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Abstract

In this research we report asymmetry in the dependence structure between the growth rate

of the Consumer Price Index (CPI) and the federal fund rate. The same also appears to be

true for the dependence structure between the growth rate of the Composite Coincident In-

dex (CCI) of the Conference Board and the yield spread. We investigate the importance of

capturing non-linearities in the dependence structure in the context of out-of-sample fore-

casting by comparing the forecast performance of models that capture non-linearities in

the dependence structure and those which do not. For predicting future inflation rates, we

find that the out-of-sample forecasts can be improved by capturing the effects of an asym-

metric dependence structure. For recession forecasts, we do not see evidence of improved

forecasting performance however.
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Chapter 1

Introduction

1.1 Background

The interest of economists at central banks and businesses often has been predicting the

future state of the economy, in particular recessions as it can lead to severe economic costs.

Often in practice, the binary recession indicator published by the NBER Business Cycle

Dating Committee is used for dating US recessions. This indicator is based on the following

variables: personal income less transfer payments, employment, industrial production and

the volume of sales of the manufacturing and wholesale sector adjust for price changes

to determine the months of peaks and troughs. The Conference Board‘s work on the

composite coincident indicators for the United States combines these 4 series in their CCI

index. Therefore there is a close link between CCI growth and the binary NBER recession

indicator.1

Not surprisingly, forecasts of inflation rates also receive a lot of attention from policy

makers and businesses as actions have to be taken before inflationary or deflationary pres-

sures appear in the economy. These efforts are to combat losses as a result of a decline

in purchasing power. For example, fixed income streams such as interest rates from fixed

deposits or fixed salary will suffer from a diminished purchasing power over time. This

exposure can be hedged, but hedging is not an option for everybody. Also if people have a

1The NBER does not define a recession in terms of two consecutive quarters of decline in real GDP.

Rather a recession is a recurring period of decline in total output, income, employment and trade, usually

lasting from six months to a year, and marked by widespread contractions in many sectors of the economy,

http://www.nber.org/cycles.html
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salary that increases with inflation, people may shift into a higher income tax bracket as a

result of higher inflation rates2.

Asset prices are forward looking in the sense that they have information embedded in its

prices about the future state of the economy, hence it’s a very interesting class of variables

for predicting inflation rates and recessions. The Euler equation3 from Asset pricing theory

implies that the price of an asset is the expectation of the pay-off’s and the pricing kernel.

Because the pricing kernel has information embedded about the future state of the economy,

assets have information embedded in its prices about the future state of the economy.

The paper of Estrella & Mishkin (1997) investigating the predictive content of asset

prices to forecast recessions finds that the yield spread best predicts future recessions. Also

the authors report that the yield spread performs better by itself rather than in conjunction

with other variables. Their results suggest that including more variables leads to over-fitting

which deteriorates the forecasting performances.

The findings of Stock & Watson (2003) suggest that the predictive power of the yield

spread to predict the output growth may not be stable over time. This is a theoretical

argument to suggest that the predictive content of the yield spread to forecast recessions

may also not be stable. It has been suggested that the instability may depend on a non-

linear relationship between asset prices and output growth.

Various studies have paid attention to non-linear models to forecast future recessions.

Markov Switching (MS) models by Hamilton (1989), Smooth Transition Autoregressive

(STAR) model by Teräsvirta (1994) and the Threshold Autoregressive (TAR) model by

Potter (1995) have been evaluated as potential non-linear forecast models for recessions.

2http://www.reservebank.co.za
3According to the book of Cochrane (2005), asset prices adjust themselves to the expected pricing kernel

and expected payout which is implied by the expression pt = Et(mt+1xt+1). In a bad state of the world,

the pricing kernel mt+1 takes on low values while in a good state of the world the pricing kernel takes on

high values. Bad states of the world are often characterized by recessions and/or high inflation and the

opposite for good states of the world. So there is a well documented theoretical relationship between asset

prices and the expected future output growth and inflation rates.
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These non-linear specifications all have found to perform quite poorly in an out of sample

setting however4.

The empirical researches of Minksin (1990a), Minksin (1990b) and Minksin (1991) finds

that the yield curve has predictive ability to forecast inflation rates. However the findings

of Stock & Watson (2003) suggests that the short rate has more predictive power than the

yield spread to forecast inflation rates. These same authors suggested that inflation rates

may also not stable over time and suggested that the instability may be attributed to a

non-linear relationship between inflation rates and asset prices. However the results of the

paper Andrew Ang & Wei (2007) indicate that regime switching models perform poorly

relative to linear regression models using term structure data.

So the challenge remains open to find non-linear models that produces good out-of-

sample forecasts.

4The papers of Estrella & Schich (2003) and Stock & Watson (2003) performed literature studies for

recession and output growth forecasts which we refer to for the more interested reader.
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1.2 Object and Scope

For inflation rates and recession forecasts, we consider the possibility that the dependence

structure with asset prices is asymmetric. The empirical research of Dowd (2008) finds

non-zero tail dependence in the joint distribution of interest rates and the general price

level for the United Kingdom, so it could be possible that the same is true for US data. For

the US market, we have seen extreme events in asset prices such as stock market crashes

being linked to extreme events in output growth in the form of recessions, which suggest a

non-zero tail dependence in the joint distribution of asset prices and output growth.

The impact of not capturing tail-dependence has been demonstrated by the contro-

versial work of Li (2000). The author did not consider non-zero tail dependence in the

joint distribution which lead many of the leading investment banks to underestimate the

risk of CDO’s crashing at the same which is blamed as the main culprit of the recent fi-

nancial meltdown. In the case of out-of-sample forecasting, recent empirical research of

Patton (2005b) finds that portfolio decisions can be improved by capturing non-zero tail

dependence.

So in this research we question if the dependence structure of inflation rates and CCI

grow with asset prices is asymmetric. If this is the case, we question if capturing the

non-linear dependence structure can improve out-of-sample recession and inflation rate

forecasts.
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1.3 Approach

In this research, we examine the importance of capturing non-linearities in the dependence

structure for recession and inflation forecast using asset prices. The papers of Estrella &

Hardouvelis (1991) and Estrella & Mishkin (1997) indicate that the Probit model performs

quite good for recession forecasts. For predicting future inflation rates, the linear regression

model is quite good as it outperformed the non-linear models in an out-of-sample setting

using term structure data in the paper of Andrew Ang & Wei (2007). Hence we use these

two models as benchmarks for predicting future recessions and inflation rates.

For the linear regression model, we argue that the assumption of independent residuals

and explanatory variable does not hold if the dependence structure is asymmetric, which

could deteriorate the out-of-sample forecasting performance. A variation on the linear

regression model that we developed in this research, is modelling the conditional mean of

the residuals with copula functions because this conditional mean is not zero under these

conditions.

The Probit model used by Estrella & Hardouvelis (1991) and Estrella & Mishkin (1997)

underestimates the conditional probability of a recession if the lower tail dependence coef-

ficient between CCI growth and the yield spread is non-zero. In this research, we develop

an alternative forecasting model which calculates the conditional probability of a recession

with copula functions, which we refer to as the Copula probability forecast model. Our

approach allows for non-zero tail dependence in the joint distribution of CCI growth and

the yield spread.

Using US data, the exceedance correlations show asymmetry in the dependence struc-

ture with asset prices for both inflation rates and CCI growth. Overall, the results suggests

that the Copula-regression model outperforms the standard linear regression model for

predicting future inflation rates, especially for long forecasting horizons. For recession

forecasts we do not see evidence of improved out-of-sample forecast performance over the

Probit model when capturing the non-linear dependence structure between CCI grwoth

5



and yield spread.

1.4 Thesis Structure

The remainder of this thesis proceeds with chapter 2 where we review the Probit model

and the linear regression models used by Estrella & Mishkin (1997) and Andrew Ang &

Wei (2007) for predicting recessions and inflation rates with term structure data. We also

discuss how the predictive accuracy for these models is affected if the dependence structure

is asymmetric. In chapter 3 we review copula’s which we use to extend the Probit and

linear regression model to capture the effects of an asymmetric dependence structure in

chapter 4. The data is analysed and non-linear dependence is investigated in chapter 5.

In chapter 6 and 7 we present the empirical results of forecast models that captures the

effects of an asymmetric dependence structure and of those which do not. This research

concludes with chapter 8.
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Chapter 2

Forecasting

2.1 Introduction

In this chapter, we describe the linear regression model for predicting future inflation rates

and the Probit model for predicting future recessions which are used as benchmark models.

We also perform an analysis of the impact on the predictive accuracy when the dependence

structure with asset prices is asymmetric for these two forecast models. Later on in this

research, we extend the linear regression and binary response model which capture the

effects of an asymmetric dependence structure with copula functions.

2.2 Linear regression model

Let the k-period ahead forecast model be described by

yt+k = X ′tβ + εt (2.1)

for which k is the length of the forecast horizon and εt a normally distributed error term.

The best prediction of yt+k given values of Xt is the conditional expectation E(yt+k|Xt).

Hence it follows that the best predictor of yt+k is

E[yt+k|Xt] = E[X ′tβ + εt|Xt] = E[X ′tβ] + E[εt|Xt] = X ′tβ + E[εt] = X ′tβ + 0 = X ′tβ (2.2)

Here we assume that the residuals and input are independent. If this independence doesn’t

hold, E[εt|Xt] 6= E[εt] which leads to X ′tβ not being the best predictor of yt+k.

7



2.3 Binary response model

Assume that Yt+k follows a Bernoulli distribution which is defined as Yt+k ∼ BIN(1, π).

