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Abstract
In this thesis the tank scheduling problem is investigated. In this problem intermediate 
storage tanks are used to decouple production stages of juices, soda, etc. so that they 
are less dependent on each other. The tanks will have to store intermediate products 
and that is where the tank scheduling problem starts. Scheduling of tanks by hand is too 
complex, that is why algorithms or mathematical programming approaches should be 
used. Genetic algorithms, greedy algorithm, mixed integer linear programming and 
constraint programming are the techniques implemented and used for computational 
tests. The latter three provide good results in terms of solving time and quality of the 
tank schedules. On the other hand genetic algorithms do not provide satisfying results.
Different variants of tank scheduling problems appear to have different solving 
approaches which suit them best.
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1 Introduction
In this section the main topic of this master thesis is presented. First the problem is introduced and 
explained briefly. Next the goal of this thesis and its outline are given. 

Production processes are usually made up of multiple stages. Liquids like dairy products and sodas 
for example undergo pasteurization, mixing and/or bottling. All these processes depend on each 
other. When something goes wrong in one process this could lead to other processes being 
interrupted. Intermediate storage tanks are used to decouple the different processes such that
productions and production stages are less dependent on each other. Now not only finished products 
need to be stored but also semi-finished products. When a semi-finished product is stored in a tank,
it will wait for the next part of the production process. A consequence of decoupling the stages is 
that it increases efficiency of production so that more productions can be carried out. An example of 
efficiency increase is that if a production machine is able to fill a tank at a faster rate than the rate 
that they can be emptied by another machine, then filling does not need to adjust its rate to the rate 
of emptying.

As a result of the use of intermediate storage tanks, product flows occur between machines and 
tanks and vice versa. This requires the need for tank scheduling; the creation of a timetable in which 
product flows, from machines to storage tanks and from storage tanks to machines, are assigned 
respecting the existing restrictions. It can be a serious planning task due to some typical scheduling 
issues. For example, is it allowed to store multiple product flows in one tank and to store a product in 
multiple tanks or not? These and other issues/restrictions will be explained in chapter 3.

The goal of this master thesis is to solve tank scheduling problems with the use of different 
techniques and to compare the results and the limitations of each technique. The three explored 
approaches are genetic algorithm (GA), mixed integer programming (MIP) and constraint 
programming (CP). It will be shown that different variants of tank scheduling problems favor 
different techniques. An advantage of GA’s is that the objective function and constraints can be 
designed the way you want and implemented with ease. A disadvantage with GA’s is that you do not 
always know if a solution is optimal or not. This is true when, for example, the objective function is 
equal to the makespan of the tank schedule. This does not pose a problem when the objective is just 
to find a feasible schedule. With MIP the advantages are that optimality can be proven and that 
problems are stated infeasible when infeasibilities exist. On the other hand, in MIP constraints and 
objective function need to be linear such that the construction of adequate formulations is not self-
evident. CP is a very flexible method and easy to implement and also has the advantages of the other 
two methods just mentioned. Disadvantages are the requirement of integer decisions variables and 
the one-sided bound (instead of two-sided) on objective functions making it difficult to state 
optimality when optimal. Summarized, every technique has its pros and cons and implementation of 
the techniques will show which technique suits the tank scheduling problem best.

The outline of this thesis is as follows. Chapter 2 provides an overview of articles on tank scheduling 
problems. Chapter 3 gives an extensive problem description with an introduction of constraints, 
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assumptions and data. The different techniques used in this thesis and their results are presented in 
chapters 4 (GA), 5 (MIP) and 6 (CP). Finally the conclusions and recommendations are given in 
chapter 7.
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2 Literature

Scheduling problems can be very complex and thus can be hard to solve. The tank scheduling 
problem is such a problem. It is a highly constrained problem which means that a small change in a 
feasible solution probably leads to a solution breaking one or more constraints. According to Kallrath 
(2002), the complexity of scheduling problems can easily exceed today’s hardware and algorithmic 
capabilities. He also states that even finding a feasible solution could be a problem because feasible 
integer solutions often only exist very deep in the branch and bound tree and also because it is 
difficult to get adequate upper and/or lower bounds.

One approach to solve tank scheduling problems is MIP. A critique on this method is that, when the 
problem is complex, it can only deal with small problems. For example, Jain and Grossmann (2000) 
studied the problem of scheduling two manufacturing (production) and five packing (consumption) 
machines and five storage tanks in which tanks are connected to one manufacturing and one packing 
machine at a time and capacity of storage tanks is more than the size of each batch. Each product is
dedicated to a certain production machine and also to a consumption machine so that for each batch 
the used machine is known beforehand while the production/consumption dates are decision 
variables. Jain and Grossmann implemented a MIP model which needed more than an hour to 
schedule 15 jobs with minimal makespan using CPLEX 6.5. This could be due to the large amount of 
integer decision variables the model needs.

Two other reports (Broch, 2008 & Bossers et al., 2009) about the tank scheduling problem also used 
a MIP approach. Both developed a model under the assumption of predefined machine use and fixed 
production and consumption dates. The biggest difference between the two models is that Bossers 
et al. worked with fixed linkages between production and consumption batches while in the model of 
Broch linkages were part of the decision process. Industrial sized problems did not prove to be a 
problem and could be solved in less than a minute for both models.

Other possible methods to solve tank scheduling problem are genetic algorithms (GA), simulated 
annealing and heuristics. According to Glibovets and Medvid (2003), GA’s are considered to be a 
successful approach for solving optimization problems. Colorni et al (1991, 1998) confirm this with 
their study on the timetable problem (TTP). The problem was to construct a timetable for an Italian 
high school. The high school consisted of 20 teachers, 10 classes and 30 hours of teaching for each 
class. TTP’s are, just like tank scheduling problems, highly constrained problems. The genetic 
algorithm of the authors did not only implement a genetic algorithm but also a simulated annealing 
(SA) and a tabu search approach. Tabu search performed better than GA which in turn performed 
better than SA.

Bui et al. (2009) tested a tank scheduling problem with a simulated annealing approach. They did not 
use fixed linkages between production and consumption batches seen in the MIP approach of 
Bossers et al. mentioned earlier. The simulated annealing algorithm performed best with a very slow 
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declining temperature turning the algorithm somewhat into a greedy algorithm in which batches
(chronologically ordered) are scheduled one by one.

Verbiest (2009) also presents a greedy algorithm to solve tank scheduling problems in a reasonable 
amount of time. The algorithm made use of soft constraints and a weighted cost function which 
penalized unwanted behavior (infeasibilities) and rewarded desired behavior. During each iteration 
of the algorithm a production or consumption batch is assigned to a tank that leads to the lowest
increase in costs or the largest increase in profit. This in combination with the soft constraints does 
not guarantee the result of a feasible schedule. The author states that the algorithm comes up with 
reasonable solution with only a few infeasibilities that should be manually corrected without much 
problem.

One of the three techniques investigated in this thesis is constraint programming. Other CP 
implementations of tank scheduling problems could not be found among the current available
literature. According to IBM (software solution developer), CP is invaluable when dealing with the 
complexity of many real-world sequencing and scheduling problems. This is supported by Li et al. 
(2005) and Gomes et al. (2007) who studied a CP approach to the problem of Steelmaking Process 
Scheduling and Multi-Agent Scheduling respectively. Both consider CP to be a successful approach to 
their specific scheduling problem.
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3 Problem description

This section starts with an extensive description of the problem introduced in chapter 1. The problem 
is described by introducing the general layout in section 3.1 and by stating the constraints, which 
apply to the problem, in section 3.2. The assumptions imposed on the problem are stated in sections 
3.3 and 3.4. 3.5 shows some solutions to possible extensions. The data used in this thesis is 
presented in section 3.6 to get an impression on the difficulty of the problem.

3.1 General layout

As stated in chapter 1, tank scheduling is the creation of a timetable in which product flows, from 
machines to storage tanks and from storage tanks to machines, are assigned respecting the existing 
restrictions. An overview of storage tanks and machines representing a part of the general problem is 
given in figure 3.1. Of course the number of machines and tanks in the figure is less than the number 
of machines and tanks included in reality. In the remainder of this report the machines at the top and 
the machines at the bottom will be called production machines and consumption machines 
respectively. Their tasks will be called productions/consumptions accordingly. A production task is a 
task that is performed prior to the filling of a storage tank. An example of such a task is heating of a 
semi-finished product (pasteurization). A consumption task is a task in which volume is taken from a 
tank for further operation. For example the filling of bottles, bags, etc.

Figure 3.1: General layout

3.2 Physical constraints

In this subsection constraints are explained which apply to tank scheduling problems. All these 
constraints are hard constraints and need to be respected in order to get a feasible schedule. Most of 
the constraints are very obvious.
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Tank capacity
Each tank has a maximum capacity which may not be exceeded. This can be less than the actual 
capacity of the tank due to safety measures. The minimum capacity of tanks is just zero which means 
that a tank is allowed to be empty.

Machine - tank connections
A machine can only fill a tank when there is a connection (pipeline) in between. The same holds for 
the consumption processes between tanks and consumption machines. A connection may not exist 
because of a lack of space.

Nonoverlapping production & consumption tasks I
Each machine can only have one task at a time. If two tasks are assigned to the same machine, then 
the starting time of the first task is after the ending time of the second task or the ending time of the 
first is before the starting time of the second task.

One product type per tank
A tank can only contain one product type at a time when its only function is intermediate storage. 
This is the case in this report. If different types of products are stored in the same tank, they would 
blend and this is undesirable when not intended.

3.3 Overall assumptions

Below follows a list of assumptions made and their explanations.

Nonoverlapping production & consumption tasks II
In the ideal situation it would be possible to empty tanks as soon as they are being filled by a 
production machine. This means that production and consumption tasks, assigned to the same tank, 
are allowed to overlap each other. In reality, it is not always possible that a tank can be emptied 
before a production is completed. A reason for this could be that the product first needs to be 
diluted or that two or more intermediate products need to blend. In this case it is not allowed to 
have overlapping production and consumption tasks.

