Instance-based CE approaches have desirable

properties, particularly when compared to other strategies, such as optimization strategies. They

provide CEs based on actual instances in the dataset, ensuring coherence and plausibility.

Additionally, instance-based approaches are model-agnostic, meaning they can be applied

regardless of the underlying model architecture (Guidotti, 2022). Therefore, this paper will focus on

instance-based CEs.

Despite their advantages, the existing instance-based approaches do not incorporate actionability.

Given that CEs should ideally be actionable, this paper aims to develop an instance-based CE

algorithm capable of providing actionable CEs. Therefore, the research question addressed in this

paper is as follows:

How can actionable insights be added to case-based counterfactual explanations?

The research question is answered by presenting the Instance-Based Actionable Counterfactual

Explanations (IBACE) algorithm. By leveraging a nearest unlike neighbors approach and integrating

concepts from several existing algorithms, IBACE aims to generate CEs that are valid, plausible,

sparse, and actionable. The results show that IBACE provides high coverage and computational

efficiency, making it practical for real-world applications.

This paper is structured as follows. Chapter 2 presents a literature review, in which first the

definition of CEs is provided. Additionally, desirable properties of CEs are discussed and different

CE approaches are highlighted. Also, different methodologies to incorporate actionability are

6

discussed briefly. Chapter 3 introduces and discusses the data used in this study. Chapter 4 outlines

the methodology, including the theoretical foundation for the algorithm, the proposed algorithm

itself, and the method for testing and benchmarking the algorithm. In Chapter 5, the test results on

the performance of IBACE are presented. Chapter 6 summarizes and discusses the results. Chapter

7 provides suggestions for improvements on IBACE, highlights limitations of this research as well as

proposing avenues for future research. Chapter 8 concludes this paper.

2. Literature Review

2.1 An Introduction to Counterfactual Reasoning in Machine

Learning

The concept of CEs in ML was formally introduced by Wachter, Mittelstadt, and Russell in 2017. In

their paper titled “Counterfactual Explanations without Opening the Black Box: Automated

Decisions and the GDPR”, the use of CEs as a method to provide explanations for automated

decisions is discussed. In contrast to existing methods that aim to reveal the internal logic of black-

box algorithms, CEs focus on identifying which external factors need to change to achieve a desired

outcome, rather than explaining the internal decision-making process. The authors proposed CEs

with three main goals in mind. The first objective is for a data subject (i.e. an individual impacted by

the decision of the black-box model) to understand why a particular decision is made. The second

goal is to be able to contest the decision that is made, as CEs can shed light on the fairness of the

decision. Thirdly, it enables the data subject to make adjustments, swaying the black-box prediction

in its favor (Wachter et al., 2017). The concept of CEs in ML is also grounded in philosophical and

psychological literature. For example, the philosopher Lewis (1973) published an article on the

concept of counterfactuals, in which he outlines the core principles of counterfactuals. He

formulates the question that is answered by a counterfactual as follows: “If it were the case that …,

then it would be the case that …”. In the context of ML, the central question that is answered by a CE

is: “What changes to the input variables would have resulted in a different prediction by the black-

box model?”. Note that the answers to these questions do not constitute the entire and only truth. A

change in the decision by the black-box algorithm could also possibly have occurred by making

different changes to the input variables. The psychologist Byrne (2019) established that CEs can

help make decisions made by black-box models intelligible to both model developers and data

7

subjects, as it can elicit causal reasoning in humans. Counterfactuals are also discussed by

Kahneman and Miller (1986), who state that humans naturally construct counterfactual

alternatives to reality. In their 1986 paper “Norm Theory: Comparing Reality to Its Alternatives”,

the authors give the example of an individual who is involved in an accident. This will lead to an

analysis of the series of events that resulted in it, and this analysis will in turn involve creating

counterfactual alternatives. For these reasons, the concept of CEs in ML has proven to be an

interesting avenue for academic research. Most research in this area has focused on classification

problems, as this problem is easier to conceptualize and implement compared to regression

problems, due to the nature of counterfactual reasoning (Verma et al., 2020). Therefore, this paper

will solely deal with a binary classification problem.

2.2 Desirable Counterfactual Explanation Properties

In recent years, many CE approaches for ML have been proposed. Both the review paper of Verma

et al. (2020), and the review paper of Guidotti (2022) highlight desirable properties of CEs that are

widely used and accepted within the CE literature.

The first, and arguably the most important property of a CE, is validity. A CE is valid if changes to

the input features actually change the predicted class. If the CE is not valid, it does not contain the

necessary feature value changes to change the predicted class.

The second property is sparsity. Sparsity refers to the number of features that are changed in the

original observation to obtain a CE. Ideally, a CE should change a limited number of feature values

in order to be the most effective. This idea stems from social sciences and psychological research, in

which it is argued that it is easier for humans to understand shorter explanations, compared to

longer explanations (e.g. Miller, 2019).

Thirdly, a CE should be in close proximity to the original observation. This means that, given a

distance function, changes made to a particular feature value should be as small as possible. This

property might consist of a trade-off between sparsity. Changing less feature values (i.e. generating

a sparse solution) might require larger differences within the features that are changed.

The fourth property is plausibility. A CE is considered plausible if it is coherent with the reference

population. This means that feature values of the CE should not be outliers compared to the rest of

the data. If the CE adheres to this property, it ensures its trustworthiness by making the CE more

8

realistic. This property is also referred to as closeness to the data manifold. Again, if the CE lies far

from the data manifold, it is hard to trust the CE.

The fifth property that a CE should ideally adhere to is actionability. In the existing literature,

actionability refers to feature values that are either mutable or not. If a feature value is mutable, it is

considered actionable. If the CE suggests a feature value change, even though the feature value is

not mutable in practice, the CE is considered unactionable. For example, the country of origin of an

individual is considered immutable, and therefore unactionable.

The sixth desirable CE property is causality. Causality refers to the fact that features in a dataset are

rarely independent. Usually, changing one feature value also means that another feature value

should be changed. For example, if a CE suggests that an individual should have one more year of

working experience, the CE should also take into account the effect on the individual's age, which

should also increase by a year. Note that when relationships between variables exist, they do not

have to be causal. Therefore, the terminology can be confusing, hence in this paper a distinction is

made between causal relationships and variable relationships in general.

Even though the last two properties are separated in the existing literature, in this paper,

actionability will be referred to as the combination of mutability and causality, as a CE that does not

adhere to both mutability and causality cannot be considered actionable in reality.

2.3 Desirable Counterfactual Explainer Properties

Next to desirable properties for a CE, the counterfactual explainer should ideally also adhere to

multiple properties. First, the explainer should be efficient, in order to be useful in real life

applications. Secondly, the explainer should be stable. This means that if there are similar

observations of interest, for which a CE should be constructed, the CEs for both observations should

also be similar. This property is also referred to as robustness. Thirdly, the explainer should ideally

be model-agnostic. If the explainer is model-agnostic, it means that it will work with different types

of ML models, regardless of their underlying architecture. If an explainer needs access to the

internals of a ML model, it is considered to be a model-specific approach. This can for example be

the case when the explainer needs a differentiable model (e.g. neural networks) when it is based on

gradients. Lastly, the explainer should ideally be able to return multiple and diverse CEs. This could

potentially help the data subject, as they might have a preference for different types of

explanations.

9

2.4 Instance-Based Counterfactual Explanations Algorithms

There exist multiple instance-based CE algorithms, that each focus on different desirable CE

properties. The first algorithm that will be discussed is the Nearest-Neighbor Counterfactual

Explainer (NNCE) algorithm. This algorithm is based on nearest-neighbor classifiers, and works as

follows. First, the observation of interest (i.e. the observation for which a CE should be constructed,

or x) is determined. Then, all observations in the dataset that have the opposite predicted class are

selected. The distances between the observation of interest and all other selected observations,

from the dataset from which the original observation is taken, are calculated. Lastly, the closest

observation to the original observation for which holds that the predicted class is not equal to the

predicted class of the observation of interest is returned as a CE (or x’). This observation can also be

referred to as the nearest unlike neighbor (NUN). This algorithm takes into account the validity and

proximity properties. Wexler et al. (2020) present the What-If tool, which is a visualizer for CEs for

small datasets. The counterfactual selection is performed using the NNCE algorithm and uses the L1

(also known as the Manhattan distance) or L2 (also known as the Euclidean distance) distance

functions. The NNCE algorithm has several shortcomings. First, it can be computationally expensive

to compute all distances between the observation of interest and all potential CEs. This can be

mitigated by using only a subsample of the dataset, but this increases the probability of the

returned CE to be less similar to the observation of interest (Guidotti, 2022). Additionally, the

algorithm can only handle continuous features. However, this is a matter of the distance function

used, and can be changed based on the needs of the dataset. The NNCE algorithm is the simplest

algorithm in the instance-based CEs category, and other instance-based algorithms are based on

this algorithm.

