
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis

Valuating the Dutch Ecosystem Amenity Service

using Hedonic House Pricing

Caspar de Bruyn (529969)

Supervisor ESE: S. van Meer

Secons Assessor: Dr. N.W. Koning

Supervisors CBS: S.J. Schenau

R. Koops

Date: July 26, 2024

Abstract

This paper aims to estimate the effect of nearby natural space on Dutch house

prices in 2021. This is done by comparing several spatial regression models. It

is found that spatial difference regression using discrete intervals of distance to

nature leads to the best in-sample model fit and most interpretable results. The

model estimates an effect of 7.1% of living within 500 meters of attractive nature,

decaying to an 0.6% effect for properties up to 6 kilometers away. Similarly, a 3.7%

effect was found for living within 50 meters of ordinary nature, decaying to 0.2% for

properties 250 meters away. Using these estimates, the value of the Dutch ecosystem

amenity service is valuated at 818.2 million euro in 2021. It is also found that

proximity effects are heterogeneous across different urbanization degrees, showing

that attractive nature is valued more in densely populated areas, whereas ordinary

nature was valued more in the least urban areas. Further, a comparison between

the use of assessed values and market transactions shows that these do not lead

to the same model estimates, although differences are limited. These findings have

implications for public policy and urban planning, the use of hedonic models by

statistical offices, and adds to the current literature on spatial econometrics and

amenity value estimation.
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1 INTRODUCTION

1 Introduction

Nature, economy, and society are inseparable from each other. Nature provides goods

and services to the economy, it has impact on our health, and people enjoy being in

nature, leading to both physical and intangible benefits (Statistics Netherlands & WUR,

2021). This paper focuses on the monetary valuation of such intangible benefits. This

task, however, is not trivial. The value of goods that nature provides, such as wood and

crops, can be calculated straightforwardly through market sales, given that consumer

surplus is ignored. However, it is not immediately clear how one should put a monetary

value on a walk in a nearby park, or being able to see nice trees outside of your home.

Therefore, this study attempts to calculate the monetary value of nature proximity in

the Netherlands in 2021 by estimating the added value of nature proximity to house

prices.

A framework on ecosystem valuation can be found in the System of Environmental-

Economic Accounting, Ecosystem Accounting (SEEA EA). It is a comprehensive statis-

tical framework for organizing data about habitats and landscapes, measuring ecosystem

services, tracking changes in ecosystem assets, and linking this information to economic

and other human activity (United Nations et al., 2021). This framework is an attempt

to move beyond the typical indicators of economic progress like gross domestic prod-

uct. Based on this framework, Statistics Netherlands together with the Wageningen

University & Research (WUR) publishes the Natural Capital Accounts (NCA), which

is the ecological analogue of the System of National Accounts. The NCA serves as an

important source for policy making on a national, regional, and local level (Statistics

Netherlands & WUR, 2021).

The SEEA EA distinguishes three types of ecosystem services, namely provisioning,

regulating, and cultural services. Provisioning services are those services which provide

contributions to benefits extracted or harvested from ecosystems. Think of wood that

comes from forests, or vegetables harvested from cropland. Regulating services are

services resulting from the ability of ecosystems to regulate biological processes and to

influence climate, hydrological, and biochemical cycles. For instance, the air and water

filtering service trees provide. Lastly, cultural services are experiential and intangible

services related to the perceived or actual qualities of ecosystems whose existence and

functioning contributes to a range of cultural benefits (United Nations et al., 2021).

These for instance entail the utility gained from a walk in nature, or the sight of green

from your house. Our study focuses on valuating one specific cultural ecosystem service

in the Netherlands, namely the amenity service.

The ecosystem amenity service is defined as the ecosystem contributions to local
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1 INTRODUCTION

living conditions, in particular through the biophysical characteristics and qualities of

ecosystems that provide pleasant conditions for living (Statistics Netherlands & WUR,

2022). Assuming that homeowners are willing to pay for these pleasant living conditions,

the contribution of nearby nature on housing prices in a hedonic pricing setting is esti-

mated. Our paper builds on the valuation methodology used in the Dutch NCA, exam-

ining several hedonic model specifications and definitions of nature proximity, combined

with a distinction between nature which is perceived as attractive, and other nature.

Our study tries to answer the question: What model specification can best estimate

the value of the Dutch ecosystem amenity service in 2021? To this end, the following

sub-questions are answered: What definition of nature proximity best captures the added

value to house prices by nearby nature? andWhat spatial hedonic regression specification

models the house prices for 2021 in the Netherlands best? Additionally, estimation al-

lowing for heterogeneous responses for different levels of urbanity is performed. Further,

we try to answer the question Do estimation results differ significantly when transaction

values are used as dependent variables instead of assessed values? This question is of

importance, as most other studies make use of market sales, and thus the use of assessed

value needs to be validated.

To answer these questions, two definitions of nature proximity are examined, namely

by discrete distance intervals and nature density measures. Further, five hedonic model

specifications are compared, namely standard OLS estimation, spatial differencing, fixed

effects estimation, a spatial lag model, and a spatial error model. Lastly, the model is

reestimated to allow for heterogeneity in the response to amenity services per urbaniza-

tion degree, and the robustness of the model with respect to outliers and the definition

of house price is studied.

We find that the spatial difference specification best models housing prices, attaining

the highest adjusted R2 and the lowest AIC of all specifications. Further, we find that

both discrete distance intervals as a nature density specification lead to similar model

fit, although the discrete distances are easiest to interpret, and therefore are preferred.

Using the spatial difference specification, the value of the ecosystem amenity service

in 2021 is found to be approximately 818.2 million euros. Further, we find that there

is clear heterogeneity across urbanization degrees, showing that highly urbanized areas

value attractive nature the most, whereas other nature is valued most in the lowest

urbanization degree. Lastly, we find that estimation using market transactions leads to

different estimation results than when using assessed values, although not all estimates

differ significantly.

This study provides an empirical contribution by estimating the value of the ecosys-

tem amenity in the Netherlands, and showing how it has changed over time. Being able
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1 INTRODUCTION

to identify the benefits derived from nature has several uses in policy making. It can be

used in the cost-benefit analysis of a new nature project, or the decision to engage in

nature renovation and preservation projects. It is especially relevant in the discussion

on the current state of the Dutch housing market. The current housing shortage in the

Netherlands is estimated at 401,000 houses (NOS, 2024). There is an important trade-off

between the construction of new houses, and the preservation of natural ecosystems ,

both due to limited space, and the emission of harmful substances (Bulkely, Almassy,

Fransen, Maia, & Toxope, 2023). Creating insights in the value of nature could aid in

this debate to correctly assess this trade off. Outside of policy making, it is also a topic

of interest for brokers when valuating real estate.

Furthermore, the value estimation of the amenity service is important for statistical

offices across Europe. Eurostat, the official European statistical office, currently obli-

gates national statistical offices to publish the non-monetary components of the NCA.

However, in the future publishing the monetary components of the NCA will become

mandatory. It is therefore important that the models behind these monetary valuations

are accurate. Our study aims to do just that for the monetary valuation of the ecosystem

amenity service.

The study adds to the current literature as it is one of the few studies focusing

on a nation wide estimation of the effect of nature on housing prices. Only few other

papers considered such a large scope (Daams, Sijtsma, & van der Vlist, 2016; Gibbons,

Mourato, & Resende, 2014; Holt & Borsuk, 2020), but none of them observed the full

population like in our study. Furthermore, two methodological contribtuions are made.

First, a definition of nature proximity, namely the nature density using kernel density

estimation, is used, which has not yet been used in comparable studies. Second, it

directly compares several spatial models on in-sample fit, computational feasibility, and

interpretability. Further, is the first study to directly compare the use of assessed values

with the use of actual market transactions, which is relevant for the validation of the

use of assessed values by Statistics Netherlands.

In the remainder of the paper, an overview of relevant literature is first given in

Section 2, followed by a description of the used data in Section 3 and methodology in

Section 4. Afterwards, the results of the model comparison are presented and discussed

in 5, after which a heterogeneity analysis is performed in Section 6. Following this, the

robustness of the results is verified in Section 7. Finally, a discussion of the results and

some outlooks for further research are presented in Section 8 and 9, respectively.
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2 LITERATURE

2 Literature

2.1 The Effect of Nearby Nature

Before looking at the added value of nearby nature on house prices, it is important

to argue why property buyers would or should value nature in their proximity in the

first place. Nearby nature has a recreational function, as well as reducing air and noise

pollution likely leading to improved (mental) health (Statistics Netherlands & WUR,

2022). An extensive stream of literature discusses and investigates the effect of nearby

nature on health and welfare of residents. Hidaka (2012) highlights the importance

of natural light exposure for the mental health of humans. However, the exposure to

natural light is limited by the increased urbanization of our society, with more and higher

buildings blocking the natural light, stressing the importance of open space. The authors

further emphasize the value of physical activity, which is stimulated when this activity

can be performed in attractive natural environments.

Astell-Burt, Mitchell, and Hartig (2014) find that the proximity of green space is

associated with better mental health among older women and for men in their early to

middle adulthood. Further, it was found that living in greener areas was correlated with

better (perceived) health (De Vries, Van Dillen, Groenewegen, & Spreeuwenberg, 2013;

Maas, Verheij, Groenewegen, De Vries, & Spreeuwenberg, 2006; Mitchell & Popham,

2007, 2008). However, not all existing literature is unanimous on the effect of green

space amenity on health. Richardson and Mitchell (2010) only find positive effects

for males, and one study even finds that mortality rates were higher in greener cities

(Richardson et al., 2012).

A recent field of concern is heat stress in urban areas. Temperatures in urban areas

sometimes are three degrees Celsius higher than in non-urban areas (Bowler, Buyung-

Ali, Knight, & Pullin, 2010). One solution, but certainly not the only one, is urban

greening. It was found that urban parks are in general close to one degree cooler than

the built up area within towns (Bowler et al., 2010). However, Wang and Akbari (2016)

find that these effects mainly affect temperatures during the day. Similarly, Jacobs et

al. (2020) find that small water bodies within cities lead to a decrease in temperature

during the day of approximately 0.6 degrees, but lead to a slight, negligible increase in

temperature during the night. Chen et al. (2014) even find that an increase in vegetation

coverage of 15% to 33% in Melbourne could reduce the average heat related mortality

rate by 5% to 28%.

Starting in the 2010s, there has been a growing stream of literature concerning the

relation between environmental amenities, such as air quality and proximity to nature,
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and house prices. The majority of these studies indeed find a positive relationship

between the proximity (or absence) of positive (negative) environmental amenities and

house prices (Bouwknegt & Schilder, 2023; Brander & Koetse, 2011; Conway, Li, Wolch,

Kahle, & Jerrett, 2010; Gibbons et al., 2014; van Ruijven & Tijm, 2022). Furthermore,

diminishing returns to the amount of nearby nature and a declining effect over distance

are often found.