Balanced production / consumption
All produced volume will be consumed in the same planning period. A consequence of this is that at 
the start of a period all tanks are empty. 

Single layer
In this thesis the layout of the problem is as shown in figure 3.1. It shows one layer of machines -
tanks - machines. In reality the layout can have multiple layers but the focus here will be on one layer 
because of the complexity of the problem. To solve a problem of multiple layers one could solve one 
layer after the other.
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Cleaning and setup time negligible
Tanks are cleaned after being emptied. Also tanks can have setup times before being ready to be 
filled. These tasks have to be scheduled but are considered to be negligible in this case and are 
therefore not part of the scheduling process.

Perishability
All products in this case have an expiration date which means that products can only be stored for a 
limited amount of time. With the assumption of balanced production and consumption in 
combination with a short planning period of a week this should not become a problem. 

Machine tasks
In this thesis different techniques are used to create feasible tank schedules. It is assumed that the 
tasks of the production and consumption machines are already scheduled before the storage tanks 
are scheduled. This way a feasible tank schedule is not guaranteed, because machine and tank tasks 
are scheduled after each other. Optimizing machine tasks and tank usage at the same time would be 
better but is considered to be to complex at the moment.

3.4 Specific problems

The methods and models to solve the tank scheduling problem are introduced in the next chapters. 
The overall assumptions apply to all problems and models but there will also be some problem 
specific assumptions. These assumptions are listed below.

Single batch vs. multiple batches
Sometimes in reality the numbers of productions stored in a tank at the same time is restricted to 
one. Problems allowing multiple batches in a tank do not have a restriction on the number of batches 
in a tank as long as they do not exceed the capacity.

Fixed production / consumption
The assumption of predefined and fixed machine tasks is partially lifted. The machine choices will not 
be changed but the production and consumption dates are non-fixed in some problems.

Single tank usage vs. multiple tank usage
Some problems allow productions to be spread across different tanks while some others do not. The 
same is true for the consumptions process. It is not always allowed to retrieve a consumption from 
multiple tanks which means that consumption tasks need to be assigned to a single tank. This could 
be caused by machines which are not able to fill/empty multiple tanks at the same time.

Above assumptions lead to different problems. The problem with assumptions fixed production and 
consumption dates will be called Basic Problem (BP). Problems with flexible production dates or even 
flexible production and consumption dates are called Flexible Production Date Problem (FPDP) and 
Flexible Consumption Date Problem (FCDP) respectively.
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The GA of chapter 4 will deal with a BP in which multiple batches in one tank are allowed. The MIP 
approach in chapter 5 gives implementations of FPDP and FCDP. This will be one FPDP with 
assumptions single batch and single tank usage and one with assumptions multiple batches and 
multiple tank usage. The FCDP implementation will also have the assumptions multiple batches and 
multiple tank usage. The CP approach in chapter 6  deals with all four possible BP’s with assumptions 
single batch or multiple batches and single tank usage or multiple tank usage. Also four FPDP 
problems are implemented with assumptions single batch or multiple batches and single tank usage
or multiple tank usage making the difference between the four problems.

3.5 Extensions

If a tank would also have the function of mixing two or more semi-finished products or ingredients, 
then some steps have to be taken to cope with the ‘one product type per tank’ restriction. First the 
product code of the production tasks involved in the mixing process and the linked consumption 
task(s) need to be changed into a single code. This way it looks like only one product type is involved 
in the scheduling process. The reason for this is that you can only assign a consumption task to a tank 
when the tank contains the same product. The next step is to schedule the tasks respecting the 
restrictions. Afterwards volumes of the production tasks have to be rearranged such that the ratio of 
these products is constant. This last step is only needed when multiple tanks are used for the tasks 
involved in the blending process. The total volumes in the tanks needs be same as before the 
rearrangement to ensure a feasible schedule. 

The assumption of balanced production/consumption does not always hold in reality. If the produced 
volume exceeds the consumed in a planning period then at the start of period not all tanks are 
empty. However, this can be taken into account by adding one or more dummy consumption 
batches. The starting and ending dates then should be later than all the other consumption tasks. 
The excess production volume will be present in the next planning period and needs to be assigned 
to the same tank as before.

3.6 Data

The available data used for computational tests contains three weeks of industrial data. It consists of
all needed information about production and consumption batches like volume and type of product. 
Next to that it also contains information about the layout of the production facility such as the 
number of tanks, their corresponding capacities and the connections with production and 
consumption machines. An overview of the layout can be seen in figure 3.2. The black lines are 
existing connections between storage tanks and machines. The numbers between brackets in the 
tanks are their maximum capacities.
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The number of production and consumption tasks for week 1 are 99 and 183 respectively. 93 
productions and 174 consumptions are planned for week 2 and for week 3 these are 61 and 114.
A full list of available data per production and consumption task: 
 Machine
 Start date
 End date
 Quantity (volume)
 Product code

Figure 3.2: Facility layout
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3.7 Assignment problem

Verbiest(2008) and Broch(2008) introduced approaches to solve the tank scheduling problem with 
production- and consumption  batches scheduled separately. To simplify the scheduling process you 
can also link production- and consumption batches beforehand and next schedule the linked batches 
at once. This will be the choice in this thesis. In this section a MIP model is given which couples the 
production- and consumption batches. This can result in multiple production batches being linked to
one or more consumption batches and vice versa. The model makes use of the currently fixed 
production and consumption dates.
The aim is to couple production batches to consumption batches on a first-in, first-out basis.

Mathematical model

Set Index Description
P p Set of all production tasks
C c Set of all consumption tasks
Pc p Set of all productions which can have a link with

consumption batch c due to same type of product
and a (production-)machine-tank- (consumption-)
machine connection.

Cp c Set of all consumptions which can have a link with
Production batch p due to same type of product
and a (production-)machine-tank- (consumption-)
machine connection.

Parameter Domain Description
EndProductionp Pp Ending time (in seconds) of production batch p

StartConsumptionc Cc Starting time (in seconds) of consumption batch c

Decision variable Domain Description
Linkp,c Cc,Pp  Percentage of volume consumption batch c linked 

to production batch b

Model constraints & objective function Domain Nr.

 2

Pp Cc
pcc,p

p

oductionPrEndmptionStartConsu*Linkmin
 

 (1)

s.t.

1Link
cPp

c,p 


Cc (2)

  p
Cc

cc,p oductionPrVolumeumptionVolumeCons*Link
p




Pp (3)
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  0oductionPrEndmptionStartConsu*Link pcc,p  pCc,Pp  (4)

 1,0Link c,p  pCc,Pp  (5)

Explanation of the constraints & objective function
(1) The aim is to couple production batches to consumption batches on a first-in, first-out basis. This 
is achieved by adding a coefficient to the objective function. The situation described in figure 3.3 will 
not be part of any solution when both productions and consumptions contain the same product and 
given that tank connections exist such that consumption 1 can be linked to production 2 and
consumption 2 can be linked to production 1.

Figure 3.3: LIFO assignment of production and consumption batches

(2) Multiple consumption batches can be coupled to a production batch and vice versa. What needs 
to be respected is that the total volume of a consumption is coupled once to one or more production 
batches.

(3) The volume of a production batch needs to be consumed by one or more consumption batches.

(4) Production and consumption can only have a link when the end of production is before the start 
of consumption.

It must be noted that by linking productions and consumption prior to the scheduling process and 
not during the scheduling process could lead to zero possible feasible tank schedules. Infeasibilities, 
caused by linkage between tasks, can happen because of the existing machine-tank connections or 
rather by a lack of connections. But this is not something that will happen often because the possible 
linkages between productions and consumptions are very limited due to the requirements of existing 
machine tank connections, same product type, consumptions needs to start after production and all 
batches should have a link. Also very often product types are produced and consumed on the same 
machine and thus having the same possible set of tanks to be stored in. 
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4 Genetic algorithm approach

Genetic algorithms are global search and optimization techniques inspired by the biological process 
of evolution and survival of the fittest. This can also be interpreted as being a randomized search 
technique guided by natural selection. These techniques have been proposed as effective tools for 
dealing with global optimization problems partly because they are able to avoid getting trapped in 
local minima/maxima.

The first attempts to mimic natural processes took place in the late fifties and early sixties. They were 
merely based on mutation and not yet very successful to solve large problems. It was when Holland 
(1962) introduced mating and crossover as operators that a technique based on the principle of 
natural selection and genetics was able to solve hard problems. The next sections explain how a basic 
genetic algorithms looks like.

Section 4.3 gives the implementation of a genetic algorithm. Batches are always stored in a single 
tank and production and consumption dates are treated as being fixed. It will be allowed to store 
multiple batches in a tank at the same time as long as they do not exceed capacity and are of the 
same product type.

4.1 Some definitions

To understand the procedures of the genetic algorithm it is important to know what the meaning is 
of certain definitions. Below are the most important ones:

Individual: A single solution in a GA. In this thesis a tank schedule.
Population: A collection of solutions for the studied problem.
Encoding: Conversion of a solution to its equivalent representation (for example a vector of 

integers).
Chromosome: Representation for a single solution.
Gene: A chromosome is a collection of elements called genes. Every gene contains 

‘genetic’ information.
Fitness function: Function that measures the fitness (optimality) of a chromosome. 

4.2 Genetic algorithm Operators

4.2.1 Selection
During the selection procedure individuals from the current generation are selected to be used for 
reproduction. Hereby the selection procedure mimics the survival of the fittest principle. It selects, 
on average, the stronger (fitter) individuals among the current population so that poorer ones are 
weeded out. Then the selected individuals are used to create a new generation. An individual can be 
selected more than once to survive to the next generation.
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Most popular methods are roulette wheel selection, where each individual with fitness fi has 

probability of being selected equal to 
 


N

j j

i
i

f

f
p

1

, tournament selection, where k individuals are 

randomly selected and the one with the best fitness is selected for reproduction, and rank selection, 
where the individuals are ranked according to their fitness value and have probability of being 

selected equal to 
 


N

j

i
j

i
p

1

.

