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Abstract 

The increasing utilization of Machine Learning (ML) and Artificial Intelligence (AI) across various 

industries has led to the development of highly accurate predictive models that support decision-

making processes. Despite their accuracy, many of these models function as black-boxes, providing 

little transparency into their decision-making processes. This lack of transparency can have 

significant negative consequences, driving the need for eXplainable Artificial Intelligence (XAI) 

methods. Among the various XAI approaches, Counterfactual Explanations (CEs) are particularly 

notable for their ability to suggest actionable changes to input variables to achieve a different 

prediction outcome. This research focuses on instance-based CEs, which are advantageous due to 

their coherence, plausibility, and model-agnostic nature. 

However, existing instance-based approaches often lack actionability, a critical attribute for 

practical applications. To address this gap, this paper proposes the Instance-Based Actionable 

Counterfactual Explanations (IBACE) algorithm. IBACE aims to generate CEs that are valid, 

plausible, sparse, and actionable by leveraging the nearest unlike neighbors approach and 

integrating principles from multiple existing algorithms. The results demonstrate that IBACE 

achieves high coverage and computational efficiency, making it practical for real-world 

applications. 

Despite its promising results, the study is limited by its reliance on a single dataset and ruleset, 

which restricts generalizability. Future research should focus on validating IBACE with diverse 

datasets and real-world applications and refining the interpretability of features for actionable CEs. 

This paper contributes to the field of XAI by demonstrating that actionable insights can be 

effectively integrated into instance-based counterfactual explanations, thereby enhancing the 

transparency of black-box models and providing actionable insights for data subjects. 
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1. Introduction 

Machine Learning (ML) and Artificial Intelligence (AI) are increasingly being utilized across various 

industries to build predictive models that support decision-making processes. These models have 

achieved high levels of accuracy in numerous applications (Angelov et al., 2021). However, many 

ML models function as black-boxes, providing predictions without explaining the underlying 

decision-making process in a way that is understandable to humans. This lack of transparency can 

have negative consequences (Rudin, 2019). Explanations of ML models are fundamental for both 

those implementing the models and the individuals affected by the decisions (Guidotti, 2022). As 

the adoption of ML models has surged due to their high accuracy, so has the need for model 

explanations. This issue has led to the emergence of the field of eXplainable Artificial Intelligence 

(XAI) (Angelov et al., 2021). 

There are various approaches to explain predictive models. For example, SHapley Additive 

exPlanations (SHAP) (Lundberg & Lee, 2017) determine the contribution of each feature to a 

prediction using principles from game theory. Another approach is Local Interpretable Model-

agnostic Explanations (LIME) (Ribeiro et al., 2016), which creates a surrogate model around the 

observation of interest, making it easier to interpret, such as a linear regression. 

The method of interest in this paper is called “Counterfactual Explanations” (CEs). A CE is a local 

explanation, meaning that it explains a single data point of interest. It does so by generating a data 

point that is similar to the data point of interest, but with a different predicted outcome by the 

black-box model. In contrast to other explainability methods (such as SHAP and LIME), CEs can 

provide suggestions to achieve a desired outcome, by suggesting changes to the feature values 

(Verma et al., 2020). For example, assume an individual who applies for a loan at a bank. If the loan 

is denied, based on the prediction of a black-box model, CEs could potentially provide the individual 

with actionable feedback. The individual could make changes to their feature values based on the 

CE, helping them to effectively cross the decision boundary of the black-box model, i.e. receiving the 

loan. Hence, the question that can be answered by a CE is: “What changes to the input variables 

would have resulted in a different prediction by the black-box model?”. These types of explanations 

come naturally to humans, as it helps establish a cause-effect relation (Byrne, 2019), where the 

cause is the feature values, and the effect is the predicted outcome, making them suitable in the 

realm of XAI. CEs are not limited to the field of finance; they are applicable across various domains 

that demand actionable insights. In marketing, for instance, CEs can clarify the reasons behind 
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customer churn and suggest measures for customer retention. They can also identify strategies that 

could transform a disengaging customer experience into an engaging one, among numerous other 

potential applications. 

There are several strategies for retrieving CEs, categorized into five main approaches. The first is 

the brute force approach, which involves a grid search on feature values. Secondly, optimization 

strategies aim to minimize a loss function that accounts for various desirable properties of CEs, 

which will be detailed in this paper. These optimization strategies work on differentiable models, 

using the gradients, such as neural networks. Thirdly, heuristic search strategies are used to find 

good CEs. The remaining two strategies are subcategories of heuristic search. One involves 

approximating the black-box model with a decision tree and using its structure to find CEs. The 

other strategy, called instance-based CEs, leverages the most similar observations from the dataset 

to the observation of interest (Guidotti, 2022). Instance-based CE approaches have desirable 

properties, particularly when compared to other strategies, such as optimization strategies. They 

provide CEs based on actual instances in the dataset, ensuring coherence and plausibility. 

Additionally, instance-based approaches are model-agnostic, meaning they can be applied 

regardless of the underlying model architecture (Guidotti, 2022). Therefore, this paper will focus on 

instance-based CEs. 

Despite their advantages, the existing instance-based approaches do not incorporate actionability. 

Given that CEs should ideally be actionable, this paper aims to develop an instance-based CE 

algorithm capable of providing actionable CEs. Therefore, the research question addressed in this 

paper is as follows: 

How can actionable insights be added to case-based counterfactual explanations? 

The research question is answered by presenting the Instance-Based Actionable Counterfactual 

Explanations (IBACE) algorithm. By leveraging a nearest unlike neighbors approach and integrating 

concepts from several existing algorithms, IBACE aims to generate CEs that are valid, plausible, 

sparse, and actionable. The results show that IBACE provides high coverage and computational 

efficiency, making it practical for real-world applications.  

This paper is structured as follows. Chapter 2 presents a literature review, in which first the 

definition of CEs is provided. Additionally, desirable properties of CEs are discussed and different 

CE approaches are highlighted. Also, different methodologies to incorporate actionability are 
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discussed briefly. Chapter 3 introduces and discusses the data used in this study. Chapter 4 outlines 

the methodology, including the theoretical foundation for the algorithm, the proposed algorithm 

itself, and the method for testing and benchmarking the algorithm. In Chapter 5, the test results on 

the performance of IBACE are presented. Chapter 6 summarizes and discusses the results. Chapter 

7 provides suggestions for improvements on IBACE, highlights limitations of this research as well as 

proposing avenues for future research. Chapter 8 concludes this paper. 

2. Literature Review 

2.1 An Introduction to Counterfactual Reasoning in Machine 

Learning 

The concept of CEs in ML was formally introduced by Wachter, Mittelstadt, and Russell in 2017. In 

their paper titled “Counterfactual Explanations without Opening the Black Box: Automated 

Decisions and the GDPR”, the use of CEs as a method to provide explanations for automated 

decisions is discussed. In contrast to existing methods that aim to reveal the internal logic of black-

box algorithms, CEs focus on identifying which external factors need to change to achieve a desired 

outcome, rather than explaining the internal decision-making process. The authors proposed CEs 

with three main goals in mind. The first objective is for a data subject (i.e. an individual impacted by 

the decision of the black-box model) to understand why a particular decision is made. The second 

goal is to be able to contest the decision that is made, as CEs can shed light on the fairness of the 

decision. Thirdly, it enables the data subject to make adjustments, swaying the black-box prediction 

in its favor (Wachter et al., 2017). The concept of CEs in ML is also grounded in philosophical and 

psychological literature. For example, the philosopher Lewis (1973) published an article on the 

concept of counterfactuals, in which he outlines the core principles of counterfactuals. He 

formulates the question that is answered by a counterfactual as follows: “If it were the case that …, 

then it would be the case that …”. In the context of ML, the central question that is answered by a CE 

is: “What changes to the input variables would have resulted in a different prediction by the black-

box model?”. Note that the answers to these questions do not constitute the entire and only truth. A 

change in the decision by the black-box algorithm could also possibly have occurred by making 

different changes to the input variables. The psychologist Byrne (2019) established that CEs can 

help make decisions made by black-box models intelligible to both model developers and data 
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subjects, as it can elicit causal reasoning in humans. Counterfactuals are also discussed by 

Kahneman and Miller (1986), who state that humans naturally construct counterfactual 

alternatives to reality. In their 1986 paper “Norm Theory: Comparing Reality to Its Alternatives”, 

the authors give the example of an individual who is involved in an accident. This will lead to an 

analysis of the series of events that resulted in it, and this analysis will in turn involve creating 

counterfactual alternatives. For these reasons, the concept of CEs in ML has proven to be an 

interesting avenue for academic research. Most research in this area has focused on classification 

problems, as this problem is easier to conceptualize and implement compared to regression 

problems, due to the nature of counterfactual reasoning (Verma et al., 2020). Therefore, this paper 

will solely deal with a binary classification problem. 

2.2 Desirable Counterfactual Explanation Properties 

In recent years, many CE approaches for ML have been proposed. Both the review paper of Verma 

et al. (2020), and the review paper of Guidotti (2022) highlight desirable properties of CEs that are 

widely used and accepted within the CE literature.  

The first, and arguably the most important property of a CE, is validity. A CE is valid if changes to 

the input features actually change the predicted class. If the CE is not valid, it does not contain the 

necessary feature value changes to change the predicted class. 

The second property is sparsity. Sparsity refers to the number of features that are changed in the 

original observation to obtain a CE. Ideally, a CE should change a limited number of feature values 

in order to be the most effective. This idea stems from social sciences and psychological research, in 

which it is argued that it is easier for humans to understand shorter explanations, compared to 

longer explanations (e.g. Miller, 2019).  