Since in our study a distinction between attractive and other nature is made, of

specific interest are studies which also take into account the attractiveness and quality

of nature. This attractiveness can be measured in either an objective or a subjective way,

both of which have their merits. Objective measures ensure that quality is measured

in the same way by everyone. However, since we expect the proximity and quality

of nature to impact the prices of houses, this means that the property buyers should

also see this value of nature, and should be allowed to assess nature importance in

different ways, pleading for a subjective assessment of quality. Luttik (2000) was one of

the first to include nature quality to assess the quality and accessibility of nature, by

visiting the nature areas by bike. Panduro and Veie (2013) also assess the quality of

nature by rating its accessibility, as well as incorporating the level of maintenance of the

piece of nature. Poor, Boyle, Taylor, and Bouchard (2001) use both an objective and

subjective measure of water quality in a hedonic pricing model, surprisingly finding that

the objective measure could explain variance in house prices more than the subjective

measure.

A purely subjective approach was employed by Daams et al. (2016), who estimate

the effect of nature on Dutch property prices while accounting for perceived attractive-

ness of nature areas. They let respondents of a survey pin-point places on a map of

the Netherlands which they find attractive areas of nature, and use these responses to

construct clusters of perceived attractive nature. The benefit of this survey is that it

incorporates the opinion of economic agents, who are also the ones buying the houses.

The importance of subjective judgement by economic agents in hedonic models is em-

phasized by Palmquist (2005). Further, looking back at the definition of cultural services

given earlier: “the experiential and intangible services related to the perceived or actual

qualities of ecosystems whose existence and functioning contributes to a range of cul-

tural benefits”, we see that this definition considers both perceived and actual qualities

of ecosystems. However, surveys can also come with difficulties, such as selection bias

in the respondents and inaccurate measurements. Nevertheless, given the importance of

subjective judgement in the formation of house prices, our study utilizes the same survey

results as Daams et al. (2016). This is also the data used by Statistics Netherlands for

their valuation of the ecosystem amenity service.
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2.2 Hedonic Models

When it comes to the valuation of amenity services through house prices, there are

two methods which are regularly employed, namely the Contingent Valuation Method

(CVM), and the Hedonic Pricing Model (HPM) (De Groot, Wilson, & Boumans, 2002).

The main difference between these methods lies in the type of preference measured. CVM

measures stated preferences by employing surveys in an experimental setting, whereas

HPM uses revealed preferences by using observed prices of product sales. The main

power of CVM is that in an experimental setting the researcher can control external

variables, easily allowing for causal inference. The downside, however, is that experi-

ments are costly, both in terms of time and money. Furthermore, it is nearly impossible

to get a perfectly representative sample of the population when performing an experi-

ment. In addition, as stated preference methods measure preferences in a hypothetical

settings, it is unlikely that results would directly translate to market behaviour.

Since HPM uses observed market behaviour, there is no need to set up an experiment.

The issue, however, comes from the many external factors influencing the sales price,

various of which can not be controlled for or are even unobserved. How to deal with these

issues will be discussed in Section 4.2. Hedonic models are the staple for the estimation

of amenity effects on house prices, and are also employed in our analysis. Hedonic mod-

els are based on the consumer theory formulated by Lancaster (1966), later extended

by Rosen (1974). These models are built on the assumption that the value of a good

comes from its separate characteristics, rather than the good as a whole. It therefore

expresses the value of a good, often the market price, as a combination of characteristics.

For houses, these characteristics are for instance the physical structure of the house, the

neighbourhood characteristics, and the environmental amenities (Mendelsohn & Olm-

stead, 2009). In the original paper by Lancaster (1966) it was emphasized that this

relation between price and characteristics is not necessarily linear. In fact, it most likely

is not. However, in practice it is common to use a linear functional form (Bouwknegt &

Schilder, 2023; Daams et al., 2016; van Ruijven & Tijm, 2022). Possible non-linearities

are incorporated by using polynomials or logarithms of explanatory variables, or defining

characteristics in terms of intervals rather than as a continuum.

Recent advancements in the hedonic pricing literature focus on the use of non-linear

models, with emphasis on the use of machine learning models. Machine learning mod-

els show a considerable improvement in predictive performance, but they are generally

lacking in explanatory power (Rico-Juan & de La Paz, 2021). Attempts have been made

to make machine learning predictions more understandable, for instance with the use

of generalizations of Shapley values. However, the existing implementations of these
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Shapley values are based on crude approximations, and perform poorly under correlated

regressors (Lundberg, Erion, & Lee, 2018; Slack, Hilgard, Jia, Singh, & Lakkaraju, 2020).

Contrarily, linear models are easily interpretable, which is desirable for the purpose of

our study, and therefore preferred for the valuation exercise in our paper.

2.3 Identification

This paper is concerned with hedonic models in the housing market, meaning we operate

in the domain of spatial econometrics. A parallel can be drawn between spatial econo-

metrics and time series analysis. In time series analysis, an observation is dependent

on the previous observations, mainly those close to the current observation. In spatial

econometrics, observations that are nearby each other are spatially correlated. The main

difference is thus the direction of correlation, in time series it is one sided (past to future),

and in spatial analysis correlation goes both ways. This two sided correlation could lead

to difficulties in identifying the causal effect of nature proximity when not taken care of,

as omission of these spatial correlations might lead to spurious regression. For instance,

some neighbourhood characteristics may be correlated with the proximity of nature, al-

though they may not directly affect treatment. Not accounting for these neighbourhood

characteristics would lead to a biased estimate of the treatment effect. Furthermore,

not taking spatial correlation into account would lead to incorrect standard errors due

to correlation in the OLS residuals (Anselin & Rey, 1991; Von Graevenitz & Panduro,

2015). In order to deal with these issues, spatial regression models have been developed.

The next assumption needed for identification of causal effects is the assumption that

assigned treatment should not influence the way an individual responds to the treatment.

In case of continuous treatment (or a multi-valued discrete treatment), denote the value

of treatment by d ∈ D, where D is the set of all possible treatments. Then the observed

outcome for individual i who received treatment d is given by Yi(d). The potential

outcome under treatment d′ for individual i who received treatment d is then given by

Yid′(d). In practice, we only observe Yid(d), so we only observe Yid′(d) where d′ = d. All

other values for Yid′(d) are unobserved potential outcomes or counterfactuals. In order

to identify a causal effect, we need E [Yid′(d)] = E [Yid′(d
′)] for d ̸= d′. In other words,

response to treatment should be independent of treatment assignment itself (Bareinboim

& Pearl, 2012).

Moreover, treatment must be (conditionally) unconfounded with other exogenous

variables impacting the outcome variable. In this study, the outcome Y is the natural

logarithm of assessed value of a dwelling. As for the set of possible treatments D, two

sets are considered. The first set contains several binary treatment variables, which
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are discrete intervals of distance to (attractive) nature. The other set contains two

variables indicating continuous treatment, namely the nature density score. See section

4.1 for a more precise definition of these variables. Unconfoundedness implies that no

variable should be able to both affect the treatment variable and the outcome variable

simultaneously and directly. If there exists such a variable it is important to include this

variable in the estimating equation, given that it is observed. Otherwise the parameter

of interest, which measures the treatment effect, will absorb (part of) the effect of the

exogenous variable due to them being correlated, and the estimated parameter will

not reflect the true treatment effect (Spirtes, Glymour, & Scheines, 2001). Examples of

possible confounding variables are distance to the closest train station or highway, which

are usually negatively correlated with distance to nature, but positively with assessed

value. Ultimately, we are interested in the average treatment effect E [Yid − Yid̄ | Xi].

In other words, the increase in log assessed value given treatment compared to the

reference treatment d̄, while keeping all other explanatory variables constant. For the

discrete treatments, d̄ is some reference category, whereas for the continuous treatment,

d̄ = 0.

2.4 Spatial Models

Most of the confounding variables in this analysis will likely be spatial effects such

as neighbourhood characteristics and other proximity variables. In order to deal with

such spatial effects, there are several possible model adjustments. Firstly, one could

explicitly incorporate spatial characteristics such as the number of schools and stores in

the neighbourhood, or the local crime rate. However, the number of characteristics one

can add to a model is limited, and never exhaustive. Furthermore, many spatial factors

are unobserved. It is therefore impossible to fully remove omitted variables bias in this

manner. An often employed solution is the use of regional fixed effects, for instance on

postal code level (Bouwknegt & Schilder, 2023; Gibbons & Overman, 2012; van Ruijven

& Tijm, 2022).

A more traditional approach of implicitly incorporating local characteristics is the use

of spatial lag or spatial error models. The spatial lag model incorporates spatial effects

by directly relating the outcome variable to outcomes of observations that are close

(Anselin, 1988). This method can be seen as the spatial version of an autoregressive

model in time series analysis. The inclusion of prices of other observations in order to

determine the price of a house is close to the way realtors and governments assess housing

values in practice, as they often refer to the prices of nearby estates to assess the value

of a property (Can, 1990). Anselin (1988) shows that omitting the spatial structure
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leads to biased and inconsistent parameter estimates when spatial autocorrelation is

present. On the other hand, the spatial error model assumes that spatial correlations

come from misspecifications. Therefore, instead of modeling a direct relation between

the outcomes, it models a relation between the error terms across observations, similar

to moving average models.

A last method to account for spatial correlation is a spatial first difference model.

Observations located in the same neighbourhood are modeled relative to one reference

house in that neighbourhood. By taking this difference, local effects cancel out, as

well as the effect of possible correlation in housing characteristics in the neighbourhood.

Examples of studies discussing and using this method are Daams, Proietti, and Veneri

(2019), Daams, Sijtsma, and Veneri (2019), and Gibbons and Overman (2012). This

model is also currently employed by Statistics Netherlands for the estimation of the

ecosystem amenity service.

The main complication with all of these models is the choice of neighbourhood scale.

Picking a scale that is too large robustly estimates the average effect within the clus-

ter, but disregards lower spatial variation, likely leading to overestimation of the nature

proximity effect (Sommervoll & Sommervoll, 2019). This has also been found in an

internal study of Statistics Netherlands, which for instance finds effects twice the size

when estimating on sub markets, of which 76 exist in the Netherlands, instead of neigh-

bourhoods, of which 2,623 exist in the Netherlands. Contrarily, when the scale is too

small, variation within neighbourhoods might be too small, leading to overabsorption of

the effect of interest in the spatial control, which possibly results underestimation of the

parameter of interest (Von Graevenitz & Panduro, 2015). The mathematical details on

spatial models, and the preferred scale of spatial control, are discussed further in Section

4.2.

3 Data

3.1 The Types of Nature

We first define what is considered as natural or green environment in the context of

this study. To this end, we make use of the ecosystem type classification presented in

Statistics Netherlands and WUR (2022), see Table I. Appendix A gives a more detailed

description of all the ecosystem types.