Another instance-based CE algorithm is proposed by Keane and Smyth (2020), and is called Case-

Based Counterfactual Explainer (CBCE). The first thing to note about this proposed algorithm is that

the authors are the only ones who put a hard cap on sparsity. In order for a CE to be good, the

authors allow at most two feature value changes in the CE. They show that this hard cap limits the

amount of observations for which there is a CE present in the dataset. Therefore, they propose the

following algorithm. The first step is to find what the authors call “explanation cases” (XCs). These

are pairs of a case (i.e. an observation) and its corresponding good counterfactual (i.e. an

observation with at most 2 feature value changes and a different class prediction). Then, the XC

whose query is most similar to the observation of interest is identified. Since the query of XC is

most similar to the observation of interest, and it has a good CE, the intuition is that the good CE of

10

XC is a suitable basis for a CE for the observation of interest. The difference-features in XC are solely

responsible for the class change and should play an important role in the construction of the CE.

The second step is to copy the values of the observation of interest of the match-features in XC into

the CE. Similarly, for each of the difference-features in XC, the values from the good counterfactual

of XC are copied into the CE. This makes the resulting CE a combination of feature values from the

observation of interest and the good counterfactual in XC. In this case, the CE differs from the

observation of interest in the same way that the observations in XC differ. When the potential CE is

constructed, it still needs to be checked for validity, by making a prediction on this observation with

the black-box model. If the CE is valid, it is returned as a good CE. If not, the algorithm moves to the

next nearest neighbor of the explanation cases, until a valid and good CE is found. Additionally, the

authors argue that CEs need to be explicitly grounded in known cases (i.e. the training data) to

ensure plausibility. This algorithm takes into consideration the CE properties of validity, sparsity,

and plausibility. Proximity is taken into account by using the nearest neighbors for construction.

The idea of moving to a next close neighbor in case the generated potential CE is not valid will be

implemented in the proposed algorithm in this paper, and will be discussed in more detail in

Chapter 4.

The Feasible and Actionable Counterfactual Explanations (FACE) algorithm is proposed by Poyiadzi

et al. (2020), which emphasizes the creation of counterfactual examples that are both feasible and

actionable. The algorithm identifies “feasible paths” by calculating shortest path distances using

density-weighted metrics, ensuring that the counterfactuals are consistent with the input data

distribution. The FACE algorithm constructs a graph over the data points using methods such as

KDE, k-NN, or ϵ-graph. Users define the properties of the target counterfactual, including prediction

confidence and density thresholds. The algorithm adapts the graph based on these constraints and

employs Dijkstra’s algorithm to find the shortest path to target counterfactuals that meet the

defined criteria. This approach allows for the generation of counterfactuals that are coherent with

the data distribution and aligned with user-defined feasibility and actionability constraints.

Actionability in this case refers to mutability, and it is possible to fix immutable features. Notably, in

contrast to the other instance-based algorithms, which only work on tabular data, this approach is

data-agnostic.

Lastly, the algorithm for Nearest Instance Counterfactual Explanations (NICE) is proposed by

Brughmans et al. (2023). First, this algorithm can return the same CEs as NNCE, as it uses the NUN

for the construction of CEs. However, this will be the worst case scenario for the NICE algorithm.

11

The authors also propose three different versions, or reward functions that can be optimized, in

order to obtain better CEs. The authors include reward functions for sparsity, proximity, and

plausibility. The underlying method used for optimizing each reward function is the same, and will

work as follows. First, the NUN to the observation of interest is found in the dataset. Then, hybrid

observations between x and the NUN are generated by iteratively permuting feature values one

after the other. In the first iteration, only one feature value can be changed compared to x. On each

of the generated hybrid instances, one of the reward functions is calculated. The hybrid instance

that obtains the maximum reward is then used to again generate hybrid instances, but this time

between the newly generated hybrid and the NUN. This process is repeated until a valid hybrid is

found, and returned as a CE. When no valid hybrid is found, the NUN is returned, which is by

definition valid, and corresponds to the solution provided by the NNCE algorithm. Because of the

reward functions, this algorithm can optimize either for sparsity, proximity, or plausibility. The

authors further demonstrate that there is a tradeoff between sparsity or proximity on the one hand,

and plausibility on the other hand. The algorithm proposed in this paper will be based on the idea

of permuting feature values as used by the NICE algorithm, hence this algorithm will be explained in

more detail later.

2.5 Considering Feature Interactions

In the current literature, multiple approaches to deal with variable relationships are proposed, even

though they are somewhat limited (Guidotti, 2022). Kanamori et al. (2021) construct, what they

call, an interaction matrix. This matrix consists of estimated linear causal models, one for each

causal relationship. Consider a causal relationship between feature i and j, where a change in i has a

causal effect on j. If in the optimization technique used by the authors a change occurs to feature i, a

change is made to feature j in accordance with the causal relationship estimated by the linear causal

model.

Karimi et al. (2021b) use a similar approach, where the authors assume the existence of a known

structural causal model, that captures all inter-variable causal dependencies. This model is then

used in their optimization procedure to find CEs. Note that both these methods only work with

variable relationships that are 1) truly causal and 2) occur in a single direction.

Lash et al. (2017b) take a slightly different approach to incorporating variable relationships. The

authors divide all features used in the binary classification model into three categories;

12

unchangeable (U), directly changeable (D) and indirectly changeable (I). When optimizing the

feature values, only the value for xD can be determined and the values of xI will depend on xD and xU .

Therefore, the authors model the dependency of xI on xD and xU as xI = H(xD, xU) where the mapping

H : ℝ|D|+|U| → ℝ |I| is assumed to be differentiable. Even though this approach is slightly different

from the previous two, it still captures causal relationships occurring in a single direction.

A completely different approach is proposed by Downs et al. (2020). Their algorithm

Counterfactual Recourse Using Disentangled Subspaces (CRUDS) first generates a set of potential

CEs, by using a Conditional Subspace Variational Autoencoder. Then, based on user given

constraints and known variable relationships, the set is filtered based on these constraints. The

example given by the authors for a known causal constraint is that more years of education

necessitates an increase in age. The example given based on individual end-user preferences is that

getting more education is impossible for one individual but not another. These examples are very

similar to the variable relationships that will be discussed later in this paper. Additionally, the

starting point of having a set of potential CEs corresponds with the proposed algorithm in this

paper. Lastly, this approach is very flexible and straightforward to implement. For these reasons,

this approach of handling variable relationships will be implemented in the proposed algorithm.

Note that the CRUDS algorithm is not model-agnostic. Instead, it only works on differentiable

models, such as neural networks, but not on ensemble models like random forests.

Immutable features are taken into consideration by many proposed algorithms, by fixing these

feature values while generating CEs, regardless of the approach used (Guidotti, 2022). This method

will also be used in the proposed algorithm in this paper.

3. Data

I opted for a widely used dataset within the subject of CEs, which is the South German Credit

dataset (Verma et al., 2020). The dataset is retrieved from the “rchallange” package in R

(Todeschini & Genuer, 2022), but comes originally from the UCI Machine Learning Repository (Dua

& Graff, 2019). This dataset is a transformed version of the Statlog German Credit data, according to

the suggestions from Grömping (2019). The dataset was originally donated by the German

professor Hans Hofmann via the European Statlog project in 2019, but the data itself is from 1973

to 1975, Germany.

13

The data is about loan applicants from a large regional bank in southern Germany. Each of the

applicants in the dataset has a corresponding credit risk (“good” or “bad”, also referred to as good

and bad credits), along with other features describing the applicant. Therefore, a binary

classification model could be used for predicting whether or not an individual has good or bad

credit risk. Based on this prediction, the bank could decide whether or not to issue the loan to the

individual.

The dataset is a stratified sample of 1000 credits, where the bad credits (i.e. applicants with a bad

credit risk) are oversampled heavily, with 700 good credits and 300 bad credits. In reality, only

about 5% of the observations consist of bad credits. A good credit risk means that the customer

perfectly complied with the conditions in the contract, while customers with bad credit risk did not

(Grömping, 2019). The credit risk is considered the dependent variable in this paper. Next to the

dependent variable, there are 20 independent features included in the dataset. Three of these

features are quantitative and 17 are categorical. The variable descriptions are given in Table 1 (UCI

Machine Learning Repository).

Table 1

Variable descriptions

Variable name Variable description

Credit Risk
(Dependent variable)

Has the credit contract been complied with (good) or not (bad)?

Duration
(quantitative)

Credit duration in months

Amount
(quantitative)

Credit amount in DM

Age
(quantitative)

Age in years

Status
(categorical)

Status of the debtor’s checking account with the bank

Credit History
(categorical)

History of compliance with previous or concurrent credit contracts

Purpose
(categorical)

Purpose for which the credit is needed

Savings
(categorical)

Debtor’s savings

14

Employment Duration
(categorical/ordinal)

Duration of debtor’s employment with current employer

Installment Rate
(categorical/ordinal)

Credit installments as a percentage of debtor’s disposable income

Personal Status Sex
(categorical)

Combined information on sex and marital status

Other Debtors
(categorical)

Is there another debtor or a guarantor for the credit?