Thirdly, a CE should be in close proximity to the original observation. This means that, given a 

distance function, changes made to a particular feature value should be as small as possible. This 

property might consist of a trade-off between sparsity. Changing less feature values (i.e. generating 

a sparse solution) might require larger differences within the features that are changed.  

The fourth property is plausibility. A CE is considered plausible if it is coherent with the reference 

population. This means that feature values of the CE should not be outliers compared to the rest of 

the data. If the CE adheres to this property, it ensures its trustworthiness by making the CE more 
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realistic. This property is also referred to as closeness to the data manifold. Again, if the CE lies far 

from the data manifold, it is hard to trust the CE. 

The fifth property that a CE should ideally adhere to is actionability. In the existing literature, 

actionability refers to feature values that are either mutable or not. If a feature value is mutable, it is 

considered actionable. If the CE suggests a feature value change, even though the feature value is 

not mutable in practice, the CE is considered unactionable. For example, the country of origin of an 

individual is considered immutable, and therefore unactionable.  

The sixth desirable CE property is causality. Causality refers to the fact that features in a dataset are 

rarely independent. Usually, changing one feature value also means that another feature value 

should be changed. For example, if a CE suggests that an individual should have one more year of 

working experience, the CE should also take into account the effect on the individual's age, which 

should also increase by a year. Note that when relationships between variables exist, they do not 

have to be causal. Therefore, the terminology can be confusing, hence in this paper a distinction is 

made between causal relationships and variable relationships in general.  

Even though the last two properties are separated in the existing literature, in this paper, 

actionability will be referred to as the combination of mutability and causality, as a CE that does not 

adhere to both mutability and causality cannot be considered actionable in reality. 

2.3 Desirable Counterfactual Explainer Properties 

Next to desirable properties for a CE, the counterfactual explainer should ideally also adhere to 

multiple properties. First, the explainer should be efficient, in order to be useful in real life 

applications. Secondly, the explainer should be stable. This means that if there are similar 

observations of interest, for which a CE should be constructed, the CEs for both observations should 

also be similar. This property is also referred to as robustness. Thirdly, the explainer should ideally 

be model-agnostic. If the explainer is model-agnostic, it means that it will work with different types 

of ML models, regardless of their underlying architecture. If an explainer needs access to the 

internals of a ML model, it is considered to be a model-specific approach. This can for example be 

the case when the explainer needs a differentiable model (e.g. neural networks) when it is based on 

gradients. Lastly, the explainer should ideally be able to return multiple and diverse CEs. This could 

potentially help the data subject, as they might have a preference for different types of 

explanations. 
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2.4 Instance-Based Counterfactual Explanations Algorithms 

There exist multiple instance-based CE algorithms, that each focus on different desirable CE 

properties. The first algorithm that will be discussed is the Nearest-Neighbor Counterfactual 

Explainer (NNCE) algorithm. This algorithm is based on nearest-neighbor classifiers, and works as 

follows. First, the observation of interest (i.e. the observation for which a CE should be constructed, 

or x) is determined. Then, all observations in the dataset that have the opposite predicted class are 

selected. The distances between the observation of interest and all other selected observations, 

from the dataset from which the original observation is taken, are calculated. Lastly, the closest 

observation to the original observation for which holds that the predicted class is not equal to the 

predicted class of the observation of interest is returned as a CE (or x’). This observation can also be 

referred to as the nearest unlike neighbor (NUN). This algorithm takes into account the validity and 

proximity properties. Wexler et al. (2020) present the What-If tool, which is a visualizer for CEs for 

small datasets. The counterfactual selection is performed using the NNCE algorithm and uses the L1 

(also known as the Manhattan distance) or L2 (also known as the Euclidean distance) distance 

functions. The NNCE algorithm has several shortcomings. First, it can be computationally expensive 

to compute all distances between the observation of interest and all potential CEs. This can be 

mitigated by using only a subsample of the dataset, but this increases the probability of the 

returned CE to be less similar to the observation of interest (Guidotti, 2022). Additionally, the 

algorithm can only handle continuous features. However, this is a matter of the distance function 

used, and can be changed based on the needs of the dataset. The NNCE algorithm is the simplest 

algorithm in the instance-based CEs category, and other instance-based algorithms are based on 

this algorithm.  

Another instance-based CE algorithm is proposed by Keane and Smyth (2020), and is called Case-

Based Counterfactual Explainer (CBCE). The first thing to note about this proposed algorithm is that 

the authors are the only ones who put a hard cap on sparsity. In order for a CE to be good, the 

authors allow at most two feature value changes in the CE. They show that this hard cap limits the 

amount of observations for which there is a CE present in the dataset. Therefore, they propose the 

following algorithm. The first step is to find what the authors call “explanation cases” (XCs). These 

are pairs of a case (i.e. an observation) and its corresponding good counterfactual (i.e. an 

observation with at most 2 feature value changes and a different class prediction). Then, the XC 

whose query is most similar to the observation of interest is identified. Since the query of XC is 

most similar to the observation of interest, and it has a good CE, the intuition is that the good CE of 
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XC is a suitable basis for a CE for the observation of interest. The difference-features in XC are solely 

responsible for the class change and should play an important role in the construction of the CE. 

The second step is to copy the values of the observation of interest of the match-features in XC into 

the CE. Similarly, for each of the difference-features in XC, the values from the good counterfactual 

of XC are copied into the CE. This makes the resulting CE a combination of feature values from the 

observation of interest and the good counterfactual in XC. In this case, the CE differs from the 

observation of interest in the same way that the observations in XC differ. When the potential CE is 

constructed, it still needs to be checked for validity, by making a prediction on this observation with 

the black-box model. If the CE is valid, it is returned as a good CE. If not, the algorithm moves to the 

next nearest neighbor of the explanation cases, until a valid and good CE is found. Additionally, the 

authors argue that CEs need to be explicitly grounded in known cases (i.e. the training data) to 

ensure plausibility. This algorithm takes into consideration the CE properties of validity, sparsity, 

and plausibility. Proximity is taken into account by using the nearest neighbors for construction. 

The idea of moving to a next close neighbor in case the generated potential CE is not valid will be 

implemented in the proposed algorithm in this paper, and will be discussed in more detail in 

Chapter 4. 

The Feasible and Actionable Counterfactual Explanations (FACE) algorithm is proposed by Poyiadzi 

et al. (2020), which emphasizes the creation of counterfactual examples that are both feasible and 

actionable. The algorithm identifies “feasible paths” by calculating shortest path distances using 

density-weighted metrics, ensuring that the counterfactuals are consistent with the input data 

distribution. The FACE algorithm constructs a graph over the data points using methods such as 

KDE, k-NN, or ϵ-graph. Users define the properties of the target counterfactual, including prediction 

confidence and density thresholds. The algorithm adapts the graph based on these constraints and 

employs Dijkstra’s algorithm to find the shortest path to target counterfactuals that meet the 

defined criteria. This approach allows for the generation of counterfactuals that are coherent with 

the data distribution and aligned with user-defined feasibility and actionability constraints. 

Actionability in this case refers to mutability, and it is possible to fix immutable features. Notably, in 

contrast to the other instance-based algorithms, which only work on tabular data, this approach is 

data-agnostic. 

Lastly, the algorithm for Nearest Instance Counterfactual Explanations (NICE) is proposed by 

Brughmans et al. (2023). First, this algorithm can return the same CEs as NNCE, as it uses the NUN 

for the construction of CEs. However, this will be the worst case scenario for the NICE algorithm. 
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The authors also propose three different versions, or reward functions that can be optimized, in 

order to obtain better CEs. The authors include reward functions for sparsity, proximity, and 

plausibility. The underlying method used for optimizing each reward function is the same, and will 

work as follows. First, the NUN to the observation of interest is found in the dataset. Then, hybrid 

observations between x and the NUN are generated by iteratively permuting feature values one 

after the other. In the first iteration, only one feature value can be changed compared to x. On each 

of the generated hybrid instances, one of the reward functions is calculated. The hybrid instance 

that obtains the maximum reward is then used to again generate hybrid instances, but this time 

between the newly generated hybrid and the NUN. This process is repeated until a valid hybrid is 

found, and returned as a CE. When no valid hybrid is found, the NUN is returned, which is by 

definition valid, and corresponds to the solution provided by the NNCE algorithm. Because of the 

reward functions, this algorithm can optimize either for sparsity, proximity, or plausibility. The 

authors further demonstrate that there is a tradeoff between sparsity or proximity on the one hand, 

and plausibility on the other hand. The algorithm proposed in this paper will be based on the idea 

of permuting feature values as used by the NICE algorithm, hence this algorithm will be explained in 

more detail later. 

2.5 Considering Feature Interactions 

In the current literature, multiple approaches to deal with variable relationships are proposed, even 

though they are somewhat limited (Guidotti, 2022). Kanamori et al. (2021) construct, what they 

call, an interaction matrix. This matrix consists of estimated linear causal models, one for each 

causal relationship. Consider a causal relationship between feature i and j, where a change in i has a 

causal effect on j. If in the optimization technique used by the authors a change occurs to feature i, a 

change is made to feature j in accordance with the causal relationship estimated by the linear causal 

model. 

Karimi et al. (2021b) use a similar approach, where the authors assume the existence of a known 

structural causal model, that captures all inter-variable causal dependencies. This model is then 

used in their optimization procedure to find CEs. Note that both these methods only work with 

variable relationships that are 1) truly causal and 2) occur in a single direction. 