9



3 DATA

TABLE I. Ecosystem types in the Netherlands

Natural Water

Grassland* Streams and Rivers*

Forest Area* Lakes and Reservoirs*

Heathland and Driftsand* Marine*

Bogs and Fens*

Coastal and Dune Area*

Agriculture Urban and Other (Semi-)built-up Area

Cropland and Horticulture Built-up Area

Grassland Urban Green and Recreation(*)

Note. A * indicates that the ecosystem type is considered as nature in this study, (*)

indicates that only part of the subcategory is considered nature.

The four overarching ecosystem categories are natural land, water, agricultural land

and urban land. In our definition of nature for this study, we exclude all agricultural

land as well as all urban land, except for public green spaces (such as public parks

and other green space). The choice not to include agricultural land like meadows or

cropland, is due to identification issues. Since approximately 45% of the Netherlands is

covered by agricultural land. Combined with the fact that the other green and natural

area cover approximately 36% of the Netherlands, the distance to nature would likely

become extremely low for a majority of the houses, resulting in too little variability.

In order to identify the land cover of nature, we make use of a rasterized map of

the Netherlands, with raster cells of 10x10 meters. For an area to be considered nature,

it has to have an area of at least one hectare, of which more than 80% consists of at

least one of the ecosystem types indicated with a * in Table I. All ecosystem types will

be pooled together. Although it is likely that not all ecosystem types have the same

value to home buyers, separating them could lead to significant multicollinearity, as often

ecosystem types are found together. However, to still allow for a distinction between

influential ecosystem types and less influential ones, we consider a measure of nature

quality, namely perceived attractiveness.

Once all nature areas are defined on the rasterized map, we wish to identify which

of these natural areas people consider attractive. To this end, we make use of the online

survey Greenmapper (www.greenmapper.org). In this survey, respondents are shown a

map, starting at their home, and are asked to pinpoint pieces of nature which they find

attractive on four levels, namely on a local (max. 2 km from their home), regional (max.

20 km from their home), national, and global level. The results for the national level
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align with the objective of this research, and are therefore used. This results in many

points on the map of the Netherlands which respondents consider attractive, called

hotspot markers. These markers then need to be aggregated into clusters of nature.

Daams et al. (2016) use a spatial clustering technique to accomplish this goal. In this

procedure, the density of markers is calculated per 250 m x 250 m raster cell, with a

1250 m search radius. Raster cells of which the density exceeds a certain cut-off value

are kept, and other cells are set to non-attractive. The remaining raster is then laid

over a land use map, and all clusters which coincide with natural land use area remain,

and form the Clusters of Attractive Nature Area (CANA). This procedure ensures that

relatively isolated markers do not create unlikely or incoherent clusters of attractive

nature. This method is adopted in this study. Nature areas which are not considered as

CANA, are refered to as Other Nature Area (ONA). For a more in-depth description of

the methodology, see (Daams et al., 2016).

The resulting CANA and ONA clusters are visualized in Figure I. We see that in

general, beaches and the Wadden Islands are seen as attractive nature. Furthermore

we see that the majority of the Veluwe are considered as attractive, as well as the hilly

landscapes in Utrecht and Zuid-Limburg.

FIGURE I. Dutch land cover by CANA and ONA (left), and Housing Density (right)
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3.2 Housing Values and Characteristics

In this study we make use of data on the assessed value (WOZ-waarde in Dutch) of

all houses and apartments in the Netherlands in the year 2021. The assessed value is

an approximation of the market value of a dwelling used for several national and local

taxes, based on sales of similar dwellings in the neighbourhood. Important to note

is that only properties with a pure residential function, that are currently in use, are

considered. For all of these dwellings we have information on the construction year,

dwelling type (detached, semidetached, terraced, end of terrace), floor space (m2), and

a rental property dummy. Lastly, we have the distance to nature as described in the

previous subsection as explanatory variables. Summary statistics can be found in Table

II. We have full information on approximately 7.3 million dwellings in the Netherlands.

One important characteristic, namely plot area, is not included. Besides the fact that

data on plot area for dwellings is hard to obtain, for apartments and properties owned by

housing corporations it is not clear how plot area should be divided among the individual

dwellings. For an apartment complex, many dwellings lie on the same plot, and the same

goes for houses owned by housing corporations. However, in many practical applications,

log-linear models tend to perform well in the absence of plot area as explanatory variable,

and thus this should not lead to problems (Eurostat, 2013).
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TABLE II. Summary statistics of housing characteristics and distance to nature (n = 7, 321, 072).

Variable Mean Std. Dev. Variable Mean Std. Dev.

Assessed value (AC) 288,177.946 178,292.022 500-1,000 m 0.080

Living area (m2) 115.787 108.988 1,000-2,000 m 0.086

Freehold 0.584 2,000-3,000 m 0.088

Housing corporation 0.297 3,000-4,000 m 0.086

Other leasehold 0.119 4,000-5,000 m 0.082

Detached 0.119 5,000-6,000 m 0.073

Semidetached 0.090 6,000-7,000 m 0.066

End-of-terrace 0.134 7,000-8,000 m 0.057

Terraced 0.311 >8,000 m 0.160

Multi-family home 0.347 Dist. (m) to ONA 395.756 290.165

Constructed < 1905 0.041 0-50 m 0.055

Constructed 1906-1930 0.084 50-100 m 0.078

Constructed 1931-1944 0.049 100-150 m 0.177

Construced 1945-1959 0.089 150-200 m 0.146

Constructed 1960-1974 0.220 200-250 m 0.100

Constructed 1975-1989 0.221 250-300 m 0.089

Constructed 1989-2000 0.131 300-350 m 0.079

Constructed 2001-2010 0.093 350-400 m 0.061

Constructed > 2010 0.071 400-450 m 0.054

Dist. (m) to CANA 4459.337 3691.979 450-500 m 0.057

0-500 m 0.065 >500 m 0.277

The variables assessed value and living area are right skewed, with a sample skewness

of 6.87 and 1429.03 respectively (also see Appendix B). Since a skewed dependent variable

could lead to heteroskedasticity in the residuals of regression, this suggests transforming

these variables by the natural logarithm (Diewert, 2003). Additionally, it is unlikely

that the relation between the assessed value and property characteristics is a constant

relation (Bouwknegt & Schilder, 2023; Daams et al., 2016). Therefore, in the analysis,

we take the natural logarithm of the assessed value and living area. A positive added

effect is that after taking the logarithm of these variables, they are close to normally

distributed around the center of observations (see Appendix B). This allows for a proper

assessment of outliers in the data, as described in the next paragraph.

Furthermore, in the spatial fixed effect model (to be defined in Equation (10)), several

neighbourhood characteristics defined on the PC4 (the four numbers in a Dutch postal

code) level are used. These include the average distance to the nearest:

• General Practitioner

• General Practice Center
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• Hospital without outpatient clinic

• Hospital with outpatient clinic

• Pharmacy

• Fire Department

• Driveway

• Train Station

• Transfer Station.

3.3 Outliers

A thorough evaluation of outliers is of importance, as regression coefficients might be

heavily influenced by even a single outlier. In fact, the asymptotic breakdown point of

linear regression, as described by Donoho and Huber (1983), is 0% (Rousseeuw & Leroy,

2005). This means that the estimates can have an arbitrarily large bias, caused by even

a single outlier. Besides, statistical tests may lose power under the presence of outliers

(Seo, 2006). We focus on outliers with respect to the assessed value, floor space, and the

ratio of assessed value to floor space. These variables are considered most important for

the outlier treatment, as measurement error is most likely to appear in these variables.

Examples of possible outliers or incorrect measurements in the data are a dwelling with

an assessed value of 1 euro, and one with an assessed value of 42 million euro.

Outliers will be detected in the following way. For a variable Y , robustly estimate

the mean µ and variance σ by µ̂ = med(ln (Yi)) and σ̂ = c ·med| ln (Yi)−med(ln (Yi))|,
respectively. Here, med is the median, and the constant c is necessary to ensure Fisher

consistency for the standard deviation at the normal distribution. Assuming normality,

consistency is achieved by setting c = 1
Φ−1(0.75)

≈ 1.4826 (Pham-Gia & Hung, 2001).

Next, we label an observation i as an outlier in variable Yi when

|ln (Yi)− µ̂| > z1−αn
2
σ̂.

with αn = 1− (1− α)1/n.
(1)

Here, n is the total number of observations, zq indicates the qth quantile of the standard

normal distribution, and αn is the Šidák correction of the level for multiple testing

(Šidák, 1967). We test on a level of α = 0.001. We remove all observations from our

data which were flagged as an outlier for at least one of the tested variables. Although

removing outliers is not optimal, it simplifies the estimation of the models described in

Section 4.2, especially for Equation (6) and (8). These are estimated using maximum

likelihood, of which a robust estimation leads to unnecessary complications. To verify

if removing these outliers heavily influences results, the preferred model specification
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in Section 4.2 will also be estimated with the full dataset, using OLS and the robust

MM-type estimator. Results are in Appendix D.

The above described procedure leads to the removal of 3,784 outliers, which equals

roughly 0.05% of the initial dataset. In Table III the summary statistics of the reduced

dataset are shown.

TABLE III. Summary statistics of housing characteristics and distance to nature after outlier
treatment (n = 7, 317, 288).

Variable Mean Std. Dev. Variable Mean Std. Dev.

Assessed value (AC) 288,017.660 174,450.244 500-1,000 m 0.078

Living area (m2) 115.477 57.548 1,000-2,000 m 0.177

Freehold 0.584 2,000-3,000 m 0.146

Housing corporation 0.297 3,000-4,000 m 0.100

Other leasehold 0.119 4,000-5,000 m 0.089

Detached 0.119 5,000-6,000 m 0.079

Semidetached 0.090 6,000-7,000 m 0.061

End-of-terrace 0.134 7,000-8,000 m 0.054

Terraced 0.311 >8,000 m 0.160

Multi-family home 0.347 Dist. (m) to ONA 395.758 290.126

Constructed < 1905 0.041 0-50 m 0.065

Constructed 1906-1930 0.084 50-100 m 0.065

Constructed 1931-1944 0.049 100-150 m 0.080

Construced 1945-1959 0.089 150-200 m 0.086

Constructed 1960-1974 0.220 200-250 m 0.088

Constructed 1975-1989 0.221 250-300 m 0.086

Constructed 1989-2000 0.131 300-350 m 0.082

Constructed 2001-2010 0.093 350-400 m 0.073

Constructed > 2010 0.071 400-450 m 0.066

Dist. (m) to CANA 4459.207 3691.775 450-500 m 0.057

0-500 m 0.055 >500 m 0.277

Note that many of the values remain largely unchanged, except for assessed value and

living area. For these variables, the mean decreased slightly, but the standard deviation

decreased substantially, especially for living area.
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4 Methodology

4.1 Identifying the Nature Proximity

In this study, two measures of proximity to nature will be considered: discrete distance

intervals, and nature density. The first measure is used in many comparable studies

(Conway et al., 2010; Daams et al., 2016; van Ruijven & Tijm, 2022). We define the

distance between a house and CANA/ONA as the euclidean distance to the closest piece

of CANA/ONA. Hypothesizing that the effect of attractive nature extends further than

that of remaining nature, we use the following intervals for CANA: 0-0.5 km, 0.5-1 km,

1-2 km, 2-3 km, 3-4 km, 4-5 km, 5-6 km, 6-7 km, 7-8 km, and >8 km. For ONA, we use

the intervals 0-50 m, 50-100 m, 100-150 m, 150-200 m, 200-250 m, 250-300 m, 300-350 m,

350-400 m, 400-450 m, 450-500 m, and >500 m. These distance measures are included

as dummy variables in the regression model, which will be specified later in Section 4.2.