Present Residence
(categorical/ordinal)

Length of time (in years) the debtor lives in the present residence

Property
(categorical)

The debtor’s most valuable property

Other Installment
Plans (categorical)

Installment plans from providers other than the credit-giving bank

Housing
(categorical)

Type of housing the debtor lives in

Number of Credits
(categorical/ordinal)

Number of credits including the current one the debtor has (or had) at
this bank

Job
(categorical/ordinal)

Quality of debtor’s job

People Liable
(categorical)

Number of persons who financially depend on the debtor (i.e. are
entitled to maintenance)

Telephone
(categorical)

Is there a telephone landline registered on the debtor’s name?

Foreign Worker
(categorical)

Is the debtor a foreign worker?

Table 2 illustrates the summary statistics for the quantitative features. Specifically, the credit

duration ranges from a minimum of 4 months to a maximum of 72 months, with a mean duration of

20.9 months. The credit amount spans from a minimum of 250 DM to a maximum of 18,424 DM,

with an average amount of 3,271 DM. The age of credit applicants varies from a minimum of 19

years to a maximum of 75 years, with a mean age of 35.5 years. All three variables exhibit right

skewness.

15

Table 2

Summary statistics of quantitative features

Variable name Min. 1st Quantile Median Mean 3rd Quantile Max. St. dev

Duration 4 12 18 20.9 24 72 12.1

Amount 250 1366 2320 3271 3972 18424 2822.8

Age 19 27 33 35.5 42 75 11.4

In Table 3, the corresponding categories for each categorical feature, along with summary statistics,

are presented. The data exhibits a notable imbalance, with the credit risk variable showing 700

good credits and 300 bad credits, despite this variable being heavily oversampled, as previously

noted. Most other features also display a lack of balance among their categories. Analyzing the

proportion of good and bad credits within each variable's categories shows a relationship between

credit history and credit risk. For instance, 62.5% of observations with the credit history category

"delay in paying off in the past" are classified as bad credits. Similarly, 57.1% of observations with

the credit history category "critical account/other credits elsewhere" are bad credits, though these

categories are relatively infrequent.

Table 3

Summary statistics of categorical features

Variable name Categories Count Good Bad

Credit Risk good
bad

700
300

100
0

0
100

Status no checking account
… < 0 DM

0 <= … < 200 DM
... >= 200 DM / salary for at least 1 year

274
269
63
394

50.7
61.0
77.8
88.3

49.3
39.0
22.2
11.7

Credit History delay in paying off in the past
critical account/other credits elsewhere

no credits taken/all credits paid back duly
existing credits paid back duly till now

all credits at this bank paid back duly

40
49
530
88
293

37.5
42.9
68.1
69.7
82.9

62.5
57.1
31.9
31.8
17.1

Purpose others
car (new)
car (used)

furniture/equipment
radio/television

domestic appliances

234
103
181
280
12
22

62.0
83.5
68.0
77.9
66.7
63.6

38.0
16.5
32.0
22.1
33.3
36.4

16

repairs
vacation

retraining
business

50
9
97
12

56.0
88.9
64.9
58.3

44.0
11.1
35.1
41.7

Savings unknown/no savings account
 ... < 100 DM

100 <= ... < 500 DM
500 <= ... < 1000 DM

... >= 1000 DM

603
103
63
48
183

64.0
67.0
82.5
87.5
82.5

36.0
33.0
17.5
12.5
17.5

Employment Duration unemployed
< 1 yr

1 <= ... < 4 yrs
4 <= ... < 7 yrs

>= 7 yrs

62
172
339
174
253

62.9
59.3
69.3
77.6
74.7

37.1
40.7
30.7
22.4
25.3

Installment Rate >= 35
25 <= ... < 35
20 <= ... < 25

< 20

136
231
157
476

75.0
73.2
71.3
66.6

25.0
26.8
28.7
33.4

Personal Status Sex male : divorced/separated
 female : non-single or male : single

male : married/widowed
female : single

50
310
548
92

60.0
64.8
73.4
72.8

40.0
35.2
26.6
27.2

Other Debtors none
co-applicant

guarantor

907
41
52

70.0
56.1
80.8

30.0
43.9
19.2

Present Residence < 1 yr
 1 <= ... < 4 yrs
4 <= ... < 7 yrs

>= 7 yrs

130
308
149
413

72.3
68.5
71.1
70.0

27.7
31.5
28.9
30.0

Property unknown / no property
 car or other

building soc. savings agr./life insurance
real estate

282
232
332
154

78.7
69.4
69.3
56.5

21.3
30.6
30.7
43.5

Other Installment Plans bank
stores

none

139
47
814

59.0
59.6
72.5

41.0
40.4
27.5

Housing for free
 rent
own

179
714
107

60.9
73.9
58.9

39.1
26.1
41.1

Number of Credits 1
2-3

633
333

68.4
72.4

31.6
27.6

17

4-5
>= 6

28
6

78.6
66.7

21.4
33.3

Job unemployed/unskilled - non-resident
 unskilled - resident

skilled employee/official
manager/self-empl./highly qualified

employee

22
200
630
148

68.2
72.0
70.5
65.5

31.8
28.0
29.5
34.5

People Liable 3 or more
 0 to 2

155
845

70.3
69.9

29.7
30.1

Telephone

no

yes (under customer name)

596
404

68.6
72.0

31.4
28.0

Foreign Worker yes
no

37
963

89.2
69.3

10.8
30.7

Note. The columns “good” and “bad” describe the percentage of observations with a good and bad credit risk

for each observed category.

The relevance of this dataset to the present research is twofold. Firstly, it comprises real data with

an intuitive narrative, where the predicted outcome has significant implications for individuals,

thereby making the concept of actionability both applicable and comprehensible. Secondly, the

dataset features variables that 1) may be immutable for an individual and 2) exhibit

interrelationships. For instance, an individual's Personal Status and Sex can be considered

immutable, as changing between these categories is not easily actionable. One notable relationship

in the data exists between employment duration and age; if a CE suggests increasing the employment

duration (e.g., from 1 <= ... < 4 years to 4 <= ... < 7 years), it must also consider the corresponding

impact on age. Another significant relationship is between present residence and age; thus, if a CE

recommends an increase in the present residence (e.g., from 1 <= ... < 4 years to 4 <= ... < 7 years), it

should also account for the effect on age.

4. Methodology

This section outlines the methodology applied in this paper. In the first subsection, the

development of the algorithm is explained. This includes an overview of the Nearest Instance

Counterfactual Explanations (NICE) algorithm by Brughmans, Leyman, and Martens (2023), which

is discussed in detail. This will lay the theoretical foundation for the proposed algorithm, as it will

build on the NICE algorithm. This is followed by the limitations that NICE faces in handling certain

18

scenarios, which the proposed algorithm aims to address and overcome. Then, the proposed

algorithm is introduced and laid out in detail, taking into account the approaches from other

algorithms as highlighted in Chapter 3. The pseudocode of the proposed algorithm is included in

this section. In the next subsection, the binary classification model that is used for the analysis is

briefly discussed. The last subsection describes the method of implementing, testing and

benchmarking the algorithm.

4.1 Algorithm Development

4.1.1 Nearest Instance Counterfactual Explanations

As mentioned earlier, Nearest Instance Counterfactual Explanations is an algorithm proposed by

Brughmans et al. (2023), and makes use of real instances in a dataset to construct the CEs. More

specifically, it creates hybrid instances between the observation of interest (x0) and the NUN (xn),

for which holds: 𝑦̂0 ≠ 𝑦̂n and 𝑦n = 𝑦̂n. This means that the predicted class between the instance of

interest and the nearest neighbor are not the same, making it the nearest unlike neighbor.

Additionally, the algorithm only considers the nearest unlike neighbor that is classified correctly.

Once the NUN is selected, hybrid instances are created by replacing one non-overlapping feature

(between x0 and xn), in x0 with the corresponding value from xn. This is done for every non-

overlapping feature. When there are 3 non-overlapping features, 3 hybrid instances are created. For

these three hybrid instances, one of their reward functions is calculated. The authors proposed

reward functions based on sparsity, proximity, and plausibility. Sparsity relates to the number of

features that are changed between the observation of interest and the CE. This is the same as the L0

distance. Proximity refers to the distance between the observation of interest and the CE (L1

and/or L2 distance). Plausibility relates to the closeness of the CE to the data manifold. The hybrid

instance that achieves the highest reward is stored as the best hybrid instance, and is tested for

validity. If the hybrid instance is valid, it is returned as the CE (xc), and the algorithm terminates. If

the hybrid instance is not valid, the stored best hybrid is used again for replacing non-overlapping

features in the same way as described above. Again, the reward function is calculated, and the best

hybrid is updated. This process repeats until a valid CE is found and returned. A simplified example

of this procedure is shown in Table 4, based on the described dataset. The non-overlapping features

are highlighted in bold. Also, the best hybrid instance per iteration is highlighted by denoting the

reward in bold. In this example, x2 of the second iteration is returned as the CE, as it has the desired

predicted class (as well as the highest reward). By definition, the model's last possible hybrid is xn,

19

which is also a valid CE. xn can also be returned as a CE immediately, without taking a reward

function into account. The algorithm works on tabular data and can handle any classification model,

and requires access to the classification model, for which only the inputs and outputs of the model

are needed, making the algorithm model-agnostic.

