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Abstract

This thesis explores privacy-preserving data publishing (PPDP) techniques, focusing on k-
anonymization and differential privacy, and their effectiveness in managing privacy, data utility, and
computational complexity within tabular medical records. As data breaches become more frequent
in our data-driven society, robust methods to protect sensitive information are crucial, especially in
light of strict regulations like the General Data Protection Regulation (GDPR).

Through the use of generalization techniques, k-anonymization guarantees that each individual
cannot be distinguished from at least k-1 other individuals, while differential privacy ensures that
the inclusion or exclusion of any individual’s data does not substantially affect the analysis results
by adding noise. The study implements k-anonymization using the Multidimensional Mondrian
algorithm and differential privacy using the Iterative Proportional Fitting (IPF) algorithm, revealing
the expected trade-off between privacy protection and data utility, where lower privacy levels result
in higher data utility and vice versa.

The sparsity in the original data posed challenges for k-anonymization as the strict partitioning
technique was unable to generate a dataset that satisfied the k-anonymity criterion. Nonetheless,
the relaxed partitioning technique functioned effectively, sometimes necessitating more aggressive
generalization and at other times none at all to achieve higher levels of privacy. For initial small
increases in the privacy budget of the IPF method, the utility gain exceeded the privacy loss,
making the higher privacy budget an appealing choice for data publishers. Contrary to general
assumptions in literature, the findings reveal that this specific differential privacy implementation is
more computationally efficient than the k-anonymization implementation, making it better suited
for handling large datasets.

Considering these findings and the inherent characteristics of both methods, the study recommends
using the IPF algorithm with differential for sharing datasets, as it maintains a similar data structure
with high data usability, flexibility, provides robust privacy guarantees, and is computationally
efficient. For real-world applications, the results in this thesis also guide the selection of appropriate
parameters and stimulates further exploration into efficient and responsible data sharing practices.
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1 Introduction

In recent years, the development of data-driven technologies and the widespread adoption of machine
learning algorithms have revolutionized various aspects of society, promising remarkable advantages
in areas ranging from healthcare to the military. The ability to process vast amounts of data
and extract meaningful insights has led to groundbreaking advancements, driving innovation and
progress across industries. However, this rapid expansion of data-driven technologies also came with
significant challenges, particularly in terms of privacy.

One of the key issues resulted from the rise of data-driven technologies is the increasing amount of
privacy leaks and composition attacks. These threats to privacy occur when seemingly harmless
pieces of data are combined to reveal sensitive information about individuals. A famous example
is the case of Netflix, where they published a dataset containing information about thousands
of subscribers for the purpose of a Netflix Prize contest (an open competition to find the best
algorithm to predict user ratings for movies). However, contestants quickly found out that the
privacy of subscribers included in the revealed data set was exposed as the seemingly anonymous
movie ratings could be cross-referenced with public data sets to identify individual users. Narayanan
and Shmatikov (2008) concluded that knowing only 5 to 10 background attributes was enough
to de-anonymize individuals in a dataset. Such incidents underscore the need for robust privacy
protection mechanisms, especially for situations in which the information affects the individual’s
safety.

In response to these ethical threats, regulators have authorized legislation aimed at safeguarding
individual privacy rights. In 2018, the General Data Protection Regulation (GDPR) was established
to strengthen data protection and privacy for individuals within the European Union (EU) and the
European Economic Area (EEA). The GDPR sets strict requirements on organizations regarding the
collection, processing, and storage of personal data with substantial fines in case of non-compliance.
The new law emphasizes the need for anonymization methods which make it impossible to identify
individuals considering factors such as time, costs, and current and future technological developments
within rationality. While the factor of future technological development limits the possibilities for
organizations greatly, the rationality factor will enable them to leverage data by adopting intelligent
solutions.

1.1 Scope

Europe is a pioneer in enacting strengthened privacy laws, but it is not alone in this effort. Countries
worldwide are rapidly responding to growing privacy challenges by imitating Europe’s regulatory
framework. To offer a comprehensive overview of this global landscape, this research focuses on
an analysis of methods utilizing data from diverse countries, specifically France, the United States,
Brazil, and Singapore.

As highlighted by Kaissis et al. (2020), there are distinct realms of techniques aimed at either
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protecting data or safeguarding algorithms. For instance, techniques designed to protect algorithms
include methods to prevent model inversion attacks. In a model inversion attack, attackers can
potentially reconstruct sensitive data from the model’s parameters by strategically providing various
synthetic or random inputs to the model and observing the outputs to infer the underlying data
patterns. Preventative techniques such as adversarial training include adversarial examples designed
to mimic potential inversion attacks in the training process and thereby train the model to resist
such reverse-engineering attempts (Prakash et al., 2020). However, this study emphasizes evaluating
methods that allow for the safe and compliant release of complete tabular datasets, rather than
protecting the integrity and confidentiality of the algorithms, and to protect it from unauthorized
access or disclosure.

Moreover, as this thesis focuses exclusively on releasing datasets where the identity of individuals is
protected and the usability of the data is still good, it falls into the category of Privacy Preserving
Data Publishing (PPDP) methods. The core objective is to explore how sensitive information can be
anonymized and securely shared with external parties. In contrast, Privacy Preserving Data Mining
(PPDM) involves extracting useful information and patterns from data during internal data analysis
and processing (Fung et al., 2010). A well-known example of such a technique is differentially private
stochastic gradient descent (DP-SGD) which adds noise to the gradients calculated during each step
of model training, thereby protecting the privacy of individual data points in the training dataset
(Song et al., 2013). While both PPDP and PPDM are crucial for safeguarding privacy, this study is
confined to the strategies and implementations relevant to the secure publication of data.

As briefly mentioned, PPDP methods anonymize tabular datasets to securely share them with
external parties. This involves modifying the data to reduce re-identification risks prior to sharing.
This approach is distinctly different from encryption techniques, which focus on maintaining data
confidentiality by encrypting the data with a cipher key, allowing only entities with that key to access
the original data (Fung et al., 2010). For example, Homomorphic Encryption (HE) enables third
parties to perform computations on encrypted data without needing to decrypt it, thus maintaining
confidentiality throughout the data analysis process (Gentry, 2009). Since encryption techniques
do not require actual modifications to the data, they fall outside the scope of this thesis, which is
focused on methods for securely publishing anonymized datasets.

Various PPDP methods have been proposed by researchers with Fung et al. (2010) providing an
extensive overview within this scope. Among these methodologies, k-anonymization is one of the
most foundational anonymization algorithms (Majeed and Lee, 2020). This algorithm ensures that
if an individual possesses a specific value as a quasi-identifier, at least k − 1 other observations must
share the same value (Samarati and Sweeney, 1998). By enforcing this condition, k-anonymization
mitigates the risk of re-identification through linking attacks, thereby limiting adversaries’ ability to
uncover sensitive information about individuals.

K-anonymization techniques can be applied to multidimensional datasets with relatively modest
computational overhead, rendering them viable for real-world scenarios. However, datasets in those
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scenarios sometimes also exhibit high dimensionality and complex structures. The combination
is argued to pose challenges for traditional k-anonymization approaches. High dimensionality
complicates the selection of an appropriate k-value as it often results in either too much loss of
information or too high privacy risk. Consequently, the need arises to compare k-anonymization
with other, more recently developed methodologies to understand their respective strengths and
weaknesses.

As first presented by Dwork (2006), the Differential Privacy (DP) framework protects individual
privacy by guaranteeing the outcome of an analysis remains unaffected by the presence or absence
of any single observation. Since the debut of this theoretical framework, many researchers have
utilized it by combining it with various forms of machine learning techniques. For example, Xiao et
al. (2010) underscored the efficacy of differential privacy in preserving privacy through the addition
of noise drawn from the Laplace distribution to aggregated range-count values, thereby obfuscating
individual records before publishing the resulting anonymized dataset.

The framework provides a strong and quantifiable guarantee, offering plausible deniability for the
inclusion of individuals in the dataset. One of the key advantages of this technique is the resilience
against various attacks, including linking attacks and membership inference attacks. However, the
introduction of noise or data perturbation may potentially compromise data utility, demanding
a careful balance between privacy and utility considerations. Moreover, the differential privacy
framework is complex, and determining the appropriate amount of noise to abide by the framework
requires precise calculations based on the sensitivity of the data and may incur computational
overhead.

1.2 Contribution

As underscored by Fung et al. (2010), the expanding gap between privacy-threatening technologies
and the adoption of privacy-preserving measures requires attention. Thus, this study attempts to
enrich academic literature by conducting an assessment of the two PPDP techniques, delving into
their respective strengths, limitations, and trade-offs. Such an analysis promises to inform more
reasonable decision-making with regard to a suitable method and parameter settings in real-world
contexts.

Moreover, the comprehensive examination of both intra-methodology and inter-methodology metrics
provides valuable insights that aid in selecting the most suitable privacy-preserving method. Intra-
methodology metrics, specific to each anonymization technique, result in a decision-making guideline.
This guidance helps a data publisher select a technique based on their preferences regarding dataset
characteristics, the utility-privacy trade-off, and computational complexity. More importantly, the
intra-methodology metrics assist a data publisher in selecting the optimal parameter settings.

Inter-methodology metrics enable a data publisher to compare the practicality of the two techniques
and in turn contribute to the choice of method. Specifically, the impact on data utility will be
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analyzed by comparing the prediction accuracies of the original data to those of the anonymized
datasets. Additionally, the execution times of the anonymization steps for each approach will be
compared to assess computational efficiency.

Beyond the academic contributions, this comparative analysis of PPDP methodologies is significant
for fostering innovation across various disciplines. The adoption of efficient privacy techniques
enables more ethical and responsible data sharing, which in turn facilitates data-driven research,
stimulates innovation, and encourages interdisciplinary collaboration. This is particularly beneficial
in the healthcare domain, where the GDPR legislation significantly restricts the potential for new
medical AI techniques due to the high sensitivity in medical records (Kaissis et al., 2020). By
adopting efficient privacy measures, it becomes possible to drive the development of novel treatments,
therapies, and healthcare solutions.

In order to bridge the gap highlighted by both the contribution to academics and innovation, I
will implement k-anonymization and differential privacy methods on a dataset containing sensitive
information about individuals concerning the illegal purchasing of prescription drugs without
prescription and thereby addressing the following research questions:

How do k-anonymization and differential privacy methods compare in terms of preserving privacy,
maintaining data utility, and managing computational complexity when applied to sensitive

healthcare datasets?

The remainder of this thesis will provide an answer to this research question by first outlining a
comprehensive literature review in chapter 2. This chapter will examine the theoretical background
of the subject as well as existing research on PPDP methods with a focus on k-anonymization and
differential privacy. Chapter 3 will present the selected methods employed in this study, including
the details of the data set, the mathematics behind the chosen method, and the evaluation metrics
used to assess the effectiveness of these methods. The results will be presented and discussed in
chapter 4, highlighting the strengths, limitations, and trade-offs of each approach. Chapter 5 will
offer a discussion on the expected findings, the unexpected findings, the limitations of the research
while also giving recommendations for future research. And finally, chapter 6 will provide conclusions
drawn from the findings of the study and provide recommendations for potential stakeholders.
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2 Literature Review

In this section, I aim to explain the contemporary academic landscape of PPDP methods. To
understand the topic, I will first describe the key terminology and concepts in this research domain.
Subsequently, I will present relevant theories and models that underpin this research by clarifying
empirical evidence and findings from previous studies.

2.1 Terminology

There are distinct phases involved in handling data, which can be simplified into three main stages:
data collection, data publishing, and data mining as outlined by Fung et al. (2010) and the flowchart
in Figure 1. During the data collection phase, a data publisher gathers information from record
owners. In the realm of medical records for insurance purposes, for instance, the data publisher may
be a hospital or clinic, while the record owner is typically the insured individual. Then in the data
publishing phase, the collected data from the insured party (such as medical history, treatments,
and health habits) is stored and subsequently shared with a recipient for the data mining stage. In
the scenario described, the data recipient could be a medical insurer utilizing the data to construct
models or analyze trends. Moreover, a data publisher might also opt to release the data to the
public for research, educational, or awareness-raising purposes.

Figure 1: Data Handling Phases

Note. A framework of the three stages in data handling with its respective main stakeholders.

In the data publishing phase, two distinct scenarios emerge. Firstly, when the data publisher is
deemed untrustworthy, there exists a risk of potential attempts to extract sensitive information
from record owners. In such cases, ensuring anonymity during the data collection phase becomes
imperative to preempt any privacy breaches by the data recipient. Conversely, in scenarios where
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the data publisher is considered trustworthy, record owners may willingly provide personal and
sensitive information (Fung et al., 2010). Within the scope of this thesis, only scenarios where the
data publisher is trustworthy are examined, given the focus on PPDP techniques.

Even with a trustworthy data publisher, this trust is not necessarily extended to the data recipient.
Even if the recipient is a reputable entity, such as a well-established medical insurance company,
the potential for malicious intent among one of the employees with access to the data cannot be
disregarded. Additionally, it is often unknown who the recipient will be at the time of data sharing,
as the data might be shared with the public. Hence, prior to data sharing, the data publisher must
ensure robust privacy protection for individuals included in the dataset.

2.1.1 Table Components

In this section, I’ll elaborate on the components of the table, drawing upon insights from Mejeed
and Lee (2020), as well as Fung et al. (2010). Each record within tabular data, commonly referred
to as a tuple, comprises several distinct components, as detailed below.

As illustrated in the formula below, a private table D consists of attributes categorized into direct
identifiers (DIs), quasi-identifiers (QIs), sensitive attributes (SAs), and non-sensitive attributes
(NSAs). It’s important to note that these attributes are mutually exclusive.

D(Direct Identifier, Quasi Identifier, Sensitive Attribute, Non Sensitive Attribute)

Direct identifiers (DIs) are attributes that directly facilitate the identification of specific individuals
and are thus considered highly sensitive. Examples of DIs include names, social security numbers,
email addresses, and phone numbers. Prior to the anonymization process, DIs are entirely removed
from D as they do not contribute valuable information for analysis.