It is likely that not only distance to nature, but also the area of nearby nature

influences the house price. In previous studies, area is often included as the total area

within a certain distance of the dwelling (Bouwknegt & Schilder, 2023; Daams et al.,

2016; van Ruijven & Tijm, 2022). In this paper, a new measure is introduced, namely

the nature density score. This score will be calculated using kernel density estimation,

and will increase for a dwelling when distance to nature for the dwelling is lower, as well

as increasing when there is more natural area near that dwelling.

The nature density score of a dwelling will be calculated separately for both CANA

and ONA. The nature density score ND of a dwelling i is calculated as:

NDi =
1

r2

K∑
k=1

 3

π

(
1−

(
dik
r

)2
)2


For all k such that dik < r.

(2)

Here, r is the search radius, k is the index for a raster cell which is flagged as CANA/ONA,

K is the total number of raster cells containing nature, and dik is the distance from the

center of the raster cell in which house i is located to the center of raster cell k. The

kernel in Equation (2) is the Quartic kernel as described by Silverman (1986). The cen-

ter of each raster cell will receive a nature density based on this kernel, which is then

multiplied by the total number of cells flagged as nature. The resulting score can be seen

as the intensity of nature around this cell, which is based on both distance to nature,

as well as the area of the nature around the cell. All houses will get assigned a nature

density score based on the cell they are in. Figure II shows a simple example of the
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density around a nature raster cell located at (0, 0). From this figure, it is clear that

the density around a nature cell is smoothed non-linearly into space around the nature

cell, which is in line with the notion of Lancaster (1966) that characteristics likely do

not enter the hedonic regression equation linearly.

FIGURE II. Surface plot of the two dimensional Quartic kernel with unity radius

The search radius r will be calculated based on Silverman’s rule-of-thumb for band-

width calculation in kernel density estimation, extended to the multivariate case. It is

calculated with the procedure described in Algorithm 1.

Algorithm 1 Procedure for calculating the search radius in kernel density estimation

1. Calculate the mean center of the input points (the center points of all raster
cells containing nature).

2. Calculate the distance from each input point to the mean center calculated in
step 1.

3. Calculate the median of the distances in the previous step (Dm).
4. Calculate the search radius r by

r = 0.9 ·min

(
SD,

√
1

ln (2)
·Dm

)
· n−0.2.

Here, SD is the standard distance, which is calculated as

SD =

√∑K
k=1(xk − X̄)2

K
+

∑K
k=1(yk − Ȳ )2

K
, (3)

17



4 METHODOLOGY

where k and K are defined as before, xk and yk are the x and y coordinate of the center

of nature raster cell k, and X̄ and Ȳ are the x and y coordinates of the mean center.

4.2 The Hedonic Price Model

Base Specification

The starting point of the hedonic price analysis in this study is the following model:

ln (AV ) = Xβ +Nγ + ε. (4)

Here, ln (AV ) denotes the natural logarithm of assessed value, X is a matrix of property

characteristics as described in Section 3.2 and also includes the regression constant, N

contains the variables related to nature proximity, and ε is the i.i.d. error term. As

described in the previous section, we have two different distance measures. All models

described in this section will be estimated twice, each with one of these measures. In

other words, we estimate one model where N consists of dummy variables for all discrete

distance intervals mentioned in Section 4.1, and one model where N consists of only the

two nature density scores (one for CANA and one for ONA). Both β and γ are parameters

to be estimated. This simple model does not take spatial autocorrelation into account.

Next, models controlling for spatial autocorrelation are discussed.

Spatial Difference Model

The first spatial model is the spatial difference model. This model is defined as follows

ln (AViz)− ln (AVjz) = (Xiz −Xjz)β + (Niz −Njz)γ + εijz. (5)

Here, i and j are indices of houses both located in neighbourhood z. In other words,

the log of assessed value is modeled relative to an arbitrary reference house in the same

neighbourhood, eliminating neighbourhood effects. In fact, it is even stricter than com-

mon fixed effects models, as it also eliminates similarities in unobserved characteristics

of houses. The differencing is done on PC4 level. Important to note is that due to the

differencing, the shocks will not be uncorrelated. Therefore, standard errors are clus-

tered on PC6 level. This model specification is currently used by Statistics Netherlands

for the valuation of the ecosystem amenity service.
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Spatial Lag and Spatial Error Model

Now, two traditional methods of spatial regression are discussed. First, the spatial lag

model is defined in the following way

ln (AV ) = ρW ln (AV ) +Xβ +Nγ + ε. (6)

Here W is a weight matrix relating observations with each other based on some spatial

contiguity measure, and all other symbols are as defined in Equation (4). The parameter

ρ needs to be estimated alongside β and γ. ρ is the spatial parameter, signifying the

degree of spatial correlation between outcome variables. During estimation, which is

done using maximum likelihood, this parameter is restricted to the interval [0, 1]. This

parameter needs to be bounded to avoid singularity of the matrix [I − ρW ]. To avoid

this issue, the parameter needs to be bounded below by 1/ωmin, and bounded above by

1/ωmax, where ωmin and ωmax are the smallest and largest eigenvalue of W , respectively.

When W is row standardized, as done in this study, ωmax = 1 and ωmin < −1 (Baltagi,

2001). However, we expect spatial correlation to be positive, and therefore bound ρ

below by 0, also for improved computation time. Details on how to define the weight

matrix W will follow shortly. Note that his model can be rewritten as

ln (AV ) = [I − ρW ]−1Xβ + [I − ρW ]−1Nγ + [I − ρW ]−1 ε. (7)

The effect of an explanatory variable xk on the dependent variable is given by the partial

derivative. The partial derivative of ln (AV ) with respect to variable xk is given by
∂ ln (AV )

∂xk
= [I − ρW ]−1 βk, which is an n× n matrix, also called the impact matrix. The

average value of the diagonals of the impact matrix gives the direct impact of variable

xk on ln (AV ). The mean value of the off diagonal entries gives the indirect impact.

Averaging all values of the impact matrix gives the total impact of variable xk. We are

interested in the total impact for this study. Standard errors and p-values for the total

impacts are computed using simple simulation techniques.

In the spatial error model, the error term in (4) is specified in a spatially lagged

form, namely ε = λWε + ν, where ν is a vector of i.i.d errors. This expression can be

rewritten as ε = (I − λW )−1 ν. The resulting spatial error model is

ln (AV ) = Xβ +Nγ + (I − λW )−1 ν. (8)

Where the coefficients β, γ, and λ have to be estimated, and all other terms are defined as

before. The parameter λ measures the degree of spatial correlation, and is also estimated
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using maximum likelihood. During estimation it is restricted to the interval [0, 1], for

the same reasons as the parameter ρ in the spatial lag model.

The spatial lag and error model have been used in a similar context by Holt and

Borsuk (2020), Hoshino and Kuriyama (2010), and Sohn, Kim, Kim, and Li (2020).

Note that Equation (6) and (8) look quite similar, especially in terms of model errors.

However, the difference comes from the explanatory variables. Whereas the spatial error

model only models correlated shocks, the spatial lag model also assumes indirect effects

of variables through correlated observations.

A key part of the spatial regression models is the definition of the weight matrix W.

This matrix defines the degree of correlation between houses. There are many possible

choices of the weight matrix, for which we refer to Getis and Aldstadt (2004). In this

study, we consider the following weight structure:

wij =

1 if PC4i = PC4j , i ̸= j

0 otherwise,
(9)

where PC4i equals the four numbers of the postal code of house i. In other words,

we relate houses which have the same postal code, up to the four numbers in the postal

code. After constructing the weight matrix, it is row-standardized such that the elements

of each row sum up to one, which is standard practice (Anselin, 1988).

Fixed Effects Model

The last method we consider is the use of neighbourhood fixed effects, together with

some neighbourhood characteristics. The model is defined as follows

ln (AV ) = Xβ +Nγ + fz + ε, (10)

where fz is a vector of neighbourhood characteristics, together with group fixed effect of

neighbourhood z defined on the PC4 level. The fixed effects try to capture the omitted

or unobserved neighbourhood effects.

The main parameter of interest is γ, which captures the marginal effect of nature

proximity on the price of houses, and is thus the vector of average treatment effects.

In order to correctly identify this parameter, it is important that there are no omitted

variables correlated with the nature proximity variable N . Controlling for these possible

omitted variables is done through the spatial lag, spatial error, spatial difference or

spatial fixed effect. The main assumption for these models to correctly identify the

parameter of interest, is that the scale of spatial correction is well defined. The spatial
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scale should not be too large, as then local effects are averaged out too much. On

the other hand, the scale should not be too small, as variation within spatial units

will be to little, and the marginal effect of nature proximity will get absorbed in the

spatial correction. Therefore, the scale is chosen to be at PC4 level, which is common in

comparable studies (Bouwknegt & Schilder, 2023; Daams et al., 2016), and even shown

to be optimal in Daams, Proietti, and Veneri (2019).

In order to decide which of the models is preferred, we look at the adjustedR2, defined

as 1− n−1
n−k

(
1−R2

)
. Here n is the number of observations, and k the amount of variables

included in the model. Difficulty in the cross model comparison comes from the spatial

difference model as described in Equation (5). The dependent variable for observation

i is not equal to the ones in the other model specification, in addition to losing the

reference observations. To be able to compare them using the adjusted R2, we have to

transform the fitted values of Equation (5) by adding back the value of ln (AVjz) to the

fitted value, and then manually computing the adjusted R2. Note that this procedure

means that all reference observations are lost, as we do not get fitted values for these

observations. Furthermore, due to the transformation as shown in Equations (7) and

(8), we can not compare the R2 values of these models with those of other models, as

they have different interpretations for the spatial lag and spatial error model.

4.3 Valuating the Ecosystem Service

Once a preferred model is chosen, the percentage of the value of a house explained by its

proximity to nature can be calculated. In the models with dummies for discrete distance

intervals, the estimated fraction p̂ of a property’s value explained by nature proximity

dummies is calculated by applying the transformation p̂ = eγ̂−1, where γ̂ is the estimate

of γ in Equation (4), (6), (8), (5), or (10). Note that all these operations are element

wise. Important to note is that this transformation is biased, but consistent. Given the

size of our dataset, this simple transformation is justified, and a bias correction is not

necessary (Kennedy, 1981). In the model using the nature density score, p̂ is simply

given by p̂ = γ̂. The value of a house which is generated by nearby nature is then

calculated as AVi ·Nip̂.