Table 4

Simplified example of the NICE algorithm

Instance Age Employment
Duration

Savings Other
Debtors

Predicted
Class

Reward
Function

x0 35 <1 year 100 none Bad NA

xn 36 <1 year 120 guarantor Good NA

ITERATION 1

x1 36 <1 year 100 none Bad 0.10

x2 35 <1 year 120 none Bad 0.16

x3 35 <1 year 100 guarantor Bad 0.13

ITERATION 2

x1 36 <1 year 120 none Bad 0.14

x2 35 <1 year 120 guarantor Good 0.20

Note. Before the first iteration, the observation of interest and the NUN are selected. In the first iteration, all

possible hybrids between x0 and xn are generated by only permuting a single feature value. In this example,

there are three possible hybrids (x1, x2, x3). The reward function of choice is than calculated and the class

predictions are made. In this example, all hybrids are invalid (i.e. the predicted class is “bad”). Therefore, a

second iteration is initialized, using the hybrid instance that achieved the highest reward (x2). All possible

hybrids between x2 and xn are generated (x1, x2). Again, the reward function is calculated and the class

prediction is made. In this case, the hybrid x2 is predicted as “good”, and is therefore returned as the CE.

Now, consider another, but similar, simplified example. Imagine that an individual is applying for a

loan at a bank, but does not receive it, due to the prediction of the black-box model used by the

bank. The individual wants to know why it does not receive the loan, but more importantly, what

they can do about it (i.e. what features can be changed to obtain a change in the predicted class).

The bank can use the NICE algorithm to find a CE for this case (x0). Assume the individual is 35

years old, has less than a year of work experience at the current employer, and has $100 of savings.

The nearest unlike neighbor in the dataset (xn) is also 35 years old, has less than a year of work

20

experience at the current employer, but has $120 of savings. Note that the only feature that differs

is the savings amount. In this case, xn has the opposite predicted class of x0 by definition, and is

therefore returned as a CE (xc) by the NICE algorithm. This means that; if the individual’s savings

would have been $120 (instead of $100), they would have received the loan. In this case, the

individual could work towards increasing their savings by $20.

4.1.2 Identifying Limitations of NICE

As discussed in the previous section, it is clear that the NICE algorithm only considers the NUN.

Remember the last scenario presented in the previous section. Again, assume the same individual

(x0), but now the individual of the nearest unlike neighbor (xn) is 34 years old, instead of 35 years

old. A problem with the NICE algorithm arises when only hybrid instances between x0 and xn with

age of 34 change the predicted class. If this is the case, the provided CEs are not actionable, as an

individual cannot reduce their age. A different problem can arise when the hybrid instances do not

adhere to relationships between variables. For example, if the CE suggests to increase age by 1 year

(e.g. from 35 to 36 years), and at the same time suggests to increase work experience by 2 years, it

creates an impossible scenario. Again, this means that the CEs are not actionable. The proposed

algorithm aims to address and overcome these limitations.

4.1.3 Instance-Based Actionable Counterfactual Explanations

The goal of the proposed algorithm is to generate Instance-Based Actionable Counterfactual

Explanations (IBACE). Henceforth, it will be referred to as the IBACE algorithm. CEs should be

actionable for individuals that are adversely impacted by a prediction outcome of a black-box

model (e.g. the individual that does not receive a loan from the bank). The limitations outlined in

the previous section are addressed by making the following changes to the NICE algorithm:

1. Impose a ruleset that xc should adhere to in relation to x0, making the CEs actionable (e.g. xc

age >= x0 age). These rules also capture the interdependencies between variables. This

change is based on the CRUDS algorithm, as discussed in Chapter 2.

2. Do not restrict the search space to only the nearest unlike neighbor. As outlined in the

previous section, if no valid actionable hybrids can be constructed, the provided CEs will not

be useful. If there are no actionable hybrids possible between x0 and xn that adhere to the

ruleset, the algorithm should move to the second NUN and try again. This procedure can be

followed until actionable CEs are found. This change is based on the CBCE algorithm, as

discussed in Chapter 2.

21

3. Do not use the NICE reward functions, as these are not able to capture variable actionability

and relationships effectively. Consider the following simple example: x0 age > xn age, and

changing the age feature value results in the highest reward. This results in all potential CEs

generated by NICE being non-actionable, as xc age will always be smaller than x0 age.

Instead, IBACE generates all possible hybrids between x0 and xn, but restricts the number of

features that at most are changed in x0. Not restricting the number of features changed

results quickly in an unmanageably large number of potential CEs for larger datasets with

many features, which will be 2n - 1 potential CEs, where n is the number of differing features

between x0 and xn. On the other hand, restricting the number of features changed to k

features will result in a number of potential CEs of the following sum of the binomial

coefficient: ∑ (𝑛
𝑖
)𝑘

𝑖=1 , which in this case is ∑ (
𝑛!

𝑖!(𝑛−𝑖)!

𝑘
𝑖=1). Note that when n = k, this

function reduces to 2n - 1. Not only does this improve computation time for datasets with

many features (compared to a 2n - 1 solution), it is also beneficial for the sparsity of the CE,

of which the importance is previously highlighted. Especially for datasets with many

numeric features, the chance of having a large n is relatively big even if the instances are

relatively close, compared to datasets with mostly categorical features. Additionally, if there

are immutable features, n equals the number of differing features minus the number of

immutable features. This further reduces the number of hybrids and increases

computational efficiency.

The imposed static ruleset based on the dataset used for testing is the following:

1. xc personal status sex = x0 personal status sex

2. xc foreign worker = x0 foreign worker

3. xc purpose = x0 purpose

4. xc property = x0 property

5. xc credit history = x0 credit history

6. xc people liable = x0 people liable

7. xc housing = x0 housing

8. xc job >= x0 job

9. xc savings >= x0 savings

10. xc employment duration >= x0 employment duration

11. xc present residence >= x0 present residence

12. xc age >= x0 age

22

Rules 1-7 ensure that immutable features are not changed from x0 to xc. Rule 8 ensures that an

individual does not have to reduce the quality of their job. Rule 9 ensures that an individual does

not have to reduce their savings. Rules 10-12 ensure that years cannot be reversed (i.e. no time

traveling to the past).

The rules that describe all variable relationships in the dataset are presented in Table 5 and Table

6, where the rules for all possible scenarios in a hybrid instance for both present residence (Table 5)

and employment duration (Table 6) are presented. Two details are key to understanding these rules.

Firstly, as present residence and employment duration are categorical variables in the dataset, x0

present residence and x0 employment duration are assumed to be the average of the category (e.g., if

x0 present residence is 1 <= … < 4 yrs, x0 present residence is assumed to be 2.5 years). Secondly, the

rules assume that the individual wants to take action as soon as possible. For example, if the

individual is unemployed, and a potential CE also suggests that the individual can stay unemployed,

age could theoretically increase all the way to the highest age in the dataset. However, this is

assumed to be undesirable. Therefore, the rule in this scenario is xc age = x0 age.

The last rule regards the number of features that should at most be changed in the CE (k). In their

review paper, Verma et al. (2020) conclude that there is no consensus on a hard cap on the number

of features that are changed in the current literature, but mention that shorter explanations are

more comprehensible to humans. This means that only a small number of features should be

changed in the CEs in order to keep them actionable. Keane and Smyth (2020), however, cap the

number of changed features to two in their CBCE algorithm. On the other hand, restricting k too

much can result in long computation times, as it becomes harder to find CEs. Additionally, this

might also reduce the coverage. To balance this trade-off, a sparse solution in this paper is

considered to have at most three features changed in the CE (k = 3). Note that the ideal value of k

depends on the dataset, computational power, and the individuals’ needs and capabilities, and can

be experimented with. Keep in mind that the larger the dataset is, the more impact increasing k has

on computation times.

Importantly, the provided CEs should adhere to all applicable rules. Note that these rules are highly

customizable, and can be changed depending on the dataset, computational power, and the

individuals’ needs and capabilities. The fact that customized rules can be incorporated into the

algorithm is one of its main strengths. This means that xc can be made actionable, by taking into

23

account immutable variables, as well as relationships between variables, and by returning sparse

solutions.