According to Whitley (1989), a problem with roulette wheel selection is the possible existence of so-
called “super genotypes” which have a very high fitness ratio compared to the rest of the population 
and thus dominate the search process. This can lead to premature convergence when the selected 
individual represents a local optimum. These scaling problems can be overcome by using rank 
selection instead. Another problem of roulette wheel selection is the loss of selection pressure when 
individuals have very similar fitness (Yao, 1997). It will then take a long time before the population 
converges to the best solution. Hancock (1994) even states that roulette wheel selection should not 
be used. A disadvantage of the tournament selection method is that the tournament size (k) has to 
be set. The larger the value of k, the stronger the selection pressure is. An obvious disadvantage of 
rank selection is that it can lead to slow convergence because of a lower selection pressure. Rank 
selection also distorts the relationship between fitness and the success of survival of the fittest.

4.2.2 Crossover
The selection procedure is followed by crossover, in which a pair of individuals (parents) of the 
current generation exchanges genes so that two new individuals (children) are created. The 
crossover rate (generally about 80%-95%) determines whether or not parents undergo crossover. 
The parents who did not undergo crossover will have children which are exact copies of themselves. 
Possible crossover strategies are 1-point crossover, 2-point crossover and uniform crossover.
In 1-point crossover all genes after a certain crossover point are exchanged. Figure 4.1 illustrates the 
procedure. The crossover point is randomly chosen.

Figure 4.1: 1-point crossover
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In 2-point crossover all genes after both crossover points are exchanged. Again the crossover points 
are randomly chosen. Figure 4.2 illustrates the procedure:

Figure 4.2: 2-point crossover

The first step in uniform crossover is generating a ‘mask’. This mask is a vector of zeros and ones with 
length equal to the length of a chromosome. The number of zeros and ones are on average equal. 
After generating the mask the crossover between two parents take place. At every index that the 
mask equals one, genes are swapped between parents.

Figure 4.3: uniform crossover

The idea behind crossover is that it should result in offspring with high fitness value by combining 
high-quality parents. Off course it can result in offspring with a far lower fitness, but these should be 
weeded out by selection (in the long run). 
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4.2.3 Mutation
The next step for the selected individuals, who did or did not undergo crossover, is to undergo 
mutation. For every gene a random number between zero and one is generated and compared with 
the mutation rate. When the random number is lower than the mutation rate, the associated gene is 
mutated into a random new gene. The mutation rate is set to a low value of around 0.5%-1%. High 
mutation rates would result in a random search.
A difference between mutation and selection/crossover is that mutation creates new solutions while 
selection and crossover explore variants of existing solutions while eliminating bad ones. Therefore 
mutation maintains genetic diversity and prevents the algorithm to get trapped in a local minimum.

Figure 4.4: mutation

4.2.4 Elitism
Elitism in genetic algorithms is copying the fittest individual(s) into the next population. In this way 
you will never lose the best solution and each iteration results in an equal or higher best fitness. The 
effect of elitism is that the performance of the algorithm is increased.
The elitism step is performed after the fitness evaluation of the individuals.

4.2.5 Procedure basic GA
Step 1 - Encode solutions
Step 2 - Set population size n
Step 3 - Initialize population of n chromosomes (random)
Step 4 - Evaluate the fitness for each chromosome
Step 5 - Insert elite parents in new population
Step 6 - Perform until new population is complete:

- Select two parents using a selection method
- Perform crossover according to the crossover rate
- Perform mutation according to the mutation rate
- Insert offspring in new population

Step 7 - If stopping criterion is reached stop, else return to step 4

4.3 Implementation genetic algorithm 

4.3.1 Step 1 - Encode solutions
The goal of the genetic algorithm is to generate a feasible tank schedule (solution) consisting of 
production and consumption tasks. This means that tank schedules must be encoded to its 
chromosome representation. The choice made here is to apply an integer coding method. A tank 
schedule will be represented by a vector of integers of length equal to the number of batches to be 
scheduled. Every single integer (gene) stands for which tank is used for a certain batch.
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The definition of a batch here is a collection of linked production and consumption tasks and their 
properties. Later on in is this thesis these batches, production tasks and consumption tasks will be 
sometimes referred to as ‘original batches’, ‘original production batches’ and ‘original consumption 
batches’ respectively. How production and consumption is linked to each other is explained in 
section 3.7. The genes in a single solution are sorted on start date of the batches so that it fits the 
idea behind 1-point crossover and 2-point crossover. Otherwise these crossover operators almost act 
like uniform crossover.
To make the encoding procedure more clear an example is presented below.

Data

Task Start date End date Volume (L) Product Linked with

1 01-Jan-2010 06:00:00 01-Jan-2010 09:00:00 20000 Cola 2,3
2 01-Jan-2010 09:30:00 01-Jan-2010 11:00:00 -10000 Cola 1

3 01-Jan-2010 11:00:00 01-Jan-2010 12:30:00 -10000 Cola 1
4 01-Jan-2010 08:00:00 01-Jan-2010 10:30:00 5000 Juice 5
5 01-Jan-2010 13:00:00 01-Jan-2010 14:00:00 -5000 Juice 4
6 01-Jan-2010 13:00:00 01-Jan-2010 15:30:00 18000 Milk 7
7 01-Jan-2010 16:00:00 01-Jan-2010 17:00:00 -18000 Milk 6

It is clear that the resulting schedule is not feasible due to the mix of Juice and Milk in storage tank 2. 
Maybe even the capacities of the tanks are not respected in this example because they are not given.

A consequence of the encoding style is that, as earlier stated, batches are always stored in a single 
tank and that production and consumption dates are treated as being fixed. 

4.3.2 Step 2 - Set population size n
As earlier stated a population is a collection of solutions for the studied problem. In this case the tank 
scheduling problem.  If the population size is set too small, it could lead to a search space not being 
explored enough. On the other hand, setting the population size to high slows down the algorithm.

Resulting batches Possible 
chromosome 

representation
Batch Start date End date Volume 

(L)
Product

1 01-Jan-2010 
06:00:00

01-Jan-2010 
12:30:00

20000 Cola 1

2 01-Jan-2010 
08:00:00

01-Jan-2010 
14:00:00

5000 Juice 2

3 01-Jan-2010 
13:00:00

01-Jan-2010 
17:00:00

18000 Milk 2
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4.3.3 Step 3 - Initialization population
In this step the initial population is randomly created. This will most likely result in n infeasible 
chromosomes. Restrictions already respected during the initialization of the population are storage 
tank and production/consumption machine connections. It makes no sense to assign a batch to a 
tank if it contains a production task from a machine which is not connected to that tank. 
Also batches will not be assigned to tanks when the volume exceeds capacity. Again it makes no 
sense to do so.

4.3.4 Step 4 - Fitness evaluation
There are three ways to design a fitness function. These are punishing when not complying with 
restrictions, reward when restrictions are met and a combination of the two. The choice made here 
is to reward when restrictions are met. One fitness function counts the number of scheduled batches 
until a certain batch causes a conflict. Another function sums up the total scheduled time that tanks 
are in use until a certain batch causes a conflict.
Two other fitness functions are counting the number of correctly scheduled batches and sum up the 
total scheduled time that tanks are in use. Batches which are scheduled after (later in time) a 
conflicting batch, are taken in to account in these latter two functions.

4.3.5 Step 5 - Elitism
The idea of elitism is inserted in the genetic algorithm. The number of elite parents will be a 
percentage of the population size.

4.3.6 Step 6 - Reproduction
Reproduction is performed just like explained in section 4.2.5. Different selection methods, crossover 
operators and mutation rate will be tested. 

4.3.7 Step 7 - Stopping criterion
The algorithm is terminated when all batches are correctly scheduled, because the goal of the 
genetic algorithm is to generate a feasible tank schedule.

4.4 GAvAPS

4.4.1 Introduction
The choice of the population size is one of the most important choices to make in the above GA. 
Setting the population size to low could lead to early convergence making the algorithm behave as 
random search in the remainder. This is because when a population has a lack of diversity, mutation 
is the only method with significant influence on the population. As earlier stated, setting the 
population to high slows down the algorithm and wastes computational resources.
A solution to these problems could be to develop a genetic algorithm with varying population size 
(GAVaPS) introduced by Arabas et al. (1994).  In this algorithm the (constant) population size and 
selection operator are replaced by an initial population size and chromosomes with individual 
lifetimes. This means that each chromosome gets a lifetime value when initiated and survives a 
number of generations equal to its lifetime. When a chromosome ‘dies’, it is deleted from the 
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population. The lifetime of a chromosome depends on the fitness of the individual such that fitter 
individuals survive longer. A consequence of this concept of individual lifetimes is that the population 
size varies among the different generations and that selection mechanisms are not needed anymore.
Next to the problems with fixed population size, Michalewicz (1996) states that another reason for 
varying population size is that the approach seems to be more natural than any other selection 
mechanism. Also it seems reasonable to assume that different population sizes are optimal at 
different stages of the evolution process.

4.4.2 Outline GAVaPS
The procedure starts with initializing and evaluating a population of size k. This size is not of big 
importance because the initial population size has little effect on the performance of the algorithm
(Michalewicz, 1996). Each chromosome gets a lifetime assigned during the evaluation. As long as the 
termination conditions are not met the following steps are performed. First the age of each 
individual is increased by 1. After this chromosomes are randomly recombined (crossover and 
mutation is applied) resulting in new chromosomes which are added to the population. Also these 
chromosomes get a lifetime according to their fitness. The number of recombined chromosomes 
depends on the current population size (PopSize(t)) and the so called reproduction ratio p in the way 

that  p*)t(PopSize)t(zeAddedPopSi  . The next step is the removal of all individuals with an 

age greater than their lifetimes. A schematical overview of the steps can be seen in figure 4.5. P(t) is 
the population at generation t.