Once these values are added together for each house, it results in the total amenity

value of ecosystem asset in the Netherlands. However, this number is a stock value,

as it represents the amenity value of the ecosystem over its entire lifespan. Since we

are interested in the value of the ecosystem amenity service for the year 2021, which

is a flow variable, we have to convert from stock to flow. To this end, we make use of

the Net Present Value method as described in the Natural Capital Accounting in the
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Netherlands - Technical Report by Statistics Netherlands and WUR (2022). The value

of an ecosystem asset is calculated as

K0 =
T∑
t=1

dt
(1 + r)t

, (11)

where K0 is the value of the asset, dt is the flow in year t, r is the discount rate, and T is

the asset life in years. We assume a lifespan of T = 100, and a discount rate of r = 0.02

for the first 30 years, r = 0.015 for the following 45 years, and r = 0.01 for the rest of

the lifespan. Additionally, we assume that the flow dt is the same for all t = 1, . . . , T .

The value of the ecosystem service can then be calculated by dividing the value of the

ecosystem asset, which is estimated by the regression model, by approximately 54. The

assumptions come from the Principles of Capital Accounting by Philips (2017), which

are the principles used by the Office for National Statistics.

5 Main Findings

The regression results for models (4), (6), (8), (5), and (10) are presented in Table IV.

An important first note is the running time and computational feasibility of the models.

Whereas the regular linear regression and the spatial difference model run relatively

quickly, issues arise mainly in the spatial lag and spatial error model, where the weight

matrix as defined in Equation (9) is needed. This matrix is of dimension n×n, and given

the size of the data (n = 7, 317, 288) this leads to a matrix too large to fit in memory

of statistical software. Similar issues arise for the fixed effects model, although to lesser

extent.

Consequently, the spatial lag and spatial error model were estimated on a subset

which is close to the largest dataset the implementation of this method in statistical

software is able to handle (n = 14, 634). However, even on this relatively small subset,

both the spatial lag and spatial error model need about ten hours to converge to an

optimal solution. Therefore, it is not feasible to estimate these models on the full

dataset by means of model averaging, as this would take about 200 days per model.

These models were thus estimated on a single subset. As mentioned before, the spatial

lag and spatial error model can not be compared to the other models by adjusted R2.

However, they can be compared to the other models by means of the AIC.

For the fixed effect model, the dataset was first split in 500 subsets, and the model

was estimated on each subset, after which the results were averaged. However, the model

showed curious results for some of the subsets, leading to estimates of the intercept to
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become arbitrarily large or small at times. A similar result occurred when the model

was estimated on a larger dataset (500,000 observations). Therefore, this model was

estimated using the same subset on which the spatial lag and spatial error model were

estimated.

TABLE IV. Regression results for the five model specifications

Discrete Distance Measures

Base model Spatial difference Fixed effects Spatial lag Spatial error

Dist. to ONA

0-50 m 0.035***(0.001) 0.037***(0.001) 0.034***(0.010) 0.035**(0.017) 0.038***(0.011)

50-100 m 0.027***(0.001) 0.020***(0.001) 0.006(0.008) -0.001(0.012) 0.014*(0.008)

100-150 m 0.012***(0.000) 0.007***(0.001) 0.008(0.007) 0.009(0.011) 0.013*(0.007)

150-200 m 0.006***(0.000) 0.003***(0.001) 0.009(0.007) -0.007(0.011) 0.011(0.007)

200-250 m 0.002***(0.000) 0.002**(0.001) 0.005(0.007) 0.001(0.010) 0.009(0.007)

250-300 m 0.002***(0.000) 0.000(0.0001) -0.002(0.007) -0.004(0.011) 0.004(0.007)

300-350 m -0.001(0.000) 0.000(0.0001) 0.001(0.007) 0.013(0.011) 0.007(0.007)

350-400 m -0.004***(0.001) -0.000*(0.0001) -0.008(0.007) -0.006(0.012) -0.009(0.008)

400-450 m -0.001**(0.001) 0.000(0.001) 0.007(0.007) -0.004(0.012) 0.007(0.008)

450-500 m -0.004***(0.001) -0.002**(0.001) 0.003(0.008) -0.012(0.013) 0.002(0.008)

Dist. to CANA

0-500 m 0.364***(0.001) 0.069***(0.003) 0.032(0.030) 0.372***(0.013) 0.288***(0.016)

500-1,000 m 0.320***(0.001) 0.040***(0.003) 0.011(0.028) 0.307***(0.012) 0.263***(0.015)

1,000-2,000 m 0.253***(0.000) 0.020***(0.003) 0.001(0.027) 0.244***(0.010) 0.237***(0.013)

2,000-3,000 m 0.189***(0.000) 0.013***(0.003) -0.011(0.027) 0.192***(0.010) 0.202***(0.013)

3,000-4,000 m 0.146***(0.000) 0.011***(0.002) -0.015(0.025) 0.148***(0.011) 0.162***(0.014)

4,000-5,000 m 0.121***(0.001) 0.000(0.002) -0.041*(0.024) 0.120***(0.010) 0.105***(0.014)

5,000-6,000 m 0.122***(0.001) 0.006***(0.002) -0.030(0.022) 0.118***(0.012) 0.091***(0.014)

6,000-7,000 m 0.102***(0.001) -0.001(0.002) -0.024(0.019) 0.112***(0.013) 0.058***(0.014)

7,000-8,000 m 0.052***(0.001) -0.006***(0.002) -0.029*(0.015) 0.040***(0.014) 0.019(0.013)

Spatial parameter - - - ρ = 0.021 λ = 0.715

Adjusted R2 0.5673 0.8902 0.8749 - -

AIC 9078.30 -11271.04 -6494.39 8756.00 -402.75

Nature Density Measures

Base model Spatial difference Fixed effects Spatial lag Spatial error

ONA density 0.00001***(0.000) 0.00001***(0.000) 0.00001***(0.000) 0.00001***(0.000) 0.00002***(0.000)

CANA density 0.00006***(0.000) 0.00003***(0.000) 0.00003***(0.000) 0.00007***(0.000) 0.00007***(0.000)

Spatial parameter - - - ρ = 0.007 λ = 0.900

Adjusted R2 0.5336 0.8901 0.8751 - -

AIC 10121.00 -11307.24 -6528.00 9968.10 -24.17

Observations 7,317,288 7,313,249 14,634 14,634 14,634

Note. The dependent variable is the natural logarithm of assessed value. Reference categories include

Freehold, Detached, constructed before 1905, distance to ONA > 500 m, and distance to CANA > 8000

m. Each model includes a constant and property characteristics. Standard errors are in parentheses.

For the spatial difference model, standard errors are clustered. AIC is based on estimation in a subset

of the data. *** p<0.01, ** p<0.05, * p<0.1.
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5.1 Spatial Extent

The spatial extent to which the positive effect of nature on house values reaches, is defined

by the positive, significant coefficients. The first remarkable result is the significance in

the basic linear model. All but one of the coefficients for amenity variables are significant

at the 1% level. This is to be expected, as ignoring spatial dependence leads to an

overestimation of the coefficient estimates (Anselin, 2009).

Also notable is the significance of coefficients in the fixed effects model. Contrarily

to the basic linear regression, this model barely shows any significance in the parameter

estimates of the discrete amenity variables. It is important to realize that, in general,

standard errors are larger in smaller samples. Given that the sample for the fixed

effect model, as well as the spatial lag and spatial error model, is significantly smaller

than for the other models, this is a possible reason for the low number of significant

parameters. However, for the spatial regression models, the dummies for distance to

CANA do show high significance. Interestingly, for all models, the density parameters

all show significance at the 1% level.

Besides statistical significance, the notion of practical significance is also of impor-

tance. For the calculation of the value of the amenity service, only the coefficients which

are statistically significant and positive are used. Therefore, in Section 5.3 and 5.4, only

those coefficients which are positive and statistically significant are considered.

5.2 Model Fit

Comparing the adjusted R2 of the basic linear model to those of the other models, it

clearly has the worst in-sample fit, both in the discrete and the density specification.

Similarly, the AIC is the highest for the basic linear model, also confirming that this basic

model is misspecified. Additionally, as can be seen in Appendix C, the other coefficients

also show some curious results, like the basic model estimating a positive coefficient for

the variable Multifamily home, indicating that an apartment is, ceteris paribus, more

expensive than a detached house.

For the spatial lag and error model, we can not compare them to other models by

means of the adjusted R2, so we therefore turn to the AIC. Although the AIC value

is slightly lower, the spatial lag model does not seem to increase model fit that much

compared to the basic linear regression for both nature specifications. The spatial error

model on the other hand does show sizable improvement. However, both models have a

higher AIC than the fixed effects model.

Next we look at the spatial difference model. First, note that the spatial difference

model has a different dependent variable than the other models. Therefore, in order to
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compare this model to the others, we transform the fitted values of this model back to a

prediction of the log assessed value, instead of the difference in log assessed values. Based

on these transformed fitted values, the adjusted R2 and AIC are calculated. This model

shows the least curious pattern of significance. Both for ONA and CANA distance, the

short distances are positively significant, slowly decaying to zero coefficients, and ending

with negative significance. Furthermore, this model has the highest adjusted R2 value

of the three regular regression methods, both for the discrete distance specification as

the density specification. Additionally, it has the lowest AIC by far for both nature

specifications. Therefore, the spatial difference model is the preferred model, followed

by the fixed effects model.

Moreover, we wish to decide on a preferred nature specification. On first glance,

both models appear to fit similarly well. The adjusted R2 in the spatial difference

model is slightly higher in the discrete distance specification, although only by 0.0001.

The AIC calculated on the subset shows a preference for the density specification. We

also calculate the AIC for the spatial difference model estimated on the full dataset,

and internally compare the two nature specifications by means of this criterion. In

the full sample, the discrete nature specification attains an AIC of 762126.62, whereas

the density specification has an AIC of 769763.11, meaning the discrete specification is

preferred in this case. Interesting enough, we see the reverse results for the fixed effects

model. The adjusted R2 is slightly higher in the density specification, and similarly the

AIC is lower in the density specification than the discrete one. This means that, based

on these criteria, there is no clear cut preferred model.

However, which specification is preferred does not only depend on model fit. Another

important aspect is interpretability, especially since the results of the estimation are

important in the domain of public decision making. In terms of interpretability, the

discrete specification is preferred to the density specification. For instance, the coefficient

for Dist. to ONA 0-50 m in model (2), which equals 0.037, can be interpreted after

applying the transformation e0.037 − 1 ≈ 0.037 as follows. Whenever a dwelling lies

within 50 meters of an ONA, the price is on average 3.7% higher than a dwelling which

is more than 500 meters away from an ONA.