Table 5

Rules for all scenarios of present residence

Scenario Rule

xc present residence = < 1 yr &
x0 present residence = < 1 yr

xc age = x0 age

xc present residence = 1 <= ... < 4 yrs &
x0 present residence = < 1 yr

xc age >= x0 age &
xc age <= x0 age + 3

xc present residence = 4 <= ... < 7 yrs &
x0 present residence = < 1 yr

xc age >= x0 age + 4 &
xc age <= x0 age + 6

xc present residence = >= 7 yrs &
x0 present residence = < 1 yr

xc age >= x0 age + 7

xc present residence = 1 <= ... < 4 yrs &
x0 present residence = 1 <= ... < 4 yrs

xc age >= x0 age &
xc age <= x0 age + 1

xc present residence = 4 <= ... < 7 yrs &
x0 present residence= 1 <= ... < 4 yrs

xc age >= x0 age + 2 &
xc age <= x0 age + 4

xc present residence = >= 7 yrs &
x0 present residence = 1 <= ... < 4 yrs

xc age >= x0 age + 5

xc present residence = 4 <= ... < 7 yrs &
x0 present residence = 4 <= ... < 7 yrs

xc age >= x0 age &
xc age <= x0 age + 1

xc present residence= >= 7 yrs &
x0 present residence = 4 <= ... < 7 yrs

xc age >= x0 age + 2

xc present residence = >= 7 yrs &
x0 present residence = >= 7 yrs

xc age >= x0 age

Note. The scenarios show what the present residence categories are for xc and x0. For each scenario, a

corresponding rule for the effect on age is shown. A provided CE by IBACE should adhere to these rules.

24

Table 6

Rules for all scenarios of employment duration

Scenario Rule

xc employment duration = unemployed &
x0 employment duration = unemployed

xc age = x0 age

xc employment duration = < 1 yr &
x0 employment duration = unemployed

xc age = x0 age

xc employment duration = 1 <= ... < 4 yrs &
x0 employment duration = unemployed

xc age >= x0 age + 1 &
xc age < x0 age + 4

xc employment duration = 4 <= ... < 7 yrs &
x0 employment duration = unemployed

xc age >= x0 age + 4 &
xc age <= x0 age + 6

xc employment duration = >= 7 yrs &
x0 employment duration = unemployed

xc age >= x0 age + 7

xc employment duration = < 1 yr &
x0 employment duration = < 1 yr

xc age = x0 age

xc employment duration = 1 <= ... < 4 yrs &
x0 employment duration = < 1 yr

xc age >= x0 age &
xc age <= x0 age + 3

xc employment duration = 4 <= ... < 7 yrs &
x0 employment duration = < 1 yr

xc age >= x0 age + 4 &
xc age <= x0 age + 6

xc employment duration = >= 7 yrs &
x0 employment duration = < 1 yr

xc age >= x0 age + 7

xc employment duration = 1 <= ... < 4 yrs &
x0 employment duration = 1 <= ... < 4 yrs

xc age >= x0 age &
xc age <= x0 age + 1

xc employment duration = 4 <= ... < 7 yrs &
x0 employment duration = 1 <= ... < 4 yrs

xc age >= x0 age + 2 &
xc age <= x0 age + 4

xc employment duration = >= 7 yrs &
x0 employment duration = 1 <= ... < 4 yrs

xc age >= x0 age + 5

xc employment duration = 4 <= ... < 7 yrs &
x0 employment duration = 4 <= ... < 7 yrs

xc age >= x0 age &
xc age <= x0 age + 1

xc employment duration = >= 7 yrs &
x0 employment duration = 4 <= ... < 7 yrs

xc age >= x0 age + 2

xc employment duration = >= 7 yrs &
x0 employment duration = >= 7 yrs

xc age >= x0 age

Note. The scenarios show what the employment duration categories are for xc and x0. For each scenario, a

corresponding rule for the effect on age is shown. A provided CE by IBACE should adhere to these rules.

25

Based on these changes, IBACE will work in the following way. The pseudocode of the algorithm is

first presented in Table 7, and is followed by a detailed explanation.

Table 7

Pseudocode for IBACE

IBACE (x0, dataframe, ruleset, black-box model)

Line Pseudocode

1: Input: x0: Instance for which to find counterfactual;
 dataframe: All observations including the predicted class;
 ruleset: All rules that counterfactual instance xc,i should adhere to;
 black-box model: Model used to make predictions on the dependent variable

2: Output: Xc: Dataframe containing n counterfactual instances for x0 (Xc = {xc,i∣i=0,1,…,n})

3: Step 1: Calculate distance between x0 and all other observations

4: for each observation j in dataframe:

5: dataframe[distance]j ← distance(x0, xj)

 --- Note: Gower’s distance is used

6: unlike neighbors ← filter(dataframe, class(xj) ≠ class(x0))

7: order unlike neighbors by distance

 --- Note: Unlike neighbors is ordered in ascending order

8: Step 2: Initialization

9: i ← 1

 --- Note: i keeps track of the nearest unlike neighbor that is being used to
 construct hybrid instances

10: k ← 3

 --- Note: k determines the maximum number of feature value changes and can be
 set to any value between 1 and n

11: Xc ← []

 --- Note: Empty dataframe that will be filled with counterfactual instances for x0

12: Step 3: Find nearest unlike neighbor

13: xn ← unlike neighborsi

14: Step 4: Create hybrid instances

26

15: hybrids ← all possible hybrids between x0 and xn with 1 to k feature value changes

 --- Note: Method as described in section 4.1.3

16: Step 5: Check if hybrid instances adhere to ruleset and if hybrid instances are valid

17: for each hybrid instance h in hybrids:

18: if hybridsh adheres to ruleset:

19: prediction ← predict hybridsh

 --- Note: Use the black-box model

20: if class(prediction) ≠ class(x0):

21: append hybridsh to Xc

22: Step 6: Check if Xc contains counterfactual instances

23: if nrow(Xc) = 0:

24: if i < nrow(unlike neighbors):

25: i ← i + 1

26: repeat from Step 3

 --- Note: With the next closest unlike neighbor

27: else:

28: return Xc

 --- Note: In this case no counterfactual instances are found

29: else:

30: return Xc

Note. The pseudocode demonstrates the sequence of steps taken by the IBACE algorithm to find CEs. A

dataframe (Xc) is initialized and filled with CEs that are both valid and actionable, which is returned in the

final step of the algorithm.

Firstly, the algorithm requires access to multiple inputs. The dataset with the features that the

black-box model is trained on is used to construct the CEs, and should therefore be accessible.

Additionally, the black-box model itself needs to be accessible. As potential CEs are generated, their

validity needs to be checked, which is done by passing the generated potential CE to the black-box

model and predicting the class of the dependent feature. However, IBACE does not need access to

the internal structure of the black-box model, making IBACE model-agnostic. Also, a ruleset (such as

27

the ruleset described above) should be provided, if it is needed to ensure that the CEs will be

actionable. Lastly, an instance of interest should be determined (x0), for which one or more CEs

should be found. These inputs are then used to construct the CEs.

The first step in the algorithm is to calculate the distance between x0 and all other observations in

the dataset. In contrast to the paper of Brughmans et al. (2023), in which the Heterogeneous

Euclidean Overlap Method is used as the distance metric, in this paper Gower’s distance is used. The

main reason for this is that the implementation of NICE in the R package “counterfactuals” uses this

distance metric. As will be described in section 4.3.1, this package is used for benchmarking

purposes. In order to make a fair comparison between the two algorithms, Gower’s distance is

implemented in this paper. Additionally, Gower’s distance is also used in different CE algorithms

that can deal with mixed data types, as shown in Verma et al. (2020), making it a valid metric. It

should be noted that any metric that can handle mixed variable types can be implemented in IBACE.

The next step is to select all unlike neighbors, meaning all the observations in the dataset for which

the predicted class is the desired class, and therefore the opposite class of x0. Additionally, only

correctly classified observations are used, similar to NICE. It should be noted that it is

computationally more efficient to swap step one and two, but this is the order implemented in the

counterfactuals package. As the Gower’s distance also performs scaling, the order of steps impacts

the calculated distances. Again, for a fair comparison, the order of steps is kept similar to the

approach in the counterfactuals package.

Next, the NUN (xn) to x0 is selected using Gower’s distance, which will be the first instance that is

used for generating the hybrid instances between x0 and xn.

Then, the hybrids are generated by generating all possible feature value combinations between x0

and xn, while keeping overlapping and immutable features fixed. The maximum total allowed

number of features changed in the hybrids compared to x0 is equal to k (k=3).

These hybrids are then filtered based on the rest of the ruleset (i.e. everything else than the

immutable features).

The hybrids that remain are then tested for validity, by making predictions with the black-box

model on each of them. If there are valid hybrids, these are returned as CEs, and are by design

actionable. The algorithm is terminated. Note that IBACE is capable of returning multiple CEs, as all

28

possible hybrids are computed at the same time. However, IBACE does not optimize for multiple or

diverse CEs.