In other words, P (Yt+k = 1) = π and P (Yt+k = 0) = 1 − π. Because π is unknown, π

is made dependent on a set of explanatory variable Xt such that Yt+k ∼ BIN(1, F (X ′tβ)

where F is a function that lies between 0 and 1. Hence P (Yt+k = 1|Xt) = F (X ′tβ) and

P (Yt+k = 0|Xt) = 1− F (X ′tβ).

The binary variable Yt+k is often inferred from other variables which we refer to as latent

variables. For example, the binary NBER recession indicator is determined by turning

points in personal income less transfer payments, employment, industrial production and

the volume of sales of the manufacturing and wholesale sector adjust for price changes. The

Conference Board combines these same indicators in the CCI index, hence we can make

the latent variable observable by the CCI growth. We assume that the latent variable y∗t

gets mapped to the dependent variable by

Yt = 1 if y∗t ≤ 0

Yt = 0 if y∗t > 0 (2.3)

for which the explanatory variables describe the continuous latent variable y∗t by

y∗t = X ′tβ + εt (2.4)

If F is the CDF of the standard normal distribution, we get the Probit model which is

F (X ′tβ) = Φ(X ′tβ) =
∫ X′tβ

−∞

1√
2π
exp(−z

2

2
dz) (2.5)

and if F is the CDF of a standardized logistic distribution, we get the Logit model which

is

8



F (X ′tβ) = Λ(X ′tβ) =
exp(X ′tβ)

1 + exp(X ′tβ)
(2.6)

The function of Xt that best estimates Yt+k is the conditional expectation, which is given

by

E[Yt+k|Xt] = 0 ∗ P (Yt+k = 0|Xt) + 1 ∗ P (Yt+k = 1|Xt) = P (Yt+k = 1|Xt) = F (X ′tβ) (2.7)

Thus we can generate forecasts by

Ŷt+k = P (Yt+k = 1|Xt) = F (X ′tβ) (2.8)

9



2.4 Pitfalls in forecasting

The empirical research of Longin & Solnik (2001) have reported non-linear dependence

between stock returns. Similar finding may be found for the dependence structure of

inflation rates and output growth with asset prices. This is because extreme events of

inflation rates and output growth have been linked with extreme events of asset prices

which implies a non-zero tail dependence coefficient in the joint distribution. In this section

we investigate the problems of the forecast models previously discussed if the dependence

structure is asymmetric.

In the case of the linear regression model, we assumed that residuals and explanatory

variables are independent such that E[εt|Xt] = 0 holds. Let’s assume that the joint dis-

tribution of the dependent and explanatory variable has a non-zero upper tail dependence

coefficient. In this setting, the dependence or statistical relationship for large returns is

greater than a linear dependence structure would imply. Because the linear regression

model assumes a linear dependence structure, the linear regression is thus least accurate

for large returns. Thus in the setting of asymmetric dependence, the residuals of a linear

regression model and the explanatory variables are not independent. The problem with

this implication is that ignoring the term E[εt|Xt] does not make sense any more and not

implementing this term could deteriorate the forecasting performance.

For the case of the Probit model, we can see from equation 2.9 that non-normal tail

probabilities in the joint distribution of the latent and explanatory variables can lead to

higher than normal conditional probabilities of observing an event.

P (Yt+k = 1|Xt) = P (y∗t+k < 0|Xt) =
∫ 0

−∞

f(y∗t+k, Xt)

f(Xt)
δy∗t (2.9)

Thus the Probit model lacks accuracy for small returns if the lower tail dependence coeffi-

cient is non-zero because the conditional probability of observing an event is systematically

underestimated.
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Chapter 3

Introduction to Copula

The forecast models we develop in this research are based on copula functions. For predict-

ing inflation rate forecasts, we focus on improving the linear regression model by modelling

the conditional mean of the residuals with copula’s, while for predicting future recessions

we consider calculating the conditional probability of a recession given the data at time t.

Therefore it is important to have a clear understanding what copula functions are and

how they can be used. In this chapter we explore the most important parts of the books

Alexander (2008) and Nelson (1999).

3.1 Definitions & Properties

In this research we use copula’s to model joint distributions. Let’s assume that X1 and

X2 are two random variables with marginal cumulative distribution functions F1(X1) =

P (X1 ≤ x1) and F2(X2) = P (X2 ≤ x2). The joint cdf is defined as H(x1, x2) = P (X1 ≤

x1, X2 ≤ x2) with the range 0, 1 for H(x1, x2), F1(X1) and F2(X2). There are many

cases for which the explicit joint distribution H(x1, x2) doesn’t exist or is very difficult to

obtain even though the marginal distributions F1(X1) and F2(X2) are easy to describe. For

example, the multivariate student t-distribution has only 1 degree of freedom parameter so

if the marginal distributions do not have the same fatness in the tails, the joint cdf doesn’t

exist. A solution to this problem are copula’s which can be used to link a set of marginal

distributions into a multivariate joint distribution defined over the range [0, 1].

Definition 1 A two-dimensional copula is a function C : [0, 1]2 → [0, 1] with the 4 prop-

erties

11



1. C(u1, u2) is increasing in u1 and u2

2. C(0, u2) = C(u1, 0) = 0

3. C(1, u2) = u2 and C(u1, 0) = u1

4. C(v1, v2) − C(u1, v2) ≥ C(v1, u2 − C(u1, u2) for every u1, u2, v1, v2[0, 1] with u1 ≤ v1

and u2 ≤ v2

Theorem 1 Sklars theorem for continuous distributions.

Let H be a joint distribution function with marginals F1 and F2. Then there

exist a copula C such that for all real numbers x1 and x2, one has the equality

as H(x1, x2) = C(F1(x1), F2(x2)) . Furthermore if F1 and F2 are continuous

then C is unique. Conversely if F1 and F2 are distributions then the function

H is a joint distribution function with margins F1 and F2.

An important property of the copula function is that it is defined over uniform distributed

variable over [0, 1]. According to condition 1 we can set Ui = Fi(Xi). The other 3 conditions

specify the copula as a distribution function while the Sklars theorem shows that any

multivariate distribution function H can be written in the form of a copula function.

This result can be extended to the multivariate case for which Sklar (1959) tell us that,

given a fixed set of continuous marginal distributions, distinct copulas define distinct joint

CDF. Thus given any joint CDF F (x1, ..., xn) with continuous marginals, we can back out

a unique copula function C such that F (x1, ..., xn) = C(F1(x1), ..., Fn(xn). If it exist, the

associated copula CDF is the function

c(F1(x1), ..., Fn(xn) =
δnC(F1x1, ..., Fn(xn)

δF1(x1), ..., Fn(xn)
(3.1)

12



3.2 Tail dependence & Rotated copulas

In this section we present tail dependence that may arise in the joint distribution. It could

be possible that we have to impose lower or upper tail dependence when modelling joint

distributions. We also present rotated copula’s which allows us to have more copula’s to

work with.

Often in Finance the density function is higher in the corners than normal, suggesting

a non-zero dependence in the tails. Define the i,j-th lower tail dependence coefficient as

λli,j = lim
q↓0

P (Xi < F−1
i (q)|Xj < F−1

j (q)) (3.2)

provided that the limit exists. The lower tail dependence coefficient can be interpreted

as the conditional probability that one variable takes a value in its lower tail, given that

the other variable takes a value in its lower tail. Since the coefficient is a conditional

probability, λli,j ∈ [0, 1]. The copula is said to have lower tail dependence for Xi and Xj

when λli,j > 0. Similarly the i,j-th upper tail dependence coefficient is defined by the limit

assuming it exist:

λli,j = lim
q↑0

P (Xi > F−1
i (q)|Xj > F−1

j (q)) (3.3)

It basically represents the conditional probability that one variable takes a value in tis upper

tail, given that the other variable takes a value in its upper tail. Since the coefficient is a

conditional probability, λui,j ∈ [0, 1]. The copula is said to have upper tail dependence for Xi

and Xj when λui,j > 0. The higher the value of the dependence coefficient, the stronger the

upper tail dependence. A copula has symmetric tail dependence if λli,j = λui,j for all i,j and

asymmetric tail dependence if the upper or lower tail dependence coefficients are different.

Examples of copulas with symmetric tail dependence are the normal and student t copulas

and others with asymmetric tail dependence are the Clayton and Gumbel copulas. Since

13



P (Xi < F−1
i (q)|Xj < F−1

j (q)) =
P (Xi < F−1

i (q), Xj < F−1
j (q))

P (Xj < F−1
j (q))

=
C(q, q)

q
(3.4)

Hence the lower tail dependence coefficient can be expressed as

λl = lim
q↓0

q−1C(q, q) (3.5)

The limit must lie in the interval [0, 1], and if λl is positive, the copula has lower tail

dependence. Similarly it can be shown that

λu = lim
q↑1

(1− q)−1C(1− q, 1− q) (3.6)

where C(u1, u2) = u1+u2−1+C(1−u1, 1−u2) which is called the survival or rotated copula

associated with C(u1, u2) while for densities the rotated or survival copula is c(1−u1, 1−u2)

. The rotated or survival copula is rotated by 180 degrees so it only makes sense for

asymmetric copulas such as the Clayton or Gumbel copula. If λu is positive, the copula

has upper tail dependence which lies in the interval [0, 1].