On the other hand, interpretation in the density specification is not as straightfor-

ward. It is not directly clear what a one point increase in nature density means when

the corresponding coefficient equals 0.00001, especially since the variable is not directly

proportional to distance. Furthermore, the density score of a dwelling does not depend

on one piece of nature, like the discrete measure, but depends on all nature cells within

the search radius as defined in Section 4.1. Therefore, in terms of interpretability, the

discrete nature specification is preferred to the density specification.
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5.3 Effect of Nature on Housing Value

We now turn to the interpretation of the coefficients. Beforehand, it is expected that

when the distance to ONA/CANA increases, the coefficients corresponding to the dis-

tance gradually decrease towards zero. We see this happen in most models, up until a

certain distance. For instance, the coefficients corresponding to distance to ONA follow

this pattern, although the coefficient is slightly negative for distance between 450 and

500 meters. Similarly in this model, the coefficients for distance to CANA gradually de-

crease towards zero, but jump back up a bit for 5,000-6,000 meters. The gradual decay

of percentage of housing value explained by nature distance is shown in Figure III.

FIGURE III. Effects on property prices with 95% confidence intervals as estimated by the spatial
difference model for ONA (left) and CANA (right) using a discrete nature proximity specification.

We also take a look at the coefficients of the other models, to see if patterns some-

what match. First, as mentioned earlier, we see that the coefficients of the basic linear

regression appear to be heavily overestimated, as an increase in house prices of 43.9%

when living within 500 meters of CANA compared to living over 8,000 meters away is

highly unrealistic. In the fixed effects model, there are close to no significant coefficients

for the discrete distance variables. In the spatial lag model, again there is only one

significant ONA coefficient. The CANA coefficients are all highly significant, but again

seem to be overestimated similarly to the basic linear regression. The same holds for the

spatial error model, although to a lesser extent.

We compare the estimation results to those of a previous study conducted by Statis-

tics Netherlands, estimated on data from 2013 1. The model used was a spatial difference

model, with similar controls. In the 2013 study, the coefficients were found to be sig-

nificant up until a distance of 350 meters to ONA, and 7000 meters to CANA, which is

close to what was found in the current study, where significance was found up to and

including 250 meters to ONA, and 6000 meters to CANA. However, the percent effect

1This is an internal study, and therefore not public.
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on property prices is found to be different between studies. Whereas the effect of living

within 50 meters of ONA was estimated to be 4.9% in 2013, we now find an effect of

only 3.7%. All subsequent coefficients are also lower than in 2013. However, the effect of

living within 500 meters of CANA was estimated to be 6.7% for the 2013 data, whereas

an effect of 7.1% was found in our study. All subsequent estimated effects were also

lower, except for the distance lying between 5000 and 6000 meters. In the 2013 study, a

0.4% effect was found, whereas in this study, an effect of 0.6% was estimated.

In order to interpret the results for the nature density specification, we do the follow-

ing. For each of the discrete intervals used in this study, we calculate the mean percent

added value to the assessed value, based on the estimated nature density coefficient. The

results are shown in Figure IV.

FIGURE IV. Effects on property prices as estimated by the spatial difference model for ONA (left) and
CANA (right) using a nature density specification.

We see that, contrarily to the results for the discrete specification, the effect of ONA

reaches way further in space, whereas the effect of CANA already stops after 3000 meters.

This is the result of the search radius as calculated in Algorithm 1. The search radius

for ONA (approximately 2156 meters) is significantly larger than the maximum distance

considered in the discrete specification. On the other hand, the search radius for CANA

is only about 2795 meters, which is a lot smaller than the maximum distance considered

earlier. As a robustness check the density specification is also estimated whith a CANA

search radius of 8000 meters. The adjusted R2 of the model decreases slightly (R2

= 0.8900), but the reach of the effect does not increase. After 3000 meters, the nature

density score of dwellings is negligible. The only difference is that the percentages shown

in the right panel of Figure IV increase to 9.38, 4.11, 1.14 and 0.04, respectively. Given

that in the discrete specification the CANA effect reaches until 6000 meters, one might

wonder if this density specification is desirable.

In the remainder of this paper, the spatial difference model is the preferred model, and

all further analysis will be done using this specification. Since there is no clear preference
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based on in-sample fit between the discrete distance and density specification, analysis

will be done with using both specifications.

5.4 Ecosystem Valuation

It now rests to estimate the total value of the amenity asset and service in the Nether-

lands. Using the methodology described in 4.3, we get the valuation of the amenity asset

as shown in Table V.

TABLE V. Valuation of the amenity asset in billions of euros as estimated by the spatial difference
model.

DensityDiscrete Distance (2021) Discrete Distance (2013)

ONA 25.2 8.5 18.4

CANA 18.7 35.4 52.1

Total 43.9 43.9 70.5

Although both specifications give a similar estimate of the total asset value, the

composition of these estimates is completely different. However, given the results shown

in Figure III and IV, a different composition is to be expected. The discrete distance

specification showed more and higher significant percentages for the CANA distances,

whereas the reverse is true for the density specification. The amenity service can now

be valuated using the procedure described in Section 4.3, leading to a final estimate

of 818.2 million euro using the discrete specification, and 817.2 million euro for the

density specification. We compare these results to those of the earlier study by Statistics

Netherlands (Statistics Netherlands & WUR, 2022). Using the estimated coefficients of

that study and our dataset, we find the estimates as presented in the last column of

Figure V. The estimated values using the newly estimated coefficients are about 33%

lower, which is a considerable decrease. The estimated value of the amenity service using

the old coefficients equals 1,216.8 million euro. A possible reason for this decrease in

value could be the growing scarcity of houses. When housing is scarce, the importance

of factors like nature proximity might decrease. Alternatively, the scarcity of nature

could play a role. In 2021, the average distance to ONA and CANA were 396 and

4,459 meters, respectively. However, in 2013 these average distances were 392 and 4,906

meters, meaning the mean distance to nature has decreased over time. This means living

close to nature has become “less special”, which could lead to a lower valuation.

28



6 HETEROGENEITY IN URBANIZATION DEGREE

5.5 Outlier robustness

In Section 3.3 it was described how outliers were handled. As a robustness check, the

preferred model, namely the spatial difference model, is also estimated using the full,

likely contaminated data set. This is done both by regular OLS, as well as a robust

MM-estimator. Details and results of this estimation are shown in Appendix D. The

results show that removing the outliers manually does not lead to estimates that are

too different from the use of the full dataset. However, the use of a robust estimator

does lead to several significantly different estimates, advocating for the use of robust

estimation in future research.

6 Heterogeneity in Urbanization Degree

All models until now have been estimated under the assumption that all home owners

value housing characteristics and nature amenities in the same way. However, it is highly

unlikely that this assumption is satisfied. Specifically, we hypothesize that the effect of

nearby nature on house prices depends on the scarcity of nature, and thus on the degree

of urbanization of an area (Brander & Koetse, 2011). Therefore, we also estimate a

model which allows for heterogeneous responses across the degree of urbanization. To

define the degree of urbanization, first define the address density ADi for a house i as

ADi =

∑n
j=1 1 {dij < dmax}

πd2max

. (12)

Here, dij is the distance between house i and house j, dmax is the search radius, and 1(·)
is the indicator function, being equal to 1 if the expression inside the brackets is correct,

and 0 otherwise. The value of dmax is 1 kilometer. The following step is to give each

house a degree of urbanization. It is common practice to average the address density of

all houses in the same municipality, such that all houses within the same municipality

have the same degree of urbanization (Den Dulk, Van De Stadt, & Vliegen, 1992).

However, we hypothesize that inhabitants of neighbourhoods in the city center will have

different preferences than those located on the border of a city. Therefore, averaging is

both done per municipality, as well as per PC4 area. The degree of urbanization Ui of
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house located in a PC4 area or municipality c is then defined as

UDc =



1 if ADc ≥ 2500

2 if 1500 ≤ ADc < 2500

3 if 1000 ≤ ADc < 1500 .

4 if 500 ≤ ADc < 1000

5 if ADc < 500

(13)

These thresholds are in line with the definition used by Statistics Netherlands (Den Dulk

et al., 1992). After calculating the urbanization degree for all dwellings, we estimate

a single model, with a dummy variable for the degree of urbanization. Pooling all

urbanization degrees instead of estimating five separate models preserves degrees of

freedom, and allows for direct comparison of coefficients.

Since we concluded in Section 5 that the spatial difference model is the preferred

specification, this is the model we use for this analysis. This leads to the following

model specification.

ln (AViz)− ln (AVjz) =
5∑

u=1

(1 {UDc = u} [(Xiz −Xjz)βu + (Niz −Njz)γu)]+εijz. (14)

Here, ln (AV ) denotes the natural logarithm of assessed value, X is a matrix of property

characteristics as described in Section 3.2 and also includes the regression constant, N

contains the variables related to nature proximity, and ε is the i.i.d. error term. Fur-

thermore, i and j are indices of houses both located in neighbourhood z, and u indicates

the urbanization degree category. Further, βu and γu, u = 1, . . . , 5, are parameters to

be estimated. UDc is the urbanization degree of the spatial unit (either municipality

or PC4 area) c in which house i and j reside. Note that when urbanization degree is

defined per PC4 area, c and z coincide.

6.1 Results

The parameter estimates of the nature proximity variables for the model with urbaniza-

tion defined per PC4 area are given in Table VI.
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TABLE VI. Regression results for the spatial difference model with heterogeneity in urbanization
degree per PC4 area.