As soon as there are no hybrid instances left as a result of the ruleset, or when there are no valid

hybrids, the algorithm continues the search with the next NUN. This process can repeat as many

times as necessary and as there are unlike neighbors. In the case that no valid CE can be

constructed with any of the unlike neighbors, the algorithm terminates without returning any CEs.

Note that this iterative process can also accommodate the need for a specified number of CEs.

However, this potentially comes at the cost of increased computation times if there are not enough

hybrids constructed with the unlike neighbor that returns at least one good CE.

Consider the simplified example in Table 8. In the first iteration, the NUN to x0 is selected. The

changes with respect to x0 are highlighted in bold. Then, all possible hybrids are created, while

fixing the values of the immutable feature purpose and the overlapping feature employment

duration, and making no more than three changes from x0. Then, the resulting hybrids are filtered

according to the ruleset. As can be seen in Table 8, only x2 is actionable, as only for this hybrid the

relationship between age and employment duration is adhered to. The validity of this hybrid is

checked, and turns out to be invalid (i.e. the predicted class does not change). Therefore, the

algorithm does a second iteration. The second closest unlike neighbor is selected and the process

repeats. In this iteration, the actionable hybrid is also valid and is returned as a CE.

Table 8

Simplified example of the IBACE algorithm

Instance Age Purpose Employment
Duration

Savings Predicted
Class

x0 28 Car (new) <1 year 1000 Bad

ITERATION 1

xn 29 Furniture <1 year 1500 Good

Generate hybrids

x1 29 Car (new) <1 year 1000 NA

x2 28 Car (new) <1 year 1500 NA

x3 29 Car (new) <1 year 1500 NA

29

Filter for actionability

x2 28 Car (new) <1 year 1500 Bad

ITERATION 2

xn 30 Retraining <1 year 2000 Good

Generate hybrids

x1 30 Car (new) <1 year 1000 NA

x2 28 Car (new) <1 year 2000 NA

x3 30 Car (new) <1 year 2000 NA

Filter for actionability

x2 28 Car (new) <1 year 2000 Good

Note. Before the first iteration, the observation of interest is selected. In the first iteration, the NUN is selected

and all possible hybrids between x0 and xn are generated. In this example, there are three possible hybrids (x1,

x2, x3). The generated hybrids are then filtered for actionability, based on the ruleset. The resulting hybrids (in

this case only x2) are tested for validity. In this example, x2 is invalid (i.e. the predicted class is “bad”).

Therefore, a second iteration is initialized, using the second NUN. Again, all possible hybrids between x0 and

the new xn are generated (x1, x2, x3). These hybrids are then also filtered for actionability. In this example, x2 is

the only actionable hybrid. This hybrid is tested for validity, and has the predicted class “good”. Therefore,

this hybrid is returned as a CE.

Note that when the dataset has a large amount of observations, the algorithm becomes most

computationally intensive in two stages. The first stage is where all distances are calculated to

obtain the nearest unlike neighbor, which is the same for the NICE algorithm. The second stage is

where the algorithm iterates over multiple unlike neighbors. It could be that the algorithm has to

try many unlike neighbors before finding a solution, but this does not have to be the case. However,

as suggested by Guidotti (2022) for similar approaches, a sample of the entire dataset can be used

to generate CEs. This reduces computational complexity, but on the other hand increases the

probability of the CE being more different from x0 and coverage is possibly reduced. This trade-off

should be considered by the user.

30

4.2 The Binary Classification Model

The IBACE algorithm assumes the existence of a binary classification black-box model that is used

for the prediction of a binary dependent variable. Since the IBACE algorithm needs the predictions

to be available, a black-box model is trained. Note that for the objectives of this paper, the specific

binary classification model does not need to be a black-box model, but could also be a glass-box

model, as its sole purpose is to provide the proposed algorithm with predictions of the dependent

variable. Therefore, a logistic regression is trained. The dataset is split into a training set (80%) and

a testing set (20%). The area under the receiver operating characteristic curve (AUC-ROC), which is

calculated based on the results of the testing data, is 0.739. This is above the threshold of 0.6, which

is used by Brughmans et al. (2023) as the requirement for the binary classification model. Also, the

AUC of 0.739 is similar to the AUC obtained by the models used in their paper on the same dataset

(0.718 and 0.758, for their neural network and random forest, respectively). No feature selection is

performed, and in order to account for the class imbalance, the classification threshold is moved up

from 0.5 to 0.671. This optimal value is found using the AUC-ROC. This means that the probability of

a “good” credit score prediction should be at least 67.1% for an observation to be classified as such.

As a result, sensitivity is brought down, while specificity is brought up.

4.3 Implementing, Testing and Benchmarking of IBACE

4.3.1 Implementation of IBACE

The implementation of the IBACE algorithm, as well as the training of the black-box model, is

performed in the R programming language (version 4.3.1). The used hardware is a laptop with the

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 2.00 GHz, and 8GB of RAM, and runs Windows 11. For

the implementation of the IBACE algorithm in R, the following packages are used:

- tidyverse - for data manipulation

- data.table - for faster computation

- cluster - for the Gower’s distance metric

For the training of the logistic regression model, the following package is used:

- caret - for training a logistic regression model

- pROC - for calculating the AUC-ROC and finding the optimal classification threshold

For the benchmark algorithm (NICE), the following packages are used:

- counterfactuals - for the implementation of the NICE algorithm

31

- iml - for storing the data and the trained logistic regression model in an iml object, as

needed for the counterfactuals package

4.3.2 Testing IBACE

The test statistic of interest for the IBACE algorithm is coverage (c), which is specified as the

percentage of observations with a bad credit risk for which at least one actionable and valid CE is

found. The confidence interval for the coverage is obtained using a bootstrap procedure. This

involves creating 1,000 bootstrapped datasets by resampling with replacement from the original

dataset 1,000 times. For each bootstrapped dataset, the coverage is calculated. The distribution of

these 1,000 bootstrapped statistics is then used to construct a confidence interval by taking the

2.5th and 97.5th percentiles for a 95% confidence interval. The following hypotheses for this

specific dataset are tested:

- H0: The true coverage is equal to the observed coverage (cT = cO)

- HA: The true coverage is not equal to the observed coverage (cT ≠ cO)

If the observed coverage falls within the 95% confidence interval, the null-hypothesis (H0) is not

rejected. This means that there is no significant evidence to suggest that the true coverage is

different from the observed coverage. If the observed coverage falls outside the 95% confidence

interval, the null-hypothesis (H0) is rejected, and the alternative hypothesis (HA) is accepted,

indicating that there is significant evidence to suggest that the true coverage is different from the

observed coverage.

Additionally, the distribution of the number of unlike neighbors used to construct the CEs is

examined. This is only done for the cases in which the nearest unlike neighbor did not suffice, so

where at least the second nearest neighbor is used. This provides an insight into how close the

solutions lie to the observation of interest and how useful and efficient it is to use more

observations than only the nearest unlike neighbor to find CEs.

4.3.3 Benchmarking IBACE

The IBACE algorithm is benchmarked against the NICE algorithm. First, an example of CEs provided

by the NICE algorithm that do not adhere to the ruleset is highlighted and compared to the resulting

CE of the IBACE algorithm for the same observation of interest. The counterfactuals package in R is

able to provide multiple CEs if they are available. All returned CEs are taken into consideration and

are filtered according to the ruleset. Second, the test statistic of interest for the comparison

32

between IBACE and NICE is the difference in their coverage (∆c = cIBACE - cNICE), where the coverage

of NICE is calculated based on the same bootstrapped datasets as described in the previous section.

Again, the distribution of these 1,000 bootstrapped statistics is then used to construct a confidence

interval by taking the 2.5th and 97.5th percentiles for a 95% confidence interval. The following

hypotheses for this specific dataset are tested:

- H0: There is no difference in coverage between IBACE and NICE (∆c = 0)

- HA: There is a difference in coverage between IBACE and NICE (∆c ≠ 0)

If the 95% confidence interval covers 0, the null-hypothesis (H0) is not rejected. This means that

there is no significant evidence to suggest that there is a difference in coverage between IBACE and

NICE. If the 95% confidence interval does not cover 0, the null-hypothesis (H0) is rejected, and the

alternative hypothesis (HA) is accepted, indicating that there is significant evidence to suggest that

the coverage of IBACE is different from the coverage of NICE. If the values within the 95%

confidence interval are positive, IBACE has a larger coverage, and if the values within the 95%

confidence interval are negative, IBACE has a smaller coverage.