Figure 4.5: The GAVaPS algorithm

4.5 Greedy Algorithm

First the idea was to compare the established genetic algorithm with a simulated annealing approach 
by Bui et all. (Seminar logistic case studies at EUR). They seem to get good results with their ‘Grap-
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and-Hold Generator’. But the SA only works well when the temperature drops very slowly (α 
approaches 1), and therefore boiling down to the next greedy algorithm:
Schedule the batches one by one (sorted on date) without breaking the constraints. Whenever a 
batch can not be assigned to a tank without breaking a constraint, all batches are rescheduled again. 
This is repeated until the algorithm gives a feasible schedule. The assignment of a batch to one of the 
available tanks is random.
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4.6 Results

4.6.1 Genetic algorithm
The genetic algorithm, as explained in section 4.3, is implemented in Matlab 7.6.0 (R2008a) with the 
following parameters and their values:

Crossover rate: 
Mutation rate:
Population size: 
Number of elite chromosomes: 
Selection operator: 
Crossover operator:

0.8
0.01
number of batches to be scheduled
5% of population size
tournament selection with tournament size k equal to 3
2-point crossover

The parameter values are based on expert knowledge and on trial and error. The mutation rate in 
genetic algorithms normally is around 0.5% and the crossover rate around 90%. Trial and error is 
performed with settings in the neighborhood of the standard settings. The population size influences 
the speed of the algorithm and also the success of creating a feasible schedule. The larger the 
population size, the longer the solving time is. But the influence of the population size on the solving 
time is not that significant for values below approximately 200. On the other hand, the influence of 
the population size on the success of creating a feasible schedule is great. The smaller the population 
is, the larger the risk is to get stuck in a local optimum because of a lack of genetic diversity. Thanks 
to the mutation operator, one of the properties of the genetic algorithm is that it will always find a 
feasible solution when such a solution exists, but getting trapped in local optimums has a significant 
impact on the solving time. Thus a solution is guaranteed, but it can take a very long time to achieve 
one.

Figure 4.6 displays a feasible solution for a BP with data of week 1. It is allowed to store multiple 
batches in the same tank as long as the product types are equal. The evolution of the accompanying 
highest fitness value across the population is shown in figure 4.7. The fitness value equals the total 
scheduled time (in hours) that tanks are in use until a certain batch causes a conflict.

Figure 4.6: Gantt chart for week 1
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Figure 4.7: fitness progression

Finding a feasible solution for week 1 takes 63 seconds on average. For week 2 and 3 these are 38 
and 6 seconds respectively. The averages are determined after performing 500 runs. Week 3 does 
not face the problem of getting trapped in a local optimum. However, week 1 and 2 do have this 
problem and therefore the solving times for these weeks are provided that solving time is less than 
120 seconds. After 120 seconds the run is interrupted. The probability of interruption (solving time > 
120 sec.) for week 1 and 2 are 7% and 59%. For both weeks, this problem is always caused by the 
same batch. These two batches are allowed to be stored in different tanks because of existing 
machine-tank connections. However, to create a feasible schedule, these batches must be stored in a 
certain tank or else it is not possible to schedule some of the other batches.
About the same results are obtained when the fitness function is slightly changed to the number of 
scheduled batches until a certain batch causes a conflict.

The second type of fitness function tested defines fitness of a (intermediate) solution to be equal to 
the number of batches scheduled without breaking the constraints. The difference with the first type 
of fitness function is that now batches do count even when former batches are not feasibly
scheduled. The performance of the new fitness function is worse than the first function. It is still able 
to schedule week 3 in a short amount of time but week 1 and 2 even have a higher probability of 
being interrupted after 120 seconds.

4.6.2 GAVaPS
The genetic algorithm with varying population size is implemented with the same settings as the GA 
with fixed population size. The only thing that has changed is the population size, which is replaced 
by an initial population size taking the same value. As earlier stated the initial population size will not 
have a huge impact on the performance of the algorithm because the GAVaPS adopts the population 
size to the state of the search. The big question in this is how the design of a lifetime value function 
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should be. First, the lifetime function should reward solutions with high fitness value. Next to that, 
the population should decline when genetic diversity of the population is low. Solutions in a 
converged population should thus get a lower lifetime value than solutions in a highly diversified 
population.

The lifetime value function satisfying both conditions:

  actordiversityf*torfitnessfac*Agemax,1maxifetimeremainingL i  ,

with maxAge equal to the maximum lifetime value a solution can get assigned and

 
   

 

 
1popSize

popSize
*

2
fitnessmax

Variancemax

Variancemax
fitnessvar

actordiversityf

fitnessminfitnessmax
fitnessminfitness

torfitnessfac

2

2

i























 fitness: vector of individual fitness

 : small number

popSize: size of the current population

The remaining lifetime function assigns values between 1 and maxAge. The ‘fitnessfactor’ rewards 
solutions with high fitness value while, on average, the ‘diversityfactor’ decreases (increases) the 
average lifetime when diversity is low (high) amongst the population. The variable maxVariance
takes the value of the highest possible variance of the current population. A population has 
maximum variance when half of the individuals have fitness equal to zero and the fitness of the other 
half equaling the maximum fitness of the population.

Now the lifetime value function is designed it is time to run experiments with different maxAge and 
reproduction ratio (p) values. The higher values they take, the larger the average population size will 
be and vice versa. The risk is that the values are set to high resulting in an exponential growth of the 
population size which of course is not wanted. Trial and error experiments resulted in setting 
maxAge and p equal to 6 and 0.4 respectively. With these values the population size did not implode 
nor explode and gave the best results with respect to creating feasible tank schedules. The results 
are shown in table 4.1. Again the algorithm is interrupted when the solving time exceeds 120 
seconds. Figure 4.8 gives an example of the progress of the varying population size for week 2.

Week 1 Week 2 Week 3

Success rate* 93% 63% 100%
Average solving time (sec)** 53 41 8
*based on 500 runs
**given solving time less than 120 seconds

Table 4.1: results GAVaPS algorithm
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Figure 4.8: development population size

4.6.3 Greedy algorithm
The greedy algorithm turns out to be very successful in scheduling all batches within a short amount 
of time. Finding a feasible solution for week 1 on average takes 4 seconds (in matlab). For both week 
2 and 3 the average solving time is 1 second. The algorithm is restarted every time a batch can not be 
assigned to a tank without breaking one or more constraints. The average number of restarts, before 
a feasible schedule is created, is 1509, 48 and 2.5 for weeks 1, 2 and 3 respectively.

4.6.4 Overview results
Table 4.2 gives an overview on the results attainted in the previous subsections. It is clear that the 
greedy algorithm outperforms the rest. Not only on success rate but also on average solving time.

Week 1 Week 2 Week 3

Genetic algorithm*

Success rate 93% 41% 100%
Average solving time (sec)** 63 38 6

GAVaPS*

Success rate 93% 63% 100%
Average solving time (sec)** 53 41 8

Greedy algorithm***

Success rate 100% 100% 100%
Average solving time (sec)** 4 1 1
*based on 500 runs
**given solving time less than 120 seconds
***based on 1000 runs

Table 4.2: Overview results
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4.7 Shift production

This subsection is a small addition to the previous sections on the genetic algorithm. In the GA(VaPS)
a tank schedule is created holding the production dates fixed. With the MIP model in this section 
production dates are shifted to right (on a timeline) as much as possible keeping the batches in the 
same tank as assigned in the GA(VaPS). This way, given the created schedule from the GA(VaPS), the 
tank usage is minimized.

Mathematical model

Set Index Description
Batch b Set of batches b
SameMachineb b Set of all other batches which use the same machine as 

batch b
SameTankb b Set of all other batches which use the same tank as batch b

Parameter Domain Description
CurrentStartProductionb Batchb Current date at which production of batch b starts
DurationProductionb Batchb Duration of the production of batch b
StartConsumptionb Batchb Date at which consumption of batch b starts
EndConsumptionb Batchb Date at which consumption of batch b ends
MinStartProductionb Batchb Equal to EndConsumption of the previous batch in the same 

tank, zero when batch b is the first batch in the tank
BigM Big-M equal to  btionEndConsumpmax

Decision variable Domain Description
EndProductionb Batchb New date at which production of batch b ends
X(b,b’) ,Batchb 1 if production batch b ends after the start of production of 

}{\ bBatch'b batch b’

Y(b,b’) ,Batchb 1 if production batch b ends after the start of consumption 

}{\ bBatch'b of batch b’

Model constraints & objective function Domain Nr.

 
Batchb

boductionPrEndMax (1)

s.t.

'b,b'b'bb X*BigMoductionPrDurationoductionPrEndoductionPrEnd 
eSameMachin'b

Batchb

 (2)

'boductionPrEnd

 'b,bbb X1*BigMoductionPrDurationoductionPrEnd 
eSameMachin'b

Batchb

 (3)
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'b,b'bb Y*BigMmptionStartConsuoductionPrEnd 
SameTank'b
Batchb


 (4)

'btionEndConsump

 'b,bbb Y1*BigMoductionPrDurationoductionPrEnd 
SameTank'b
Batchb


 (5)

bb mptionStartConsuoductionPrEnd  Batchb (6)

bbb oductionPrDurationoductionPrEndoductionPrMinStart  Batchb (7)

Explanation of the constraints & objective function

(1) The objective function minimizes the total storage time of the batches by shifting the production 
process.

(2) - (3) Restrictions 2 and 3 prevent machines having multiple tasks at the same time. A machine can 
only have 1 production task at a time. If the ending time of production of batch b is after the starting 
time of production of batch b’, then also the starting time of production of batch b has to be after 
the ending time of production of batch b’.

(4) - (5) Restrictions 4 and 5 prevent the occurrence of execution of production and consumption 
tasks of different batches at the same time in the same tank. For two batches which use the same 
tank, if the ending time of production of batch b is after the starting time of consumption of batch b’, 
then also the starting time of production of batch b has to be after the ending time of consumption 
of batch b’.

(6) This restriction ensures that production is finished before consumption starts.