Quasi-identifiers (QIs), while less sensitive than DIs, still pose privacy risks. QIs alone do not
identify individuals, but when combined with other QIs from auxiliary information, they can
potentially reveal individual identities. Common QIs include date of birth, gender, ZIP code,
race, and occupation. Research by Narayanan and Shmatikov (2008) demonstrated the ability to
de-anonymize datasets with as few as 5 to 10 QIs from auxiliary data, emphasizing the privacy
risks associated with QIs. Consequently, anonymization operations are applied to QIs during the
anonymization process to strike a balance between preserving valuable information for data mining
purposes and mitigating the risk of attacks—an issue commonly referred to as the anonymization
problem.

Sensitive attributes (SAs) demand an even higher level of protection due to their potential impact on
individuals’ privacy and well-being when exposed. SAs encompass sensitive or private information
related to financial or medical circumstances, such as medical diagnoses, sexual orientation, criminal
records, or in our case acknowledgment of unauthorized prescription drug use. To preserve the
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high informativeness and thus the utility of the data for analytical purposes, methods such as
k-anonymization sometimes retain SAs in their original form and only modifying the QIs to ensure
privacy for both the QIs and the SA.

Non-sensitive attributes (NSAs) contain no personally identifiable or sensitive information and are
utilized for analysis or processing purposes. Examples of NSAs include product categories and
timestamps. Given their low risk of de-identification, NSAs are published without modification.

Ultimately, the data publisher shares an anonymous table (T) in the format specified in the
formula below, wherein QI* represents the anonymized version of QI after anonymization operations
conducted on QI within D.

T (QI∗, SensitiveAttribute, NonSensitiveAttribute)

2.1.2 Privacy Goals and Attacks

Privacy by anonymization has long been a paramount concern in data analysis, dating back to
the fundamental work of Dalenius in 1977. Dalenius concluded that true privacy in databases
necessitates that no one should be able to learn anything about an individual without access
to the database. However, as Dwork (2006) proved with the Fundamental Law of Information
Recovery, achieving such an unconditional level of privacy is impossible due to all sorts of privacy
threats promised on table T . Researchers Majeed and Lee (2020) summarized the privacy attacks
in subcategorizations and called them identity disclosure, attribute disclosure, and membership
disclosure.

Identity disclosure occurs when an attacker successfully identifies a specific individual within a
supposedly anonymized dataset by cross-referencing the remaining attributes with external data
sources. A simple example is shown by Tables 1 and 2. A hospital supposedly anonymized the
records (Table 1) and published the resulting table (Table 2). If an attacker cross-references the
anonymized dataset with the external information that a person living in ZIP code 12347 who is
28 years old and suffers from hypertension, he can uniquely identify Jim Brown. Hence, removing
only direct identifiers is not always sufficient and can end up compromising someone’s identity.
Besides the simple example and the Netflix breach, a notable instance of an identity disclosure
breach includes the infamous case of AOL’s release of anonymized search queries. After the online
service provider removed the direct identifiers, it was later cross-referenced with public data by
reporters from the New York Times, leading to the identification of individuals like Thelma Arnold
(Ohm, 2009).
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Table 1: Original hospital records

Name Age ZIP_Code Disease

John Smith 45 12345 Flu
Jane Doe 34 12346 Diabetes
Jim Brown 28 12347 Hypertension
Emily White 50 12348 Asthma

Note: This table presents original hospital records including the name, age, ZIP code, and disease of each
individual.

Table 2: Anonymized hospital records

Age ZIP_Code Disease

45 12345 Flu
34 12346 Diabetes
28 12347 Hypertension
50 12348 Asthma

Note: This table presents anonymized hospital records without the DI (Name), but age, ZIP code, and disease
information remains.

On the other hand, attribute disclosure occurs when sensitive information within the SA is linked
to a specific individual, often exploiting imbalances in datasets as they lack heterogeneity. Again, a
hospital publishes records without the direct identifiers. This time, the attacker knows that Emily
White lives in ZIP code 12348 and is 50 years old. The combination of information means the
attacker can deduce the sensitive attribute: her health condition. In 1997, the Massachusetts Group
Insurance Commission did something similar and released hospital records that were subsequently
cross-referenced with voter registration data, resulting in the reidentification of a governor’s medical
record stating his disease (Ohm, 2009).

Membership disclosure poses a different threat, wherein attackers can infer the presence of individuals
in the dataset T without directly identifying them. There might be a situation in which an attacker
wants to confirm if Jane Doe who he knows is 34 years old and lives in ZIP code 12346 has been
treated at the hospital. Once the attacker observes the external information, he knows that the
anonymized dataset (Table 2) includes this information and can thus confirm the person being
a patient. While the identities or attributes remain undisclosed, this form of disclosure can still
jeopardize individuals, as also exemplified by the case study conducted by Garner and Kim (2019)
on DNA ancestry databases. They identified individuals’ membership in the database from the
companies 23andMe and AncestryDNA and exposed users’ sensitive health data which left them
vulnerable to discrimination or exploitation.

Recognizing the infeasibility of Dalenius’s privacy goal due to potential privacy attacks, a more
adaptable approach has emerged, aiming to determine general trends without compromising indi-
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viduals’ private information. Academic literature has explored various methodologies to address
these evolving privacy concerns which will be discussed in depth in Section 2.2.

The evolution of privacy goals has resulted in a shift in definition of privacy as well. In this research,
data privacy is defined as an individual’s ability to exert control over their personal data (What
Is Data Privacy? | IBM, n.d.). According to GDPR regulations (Art. 4 GDPR – Definitions -
General Data Protection Regulation (GDPR), 2018), personal data contains any information related
to an identified or identifiable natural person. Identification can occur directly or indirectly through
identifiers such as names, identification numbers, or characteristic factors of the individual.

2.1.3 Anonymization Operations

To fulfill the privacy requirements of the set privacy goal, various anonymization operations can
be implemented collectively or independently on the original dataset D. These techniques include
generalization, suppression, anatomization, permutation, and perturbation, each serving distinct
purposes. While there exist various versions of these operations, I will provide a general overview of
their concepts for clarity.

As the term already reveals, generalization involves replacing specific values in a dataset with
broader or less precise values. Often applied to quasi-identifiers, this technique aims to prevent
linking attacks with auxiliary information while preserving the dataset’s overall structure and utility
for data mining purposes. For instance, replacing specific ages (e.g. 25, 32, 35) with age ranges
(e.g. 20-30, 30-40, 30-40) obscures individual ages while retaining information about age distributions.
Thus, an anonymized by generalization table based on Table 2 could result in Table 3, where the
columns referring to age and ZIP code are changed.

Table 3: Generalized Hospital Records

Age_Range ZIP_Code_Range Disease

40-49 12340-12349 Flu
30-39 12340-12349 Diabetes
20-29 12340-12349 Hypertension
50-59 12340-12349 Asthma

Note: This table shows generalized hospital records where age and ZIP code have been generalized to ranges.

Suppression conceals details within QIs as well, but by either removing or masking data elements
entirely. This operation can involve suppressing entire rows (Le Fevre et al., 2005), instances of
specific values (Wang et al., 2007), or certain occurrences of a specific value in a table (Cox, 1980).
Examples include masking certain ages or ZIP codes as observed in Table 4.
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Table 4: Suppressed Hospital Records

Age ZIP_Code Disease

45 12345 Flu
34 NA Diabetes
28 12347 Hypertension

NA 12348 Asthma

Note: This table shows suppressed hospital records with certain suppressed values (replaced with NA) to protect
privacy.

Anatomization and permutation serve different purposes compared to the aforementioned techniques.
Rather than concealing QI details, these operations alter the relationship between QIs and SAs while
preserving statistical properties. For example, suppose you observe a dataset as in Table 2 again
with QIs being age and ZIP code, and a SA being medical condition. As seen in Tables 5 and 6,
anatomization would split the dataset into two separate tables: Table 5 containing anonymized QIs
(e.g. grouped age ranges and generalized ZIP code), and Table 6 containing the SAs (e.g. medical
conditions). The separation provides for more control since different levels of access can be granted
to different users, where researchers for example only receive the QIs table to analyze demographic
trends. However, when both are used, the group ID column allows for group-based linking of
the QIs and SAs without revealing direct association. On the other hand, permutation reshuffles
sensitive values among data records. Again, consider the dataset in Table 2 where each record has a
unique combination of QIs and SAs. Permutation would randomly reassign the SAs (e.g., medical
conditions) among different records, disrupting the original data structure (see Table 7). This means
that even if an attacker knows the QIs of a particular individual, they cannot accurately link it to
the correct SA. However, the ability of permutation to prevent re-identification relies heavily on
the level of permutation applied and must be selected with care to strike a balance between data
privacy and utility.

Table 5: Anatomized Hospital Records: Quasi Identifiers

Group_ID Age_Range ZIP_Code_Range

1 40-49 12340-12349
1 40-49 12340-12349
2 30-39 12340-12349
2 30-39 12340-12349

Note: This table shows anatomized hospital records where QIs (age range and ZIP code range) are anonymized
and separated from the SA.
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Table 6: Anatomized Hospital Records: Sensitive Attributes

Group_ID Disease

1 Flu
1 Hypertension
2 Diabetes
2 Asthma

Note: This table shows anatomized hospital records where the SA (Disease) is separated from the anonymized
QIs.

Table 7: Permutated Hospital Records

Age ZIP_Code Disease

45 12345 Asthma
34 12346 Flu
28 12347 Diabetes
50 12348 Hypertension

Note: This table shows permutated hospital records with shuffled disease information to protect privacy.

Perturbation stands apart from other techniques as it results in data records that do not correspond
to real-world individuals (Fung et al., 2010). Unlike anatomization and permutation, which preserve
the relationship between QIs and SAs, perturbation modifies the actual values by introducing noise
to dataset values while preserving statistical properties at an aggregate level. This noise can be
drawn from a statistical distribution, such as a Gaussian distribution with a mean of zero. The
amount of noise added is based on the standard deviation of the original data, ensuring that the
overall properties remain similar. For instance, replacing geographic coordinates with randomly
generated values obstructs pinpointing individuals’ exact locations, which is a form of perturbation.
In Table 8, new, unseen values can be observed in the age and ZIP code columns, demonstrating
the application of perturbation.

Despite the benefits of these anonymization operations, they come with challenges. While some
techniques ensure unchanged aggregate statistical properties, individual-level data utility may suffer.
Thus, by applying these techniques you will settle for some data utility loss in order to gain more
privacy protection. Determining an optimal balance requires assessing data usefulness and the
level of privacy protection, highlighting the anonymization trade-off problem. Information metrics
facilitate the answer to the trade-off problem and will be discussed for the specific privacy models
conducted in this research in Section 3.
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Table 8: Perturbated Hospital Records

Age ZIP_Code Disease

46 12344 Flu
33 12347 Diabetes
29 12346 Hypertension
51 12349 Asthma

Note: This table shows perturbated hospital records with slightly modified QI values to protect privacy.

2.2 Privacy Models

This section delves into the substantive literature review of privacy model, exploring the choices for
incorporation into the research’s privacy models. I aim to identify the most suitable existing model
for k-anonymization and differential privacy within the scope of this study.

2.2.1 K-anonymization

The k-anonymity privacy model is widely adopted by researchers due to its cost-effectiveness and
simplicity compared to alternative anonymity methods (Majeed and Lee, 2020). Academic literature
offers numerous versions of the k-anonymity privacy model, each with distinct methodological
approaches and differences.

Early works by Samarati (2001) and Sweeney (2002) introduced k-anonymity models that aim to
achieve the optimal privacy threshold while minimizing the impact on data utility and computational
resources. These models use complex algorithms to find the best possible generalization and
suppression strategies evaluating every combination of anonymized attributes. However, achieving
optimal k-anonymity is computationally expensive and is classified as an NP-hard problem (Fung
et al., 2010). This classification implies that as the dataset size increases, the time required to
find an optimal solution escalates rapidly, making it impractical to find a solution in polynomial
time. To address these challenges, LeFevre et al. (2005) proposed Incognito, a collection of optimal
generalization algorithms using bottom-up approaches. This method starts with the most generalized
form and refines it if the refined version is more useful while still protecting privacy and, in such
manner, systematically searches the space of all possible generalizations. Despite these improvements,
the computational demands remain high due to implementation on the full attribute space, limiting
the practicality for large datasets.

In response to the computational challenges of optimal models, researchers also developed minimal
anonymous models that meet basic privacy requirements with more manageable computational
demands. These models do not seek a perfect solution and may accept more aggressive generalization
if the k-anonymity is met. One of the earliest minimal anonymous k-anonymity models was introduced
by Hundepool and Willenborg (1996) with the µ-Argus algorithm. The µ-Argus approach quickly
generalizes data to meet basic privacy requirements but does not consider more detailed groupings.
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While effective for small datasets, it struggled with scalability and could handle only a limited
number of attributes. The combinatorial nature of anonymizing multiple attributes and the
increased complexity of handling dependencies between attributes led to significant computational
challenges. Hence, Sweeney (1998) introduced Datafly, a heuristic-based algorithm that employed a
greedy approach. Datafly generalizes data by starting with small generalizations and incrementally
increasing the level of generalization until the k-anonymity criterion is met. This step-by-step
technique is more efficient and can handle larger datasets, although its greedy nature sometimes led
to excessive generalization, resulting in a loss of data utility.

LeFevre et al. (2006) developed the Mondrian Multidimensional k-anonymization algorithm, which
improved upon Datafly by introducing a multidimensional partitioning approach. Mondrian parti-
tions the data into regions that are generalized independently, allowing for more flexible and efficient
anonymization. This approach utilizes a relaxed constraint, dynamically adjusting its partitioning
strategy based on the data’s multidimensional structure rather than strictly adhering to a single path
of generalization as Datafly does. Consequently, this method strikes a balance between privacy and
utility by preserving the multidimensional structure of the data while ensuring k-anonymity and is
therefore argued to be a combination of both the optimal and minimal approach. Mondrian’s ability
to handle large datasets and its superior performance in terms of data utility and computational
efficiency have made it a widely used and well-regarded k-anonymization method in the literature.

Given the need to balance data utility and computational efficiency while ensuring robust privacy
protection, this study employs the Multidimensional Mondrian k-anonymization model by LeFevre
et al. (2006). Its methodological advantages, particularly in handling large datasets, make it the
most suitable choice for the analysis in this research.