The same procedure is followed for the difference in runtime of both algorithms. The runtime is

calculated as the total runtime for each entire bootstrapped dataset in minutes. The test statistic in

this case is ∆t (∆t = tIBACE - tNICE), and the following hypotheses for this specific dataset are tested:

- H0: There is no difference in runtime between IBACE and NICE (∆t = 0)

- HA: The difference in coverage between IBACE and NICE is larger than 0 (∆t ≠ 0)

If the 95% confidence interval covers 0, the null-hypothesis (H0) is not rejected. This means that

there is no significant evidence to suggest that there is a difference in runtime between IBACE and

NICE. If the 95% confidence interval does not cover 0, the null-hypothesis (H0) is rejected, and the

alternative hypothesis (HA) is accepted, indicating that there is significant evidence to suggest that

the runtime of IBACE is different from the runtime of NICE. If the values within the 95% confidence

interval are positive, IBACE has a longer runtime, and if the values within the 95% confidence

interval are negative, IBACE has a shorter runtime.

33

5. Results

5.1 Test Results of IBACE

First, the coverage of IBACE is tested, for which the bootstrap results are presented in Figure 1. The

dashed lines show the 95% confidence interval. The lower bound is at 98.1% and the upper bound

is at 100%. This means that with a 95% certainty, the coverage of IBACE lies between these values

for this particular dataset with this particular ruleset. The observed coverage in the dataset with

the particular ruleset is 99.2%, and is presented in Figure 1 with the dotted line. This means that it

lies within the confidence interval. Therefore, the null-hypothesis (H0) is not rejected. This means

that there is no significant evidence to suggest that the true coverage is different from the observed

coverage.

Figure 1

Bootstrap results for the coverage of IBACE

Note. This figure displays the distribution of the bootstrap results for the coverage of IBACE. The coverage of

IBACE lies between 98.1% and 100% for 95% of the bootstrapped datasets (dashed lines). The observed

coverage in the original dataset is 99.2%, and is presented by the dotted line. The coverage is the percentage

of observations in the dataset for which at least a single valid and actionable CE is found.

Additionally, the distribution of the number of unlike neighbors tested to construct the CEs is

examined. This is only done for the cases in which the nearest unlike neighbor did not suffice, so

where at least the second nearest neighbor is used. The results are presented in Figure 2. This

figure clearly illustrates that, in the cases the NUNs do not suffice, the solutions mostly still lie

34

relatively close to the observations of interest. In 76.7% of these cases, a CE can be constructed with

one of the 10 closest unlike neighbors. Including the cases where the NUN suffices, a CE can be

constructed for 93.2% of the cases using one of the 10 closest unlike neighbors. Again, these results

are specifically for the used dataset with the used ruleset.

Figure 2

The Number of Unlike Neighbors Tested

Note. This figure displays the distribution number of unlike neighbors that had to be tested for the

construction of the CEs for cases where the NUN did not suffice. The y-axis shows how many times a

particular number of unlike neighbors was used in the construction of the CEs. In most cases, at least one CE

could be constructed by using one of the 10 closest unlike neighbors. These results are based on all

bootstrapped datasets.

5.2 Benchmark Results of IBACE

An example case for which the NICE algorithm could not find a solution that adheres to all rules is

presented in Table 9. The second column represents the observation of interest, and all immutable

features are left out of the table. The following columns include a selection of the solutions provided

by the IBACE algorithm. From the results it is clear that in this instance, an increase in employment

duration would result in a change in the predicted class. For x1, only employment duration is

increased, without increasing the age. However, remember that less than a year's increase would

already result in the increase in employment duration. Therefore, this CE is still actionable. In CE x2,

age is also increased, with 3 years. This amount lies within the boundaries of the increase in

employment duration, and therefore still adheres to the ruleset. CE x3 also adheres to the ruleset

and shows, in this case, that the bank values the customer having a checking account (albeit with a

35

negative balance) over having no checking account at all. In total, IBACE returned 16 CEs for the

observation of interest, while the NICE algorithm did not find solutions that adhere to the ruleset.

Table 9

Example of IBACE solutions

Feature x0 x1 x2 x3

Status no checking account - - … < 0 DM

Duration 6 - - -

Amount 662 - - -

Savings unknown / no savings
account

- - -

Employment Duration < 1 yr 1 <= … < 4 yrs 1 <= … < 4 yrs -

Installment Rate 20 <= … < 25 - - -

Other Debtors none - - -

Present Residence >= 7 yrs - - -

Age 41 - 44 -

Other Installment Plans none - - -

Number of Credits 1 - - -

Job unskilled - resident - - -

Telephone yes - - -

Note. The column of x0 is the observation of interest with its corresponding feature values. x1, x2, x3 are some

of the provided CEs by IBACE for this observation. A “-” indicates that no changes are made.

The bootstrap results for the difference in coverage between IBACE and NICE are presented in

Figure 3. Again, the dashed lines show the 95% confidence interval. The lower bound is at 33.2%

and the upper bound is at 43.1%. This means that with a 95% certainty, the difference in coverage

between IBACE and NICE lies between these values for this particular dataset with this particular

ruleset. The 95% confidence interval does not include 0, hence the null-hypothesis (H0) is rejected,

and the alternative hypothesis (HA) is accepted, indicating that there is significant evidence to

suggest that the coverage of IBACE is different from the coverage of NICE. Additionally, the values

36

within the 95% confidence interval are positive, meaning that IBACE has a larger coverage,

compared to NICE.

Figure 3

Bootstrap results for the difference in coverage between IBACE and NICE

Note. This figure displays the distribution of the bootstrap results for the difference in coverage between

IBACE and NICE. For 95% of the bootstrapped datasets, the difference in coverage lies between 33.2% and

43.1% (dashed lines), meaning that in 95% of all bootstrapped datasets, the coverage of IBACE is between

33.2% and 43.1% higher compared to the coverage of NICE. The difference in coverage is the percentage of

observations in the dataset for which at least a single valid and actionable CE is found by IBACE minus the

percentage of observations in the dataset for which at least a single valid and actionable CE is found by NICE.

The difference in runtime between the two algorithms is tested in the same way. The bootstrap

results are presented in Figure 4. The dashed lines show the 95% confidence interval. The lower

bound is at -1.5 minutes and the upper bound is at 1 minute. This means that with a 95% certainty,

the difference in runtime between IBACE and NICE lies between these values for this particular

dataset with this particular ruleset, using the specific hardware and software. The 95% confidence

interval does include 0, hence the null-hypothesis (H0) is accepted. This means that there is no

significant evidence to suggest that there is a difference in runtime between IBACE and NICE. The

average runtime of IBACE for finding CEs for a single observation of interest is found to be

approximately 0.47 seconds.

37

Figure 4

Bootstrap results for the difference in runtime between IBACE and NICE

Note. This figure displays the distribution of the bootstrap results for the difference in runtime between

IBACE and NICE. For 95% of the bootstrapped datasets, the difference in runtime lies between -1.5 minutes

and 1 minute (dashed lines) for an entire bootstrapped dataset. The difference in runtime is the total runtime

for each entire bootstrapped dataset in minutes of IBACE minus the total runtime of NICE.

6. Discussion

The results of the IBACE algorithm presented in Chapter 5 seem to be rather promising, and

provide a relatively large improvement on actionability compared to the NICE algorithm, without a

compromise on computation time. The summarized results are as follows:

- The coverage of IBACE lies between 98.1% and 100% at a 95% confidence interval.

- For 76.7% of the cases where no CE can be constructed using the NUN, a CE can be

constructed using one of the 10 closest unlike neighbors. Including the cases where the NUN

suffices, this value jumps up to 93.2%.

- The difference in coverage between IBACE and NICE lies between 33.2% and 43.1% at a

95% confidence interval, in favor of IBACE.

- There is no statistically significant difference in runtime between IBACE and NICE.

The high coverage of IBACE is a direct result of the construction of the algorithm. Therefore, a high

coverage is to be expected. IBACE will continue its search until at least one good CE is found.

Though, it should be noted that a sufficiently large and diverse dataset is needed to achieve a high

coverage.

38

The low number of unlike neighbors that need to be tested to construct a CE is also expected. The

unlike neighbors are sorted, so that the closest unlike neighbors are tested first. Since these

observations are relatively close to the observation of interest, but have the desired predicted class,

it is likely that with a minimum amount of feature value changes a CE can be found. This reduces

the chance of making unactionable changes, too. Additionally, the iterative process of moving to the

next unlike neighbor means that the feature value changes become slightly larger for each tested

unlike neighbor, again increasing the chance of finding a CE.

The reason for the increased coverage of actionable CEs is also the design of the algorithm.

Actionability can be defined by the end-user by means of the ruleset that can be imposed on the

CEs. In the worst case scenario, the coverage of IBACE will be equal to the coverage of NICE,

meaning that no valid hybrid can be constructed with any of the unlike neighbors in the dataset.

The fact that there seems to be no difference in computation time between the two algorithms is

most surprising, but can have multiple underlying reasons. At a first glance, it seems that the IBACE

algorithm should take longer than the NICE algorithm, as it 1) can generate more hybrid instances

for each unlike neighbor, and 2) can consider more unlike neighbors than only the NUN. The first

reason that no significant difference in computation time is observed could be due to the specific

implementation of the NICE algorithm in the counterfactuals package in R. It is possible that the

underlying code is not as optimized as the custom code written for this paper. A second reason

could be that computing the reward functions for each generated hybrid is relatively

computationally expensive. However, it should be noted that the results are dependent on the

specific dataset and ruleset used. It is possible that for larger datasets, with more features and more

observations, a significant difference in computation time can be observed, in favor of the NICE

algorithm.