(7) Restriction 7 ensures that production does not overlap the consumption process of the previous 
batch stored in the same tank.
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5 MIP approach

Another method to deal with tank scheduling problems besides genetic algorithms is mixed integer
linear programming. A disadvantage of the genetic algorithm from section 4.3 is that it is not able to 
schedule the batches and treat production dates as non-fixed simultaneously. The models in the 
following sections however will be able to schedule batches with non-fixed production dates. Now 
with a MIP-model the question is whether the solving time stays within reasonable limits. 
Consumption dates are still treated as being fixed. The restriction on the production (time) of a batch 
is that it should be prior to the start of the consumption.
Treating the production dates as non-fixed results in the definition of a batch being changed. The 
definition of a batch was ‘a collection of linked production and consumption tasks and their 
properties’. In the new definition a batch always has one production task and one or more 
consumptions tasks. The result of this is that ‘original’ batches are split into multiple batches when it 
contains multiple production tasks.

5.1 Relaxing fixed production dates - Model 1

Model specific assumptions
This section introduces a MIP model with the following specific assumption:

1. A tank can hold no more than one batch at a time.
2. A batch is completely stored in a tank, no splitting allowed.

Mathematical model

Set Index Description
Tank t Set of all tanks
Batch b Set of all batches
SameProdMachineb b Set of all other batches which use the same production 

machine as batch b
AvailableTanksb t Set of all tanks available for batch b due to machine-

tank connections

Parameter Domain Description
Volumeb Batchb Volume of batch b
Capacityt Tankt Capacity of tank t
StartConsumptionb Batchb Starting time (in seconds) of consumption batch b
EndConsumptionb Batchb Ending time (in seconds) of consumption batch b
DurationProductionb Batchb Duration (in seconds) of production batch b
BigMb Batchb Big-M equal to StartConsumptionb

BigM2b Batchb Big-M equal to EndConsumptionb
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Decision variable Domain Description
StartProductionb Batchb Starting time of production batch b, equal to 

EndProductionb - DurationProductionb

EndProductionb Batchb Ending time of production batch b

TankChoiceb,t
banksAvailableTt

,Batchb



tb
tb

tankinstorednotisbatchif 
tankinstoredisbatchif 

0
1



Indicator1b,b’
bodMachinePrSame'b

,Batchb



'b
b

b
b

batchproductionof startthebefore
finishedisbatchof productionif 

'batchproductionof starttheafter
finishedisbatchof productionif 

0

1







Indicator2b,b’ }{\ bBatch'b
,Batchb




tanksamethein
storednotare'andbatchif 

tanksamethein
storedare'andbatchif 

0

1

bb

bb







Indicator3b,b’ }{\ bBatch'b
,Batchb




b
b

b
b

batchproductionof startthebefore
finishedisbatchof nconsumptioif 

'batchproductionof starttheafter
finishedisbatchof nconsumptioif 

0

1







Model constraints & objective function Domain Nr.


Batchb

boductionPrEndMax (1)

s.t.





banksavailableTt

t,b 1TankChoice Batchb (2)

tt,bb CapacityTankChoice*Volume 
banksAvailableTt

,Batchb

 (3)

b'b,b'bb BigM*1IndicatoroductionPrStartoductionPrEnd 
bodMachinePrSame'b

,Batchb

 (4)

11Indicator1Indicator b,'b'b,b 
bodMachinePrSame'b

,Batchb

 (5)

12IndicatorTankChoiceTankChoice 'b,bt,'bt,b 
banksAvailableTt

,bBatch'b,Batchb


 }{\ (6)

b'b,b'bb 2BigM*3IndicatoroductionPrStarttionEndConsump  }{\ bBatch'b,Batchb  (7)

23Indicator3Indicator2Indicator b,'b'b,b'b,b  }{\ bBatch'b,Batchb  (8)

bb mptionStartConsuoductionPrEnd  Batchb (9)

 1,03Indicator,1Indicator 'b,b'b,b  }{\ bBatch'b,Batchb  (10)

 1,02Indicator 'b,b  }{\ bBatch'b,Batchb  (11)

 1,0TankChoice t,b 
banksAvailableTt

,Batchb

 (12)
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0oductionPrEnd b  Batchb (13)

Explanation of the constraints & objective function

(1) The first goal is to get a feasible schedule. The objective function does not need an expression for 
this. The second goal is to minimize the storage time of the batches. This is done by maximizing the 
ending time of production.

(2) The decision variable TankChoiceb,t can only take a positive value, indicating batch b to be stored 
in tank t, when the associated production machine has a connection with tank t. Every batch needs 
to be stored complete in one tank only. This restriction ensures that assumption 2 is respected.

(3) A batch is not allowed to be stored in a tank when it has insufficient capacity to store the volume. 
TankChoiceb,t then is set to 0.

(4) - (5) A production machine can only have one task at a time. If two batches would have 
overlapping production tasks, then EndProductionb is higher than StartProductionb’ and 
EndProductionb’ is higher than StartProductionb. This results in b,'b'b,b 1Indicator1Indicator  = 2 

which is not allowed according to restriction (5). The picture below reflects this situation.

Figure 5.1: Situation sketch

(6) - (8) These restrictions prevent overlapping batches in a tank. If two batches are scheduled in the 
same tank, then Indicator2b,b’ is set to one. If these two batches also have an overlap in time, 
indicated by b,'b'b,b 3Indicator3Indicator  being equal to two, then the sum 

'b,bb,'b'b,b 2Indicator3Indicator3Indicator  exceeds two and therefore does not satisfy 

restriction (8).

(9)  The ending time of production of a batch should be prior to the start of the consumption of the 
same batch.

(11) According to this restriction Indicator2b,b’ is allowed to take a value in the range of [0,1]. It does 
not need to be a binary variable because it will be equal to 1 when two batches are in the same tank 
thanks to constraint (6) and equal to 0 when two batches overlap in time (see constraint (8)). In the 
end Indicator2b,b’ is not a binary variable because it has a negative impact on solving time.
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5.2 Relaxing fixed production dates - Model 2

The two assumptions applying for the above model are not needed for the formulation of the next 
model. This means that it now will be allowed to store multiple batches of the same product type (at 
the same time) in one tank and allocate a batch to multiple tanks. New capacity related constraints 
are added in order to respect to tank capacities.
This second MIP model uses the sets and parameters from the first model with flexible production 
and extra sets and parameters which are added. Some extra decision variables are needed too.

Mathematical model

Extra set Index Description
SameProductb b Set of all other batches which have the same product 

as batch b

Extra parameter Domain Description

BigM3b,b’ }{\ bBatch'b
,Batchb


 Big-M equal to StartConsumptionb’ - StartConsumptionb

BigM4b,b’ }{\ bBatch'b
,Batchb


 Big-M equal to EndConsumptionb’ - EndConsumptionb + 1

BigM5b’,t
banksavailableTt

,Batch'b

 Big-M equal to min  tb Capacity,Volume

Extra decision variable Domain Description

VolumeDistributionb,t Tankt
,Batchb


 Distribution of volume batch b over tanks t

Overlapb,b’ }{\ bBatch'b
,Batchb


   

else
tanksametheinbatchesbothand
batchnconsumptiotimeendingand

batchproductiontimestartingbetween
isbatchnconsumptiotimeendingif 

0

1
'b

'b
b









Xb,b’,t

banksAvailableTt
,bBatch'b

,Batchb





}{\ 1
if tankinbatchof Volume

'b,bOverlap
t'b

Indicator4b,b’ }{\ bBatch'b
,Batchb




b
b

b
b

batchnconsumptioof startthebefore
finishedis'batchof productionif 

batchnconsumptioof starttheafter
finishedis'batchof productionif 

0

1







Indicator5b,b’ }{\ bBatch'b
,Batchb




b
b

b
b

batchnconsumptioof startthebefore
finishedis'batchof nconsumptioif 

batchnconsumptioof starttheafter
finishedis'batchof nconsumptioif 

0

1







Model constraints & objective function Domain Nr.


Batchb

boductionPrEndMax (1)
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s.t.





banksAvailableTt

t,b 1ributionVolumeDist Batchb (2)

t,bt,b TankChoiceributionVolumeDist 
banksAvailableTt

,Batchb

 (3)

b'b,b'bb BigM*1IndicatoroductionPrStartoductionPrEnd 
bodMachinePrSame'b

,Batchb

 (4)

11Indicator1Indicator b,'b'b,b 
bodMachinePrSame'b

,Batchb

 (5)

12IndicatorTankChoiceTankChoice 'b,bt,'bt,b 
banksAvailableTt

bBatch'b,Batchb


 },{\ (6)

b'b,b'bb 2BigM*3IndicatoroductionPrStarttionEndConsump  }{\ bBatch'b,Batchb  (7)

'b,b'b,bb'b 3BigM*4IndicatornConsumptioStartoductionPrEnd  boductPrSame'b,Batchb  (8)

24Indicator3Indicator2Indicator 'b,b'b,b'b,b  boductPrSame'b,Batchb  (9)
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0oductionPrEnd b  Batchb (21)

0X t,'b,b 
b

b
anksAvailableTt,

oductPrSame'b,Batchb


 (22)

Explanation of the constraints & objective function

(1) See model 1.

(2) The decision variable VolumeDistributionb,t can only take a positive value, indicating batch b to be 
(partially) stored in tank t, when the associated production machine has a connection with tank t. 
Every batch needs to be stored complete in one or multiple tanks.

(3) If a batch is stored in a tank, then the variable TankChoiceb,t takes the value 1.

(4) - (5) See model 1.

(6) - (9) These restrictions prevent overlapping production and consumption tasks in a tank. If two 
batches are scheduled in the same tank, then Indicator2b,b’ is set to one. If consumption of batch b 
has an overlap with the production of batch b’, then Indicator3b,b’ and Indicator4b,b’ are both set to 
one. Because 'b,b'b,b'b,b 4Indicator3Indicator2Indicator  can not exceed two, overlapping 

production and consumption is not possible. The next picture describes a situation permitted.

Figure 5.2: Situation sketch

(10) - (12) These restrictions indicate when batches overlap each other or restrict batches from 
overlapping. The restrictions are such that Overlapb,b’ is set to 1 when the ending time of 
consumption batch b is in the interval starting time production b’ - ending time consumption b’ and 
both batches are in the same tank. This formulation is needed for restrictions (13) - (15) to work. 
While not necessarily needed, restriction 12 is added to decrease solving time. The ‘+1’ in restriction 
(10) is there to set Overlapb,b’ to 1 when two batches have equal ending time consumption.