3.3 Maximum Likelihood Estimation

We estimate the copula parameters using maximum likelihood estimation applied to the

theoretical joint distribution function. There are three methods to maximizing the like-

lihood function: canonical maximum likelihood estimation (CML), inference on margins

(IMF) and full maximum likelihood estimation (FML). In this research we use the canon-

ical maximum likelihood estimation (CML), but we also give an overview of the other 2

copula calibration methods for the interested reader who wishes to extend this research by

investigating how the three methods affect the out-of-sample performance of our forecast

models.
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In the inference on margins (IMF) approach we specify a functional form for the

marginals in contrast to the canonical maximum likelihood (CML) estimation. However

both these methods may provide less efficient estimators than full maximum likelihood esti-

mation (FML) which calibrates all parameters of the copula and the marginals at the same

time. But the advantage that the inference on margins and canonical maximum likelihood

(CML) approach offer, is that they are considerably easier than full maximum likelihood

estimation (FML) and they lead to consistent estimators.

The likelihood of observing sample (xi, yi)
n
i=1 from the sample (X, Y ) with distributions

X ∼ F and Y ∼ G is 1

L(x, y; θ) =
n∏
i=1

c(F (xi), G(yi))f(xi)g(yi); θ) (3.7)

the maximization of the likelihood function is the same as maximizing the log-likelihood

which is

log[L(x, y; θ)] =
n∑
i=1

log[c(F (xi), G(yi); θ] +
n∑
i=1

log[f(xi)g(yi)] (3.8)

In the inference on margins (IMF) approach, a parametric distribution for F ,G and copula

C is chosen. The term
∑n
i=1 log[f(xi)g(yi)] of the log-likelihood is maximized first which is

then followed by the maximization of the first term described as
∑n
i=1 log[c(F (xi), G(yi); θ].

The same two step maximization method is performed for the canonical maximum likeli-

hood (CML) approach except that the distribution of F ,G are replaced by the corresponding

non-parametric empirical distributions.

1The sheets of a presentation by Jon de Kort in 2007 regarding copula functions by ABN AMRO at the

TU Delt was used in this section
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3.4 How to choose the best copula

Recently an out-of sample measure based on the Kullback-Leibler Information Criterion

(KLIC) for competing copulas has been proposed by Diks, Panchenko & van Dijk (2008)

which measures the distance of the specified copula to the true copula. Based on this

selection criterion, the yen-dollar exchange rate returns does not exhibit asymmetric tail

dependence which goes against the findings of Patton (2005a). So therefore we are not

confident in its ability to select appropriate copulas as of now. Also the test relies on a

large sample size for it to be useful which we do not have.

So therefore we stick to the BIC criteria for copulas to determine which symmetric or

asymmetric copula provides the best fit to the data, we choose the copula that yields the

lowest value of the BIC criteria. The BIC and AIC criteria are defined by

BIC = T−1[k log(T )− 2 log(L)] (3.9)

AIC = 2k − 2 log(L) (3.10)

where T is the number of observations, L the log likelihood function of the copula and

k the number of parameters to be estimated. All model selection and estimation will be

done with data available prior to the forecast.
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Chapter 4

Application of copulas in forecasting

4.1 Introduction

The main lesson from chapter 2 is that the Probit model and linear regression model must

be used with caution if the dependence structure is asymmetric when forecasting. In this

section we employ copula functions to develop new methods that are more suitable under

these conditions.

4.2 Inflation rate forecasts: Copula-regression fore-

cast model

Let yt+k and Xt be random variables that exhibit an asymmetric dependence structure.

The residuals of an estimated linear regression model and the explanatory variables are

not independent under these conditions. In this case, the forecasts can be improved by

capturing the conditional mean of the residuals E(εt|Xt) rather than setting it equal to

zero.

The conditional expectation E[εt|Xt] is defined by

E[εt|Xt] =
∫ ∞
−∞

εtf(εt|Xt)dεt (4.1)

The conditional distributions in the integral can be rewritten into a joint and marginal

distribution.This leads to the equation
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E[εt|Xt] =
∫ ∞
−∞

εtf(εt|Xt)dεt =
∫ ∞
−∞

εt
f(εt, Xt)

fX(Xt)
dεt =

∫ ∞
−∞

εt
f(εt, Xt)∫∞

−∞ f(εt, Xt)dεt
dεt (4.2)

A very simple and convenient approach to specify the joint distributions with given

marginals are the copula functions. For given marginal distributions Fε and FX , we can

estimate the conditional mean of the residuals with copula functions by

E[εt|Xt] =
∫ ∞
−∞

εt
c(Fε(εt), FX(Xt))∫∞

−∞ c(Fε(w), FX(Xt))dw
dεt (4.3)

Using these results, the Copula-regression forecast model is presented which cap-

tures the effects of an asymmetric dependence structure by

Ŷt+k = Xtβ + E[εt|Xt] = Xtβ +
∫ ∞
−∞

εt
c(Fε(εt), FX(Xt))∫∞

−∞ c(Fε(w), FX(Xt))dw
dεt (4.4)
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4.3 NBER recession forecasts: Copula Probability Fore-

cast Model

While the Probit model used in the papers of Estrella & Hardouvelis (1991) and Estrella

& Mishkin (1997) has been successful at forecasting the binary NBER recession variable,

in chapter 2 we explained that the forecast performance of the Probit model could be com-

promised by asymmetry in the dependence structure between the latent and explanatory

variable. The assumption of independent residuals and explanatory variables does not hold

in this case. In this section we develop new methods to forecast binary response variables

that should outperform the Probit model under these conditions.

Let Yt+k be a binary response variable and y∗t+k a latent variable. Also let Yt+k = 1

if y∗t+k < 0 and 0 otherwise. Then the best forecast of this binary response variable is

P (Yt+k = 1|Xt) which we showed in 2.8. Typically P (Yt+k = 1|Xt) is approximated with

F (X ′tβ) for binary response models. However this conditional probability can also be

estimated with copula functions. The conditional probability in copula form is given by

P (Yt+k = 1|Xt) = P (y∗t+k < 0|Xt) = C(Fy∗(y
∗
t+k) < Fy∗(0)|FX(Xt)) (4.5)

where Xt is the set of explanatory variables with marginal distributions FX and Fy∗

such that FX(Xt) and Fy∗(y
∗
t+k) are in the interval [0, 1]. For convenience, this expression

can be rewritten into joint distributions. This leads to

C(Fy(y
∗
t+k) < Fy∗(0)|FX(Xt)) =

∫ Fy∗ (0)

0

c(Fy∗(y
∗
t+k), FX(Xt))∫ 1

0 c(Fy∗(y
∗
t+k), FX(Xt))dFy∗(y∗t+k)

dFy∗(y
∗
t+k)

(4.6)

Then the model to forecast a binary response variable with copula functions is

19



Ŷt+k = P (Yt+k = 1|Xt) =
∫ FY ∗ (0)

0

c(FY ∗(Y
∗
t+k), FX(Xt))∫ 1

0 c(FY ∗(Y
∗
t+k), FX(Xt))dFY ∗(Y ∗t+k)

dFY ∗(Y
∗
t+k) (4.7)

which is the Copula Probability Forecast Model .
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Chapter 5

Data

5.1 Data Analysis

We use the annualized h-month growth of the CCI indicator defined by yt = (12/h)(zt −

zt−h)/zt−h where zt is the original CCI series because the trend appears to be linear which

is seen in figure 5.1. The same reasoning applies when transforming CPI inflation which is

seen in figure 5.2. The federal fund rate obtained from the Federal Reserve and the yield

spread are annualized and are published as percentage change so we don’t to transform

them. The full sample runs from January 1965 to May 2009, the in-sample period from

January 1965 to December 1988 and the out-of-sample period from January 1989 to May

2009.
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Figure 5.1: Plot of the CCI index over the full-sample period.

22



Figure 5.2: Plot of the CPI index over the full-sample period.

In table 5.1 we see evidence of non-normal skewness and excess kurtosis for CCI growth

and the term structure spread for the full sample, in-sample and out-of sample period which

is supported by the Jarque-Bera test as no significant evidence in favour of normality is

found. Similar results are presented in table 5.2 for the federal fund rate and CPI inflation

as the Jarque-Bera test finds no significant evidence of normality at a 5% significance level

over the 3 sample periods. This is due to asymmetry and fat-tails in the distributions as the

skewness parameter is non-zero and the kurtosis higher than 3. The Jung-Box test with 25

as the number of lags, which should be large enough to detect higher order autocorrelations

but small enough to retain enough power to detect the presence of autocorrelation, are

reported also in the previous tables. There seems to be significant autocorrelation present

for return series CCI growth, yield spread, CPI inflation rate and federal fund rate at a

significance level of 5% level which is seen in tables 5.1 and 5.2.
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Table 5.1: Descriptive statistics of CCI and Yield Spread

Full Sample In Sample Out of Sample

CCI Yield Spread CCI Yield Spread CCI Yield Spread

Mean 0.0219 0.0085 0.0282 0.0043 0.0143 0.0135

Std. Dev 0.0433 0.0177 0.0471 0.0194 0.0371 0.0139

Skewness -0.4718 -0.9845 -0.5609 -10,960 -0.6497 0.0533

5% VaR -0.0515 -0.0250 -0.0523 -0.0330 -0.0478 -0.0070

1% VaR -0.1037 -0.0476 -0.1037 -0.0563 -0.0943 -0.0116

Kurtosis 45,879 45,386 44,470 40,126 48,273 17,174

Min -0.1615 -0.0651 -0.1615 -0.0651 -0.1361 -0.0125

Max 0.1661 0.0385 0.1661 0.0328 0.1308 0.0385

Jarque-Bera 75,770 138.66 40,225 69,966 51,114 16,840

p-val 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Ljung-Box 443.55 3129.5 252.69 1434.6 247.88 1720.8

p-val∗ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 5.2: Descriptive statistics of CPI Inflation and Federal fund rates