Lash et al. (2017b) take a slightly different approach to incorporating variable relationships. The 

authors divide all features used in the binary classification model into three categories; 
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unchangeable (U), directly changeable (D) and indirectly changeable (I). When optimizing the 

feature values, only the value for xD can be determined and the values of xI will depend on xD and xU . 

Therefore, the authors model the dependency of xI on xD and xU as xI = H(xD, xU) where the mapping 

H : ℝ|D|+|U| → ℝ |I| is assumed to be differentiable. Even though this approach is slightly different 

from the previous two, it still captures causal relationships occurring in a single direction. 

A completely different approach is proposed by Downs et al. (2020). Their algorithm 

Counterfactual Recourse Using Disentangled Subspaces (CRUDS) first generates a set of potential 

CEs, by using a Conditional Subspace Variational Autoencoder. Then, based on user given 

constraints and known variable relationships, the set is filtered based on these constraints. The 

example given by the authors for a known causal constraint is that more years of education 

necessitates an increase in age. The example given based on individual end-user preferences is that 

getting more education is impossible for one individual but not another. These examples are very 

similar to the variable relationships that will be discussed later in this paper. Additionally, the 

starting point of having a set of potential CEs corresponds with the proposed algorithm in this 

paper. Lastly, this approach is very flexible and straightforward to implement. For these reasons, 

this approach of handling variable relationships will be implemented in the proposed algorithm. 

Note that the CRUDS algorithm is not model-agnostic. Instead, it only works on differentiable 

models, such as neural networks, but not on ensemble models like random forests. 

Immutable features are taken into consideration by many proposed algorithms, by fixing these 

feature values while generating CEs, regardless of the approach used (Guidotti, 2022). This method 

will also be used in the proposed algorithm in this paper. 

3. Data 

I opted for a widely used dataset within the subject of CEs, which is the South German Credit 

dataset (Verma et al., 2020). The dataset is retrieved from the “rchallange” package in R 

(Todeschini & Genuer, 2022), but comes originally from the UCI Machine Learning Repository (Dua 

& Graff, 2019). This dataset is a transformed version of the Statlog German Credit data, according to 

the suggestions from Grömping (2019). The dataset was originally donated by the German 

professor Hans Hofmann via the European Statlog project in 2019, but the data itself is from 1973 

to 1975, Germany.  
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The data is about loan applicants from a large regional bank in southern Germany. Each of the 

applicants in the dataset has a corresponding credit risk (“good” or “bad”, also referred to as good 

and bad credits), along with other features describing the applicant. Therefore, a binary 

classification model could be used for predicting whether or not an individual has good or bad 

credit risk. Based on this prediction, the bank could decide whether or not to issue the loan to the 

individual.  

The dataset is a stratified sample of 1000 credits, where the bad credits (i.e. applicants with a bad 

credit risk) are oversampled heavily, with 700 good credits and 300 bad credits. In reality, only 

about 5% of the observations consist of bad credits. A good credit risk means that the customer 

perfectly complied with the conditions in the contract, while customers with bad credit risk did not 

(Grömping, 2019). The credit risk is considered the dependent variable in this paper. Next to the 

dependent variable, there are 20 independent features included in the dataset. Three of these 

features are quantitative and 17 are categorical. The variable descriptions are given in Table 1 (UCI 

Machine Learning Repository). 

Table 1 

Variable descriptions 

Variable name Variable description 

Credit Risk  
(Dependent variable) 

Has the credit contract been complied with (good) or not (bad)? 

Duration  
(quantitative) 

Credit duration in months 

Amount  
(quantitative) 

Credit amount in DM 

Age  
(quantitative) 

Age in years 

Status  
(categorical) 

Status of the debtor’s checking account with the bank 

Credit History 
(categorical) 

History of compliance with previous or concurrent credit contracts 

Purpose  
(categorical) 

Purpose for which the credit is needed 

Savings  
(categorical) 

Debtor’s savings 
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Employment Duration 
(categorical/ordinal) 

Duration of debtor’s employment with current employer 

Installment Rate 
(categorical/ordinal) 

Credit installments as a percentage of debtor’s disposable income 

Personal Status Sex 
(categorical) 

Combined information on sex and marital status 

Other Debtors 
(categorical) 

Is there another debtor or a guarantor for the credit? 

Present Residence 
(categorical/ordinal) 

Length of time (in years) the debtor lives in the present residence 

Property  
(categorical) 

The debtor’s most valuable property 

Other Installment 
Plans (categorical) 

Installment plans from providers other than the credit-giving bank 

Housing 
(categorical) 

Type of housing the debtor lives in 

Number of Credits 
(categorical/ordinal) 

Number of credits including the current one the debtor has (or had) at 
this bank 

Job 
(categorical/ordinal) 

Quality of debtor’s job 

People Liable 
(categorical) 

Number of persons who financially depend on the debtor (i.e. are 
entitled to maintenance) 

Telephone  
(categorical) 

Is there a telephone landline registered on the debtor’s name? 

Foreign Worker 
(categorical) 

Is the debtor a foreign worker? 

Table 2 illustrates the summary statistics for the quantitative features. Specifically, the credit 

duration ranges from a minimum of 4 months to a maximum of 72 months, with a mean duration of 

20.9 months. The credit amount spans from a minimum of 250 DM to a maximum of 18,424 DM, 

with an average amount of 3,271 DM. The age of credit applicants varies from a minimum of 19 

years to a maximum of 75 years, with a mean age of 35.5 years. All three variables exhibit right 

skewness. 
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Table 2 

Summary statistics of quantitative features 

Variable name Min. 1st Quantile Median Mean 3rd Quantile Max. St. dev 

Duration  4 12 18 20.9 24 72 12.1 

Amount 250 1366 2320 3271 3972 18424 2822.8 

Age  19 27 33 35.5 42 75 11.4 

In Table 3, the corresponding categories for each categorical feature, along with summary statistics, 

are presented. The data exhibits a notable imbalance, with the credit risk variable showing 700 

good credits and 300 bad credits, despite this variable being heavily oversampled, as previously 

noted. Most other features also display a lack of balance among their categories. Analyzing the 

proportion of good and bad credits within each variable's categories shows a relationship between 

credit history and credit risk. For instance, 62.5% of observations with the credit history category 

"delay in paying off in the past" are classified as bad credits. Similarly, 57.1% of observations with 

the credit history category "critical account/other credits elsewhere" are bad credits, though these 

categories are relatively infrequent. 

Table 3 

Summary statistics of categorical features  

Variable name Categories Count Good Bad 

Credit Risk  good 
bad 

700 
300 

100 
0 

0 
100 

Status no checking account 
… < 0 DM 

0 <= … < 200 DM 
... >= 200 DM / salary for at least 1 year 

274 
269 
63 
394 

50.7 
61.0 
77.8 
88.3 

49.3 
39.0 
22.2 
11.7 

Credit History  delay in paying off in the past 
critical account/other credits elsewhere 

no credits taken/all credits paid back duly 
existing credits paid back duly till now 

all credits at this bank paid back duly 

40 
49 
530 
88 
293 

37.5 
42.9 
68.1 
69.7 
82.9 

62.5 
57.1 
31.9 
31.8 
17.1 

Purpose   others 
car (new) 
car (used) 

furniture/equipment 
radio/television 

domestic appliances 

234 
103 
181 
280 
12 
22 

62.0 
83.5 
68.0 
77.9 
66.7 
63.6 

38.0 
16.5 
32.0 
22.1 
33.3 
36.4 
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repairs 
vacation 

retraining 
business 

50 
9 
97 
12 

56.0 
88.9 
64.9 
58.3 

44.0 
11.1 
35.1 
41.7 

Savings  unknown/no savings account 
 ... < 100 DM 

100 <= ... < 500 DM 
500 <= ... < 1000 DM 

... >= 1000 DM 

603 
103 
63 
48 
183 

64.0 
67.0 
82.5 
87.5 
82.5 

36.0 
33.0 
17.5 
12.5 
17.5 

Employment Duration  unemployed 
< 1 yr 

1 <= ... < 4 yrs 
4 <= ... < 7 yrs 

>= 7 yrs 

62 
172 
339 
174 
253 

62.9 
59.3 
69.3 
77.6 
74.7 

37.1 
40.7 
30.7 
22.4 
25.3 

Installment Rate  >= 35 
25 <= ... < 35 
20 <= ... < 25 

< 20 

136 
231 
157 
476 

75.0 
73.2 
71.3 
66.6 

25.0 
26.8 
28.7 
33.4 

Personal Status Sex  male : divorced/separated 
 female : non-single or male : single 

male : married/widowed 
female : single 

50 
310 
548 
92 

60.0 
64.8 
73.4 
72.8 

40.0 
35.2 
26.6 
27.2 

Other Debtors none 
co-applicant 

guarantor 

907 
41 
52 

70.0 
56.1 
80.8 

30.0 
43.9 
19.2 

Present Residence  < 1 yr 
 1 <= ... < 4 yrs 
4 <= ... < 7 yrs 

>= 7 yrs 

130 
308 
149 
413 

72.3 
68.5 
71.1 
70.0 

27.7 
31.5 
28.9 
30.0 

Property unknown / no property 
 car or other 

building soc. savings agr./life insurance 
real estate 

282 
232 
332 
154 

78.7 
69.4 
69.3 
56.5 

21.3 
30.6 
30.7 
43.5 

Other Installment Plans  bank 
stores 

none 

139 
47 
814 

59.0 
59.6 
72.5 

41.0 
40.4 
27.5 

Housing  for free 
 rent 
own 

179 
714 
107 

60.9 
73.9 
58.9 

39.1 
26.1 
41.1 

Number of Credits 1 
2-3 

633 
333 

68.4 
72.4 

31.6 
27.6 
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4-5 
>= 6 

28 
6 

78.6 
66.7 

21.4 
33.3 

Job unemployed/unskilled - non-resident 
 unskilled - resident 

skilled employee/official 
manager/self-empl./highly qualified 

employee 

22 
200 
630 
148 

68.2 
72.0 
70.5 
65.5 

31.8 
28.0 
29.5 
34.5 

People Liable 3 or more 
 0 to 2 

155 
845 

70.3 
69.9 

29.7 
30.1 

 
Telephone 

 
no 

yes (under customer name) 

 
596 
404 

 
68.6 
72.0 

 
31.4 
28.0 

Foreign Worker yes 
no 

37 
963 

89.2 
69.3 

10.8 
30.7 

Note. The columns “good” and “bad” describe the percentage of observations with a good and bad credit risk 

for each observed category. 