Additionally, the results depend on the parameter k, which specifies the number of features that are

allowed to be permuted at most. On the one hand, decreasing the number k will decrease the

number of hybrids created per unlike neighbor used, in turn decreasing the computation time for

each iteration. On the other hand, decreasing k also reduces the probability of finding CEs,

prompting the algorithm to try more unlike neighbors, which in turn increases computation time.

Therefore, the optimal value of k does not only depend on the actionability criteria as mentioned

before, but also on the dataset. This parameter should therefore be experimented with in real-life

applications in order to make the algorithm as useful as possible.

39

There also exists a trade-off between the complexity of the ruleset and the coverage. The more

complex and restrictive the ruleset, the harder it becomes to find CEs. Again, the exact impact

depends on the dataset that IBACE is used on and the ruleset that is imposed.

7. IBACE Improvements, Limitations and Future

Research

The IBACE algorithm as proposed in this paper might be improved upon in terms of computation

time. For example, instead of generating all possible hybrids at once, it could be changed by first

generating all hybrids with only one permuted feature value. These can then be checked for

actionability and validity. If CEs are found, these can be returned and the algorithm can be

terminated, eliminating the need for the generation of more hybrids. If no CEs are found, the

algorithm can continue by permuting an extra feature value, and repeat the process. Additionally,

there could be a cap placed on the number of unlike neighbors that should be tested. As seen from

the results, a good CE is mostly found within the first 10 NUNs. For larger datasets, it might be

worth incorporating this cap, at the cost of slightly reducing the coverage. This will result in outliers

not taking up too much time in real-life situations. The exact number of NUNs that should be tested

is highly dependent on the end-user’s preference, the computational power that is accessible, and

the dataset. Lastly, the order of computing the distances and selecting the unlike neighbors should

ideally be swapped.

The proposed algorithm might also be improved in terms of proximity. Even though the provided

CEs are relatively close by design, it could still be the case that a closer solution is possible. For

example, consider the constructed CE to suggest a decrease of the credit amount of 1,000 DM, as

this is the feature value of the NUN, and suppose the CE is both actionable and valid. It could still be

the case that decreasing the credit amount by only 500 DM would also result in an actionable and

valid CE. A possible solution could be to include a grid search for continuous features, in order to

nudge the CE even closer to the decision boundary, reducing the distance between the observation

of interest and the CE. The exact implementation might be an interesting avenue for future

research.

As can be noted, the biggest limitation of this research is that only a single dataset with a single

ruleset is tested. Even though the IBACE algorithm shows its potential, no generalizable statements

40

can be made. In order to establish the usefulness of this algorithm in real-life applications, it should

be tested on more datasets, both on freely available datasets and in real-life applications.

Another consideration for the real-life application of the IBACE algorithm is that for large datasets,

it might be time consuming to construct a complete ruleset. Even though a custom ruleset provides

a lot of flexibility, it is hard to automate this with, for example, an R package.

A caveat with all CEs is that in order for them to be actionable, the features themselves need to be

interpretable. For IBACE it is needed for constructing a ruleset, but it is also needed to know what

actions should be taken. For example, if the model makes use of principal components, an increase

or decrease in the feature values is not informative enough to prompt specific actions. Therefore, if

one wants to utilize CEs in the context of actionability, the features of the underlying black-box

model need to be taken into consideration.

8. Conclusions

The use of predictive ML and AI models in decision-making processes is increasingly prevalent

across various industries. However, many of these models function as so-called black-boxes, lacking

transparency in their prediction mechanisms. In numerous applications, understanding the inner

workings of these black-box models is not just useful but often essential. This need has driven

significant interest in the field of XAI. Among the various proposed approaches to elucidate black-

box models, such as SHAP and LIME, CEs stand out for their ability to specify changes to input

variables that would lead to different model decisions. This is particularly applicable to binary

classification models.

This research identifies instance-based CEs as possessing unique advantages over other CE

methods, such as optimization-based approaches. Instance-based methods rely on actual instances

from the dataset, ensuring coherence and plausibility, and they are model-agnostic, making them

applicable regardless of the underlying model architecture. However, current instance-based

approaches fall short in ensuring that the CEs they provide are actionable, a critical property for

practical applicability.

To address this gap, this paper proposes the Instance-Based Actionable Counterfactual

Explanations algorithm (IBACE). The primary objective of IBACE is to generate CEs that are not

only valid, plausible, and sparse but also actionable. By leveraging the nearest unlike neighbors

41

approach, IBACE ensures that CEs are relatively close to the observation of interest, even though it

does not explicitly optimize for proximity. IBACE integrates principles from multiple existing

algorithms, including NICE, CBCE, and CRUDS, culminating in a model-agnostic solution that meets

many of the desired properties of CEs.

The results of this study are promising, demonstrating that IBACE achieves high coverage,

effectively providing good CEs for a wide range of observations. Furthermore, the algorithm

exhibits computational efficiency, enhancing its practicality for real-world applications.

However, it should be noted that the primary limitation of this study is its reliance on a single

dataset and ruleset, restricting generalizability. To validate IBACE 's practical utility, it must be

tested on diverse datasets and in real-world applications. Additionally, constructing a

comprehensive ruleset for large datasets can be time-consuming, and the interpretability of

features remains crucial for actionable CEs. Future research should focus on these aspects to

further refine and evaluate the IBACE algorithm.

In conclusion, this research contributes to the field of XAI by addressing the research question:

"How can actionable insights be added to case-based counterfactual explanations?". Through the

development and evaluation of IBACE, this paper has shown that it is indeed possible to create CEs

that are actionable while maintaining validity, plausibility, and sparsity. This is achieved by

imposing a ruleset that the CEs should adhere to, and by utilizing additional unlike neighbors when

the NUN does not suffice. This advancement not only enhances the transparency of black-box

models, but also provides data subjects with actionable insights that can be readily applied in real-

life applications.

42

References

Angelov, P. P., Soares, E. A., Jiang, R., Arnold, N. I., & Atkinson, P. M. (2021). Explainable artificial

 intelligence: an analytical review. Wiley Interdisciplinary Reviews: Data Mining and

 Knowledge Discovery, 11(5), e1424.

Byrne, R. M. (2019). Counterfactuals in explainable artificial intelligence (XAI): Evidence from

 human reasoning. In IJCAI (pp. 6276-6282).

Downs, M., Chu, J. L., Yacoby, Y., Doshi-Velez, F., & Pan, W. (2020). Cruds: Counterfactual recourse

 using disentangled subspaces. ICML WHI, 2020, 1-23.

Guidotti, R. (2022). Counterfactual explanations and how to find them: literature review and

 benchmarking. Data Mining and Knowledge Discovery, 1-55.

Kahneman, D., & Miller, D. T. (1986). Norm theory: Comparing reality to its alternatives.

 Psychological review, 93(2), 136.

Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y., Uemura, K., & Arimura, H. (2021). Ordered

 counterfactual explanation by mixed-integer linear optimization. In Proceedings of the

 AAAI Conference on Artificial Intelligence (Vol. 35, No. 13, pp. 11564-11574).

Karimi, A. H., Schölkopf, B., & Valera, I. (2021). Algorithmic recourse: from counterfactual

 explanations to interventions. In Proceedings of the 2021 ACM conference on fairness,

 accountability, and transparency (pp. 353-362).

Keane, M. T., & Smyth, B. (2020). Good counterfactuals and where to find them: A case-based

 technique for generating counterfactuals for explainable AI (XAI). In Case-Based Reasoning

 Research and Development: 28th International Conference, ICCBR 2020, Salamanca, Spain,

 June 8–12, 2020, Proceedings 28 (pp. 163-178). Springer International Publishing.

Lewis, D. (1973). Counterfactuals, Blackwells.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances

 in neural information processing systems, 30.

43

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial

 intelligence, 267, 1-38.

Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., & Flach, P. (2020). FACE: feasible and

 actionable counterfactual explanations. In Proceedings of the AAAI/ACM Conference on AI,

 Ethics, and Society (pp. 344-350).

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). " Why should i trust you?" Explaining the predictions

 of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on

 knowledge discovery and data mining (pp. 1135-1144).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and

 use interpretable models instead. Nature machine intelligence, 1(5), 206-215.

Verma, S., Boonsanong, V., Hoang, M., Hines, K. E., Dickerson, J. P., & Shah, C. (2020).

 Counterfactual explanations and algorithmic recourses for machine learning: A review.

 arXiv preprint arXiv:2010.10596.

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the

 black box: Automated decisions and the GDPR. Harv. JL & Tech., 31, 841.