2.2.2 Differential Privacy

Although the Mondrian Multidimensional k-anonymity privacy model outperforms many others
and works relatively well on large data sets, privacy attacks remain a concerning challenge within
k-anonymity. Especially when a data set is not only large but scarce too, identity disclosure attacks
as well as attribute disclosure attacks can still endanger the privacy of the individuals in the data
set. Therefore, I also turn to implementations of the differential privacy framework that have been
increasingly analyzed the past few years and explain why the IPF method (Nowok, 2016) with the
extension of differential privacy (Raab, 2022) is the most suitable choice for this study.

Dwork (2006) suggested the strong theoretical framework differential privacy which guaranteed the
privacy of individuals in a dataset by making sure the presence or absence of the individual has
no effect on the outcome distribution. The initial implementation of differential privacy by Dwork
(2006) proposed to use the Laplace mechanism. This method adds noise drawn from a Laplace
distribution directly to individual data points and thereby effectively obfuscates the individual data
points. The amount of noise added is proportional to the distribution of the original data and
controlled by the privacy budget ϵ. While this method is relatively simple to implement, applying
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noise directly to individual data points can result in significant noise, particularly in datasets with
correlated attributes as the added noise can amplify these correlations, leading to distorted results.
This approach can therefore significantly degrade data utility (Zhu et al, 2017).

As research progressed, more sophisticated differential privacy mechanisms were developed to
address the limitations of the Laplace mechanism. These include noise addition drawn from different
distributions. Researchers McSherry and Talwar (2007) investigated the Gaussian mechanism, which
uses Gaussian noise, and the Exponential mechanism, which chooses resulting datasets using a
scoring function that appoints higher probabilities to outcomes with greater utility. The mechanism
uses a probability distribution over all the possible outputs, where each output’s probability is
exponentially proportional to its score, making it more likely to select high-utility outputs while still
maintaining privacy. The Exponential mechanism is useful for non-numeric scoring based functions
such as ranking, categorical choices, or decision-making processes. However, the technique can be
computationally intensive due to the need to calculate a probability distribution over all possible
outputs based on their utility scores. The Gaussian mechanism provides better accuracy compared
to the Laplace mechanism when the data exhibits natural variance similar to a normal distribution.
This approach results in more accurate outcomes under specific conditions but requires careful
tuning of parameters such as variance, adding complexity to its implementation. Thus, although
these mechanisms also have their limitations, the development of techniques enabled researchers to
implement the most suitable approach according to their study.

As previously mentioned, data correlation can have significant implications when sharing complete
datasets, as the correlations between quasi-identifiers can enable adversaries to infer sensitive
information by making educated guesses based on a single known variable. To tackle this challenge,
researchers have proposed various methods such as batch querying and synthetic data publishing
to mitigate risks. Batch query solutions group similar data queries (i.e., data retrieval operations)
together and answer them as a batch to minimize the impact of correlations on privacy. The
determination of which queries are grouped into each batch is based on their similarity and relevance
to one another. Xiao et al. (2010) suggested the Privelet method, which transforms the data
by applying wavelet transforms that decomposes data into various frequency components (i.e.,
range-count queries) before adding noise and reconstructing data from these noisy coefficients.
Although this method outperformed many prior methods and is relatively simple in terms of setting
up and processing individual queries, this technique is limited to the predefined queries and therefore
highly inflexible. On the other hand, synthetic data publishing involves generating new datasets that
replicate the statistical properties of the original data to address correlation issues. My aim is to
present a solution that is applicable to various types of analysis, considering that the specific purpose
of the data recipient may be unknown within the scope of this thesis, so therefore developments in
differentially private synthetic data publishing are highly beneficial for my research.

One of the first occurrences of differentially private synthetic data publishing was by the researchers
Machanavajjhala et al. (2008). The researchers applied the Dirichlet-Multinomial model to count

17



data from the U.S. Census Bureau, employing a probabilistic model that accounts for the variability
and uncertainty in the count data. However, they, along with numerous subsequent researchers,
were unable to produce usable synthetic results. According to Schneider et al. (2018), the primary
issue was the lack of covariates in the privacy models, which meant that the synthetic data did not
accurately reflect the structure and dependencies of the original data. The inclusion of covariates
by algorithms, such as the one proposed by Abowd et al. (2013), was identified as a key factor for
success. However, while this approach succeeded for simple regression analysis, it did not perform
well for multiple regression scenarios.

Academics concluded that relaxing the privacy constraints was necessary to address real-world cases,
leading to the development of empirical differential privacy as outlined by Schneider and Abowd
(2015). Their method adds noise to the data in a manner similar to differential privacy, but the
noise addition is based on the likelihood of the posterior predictive distribution. This unbounded
nature breaks the formal guarantees of differential privacy. Although these models offered practical
solutions, critics pointed out that the lack of formal guarantees and the dependency on the choice
of discretization rendered the measure not well-defined (Charest and Hou, 2017).

Fortunately, significant advancements in the field occurred with the introduction of Generative
Adversarial Networks (GANs) and models fitted to data margins. GANs can integrate differential
privacy by training two neural networks, the Generator and the Discriminator, against each
other. The Generator produces synthetic data, and the Discriminator assesses its authenticity. By
incorporating differential privacy into this process, GANs can produce synthetic data that accurately
models complex data structures and relationships while ensuring privacy (Raab, 2022).

Nonetheless, marginal methods outperformed GANs by first ensuring each variable pair in the
dataset is differentially private, fitting a model that only includes specific predefined important
interactions between variables, and then adding noise to these interactions to maintain differential
privacy. Nowok et al. (2016) introduced two high-performing and user-friendly marginal methods,
one of which Raab (2022) successfully extended with the differential privacy framework, naming it
the Iterative Proportional Fitting algorithm. This method adjusts cell counts in contingency tables
to fit specified margins while adding noise to ensure privacy. This process maintains the overall
distributional properties of the original data, generating synthetic data while ensuring differential
privacy. Although the noise addition is drawn from the Laplace distribution, which may not be the
best-performing technique, and the method is limited to categorical variables, it handles large and
complex datasets with relatively low levels of noise, making it a highly suitable technique for this
research.

In light of the developments in academic research on this topic and the scope of my thesis, I apply
the IPF method with the differentially private extension proposed by Raab (2022) to assess its
strengths and weaknesses and compare them to the Multidimensional Mondrian k-anonymization
approach.
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3 Methodology

In this section, the selected methodologies described in Section 2 will be elaborated upon. Although
PPDP methods do not require extensive information about the dataset, some implementations of
the methods exhibit preferences for certain data characteristics. Therefore, it is essential to first
highlight key characteristics of the data and the data collection process. Subsequently, the details of
the inter-methodology metrics (i.e., the prediction accuracies of the logistic regression model and the
execution time) are explained. Finally, the mathematical foundation of Multidimensional Mondrian
k-anonymization and the Iterative Proportional Fitting technique using differential privacy will be
explained.

3.1 Data Collection

The dataset under consideration, gathered by the survey organization SSI in 2008 and previously used
by researchers De Jong et al. (2012), contains 3,146 observations from individuals who participated
in an online survey. As mentioned, these individuals represent a diverse cross-section of the global
population, including nationalities from France, the United States of America, Brazil, and Singapore.

The selected variables are exclusively categorical in nature. As defined in the terminology section,
the dataset includes one sensitive attribute and five quasi-identifiers. All direct identifiers have been
entirely removed, and no non-sensitive attributes are included among the selected variables. The
sensitive attribute is binary, indicating whether individuals have purchased prescription drugs without
a prescription, which is considered illegal and highly confidential. To protect the confidentiality
of the individuals, it is crucial to employ effective PPDP methods. Since both sensitive attributes
and quasi-identifiers can potentially reveal the identities of individuals in a dataset, the methods
will aim to preserve the privacy of both these kinds of variables. The quasi-identifiers refer to
gender, education, social class, working status, and marital status. Among these, the variables
Gender and MaritalStatus are binary, while the others are multilevel categories, primarily ordinal
in nature. The dataset contains no missing values; however, some category levels include only a
few observations. In Table 24 of the Appendix, the frequency and meaning of the various levels is
stated This sparsity may pose challenges for the implementation of certain models, which will be
addressed in the sections dedicated to each method.

3.2 Inter-methodology metrics

In addition to specific intra-methodology metrics for each PPDP technique, the inter-methodology
metrics will assess the practicality of the methods to select the appropriate anonymization method
for potential stakeholders. To compare the computational efficiency, the execution time for the
anonymization step is recorded. The utility will be assessed by analyzing the changed prediction
accuracy of the anonymized data compared to the original data using a logistic regression model. The
logistic regression is constructed to predict the probability of the illegal prescription drug purchase
(Y ) as binary dependent variable based on several categorical quasi-identifiers as independent
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variables. Each categorical variable has varying levels, and these levels are incorporated into
the model using dummy variables where the first level is considered the reference category. The
corresponding formula for the logistic regression model in this study can be expressed as:

log
(

P (Y = 1)
1 − P (Y = 1)

)
=

β0 + βGender · DGender +
6∑

j=1
βEducationj · DEducationj +

5∑
j=1

βSocialClassj · DSocialClassj +

7∑
j=1

βWorkingStatusj
· DWorkingStatusj

+ βMaritalStatus · DMaritalStatus + βIllegalPurchase · DIllegalPurchase

where β0 is the intercept, βGender is the coefficient for the dummy variable DGender (i.e., Female),
βEducationj are the coefficients for the dummy variables DEducationj representing the levels of Edu-
cation, βSocialClassj are the coefficients for the dummy variables DSocialClassj representing levels of
Social Class, βWorkingStatusj

are the coefficients for the dummy variables DWorkingStatusj
representing

levels of Work Status, βMaritalStatus is the coefficient for the dummy variable DMaritalStatus (i.e.,
Single), and βIllegalPurchase is the coefficient for the dummy variable DIllegalPurchase (i.e., No). For
each categorical variable with Li levels, Li − 1 dummy variables are created. The intercept β0

represents the log-odds of the outcome when all predictors are at their reference levels. The dummy
variable coefficients represent the change in log-odds of the outcome for the corresponding category
compared to the reference category.

First, the original data is used as input data to serve as a benchmark. Subsequently, both the
Mondrian anonymized as well as the IPF anonymized data sets are used as input for the model. The
logistic regression analyses are cross-validated 10-fold to obtain more reliable results. Furthermore,
given the slightly skewed nature of the dependent variable (see Table 24 of the Appendix), metrics
that account for this imbalance will be assessed, namely sensitivity, specificity, and balanced accuracy.
Sensitivity refers to the correct classification of individuals who have illegally purchased prescription
drugs, while specificity refers to the correct classification of individuals who have not. Balanced
accuracy represents the equilibrium between these two metrics.

3.2.1 Verification statistical assumptions

Prior to describing the results of the logistic regression with the different inputs, it is essential to
verify that the statistical assumptions of the model are satisfied. These assumptions include the inde-
pendence of observations, a sufficient sample size, linearity of the logit, absence of multicollinearity,
and absence of outliers.

First, the assumption of independence of observations is inherently satisfied in this study, as the data
is collected through individual surveys completed independently by respondents. This independence
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guarantees that there is no relationship between residuals.

As shown in Table 24 of the Appendix, the sample size of 3,146 observations is sufficient given the
complexity of the model and the number of predictors, adhering to the rule of thumb of having at
least 10 observations per independent variable.

Additionally, the assumption of linearity of the logit, where the relationship between the independent
variables and the log-odds of the dependent variable is expected to be linear, is satisfied due to the
categorical nature of the variables. It is crucial, however, that the categorical variables are properly
coded and interpreted.

Multicollinearity occurs when two or more independent variables in the model exhibit high correlation,
resulting in unreliable estimates of the regression coefficients. To detect potential multicollinearity,
various tests such as Fisher’s Exact Test, Cramer’s V Test, and the Generalized Variance Inflation
Factor (GVIF) were conducted on the original data.

Fisher’s Exact Test assesses the independence between pairs of categorical variables, especially in
situations where the frequency of pairs might be low. A p-value less than 0.05 indicates a significant
association between the variables. As shown in Table 25 of the Appendix, several variable pairs
exhibit p-values below 0.05, such as Gender and Education (p = 0.0004998) and Gender and
WorkingStatus (p = 0.0004998), suggesting potential multicollinearity between these variables,
warranting further investigation.

To measure the strength of association between two categorical variables, Cramer’s V Test was
examined. The values range between 0 and 1, with 0 signifying no association and 1 representing
a perfect association. Observing the results in Table 26 of the Appendix, most values are low,
indicating weak associations (0 to 0.1). However, moderate associations, with values between 0.1 and
0.3, were found for Gender and WorkingStatus, as well as WorkingStatus and MaritalStatus The
presence of these moderate associations necessitates additional testing to ensure reliable estimates.

The GVIF quantifies the extent of multicollinearity in a regression model and is adapted to handle
multilevel categorical variables. A GVIF value of 1 indicates no multicollinearity, values between 1
and 5 suggest moderate multicollinearity, and values exceeding 5 indicate high multicollinearity within
the model. Additionally, a transformed GVIF metric is evaluated, which scales the GVIF according
to the degrees of freedom associated with each predictor. For this transformed metric, a value of 1
again signifies no multicollinearity, values between 1 and 2 suggest moderate multicollinearity, and
values above 2 indicate high levels of multicollinearity. In this analysis, presented in Table 27, the
GVIF values for all variables are close to 1, indicating no significant multicollinearity. Similarly,
the transformed GVIF values remain very close to 1, suggesting an absence of multicollinearity.
Hence, based on the analysis of various correlation tests, there is no significant evidence of (perfect)
multicollinearity in the dataset, thereby satisfying this statistical assumption of the logistic regression
model.