The relevance of this dataset to the present research is twofold. Firstly, it comprises real data with 

an intuitive narrative, where the predicted outcome has significant implications for individuals, 

thereby making the concept of actionability both applicable and comprehensible. Secondly, the 

dataset features variables that 1) may be immutable for an individual and 2) exhibit 

interrelationships. For instance, an individual's Personal Status and Sex can be considered 

immutable, as changing between these categories is not easily actionable. One notable relationship 

in the data exists between employment duration and age; if a CE suggests increasing the employment 

duration (e.g., from 1 <= ... < 4 years to 4 <= ... < 7 years), it must also consider the corresponding 

impact on age. Another significant relationship is between present residence and age; thus, if a CE 

recommends an increase in the present residence (e.g., from 1 <= ... < 4 years to 4 <= ... < 7 years), it 

should also account for the effect on age. 

4. Methodology 

This section outlines the methodology applied in this paper. In the first subsection, the 

development of the algorithm is explained. This includes an overview of the Nearest Instance 

Counterfactual Explanations (NICE) algorithm by Brughmans, Leyman, and Martens (2023), which 

is discussed in detail. This will lay the theoretical foundation for the proposed algorithm, as it will 

build on the NICE algorithm. This is followed by the limitations that NICE faces in handling certain 
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scenarios, which the proposed algorithm aims to address and overcome. Then, the proposed 

algorithm is introduced and laid out in detail, taking into account the approaches from other 

algorithms as highlighted in Chapter 3. The pseudocode of the proposed algorithm is included in 

this section. In the next subsection, the binary classification model that is used for the analysis is 

briefly discussed. The last subsection describes the method of implementing, testing and 

benchmarking the algorithm. 

4.1 Algorithm Development 

4.1.1 Nearest Instance Counterfactual Explanations 

As mentioned earlier, Nearest Instance Counterfactual Explanations is an algorithm proposed by 

Brughmans et al. (2023), and makes use of real instances in a dataset to construct the CEs. More 

specifically, it creates hybrid instances between the observation of interest (x0) and the NUN (xn), 

for which holds: �̂�0 ≠ �̂�n and 𝑦n = �̂�n. This means that the predicted class between the instance of 

interest and the nearest neighbor are not the same, making it the nearest unlike neighbor. 

Additionally, the algorithm only considers the nearest unlike neighbor that is classified correctly. 

Once the NUN is selected, hybrid instances are created by replacing one non-overlapping feature 

(between x0 and xn), in x0 with the corresponding value from xn. This is done for every non-

overlapping feature. When there are 3 non-overlapping features, 3 hybrid instances are created. For 

these three hybrid instances, one of their reward functions is calculated. The authors proposed 

reward functions based on sparsity, proximity, and plausibility. Sparsity relates to the number of 

features that are changed between the observation of interest and the CE. This is the same as the L0 

distance. Proximity refers to the distance between the observation of interest and the CE (L1 

and/or L2 distance). Plausibility relates to the closeness of the CE to the data manifold. The hybrid 

instance that achieves the highest reward is stored as the best hybrid instance, and is tested for 

validity. If the hybrid instance is valid, it is returned as the CE (xc), and the algorithm terminates. If 

the hybrid instance is not valid, the stored best hybrid is used again for replacing non-overlapping 

features in the same way as described above. Again, the reward function is calculated, and the best 

hybrid is updated. This process repeats until a valid CE is found and returned. A simplified example 

of this procedure is shown in Table 4, based on the described dataset. The non-overlapping features 

are highlighted in bold. Also, the best hybrid instance per iteration is highlighted by denoting the 

reward in bold. In this example, x2 of the second iteration is returned as the CE, as it has the desired 

predicted class (as well as the highest reward). By definition, the model's last possible hybrid is xn, 
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which is also a valid CE. xn can also be returned as a CE immediately, without taking a reward 

function into account. The algorithm works on tabular data and can handle any classification model, 

and requires access to the classification model, for which only the inputs and outputs of the model 

are needed, making the algorithm model-agnostic. 

Table 4 

Simplified example of the NICE algorithm 

Instance Age Employment 
Duration 

Savings Other 
Debtors 

Predicted 
Class 

Reward 
Function 

x0 35 <1 year 100 none Bad NA 

xn 36 <1 year 120 guarantor Good NA 

ITERATION 1 

x1 36 <1 year 100 none Bad 0.10 

x2 35 <1 year 120 none Bad 0.16 

x3 35 <1 year 100 guarantor Bad 0.13 

ITERATION 2 

x1 36 <1 year 120 none Bad 0.14 

x2 35 <1 year 120 guarantor Good 0.20 

Note. Before the first iteration, the observation of interest and the NUN are selected. In the first iteration, all 

possible hybrids between x0 and xn are generated by only permuting a single feature value. In this example, 

there are three possible hybrids (x1, x2, x3). The reward function of choice is than calculated and the class 

predictions are made. In this example, all hybrids are invalid (i.e. the predicted class is “bad”). Therefore, a 

second iteration is initialized, using the hybrid instance that achieved the highest reward (x2). All possible 

hybrids between x2 and xn are generated (x1, x2). Again, the reward function is calculated and the class 

prediction is made. In this case, the hybrid x2 is predicted as “good”, and is therefore returned as the CE. 

Now, consider another, but similar, simplified example. Imagine that an individual is applying for a 

loan at a bank, but does not receive it, due to the prediction of the black-box model used by the 

bank. The individual wants to know why it does not receive the loan, but more importantly, what 

they can do about it (i.e. what features can be changed to obtain a change in the predicted class). 

The bank can use the NICE algorithm to find a CE for this case (x0). Assume the individual is 35 

years old, has less than a year of work experience at the current employer, and has $100 of savings. 

The nearest unlike neighbor in the dataset (xn) is also 35 years old, has less than a year of work 
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experience at the current employer, but has $120 of savings. Note that the only feature that differs 

is the savings amount. In this case, xn has the opposite predicted class of x0 by definition, and is 

therefore returned as a CE (xc) by the NICE algorithm. This means that; if the individual’s savings 

would have been $120 (instead of $100), they would have received the loan. In this case, the 

individual could work towards increasing their savings by $20. 

4.1.2 Identifying Limitations of NICE 

As discussed in the previous section, it is clear that the NICE algorithm only considers the NUN. 

Remember the last scenario presented in the previous section. Again, assume the same individual 

(x0), but now the individual of the nearest unlike neighbor (xn) is 34 years old, instead of 35 years 

old. A problem with the NICE algorithm arises when only hybrid instances between x0 and xn with 

age of 34 change the predicted class. If this is the case, the provided CEs are not actionable, as an 

individual cannot reduce their age. A different problem can arise when the hybrid instances do not 

adhere to relationships between variables. For example, if the CE suggests to increase age by 1 year 

(e.g. from 35 to 36 years), and at the same time suggests to increase work experience by 2 years, it 

creates an impossible scenario. Again, this means that the CEs are not actionable. The proposed 

algorithm aims to address and overcome these limitations. 

4.1.3 Instance-Based Actionable Counterfactual Explanations 

The goal of the proposed algorithm is to generate Instance-Based Actionable Counterfactual 

Explanations (IBACE). Henceforth, it will be referred to as the IBACE algorithm. CEs should be 

actionable for individuals that are adversely impacted by a prediction outcome of a black-box 

model (e.g. the individual that does not receive a loan from the bank). The limitations outlined in 

the previous section are addressed by making the following changes to the NICE algorithm: 

1. Impose a ruleset that xc should adhere to in relation to x0, making the CEs actionable (e.g. xc 

age >= x0 age). These rules also capture the interdependencies between variables. This 

change is based on the CRUDS algorithm, as discussed in Chapter 2. 

2. Do not restrict the search space to only the nearest unlike neighbor. As outlined in the 

previous section, if no valid actionable hybrids can be constructed, the provided CEs will not 

be useful. If there are no actionable hybrids possible between x0 and xn that adhere to the 

ruleset, the algorithm should move to the second NUN and try again. This procedure can be 

followed until actionable CEs are found. This change is based on the CBCE algorithm, as 

discussed in Chapter 2. 
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3. Do not use the NICE reward functions, as these are not able to capture variable actionability 

and relationships effectively. Consider the following simple example: x0 age > xn age, and 

changing the age feature value results in the highest reward. This results in all potential CEs 

generated by NICE being non-actionable, as xc age will always be smaller than x0 age. 