Discrete Distance Measures

UD = 1 UD = 2 UD = 3 UD = 4 UD = 5

Dist. to ONA

0-50 m 0.026***(0.004) 0.033***(0.002) 0.031***(0.002) 0.049***(0.002) 0.059***(0.002)

50-100 m 0.018***(0.003) 0.020***(0.001) 0.014***(0.001) 0.026***(0.002) 0.034***(0.002)

100-150 m -0.000(0.003) 0.009***(0.001) 0.005***(0.001) 0.013***(0.001) 0.012***(0.001)

150-200 m -0.005*(0.002) 0.006***(0.001) -0.001(0.001) 0.010***(0.001) 0.005***(0.001)

200-250 m -0.003(0.002) 0.005***(0.001) -0.004***(0.001) 0.007***(0.001) -0.001(0.001)

250-300 m -0.004*(0.002) 0.003***(0.001) -0.004***(0.001) 0.006***(0.001) -0.002**(0.001)

300-350 m -0.001(0.002) 0.002**(0.001) -0.005***(0.001) 0.002*(0.001) -0.000(0.001)

350-400 m 0.001(0.002) -0.001(0.001) -0.007***(0.001) -0.002(0.001) -0.002**(0.001)

400-450 m 0.004**(0.002) -0.000(0.001) -0.008***(0.001) 0.005***(0.001) -0.002(0.001)

450-500 m -0.002(0.002) -0.001(0.001) -0.005***(0.001) -0.000(0.001) -0.001(0.001)

Dist. to CANA

0-500 m 0.114***(0.010) 0.058***(0.006) 0.090***(0.010) 0.055***(0.006) 0.008(0.005)

500-1,000 m 0.074***(0.010) 0.044***(0.005) 0.067***(0.009) 0.029***(0.005) -0.014***(0.005)

1,000-2,000 m 0.050***(0.010) 0.026***(0.005) 0.042***(0.008) 0.006(0.005) -0.017***(0.004)

2,000-3,000 m 0.036***(0.010) 0.024***(0.005) 0.036***(0.008) -0.000(0.005) -0.015***(0.004)

3,000-4,000 m 0.032***(0.009) 0.030***(0.004) 0.021***(0.007) -0.008*(0.005) -0.007*(0.004)

4,000-5,000 m 0.004(0.009) 0.013***(0.004) 0.008(0.006) 0.001(0.004) -0.014***(0.004)

5,000-6,000 m 0.019**(0.009) 0.019***(0.004) 0.010*(0.005) 0.003(0.004) -0.011***(0.003)

6,000-7,000 m 0.019***(0.007) -0.004(0.003) 0.013***(0.004) -0.008**(0.003) 0.001(0.003)

7,000-8,000 m 0.002(0.006) -0.008***(0.002) 0.006**(0.003) -0.008***(0.002) -0.004(0.002)

Adjusted R2 0.8922

Nature Density Measures

UD=1 UD=2 UD=3 UD=4 UD=5

ONA density -0.00003***(0.000) 0.00001***(0.000) 0.00002***(0.000) 0.00002***(0.000) 0.00002***(0.000)

CANA density 0.00005***(0.000) 0.00002***(0.000) 0.00004***(0.000) 0.00003***(0.000) 0.00004***(0.000)

Adjusted R2 0.8923

Observations 1,871,680 2,078,638 1,290,006 1,146,932 930,032

Note. The dependent variable is the natural logarithm of assessed value relative to a reference home

within the same PC4 area. Reference categories include Freehold, Detached, constructed before 1905,

distance to ONA > 500 m, and distance to CANA > 8000 m. All models contain an intercept and

property characteristics. Adjusted R2 is calculated based on predictions of the natural logarithm of

assessed value, and not for the relative value. Clustered standard errors are in parentheses. *** p<0.01,

** p<0.05, * p<0.1.

From these estimates, it is immediately clear that there is indeed response hetero-

geneity across the different degrees of urbanization. Remember that category UD = 1

corresponds to the most urbanized areas, and UD = 5 the least urbanized areas. Looking

at the coefficient estimates for ONA distance, we see that the higher the urbanization,

the less important living very close to ONA becomes. For the highest urbanization de-

gree, being within 50 meters of ONA only leads to a 2.8% increase of housing prices,
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whereas for the lowest urbanization degree, this increase is 6.1%. Furthermore, we see

that for urbanization degree 1, the coefficients fall below zero after 100 meters. However,

weirdly enough, the coefficients again turn positive between 350 and 450 meters. The

positive significance reaches way further for urbanization degrees 2 and 4, namely to 350

meters, whereas for degree 3 and 5 it only reaches to 150 and 200 meters respectively.

As for the coefficients corresponding to the CANA distances, we find that significance

persists for a long distance for the urbanization degrees 1, 2, and 3. In category 4, coef-

ficients are positively significant until 1000 meters, whereas for category 5 no significant

effects are found at all. Interestingly enough, the estimate for CANA density is higher

in category 5 than in category 2 and 4, although these had higher and more significant

CANA coefficient estimates in the discrete specification.

In order to find a possible explanation for these results, we look at the average

distance to ONA and CANA per urbanization degree, as scarcity is likely a factor in the

valuation of nature. See Table VII for the average distances to ONA and CANA for the

different urbanization degrees.

TABLE VII. Average distance to ONA and CANA in meters per urbanization degree.

UD=1UD=2UD=3UD=4 UD=5

Urbanization per PC4 area

Average distance to ONA 410 333 380 418 501

Average distance to CANA 2,872 4,304 4,959 5,400 6,146

Urbanization per Municipality

Average distance to ONA 386 339 423 441 501

Average distance to CANA 2,932 4,520 4,223 5,792 6,811

We see that for the lower degrees of urbanization, the mean distance to both ONA

and CANA is the largest. However, since urban green like public parks and hedgerows are

also considered as nature in the context of this study, this likely also causes a decrease of

distance to nature for urban areas. Additionally, this does not fully come as a surprise

for the CANA, since the survey to obtain hotspot markers for attractive nature was

answered mostly by respondents living in larger cities. This result could be a possible

explanation as to why the number of positive significant coefficients is so low for the

least urbanized category, as there is a relatively low amount of observations in the short

distance categories. Further, in lesser urban areas, there is relatively more agricultural

land than natural land (CBS, PBL, RIVM, WUR, 2023). Therefore, we do see that the

coefficients that are positive and significant for the ONA distance are high in the lesser
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urbanized areas compared to those of other categories. On the other hand, in the highest

urbanization category, the mean distance to CANA is the lowest by quite a margin. We

also see the most significant positive coefficients in this category, as well as the highest

coefficient estimates. For the ONA coefficients, these are only significant and positive

until 100 meters for the highest urbanization degree, which is to be expected as the mean

distance to ONA is higher than those of categories 2 and 3. Interestingly, category 4 has

quite a lot of significant positive estimates for the ONA coefficients, although the mean

distance is a slight bit higher than for category 1. They are also higher than those for

category 1.

Obviously, mean distance is not the only explanatory factor for the results. When

people live in a densely populated area, being able to easily get to a natural area might

be a relief from the noise and masses of people. Therefore, it is to be expected that

people who live in highly urbanized areas value nearby nature more. We see this in

the estimates, as the coefficient estimates for CANA in category 1 are the highest by

a decent margin, and the lowest in category 5. However, the contrary is true for the

ONA coefficients, where the estimates are the lowest in category 1, and the highest in

category 5. Similar patterns can be seen for the estimated density coefficients. The

CANA coefficient in category 1 is the highest, and the ONA coefficients is the lowest in

this category. However, given the estimates for the distances in category 2, the density

estimate is expected to also be high, but it is in fact the lowest among all urbanization

degrees. The ONA estimates are quite close for category 3, 4, and 5, and a bit lower

for category 2. For category 1, it is even estimated to be negative. However, given

the estimates for the discrete distance measures, this does not fully come as a surprise,

given the low amount of positive estimates, and the positive estimates are also the lowest

among all degrees of urbanization.

Next, we look at the results for the second heterogeneity specification, with urban-

ization defined per municipality. The estimation results are in Table VIII.
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TABLE VIII. Regression results for the spatial difference model with heterogeneity in urbanization
degree per municipality.

Discrete Distance Measures

UD = 1 UD = 2 UD = 3 UD = 4 UD = 5

Dist. to ONA

0-50 m 0.021***(0.003) 0.034***(0.002) 0.045***(0.002) 0.053***(0.002) 0.050***(0.003)

50-100 m 0.011***(0.002) 0.021***(0.001) 0.023***(0.002) 0.030***(0.001) 0.027***(0.002)

100-150 m -0.003(0.002) 0.011***(0.001) 0.010***(0.001) 0.013***(0.001) 0.010***(0.002)

150-200 m -0.008***(0.002) 0.007***(0.001) 0.007***(0.001) 0.008***(0.001) -0.004**(0.002)

200-250 m -0.008***(0.002) 0.005***(0.001) 0.008***(0.001) 0.001(0.001) 0.001(0.002)

250-300 m -0.008***(0.001) 0.004***(0.001) 0.008***(0.001) -0.001(0.001) -0.003*(0.001)

300-350 m -0.005***(0.002) 0.003***(0.001) 0.004***(0.001) -0.002*(0.001) -0.001(0.002)

350-400 m -0.004**(0.002) 0.001(0.001) -0.002(0.001) -0.003***(0.001) -0.004**(0.002)

400-450 m -0.002(0.002) 0.000(0.002) 0.003**(0.001) 0.002*(0.001) -0.003*(0.001)

450-500 m -0.006***(0.002) -0.001(0.001) -0.001(0.001) -0.000(0.001) -0.004**(0.002)

Dist. to CANA

0-500 m 0.120***(0.011) 0.085***(0.006) 0.069***(0.006) 0.035***(0.004) -0.004(0.007)

500-1,000 m 0.091***(0.010) 0.057***(0.005) 0.038***(0.006) 0.010**(0.004) -0.028***(0.007)

1,000-2,000 m 0.069***(0.010) 0.040***(0.005) 0.010*(0.006) -0.008**(0.004) -0.024***(0.006)

2,000-3,000 m 0.052***(0.010) 0.035***(0.005) 0.012**(0.005) -0.008**(0.004) -0.032***(0.006)

3,000-4,000 m 0.049***(0.009) 0.021***(0.005) 0.016***(0.005) -0.003(0.003) -0.026(0.006)

4,000-5,000 m 0.010(0.008) 0.014***(0.005) 0.013***(0.005) -0.009***(0.003) -0.030***(0.005)

5,000-6,000 m 0.018***(0.007) 0.018***(0.004) 0.018***(0.004) -0.005*(0.003) -0.031***(0.005)

6,000-7,000 m -0.004(0.006) 0.008**(0.004) 0.022***(0.004) -0.010***(0.003) -0.013***(0.004)

7,000-8,000 m -0.005(0.004) -0.004(0.003) 0.009***(0.003) -0.004**(0.002) -0.003(0.003)

Adjusted R2 0.8925

Nature Density Measures

UD = 1 UD = 2 UD = 3 UD = 4 UD = 5

ONA density -0.00001***(0.000) 0.00001***(0.000) 0.00002***(0.000) 0.00002***(0.000) 0.00002***(0.000)

CANA density 0.00001***(0.000) 0.00005***(0.000) 0.00004***(0.000) 0.00003***(0.000) 0.00004***(0.000)

Adjusted R2 0.8924

Observations 1,991,915 2,271,544 1,063,561 1,498,176 492,092

Note. The dependent variable is the natural logarithm of assessed value relative to a reference home

within the same PC4 area. Reference categories include Freehold, Detached, constructed before 1905,

distance to ONA > 500 m, and distance to CANA > 8000 m. All models contain an intercept and

property characteristics. Adjusted R2 is calculated based on predictions of the natural logarithm of

assessed value, and not for the relative value. Clustered standard errors are in parentheses. *** p<0.01,

** p<0.05, * p<0.1.

For this specification, we see similar patterns in significance and size of coefficients as

for the PC4 specification, although there are some slight differences, mainly for category

3. In the PC4 specification, category 3 showed higher CANA estimates than in the

municipality specification, whereas the opposite is true for the ONA estimates. If we

look at Table VII, we see that the mean distance to ONA in category 4 is higher in

the municipality specification, whereas the mean distance to CANA is quite a bit lower.
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When taking this form of scarcity into account, the change in coefficient estimates is

to be expected. All other estimates tend to follow similar patterns as in the previous

specification.