21



In addition to conducting multicollinearity tests, the presence of outliers is analyzed using Cook’s
distance and leverage plots. Outliers can disproportionately affect the model, so Cook’s Distance
is measured to identify influential points. The threshold for Cook’s Distance is determined by an
inverse proportion of the number of observations and the complexity of the model. This entails that
in a larger dataset, a data point must have a more substantial impact to be considered influential.
As the number of predictors increases, the threshold becomes larger, making the model more
tolerant of influential data points. As presented in Figure 5 of the Appendix, most observations
have values close to zero, indicating they are not overly influential. Although a few points exhibit
higher values than the threshold, further analysis on these outliers is conducted. Consequently, the
leverage measure visualization in Figure 6 of the Appendix indicates that most deviations of the
independent variables from their mean lie within an acceptable range, although some high-leverage
points are present. Based on these results, caution should be exercised as some data points may
disproportionately influence the model. However, since the majority of observations remain close to
the threshold, this is not necessarily problematic. Therefore, the final assumption of the logistic
regression model is satisfied.

Given that all statistical assumptions are met, the logistic regression analysis can be performed.

3.3 Multidimensional Mondrian K-anonymization

The Multidimensional Mondrian approach by leFevre et al. (2006) broadly implements two steps,
namely the partitioning and generalization step. I will now outline all the details to consider in this
process.

3.3.1 Process

The Mondrian process initiates by recursively partitioning the dataset into smaller subsets until all
partitions meet the k-anonymity criterion. This process is inherently greedy, selecting the optimal
partition at each step without considering overall optimization, thereby enhancing computational
speed. This characteristic allows the method to be applied to multidimensional data without
excessive computational burden.

Unlike other methodologies that utilize single-dimensional partitioning, the Mondrian method
employs a multidimensional partitioning approach. This approach considers multiple attributes
simultaneously when determining how to partition the data, making it particularly effective for
datasets with significant attribute correlations. During each iteration, the algorithm evaluates the
importance of each quasi-identifier based on the number of unique values it contains. Mathematically,
this is presented as follows: I(QI) =

∑d
j=1 unique(QIj) , where Unique(QIj) is the number of

unique values in quasi identifier QIj . Attributes with a higher number of unique values have a
greater potential for individual identification and are thus prioritized for partitioning. The algorithm
seeks to maintain as much information as possible by selecting the attribute with the highest number
of unique values.
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The chosen attribute is then sorted, and a median split is performed, dividing the data into two
subsets. The corresponding formula looks as follows:

Median(X) =
X( n

2 ) + X( n
2 +1)

2

where X is the chosen attribute. After each split, the process verifies whether both resulting
partitions independently satisfy the k-anonymity requirement, ensuring that each partition contains
at least k indistinguishable records based on the QIs. The mathematical representation of the
criterion looks as follows: |Ei| ≥ k , where Ei represents the equivalence class. This study employs
both strict partitioning as well as relaxed partitioning. Strict partitioning treats each partition as an
isolated subset where the k-anonymity requirement must be independently satisfied, while relaxed
partitioning allows for overlapping regions. The strict partitioning technique ensures robust privacy
guarantees but may lead to larger equivalence classes and therefore potentially higher information
loss. On the other hand, relaxed partitioning blurs distinct boundaries by allowing for overlapping
regions, but the increased flexibility can also result in better data utility. To fully comprehend
the difference between the two techniques, a simplified example is shown in Table 9. For strict
partitioning each group is strictly defined by both age and city with no overlap between groups,
while for relaxed partitioning the groups are defined by age only, allowing for overlap between
people from different cities within the same age range. With that logic in mind, if both partitions
meet the criterion, the process continues by calculating the importance measure, selecting the most
important attribute, and performing another median split. If a partition cannot be split further
without violating the k-anonymity requirement (i.e., a resulting partition would have fewer than k

records), the partitioning process stops for that partition, and the algorithm proceeds to the next
step: recoding.

Table 9: Partitioning of individuals based on age and city

Person Age City Strict.Partitioning Relaxed.Partitioning

Alice 25 New York Group 1: 20-30, NY Group 1: 20-30
Bob 27 New York Group 1: 20-30, NY Group 1: 20-30
Charlie 35 Boston Group 2: 30-40, Boston Group 2: 30-40
Dana 29 Boston Group 3: 20-30, Boston Group 1: 20-30
Eve 22 New York Group 4: 20-30, NY Group 1: 20-30

Frank 42 Boston Group 5: 40-50, Boston Group 3: 40-50

Note: This table presents the strict and relaxed partitioning techniques. The strict partitioning column shows
strictly defined non-overlapping groups by both age and city. The relaxed partitioning column is defined by age
and shows overlapping groups for different cities.

Recoding entails the generalization or suppression of values or attributes to protect the identity of
individuals while ensuring data utility. This can be implemented at either a global or local level.
Local recoding modifies values within individual records, tailoring adjustments to the specific needs
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of each record. On the other hand, global recoding defines a fixed set of generalized values for each
attribute, uniformly applied across the entire dataset. For illustrative purposes, Table 10 presents
local recoding of the city attribute by labelling in finer distinctions such as “NY Metro” and “Boston
Area”, while global recoding applies a uniform rule, labelling the cities into the broader region
“Northeast USA”. This study adopts the global recoding approach, ensuring consistent recoding
throughout the dataset.

Table 10: Recoding of individuals based on age and city

Person Age City Local.Recoding Global.Recoding

Alice 25 New York Age: 20-30, City: NY Metro Age: 20-30, City: Northeast USA
Bob 27 New York Age: 20-30, City: NY Metro Age: 20-30, City: Northeast USA
Charlie 35 Boston Age: 30-40, City: Boston Area Age: 30-40, City: Northeast USA
Dana 29 Boston Age: 20-30, City: Boston Area Age: 20-30, City: Northeast USA
Eve 22 New York Age: 20-30, City: NY Metro Age: 20-30, City: Northeast USA

Frank 42 Boston Age: 40-50, City: Boston Area Age: 40-50, City: Northeast USA

Note: This table presents the local and global recoding of individuals based on their original age and city. The
difference in recoding is observed in the city variable where local recoding makes finer distinctions and global
recoding applies a uniform rule.

After partitioning the dataset, global recoding is applied. For each QI within a partition, actual
values are replaced with a range spanning from the minimum to the maximum value found in that
partition. The mathematical formula which corresponds to this is: [min(QIi), max(QIi)]. This
step effectively anonymizes the data by removing precise value details and replacing them with a
generalized interval that retains data truthfulness while protecting individual identities. Additionally,
this recoding ensures data usability by providing sufficient detail to understand value distributions
without disclosing exact information.

3.3.2 Evaluation Metrics

To assess the performance of the method, specific inter-methodology metrics are defined for evaluating
the protection of individuals, data utility, and computational efficiency.

For protection purposes, it is most straightforward to verify whether the data satisfies the criterion of
equivalence classes containing at least k records. To establish stronger privacy protection boundaries,
the k-value can be increased. However, this may reduce data utility, necessitating a metric to further
analyze data utility. To evaluate multiple levels of privacy protection, k-values 2, 5, 10, 15, 20 are
used.

For both protection and data utility purposes, the Discernibility Metric (DM) is calculated similar
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as proposed by LeFevre et al. (2017) using the formula:

CDM =
∑

E∈EquivClasses
|E|2

where E represents an equivalence class and |E| determines the size (number of records) of equivalence
class E. The quadratic nature of the formula signals that larger equivalence classes have a
disproportionately higher impact on the DM. An increased DM value generally implies enhanced
privacy protection at the expense of data utility, as the anonymization process has deemed more
records identical.

3.3.3 Challenges

As previously noted, the Mondrian algorithm can handle both numeric and categorical data. However,
the implementation outlined by LeFevre et al. (2006) and employed in this study is limited in that
it converts categories into numerical values before applying the algorithm. Given that the selected
variables are primarily ordinal or binary, this limitation is not overly problematic, although it does
result in some additional information loss.

Moreover, dataset sparsity can complicate partitioning, or potentially even prevent the algorithm
from anonymizing the data and also satisfying the k-equivalence class requirement.

3.4 Iterative Proportional Fitting with Differential Privacy

While numerous methods exist to create differentially private datasets, generating synthetic versions
of the original data is most desirable for this thesis. To create synthetic data using Iterative
Proportional Fitting with differential privacy, several critical steps are necessary, each designed to
balance the trade-off between data privacy and utility (Raab, 2022). This section outlines these
steps.

3.4.1 Process

The IPF method supports only categorical variables; therefore, ensuring the dataset’s suitability
during preprocessing is crucial. Continuous variables can be utilized by discretizing them into
categorical bins. Furthermore, the method does not function properly with missing values, as these
will introduce biases and inaccuracies. Consequently, missing values should be either imputed or
excluded. Fortunately, the dataset in this thesis contains neither continuous variables nor missing
values, thus obviating the need for preprocessing steps.

To ensure differential privacy, a constraint is set using the parameter ϵ. ϵ, the privacy budget,
controls the balance between privacy and utility, representing the cumulative sensitivity of individual
data entries within the dataset. The core principle of the ϵ -differential privacy framework is
encapsulated in the following mathematical expression:
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Pr[A(D) ∈ S] ≤ eϵ × Pr[A(D′) ∈ S]

where A represents the randomized algorithm applied to the dataset; D and D′ are two datasets
differing by at most one individual’s data; S is a set representing any possible subset of outputs from
the algorithm; and eϵ is an exponential factor based on ϵ which controls the degree of privacy by
bounding how much more likely any outcome is under one dataset versus the other. This framework
ensures that the algorithm’s output remains approximately the same, regardless of whether any
individual record is included in the dataset, thereby safeguarding the privacy of individuals (Dwork,
2006). Lower ϵ values indicate a lower privacy budget to distribute and thus provide better privacy
protection, even though it comes at the cost of reduced data utility. To assess the models’ capabilities
extensively, various values of ϵ are set and evaluated to find the preferred balance. In this study,
0.2, 0.5, 1, and 2 are the selected ϵ values, offering a spectrum of very strong privacy protections,
default choices, and less privacy conservation options.

After data preparations and setting the privacy budget, cross-tabulations are created. As previously
mentioned, cross-tabulations refer to the frequency distributions of combinations of variable values,
which can be generated for all variables or for a predetermined selection of variable interactions,
known as margins. To select margins the importance of interactions in the original data is observed.
The default setting for creating cross-tabulations is based on the two-way interactions between all
pairs of variables in the data. These pairwise interactions preserve key relationships without overly
complicating the model. As Raab (2022) highlighted, the selected margins must be compatible with
the subsequent data mining goals to ensure that the synthetic data remains useful. This means
that the chosen margins should align with the intended analyses or tasks that the synthetic data
will be used for, ensuring that key relationships and patterns relevant to those tasks are preserved.
However, as discussed previously in Section 1.1 within the scope of this thesis it is unknown what
the aim of the data miner is. Therefore, I opt for the generally effective approach for preserving
important relationships by using pairwise interactions as margins.

To prevent cross-tabulation cells from having zero counts and ensure statistical integrity by main-
taining a minimal presence for every possible combination of variables, a value is added to each cell
in every cross-tabulation. This value is determined by setting priorn > 0 and dividing it by the
number of cells in the frequency table (ncells). Parameter priorn must be positive as a zero value
would leave the frequency tables unchanged, and a negative value could reduce counts to negative
values, which is meaningless for frequencies. To evaluate the outcomes of applying various levels
of smoothing, various priorn values are tested. Typically, a small value is selected to cause only
minimal distortion. Therefore, 0.1, 0.5 and 1 are chosen as well as 0 for priorn to compare the
smoothing parameters with the baseline. For robustness reasons, the results of testing the selected
values of the priorn parameter with the selected values of the ϵ parameter are averaged over 15
syntheses.
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Next, noise drawn from the Laplace distribution is added to the counts in each cell of the cross-
tabulation to introduce controlled randomness into the data, thereby protecting the privacy of
individuals. Laplace noise is commonly used in differential privacy due to the mathematical
properties of its Probability Density Function (PDF). The Laplace distribution PDF is presented by
the following formula:

f(x|m, b) = 1
2b

exp
(

−|x − m|
b

)

where x is the variable, m is the mean of the distribution, and b is the scale parameter. The
distribution is symmetric and has a sharp peak at its mean. Consequently, most noise values will be
close to zero, minimally biasing the data, but some values will be farther away depending on the
scale parameter b. The scale parameter for the Laplace distribution is calculated by the following
formula: b = M

ϵ , where M is the number of margins and ϵ is the privacy budget. By definition of
the scale parameter, the likelihood of larger added values increases, resulting in more perturbed
values, as the privacy budget decreases.

After adding Laplace noise to the cells in the frequency tables, some cells may contain negative
counts due to the distribution’s symmetry and zero mean. These negative counts are set to zero, as
negative frequencies are illogical. Additionally, it is crucial to then scale the counts to form a valid
probability distribution summing to unity, accurately representing the original distribution.

With the noisy margins created, the IPF model is applied. The algorithm iteratively adjusts the
initial margins (i.e., the scaled original frequency, which serve as the prior probabilities) until they
are consistent with the noisy marginal distributions including the Laplace noise and thus compatible.
The updated probabilities after taking into account the prior probabilities and the noisy margins,
are called the posterior probabilities. During each iteration, the algorithm first calculates the
discrepancy between the noisy margins and the initial margins. Based on the size of this discrepancy,
the algorithm scales the probabilities of each initial margin and thereby bringing them closer to the
noisy margins while maintaining their relative proportions. This process repeats until the margins
gradually converge to a stable solution ensuring privacy while also preserving the structure and
relationships within the original data as accurately as possible.

After the IPF adjustments, each cell in the contingency table has a fitted probability. The synthetic
data is generated by sampling from the multinomial distribution using these fitted probabilities.
The multinomial distribution parameters are derived from the posterior probabilities for each cell,
as determined by the IPF method. The number of synthetic data points generated is equal to the
number of individuals contained in the dataset. The log-linear fit is used to model relationships
between multiple categorical variables in the contingency table, ensuring that the synthetic data
preserves these relationships.

The variables are grouped and synthesized in a specific sequence, known as the visit sequence, to
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ensure that relationships between them are accurately reflected in the synthetic data. For example,
after generating synthetic data for gender and education, the synthetic values of these variables are
used to conditionally generate synthetic data for marital status, thereby preserving the relationships
between these variables.

3.4.2 Evaluation Metrics

In evaluating the performance of differentially private synthetic data, researchers employ various
metrics to determine utility and privacy protection. This thesis will assess metrics similar to Raab
(2022) by comparing metrics for both a synthetic data set incorporating differential privacy and a
synthetic data set without differential privacy constraints.