Instead, IBACE generates all possible hybrids between x0 and xn, but restricts the number of 

features that at most are changed in x0. Not restricting the number of features changed 

results quickly in an unmanageably large number of potential CEs for larger datasets with 

many features, which will be 2n - 1 potential CEs, where n is the number of differing features 

between x0 and xn. On the other hand, restricting the number of features changed to k 

features will result in a number of potential CEs of the following sum of the binomial 

coefficient: ∑ (𝑛
𝑖
)𝑘

𝑖=1 , which in this case is ∑ (
𝑛!

𝑖!(𝑛−𝑖)!

𝑘
𝑖=1 ). Note that when n = k, this 

function reduces to 2n - 1. Not only does this improve computation time for datasets with 

many features (compared to a 2n - 1 solution), it is also beneficial for the sparsity of the CE, 

of which the importance is previously highlighted. Especially for datasets with many 

numeric features, the chance of having a large n is relatively big even if the instances are 

relatively close, compared to datasets with mostly categorical features. Additionally, if there 

are immutable features, n equals the number of differing features minus the number of 

immutable features. This further reduces the number of hybrids and increases 

computational efficiency. 

The imposed static ruleset based on the dataset used for testing is the following: 

1. xc personal status sex = x0 personal status sex 

2. xc foreign worker = x0 foreign worker 

3. xc purpose = x0 purpose 

4. xc property = x0 property 

5. xc credit history = x0 credit history 

6. xc people liable = x0 people liable 

7. xc housing = x0 housing  

8. xc job >= x0 job 

9. xc savings >= x0 savings 

10. xc employment duration >= x0 employment duration 

11. xc present residence >= x0 present residence 

12. xc age >= x0 age 
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Rules 1-7 ensure that immutable features are not changed from x0 to xc. Rule 8 ensures that an 

individual does not have to reduce the quality of their job. Rule 9 ensures that an individual does 

not have to reduce their savings. Rules 10-12 ensure that years cannot be reversed (i.e. no time 

traveling to the past).  

The rules that describe all variable relationships in the dataset are presented in Table 5 and Table 

6, where the rules for all possible scenarios in a hybrid instance for both present residence (Table 5) 

and employment duration (Table 6) are presented. Two details are key to understanding these rules. 

Firstly, as present residence and employment duration are categorical variables in the dataset, x0 

present residence and x0 employment duration are assumed to be the average of the category (e.g., if 

x0 present residence is 1 <= … < 4 yrs, x0 present residence is assumed to be 2.5 years). Secondly, the 

rules assume that the individual wants to take action as soon as possible. For example, if the 

individual is unemployed, and a potential CE also suggests that the individual can stay unemployed, 

age could theoretically increase all the way to the highest age in the dataset. However, this is 

assumed to be undesirable. Therefore, the rule in this scenario is xc age = x0 age.  

The last rule regards the number of features that should at most be changed in the CE (k). In their 

review paper, Verma et al. (2020) conclude that there is no consensus on a hard cap on the number 

of features that are changed in the current literature, but mention that shorter explanations are 

more comprehensible to humans. This means that only a small number of features should be 

changed in the CEs in order to keep them actionable. Keane and Smyth (2020), however, cap the 

number of changed features to two in their CBCE algorithm. On the other hand, restricting k too 

much can result in long computation times, as it becomes harder to find CEs. Additionally, this 

might also reduce the coverage. To balance this trade-off, a sparse solution in this paper is 

considered to have at most three features changed in the CE (k = 3). Note that the ideal value of k 

depends on the dataset, computational power, and the individuals’ needs and capabilities, and can 

be experimented with. Keep in mind that the larger the dataset is, the more impact increasing k has 

on computation times.  

Importantly, the provided CEs should adhere to all applicable rules. Note that these rules are highly 

customizable, and can be changed depending on the dataset, computational power, and the 

individuals’ needs and capabilities. The fact that customized rules can be incorporated into the 

algorithm is one of its main strengths. This means that xc can be made actionable, by taking into 
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account immutable variables, as well as relationships between variables, and by returning sparse 

solutions.  

Table 5  

Rules for all scenarios of present residence 

Scenario Rule 

xc present residence = < 1 yr &  
x0 present residence = < 1 yr 

xc age = x0 age 

xc present residence = 1 <= ... < 4 yrs &  
x0 present residence = < 1 yr 

xc age >= x0 age & 
xc age <= x0 age + 3 

xc present residence = 4 <= ... < 7 yrs &  
x0 present residence = < 1 yr 

xc age >= x0 age + 4 & 
xc age <= x0 age + 6 

xc present residence = >= 7 yrs &  
x0 present residence = < 1 yr 

xc age >= x0 age + 7 

xc present residence = 1 <= ... < 4 yrs &  
x0 present residence = 1 <= ... < 4 yrs 

xc age >= x0 age & 
xc age <= x0 age + 1 

xc present residence = 4 <= ... < 7 yrs &  
x0 present residence= 1 <= ... < 4 yrs 

xc age >= x0 age + 2 & 
xc age <= x0 age + 4 

xc present residence = >= 7 yrs &  
x0 present residence = 1 <= ... < 4 yrs 

xc age >= x0 age + 5 

xc present residence = 4 <= ... < 7 yrs &  
x0 present residence = 4 <= ... < 7 yrs 

xc age >= x0 age & 
xc age <= x0 age + 1 

xc present residence= >= 7 yrs &  
x0 present residence = 4 <= ... < 7 yrs 

xc age >= x0 age + 2 

xc present residence = >= 7 yrs &  
x0 present residence = >= 7 yrs 

xc age >= x0 age 

Note. The scenarios show what the present residence categories are for xc and x0. For each scenario, a 

corresponding rule for the effect on age is shown. A provided CE by IBACE should adhere to these rules. 
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Table 6 

Rules for all scenarios of employment duration 

Scenario Rule 

xc employment duration = unemployed &  
x0 employment duration = unemployed 

xc age = x0 age 

xc employment duration = < 1 yr &  
x0 employment duration = unemployed 

xc age = x0 age 

xc employment duration = 1 <= ... < 4 yrs &  
x0 employment duration = unemployed 

xc age >= x0 age + 1 & 
xc age < x0 age + 4 

xc employment duration = 4 <= ... < 7 yrs &  
x0 employment duration = unemployed 

xc age >= x0 age + 4 & 
xc age <= x0 age + 6 

xc employment duration = >= 7 yrs &  
x0 employment duration = unemployed 

xc age >= x0 age + 7 

xc employment duration = < 1 yr &  
x0 employment duration = < 1 yr 

xc age = x0 age 

xc employment duration = 1 <= ... < 4 yrs &  
x0 employment duration = < 1 yr 

xc age >= x0 age & 
xc age <= x0 age + 3 

xc employment duration = 4 <= ... < 7 yrs &  
x0 employment duration = < 1 yr 

xc age >= x0 age + 4 & 
xc age <= x0 age + 6 

xc employment duration = >= 7 yrs &  
x0 employment duration = < 1 yr 

xc age >= x0 age + 7 

xc employment duration = 1 <= ... < 4 yrs &  
x0 employment duration = 1 <= ... < 4 yrs 

xc age >= x0 age & 
xc age <= x0 age + 1 

xc employment duration = 4 <= ... < 7 yrs &  
x0 employment duration = 1 <= ... < 4 yrs 

xc age >= x0 age + 2 & 
xc age <= x0 age + 4 

xc employment duration = >= 7 yrs &  
x0 employment duration = 1 <= ... < 4 yrs 

xc age >= x0 age + 5 

xc employment duration = 4 <= ... < 7 yrs &  
x0 employment duration = 4 <= ... < 7 yrs 

xc age >= x0 age & 
xc age <= x0 age + 1 

xc employment duration = >= 7 yrs &  
x0 employment duration = 4 <= ... < 7 yrs 

xc age >= x0 age + 2 

xc employment duration = >= 7 yrs &  
x0 employment duration = >= 7 yrs 

xc age >= x0 age 

Note. The scenarios show what the employment duration categories are for xc and x0. For each scenario, a 

corresponding rule for the effect on age is shown. A provided CE by IBACE should adhere to these rules. 
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Based on these changes, IBACE will work in the following way. The pseudocode of the algorithm is 

first presented in Table 7, and is followed by a detailed explanation.  

 

Table 7  

Pseudocode for IBACE 

IBACE (x0, dataframe, ruleset, black-box model) 

Line Pseudocode 

1: Input: x0: Instance for which to find counterfactual; 
 dataframe: All observations including the predicted class;    
 ruleset: All rules that counterfactual instance xc,i should adhere to; 
 black-box model: Model used to make predictions on the dependent variable 

2: Output: Xc: Dataframe containing n counterfactual instances for x0 (Xc = {xc,i∣i=0,1,…,n}) 

3: Step 1: Calculate distance between x0 and all other observations 

4:  for each observation j in dataframe: 

5:   dataframe[distance]j ← distance(x0, xj)  

  --- Note: Gower’s distance is used 

6:  unlike neighbors ← filter(dataframe, class(xj) ≠ class(x0)) 

7:  order unlike neighbors by distance   

 --- Note: Unlike neighbors is ordered in ascending order 

8: Step 2: Initialization 

9:  i ← 1   

 --- Note: i keeps track of the nearest unlike neighbor that is being used to 
 construct hybrid instances 

10:  k ← 3   

 --- Note: k determines the maximum number of feature value changes and can be 
 set to any value between 1 and n 

11:  Xc ← [ ]  

 --- Note: Empty dataframe that will be filled with counterfactual instances for x0 

12: Step 3: Find nearest unlike neighbor 

13:  xn ← unlike neighborsi 

14: Step 4: Create hybrid instances 
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15:  hybrids ← all possible hybrids between x0 and xn with 1 to k feature value changes  

 --- Note: Method as described in section 4.1.3 

16: Step 5: Check if hybrid instances adhere to ruleset and if hybrid instances are valid 

17:  for each hybrid instance h in hybrids: 

18:   if hybridsh adheres to ruleset: 

19:    prediction ← predict hybridsh  

   --- Note: Use the black-box model 

20:    if class(prediction) ≠ class(x0): 

21:     append hybridsh to Xc 

22: Step 6: Check if Xc contains counterfactual instances 

23:  if nrow(Xc) = 0:  

24:   if i < nrow(unlike neighbors): 

25:    i ← i + 1 

26:    repeat from Step 3  

   --- Note: With the next closest unlike neighbor 

27:   else: 

28:    return Xc   

   --- Note: In this case no counterfactual instances are found 

29:  else: 

30:   return Xc 

Note. The pseudocode demonstrates the sequence of steps taken by the IBACE algorithm to find CEs. A 

dataframe (Xc) is initialized and filled with CEs that are both valid and actionable, which is returned in the 

final step of the algorithm. 