(13) - (15) Now that a tank can contain multiple batches, the total volume in a tank needs to be 
calculated at certain points in time and compared with the associated capacity. The total volume is 
calculated by the left part of restriction (15). If Overlapb,b’ equals 1, then Xb,b’,t is the volume of batch 
b’ in tank t. Else Xb,b’,t is a non-negative number. The next picture should make things more clear.
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Figure 5.3: Situation sketch

Four batches are displayed which are stored in the same tank. The total volume in a tank is calculated 
at every ending time of consumption. The total volume at ending time batch 1 is just the volume of 
batch 1 because no other batch overlaps this ending time. The other summations are volume of 
batch 2, 1 & 3, volume of batch 3, 1 & 4 and volume of batch 4 & 1.

(16) See model 1, restriction (9).

(18) - (19) Both Overlap and Indicator2 are not binary variables but are in the range of [0,1]. This 
speeds up the solving time of the model and does not influence the intended behavior of the two 
variables thanks to the formulations of restrictions (6), (9) and (11).

5.3 Relaxing fixed consumption dates

Until now, the consumption dates were fixed. With the next few additions to the last model this 
assumption is lifted. Another change is the way a batch is defined. The last definition of a batch is ‘a 
task consisting of one production batch and a single or multiple consumption batches’. In the new 
definition a batch always has one production batch and one consumption batch. The result of this is 
that original production batches are split into multiple production batches when it has a linkage with 
multiple consumption batches. The opposite (multiple production, single consumption) is also true. 
Below an example with one old batch split into two new batches to illustrate this:

Old situation Batch number Start (sec.) Duration End (sec.) Volume (L)

Production 1 ? 100 Start + Duration 10000
Consumption 1 200 200 400 5000
Consumption 1 300 200 500 5000
Batch produced before 200 and consumed between 200 - 500

New situation Batch number Start (sec.) Duration End (sec.) Volume (L)

Production 1 ? 100 Start + duration 5000
Consumption 1 200 200 400 5000
Batch 1 produced before 200 and consumed between 200 - 400
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Production 2 Same as batch 1 100 Start + duration 5000
Consumption 2 300 200 500 5000
Batch 2 produced before 200 and consumed between 300 - 500

Mathematical model
The extra sets, parameters, decision variables and constraints below are all extensions to the second 
MIP model with flexible production dates. Together it is one model in which the consumption dates 
are also flexible now.

Extra sets Index Description
SameConMachineb b Set of all other batches which use the same consumption 

machine as batch b
DiffProdBatchb b Set of all other batches which are not part of the same 

‘original production batch’ (before splitting) as batch b
SameProdBatchb b Set of all other batches which are part of the same 

‘original production batch’ (before splitting) as batch b
DiffConBatchb b Set of all other batches which are not part of the same 

‘original consumption batch’ (before splitting) as batch b
SameConBatchb b Set of all other batches which are part of the same 

‘original consumption batch’ (before splitting) as batch b

Extra parameters Domain Description
DurationConsumptionb Batchb Duration (in seconds) of production batch b
StartConsumptionb Batchb Starting time of consumption batch b, equal to 

EndConsumptionb - DurationConsumptionb

Finishedb Batchb Latest possible time for a batch to be consumed
BigMb Batchb Big-M equal to Finishedb - DurationConsumptionb

BigM2b Batchb Big-M equal to Finishedb

BigM3b’ Batch'b  Big-M equal to Finishedb’ - DurationConsumptionb’

BigM4b’ Batch'b  Big-M equal to Finishedb’ + 1

Extra dec. variables Domain Description
EndConsumptionb Batchb Ending time of consumption batch b

Indicator6b,b’
bhineSameConMac'b

,Batchb



'b
b

b
b

0

1

batchnconsumptioof startthebefore
finishedisbatchof nconsumptioif 

'batchnconsumptioof starttheafter
finishedisbatchof nconsumptioif 







Model constraints & objective function Domain Nr.


Batchb

boductionPrEndMax (1)

s.t.
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0tionEndConsump b  Batchb (29)

Explanation of the constraints

(23) - (24) A consumption machine can only have one task at a time. If two batches would have 
overlapping consumption tasks, then EndConsumptionb is higher than StartConsumptionb’ and 
EndConsumptionb’ is higher than StartConsumptionb. This results in b,'b'b,b 6Indicator6Indicator  = 2 

which is not allowed according to restriction (24). These restrictions are not needed for batches 
which have consumption tasks belonging to the same original consumption batch. They are assigned 
the same consumption dates by restriction (26) and thus do overlap.
These restrictions are the reason for the redefinition of a batch. The old batch could have multiple 
consumption batches and thus, in reality, have multiple starting and ending dates of consumption. 
The starting time of consumption was set to the earliest starting time and the ending time of 
consumption was set to the latest ending time. Now with the restriction of non-overlapping machine 
(consumption) tasks this had to be changed. The new batch uses one consumption machine and has 
one starting and ending time for consumption.

(25) - (26) Batches are assigned the same ending time of production when they are part of the same 
original production batch. In reality they form one production batch. As a result of this, the domains 
of restrictions (4) & (5) are adjusted to this situation.
Batches are assigned the same ending time of consumption too when they are part of the same 
original consumption batch.
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(27) The ending time of consumption of a batch should be prior to the latest allowed ending time of 
consumption.
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5.4 Results

In this section the results of the methods given the model specific assumptions will be presented. 

The three MIP models are implemented in AIMMS 3.10 and are solved using the CPLEX 12.1 solver. 

The variables of interest of the first model are the choice of tank (TankChoice) and the ending time of 

production (EndProduction). In this FPDP problem each batch is stored in a single tank and a tank 

never contains multiple batches. The ending time of production is shifted forward as much as 

possible.

The results of model 1 for the three weeks of data can be seen in table 5.1. All three weeks are 
solved in a few seconds. It should be noted that the third week contains less batches then the other 
two weeks. Week three has 61 batches versus 99 and 93 batches for week one and two respectively.
The objective values all show improvement when compared to the fixed total sum of ending times of 
production from the genetic algorithm. These summations were equal to 28035479, 25225137 and 
16178466 for the three weeks.

FPDP Model 1 # variables # integers # constraints Objective value (sec.) solving time (sec.)

Week 1 22057 12255 75052 28636233 3
Week 2 19581 10931 66366 26607495 4
Week 3 8690 49684911 2952926052 17199420 1

Table 5.1: results FPDP model 1

In the second model (FPDP) it is allowed to store multiple batches in the same tank and to split 
batches and store them in different tanks. Regardless of this, table 5.2 shows that it does not change 
the objective values. Although the objective value did not change, the solutions show that batches 
are stored in other tanks. Figure 5.4 shows a Gantt chart for week 1. None of the batches overlap 
each other and also none of the batches are split and allocated to multiple tanks.

FPDP Model 2 # variables # integers # constraints Objective value (sec.) solving time (sec.)

Week 1 44827 22401 100224 28636223 12
Week 2 40473 20005 90033 26607495 16
Week 3 17335 8780 39017 17199420 1

Table 5.2: results FDPD model 2

In the third MIP model (FCDP) the consumption dates are not treated as being fixed anymore. The 
restriction is that the ending time needs to be before the latest allowed date (variable Finished). The 
variable Finished takes the value of the old fixed ending times of consumption. A consequence of 
flexible consumption dates is the new batch definition earlier described and with that an increase in 
the number of batches and also the number of variables in the model.
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Letting the consumption dates be decision variables has a huge impact on the results as can be seen 
in table 5.3. For week 2 and 3 no solution is found within 24 hours. For week 3 the results are less 
bad with a solving time of 520 seconds.

Flexible 
consumption

# variables # integers # constraints Objective value (sec.) solving time (sec.)

Week 1 151421 73278 333708 - -
Week 2 137805 66579 296639 - -
Week 3 60575 28907 132536 17199420 520

Table 5.3: results model with flexible consumption

Next a test is performed on the maximum number of batches that can be scheduled within one 
minute solving time. First the batches are sorted on the former ending time of consumption which 
each batch had in the models with fixed consumption. Then the first ten batches are scheduled. If 
this succeeds another ten batches are added and so on until the solver fails to solve the batches 
within one minute. From this point the last added batch is removed until the solving time is below 
one minute. Table 5.4 shows the resulting number of batches which are scheduled.

Flexible consumption # batches Percentage (%) # variables # integers # constraints

Week 1 57 31 16877 7551 36990
Week 2 59 34 18289 8113 39086
Week 3 65 57 21673 9950 48760

Table 5.4: number of batches scheduled with solving time less than a minute
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Figure 5.4: Gantt chart for week 1
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6 Constraint programming approach

6.1 An introduction

Constraint programming is a programming methodology which is able to solve constraint satisfaction 
problems and combinatorial optimization problems. One of the main advantages of constraint 
programming is that you can represent problems explicitly in a natural and intuitive model. This is 
possible because of the type of constraints which are available for use. Examples are:

- logical constraints:
 if x is equal to 0, then y is also equal to 0

- global constraints:
 Constraints overlapping tasks:
 noOverlap(x), with x vector of intervals

- element constraints
 z = y(x(i))
 Volume(i) ≤ Capacity(TankChoice(i)) with ‘i’ index of batch

It is not always self-evident to be able to linearize combinatorial optimization problems and to solve 
them with traditional mathematical programming methods. With the presence of above type of 
constraints in constraint programming this is no problem. Also with logical constraints there is no 
need for big-M formulations often used in MIP.

To explain how constraint programming works, we use definitions of IBM ILOG CP Optimizer 
documentation. IBM ILOG CP Optimizer is a constraint programming optimizer for solving detailed 
scheduling problems as well as combinatorial optimization problems that cannot be easily linearized 
and solved using traditional mathematical programming methods like MIP. 