Full Sample In Sample Out of Sample

Inflation Short rate Inflation Short rate Inflation Short rate

Mean 0.0433 0.0628 0.0565 0.0786 0.03 0.0440

Std. Dev 0.0390 0.0335 0.0393 0.0334 0.03 0.0218

Skewness 0.1685 10,853 0.6726 12,236 -1.4 0.1279

5% VaR 0.0000 0.0126 0.0000 0.0404 -0.01 0.0100

1% VaR -0.0482 0.0022 -0.0218 0.0372 -0.09 0.0016

Kurtosis 72,942 49,578 39,997 44,069 14.92 27,148

Min -0.2006 0.0015 -0.0656 0.0329 -0.2 0.0015

Max 0.2172 0.1910 0.2172 0.1910 0.17 0.0985

Jarque-Bera 412.05 189.75 33,709 95,624 1525.7 14,923

p-val 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001

Ljung-Box 1701.7 6742.4 1120.8 2790.9 98,534 2115.9

p-val∗ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One of the objectives of this research is to study the forecast performance of statistical

models, hence there is the need to investigate if the selected asset prices have any informa-

tion about future inflation rates and output growth returns. In table 5.3 we present the

correlations for forecasting horizons up to one year. The results indicate that the spread

of the term structure is more informative for long-term horizons of CCI growth as the cor-

relations increases with the length of the horizon. The findings for the short rate implies

the opposite, the short rate is very informative if the horizon is kept at a short-term as the

strength of the correlations decreases beyond the short-term.
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Table 5.3: Correlations

Forecasting horizon CCI & Yield Spread Inflation & Short rate

0 0.0968 0.5258

1 0.1645 0.5116

2 0.2002 0.4804

3 0.2402 0.4423

4 0.2726 0.4145

5 0.2777 0.3943

6 0.2682 0.3776

7 0.2722 0.3614

8 0.2755 0.3426

9 0.2731 0.3201

10 0.2864 0.3056

11 0.2872 0.2872

12 0.2911 0.2667

5.2 Asymmetric dependence

The paper of Longin & Solnik (2001) have investigated asymmetric dependence between

stock returns. To see whether our copula based forecast models are suitable for inflation

rate and recession forecast, we first have to establish if the dependence structure between

inflation rates and output growth with asset prices is asymmetric.

To see whether the dependence structure is asymmetric, the test for asymmetric cor-

relation assessed by Hong, Tu & Zhou (2007) is employed. In the article of Longin &

Solnik (2001) the measure called exceedance correlations is presented which measures the

correlation if the variables exceeds an exceedance level c, which can be defined by

ρ+(c) = corr(r1t, r2t|r1t > c, r2t > c)

ρ−(c) = corr(r1t, r2t|r1t < −c, r2t < −c) (5.1)
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where r1t, r2t are 2 random variables. If the correlation structure is symmetric, the

correlations for small returns and large returns should be the same. The null hypotheses

of a symmetric correlation structure is given by

H0 : ρ+(c) = ρ−(c), ∀ c ≥ 0. (5.2)

So basically we are testing if the correlation between small returns is the same as for

large returns. If the null hypothesis is rejected than the correlation structure is asymmetric

which is given by

H0 : ρ+(c) 6= ρ−(c), ∀ c ≥ 0. (5.3)

The test statistic for testing the null hypothesis is

Jρ = T (ρ̂+ − ρ̂−)Ω̂−1(ρ̂−1 − ρ̂−)→d χ2
m (5.4)

for which m is number of chosen exceedance levels, ρ̂+ − ρ̂− is given by

ρ̂+ − ρ̂− = [ρ̂+(c1 − ρ̂−(c1), ... , ρ̂+(cm − ρ̂−(cm)]′ (5.5)

and Ω̂ is an estimator of the variance-covariance matrix1 of
√
T (ρ̂+ − ρ̂−).

1

Ω̂ =

T−1∑
l=1−T

k(l/p)γ̂l (5.6)
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First, the test is applied for CCI growth and the yield spread over the in-sample period

for forecasting horizons up to 1 year. The results of the asymmetric correlation test are

presented in table 5.4, which overall do not support the hypothesis that the correlation

structure of CCI growth and yield spread is symmetric. When we apply the asymmetric

correlation test for CPI inflation rate and the short over the in-sample period, the results

appear to support the hypothesis that the correlation structure between CPI inflation rate

and the short rate is symmetric.

γ̂l(ci, cj) =
1

T

T∑
t=|l|+1

ξ̂t(ci)ξ̂t−|l|(cj)

ξ̂t(c) =
T

T+
c

[X̂+
1t(c)X̂

+
2t(c)− ρ̂+(c)]1(r1t > c, r2t > c)

− T

T−c
[X̂−1t(c)X̂

−
2t(c)− ρ̂−(c)]1(r1t < −c, r2t < −c)

X̂+
1t(c) =

r1t − µ̂+
1 (c)

σ̂+
1 (c)

, X̂+
2t(c) =

r2t − µ̂+
1 (c)

σ̂+
2 (c)

for which µ̂(c), σ̂(c) and Tc are the sample mean, standard deviation and the size of the sample for the

observations exceeding the exceedance level c.
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Table 5.4: J-test

CCI & Yield Spread Inflation & Short rate

Forecasting horizon Statistic p-value Statistic p-value

0 278,375 0.1133 216,832 0.3579

1 337,451 0.0279 339,625 0.0264

2 313,241 0.0511 161,202 0.7091

3 423,754 0.0025 159,048 0.7225

4 373,704 0.0106 252,080 0.1936

5 418,313 0.0029 138,766 0.8367

6 438,848 0.0016 183,858 0.5620

7 359,570 0.0156 130,919 0.8734

8 340,209 0.0260 212,282 0.3838

9 305,791 0.0610 105,652 0.9567

10 314,620 0.0494 136,069 0.8499

11 238,299 0.2499 130,855 0.8737

12 196,495 0.4800 192,339 0.5067

Using the J-test from the paper of Hong, Tu & Zhou (2007), the acceptance of a sym-

metric correlation structure is not solid evidence against the hypothesis of an asymmetric

correlation structure. According to simulations of the test statistics performed in the paper

of Hong, Tu & Zhou (2007), the test statistic can accept the hypothesis of a symmetric

correlation structure when the data has been generated from a copula distribution with an

asymmetric dependence structure. Hence the acceptance of a symmetric correlation struc-

ture is not solid evidence against the hypothesis of an asymmetric correlation structure.

There is evidence of an asymmetric dependence structure between inflation rates and

the short rate when we investigate the exceedance correlations for the qth quantiles which

are calculated by
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ρ(q) =

 corr(X, Y )|X ≤ QX(q)
⋂
Y ≤ QY (q) if q ≤ 0.5

corr(X, Y )|X ≤ QX(q)
⋂
Y > QY (q) if q > 0.5

for which QX(q) is the qth quantile for random variable X and QY (q) the qth quantile

for random variable Y in following of Patton (2005b)

We use canonical maximum likelihood estimation to calibrate symmetric and asym-

metric copula’s on the inflation rate and short rate. If the data has a linear dependence

structure, then the empirical exceedance correlations2 would be that of the Normal Cop-

ula. In figure 5.6 to 5.9 we see for large returns, that the empirical exceedence correlations

are stronger than if the data were obtained from the Normal copula. This implies that a

linear dependence structure is not suitable for the data. The empirical exceedance correla-

tions shows the same asymmetry as the exceedance correlations from the Gumbell Copula,

which suggests that the joint distribution of inflation and the short rate has a non-zero

upper tail dependence coefficient. These findings are in contrast with the results of the

J-test, which only confirms that the test statistic lacks power for detecting asymmetric

correlation structures.

The J-test also appears to make false acceptances of a symmetric correlation structure

between CCI growth and yield spread returns. In figure 5.5 and table 5.4, the two results

clearly differ. The J-test does not detect significant asymmetry in the correlation structure

for a 12 month forecasting horizon, yet the empirical exceedance correlations has the same

asymmetry as the exceedance correlation from the Clayton Copula, which suggests that the

joint distribution of CCI growth and the yield spread has a non-zero lower tail dependence

coefficient.

So the exceedance correlations suggests that the joint distribution of inflation and the

short rate has a non-zero upper tail dependence coefficient . Likewise we find evidence of a

non-zero lower tail dependence coefficient in the joint distribution of CCI growth and the

spread of the term structure.

2the empirical exceedance correlations are directly obtained from the data
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Figure 5.3: Exceedance correlations between transformed return series (U and V)
of CCI growth and yield spread using a forecasting horizon of 3 months
(k = 3) The horizontal axis shows the cutoff quantile, and the vertical
axis shows the correlation between the two return series given that both
exceed that quantile.
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Figure 5.4: Exceedance correlations between transformed return series (U and V)
of CCI growth and yield spread using a forecasting horizon of 6 months
(k = 6) The horizontal axis shows the cutoff quantile, and the vertical
axis shows the correlation between the two return series given that both
exceed that quantile.
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Figure 5.5: Exceedance correlations between transformed return series (U and V)
of CCI growth and yield spread using a forecasting horizon of 12 months
(k = 12) The horizontal axis shows the cutoff quantile, and the vertical
axis shows the correlation between the two return series given that both
exceed that quantile.