Firstly, the algorithm requires access to multiple inputs. The dataset with the features that the 

black-box model is trained on is used to construct the CEs, and should therefore be accessible. 

Additionally, the black-box model itself needs to be accessible. As potential CEs are generated, their 

validity needs to be checked, which is done by passing the generated potential CE to the black-box 

model and predicting the class of the dependent feature. However, IBACE does not need access to 

the internal structure of the black-box model, making IBACE model-agnostic. Also, a ruleset (such as 
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the ruleset described above) should be provided, if it is needed to ensure that the CEs will be 

actionable. Lastly, an instance of interest should be determined (x0), for which one or more CEs 

should be found. These inputs are then used to construct the CEs. 

The first step in the algorithm is to calculate the distance between x0 and all other observations in 

the dataset. In contrast to the paper of Brughmans et al. (2023), in which the Heterogeneous 

Euclidean Overlap Method is used as the distance metric, in this paper Gower’s distance is used. The 

main reason for this is that the implementation of NICE in the R package “counterfactuals” uses this 

distance metric. As will be described in section 4.3.1, this package is used for benchmarking 

purposes. In order to make a fair comparison between the two algorithms, Gower’s distance is 

implemented in this paper. Additionally, Gower’s distance is also used in different CE algorithms 

that can deal with mixed data types, as shown in Verma et al. (2020), making it a valid metric. It 

should be noted that any metric that can handle mixed variable types can be implemented in IBACE. 

The next step is to select all unlike neighbors, meaning all the observations in the dataset for which 

the predicted class is the desired class, and therefore the opposite class of x0. Additionally, only 

correctly classified observations are used, similar to NICE. It should be noted that it is 

computationally more efficient to swap step one and two, but this is the order implemented in the 

counterfactuals package. As the Gower’s distance also performs scaling, the order of steps impacts 

the calculated distances. Again, for a fair comparison, the order of steps is kept similar to the 

approach in the counterfactuals package. 

Next, the NUN (xn) to x0 is selected using Gower’s distance, which will be the first instance that is 

used for generating the hybrid instances between x0 and xn.  

Then, the hybrids are generated by generating all possible feature value combinations between x0 

and xn, while keeping overlapping and immutable features fixed. The maximum total allowed 

number of features changed in the hybrids compared to x0 is equal to k (k=3).  

These hybrids are then filtered based on the rest of the ruleset (i.e. everything else than the 

immutable features). 

The hybrids that remain are then tested for validity, by making predictions with the black-box 

model on each of them. If there are valid hybrids, these are returned as CEs, and are by design 

actionable. The algorithm is terminated. Note that IBACE is capable of returning multiple CEs, as all 
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possible hybrids are computed at the same time. However, IBACE does not optimize for multiple or 

diverse CEs.  

As soon as there are no hybrid instances left as a result of the ruleset, or when there are no valid 

hybrids, the algorithm continues the search with the next NUN. This process can repeat as many 

times as necessary and as there are unlike neighbors. In the case that no valid CE can be 

constructed with any of the unlike neighbors, the algorithm terminates without returning any CEs. 

Note that this iterative process can also accommodate the need for a specified number of CEs. 

However, this potentially comes at the cost of increased computation times if there are not enough 

hybrids constructed with the unlike neighbor that returns at least one good CE. 

Consider the simplified example in Table 8. In the first iteration, the NUN to x0 is selected. The 

changes with respect to x0 are highlighted in bold. Then, all possible hybrids are created, while 

fixing the values of the immutable feature purpose and the overlapping feature employment 

duration, and making no more than three changes from x0. Then, the resulting hybrids are filtered 

according to the ruleset. As can be seen in Table 8, only x2 is actionable, as only for this hybrid the 

relationship between age and employment duration is adhered to. The validity of this hybrid is 

checked, and turns out to be invalid (i.e. the predicted class does not change). Therefore, the 

algorithm does a second iteration. The second closest unlike neighbor is selected and the process 

repeats. In this iteration, the actionable hybrid is also valid and is returned as a CE. 

Table 8 

Simplified example of the IBACE algorithm 

Instance Age Purpose Employment 
Duration 

Savings Predicted 
Class 

x0 28 Car (new) <1 year 1000 Bad 

 

ITERATION 1 

xn 29 Furniture <1 year 1500 Good 

Generate hybrids 

x1 29 Car (new) <1 year 1000 NA 

x2 28 Car (new) <1 year 1500 NA 

x3 29 Car (new) <1 year 1500 NA 
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Filter for actionability 

x2 28 Car (new) <1 year 1500 Bad 

 

ITERATION 2 

xn 30 Retraining <1 year 2000 Good 

Generate hybrids 

x1 30 Car (new) <1 year 1000 NA 

x2 28 Car (new) <1 year 2000 NA 

x3 30 Car (new) <1 year 2000 NA 

Filter for actionability 

x2 28 Car (new) <1 year 2000 Good 

Note. Before the first iteration, the observation of interest is selected. In the first iteration, the NUN is selected 

and all possible hybrids between x0 and xn are generated. In this example, there are three possible hybrids (x1, 

x2, x3). The generated hybrids are then filtered for actionability, based on the ruleset. The resulting hybrids (in 

this case only x2) are tested for validity. In this example, x2 is invalid (i.e. the predicted class is “bad”). 

Therefore, a second iteration is initialized, using the second NUN. Again, all possible hybrids between x0 and 

the new xn are generated (x1, x2, x3). These hybrids are then also filtered for actionability. In this example, x2 is 

the only actionable hybrid. This hybrid is tested for validity, and has the predicted class “good”. Therefore, 

this hybrid is returned as a CE. 

Note that when the dataset has a large amount of observations, the algorithm becomes most 

computationally intensive in two stages. The first stage is where all distances are calculated to 

obtain the nearest unlike neighbor, which is the same for the NICE algorithm. The second stage is 

where the algorithm iterates over multiple unlike neighbors. It could be that the algorithm has to 

try many unlike neighbors before finding a solution, but this does not have to be the case. However, 

as suggested by Guidotti (2022) for similar approaches, a sample of the entire dataset can be used 

to generate CEs. This reduces computational complexity, but on the other hand increases the 

probability of the CE being more different from x0 and coverage is possibly reduced. This trade-off 

should be considered by the user. 
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4.2 The Binary Classification Model 

The IBACE algorithm assumes the existence of a binary classification black-box model that is used 

for the prediction of a binary dependent variable. Since the IBACE algorithm needs the predictions 

to be available, a black-box model is trained. Note that for the objectives of this paper, the specific 

binary classification model does not need to be a black-box model, but could also be a glass-box 

model, as its sole purpose is to provide the proposed algorithm with predictions of the dependent 

variable. Therefore, a logistic regression is trained. The dataset is split into a training set (80%) and 

a testing set (20%). The area under the receiver operating characteristic curve (AUC-ROC), which is 

calculated based on the results of the testing data, is 0.739. This is above the threshold of 0.6, which 

is used by Brughmans et al. (2023) as the requirement for the binary classification model. Also, the 

AUC of 0.739 is similar to the AUC obtained by the models used in their paper on the same dataset 

(0.718 and 0.758, for their neural network and random forest, respectively). No feature selection is 

performed, and in order to account for the class imbalance, the classification threshold is moved up 

from 0.5 to 0.671. This optimal value is found using the AUC-ROC. This means that the probability of 

a “good” credit score prediction should be at least 67.1% for an observation to be classified as such. 

As a result, sensitivity is brought down, while specificity is brought up.  