To assess privacy protection, the replicated uniques are determined. Replicated uniques are defined
as the proportion of unique observations in the synthetic data that remain unique in the original
data as well. The formula is as follows:

ru =
(∑k

i=1(si = 1 and yi = 1)
k

)
× 100

where si and yi are the counts in the synthetic and original data respectively for cell i in the
cross-tabulation and k is the number of cells in the cross-tabulations. A higher percentage of
replicated uniques indicates a higher risk of compromising the identity of individuals in the data
set, as it reflects greater similarity between the synthetic and original datasets. Therefore, a lower
percentage is generally desirable, though it may come at the cost of information loss. Nonetheless,
this value depends on the uniqueness of the original data. Hence, to scale the value by the uniqueness
of the original value, I also determine the following privacy metric: (ru as a % of p1) =

(
ru
p1

)
× 100

, where p1 is defined as the percentage of unique records in the original data with the formula
p1 =

(∑k

i=1(yi=1)
N

)
× 100. Here, again yi is the number of counts in the original data for cell i in

the cross-tabulation and N is the total number of records in the original data.

To measure the utility of differentially private synthetic data, the propensity score Mean Square
Error (pMSE) is introduced. As Raab (2022) stated, pMSE assesses utility by first computing
propensity scores for each observation in both the original and synthetic datasets. This involves
estimating the probability that an observation belongs to the synthetic dataset versus the original
dataset based on the covariates or variables available in the dataset. Then, the squared differences
between the true propensity scores in the original data and those estimated from the synthetic
data are computed for each observation and summed across all observations. Finally, the average
of the sum of squared differences is taken to obtain pMSE. The corresponding formula for pMSE
is: pMSE = 1

N

∑N
i=1(p̂i − pi)2 where p̂i is the estimated propensity score for observation i in the

synthetic data, pi is the true propensity score for observation i in the original data, and N is the
total number of observations. A lower pMSE value indicates a smaller discrepancy between the
true and estimated propensity scores, signifying better utility. The pMSE values for both synthetic
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and differentially private synthetic data are computed to assess the differential privacy constraint’s
impact.

3.4.3 Challenges

Generating differentially private synthetic datasets with IPF can present challenges in certain
situations. For example, high-dimensional datasets may lead to sparse contingency tables and
unreliable estimates of joint variable distributions during the IPF process, affecting the quality of
the generated synthetic data.

Additionally, significantly large datasets might cause computational complexity to grow exponentially
due to the increased number of contingency tables. Therefore, the original dataset must have a
manageable number of variables to ensure the model executes properly and converges to a compatible
dataset within a reasonable timeframe.

Furthermore, the purpose of the data mining task after publishing the differentially private synthetic
data is uncertain. The data may be incompatible with the analysis performed at the data mining
stage. While pairwise interactions generally perform well, expert domain knowledge of the attributes
and data mining tasks could optimize the model and thus the generated data.

Lastly, the probabilities calculated during the IPF process may not sum to exactly 100 percent due
to rounding errors or numerical instability. While small deviations may not significantly impact the
synthetic data’s overall utility, larger discrepancies can affect the dataset’s accuracy of the generated
dataset.
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4 Results

In this section, I will analyze the outcomes of the selected and implemented methodologies. First, the
results of the Multidimensional Mondrian K-anonymization, as introduced by LeFevre et al. (2006),
are presented and explained. Second, the results of the Iterative Proportional Fitting (IPF) method
are displayed, both with and without the incorporation of the differential privacy framework, as first
presented by Raab (2022). Third, based on the results of the conducted anonymization algorithms,
I will determine the optimal values for the hyperparameters and use them to create two anonymized
datasets—one for each method. These anonymized datasets will then serve as input for the logistic
regression analysis to compare the inter-methodology metrics.

4.1 Mondrian k-anonymization

The Multidimensional Mondrian K-anonymization algorithm is characterized by one critical parame-
ter, k, which determines the level of privacy protection. Consequently, the algorithm is evaluated by
assessing various k-values. As for example illustrated in Table 11, the k-values analyzed include 2, 5,
10, 15, and 20. Higher k-values correspond to stronger privacy protection; however, this increased
privacy invariably comes at the cost of data utility, as has been repeatedly discussed.

4.1.1 Strict partitioning

Initially, the various k-values were assessed for the Mondrian k-anonymization with strict partitioning.
As shown in Table 11, the k-anonymity criterion was not satisfied for any of the strictly partitioned
anonymized datasets. Further analysis revealed that many partitions generated by the method
described in Section 3.2.1 contained unique records, rendering them unsuitable. This suggests that
the dataset’s high uniqueness presents a challenge for this approach. To provide additional context,
summary statistics are presented in Table 12, illustrating that 20.47 percent of the original dataset
comprises unique records. This significant proportion leads to partitions being overly granular,
resulting in groups with fewer than k indistinguishable records.

Table 11: Results of Strict Partitioned Mondrian Anonymization

k DM k_Anonymity

2 120476 FALSE
5 101178 FALSE

10 96948 FALSE
15 111930 FALSE
20 111930 FALSE

Note: This table presents the results of strict partitioned Mondrian anonymization. The k column indicates the
k-values used in the anonymization process. The DM column shows the Discernibility Metric for each k-value,
and the k Anonymity column indicates whether k-anonymity was achieved (TRUE) or not (FALSE).
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Table 12: Summary statistics original data

Metric Value

N 3146.00
n_cells 2688.00
p0 76.04
p1 20.47

Note: This table summarizes the key metrics from the original dataset. The Metric column includes various
statistical measures, and the Value column provides their respective values. The various statistical measures
represent respectively the number of observations, the number of cells in the cross-tabulations, the percentage of
empty cells in the contingency tables, and the percentage of uniques in the original data.

Figure 2: Privacy-utility Trade-off for Strict Partitioning

Note. This figure illustrates the relationship between the Discernibility Metric (DM) and various k
values under strict partitioning conditions for the Multidimensional Mondrian k-anonymization
method.

Despite the failure to meet the k-anonymity criterion, where at least one equivalence class is smaller
than k, the DM can still be calculated to obtain an indication of the overall anonymity cost of
the dataset. As indicated in Table 11 and Figure 2, the DM value generally increases with higher
k-values. This aligns with the expectation that stronger privacy protection typically reduces data
utility. However, extreme caution should be exercised when interpreting the absolute DM values, as
the algorithm failed to apply sufficient privacy protections to meet the threshold. Consequently,
it is imperative to evaluate an alternative technique that may fulfill the k-anonymity criterion,

31



specifically the relaxed partitioning Mondrian technique.

4.1.2 Relaxed partitioning

The relaxed partitioning constraints of the Mondrian algorithm, which permit overlapping regions,
aim to maintain better data utility while still respecting privacy requirements. Implementing this
approach on the dataset satisfies the k-anonymity criteria for various k-values (see Table 13). This
indicates that each record in any given partition has at least k − 1 indistinguishable counterparts,
effectively anonymizing the data.

Table 13: Results of Relaxed Partitioned Mondrian Anonymization

k DM k_Anonymity

2 35106 TRUE
5 102962 TRUE

10 287330 TRUE
15 359592 TRUE
20 359592 TRUE

Note: This table presents the results of the relaxed partitioned Mondrian anonymization process. The k column
represents different k-anonymity levels, the DM column shows the discernibility metric, and the k Anonymity
column indicates whether k-anonymity was achieved (TRUE) or not (FALSE).

Regarding the DM value, it generally increases as k increases, peaking at k = 15 (see Figure 3).
This trend is typical, as higher DM values indicate more records being deemed identical due to
stronger generalization operations, enhancing privacy at the expense of data utility.

Moreover, variations in the steepness of the DM curve are observed. The steeper increase between
k = 5 and k = 10 typically suggests that achieving k = 10 anonymity necessitated substantial
data generalization. This can occur when the QIs within existing partitions at k = 5 exhibit high
variability or numerous outliers. Consequently, even a small increase in k may disproportionately
impact certain data subsets, requiring significantly more generalization to ensure privacy compliance.
As illustrated in Tables 28 and 29 of the Appendix, previews of the anonymized datasets for
the SocialClass attribute at k = 5 and k = 10 show that stronger privacy requirements led to
generalizing from [2 − 4] to [2 − 6]. This substantial generalization step likely affects other partitions
similarly.

Interestingly, the DM curve flattens after k = 15, indicating that further increases in k do not
require significant additional generalizations to maintain k-anonymity. This phenomenon can be
understood by examining both the theoretical implications of the DM curve and the actual data
transformations at k = 15 and k = 20 shown in the provided examples (Tables 30 and 31 in the
Appendix). Theoretically, this may occur if most QIs within the dataset are already grouped into
broad categories satisfying the k-anonymity criterion for higher k-values. Thus, data publishers can
select a k-value between 15 and 20 without significant losses in data usability. Practically, the lack
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of change in range categories between k = 15 and k = 20 illustrates why the DM may plateau; since
the ranges are not expanding further, the “penalty” measured by the DM for anonymization does
not increase.

Figure 3: Privacy-utility Trade-off for Relaxed Partitioning

Note. This figure illustrates the relationship between the Discernibility Metric (DM) and various k
values under relaxed partitioning conditions for the Multidimensional Mondrian k-anonymization
method.

4.2 IPF with Differential Privacy

In addition to the Mondrian approach, this section analyzes and interprets the results of the IPF
algorithm, particularly its extension incorporating the differential privacy framework. This technique
allows for the adjustment of two key parameters: ϵ and priorn, based on the preferences of the data
publisher. As previously mentioned, increasing ϵ values results in lower levels of privacy protection.
The evaluation considers ϵ values of 0.2, 0.5, 1, and 2, comparing these results both within the
synthetic datasets and against those generated without differential privacy (i.e., ϵ = 0). The impact
of the priorn parameter, assessed at values 0, 0.1, 0.5, and 1, is also examined to understand its
role in data smoothing and maintaining statistical integrity.

4.2.1 Non-DP synthesis

First, the outcomes of generating synthetic datasets without differential privacy constraints are
evaluated by analyzing the results for priorn = 0. As shown in Figure 4 (and more precisely in Table
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14), the replicated uniques metric is relatively high, with a value of 2.45%. This means that 2.45%
of the records that are unique in both the synthetic and original datasets can potentially be linked
back to unique individuals in the original data. Although this percentage seems low, it is significant
because these unique records could potentially be reidentified. Intuitively, non-differentially private
synthetic datasets result in higher reidentification risks since the algorithm does not add differential
privacy noise to the data. The differences relative to the original data arise only from the random
generation of records based on probabilistic sampling from the contingency tables. The IPF process
ensures that the synthetic data has the same marginal distributions as the original data, although
individual records might differ.

Figure 4: Utility and Reidentification Risk for IPF method

Note. The upper plot of the figure illustrates the utility by quantifying the difference in distribution
of the anonymized versus the original dataset. The bottom plot of the figure illustrates the
reidentification risk by determining the replicated uniques (ru) as a percentage of the uniqueness of
the original dataset (p1). Both plots present the metrics for different privacy budgets (ϵ) and priors
(priorn) and are derived from the IPF algorithm averaged over 15 syntheses.
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Table 14: Results for Epsilon = 0

Priorn RU RU as % of p1 Average standardized pMSE

0.0 2.45 11.98 0.90
0.1 2.41 11.75 1.03
0.5 2.41 11.75 0.94
1.0 2.39 11.66 1.13

Note: Note. This table presents the results for varying priors for non-DP syntheses. The columns show the prior
values, reidentification risk (RU), reidentification risk as a percentage of uniqueness (p1), and average standardized
mean square error (S pMSE). The results are averaged over 15 syntheses.

Despite the high reidentification risk in non-DP synthesis, the average standardized pMSE value
of 0.90 indicates high data utility (see Table 14). This metric reflects the dissimilarity of the
synthetic distribution compared to the original distribution, and a low value indicates a high level of
resemblance. The lack of noise addition preserves data utility, making potential data mining tasks
performed on the synthetic data yield results very similar to those obtained from the original data.

Next, the non-DP synthetic dataset is analyzed while varying the priorn parameter. The risk
of reidentification remains consistent across different priorn values, slightly decreasing as priorn

increases. For example, the replicated uniques metric decreases from 2.45% to 2.39% when priorn

increases from 0 to 1. These minor changes suggest that increasing priorn slightly enhances data
privacy by reducing the reidentification risk. This is because priorn prevents cells in contingency
tables from having zero counts, distributing records more evenly across the contingency table.
However, the impact is minimal, indicating that priorn has a limited effect on privacy in the non-DP
setting.

Conversely, the utility metric fluctuates more noticeably with changes in priorn. The average
standardized pMSE value increases from 0.90 to 1.13 when priorn increases from 0 to 1. This
indicates that higher priorn values lead to increased utility loss. Although preventing zero counts
aims to maintain statistical integrity, in this case, it introduces minor distortions that lead to a
small loss in utility.

4.2.2 DP syntheses

To assess higher levels of privacy protection, the outcomes of the DP-synthetic datasets shown in
Tables 15 to 18 and Figure 4 are analyzed. First, as observed in Table 15, the risk of reidentification
is minimized for ϵ = 0.2. The low privacy budget imposes strong privacy constraints on the generated
synthetic datasets, fully preventing the reidentification of individuals and leading to 0 replicated
unique records. However, achieving this high level of privacy protection comes at the cost of data
utility. As seen in Figure 4, the dissimilarities are highest for ϵ = 0.2, indicating the lowest data
utility. This confirms the intuition of the trade-off between privacy and utility. Increasing the
priorn parameter for ϵ = 0.2 mitigates some of the utility loss caused by the noise, aligning with
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the theory that it maintains the statistical properties of the distribution and enhances data utility.
Thus, if the data publisher’s primary interest is to preserve privacy, they should select the lowest
value of ϵ (i.e., ϵ = 0.2). To maximize utility for the chosen level of privacy, they should opt for a
higher value of priorn (i.e., priorn = 1.0).

Notably, when the privacy budget increases from ϵ = 0.2 to ϵ = 0.5, there is a rapid decrease in
the utility curve (see Figure 4). This suggests that the utility of the data increases quickly as
the anonymized distribution more closely resembles the distribution of the original dataset. This
rapid improvement in utility with a relatively small increases in ϵ implies a higher sensitivity to
changes in the privacy budget within this range. The application of slightly less noise makes the
data significantly more useful for analysis, which is critical when balancing the need for privacy
with the need for actionable data.