33



Figure 5.6: Exceedance correlations between transformed return series (U and V)
of inflation rate and federal fund rate using a forecasting horizon of 3
months (k = 3) The horizontal axis shows the cutoff quantile, and the
vertical axis shows the correlation between the two return series given
that both exceed that quantile.
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Figure 5.7: Exceedance correlations between transformed return series (U and V)
of inflation rate and federal fund rate using a forecasting horizon of 6
months (k = 6) The horizontal axis shows the cutoff quantile, and the
vertical axis shows the correlation between the two return series given
that both exceed that quantile.
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Figure 5.8: Exceedance correlations between transformed return series (U and V)
of inflation rate and federal fund rate using a forecasting horizon of 9
months (k = 9) The horizontal axis shows the cutoff quantile, and the
vertical axis shows the correlation between the two return series given
that both exceed that quantile.
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Figure 5.9: Exceedance correlations between transformed return series (U and V)
of inflation rate and federal fund rate using a forecasting horizon of 12
months (k = 12) The horizontal axis shows the cutoff quantile, and the
vertical axis shows the correlation between the two return series given
that both exceed that quantile.
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Chapter 6

Empirical results: Inflation forecasts

6.1 Introduction

Various studies have found that term structure data contains information for future inflation

rates rates. We focus only on the short rate as the results of Stock & Watson (2003)

indicate that the short rate is a better predicator than the spread of the term structure. The

empirical research of Andrew Ang Wei (2007) performed comparisons of non-linear forecast

models against linear forecast models using term structure data. The results indicate that

non-linear models do not improve the forecasting performance of linear regression models

using term structure data. In this chapter we investigate if the forecasting performance

of the linear forecast models using term structure data can be improved by capturing the

effects of the non-linear dependence structure with copula functions.

6.2 Linear regression model

The linear regression models defined by equation 6.1 are estimated over the in-sample

period using forecasting horizons upto one year because the results in chapter 5 suggests

that the statistical relationship between the short rate and future inflation rate is poor for

long forecasting horizons.

yt+k = β1 + β2x1,t + εt (6.1)
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The results of the estimated linear regressions are presented in appendix tables B.4 to

B.7. In general, the results indicate that the short rate has a positive effect on inflation

rates, so an increase of the short rate will likely result into higher future inflation rates.

It also appears that the t-test finds less significant evidence against the null-hypothesis

if the forecasting horizon is increased which support the finding of chapter 5. We have

identified the same pattern for the R2 statistic, the R2 statistic decreases when the length

of the forecasting horizon is increased. This means that the explanatory power of the linear

regression model declines if the forecasting horizon is increased which supports the previous

findings of the t-test and the findings of chapter 5.

So our main conclusion from this section is that linear regression models can be employed

to estimate future inflation rates, but caution has to be taken for long forecasting horizons

as the explanatory power decreases if the length of the forecasting horizon is increased.
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6.3 Copula Approach

The approach to improve forecasts of the linear regression model when the dependence

structure is asymmetric, is by modelling the conditional mean of the residuals instead of

assuming it’s equal to zero. This approach has lead us to the Copula-regression forecast

model, which estimates the conditional mean of the residuals with copula functions. The

Copula-Regression forecast model can be dividend in two components, the linear regression

model forecast X ′tβ and the conditional mean of the residuals E[εt|Xt]. The first component

comes from the linear regression, however the second component has to be obtained from

copula functions. So in this section we have to investigate which copula functions are useful

to estimate the conditional mean of the residuals over the in-sample period.

6.3.1 Finding a copula

The maximum likelihood and information criteria values for each of the copula specifications

are presented in table 6.1 to 6.4 and it’s seen that the Plackett copula attains the greatest

log-likelihood value and the lowest of both information criteria in our in-sample period

except for the forecasting horizon k = 12. For the forecasting horizon k = 12 we find that

the Student’s t copula has the best fit over the in-sample period. These will be the copula

specifications adopted for the respective forecasting horizons.
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Table 6.1: Presented here are the nine copula specifications tried for the distribu-
tion of the residuals from the linear regression model and the short rate
for k = 3. The copula likelihood at the optimum is denoted ζc . Also
presented are the Akaike and Schwarzs bayesian information criteria at
the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 15.7778 -31.5486 -31.5358

Students t 16.3621 -32.7102 -32.6847

Plackett 16.4653 -32.9236 -32.9108

Frank -0.0015 0.0100 0.0227

Asymmetric Copula

Clayton -0.0064 0.0198 0.0326

Rotated Clayton -0.0067 0.0203 0.0331

Joe Clayton -3.5617 7.1374 7.1629

Gumbel -13.6465 27.3000 27.3128

Rotated Gumbel -14.4088 28.8246 28.8374
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Table 6.2: Presented here are the nine copula specifications tried for the distribu-
tion of the residuals from the linear regression model and the short rate
for k = 6. The copula likelihood at the optimum is denoted ζc . Also
presented are the Akaike and Schwarzs bayesian information criteria at
the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 26.3777 -52.7483 -52.7355

Students t 26.9816 -53.9490 -53.9232

Plackett 27.7736 -55.5401 -55.5272

Frank -0.0019 0.0109 0.0237

Asymmetric Copula

Clayton -0.0079 0.0229 0.0358

Rotated Clayton -0.0085 0.0240 0.0369

Joe Clayton -4.4105 8.8351 8.8608

Gumbel -16.5836 33.1743 33.1872

Rotated Gumbel -17.1418 34.2906 34.3035
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Table 6.3: Presented here are the nine copula specifications tried for the distribu-
tion of the residuals from the linear regression model and the short rate
for k = 9. The copula likelihood at the optimum is denoted ζc . Also
presented are the Akaike and Schwarzs bayesian information criteria at
the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 32.3395 -64.6719 -64.6589

Students t 33.0100 -66.0057 -65.9797

Plackett 34.1891 -68.3711 -68.3581

Frank -0.0021 0.0113 0.0243

Asymmetric Copula

Clayton -0.0087 0.0244 0.0374

Rotated Clayton -0.0091 0.0254 0.0384

Joe Clayton -4.7674 9.5490 9.5750

Gumbel -17.8785 35.7642 35.7772

Rotated Gumbel -18.2271 36.4614 36.4744
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Table 6.4: Presented here are the nine copula specifications tried for the distribu-
tion of the residuals from the linear regression model and the short rate
for k = 12. The copula likelihood at the optimum is denoted ζc . Also
presented are the Akaike and Schwarzs bayesian information criteria at
the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 0.3435 -0.6797 -0.6666

Students t 4.8495 -9.6846 -9.6585

Plackett 0.0276 -0.0480 -0.0349

Frank -0.0001 0.0073 0.0204

Asymmetric Copula

Clayton 0.3287 -0.6503 -0.6372

Rotated Clayton -0.0023 0.0118 0.0249

Joe Clayton -0.1771 0.3687 0.3949

Gumbel -5.4950 10.9972 11.0103

Rotated Gumbel -0.9600 1.9272 1.9403
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6.4 Benchmarking: Out-of-sample forecasting

In this section, our interest is to compare the forecast performances of the linear regression

and Copula-regression forecast models over the out-of-sample period. The models are

identified on the in-sample period and forecasts are produced over the out-of-sample period.

To compare the competing models, we use the MSPE or the mean squared prediction error

defined by

MSPE =
1

m

m∑
h=1

(yn+h − ŷn+h)
2 (6.2)

for which m are the amount of observations of the in-sample period and n the amount

observations of the out-of-sample period. We can compare 2 competing models by in-

vestigating which of the forecast models produces the smallest mean squared prediction

error.

To test whether the out-performance is significant, we employ the Diebold-Mariano test

with the null hypotheses that the competing models have equal predictive accuracy, given

by

H0 : E[dt] = 0 (6.3)

for which dt = (yAt+h − ŷAt+h)2 − (yBt+h − ŷBt+h)2 in the setting of 2 competing models A

and B and a forecasting horizon h. The test statistic of the Diebold-Mariano test is the

test statistic from the student’s t test which follows a student’s t distribution with n − 1

degrees of freedom.

The results of the MSPE presented in tables 6.5 to 6.7 show that the Copula-linear

regression model has smaller MSPE’s in comparison to the linear regression model beyond

the 6 month forecasting horizon for the full-sample period and when we change the sample
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period. The Diebold-Mariano test indicate that the out-performances are significant at a

significance level of 5%.

There is less evidence to be found for the 3 month forecasting horizon. For the full and

2000-2009 out-of-sample period, we see that the copula-regression forecast model has the

same MSPE as the linear regression model, while over the out-of-sample period 1989-1999,

the copula-regression forecast model has a significant better MSPE. So it appears that the

performance of the Copula-regression forecast model relative to the linear regression model

depends on the time period when using a forecast horizon of 3 months. We did not consider

the problem of capturing time-varying distributions in this research which could explain

why the out-performance using a forecasting horizon of 3 months is time dependent. We

could use time-varying copulas that allows the joint distributions to vary over time. The

testing and investigation of time-variations in the joint distribution in an out-of-sample

forecasting setting is left as a suggestion for future research however.

We find an interesting pattern in the empirical results, the forecast accuracy of the

linear regression model are improved the most for longer forecast horizons. The MSPE

of the Copula-regression forecasts approximately remains the same if the length of the

forecasting horizon is increased, while the forecast performance of the linear regression

model deteriorates when the length of the forecasting horizons increases.