Constraint programming makes use of two techniques to find solutions for satisfaction / optimization 
problems: constructive search and constraint propagation. Before the search is started, initial 
constraint propagation performs domain reduction by removing possible values of decision variables 
that will never by part of a feasible solution. During search the engine of the solver in use will 
perform a constructive search strategy (branch and bound) in the reduced search space to find a 
feasible / optimal solution. Constraint propagation is performed before the search is started but also 
during search. During the branch and bound process temporary domains are created. Values are 
removed from these temporary domains by constraint propagation during search when they violate 
the constraints. An example of the search process is presented below. The example comes from the 
documentation of IBM’s ILOG CP Optimizer and is only slightly changed.

The problem is to find values for x and y from the following information:
x + y = 17
x - y = 5
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x can be any integer from 5 through 12
y can be any integer from 2 through 17

The initial constraint propagation removes values from domains that will not take part in any 
solution. Consider the constraint x + y = 17. If you take the smallest number in the domain of x, which 
is 5, and add it to the largest number in the domain of y, which is 17, the answer is 22. This 
combination of values (x = 5, y = 17) violates the constraint x + y = 17. The only value of x that would 
work with y = 17 is x = 0. However, there is no value of 0 in the domain of x, so y cannot be equal to 
17. The value y = 17 cannot take part in any solution. The domain reduction algorithm employed by 
the constraint propagation engine removes the value y = 17 from the domain of y. Similarly, the 
propagation engine removes the following values from the domain of y: 13, 14, 15 and 16. 

Likewise, if you take the largest number in the domain of x, which is 12, and add it to the smallest 
number in the domain of y, which is 2, the answer is 14. This combination of values (x = 12, y = 2) 
violates the constraint x + y = 17. The only value of x that would work with y = 2 is x = 15. However, 
there is no value of 15 in the domain of x, so y cannot be equal to 2. The value of y = 2 cannot take 
part in any solution. The propagation engine removes the value y = 2 from the domain of y. For the 
same reason, the domain reduction algorithm employed by the propagation engine removes the 
following values from the domain of y: 2, 3 and 4.

After initial propagation for the constraint x + y = 17, the domains are:
D(x) = [5 6 7 8 9 10 11 12]
D(y) = [5 6 7 8 9 10 11 12]

Now, examine the constraint x - y = 5. If you take the value 5 in the domain of x, you can see that the 
only value of y that would work with x = 5 is y = 0. However, there is no value of 0 in the domain of y, 
so x cannot equal 5. The value x = 5 cannot take part in any solution. The propagation engine 
removes the value x = 5 from the domain of x. Using similar logic, the propagation engine removes 
the following values from the domain of x: 6, 7, 8 and 9. Likewise, the domain reduction algorithm 
employed by the propagation engine removes the following values from the domain of y: 8, 9, 10, 11 
and 12.

After initial propagation, the search space has been reduced in size. The domains are now:
D(x) = [10 11 12]
D(y) = [5 6 7]

After initial constraint propagation, the search space is reduced. The solver will use a constructive 
search strategy to guide the search for a solution in the remaining part of the search space. Suppose 
that, based on the search strategy, the optimizer has assigned the value 10 to the decision variable x. 
Working with the constraint x + y = 17, constraint propagation reduces the domain of y to [7]. 
However, this combination of values (x = 10, y = 7) violates the constraint x - y = 5. The optimizer 
removes the value y = 7 from the current domain of y. At this point, the domain of y is empty, and 
the optimizer encounters a failure. The optimizer can then conclude that there is no possible solution 
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with the value of 10 assigned to x. When the optimizer decides to try a different value for the 
decision variable x, the domain of y is at first restored to the values [5 6 7]. It then reduces the 
domain of y based on the new value assigned to x. The solver continues to search using constructive 
search and constraint propagation during search until a solution is found.
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6.2 Implementation constraint programming

In this section several constraint programming formulations are presented. The formulations differ in 
the assumptions imposed on the tank scheduling problem. The program IBM ILOG OPL-CPLEX Analyst 
Studio is used for implementation. This program uses OPL (Optimization Programming Language), 
designed to substantially simplify optimization problems, as its programming language.

6.2.1 Basic models
In this subsection four models will be given which do not differ that much from each other. All four 
models treat the production and consumption processes as being fixed and have a feasible schedule 
as their goal. The difference is whether or not batches are allowed to be stored in multiple tanks 
and/or to store multiple batches in one tank at the same time. The specific assumptions of the four 
problems (BP) are respectively:

(1) Batches are stored completely in one tank and a tank can only contain one batch at a time.
(2) Batches are stored completely in one tank and a tank may contain multiple batches at a time.
(3) Batches are allowed to be allocated to multiple tanks for storage and a tank can only contain 

one batch at a time.
(4) Batches are allowed to be allocated to multiple tanks for storage and a tank may contain 

multiple batches at a time.

The boxes below show the coding of the tank scheduling problem in OPL. The first box gives the sets, 
subsets and parameters used in the basic models. The corresponding names are adopted from the 
MIP section. The elements are initialized through a separate data file replacing the dots.

//sets
int nbBatches   = ...; //number of batches
int nbTanks = ...; //number of tanks

//parameters
int Capacity[1..nbTanks] = ...; //Capacity
int Volume[1..nbBatches] = ...; //Volume
int Product[1..nbBatches] = ...; //Product type
int StartProduction[1..nbBatches] = ...; //Starting time production
int EndProduction[1..nbBatches] = ...; //Ending time production
int StartConsumption[1..nbBatches] = ...; //Starting time consumption
int EndConsumption[1..nbBatches] = ...; //Ending time consumption
int TankOption[1..nbBatches][1..nbTanks] = ...; //Available tanks

//subsets
//tanks available for batch b:
{int} AvailableTanks[b in 1..nbBatches] = {t | t in 1..nbTanks:

TankOption[b][t] == 1};
//tanks not available for batch b:
{int} NonAvailableTanks[b in 1..nbBatches] = {t | t in 1..nbTanks:

TankOption[b][t] == 0};
//batches with a different product type than batch b:
{int} DiffProduct[b in 1..nbBatches] = {j | j in 1..nbBatches: Product[b]

!= Product[j]}; 
//batches with the same product type as batch b:
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{int} SameProduct[b in 1..nbBatches] = {j | j in 1..nbBatches: Product[b]
== Product[j]};

Basic model (1)
In constraint programming working with an objective function is allowed but not always required. In 
this and the other basic models the objective function is not included because the goal of a feasible 
scheduled does not require this.
The only decision variable needed in the model is the choice of tank (TankChoice). Because of the 
ability to use logical constraints, no other decision variables are needed. The value of TankChoice is 
restricted to be in the range 1, .., nbTanks. Next to that the first restriction reduces the domain of 
TankChoice to the set of available tanks.
The second restriction ensures that batches are stored in tanks with enough capacity. A decision 
variable is used as an index to retrieve the capacity of the selected tank. Something which would not 
be possible in linear programming. The third restriction states, if two batches are stored in the same 
tank, then they are not allowed to overlap in time. The symbol ‘=>’ used has the meaning ‘imply’ and 
not ‘greater than or equal to’.

//decision variables
//Tank used to store batch b:
dvar int TankChoice[b in 1..nbBatches] in 1..nbTanks;

//Restrictions
subject to {
  forall(b in 1..nbBatches, t in NonAvailableTanks[b])
  TankChoice[b] != t;

  forall(b in 1..nbBatches)
  Volume[b] <= Capacity[TankChoice[b]];

  forall(b in 1..nbBatches, j in 1..nbBatches: j > b)
  TankChoice[b]==TankChoice[j] => EndConsumption[b] >

StartProduction[j] || StartProduction[b] < EndConsumption[j];
}

Basic model (2)
Restriction two is changed to cope with multiple batches stored in one tank. It has the same function 
as restrictions (13) - (15) of the second MIP model. The left part of the restriction calculates the 
volume of batch b plus the volume of all other batches (with the same choice of tank and product 
type) whose ending time of consumption falls between the starting time of production of batch b
and its ending time of consumption. This calculated volume has to be less than or equal to the 
capacity of the tank in question.
The third restriction states, if two batches are stored in the same tank and contain different product 
types, then they are not allowed to overlap in time.

//decision variables
//Tank used to store batch b:
dvar int TankChoice[b in 1..nbBatches] in 1..nbTanks;

//Restrictions
subject to {
  forall(b in 1..nbBatches, t in NonAvailableTanks[b])
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  TankChoice[b] != t;

  forall(b in 1..nbBatches)
  Volume[b] + sum(j in SameProduct[b]) Volume[j] * (EndConsumption[b] >

EndConsumption[j] && StartProduction[b] < EndConsumption[j] && 
TankChoice[b]==TankChoice[j]) <= Capacity[TankChoice[b]];

  forall(b in 1..nbBatches, j in DiffProduct[b]: j > b)
  TankChoice[b]==TankChoice[j] => EndConsumption[b] >

StartProduction[j] || StartProduction[b] < EndConsumption[j];

}

Basic model (3)
In the third model it is possible to store a batch in multiple tanks. The variable TankChoice is replaced 
by the new decision variable VolumeDistribution. This variable describes how much volume of batch 
b is in tank t. Restriction one states that the volume of batch b should be stored in one or more of its 
available tanks. Again the second restriction ensures that batches are stored in tanks with enough 
capacity. The third restriction prevents overlapping batches. If a batch has an overlap in time with 
another batch, then these batches will to be stored in different tanks. 

//decision variables
dvar int VolumeDistribution[b in 1..nbBatches][t in 1..nbTanks] in

0..Volume[b];
//Restrictions
subject to {  
  forall(b in 1..nbBatches, t in AvailableTanks[b])
  sum(t in 1..nbTanks) VolumeDistribution[b][t] == Volume[b];

  forall(b in 1..nbBatches, t in AvailableTanks[b])
    VolumeDistribution[b][t] <= Capacity[t];
  forall(b in 1..nbBatches, j in 1..nbBatches: j > b, t in

AvailableTanks[b])
  VolumeDistribution[b][t] > 0 && VolumeDistribution[j][t] > 0 =>

EndConsumption[b] > StartProduction[j] || StartProduction[b] <
EndConsumption[j];

}

Basic model (4)
The last basic model uses the same decision variable as model 3. It also copies restriction one. 
Restriction two and three are almost copies of the second and third restriction of model 2. An extra 
domain ( banksAvailableTt ) is added and the variable TankChoice is replaced by 

VolumeDistribution for both restrictions. 