4.3 Implementing, Testing and Benchmarking of IBACE 

4.3.1 Implementation of IBACE 

The implementation of the IBACE algorithm, as well as the training of the black-box model, is 

performed in the R programming language (version 4.3.1). The used hardware is a laptop with the 

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 2.00 GHz, and 8GB of RAM, and runs Windows 11. For 

the implementation of the IBACE algorithm in R, the following packages are used:  

- tidyverse - for data manipulation 

- data.table - for faster computation 

- cluster - for the Gower’s distance metric 

For the training of the logistic regression model, the following package is used: 

- caret - for training a logistic regression model 

- pROC - for calculating the AUC-ROC and finding the optimal classification threshold 

For the benchmark algorithm (NICE), the following packages are used: 

- counterfactuals - for the implementation of the NICE algorithm 
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- iml - for storing the data and the trained logistic regression model in an iml object, as 

needed for the counterfactuals package 

4.3.2 Testing IBACE 

The test statistic of interest for the IBACE algorithm is coverage (c), which is specified as the 

percentage of observations with a bad credit risk for which at least one actionable and valid CE is 

found. The confidence interval for the coverage is obtained using a bootstrap procedure. This 

involves creating 1,000 bootstrapped datasets by resampling with replacement from the original 

dataset 1,000 times. For each bootstrapped dataset, the coverage is calculated. The distribution of 

these 1,000 bootstrapped statistics is then used to construct a confidence interval by taking the 

2.5th and 97.5th percentiles for a 95% confidence interval. The following hypotheses for this 

specific dataset are tested: 

- H0: The true coverage is equal to the observed coverage (cT = cO) 

- HA: The true coverage is not equal to the observed coverage (cT ≠ cO) 

If the observed coverage falls within the 95% confidence interval, the null-hypothesis (H0) is not 

rejected. This means that there is no significant evidence to suggest that the true coverage is 

different from the observed coverage. If the observed coverage falls outside the 95% confidence 

interval, the null-hypothesis (H0) is rejected, and the alternative hypothesis (HA) is accepted, 

indicating that there is significant evidence to suggest that the true coverage is different from the 

observed coverage. 

Additionally, the distribution of the number of unlike neighbors used to construct the CEs is 

examined. This is only done for the cases in which the nearest unlike neighbor did not suffice, so 

where at least the second nearest neighbor is used. This provides an insight into how close the 

solutions lie to the observation of interest and how useful and efficient it is to use more 

observations than only the nearest unlike neighbor to find CEs. 

4.3.3 Benchmarking IBACE 

The IBACE algorithm is benchmarked against the NICE algorithm. First, an example of CEs provided 

by the NICE algorithm that do not adhere to the ruleset is highlighted and compared to the resulting 

CE of the IBACE algorithm for the same observation of interest. The counterfactuals package in R is 

able to provide multiple CEs if they are available. All returned CEs are taken into consideration and 

are filtered according to the ruleset. Second, the test statistic of interest for the comparison 
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between IBACE and NICE is the difference in their coverage (∆c = cIBACE - cNICE), where the coverage 

of NICE is calculated based on the same bootstrapped datasets as described in the previous section. 

Again, the distribution of these 1,000 bootstrapped statistics is then used to construct a confidence 

interval by taking the 2.5th and 97.5th percentiles for a 95% confidence interval. The following 

hypotheses for this specific dataset are tested: 

- H0: There is no difference in coverage between IBACE and NICE (∆c = 0) 

- HA: There is a difference in coverage between IBACE and NICE (∆c ≠ 0) 

If the 95% confidence interval covers 0, the null-hypothesis (H0) is not rejected. This means that 

there is no significant evidence to suggest that there is a difference in coverage between IBACE and 

NICE. If the 95% confidence interval does not cover 0, the null-hypothesis (H0) is rejected, and the 

alternative hypothesis (HA) is accepted, indicating that there is significant evidence to suggest that 

the coverage of IBACE is different from the coverage of NICE. If the values within the 95% 

confidence interval are positive, IBACE has a larger coverage, and if the values within the 95% 

confidence interval are negative, IBACE has a smaller coverage. 

The same procedure is followed for the difference in runtime of both algorithms. The runtime is 

calculated as the total runtime for each entire bootstrapped dataset in minutes. The test statistic in 

this case is ∆t (∆t = tIBACE - tNICE), and the following hypotheses for this specific dataset are tested: 

- H0: There is no difference in runtime between IBACE and NICE (∆t = 0) 

- HA: The difference in coverage between IBACE and NICE is larger than 0 (∆t ≠ 0) 

If the 95% confidence interval covers 0, the null-hypothesis (H0) is not rejected. This means that 

there is no significant evidence to suggest that there is a difference in runtime between IBACE and 

NICE. If the 95% confidence interval does not cover 0, the null-hypothesis (H0) is rejected, and the 

alternative hypothesis (HA) is accepted, indicating that there is significant evidence to suggest that 

the runtime of IBACE is different from the runtime of NICE. If the values within the 95% confidence 

interval are positive, IBACE has a longer runtime, and if the values within the 95% confidence 

interval are negative, IBACE has a shorter runtime. 
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5. Results 

5.1 Test Results of IBACE 

First, the coverage of IBACE is tested, for which the bootstrap results are presented in Figure 1. The 

dashed lines show the 95% confidence interval. The lower bound is at 98.1% and the upper bound 

is at 100%. This means that with a 95% certainty, the coverage of IBACE lies between these values 

for this particular dataset with this particular ruleset. The observed coverage in the dataset with 

the particular ruleset is 99.2%, and is presented in Figure 1 with the dotted line. This means that it 

lies within the confidence interval. Therefore, the null-hypothesis (H0) is not rejected. This means 

that there is no significant evidence to suggest that the true coverage is different from the observed 

coverage. 

Figure 1 

Bootstrap results for the coverage of IBACE 

 

Note. This figure displays the distribution of the bootstrap results for the coverage of IBACE. The coverage of 

IBACE lies between 98.1% and 100% for 95% of the bootstrapped datasets (dashed lines). The observed 

coverage in the original dataset is 99.2%, and is presented by the dotted line. The coverage is the percentage 

of observations in the dataset for which at least a single valid and actionable CE is found. 

Additionally, the distribution of the number of unlike neighbors tested to construct the CEs is 

examined. This is only done for the cases in which the nearest unlike neighbor did not suffice, so 

where at least the second nearest neighbor is used. The results are presented in Figure 2. This 

figure clearly illustrates that, in the cases the NUNs do not suffice, the solutions mostly still lie 
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relatively close to the observations of interest. In 76.7% of these cases, a CE can be constructed with 

one of the 10 closest unlike neighbors. Including the cases where the NUN suffices, a CE can be 

constructed for 93.2% of the cases using one of the 10 closest unlike neighbors. Again, these results 

are specifically for the used dataset with the used ruleset. 

Figure 2 

The Number of Unlike Neighbors Tested 

 

Note. This figure displays the distribution number of unlike neighbors that had to be tested for the 

construction of the CEs for cases where the NUN did not suffice. The y-axis shows how many times a 

particular number of unlike neighbors was used in the construction of the CEs. In most cases, at least one CE 

could be constructed by using one of the 10 closest unlike neighbors. These results are based on all 

bootstrapped datasets.  

5.2 Benchmark Results of IBACE 

An example case for which the NICE algorithm could not find a solution that adheres to all rules is 

presented in Table 9. The second column represents the observation of interest, and all immutable 

features are left out of the table. The following columns include a selection of the solutions provided 

by the IBACE algorithm. From the results it is clear that in this instance, an increase in employment 

duration would result in a change in the predicted class. For x1, only employment duration is 

increased, without increasing the age. However, remember that less than a year's increase would 

already result in the increase in employment duration. Therefore, this CE is still actionable. In CE x2, 

age is also increased, with 3 years. This amount lies within the boundaries of the increase in 

employment duration, and therefore still adheres to the ruleset. CE x3 also adheres to the ruleset 

and shows, in this case, that the bank values the customer having a checking account (albeit with a 
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negative balance) over having no checking account at all. In total, IBACE returned 16 CEs for the 

observation of interest, while the NICE algorithm did not find solutions that adhere to the ruleset. 

 

Table 9 

Example of IBACE solutions 

Feature x0 x1 x2 x3 

Status no checking account - - … < 0 DM 

Duration 6 - - - 

Amount 662 - - - 

Savings unknown / no savings 
account 

- - - 

Employment Duration < 1 yr 1 <= … < 4 yrs 1 <= … < 4 yrs - 

Installment Rate 20 <= … < 25 - - - 

Other Debtors none - - - 

Present Residence >= 7 yrs - - - 

Age 41 - 44 - 

Other Installment Plans none - - - 

Number of Credits 1 - - - 

Job unskilled - resident - - - 

Telephone yes - - - 

Note. The column of x0 is the observation of interest with its corresponding feature values. x1, x2, x3 are some 

of the provided CEs by IBACE for this observation. A “-” indicates that no changes are made. 

The bootstrap results for the difference in coverage between IBACE and NICE are presented in 

Figure 3. Again, the dashed lines show the 95% confidence interval. The lower bound is at 33.2% 

and the upper bound is at 43.1%. This means that with a 95% certainty, the difference in coverage 

between IBACE and NICE lies between these values for this particular dataset with this particular 

ruleset. The 95% confidence interval does not include 0, hence the null-hypothesis (H0) is rejected, 

and the alternative hypothesis (HA) is accepted, indicating that there is significant evidence to 

suggest that the coverage of IBACE is different from the coverage of NICE. Additionally, the values 
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within the 95% confidence interval are positive, meaning that IBACE has a larger coverage, 

compared to NICE. 

Figure 3 

Bootstrap results for the difference in coverage between IBACE and NICE

 
Note. This figure displays the distribution of the bootstrap results for the difference in coverage between 

IBACE and NICE. For 95% of the bootstrapped datasets, the difference in coverage lies between 33.2% and 

43.1% (dashed lines), meaning that in 95% of all bootstrapped datasets, the coverage of IBACE is between 

33.2% and 43.1% higher compared to the coverage of NICE. The difference in coverage is the percentage of 

observations in the dataset for which at least a single valid and actionable CE is found by IBACE minus the 

percentage of observations in the dataset for which at least a single valid and actionable CE is found by NICE. 