As the privacy protection constraints further decrease with increasing ϵ, the data utility of the
resulting DP synthetic datasets significantly improves. As shown in Table 18, the lowest value of
the average standardized pMSE metric is 43.57, indicating that the synthetic data retains more of
the original data’s structure and relationships, making it more suitable for analysis tasks by the
data recipient. However, selecting the parameters that result in the highest utility also leads to the
highest reidentification risk, again confirming the intuition of the trade-off problem. Nonetheless,
the increase in replicated unique records is relatively low, suggesting only a moderate reidentification
risk. Therefore, data providers who aim for optimal utility should select ϵ = 2 and can do so without
extreme losses in privacy protection. Contrary to the results for ϵ = 0.2, utility diminishes as priorn

increases. This could be because, in some instances, the addition of frequency counts destroys more
utility due to distortions than it gains in maintaining statistical integrity. Thus, for ϵ = 2, selecting
priorn = 0 is most optimal.

After assessing the extremes in terms of utility and reidentification risk, a suitable choice to achieve
a balance between reidentification risk and utility loss could be selecting parameters ϵ = 1 and
priorn = 0.1. The percentage of replicated uniques for this selection is only 0.36%, indicating a
relatively low probability of an individual being unique in both the synthetic and original datasets.
At the same time, the utility is relatively high (i.e., 51.60) compared to the highest value for ϵ = 2.
This ensures that the distribution of the anonymized dataset closely resembles that of the original
dataset. To conclude, a preview of this anonymized dataset is shown in Table 32 of the Appendix.

In summary, the findings show that non-differential privacy syntheses present a high risk of
reidentification of individuals while maintaining high levels of data utility, whereas differential
privacy syntheses offer the flexibility to select a trade-off between data utility and privacy protection
according to the data provider’s preferences.
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Table 15: Results for Epsilon = 0.2

Priorn Average RU Average RU as % of p1 Average S_pMSE

0.0 0 0.00 177.64
0.1 0 0.00 175.18
0.5 0 0.01 167.76
1.0 0 0.01 163.58

Note: This table shows results for varying priors with a fixed epsilon, including prior values, average reidentification
risk (RU), average reidentification risk as a percentage of uniqueness (p1), and standardized mean square error (S
pMSE), averaged over 15 syntheses.

Table 16: Results for Epsilon = 0.5

Priorn Average RU Average RU as % of p1 Average S_pMSE

0.0 0.06 0.31 86.61
0.1 0.05 0.23 88.83
0.5 0.05 0.26 103.83
1.0 0.04 0.22 82.31

Note: This table shows results for varying priors with a fixed epsilon, including prior values, average reidentification
risk (RU), average reidentification risk as a percentage of uniqueness (p1), and standardized mean square error (S
pMSE), averaged over 15 syntheses.

Table 17: Results for Epsilon = 1

Priorn Average RU Average RU as % of p1 Average S_pMSE

0.0 0.37 1.80 70.50
0.1 0.36 1.77 51.60
0.5 0.27 1.34 68.47
1.0 0.25 1.23 83.72

Note: This table shows results for varying priors with a fixed epsilon, including prior values, average reidentification
risk (RU), average reidentification risk as a percentage of uniqueness (p1), and standardized mean square error (S
pMSE), averaged over 15 syntheses.
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Table 18: Results for Epsilon = 2

Priorn Average RU Average RU as % of p1 Average S_pMSE

0.0 0.86 4.18 43.57
0.1 0.62 3.02 77.70
0.5 0.76 3.72 61.76
1.0 0.66 3.23 72.07

Note: This table shows results for varying priors with a fixed epsilon, including prior values, average reidentification
risk (RU), average reidentification risk as a percentage of uniqueness (p1), and standardized mean square error (S
pMSE), averaged over 15 syntheses.

4.3 Logistic Regression Analysis

After assessing the performance of the anonymization algorithms separately, this section compares
the performance of both by analyzing the outcomes of a straightforward logistic regression using
the resulting anonymized datasets as input. First, to establish a point of reference, the benchmark
model is examined. The statistical assumptions of the original data and the benchmark model are
already verified in Section 3.2.1.

4.3.1 Benchmark model

As shown in Table 19, the benchmark model exhibits a relatively low sensitivity of 43 percent,
which measures the proportion of correctly identified positives. This low sensitivity suggests that
the model misses many true cases, potentially leading to numerous false negatives. The specificity
metric, or true negative rate, achieves a higher value of 63 percent, indicating a moderate ability to
identify true negatives. However, this still leaves room for substantial improvement, as the balanced
accuracy of 53 percent is only slightly better than random guessing in a balanced scenario. It is
important to note that this study focuses not on creating the best data analysis model but on
developing the best model for data publication. Consequently, these outcomes are used solely for
comparison purposes, as a data publisher can easily adapt the input variables according to the
preferences of data recipients, who can then optimize the data analysis model to improve prediction
performance.

Table 19: Prediction performances

Metric Benchmark Mondrian IPF

Sensitivity 0.43 0.50 0.65
Specificity 0.63 0.66 0.52
Balanced Accuracy 0.53 0.58 0.58

Note: This table summarizes the prediction performances from the 10-fold cross-validated logistic regression model
with respectively the original dataset, the Mondrian anonymized dataset (with k=10 for relaxed partitioning),
and the IPF dataset (with epsilon=1 and priorn=0.1) as input.
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To compare whether the same coefficients are significant for the logistic regression models utilizing
anonymized data, I first identify the significant variables in the cross-validated benchmark model,
as shown in Table 20. The observed variables are compared to their reference category, which is
the first level of each categorical variable in this analysis. Variables with a p-value smaller than
0.05 are considered significant, with Gender2 (i.e, Female), WorkingStatus6 (i.e., Retired), and
MaritalStatus2 (i.e., Single) being noteworthy. Gender2 and MaritalStatus2 have a negative
effect, while WorkingStatus6 has a positive effect on the log-odds of the dependent variable.

The significant benchmark model results indicate that being female, as opposed to male, decreases
the log-odds of an illegal prescription drug purchase by 0.326. Similarly, having the status “Single”
instead of “Married” decreases the log-odds of an illegal prescription drug purchase by 0.187.
Conversely, a retired person, compared to a full-time worker, increases the log-odds of purchasing
prescription drugs illegally by 0.413. However, it is important to note that the observed low balanced
accuracy poses risks for interpreting these coefficient estimates, as the coefficients might reflect noise
rather than true relationships. Moreover, this thesis primarily focuses on the potential differences in
outcomes between the anonymized and original datasets. Therefore, the significance of the predictors
in the anonymized datasets will be assessed first to determine if their significance persists.

Table 20: Summary of Cross-Validated Benchmark Model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1439267 0.9626095 -1.1883601 0.2346916
Gender2 -0.3262039 0.0851973 -3.8288040 0.0001288
Education2 0.6280944 1.0324337 0.6083630 0.5429468
Education3 1.4618656 0.9126093 1.6018526 0.1091882
Education4 1.1010995 0.8601645 1.2801034 0.2005088

Education5 0.9840745 0.8475870 1.1610306 0.2456295
Education6 1.1634402 0.8457403 1.3756471 0.1689309
Education7 0.9945399 0.8450420 1.1769118 0.2392307
SocialClass2 0.6428695 0.4682132 1.3730272 0.1697439
SocialClass3 0.4041739 0.4581465 0.8821937 0.3776720

SocialClass4 0.1272713 0.4645017 0.2739952 0.7840883
SocialClass5 0.5812884 0.4735196 1.2275910 0.2196005
SocialClass6 0.3718441 0.5437810 0.6838122 0.4940938
WorkingStatus2 -0.1409015 0.1466599 -0.9607366 0.3366846
WorkingStatus3 -0.5404357 0.2824584 -1.9133287 0.0557060

WorkingStatus4 -0.2191411 0.1927844 -1.1367164 0.2556569
WorkingStatus5 0.2066445 0.2111129 0.9788342 0.3276619
WorkingStatus6 0.4132260 0.1312121 3.1492975 0.0016366
WorkingStatus7 0.1253565 0.1734419 0.7227577 0.4698288
WorkingStatus8 -0.6575462 0.4167362 -1.5778474 0.1146007

MaritalStatus2 -0.1869903 0.0896351 -2.0861296 0.0369669

Note: This table summarizes the coefficients from the 10-fold cross-validated logistic regression model with the
original dataset as input.
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4.3.2 Mondrian model

To apply the logistic regression model to the Mondrian k-anonymized data, a specific k-value must
be selected. Since the results will be compared to those of the IPF with differential privacy (DP)
outcomes, it is essential to choose a similar trade-off between accuracy and privacy. Based on
previous analyses, k = 10 was selected for the Mondrian method and ϵ = 1 with priorn = 0.1 for
the IPF with DP method.

Prior to performing the logistic regression analysis with the selected Mondrian data, it is essential
to verify the statistical assumptions for the new dataset. Consistent with the reasoning of the
benchmark model, the assumptions of independence of observations, sufficient sample size, and
linearity of the logit are met. As shown in Table 33 of the Appendix, the transformed GVIF
values, which account for the increased number of levels per independent variable, indicate that
multicollinearity is absent from the Mondrian anonymized model, as all values are below the
threshold of 2. An assessment of influential points using Cook’s distance and leverage plots revealed
results similar to those obtained from the original data analysis. Consequently, this final assumption
is verified as well, allowing the logistic regression model to be conducted with the Mondrian data.

When observing the summary of the cross-validated Mondrian logistic regression model in Table 21,
the different structure of the anonymized dataset is immediately notable. Due to relaxed partitioning,
some original variable outcomes remain intact, while new variable outcomes are generated to represent
generalized intervals, complying with anonymization requirements. Applying the logistic regression
model to the Mondrian anonymized data necessitates transforming various possible outcomes of
the variables into factor levels, resulting in a changed data structure. The reference category
for every predictor observed in Table 21 is Gender[1 − 2], Education[1 − 7], SocialClass[1 − 4],
WorkingStatus[1 − 2], and MaritalStatus[1 − 2] respectively. This transformation diminishes data
utility and should be considered when selecting an appropriate anonymization method.

The prediction performance has slightly improved with Mondrian k-anonymization as input data.
As shown in Table 19, sensitivity increased to 50 percent, indicating a 50/50 chance of correctly
identifying illegal prescription drug purchases. Specificity is even higher, with a 66 percent likelihood
of correctly identifying individuals who did not illegally purchase prescription drugs, resulting
in a balanced accuracy of 58 percent, which is slightly higher than the benchmark model. This
improvement may be attributed to the relaxed partitioning nature, which preserves more detailed
information in the QIs, providing more nuanced and informative predictor variables. Additionally,
the enrichment of the feature set can help capture more complex relationships within the data,
potentially improving predictive performance.
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Table 21: Summary of Cross-Validated Mondrian Model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0551475 0.7174420 -1.4707076 0.1413702
Gender1 0.8093769 0.1727918 4.6841164 0.0000028
Gender2 0.4976939 0.1780488 2.7952673 0.0051857
‘Education[2-7]‘ 0.5145025 0.3032249 1.6967686 0.0897404
‘Education[3-7]‘ 0.3572931 0.2482152 1.4394491 0.1500233

‘Education[4-6]‘ -1.8643299 0.5656076 -3.2961544 0.0009802
‘Education[4-7]‘ 0.4515398 0.2431070 1.8573711 0.0632584
‘Education[5-7]‘ 0.2835497 0.2378404 1.1921845 0.2331889
‘Education[6-7]‘ 0.8191970 0.2877572 2.8468339 0.0044156
‘SocialClass[1-5]‘ 0.6128784 0.3129810 1.9581967 0.0502069

‘SocialClass[1-6]‘ 0.5619170 0.4033945 1.3929714 0.1636284
‘SocialClass[2-3]‘ 1.2026008 0.5520764 2.1783233 0.0293820
‘SocialClass[2-4]‘ 0.2726212 0.2624082 1.0389204 0.2988417
‘SocialClass[2-5]‘ 0.6978544 0.2474057 2.8206888 0.0047921
‘SocialClass[2-6]‘ 0.5431128 0.2831210 1.9183059 0.0550722

‘SocialClass[3-4]‘ -0.5729136 0.3264510 -1.7549760 0.0792634
‘SocialClass[3-5]‘ 0.7399565 0.2785260 2.6566876 0.0078913
‘SocialClass[3-6]‘ 0.8571603 0.3179049 2.6962787 0.0070119
‘WorkingStatus[2-3]‘ -0.2765683 0.8892525 -0.3110121 0.7557914
‘WorkingStatus[3-4]‘ -0.2765683 0.8892525 -0.3110121 0.7557914

‘WorkingStatus[4-5]‘ -0.0304092 0.9540581 -0.0318735 0.9745729
‘WorkingStatus[5-6]‘ 0.7143574 0.9057619 0.7886812 0.4302984
‘WorkingStatus[6-7]‘ -0.9284129 0.8938138 -1.0387095 0.2989399
WorkingStatus1 0.0712445 0.6475990 0.1100133 0.9123988
WorkingStatus2 0.1016973 0.6611763 0.1538126 0.8777575

WorkingStatus3 -0.4269271 0.7225387 -0.5908709 0.5546069
WorkingStatus4 -0.2845483 0.6814755 -0.4175474 0.6762781
WorkingStatus5 0.1216043 0.6872916 0.1769327 0.8595613
WorkingStatus6 0.6486176 0.6506958 0.9968062 0.3188586
WorkingStatus7 0.3213064 0.6870684 0.4676484 0.6400360

WorkingStatus8 -0.7774953 0.7663115 -1.0145944 0.3102992
MaritalStatus1 -0.1357101 0.2475557 -0.5482003 0.5835544

Note: This table summarizes the coefficients from the 10-fold cross-validated logistic regression model with a
k=10 Mondrian anonymized dataset as input.