Thus the main lesson from this section, is that the Copula-regression model predicts fu-

ture values of the inflation rate more accurately than the linear regression model beyond the

6 month forecasting horizon regardless of what sample period is used. Also the longer the

forecasting horizon, the better are the predictions of the Copula-regression model relative

to the linear regression model.
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Table 6.5: Mean Squared Prediction Error (MSPE)

linear regression copula-regression

3 month ahead prediction 0.0012 0.0012

6 month ahead prediction 0.0014 0.0012

9 month ahead prediction 0.0016 0.0013

12 month ahead prediction 0.0018 0.0014

Table 6.6: Mean Squared Prediction Error (MSPE), sub-sample 1989-1999

linear regression copula-regression

3 month ahead prediction 6.3137e-004 5.8732e-004

6 month ahead prediction 7.6463e-004 6.0346e-004

9 month ahead prediction 9.0250e-004 6.4901e-004

12 month ahead prediction 0.0010 6.9472e-004

Table 6.7: Mean Squared Prediction Error (MSPE), sub-sample 2000-2009

linear regression copula-regression

3 month ahead prediction 0.0019 0.0019

6 month ahead prediction 0.0021 0.0019

9 month ahead prediction 0.0024 0.0020

12 month ahead prediction 0.0026 0.0021

Table 6.8: p-values of the Diebold-Mariano test

1989-2009 1989-1999 2000-2009

3 month ahead prediction 2.8057e-004 0.0015 0.0529

6 month ahead prediction 1.8210e-005 4.4126e-007 0.0094

9 month ahead prediction 5.5242e-008 4.3205e-010 9.2471e-004

12 month ahead prediction 4.2290e-011 1.5869e-011 5.2985e-005
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Chapter 7

Empirical results: NBER recession

forecasts

7.1 Introduction

Various papers have found that the spread of the term structure is a good predictor of

real activity. The paper of Estrella & Hardouvelis (1991) reports the same findings for

recessions by introducing a Probit model to predict the probability of a recession with the

spread of the term structure. This work is extended by Estrella & Mishkin (1997) which

compares the spread of the term structure with other asset prices for predicting recessions.

The results of the Probit model using the spread of the term structure are quite good, but

we believe that the out-of-sample performance can be improved by capturing asymmetric

in the dependence structure between CCI growth and the spread of the term structure.

In this section we compare the predictions of the binary response model used by Estrella

& Mishkin (1997) and our models that capture the effects of an asymmetric dependence

structure between CCI growth and the spread of the term structure. The results of Estrella

& Hardouvelis (1991) indicates that the spread of the term structure performs best between

4 and 6 quarters. So we examine the out-of-sample predictive performance for similar

forecasting horizons.
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7.2 Probit model model

We begin with the Probit model by equation 7.1 with the spread of the term structure

as predictor of the NBER recession indicator. The models are estimated by maximum

likelihood with forecasting horizons of 2, 4 and 6 quarters over the in-sample period which

are presented in figures B.1 to B.3.

Yt+k = F (X ′tβ) + µt (7.1)

The results of the Probit models indicate that the spread of the term structure is

statistically significant. The corresponding parameter is negative suggesting that the spread

of the term structure has a negative effect on the probability of a future recession. This

finding suggests that an inverted yield curve increases the probability of a recession.

An interesting observation is that the McFadden R2 decreases with the length of the

forecasting horizon. This is not in line what Estrella & Hardouvelis (1991) reports for the

predictive power of the Probit model using the yield spread, as they find that the predictive

performance is best for 4 and 6 quarters ahead forecast horizons. This just shows that the

model with the strongest explanatory power doesn’t guarantee the strongest predictive

power.
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7.3 Copula Approach

The findings of chapter 5 suggest that the lower tail-dependence coefficient in the joint

distribution of CCI growth and the yield spread is non-zero. In chapter 2 we explained

that the Probit model systematically underestimates the probability of a recession, because

lower tail dependence in the joint distribution result into higher tail probabilities in the

conditional distribution which the normal distribution used in the Probit model cannot

capture.

In chapter 4 we provided an alternative method to calculate the conditional probability

of an event by estimating the conditional probabilities with copula functions, which can

accommodate for non-zero tail dependence in the joint distribution of CCI growth and

the yield spread. First we have to search for a proper copula specification so that we can

calculate the conditional probability of observing a recession k periods into the future.

7.3.1 Finding a copula

Their exist an infinite amount of copula specifications. Some copulas can capture symmetric

or asymmetric tail dependence or even both while others can not capture any form of tail

dependence. We restrict ourself to a set of copula function most commonly used in practise

that can facilitate the previously mentioned dependence structures which are discussed in

the Appendix B.

The maximum likelihood and information criteria values for each of the copula specifi-

cations are presented in table 7.1 to 7.3 using canonical maximum likelihood estimation to

calibrate the copulas. The Joe Clayton copula attains the greatest log-likelihood value and

the lowest of both information criteria over the in-sample period for a forecasting horizon

of 6 months. The Clayton copula is the best fitting copula over the in-sample period using

for the forecasting horizons 12 and 18 months. These are the copula specifications we select

for the respective forecasting horizons.
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Table 7.1: Presented here are the nine copula specifications tried for the distri-
bution of the CCI growth and the yield spread for k = 6. The copula
likelihood at the optimum is denoted ζc . Also presented are the Akaike
and Schwarzs bayesian information criteria at the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 17.3195 -34.6319 -34.6190

Students t 18.5076 -37.0009 -36.9751

Plackett 19.2371 -38.4670 -38.4541

Frank 19.1006 -38.1940 -38.1811

Asymmetric Copula

Clayton 32.0687 -64.1302 -64.1173

Rotated Clayton 2.5624 -5.1177 -5.1048

Joe Clayton 32.5402 -65.0663 -65.0405

Gumbel 7.5465 -15.0860 -15.0731

Rotated Gumbel 28.0005 -55.9940 -55.9811
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Table 7.2: Presented here are the nine copula specifications tried for the distribu-
tion of the CCI growth and the yield spread for k = 12. The copula
likelihood at the optimum is denoted ζc . Also presented are the Akaike
and Schwarzs bayesian information criteria at the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 15.9377 -31.8678 -31.8543

Students t 16.2374 -32.4597 -32.4326

Plackett 16.6918 -33.3761 -33.3625

Frank 16.5603 -33.1130 -33.0995

Asymmetric Copula

Clayton 21.5457 -43.0839 -43.0703

Rotated Clayton 5.1159 -10.2242 -10.2107

Joe Clayton 20.6046 -41.1940 -41.1669

Gumbel 9.2191 -18.4306 -18.4171

Rotated Gumbel 19.3724 -38.7372 -38.7237
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Table 7.3: Presented here are the nine copula specifications tried for the distribu-
tion of the CCI growth and the yield spread for k = 18. The copula
likelihood at the optimum is denoted ζc . Also presented are the Akaike
and Schwarzs bayesian information criteria at the optima.

Model ζc AIC BIC

Symmetric Copula

Normal 7.6951 -15.3828 -15.3695

Students t 7.8785 -15.7421 -15.7155

Plackett 8.2258 -16.4442 -16.4309

Frank 8.2175 -16.4276 -16.4143

Asymmetric Copula

Clayton 10.6263 -21.2452 -21.2319

Rotated Clayton 2.0920 -4.1766 -4.1632

Joe Clayton 9.6021 -19.1894 -19.1628

Gumbel 3.9441 -7.8808 -7.8675

Rotated Gumbel 8.7485 -17.4897 -17.4764
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7.4 Benchmarking: Out-of-sample forecasting

Using the results of the previous sections, we benchmark the forecast performances of

the Copula probability forecast model against the Probit model using the spread of the

term structure as the explanatory variable. We are interested in the fraction of correct

predictions by using a binary random variable that is 1 if a prediction is correct and 0

otherwise. Then the hit rate is calculated by the sum of this binary variable divided by

the out-of-sample size. The higher the hit rate, the better the model makes predictions.

To transform the predicted conditional probabilities of a recession into binary outcomes

ŷt+k, we transform the predicted probabilities into binary outcomes by

ŷt+k = 1 ifP (Yt+k = 1|Xt) > c

ŷt+k = 0 ifP (Yt+k = 1|Xt) ≤ c

for which c is the threshold value calculated by the fraction of recessions over the in-

sample period.

The results for predicting recessions stated by the NBER are presented in tables 7.3 to

7.6 using the term structure spread. The out-of-sample period is divided in 2 sub-periods

from 1989 to 1999 and 2000 to 2009 so that we can investigate if the forecasting performance

does not depend on the chosen sample period.

The hit rates are consistently higher for the Probit model. The predictive performance

of the Copula Probability model using a forecasting horizon of 18 months is much worse

than anticipated, as it falls below the 50% expected hit rates for random predictions over

the out-of-sample periods 1989-1999 and 1989-2009.

Recessions are not defined by a 1-month negative CCI growth, but several periods of

negative CCI growth which might explain the poor out-of-sample performance of the Copula

probability forecast model. So we argue that the performance of the Copula probability

forecast model can be improved by calculating the conditional probability of observing

several periods of negative CCI growth instead of calculating the probability of a 1-month

negative CCI growth which we leave as a remark for future research.
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Table 7.4: Hit rate: 1989-2009

Probit model forecast Copula forecast

6 month ahead prediction 79.18% 59.18%

12 month ahead prediction 88.98% 60.82%

18 month ahead prediction 83.27% 42.86%

Table 7.5: Hit rate: 1989-1999

Probit model forecast Copula forecast

6 month ahead prediction 84.09% 56.06%

12 month ahead prediction 91.67% 55.30%

18 month ahead prediction 90.15% 31.06%

Table 7.6: Hit rate: 2000-2009

Probit model forecast Copula forecast

6 month ahead prediction 73.45% 62.83%

12 month ahead prediction 85.84% 67.26%

18 month ahead prediction 75.22% 56.64%
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Chapter 8

Conclusion

In this thesis we examined the dependence structure of output growth and inflation rates

with asset prices. We have identified lower tail dependence in the joint distribution of CCI

growth and the spread of the term structure, a strengthening of the statistical relationship

between small returns, while we found upper tail dependence in the joint distribution of

CPI inflation rate and the short rate.