//decision variables
dvar int VolumeDistribution[b in 1..nbBatches][t in 1..nbTanks] in

0..Volume[b];
//Restrictions
subject to {  
  forall(b in 1..nbBatches, t in AvailableTanks[b])
  sum(t in 1..nbTanks) VolumeDistribution[b][t] == Volume[b];

  forall(b in 1..nbBatches, t in AvailableTanks[b])
    VolumeDistribution[b][t] + sum(j in SameProduct[b])

VolumeDistribution[j][t] * (EndConsumption[b] > StartProduction[j] &&
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StartProduction[b] < StartProduction[j]) <= Capacity[t];

  forall(b in 1..nbBatches, j in DiffProduct[b]: j > b, t in
AvailableTanks[b])

  VolumeDistribution[b][t] > 0 && VolumeDistribution[j][t] > 0 =>
EndConsumption[b] > StartProduction[j] || StartProduction[b] <

EndConsumption[j];
}

6.2.2 Extended model
The aim of the extended model is to obtain a feasible schedule and execute the productions as late 
as possible (FPDP). This means that production dates are not fixed now. The model can be divided 
into four models under different situations (assumptions), just like with the basic model. The choice 
here is to only provide the extended version of basic model 1, because the other three can be 
obtained by some small changes similar to the changes in the basic models.

The aim of this model requires an objective function in the formulation. The objective function of
course is the same as in the MIP models; maximize the sum of all ending times of production. The 
consequence of giving up fixed production dates is that restrictions need to be added to prevent 
machines from having multiple tasks at the same time. With ‘noOverlap’ OPL has a predefined 
constraint for this. It prevents intervals (starting time production - ending time production) from 
overlapping.
The code:
  noOverlap(all (i in SameProdMachine[b]) ProdBatches[i]);

means that all production batches, which use the same production machine, are not allowed to have 
overlapping production processes. Prodbatches here is an interval variable with a starting- and 
ending time and with starting time plus duration equaling ending time. The starting- and ending time 
of production can be accessed by stating startOf(ProdBatches[b]) and endOf(ProdBatches[b]) 
respectively.

//Extra parameters
string ProdMachine[1..nbBatches] = ...;
int DurationProduction[1..nbBatches] = ...;

//Extra subset
//batches which use the same production machine as batch b:
{int} SameProdMachine[b in 1..nbBatches] = {j | j in 1..nbBatches:

ProdMachine[b] == ProdMachine[j]};

//decision variables
dvar int TankChoice[b in 1..nbBatches] in 1..16;
dvar interval ProdBatches[b in 1..nbBatches] in 0..StartConsumption[b] size

DurationProduction[b];
//expression variables
dexpr int StartProduction[b in 1..nbBatches] = startOf(ProdBatches[b]);
dexpr int EndProduction[b in 1..nbBatches] = endOf(ProdBatches[b]);

maximize sum(b in 1..nbBatches) EndProduction[b];

subject to {
  forall(b in 1..nbBatches, t in NonAvailableTanks[b])
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  TankChoice[b] != t;

  forall(b in 1..nbBatches)
  noOverlap(all (i in SameProdMachine[b]) ProdBatches[i]);

  forall(b in 1..nbBatches)
  Volume[b] <= Capacity[TankChoice[b]];

  forall(b in 1..nbBatches, j in 1..nbBatches: j > b)
  TankChoice[b]==TankChoice[j] => EndConsumption[b] >

StartProduction[j] || StartProduction[b] < EndConsumption[j];
}
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6.3 Results

This section presents the results of the constraint programming models. As earlier stated the models 
are implemented in IBM ILOG OPL-CPLEX Analyst Studio. The solver used here is IBM ILOG CP 
Optimizer, according to IBM, their next generation constraint programming engine for solving 
sequencing, resource allocation and timetabling problems that are difficult or impossible to solve 
with mathematical programming based techniques.

Tables 6.1-6.4 show the results for the four BP’s and their accompanying basic models. All models 
solve the problem within one second for each week. The models do not have an objective function 
and therefore the table does not give values on them. 

Basic Model 1 # variables # constraints Objective value (sec.) solving time (sec.)

Week 1 99 25508 - < 1
Week 2 93 22571 - < 1
Week 3 61 9917 - < 1

Table 6.1: results basic model 1

Basic Model 2 # variables # constraints Objective value (sec.) solving time (sec.)

Week 1 99 26570 - < 1
Week 2 93 23720 - < 1
Week 3 61 10389 - < 1

Table 6.2: results basic model 2

Basic Model 3 # variables # constraints Objective value (sec.) solving time (sec.)

Week 1 1584 131747 - < 1
Week 2 1488 112841 - < 1
Week 3 976 48699 - < 1

Table 6.3: results basic model 3

Basic Model 4 # variables # constraints Objective value (sec.) solving time (sec.)

Week 1 1584 133196 - < 1
Week 2 1488 114056 - < 1
Week 3 976 49518 - < 1

Table 6.4: results basic model 4

Table 6.5 gives the result of the extended model (FPDP). Batches are stored completely in one tank
and a tank can only contain one batch at a time. CP Optimizer is not able to find the optimal solution 
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within one hour for week 1 and week 2. But is does find feasible solutions within one minute solving 
time which are near optimal. 

Extended Model # variables # constraints Objective value (sec.) solving time (sec.) Time limit

Week 1 198 25608 28636064 57 1 hour
Week 2 186 22665 26606670 52 1 hour
Week 3 122 9979 17199420 9 1 hour

Table 6.5: results extended model

For week 1, the only difference between the optimal solution (first MIP model) and the near optimal 
found here is shown in figure 6.1. The picture shows two production tasks on a single machine. 
Looking at the ending times of production, the optimal solution is preferred over the near optimal 
solution. But looking at the schedule of the two production batches taken as a whole, neither of the 
two is preferred over the other.

Figure 6.1: CP solution vs. MIP solution

For week 2, all production dates in the solution are the same as the production dates of the first two 
MIP model solutions, except for five of them. These five productions use the same production 
machine and therefore are not allowed to overlap in time. Figure 6.2 shows the situation for the 
optimal solution and the near optimal solution from the CP-model. The ending time of production of 
batch 5 is equal to its starting time of consumption in the optimal solution meaning it can not be 
shifted to the right anymore. The same holds true for batch 4 in the near optimal solution. The 
optimal solution is optimal according to the value of the objective function, but looking at the picture 
you could say the near optimal solution is at least as good in terms of tank occupation. When the 
objective function is changed to the sum of ending times consumption minus the sum of starting 
times productions, then both displayed solutions below would have the same value.

Figure 6.2: CP solution vs. MIP solution
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CP Optimizer does find the optimal solution of week 3 in 9 seconds, but it is not able to prove that it 
is the best possible solution. This sounds weird, but the solution found has the same objective value 
as the objective value (proven optimal) of the first two MIP models. Therefore this solution has to be 
optimal.

The last results are under the assumptions that batches are stored completely in one tank and a tank 
can only contain one batch at a time. The other three situations described in 6.2.1 (Basis models) are 
also implemented but do not provide good results in terms of solving time and quality of feasible 
solutions.
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7 Conclusions and recommendations

The goal of this thesis was to solve tank scheduling by using different techniques and to compare the 
limitations and the results of each technique. The choice was made to implement a genetic algorithm
with and without variable population size, mixed integer programming models and constraint 
programming models. Also a greedy algorithm based on the SA approach from Bui et al. (2009) has 
been implemented.

The genetic algorithms with and without varying population size showed to be having trouble finding 
a feasible schedule. Three datasets were used for computational testing and especially the second 
set gave problems for the genetic algorithms. The GAVaPS outperformed the GA with fixed 
population size but still only managed to create feasible tank schedules in 63% of the runs for the 
second week of data. The greedy algorithm turned out to be more successful. It had no difficulty 
solving tank scheduling problems within a short amount of time.

The former algorithms solved problems under the assumption of fixed production and consumption 
dates. The assumption of fixed production was lifted for all three MIP models and also the 
consumption dates were flexible for the third MIP model. The MIP models with fixed consumption 
dates were able to schedule all the batches within 20 seconds for all datasets. Treating consumption 
dates as decision variables lead to a MIP model in which the number of variables increased with a 
factor of at least three due to a needed change in the definition of a batch. As a result, this MIP 
model was only able to schedule a subset of the batches.

CP, the last technique used to solve tank scheduling problems, provided very good results for the 
four basic problems with a solving time less than a second. The extended CP model (FPDP) gave 
different results. In this model assumptions of batches which need to be stored in one tank and a 
tank may not contain multiple batches are needed for CP to create a feasible schedule within one 
minute.

It can be concluded that greedy algorithm, MIP and CP approaches are successful in solving tank 
scheduling problems. Greedy algorithms and CP are preferred for fixed production and consumption 
date problems due to their ease of implementation and short solving times. Both these approaches 
are limited in the sense that the greedy algorithm is not able to treat production and/or consumption 
dates as flexible and CP already has some difficulties in scheduling batches with flexible production 
dates. Therefore, CP is not expected to provide good results when also the consumption dates would 
be flexible. Looking at the results MIP approaches are a good choice when production dates are 
flexible and are the best choice among the different techniques when consumption dates are also 
flexible.

For further research it could be interesting to explore CP approaches to tank scheduling some more. 
It not only provided good results in this thesis but it is also very easy to use in general thanks to the 
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intuitive model representation. Providing customized search strategies could be an option to deal 
with more difficult problems.
In the ideal situation you would have a technique able solve tank scheduling problems in which tanks 
and machines are scheduled simultaneously. Whether this is possible with the current solution 
techniques and solvers, remains unknown as it is too complex for the moment. Further investigation 
and improvement of solvers should tell.
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