The difference in runtime between the two algorithms is tested in the same way. The bootstrap 

results are presented in Figure 4. The dashed lines show the 95% confidence interval. The lower 

bound is at -1.5 minutes and the upper bound is at 1 minute. This means that with a 95% certainty, 

the difference in runtime between IBACE and NICE lies between these values for this particular 

dataset with this particular ruleset, using the specific hardware and software. The 95% confidence 

interval does include 0, hence the null-hypothesis (H0) is accepted. This means that there is no 

significant evidence to suggest that there is a difference in runtime between IBACE and NICE. The 

average runtime of IBACE for finding CEs for a single observation of interest is found to be 

approximately 0.47 seconds. 
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Figure 4 

Bootstrap results for the difference in runtime between IBACE and NICE 

 

Note. This figure displays the distribution of the bootstrap results for the difference in runtime between 

IBACE and NICE. For 95% of the bootstrapped datasets, the difference in runtime lies between -1.5 minutes 

and 1 minute (dashed lines) for an entire bootstrapped dataset. The difference in runtime is the total runtime 

for each entire bootstrapped dataset in minutes of IBACE minus the total runtime of NICE. 

6. Discussion 

The results of the IBACE algorithm presented in Chapter 5 seem to be rather promising, and 

provide a relatively large improvement on actionability compared to the NICE algorithm, without a 

compromise on computation time. The summarized results are as follows: 

- The coverage of IBACE lies between 98.1% and 100% at a 95% confidence interval. 

- For 76.7% of the cases where no CE can be constructed using the NUN, a CE can be 

constructed using one of the 10 closest unlike neighbors. Including the cases where the NUN 

suffices, this value jumps up to 93.2%. 

- The difference in coverage between IBACE and NICE lies between 33.2% and 43.1% at a 

95% confidence interval, in favor of IBACE. 

- There is no statistically significant difference in runtime between IBACE and NICE. 

The high coverage of IBACE is a direct result of the construction of the algorithm. Therefore, a high 

coverage is to be expected. IBACE will continue its search until at least one good CE is found. 

Though, it should be noted that a sufficiently large and diverse dataset is needed to achieve a high 

coverage.  
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The low number of unlike neighbors that need to be tested to construct a CE is also expected. The 

unlike neighbors are sorted, so that the closest unlike neighbors are tested first. Since these 

observations are relatively close to the observation of interest, but have the desired predicted class, 

it is likely that with a minimum amount of feature value changes a CE can be found. This reduces 

the chance of making unactionable changes, too. Additionally, the iterative process of moving to the 

next unlike neighbor means that the feature value changes become slightly larger for each tested 

unlike neighbor, again increasing the chance of finding a CE. 

The reason for the increased coverage of actionable CEs is also the design of the algorithm. 

Actionability can be defined by the end-user by means of the ruleset that can be imposed on the 

CEs. In the worst case scenario, the coverage of IBACE will be equal to the coverage of NICE, 

meaning that no valid hybrid can be constructed with any of the unlike neighbors in the dataset. 

The fact that there seems to be no difference in computation time between the two algorithms is 

most surprising, but can have multiple underlying reasons. At a first glance, it seems that the IBACE 

algorithm should take longer than the NICE algorithm, as it 1) can generate more hybrid instances 

for each unlike neighbor, and 2) can consider more unlike neighbors than only the NUN. The first 

reason that no significant difference in computation time is observed could be due to the specific 

implementation of the NICE algorithm in the counterfactuals package in R. It is possible that the 

underlying code is not as optimized as the custom code written for this paper. A second reason 

could be that computing the reward functions for each generated hybrid is relatively 

computationally expensive. However, it should be noted that the results are dependent on the 

specific dataset and ruleset used. It is possible that for larger datasets, with more features and more 

observations, a significant difference in computation time can be observed, in favor of the NICE 

algorithm.  

Additionally, the results depend on the parameter k, which specifies the number of features that are 

allowed to be permuted at most. On the one hand, decreasing the number k will decrease the 

number of hybrids created per unlike neighbor used, in turn decreasing the computation time for 

each iteration. On the other hand, decreasing k also reduces the probability of finding CEs, 

prompting the algorithm to try more unlike neighbors, which in turn increases computation time. 

Therefore, the optimal value of k does not only depend on the actionability criteria as mentioned 

before, but also on the dataset. This parameter should therefore be experimented with in real-life 

applications in order to make the algorithm as useful as possible.  
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There also exists a trade-off between the complexity of the ruleset and the coverage. The more 

complex and restrictive the ruleset, the harder it becomes to find CEs. Again, the exact impact 

depends on the dataset that IBACE is used on and the ruleset that is imposed.  

7. IBACE Improvements, Limitations and Future 

Research 

The IBACE algorithm as proposed in this paper might be improved upon in terms of computation 

time. For example, instead of generating all possible hybrids at once, it could be changed by first 

generating all hybrids with only one permuted feature value. These can then be checked for 

actionability and validity. If CEs are found, these can be returned and the algorithm can be 

terminated, eliminating the need for the generation of more hybrids. If no CEs are found, the 

algorithm can continue by permuting an extra feature value, and repeat the process. Additionally, 

there could be a cap placed on the number of unlike neighbors that should be tested. As seen from 

the results, a good CE is mostly found within the first 10 NUNs. For larger datasets, it might be 

worth incorporating this cap, at the cost of slightly reducing the coverage. This will result in outliers 

not taking up too much time in real-life situations. The exact number of NUNs that should be tested 

is highly dependent on the end-user’s preference, the computational power that is accessible, and 

the dataset. Lastly, the order of computing the distances and selecting the unlike neighbors should 

ideally be swapped. 

The proposed algorithm might also be improved in terms of proximity. Even though the provided 

CEs are relatively close by design, it could still be the case that a closer solution is possible. For 

example, consider the constructed CE to suggest a decrease of the credit amount of 1,000 DM, as 

this is the feature value of the NUN, and suppose the CE is both actionable and valid. It could still be 

the case that decreasing the credit amount by only 500 DM would also result in an actionable and 

valid CE. A possible solution could be to include a grid search for continuous features, in order to 

nudge the CE even closer to the decision boundary, reducing the distance between the observation 

of interest and the CE. The exact implementation might be an interesting avenue for future 

research. 

As can be noted, the biggest limitation of this research is that only a single dataset with a single 

ruleset is tested. Even though the IBACE algorithm shows its potential, no generalizable statements 
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can be made. In order to establish the usefulness of this algorithm in real-life applications, it should 

be tested on more datasets, both on freely available datasets and in real-life applications. 

Another consideration for the real-life application of the IBACE algorithm is that for large datasets, 

it might be time consuming to construct a complete ruleset. Even though a custom ruleset provides 

a lot of flexibility, it is hard to automate this with, for example, an R package. 

A caveat with all CEs is that in order for them to be actionable, the features themselves need to be 

interpretable. For IBACE it is needed for constructing a ruleset, but it is also needed to know what 

actions should be taken. For example, if the model makes use of principal components, an increase 

or decrease in the feature values is not informative enough to prompt specific actions. Therefore, if 

one wants to utilize CEs in the context of actionability, the features of the underlying black-box 

model need to be taken into consideration. 

8. Conclusions 

The use of predictive ML and AI models in decision-making processes is increasingly prevalent 

across various industries. However, many of these models function as so-called black-boxes, lacking 

transparency in their prediction mechanisms. In numerous applications, understanding the inner 

workings of these black-box models is not just useful but often essential. This need has driven 

significant interest in the field of XAI. Among the various proposed approaches to elucidate black-

box models, such as SHAP and LIME, CEs stand out for their ability to specify changes to input 

variables that would lead to different model decisions. This is particularly applicable to binary 

classification models. 

This research identifies instance-based CEs as possessing unique advantages over other CE 

methods, such as optimization-based approaches. Instance-based methods rely on actual instances 

from the dataset, ensuring coherence and plausibility, and they are model-agnostic, making them 

applicable regardless of the underlying model architecture. However, current instance-based 

approaches fall short in ensuring that the CEs they provide are actionable, a critical property for 

practical applicability. 

To address this gap, this paper proposes the Instance-Based Actionable Counterfactual 

Explanations algorithm (IBACE). The primary objective of IBACE is to generate CEs that are not 

only valid, plausible, and sparse but also actionable. By leveraging the nearest unlike neighbors 
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approach, IBACE ensures that CEs are relatively close to the observation of interest, even though it 

does not explicitly optimize for proximity. IBACE integrates principles from multiple existing 

algorithms, including NICE, CBCE, and CRUDS, culminating in a model-agnostic solution that meets 

many of the desired properties of CEs. 

The results of this study are promising, demonstrating that IBACE achieves high coverage, 

effectively providing good CEs for a wide range of observations. Furthermore, the algorithm 

exhibits computational efficiency, enhancing its practicality for real-world applications. 

However, it should be noted that the primary limitation of this study is its reliance on a single 

dataset and ruleset, restricting generalizability. To validate IBACE 's practical utility, it must be 

tested on diverse datasets and in real-world applications. Additionally, constructing a 

comprehensive ruleset for large datasets can be time-consuming, and the interpretability of 

features remains crucial for actionable CEs. Future research should focus on these aspects to 

further refine and evaluate the IBACE algorithm. 

In conclusion, this research contributes to the field of XAI by addressing the research question: 

"How can actionable insights be added to case-based counterfactual explanations?". Through the 

development and evaluation of IBACE, this paper has shown that it is indeed possible to create CEs 

that are actionable while maintaining validity, plausibility, and sparsity. This is achieved by 

imposing a ruleset that the CEs should adhere to, and by utilizing additional unlike neighbors when 

the NUN does not suffice. This advancement not only enhances the transparency of black-box 

models, but also provides data subjects with actionable insights that can be readily applied in real-

life applications. 
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