The main lesson of chapter 2 is that the linear regression and Probit forecast model

must be used with caution, since these forecast models do not capture non-linearities in the

dependence structure. If the dependence structure between the dependent and explanatory

variable is asymmetric, we discussed for the linear regression model that the residuals are

dependent on the explanatory variables. Fortunately, we have copula functions that can

model the conditional mean of the residuals rather than assuming it’s zero, which leads

to the Copula-Regression forecast model. Likewise, we discussed that the Probit model

underestimates the conditional probability of an event because the normal distribution

used in the Probit model can not accommodate for tail probabilities. We proposed an

alternative forecast model which calculates the conditional probability of observing an

event with copula functions that can accommodate for tail dependence.

We have seen that the Copula-Regression forecast model consistently outperforms the

linear regression model for inflation rate forecasts beyond the 6 month forecasting horizon.

Using forecasting horizons shorter than 6 months, we found that the out-performance of

the Copula-regression forecast model depends on the time period, which suggests that the

joint distribution between the residuals and the explanatory variables might vary over time.

An interest pattern emerged, the longer the forecasting horizon, the greater the Copula-
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regression forecast model outperforms the linear regression model. So the general conclusion

that emerges from our results, is that capturing the effects of an asymmetric dependence

structure can improve the forecasting performance for inflation rates, especially for long

forecasting horizons.

The results of the Copula probability forecast model were not so great. The Probit

model is clearly the better forecasting model for predicting recessions. We argued that the

poor performance of the Copula probability forecast model is attributed to an incorrect

defined link between CCI growth and the NBER recession indicator. We calculated the

conditional probability of a 1-month negative CCI growth, while a recession stated by the

NBER is defined by several periods of negative CCI growth in reality.

For future works, it could be interesting to see how the Copula probability forecast

model performs relative to the Probit model when calculating the conditional probability

of several subsequent periods of negative CCI growth. Also due to the long length of the out-

of-sample period (20 years), we cannot rule out the possibility that the joint distributions

vary over time, which could be the reason why the out performance of the Copula-regression

forecast model changes over time for the forecasting horizon of 3 months.

Furthermore, we restricted ourselves to using only one variable so this research can be

extended using multiple asset prices. It might also be interesting to see how full maximum

likelihood estimation (FML) and inference on margin (IMF) approach compares to the

canonical maximum likelihood approach for prediction future inflation rates and recessions.

I’m willing to provide help with research aimed at answering these questions.
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Teräsvirta (1994), ‘Specification, estimation and evaluation of smooth transition autore-

gressive models’, Journal of American Statistical Association .

60



Appendix A

Copula Functional Forms

In this appendix, we describe the copula functions used in this research. This appendix

follows the literature of Alexander (2008) and Nelson (1999) which provides further details

for the more interested reader.

A.1 Gaussian Copula’s

One of the most important implicit copula’s from which the dependence part is isolated from

is the normal copula which is also called the Gaussian copula. The multivariate normal

copula has a correlation matrix Σ for parameters which play a central role in financial

analysis. However they are used for convenience rather than accuracy. A normal copula

is derived from the n-dimensional multivariate and univariate stand normal distributions

functions denoted Φ and Φ respectively. It’s then defined as

C(u1, u2; Σ) = Φ(Φ−1(u1), ...,Φ−1(un)) (A.1)

Differentiating this leads to the normal or Gaussian density which is given by

c(u1, ..., un; Σ) = |Σ|− 1
2 exp(−1

2
ξ′(Σ−1 − I)ξ)(A.2)

For the case n = 2 the normal copula distribution is given by
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C(u1, u2; %) = Φ(Φ−1(u1),Φ−1(u2)) (A.3)

C(u1, u2; %) =
∫ Φ−1(u1)

0

∫ Φ−1(u2)

0
(2π)−1(1− %2)−

1
2 exp(−x

2
1 − 21x2 + x2

2

2(1− %2)
)δx1δx2 (A.4)

The copula distribution cannot be written in a simple closed form. Numerical methods

such as the adaptive Simpson quadrature can used to approximate the definite integrands.

The bivariate normal copula density is

c(u1, u2; %) = (1− %2)−
1
2 exp(−%

2ξ2
1 − 2%ξ1ξ2 + %2ξ2

2

2(1− %2)
) (A.5)

where ξ1 = Φ−1(u1) and ξ2 = Φ−1(u2) are quantiles of standard normal variables. Since

the correlation is the only parameter the bivariate normal copula has its easy to calibrate

it.

A.2 Student t copula

The n-dimensional symmetric copula Student t copula is another implicit copula from which

the dependence can be isolated from. It is defined by

Cυ(u1, ..., un; Σ) = tυ(t
−1
υ (u1), ..., t−1

υ (un) (A.6)

where tv and tv are multivariate and univariate Student t distributions with v degrees of

freedom and Σ the correlation matrix. Then the multivariate Student t copula distribution

maybe written as

Cυ(u1, ..., un; Σ) =
∫ t−1

υ (u1)

0
...

∫ t−1
υ (un)

0
k|Σ|−

1
2 (1 + υ−1x′Σ−1x)−(υ+1)/2δx1...xn (A.7)
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Differentiation of the above expression leads to the student t copula density as

cυ(u1, ..., un); Σ = K|Σ|−
1
2 (1 + υ−1ξ′Σ−1ξ)(υ+2)/2

n∏
i=1

1 + υ−1ξ−(+2)/2 (A.8)

where by

k = Γ(
υ

2
)(n−1)Γ(

υ + n

2
)(υπ)−n/2 (A.9)

K = Γ(
υ

2
)(n−1)Γ(

υ + 1

2
)−nΓ(

υ + n

2
) (A.10)

The tail dependence is given by

λυ(%) = 2tυ+1(

√
υ + 1

√
1− %√

1 + %
) (A.11)

where tυ+1 is the complementary cumulative univariate Students distribution with υ + 1

degrees of freedom.

In the case of n=2 we have the symmetric bivariate t copula distribution

C(u1, u2; %) =
∫ Φ−1(u1)

0

∫ Φ−1(u2)

0
(2π)−1[1− %2)−1/2(1 + υ−1(x2

1− 2%x1x2 + x2
2)]−(υ+2)/2δx1δx2

(A.12)

Like the normal copula, the Student t copula distribution cannot be written in a simple

closed form so well have to approximate it with numerical methods.
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A.3 Archimedean Copula

An other method for building copulas is based on a generator fuction which will is denoted

as u. The corresponding Archimedean copula is defined then as

C(u1, ..., un) = Ψ−1(Ψ(u1, ..., un) (A.13)

Two simple copulas that are commonly used in market risk analysis are the Clayton and

Gumble copulas and the are useful because they can capture and asymmetric tail depen-

dence that we know can be important for modeling many relationships between financial

asset returns. The Clayton Copula captures lower tail dependence and the Gumbel copula

captures upper tail dependence.

A.3.1 Clayton Copula

Clayton (1978) introduced the following generator function and so is commonly called the

Clayton copula

Ψu = α−1(u−α − 1), α 6= 0 (A.14)

So the inverse generator function is

Ψ−1(x) = (x+ 1)1/α (A.15)

The Clayton copula thus has the form of

C(u1, ..., un;α) = (u−α1 + ...+ u−αn − n+ 1)−1/α (A.16)
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A Clayton copula has asymmetric tail dependence. In fact it has zero upper tail dependence

but a positive lower tail dependence coefficient, when α > 0

The Clayton copula density is obtained by differentiating the Clayton copula which

yields

c(u1, ..., un;α) = (1− n+
n∑
i=1

u−αi )−n−(1/α)
n∏
j=1

u−α−1
j [(j − 1)α + 1] (A.17)

As the parameter α varies, the Clayton copulas capture a range of dependence with

perfect positive dependence as ⇒∞. That is, as α increases the Clayton copulas converge

to the Frechet upper bound copula. In the case of n=2, the conditional distributions for

Clayton copulas are easy to derive.

A.3.2 Gumbel Copula

Gumbel Copula is an Archimedean copula with generating function

Ψ = −(log[u])δ. (A.18)

Thus the inverse generation function is

Ψ−1(x) = exp((−x)1/δ) (A.19)

The Gumbel copula distribution may therefore be written as

C(u1, ..., un); δ) = exp[(− log[u1])δ) + ...+ (− log[un])δ]1/δ (A.20)

Differentiating the Gumbel copula yields the Gumbel copla density which for the bivariate

case is
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c(u1, u2; δ) = (A+ δ − 1)A1−2δexp(−A)(u1u2)−1(− log[u1])δ−1(− log[u2])δ−1 (A.21)

Where A = ((− log[u1])δ + (− log[u2])δ)1/δ.

Just like the Clayton copula, the Gumbel copula has asymmetric tail dependence. Un-

like the Clayton copula, it has zero lower tail dependence but a positive upper tail depen-

dence coefficient, when δ > 1.

A variation of the Gumbel copula is the rotated Gumbel copula which transform the

copula from a upper tail dependence copula into a lower dependence copula.