Lastly, the significance of the variables has changed substantially. At a 5 percent critical level,
the variables Gender1 (i.e., Male), Gender2 (i.e., Female), Education[6 − 7] (i.e., University and
not disclosed), SocialClass[2 − 3] (Upper middle class and Middle class), SocialClass[2 − 5] (i.e.,
Upper middle class until Working class), SocialClass[3 − 5] (i.e., Middle class until Working class),
and SocialClass[3 − 6] (i.e., Middle class until Lower class) show a positive significant effect, while
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Eduction[4 − 6] (i.e., Education up to age 18 until University) shows a negative significant effect
on the log-odds of the outcome variable representing the purchase of prescription drugs without a
prescription. The estimates of the coefficients changed as well and are not similar to the benchmark
model.

4.3.3 IPF with DP model

As previously mentioned, the chosen parameters for the IPF technique with differential privacy
constraints are ϵ = 1 with priorn = 0.1. Again, the statistical assumptions must be verified for the
logistic regression with the new IPF data. For this dataset, the assumptions of independence of
observations, sufficient sample size, and linearity of the logit are satisfied. As indicated in Table 34
of the Appendix, the (transformed) GVIF values have not changed significantly and remain well
below the threshold, confirming that multicollinearity is not an issue in this anonymized model.
Additionally, an assessment of the differentially private data does not reveal any disproportionately
influential points. Consequently, all the assumptions are met for this final model as well.

The results of implementing the parameter choices and using the output as input for the logistic
regression model are presented in Tables 19 and 22. Starting with prediction performance analysis,
sensitivity increased significantly compared to the benchmark model, reaching 65 percent. However,
this improvement is balanced by a lower specificity metric of 52 percent, resulting in a balanced
prediction accuracy of 58 percent, which is only slightly higher than the benchmark model’s 53
percent.

Evaluating the summary statistics of the cross-validated IPF with DP logistic regression model in
Table 22 reveals a data structure similar to that of the benchmark. However, the significance of the
predictors has changed notably. While the benchmark model had only three significant independent
variables, the IPF model has nine. The predictors with a positive significant effect on the log-odds
of the outcome variable at a 5 percent significance level are Education2 (i.e., Education up to
age 12), Education3 (i.e., Education up to age 14), Education4 (i.e., Education up to age 18),
Education5 (i.e., Higher education), Education6 (i.e., University), Education7 (i.e., Not disclosed),
and WorkingStatus7 (i.e., Housewife), while Gender2 (i.e., Female) and MaritalStatus2 (i.e.,
Single) have a significant negative effect.

Additionally, the spike in the estimate and standard error of SocialClass6 (i.e., Lower class) is
particularly noticeable. This change is unlikely due to multicollinearity, as indicated by the GVIF
values (see Table 34). Instead, it may result from the introduction of noise through the IPF with
differential privacy process with as a result possible significant data sparsity in SocialClass6, which
has only two observations. Both factors can increase the variability of the estimates. Therefore, the
data utility of the IPF technique with DP appears suboptimal compared to the benchmark model.
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Table 22: Summary of Cross-Validated IPF with DP Model

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9853803 0.9097190 -1.0831700 0.2787330
Gender2 -1.1350152 0.0906422 -12.5219322 0.0000000
Education2 1.9067280 0.8604899 2.2158633 0.0267009
Education3 1.8340294 0.8419650 2.1782729 0.0293857
Education4 1.9188886 0.8386906 2.2879577 0.0221400

Education5 1.8495948 0.8396441 2.2028317 0.0276066
Education6 1.9692270 0.8434878 2.3346241 0.0195631
Education7 2.2267569 0.9063341 2.4568829 0.0140148
SocialClass2 -0.3179778 0.2845444 -1.1174982 0.2637813
SocialClass3 -0.2352018 0.2823605 -0.8329841 0.4048537

SocialClass4 -0.1527753 0.2926586 -0.5220258 0.6016524
SocialClass5 -0.1412281 0.3581372 -0.3943407 0.6933295
SocialClass6 11.5312251 196.9679245 0.0585437 0.9533156
WorkingStatus2 0.0618467 0.2528240 0.2446235 0.8067480
WorkingStatus3 0.1446858 0.2427609 0.5960010 0.5511745

WorkingStatus4 0.3211945 0.2431938 1.3207350 0.1865897
WorkingStatus5 0.3808643 0.2588892 1.4711478 0.1412511
WorkingStatus6 0.0217083 0.2998822 0.0723893 0.9422921
WorkingStatus7 1.6500401 0.5611167 2.9406360 0.0032754
WorkingStatus8 0.4484687 1.0299981 0.4354073 0.6632668

MaritalStatus2 -0.3072133 0.1097107 -2.8002121 0.0051069

Note: This table summarizes the coefficients from the 10-fold cross-validated logistic regression model with an
IPF anonymized dataset (with epsilon=1 and priorn=0.1) as input.

4.3.4 Comparison

Having compared the anonymized logistic regression models to the benchmark, it is now time to
conduct an inter-methodology comparison, focusing on logistic regression results and execution
times. As shown in Table 19, the balanced accuracy of the two anonymized datasets is equivalent.
Despite differences in sensitivity and specificity results, the overall prediction performance is very
similar. Both methods produce data that is not identical to the original model, which had a balanced
prediction accuracy of 53 percent. This outcome is intuitive, as privacy protection typically entails
a trade-off with data utility, reflected in the differing prediction performance.

Moreover, considering the computational efficiency issues highlighted in various papers, the execution
times of both models were measured for the chosen parameter selection. Although both execution
times are fast, Table 23 demonstrates that the Mondrian algorithm took longer than the IPF
algorithm. Therefore, based on this metric alone, the IPF algorithm appears more computationally
efficient. Additionally, the IPF algorithm has extensive R packages, enabling a data publisher to
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easily adjust parameters according to their preferences, whereas the Mondrian algorithm does not,
making its implementation more complex.

Finally, both models have limitations in terms of utility due to their respective anonymization
processes. The Mondrian technique results in a dataset with a different structure, while the IPF
technique introduces slight changes in data distribution.

Table 23: Execution Times for Mondrian k-anonymization and IPF methods

Method Execution_Time

Mondrian k-anonymization 1.131
IPF with Differential Privacy 0.393

Note: This table summarizes the execution times with a k=10 parameter for the Mondrian k-anonymization
approach and epsilon=1 and priorn=0.1 parameters for the IPF approach.
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5 Discussion

This section interprets and contextualizes the main findings of the study within the existing literature.
It also offers explanations for any unexpected results and discusses the impact of study limitations
while providing suggestions to overcome them in future research.

5.1 Expected findings

The primary objective of this research was to evaluate the effectiveness of k-anonymization and
differential privacy approaches in preserving privacy, maintaining data utility, and managing
computational complexity when applied to a large tabular dataset. The majority of the study’s
results conformed to theoretical expectations and were consistent with established literature for
privacy preserving data publishing methods. Both methods demonstrated expected trade-offs
between privacy and data utility as introduced by Dwork (2006), wherein high privacy levels
corresponded to low data utility and vice versa.

In the case of Mondrian k-anonymization with relaxed partitioning, also a more pronounced trade-off
was observed. The discernibility metric curve showed a sharp increase for certain k-values, indicating
that the algorithm required more extensive data generalization to satisfy the k-anonymity criterion.
In other words, the steep increase implies that achieving a higher level of anonymity necessitates
significant sacrifices in data utility. Thus, the performance “elbow” in k-anonymity is located at
lower levels of privacy protection. Practically, for data publishers this entails that if privacy is
desired without disproportionate loss of usability for recipients, it is preferable to opt for a relatively
low privacy protection level (i.e., k = 5) in this particular dataset. However, the observed trade-off
plateaued at a certain point, as initial partitions and generalizations already met the k-anonymity
requirement for subsequent increased k-values. This indicates that once a sufficiently high k-value is
reached, additional privacy protection can be achieved without further loss in data usability. Data
publishers can infer from this result that enhancing privacy protection beyond a certain threshold
does not necessarily entail additional sacrifices in data utility.

Aligning with theoretical expectations, the IPF approach with differential privacy exhibited a
trade-off dynamic as well. A low privacy budget effectively mitigated reidentification risk, confirming
the robustness of differential privacy in preserving privacy while yielding the lowest data utility. As
the privacy budget increased, this balance shifted into higher privacy budgets leading to increased
reidentification risks and improved data utility. Initially, the utility increased more rapidly for
lower values of ϵ. At higher ϵ values, the rate of utility improvement diminished slightly, suggesting
diminishing returns in terms of utility gains. Meanwhile, the rate of decline in privacy protection
did not increase as sharply. These results imply that substantial utility can be gained with small
increases in the privacy budget, a characteristic beneficial for data publishers seeking to optimally
balance the trade-off between privacy and utility.

Logistic regression analysis revealed discrepancies between the prediction accuracies of the original
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and anonymized datasets. Structural modifications by the Mondrian k-anonymization resulted in
an increased number of predictors, potentially enhancing prediction performance. The introduction
of noise by the differential privacy method altered the frequency of most categorical levels while
attempting to maintain statistical properties at an aggregate level, likely contributing to the
changes in prediction accuracy. Furthermore, the differences in variable significance highlighted
the implications of these anonymization techniques: some variables lost their significance, while
others gained significance. Consequently, data miners might interpret the data differently and reach
different conclusions when using anonymized data instead of the original dataset. However, the
observed discrepancies in prediction performance was expected to some extent due to the added
noise and generalization operations.

5.2 Unexpected findings

The analysis revealed several unexpected results. The strict partitioning approach in the Mondrian
algorithm failed to achieve k-anonymity for any k-value, likely due to the high uniqueness of the
data, which resulted in partitions with insufficient records to meet the k-anonymity criterion.

An additional unexpected finding was the inconsistency in the priors used for the IPF method. The
ambiguous results for the varying prior parameter may stem from the fact that, beyond a certain
point, the noise addition introduced to prevent zero counts might cause more harm than benefit,
adversely affecting the overall data utility. Another reason could be that the prior values were too
small given the high sparsity of the dataset (see Table 12). Higher prior values, with more significant
ranges, might reveal a clearer trend caused by the varying parameter and prove more effective in
achieving stable results for the IPF algorithm. Therefore, future research should consider selecting
higher prior values and conducting a comparative analysis. Although there might be potential
for improvement, my findings indicate that the low prior parameter values facilitated adequate
convergence, suggesting their sufficiency in managing the high level of sparsity.

Furthermore, the IPF method demonstrated relatively high computational efficiency in terms of
execution time compared to the Multidimensional Mondrian k-anonymization method, contrary
to the initial hypothesis that k-anonymization would be more efficient than differential privacy
implementations due to its simpler algorithmic structure (McSherry and Talwar, 2007). However, the
difference may be attributed to implementation specifics and inherent differences in data structure
handling by the two chosen methods. For instance, the Mondrian method involves recursive
partitioning, which has a time complexity of O(nlog(n)) per iteration due to the need to repeatedly
sort and find median values (leFevre et al., 2006). In simpler terms, this means that if the amount of
data is doubled, the time required increases with a logarithmic factor rather than merely doubling.
In contrast, the IPF method is based on fitting models to the margins of contingency tables and
iteratively adjusting them until convergence, which tends to have a more straightforward and often
faster convergence process. Additionally, the choice of relaxed partitioning allows for more flexible
ways to group the data rather than strictly splitting it into two parts. This flexibility can be more
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complex and take more time because it needs to carefully manage all these possible groups to
maintain k-anonymity. Given these methodological choices, it is rational that the differentially
private IPF model is computationally faster than the Mondrian approach.

A notable anomaly in the IPF anonymized data was the high standard error for a specific variable
during logistic regression modeling. This suggests potential alterations in data distribution introduced
by the anonymization process. More specifically, due to noise addition, this categorical level ended
up with only two observations. The sparsity in the variable led to an inflated standard error.
Thus, although the IPF model attempts to maintain the statistical properties, it is not always
able to for every level. Additionally, the IPF method resulted in higher sensitivity but lower
specificity compared to the Mondrian method, indicating a higher rate of false positives, which could
be particularly problematic in medical diagnostics where false positives may lead to unnecessary
interventions.

5.3 Limitations

Finally, this study has several limitations that must be acknowledged. The analysis was conducted
on a single dataset with specific characteristics, which limits the generalizability of the findings.
Subsequent studies should explore the application of these methods to diverse datasets with varying
levels of sparsity and varying number of quasi-identifiers. When evaluating varying levels of sparsity,
it is important to adjust the reidentification metric accordingly. This metric, which determines
the number of records that are unique in both the original and synthetic datasets, should be
normalized for the uniqueness in the original data. This adjustment is crucial because the number
of unique records can vary significantly in sparse datasets, affecting the accuracy of reidentification
risk assessment. Furthermore, datasets from other domains such as financial records, social media
data, and genomic data should be examined to evaluate the robustness and versatility of the
privacy-preserving methods.

Additionally, the transformation of categorical data into numeric form to apply the Mondrian
k-anonymization method might limit generalizability. This transformation can introduce biases
and affect the natural relationships between data attributes. Further investigations could examine
the performance of k-anonymization on datasets with inherently numeric data, or explore newer
techniques that incorporate user-defined generalization hierarchies, which allow for more meaningful
anonymization without distorting the data’s original structure.

This study also examined a limited range of parameter settings for both anonymization techniques.
Consequently, it would be valuable to test a broader range of parameters to provide a more
comprehensive evaluation of the methods’ performance. For instance, extending the prior parameter
settings, as previously discussed, could be beneficial. Also, exploring higher order contingency tables
might be valuable for data recipients when performing analyses. Nonetheless, future research should
carefully review the rapidly increasing computational complexity that comes with it. Additionally,
exploring further levels of privacy budgets for the IPF approach with differential privacy or
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experimenting with different k-values for the Mondrian approach could yield additional insights.

Moreover, this study concentrated on two specific PPDP methods: Multidimensional Mondrian
k-anonymization and the IPF method with differential privacy. Specific methodological choices
were made for these approaches. Future research could explore alternative techniques, such as local
recoding for Mondrian k-anonymization and the use of distributions other than Laplace for noise
generation in the IPF method as researchers McSherry and Talwar (2007) argued. Furthermore,
while these methods are prominent in the field, they are not exhaustive. Given for example that
k-anonymization is vulnerable to identity and attribute disclosure attacks, additional research could
extend this work by including other privacy-preserving techniques such as l-diversity and t-closeness.
L-diversity ensures that sensitive attributes have at least l “well-represented” values to prevent
identity disclosure attacks. T-closeness ensures that the distribution of sensitive attributes within
any equivalence class closely matches the distribution of those attributes in the overall table, thereby
preventing attribute disclosure attacks. Comparing findings from these methods could provide a
more comprehensive understanding of their relative strengths and weaknesses in different scenarios
and might be a better opponent for the differential privacy approach.