A.3.3 Frank Copula

The frank copula is a symmetric Archimedean copula with copula distribution

C(u1, u2;α) = − 1

α
log(

((1− e)−α − (1− e)−αu1)(1− e)−u2
(1− e)−α

) (A.22)

and copula density

c(u1, u2;α) =
α(1− e)−αe−α(u1+u2)

((1− e)−α − (1− e)−αu1)(1− e)−u2)2
(A.23)

with α ∈ (−∞,∞)\{0}

A.3.4 Joe-Clayton Copula

This is the modified version of the symmetric Joe-Clayton copula used by Patton (2005a).

It can be restricted to the symmetric version by imposing λu = λd according to Palaro

(2004). The copula distribution of the Joe clayton copula is
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C(u1, u2;λu, λl) = 1− (1− {[1− (1− u1)k]−γ + (1− [1− u2]k)−γ − 1}−1/γ)1/k (A.24)

k=[log2(2− λu)]−1 γ = [− log2(λl)]−1 λu ∈ (0, 1), λl ∈ (0, 1)

for which λu and λl are the corresponding tail dependence parameters.

A.4 Plackett Copula

The placket copula is a symmetric function with no tail dependence similar to the Gaussian

copula. The distinction between the Gaussian and Plackett copula is that the Gaussian

copula has greater dependence for large joint observation than the Plackett copula. The

distribution of the Plackett copula is

C(u, v; π) =
1

2(π − 1)
(1+(π−1)(u+v)−

√
(1 + (π − 1)(u+ v)2)− 4π(π − 1)uv)) (A.25)

with copula density

c(u, v; π) =
π(1 + (π − 1)(u+ v − 2uv))

((1 + (π − 1)(u+ v)2)− 4π(π − 1)uv))3/2
(A.26)

π ∈ (0, ){1} (A.27)
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Appendix B

In-Sample Results

Dependent Variable: NBER

Method: ML - Binary Probit

Sample: 7 288

Variable Coefficient Std. Error t-Statistic Prob.

C -1.094691 0.123903 -8.835063 0.0000

YIELDSPREAD(-6) -57.49061 6.358802 -9.041108 0.0000

S.E of regression 0.275086 McFadden R-squared 0.452028

Log likelihood -74.67214

Table B.1: This table presents some statistics of the estimated Probit model over
the in-sample period for an forecasting horizon of 6 months (k = 6).
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Dependent Variable: NBER

Method: ML - Binary Probit

Sample: 13 288

Variable Coefficient Std. Error t-Statistic Prob.

C -0.956104 0.104216 -9.174252 0.0000

YIELDSPREAD(-12) -40.19603 5.225751 -7.691915 0.0000

S.E of regression 0.341120 McFadden R-squared 0.268545

Log likelihood -98.75073

Table B.2: This table presents some statistics of the estimated Probit model over
the in-sample period for an forecasting horizon of 12 months (k = 12).

Dependent Variable: NBER

Method: ML - Binary Probit

Sample: 19 288

Variable Coefficient Std. Error t-Statistic Prob.

C -0.857676 0.092340 -9.288215 0.0000

YIELDSPREAD(-18) -23.49448 4.601382 -5.105961 0.0000

S.E of regression 0.379909 McFadden R-squared 0.103862

Log likelihood -119.8232

Table B.3: This table presents some statistics of the estimated Probit model over
the in-sample period for an forecasting horizon of 18 months (k = 18).
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Dependent Variable: CPI

Method: Least Squares

Sample: 4 288

Variable Coefficient Std. Error t-Statistic Prob.

C 0.023425 0.005521 4.242883 0.0000

FEDFUND(-3) 0.427471 0.064629 6.614262 0.0000

S.E of regression 0.036574 R-Squared 0.133890

Table B.4: This table presents some statistics of the estimated linear regression
model over the in-sample period for an forecasting horizon of 3 months
(k = 3).

Dependent Variable: CPI

Method: Least Squares

Sample: 7 288

Variable Coefficient Std. Error t-Statistic Prob.

C 0.034015 0.005765 5.900243 0.0000

FEDFUND(-6) 0.295288 0.067440 4.378515 0.0000

S.E of regression 0.038164 R-Squared 0.064082

Table B.5: This table presents some statistics of the estimated linear regression
model over the in-sample period for an forecasting horizon of 6 months
(k = 6).
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Dependent Variable: CPI

Method: Least Squares

Sample: 10 288

Variable Coefficient Std. Error t-Statistic Prob.

C 0.042822 0.005848 7.321890 0.0000

FEDFUND(-9) 0.190668 0.068306 2.791383 0.0056

S.E of regression 0.038643 R-Squared 0.027360

Table B.6: This table presents some statistics of the estimated linear regression
model over the in-sample period for an forecasting horizon of 9 months
(k = 9).

Dependent Variable: CPI

Method: Least Squares

Sample: 13 288

Variable Coefficient Std. Error t-Statistic Prob.

C 0.049955 0.005934 8.418349 0.0000

FEDFUND(-12) 0.103761 0.069158 1.500343 0.1347

S.E of regression 0.039099 R-Squared 0.008148

Table B.7: This table presents some statistics of the estimated linear regression
model over the in-sample period for an forecasting horizon of 12 months
(k = 12).
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Appendix C

Out-of-sample forecasts: Inflation

rate

Figure C.1: Out-of-sample forecasts of the linear regression model and the Copula-
regression model with the CPI inflation rate over the out-of-sample
period (January 1989 to May 2009) using a forecasting horizon of 3
months (k = 3). “OLS“ stands for the linear regression model, “Cop-
ula OLS“ stands for the Copula-regression model and “CPI inflation“
stands for the CPI inflation rates.
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Figure C.2: Out-of-sample forecasts of the linear regression model and the Copula-
regression model with the CPI inflation rate over the out-of-sample
period (January 1989 to May 2009) using a forecasting horizon of 6
months (k = 6). “OLS“ stands for the linear regression model, “Cop-
ula OLS“ stands for the Copula-regression model and “CPI inflation“
stands for the CPI inflation rates.
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Figure C.3: Out-of-sample forecasts of the linear regression model and the Copula-
regression model with the CPI inflation rate over the out-of-sample
period (January 1989 to May 2009) using a forecasting horizon of 9
months (k = 9). “OLS“ stands for the linear regression model, “Cop-
ula OLS“ stands for the Copula-regression model and “CPI inflation“
stands for the CPI inflation rates.
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Figure C.4: Out-of-sample forecasts of the linear regression model and the Copula-
regression model with the CPI inflation rate over the out-of-sample
period (January 1989 to May 2009) using a forecasting horizon of 12
months (k = 12). OLS stands for the linear regression model, “Copula
OLS“ stands for the Copula-regression model and CPI inflation stands
for the CPI inflation rates.
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Figure C.5: Out-of-sample forecasts of the linear regression model with the CPI
inflation rate over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 3 months (k = 3). “CPI Inflation“ stands
for the inflation rate, “OLS“ stands for the linear regression model.
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Figure C.6: Out-of-sample forecasts of the linear regression model with the CPI
inflation rate over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 6 months (k = 6). “CPI Inflation“ stands
for the inflation rate, “OLS“ stands for the linear regression model.
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Figure C.7: Out-of-sample forecasts of the linear regression model with the CPI
inflation rate over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 9 months (k = 9). “CPI Inflation“ stands
for the inflation rate, “OLS“ stands for the linear regression model.
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Figure C.8: Out-of-sample forecasts of the linear regression model with the CPI
inflation rate over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 12 months (k = 12). “CPI Inflation“
stands for the inflation rate, “OLS“ stands for the linear regression
model.

79



Appendix D

Out-of-sample forecasts: Recessions

Figure D.1: Out-of-sample forecasts of the Probit model with the NBER recession
indicator over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 6 months (k = 6). “NBER“ stands for
the NBER recession indicator, “Probit“ stands for the Probit model
and “Threshold“ stands for the cut-off probability.
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Figure D.2: Out-of-sample forecasts of the Probit model with the NBER recession
indicator over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 12 months (k = 12). “NBER“ stands for
the NBER recession indicator, “Probit“ stands for the Probit model
and “Threshold“ stands for the cut-off probability.
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Figure D.3: Out-of-sample forecasts of the Probit model with the NBER recession
indicator over the out-of-sample period (January 1989 to May 2009)
using a forecasting horizon of 18 months (k = 18). “NBER“ stands for
the NBER recession indicator, “Probit“ stands for the Probit model
and “Threshold“ stands for the cut-off probability.
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Figure D.4: Out-of-sample forecasts of the Copula probability model with the
NBER recession indicator over the out-of-sample period (January 1989
to May 2009) using a forecasting horizon of 6 months (k = 6). “NBER“
stands for the NBER recession indicator, “Copula“ stands for the Cop-
ula probability model and “Threshold“ stands for the cut-off probabil-
ity.
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Figure D.5: Out-of-sample forecasts of the Copula probability model with the
NBER recession indicator over the out-of-sample period (January 1989
to May 2009) using a forecasting horizon of 12 months (k = 12).
“NBER“ stands for the NBER recession indicator, “Copula“ stands
for the Copula probability model and “Threshold“ stands for the cut-
off probability.
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Figure D.6: Out-of-sample forecasts of the Copula probability model with the
NBER recession indicator over the out-of-sample period (January 1989
to May 2009) using a forecasting horizon of 18 months (k = 18).
“NBER“ stands for the NBER recession indicator, “Copula“ stands
for the Copula probability model and “Threshold“ stands for the cut-
off probability.
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