In conclusion, while this study provides valuable insights into the application of k-anonymization
and differential privacy, addressing these limitations through broader and more varied research will
enhance the understanding and effectiveness of privacy-preserving data publishing methods.
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6 Conclusion

The primary objective of this research was to compare k-anonymization and differential privacy and
assess their efficacy in preserving privacy, maintaining data utility, and managing computational
complexity when applied to a large tabular dataset containing sensitive medical records. After
careful consideration, the Multidimensional Mondrian k-anonymization technique and the Iterative
Proportional Fitting technique were applied to seek the answer to the question:

How do k-anonymization and differential privacy methods compare in terms of preserving privacy,
maintaining data utility, and managing computational complexity when applied to sensitive

healthcare datasets?

The findings of this study provide critical insights into the effectiveness and practical application
of these privacy-preserving data publishing methods. First, in terms of privacy preservation, the
relaxed partitioning method of Mondrian k-anonymization exhibited the anticipated trend: as
privacy protection increases, utility decreases. Interestingly, this technique necessitated more
aggressive data generalization for specific increments of smaller k-values to ensure each individual
was indistinguishable from at least k-1 others in the dataset. Additionally, the discernability value
plateaued at higher privacy levels, arguing that higher privacy can be maintained without further
loss of utility. Conversely, the strict partitioning method of Mondrian k-anonymization was unable
to meet the k-anonymity criterion at any level of privacy protection due to the high uniqueness of
the data, which resulted in overly granular partitions with fewer than k indistinguishable records.
The differentially private IPF method confirmed the trade-off theory as well and proved highly
effective in mitigating reidentification risk for low privacy budgets. This underscores the robustness
of differential privacy in preserving privacy.

In terms of maintaining data utility, again the expected trade-offs were observed. However, notably
the IPF technique incorporating differential privacy exhibited a steep increase in utility with
initial small increments in the privacy budget, followed by diminishing returns. These findings are
particularly valuable for data providers in making informed decisions about the balance between
privacy and utility. Specifically, when data publishers aim to release datasets with relatively higher
usability while minimizing the risk of individual identification, they should consider opting for small
increments in the privacy budget (i.e., ϵ = 0.5 instead of ϵ = 0.5). Additionally, consistent with
expected outcomes of diminished data usability, logistic regression analysis revealed discrepancies in
prediction accuracies between the anonymized datasets and the original data. These discrepancies
were primarily due to structural data modifications from generalization in k-anonymization and
adjusted frequency distributions from noise introduction by differential privacy. The differences
also extended to the significance of variables, potentially compromising the data’s usability, as data
analysis could lead to different conclusions.

Contrary to initial expectations, the IPF method demonstrated higher computational efficiency
compared to the Mondrian k-anonymization method. This efficiency, measured by the CPU time
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of the anonymization process, may be attributed to differences in how each method handles data
structures and optimizations specific to each approach. Specifically, the recursive partitioning of the
Mondrian technique exhibits a logarithmic time complexity, and the relaxed partitioning technique
necessitates evaluating more partitioning options, thereby requiring more time than the convergence
process of the IPF method.

Finally, the varying priors in the IPF method led to ambiguous outcomes. For instance, with a
privacy budget of 0.2, utility increased as the prior parameter increased, whereas for other privacy
budgets, utility fluctuated with increasing prior. Theoretically, the prior smooths the data in cases
of data sparsity by preventing zero counts, thereby improving utility. However, the results did not
provide clear evidence supporting this or any other reasoning for the selected small priors. Given
the high level of sparsity, higher levels of smoothing may be required. Thus, future research should
investigate whether larger prior values demonstrate higher utility.

Based on these key findings, recommendations can be provided for potential stakeholders. For data
publishers, such as healthcare organizations, the objective is to select the method and corresponding
methodological choices based on the publishing preferences and the data characteristics. Although
k-anonymization can anonymize data while maintaining data utility to a certain extent, the
differentially private IPF method appears to offer the same advantages and additional benefits.
First, the robust privacy guarantees provided by the differential privacy framework ward off more
privacy threats than k-anonymization, especially in compliance with stringent regulations like the
GDPR, making it a compelling choice for datasets requiring high levels of confidentiality. Second,
the method offers a broader range of parameter options to suit the discussed publishing preferences
and data characteristics, thereby providing greater flexibility. Third, the computational efficiency of
the IPF approach incorporating differential privacy render it particularly suitable for large-scale
data applications. Therefore, I recommend to use the IPF method with the differential privacy
extension. The findings on utility gains relative to changes in privacy protection can assist in setting
optimal parameters according to data publishers’ preferences.

For regulators and policymakers, the study highlights the importance of promoting and potentially
mandating advanced privacy-preserving techniques that can ensure data privacy without significantly
compromising utility. This is particularly relevant as data-driven technologies continue to expand,
necessitating robust frameworks to protect individual privacy.

For researchers and developers, the insights into the trade-offs and computational efficiencies of
different methods provide a foundation for further refinement and development of the privacy-
preserving data publishing techniques. As mentioned in the discussion, researchers could enhance
the current IPF method by incorporating the capability to handle numeric input or by drawing
noise from other distributions to better fit the data.

In conclusion, this research makes a significant contribution to the field of data privacy by providing
a detailed comparative analysis of k-anonymization and differential privacy methods. The insights
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gained are valuable for data publishers, policymakers, and researchers, fostering a more secure and
privacy-conscious approach to data handling and dissemination in an increasingly data-driven world.
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8 Appendix

Table 24: Summary Statistics

Variable Level Meaning Frequency Percentage

1 Male 1469 46.69Gender
2 Female 1677 53.31

1 No formal education 10 0.32

2 Education up to age 12 13 0.41

3 Education up to age 14 45 1.43

4 Education up to age 18 165 5.24

5 Higher Education 582 18.50

6 University 876 27.84

Education

7 Not disclosed 1455 46.25

1 Upper class 26 0.83

2 Upper middle class 397 12.62

3 Middle Class 1647 52.35

4 Lower middle class 651 20.69

5 Working class 362 11.51

SocialClass

6 Lower class 63 2.00

1 Full-time job 1865 59.28

2 Part-time (8-29h per week) 265 8.42

3 Part-time (under 8h per week) 76 2.42

4 Unemployed 158 5.02

5 Sick/disabled 130 4.13

6 Retired 393 12.49

7 Housewife 221 7.02

WorkingStatus

8 Student 38 1.21

1 Married 2144 68.15MaritalStatus
2 Single 1002 31.85

1 Yes 1497 47.58IllegalPurchase
2 No 1649 52.42

Note. This table summarizes statistics from the original dataset. The variables represent gender, education,
social class, work status, marital status, and the illegal prescription drug purchase indicator and the
adjoining column states their category levels with meaning. The frequency column shows the count of each level
within a categorical variable, while the percentage column shows the proportion of occurrences of each level,
expressed as a percentage of the total for that variable.
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Table 25: Fisher’s Exact Test Results

Variable 1 Variable 2 p-value

Gender Education 0.0004998
Gender SocialClass 0.0104948
Gender WorkingStatus 0.0004998
Gender MaritalStatus 0.0000204
Gender IllegalPurchase 0.0001119

Education SocialClass 0.0004998
Education WorkingStatus 0.0004998
Education MaritalStatus 0.6016992
Education IllegalPurchase 0.1894053
SocialClass WorkingStatus 0.0004998

SocialClass MaritalStatus 0.0004998
SocialClass IllegalPurchase 0.0009995
WorkingStatus MaritalStatus 0.0004998
WorkingStatus IllegalPurchase 0.0004998
MaritalStatus IllegalPurchase 0.0463723

Note: This table illustrates the Fisher’s Exact results between two variables with the corresponding p-value of the
original dataset.

Table 26: Cramér’s V Test Results

Variable 1 Variable 2 Cramér’s V

Gender Education 0.1031749
Gender SocialClass 0.0687405
Gender WorkingStatus 0.2705878
Gender MaritalStatus 0.0764118
Gender IllegalPurchase 0.0689054

Education SocialClass 0.1424046
Education WorkingStatus 0.1166968
Education MaritalStatus 0.0383907
Education IllegalPurchase 0.0528467
SocialClass WorkingStatus 0.1303908

SocialClass MaritalStatus 0.1186087
SocialClass IllegalPurchase 0.0824298
WorkingStatus MaritalStatus 0.1898090
WorkingStatus IllegalPurchase 0.1043282
MaritalStatus IllegalPurchase 0.0358007

Note: This table illustrates the Cramér’s V Test results between two variables with the corresponding measure of
association strength in the original dataset.
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Table 27: Generalized Variance Inflation Factor Results for Benchmark

GVIF Df GVIF^(1/(2*Df))

Gender 1.097217 1 1.047481
Education 1.201332 6 1.015403
SocialClass 1.216420 5 1.019784
WorkingStatus 1.302417 7 1.019052
MaritalStatus 1.065341 1 1.032154

Note: This table illustrates the GVIF results for the predictor variables of the benchmark model. GVIF measures
the inflation of variance of the estimated coefficients due to multicollinearity among the predictors. Due to the
categorical nature of the variables, the scaled version that adjusts for the degrees of freedom associated with each
predictor is also included (i.e., GVIF(1/(2∗DF ))).

Figure 5: Cook’s Distance

Note. The plot shows Cook’s Distance for each observation in the original dataset. The horizontal
red line represents the threshold for influential points, calculated as 4/(n - k - 2), where n is the
number of observations and k is the number of predictors.
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Figure 6: Leverage

Note. The plot shows leverage values for each observation in the original dataset. The horizontal
red line represents the threshold for influential points, calculated as 2 times the mean leverage.
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Table 28: Preview Mondrian Anonymized Data for k = 5

Gender Education SocialClass WorkingStatus MaritalStatus IllegalPurchase

[1-2] [5-7] [2-4] 1 [1-2] 2
[1-2] [5-7] [2-4] 1 [1-2] 1
[1-2] [5-7] [2-4] 1 [1-2] 1
[1-2] [5-7] [2-4] 1 [1-2] 1
[1-2] [5-7] [2-4] 1 [1-2] 1

[1-2] [5-7] [2-4] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 2
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1

[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-5] 1 [1-2] 1
[1-2] [5-7] [2-5] 1 [1-2] 1
[1-2] [5-7] [2-5] 1 [1-2] 1

[1-2] [5-7] [2-5] 1 [1-2] 1
[1-2] [5-7] [2-5] 1 [1-2] 2
[1-2] [5-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1

Note: This table provides a preview of the first 20 observations of the Multidimensional Mondrian k-anonymized
data.
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Table 29: Preview Mondrian Anonymized Data for k = 10

Gender Education SocialClass WorkingStatus MaritalStatus IllegalPurchase

[1-2] [5-7] [2-6] 1 [1-2] 2
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1

[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 2
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1

[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [5-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1

[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 2
[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1
[1-2] [4-7] [2-5] 1 [1-2] 1

Note: This table provides a preview of the first 20 observations of the Multidimensional Mondrian k-anonymized
data.
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Table 30: Preview Mondrian Anonymized Data for k = 15

Gender Education SocialClass WorkingStatus MaritalStatus IllegalPurchase

[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

Note: This table provides a preview of the first 20 observations of the Multidimensional Mondrian k-anonymized
data.
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Table 31: Preview Mondrian Anonymized Data for k = 20

Gender Education SocialClass WorkingStatus MaritalStatus IllegalPurchase

[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 2
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1
[1-2] [4-7] [2-6] 1 [1-2] 1

Note: This table provides a preview of the first 20 observations of the Multidimensional Mondrian k-anonymized
data.
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Table 32: Preview DP Synthesis

Gender Education SocialClass WorkingStatus MaritalStatus IllegalPurchase

2 3 4 5 1 1
2 5 3 4 1 2
1 4 3 4 1 2
2 6 3 1 1 2
1 3 3 2 2 2

1 3 2 2 1 1
2 6 2 3 2 2
2 5 3 4 1 1
2 4 3 4 1 1
1 5 2 5 1 2

1 1 3 4 1 1
2 5 2 3 1 1
1 3 2 7 2 2
1 5 2 3 1 2
1 4 3 4 1 1

2 5 3 2 1 2
1 3 3 4 2 2
2 4 3 2 1 1
1 6 3 5 1 2
1 4 5 4 1 2

Note: This table provides a preview of the first 20 observations of the IPF anonymized data for epsilon=1 and
priorn=0.1.
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Table 33: Generalized Variance Inflation Factor Results for Mondrian

GVIF Df GVIF^(1/(2*Df))

Gender 1.843040 2 1.165155
Education 2.491787 6 1.079052
SocialClass 3.295795 9 1.068503
WorkingStatus 7.925014 13 1.082871
MaritalStatus 1.626216 1 1.275232

Note: This table illustrates the GVIF results for the predictor variables of the Mondrian k-anonymized model.
GVIF measures the inflation of variance of the estimated coefficients due to multicollinearity among the predictors.
Due to the categorical nature of the variables, the scaled version that adjusts for the degrees of freedom associated
with each predictor is also included (i.e., GVIF(1/(2∗DF ))).

Table 34: Generalized Variance Inflation Factor Results for IPF

GVIF Df GVIF^(1/(2*Df))

Gender 1.047093 1 1.023276
Education 1.173775 6 1.013442
SocialClass 1.088712 5 1.008536
WorkingStatus 1.142298 7 1.009548
MaritalStatus 1.022209 1 1.011043

Note: This table illustrates the GVIF results for the predictor variables for the differentially private IPF model.
GVIF measures the inflation of variance of the estimated coefficients due to multicollinearity among the predictors.
Due to the categorical nature of the variables, the scaled version that adjusts for the degrees of freedom associated
with each predictor is also included (i.e., GVIF(1/(2∗DF ))).
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