In terms of density estimates, we see some curious results, especially for the CANA

density. Although the estimates for the discrete case show that category 1 clearly displays

the highest valuation of CANA, the density estimate does not reflect this, having by far

the lowest estimate of all categories. However, density is not only based on distance to

nature, but also the total amount of nature. Therefore, the low coefficient could also

imply that in this category, the total amount of CANA nearby is not as important to

buyers. However, given the high CANA density estimate in the PC4 specification, this

result is still quite unexpected.

In terms of model fit, both specifications show an increase in adjusted R2 compares to

the spatial difference model estimated on the full data set. Furthermore, the heterogene-

ity specification on municipality level has a higher R2 value than the PC4 specification

for both the discrete distance and density specification, although by a slight amount.

7 Transactions Versus Assessed Value

The proposed methods so far made use of the assessed value in order to define the value

of a dwelling, whereas most other hedonic studies use real transaction data (Bouwknegt

& Schilder, 2023; Daams et al., 2016; van Ruijven & Tijm, 2022). Both of these valu-

ations have their merits. The use of assessed value allows to cover the entire housing

market, whereas this is not the case for transaction data, as not all houses are sold each

year. Consequently, using transactional data drastically reduces the sample size. Fur-

thermore, using transaction data means that there are no rental properties used in the

estimation. However, transactional data more accurately reflects market behaviour, and

thus is a better measure of revealed preferences, whereas the assessed value is only an

approximation. This approximation, however, is largely based on actual market trans-

actions (Waarderingskamer, 2024), meaning the values should in theory not drastically

differ.

Furthermore, over the past four years, on average only 2.4% of home-owners protested

against the assessed value of their house, usually because they find the estimation to high.

In less than 40% of these cases the assessed value is actually adjusted, implying that

the assessed values quite accurately reflect the value of a dwelling (Netherlands Council

for Real Estate Assessment, 2022). Trivially, there has not been a transaction for all

dwellings in the Netherlands during the year 2021. In order to get a sizable dataset,

transactions that took place in the period from January 2020 up to and including June

35



7 TRANSACTIONS VERSUS ASSESSED VALUE

2024 are included in the analysis. Important to note is that some shortcuts were made

for the data used in these estimations. The structural data on houses, as well as the

distance to nature, were all measured on 2021 data, due to limited data availability.

As a preliminary check, we assess if the difference between the assessed value and

market price of a property is significant. A paired t-test indeed confirms a significant

difference between the two prices (p < 0.01), although they are highly correlated (cor-

relation = 0.931, p < 0.01). Therefore, Model (5) is re-estimated on transaction data

received from the Dutch cadastre.

As prices tend to change over time due to inflation, it is customary to include time pe-

riod dummies in the hedonic regression equation (Eurostat, 2013). Therefore, Equation

(5) is modified as follows

ln (AViz)− ln (AVjz) = (Xiz −Xjz)β + (Niz −Njz)γ + (Tiz − Tjz) δ + εijz. (15)

Here, ln (AV ) denotes the natural logarithm of assessed value, X is a matrix of

property characteristics as described in Section 3.2 and also includes the regression

constant. N contains the variables related to nature proximity, T is a matrix of time

dummies, and ε is the i.i.d. error term. Furthermore, i and j are indices of houses both

located in neighbourhood z. β, γ, and δ are parameters to be estimated. The estimation

results are shown in Table IX.
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TABLE IX. Regression results for the spatial difference model, estimated on sales prices for
transactions from 2020 until 2024, and the corresponding assessed values

Discrete Distance Measures

Transaction Values Assessed Values

Dist. to ONA 0-50 m 0.053***(0.002) 0.047***(0.002)

Dist. to ONA 50-100 m 0.031***(0.001) 0.028***(0.001)

Dist. to ONA 100-150 m 0.016***(0.001) 0.015***(0.001)

Dist. to ONA 150-200 m 0.007***(0.001) 0.008***(0.001)

Dist. to ONA 200-250 m 0.007***(0.001) 0.007***(0.001)

Dist. to ONA 250-300 m 0.004***(0.001) 0.004***(0.001)

Dist. to ONA 300-350 m 0.003***(0.001) 0.004***(0.001)

Dist. to ONA 350-400 m 0.001(0.001) 0.002**(0.001)

Dist. to ONA 400-450 m -0.001(0.001) 0.001(0.001)

Dist. to ONA 450-500 m -0.002**(0.001) -0.001(0.001)

Dist. to CANA 0-500 m 0.068***(0.006) 0.076***(0.005)

Dist. to CANA 500-1,000 m 0.033***(0.006) 0.042***(0.005)

Dist. to CANA 1,000-2,000 m 0.008**(0.005) 0.017***(0.004)

Dist. to CANA 2,000-3,000 m 0.004(0.005) 0.014***(0.004)

Dist. to CANA 3,000-4,000 m -0.001(0.005) 0.012***(0.004)

Dist. to CANA 4,000-5,000 m -0.010**(0.004) 0.004(0.004)

Dist. to CANA 5,000-6,000 m -0.009**(0.004) 0.004(0.003)

Dist. to CANA 6,000-7,000 m -0.004(0.003) 0.003(0.003)

Dist. to CANA 7,000-8,000 m -0.007***(0.002) -0.007***(0.002)

Nature Density Measures

Transaction Values Assessed Values

ONA density 0.00002***(0.000) 0.00002***(0.000)

CANA density 0.00005***(0.000) 0.00005***(0.000)

Observations 768,667 768,667

Note. The dependent variable is the natural logarithm of assessed value relative to a reference home

within the same PC4 area. Reference categories include Freehold, Detached, constructed before 1905,

distance to CANA > 8000 m, and distance to ONA > 500 m. All models contain an intercept and

property characteristics. Clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Comparing the results for both models, we see a few differences. Although direct

comparison of coefficients is difficult, we use a rule of thumb of coefficients being “equal”

if they are within two standard errors of each other. Using this rule, we see that for

ONA distance, the coefficients for 0-50 meters and 50-100 meters differ significantly,

with the estimates in the transaction model being higher. As for the distance to CANA,

the coefficients for 3,000-4,000 up to and including 6,000-7,000 are significantly different.
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For the density specification, the ONA and CANA coefficients do not differ significantly.

In general, the coefficients which differ significantly are higher when estimated on the

assessed value. Possibly, valuation offices value the proximity of nature more than actual

property buyers. Alternatively, there might be a difference in the nature of the sample,

since the sample with transactions obviously does not contain any rental properties,

which were included in the original dataset with assessed values.

We compare the estimates in the transaction sample to those in Daams et al. (2016),

who also used transaction data. In that paper, only the effect of CANA (called PA space

in the paper) was measured. In that study, an effect of approximately 15% was found

for houses residing within 500 meters of CANA, decaying to 0.2% for houses within

7,000-8,000 meters of CANA, which are significantly higher estimates than found in this

study. A possible explanation for this is the spatial control, since in the 2016 study, the

scale of spatial control were sub-markets, of which 76 exist within the Netherlands. The

current study uses PC4 areas as spatial scale, which are considerably smaller, since 4,045

exist within the Netherlands. Another possible explanation is that in the 2016 study,

apartments were excluded from the analysis, whereas they are included in the analysis

of this paper.

The results show that the use of assessed value in the analysis of added value of na-

ture proximity to house prices does not fully reflect the effects measured in the market,

although differences are limited. However, the importance of measuring the entire popu-

lation should not be understated, pleading for the use of assessed values. This especially

true when the total value of the ecosystem amenity asset is to be calculated.

8 Conclusion and Discussion

This study investigated the economic valuation of nature in the Netherlands by com-

paring five hedonic model specifications, combined with two ways of measuring nature

proximity. Furthermore, a distinction is made between nature which is perceived as

attractive, and other nature. It is found that a spatial difference model leads to the best

model fit, followed by a neighbourhood fixed effects model. The more traditional spatial

lag model and spatial error model fail to compete with the aforementioned specifications.

The OLS model with no spatial control at all has the worst in-sample fit. Furthermore,

it was found that the use of discrete variables for the distance to the closest piece of

nature led to similar model fit as the use of density of nature around a dwelling.

Besides a comparison on model fit, a comparison on computational feasibility as

well as interpretability is made. In terms of computational feasibility, the spatial lag

and spatial error model leave a lot to be desired. For a dataset of the size used in
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this study, constructing a weight matrix is infeasible for most software. Furthermore,

even for a dataset 1
500th of the original size, estimation of these models takes 20 hours,

making it infeasible to run these models on the full data and using model averaging. A

similar issue arises for the fixed effects model, as adding dummy variables for each PC4

area leads to a dataset too large for most software. However, model averaging for this

method would be slightly more feasible time wise, as it makes use of OLS instead of

numerical optimization methods, like the spatial lag and spatial error model. However,

subsamples need to be made with caution, as subsetting sometimes leads to curious

regression results. The spatial difference and model without spatial control lead to no

computational complications.

Further, it was found that there was no sizable difference in model fit between the

discrete nature specification and the nature density specification. This results is some-

what surprising, as we hypothesized that the area of nearby nature is also relevant for

the value of nearby nature, and thus including area is expected to improve model fit.

However, it was found that the effect of nature on house prices reaches further for the

density specification when considering ONA, but less far for CANA nature, although,

this is more a consequence of the density estimation than of model significance. Since

in the discrete distance specification, most value comes from CANA, this shorter effect

reach could decrease model fit again, cancelling out the added fit from including area in

the model.

As for the interpretability of the nature proximity specifications, the discrete distance

measure has the edge over the density. Whereas both the covariates and the coefficients

of the discrete distance variables are easy to interpret, this is not true for the density

measures. For the discrete specification, a coefficient of, for instance, 0.034 for the

variable Dist. to ONA 0-50 m implies that, if a dwelling lies within 50 meters of an

ONA, the price of that dwelling increases by approximately 100 ×
(
e0.034 − 1

)
= 3.5%

compared to a house which lies more than 500 meters from an ONA. However, such

interpretation is a lot less straightforward for the density. Since density is not linear in

distance, a one point increase in density does not always have the same meaning. On top

of this, density relies on all pieces of nature within the search radius, whereas the discrete

distance measure depends only on the closest piece of nature. Therefore, although the

discrete distance specification and the density specification result in similar in-sample

fit, the discrete distance specification is the preferred model in terms of interpretability.

This study finds that the effect of nature on housing value decreases gradually across

space, both for CANA and ONA. It was also found that the estimated percent effect of

nature proximity on housing value is lower for the model estimated on 2021 data com-

pared to those estimated by Statistics Netherlands on 2013 data (Statistics Netherlands

39



8 CONCLUSION AND DISCUSSION

& WUR, 2022). A possible explanation for this decreased effect is the scarcity in the

housing market. Alternatively, when comparing the distance to nature in 2013 to the

distances of 2021, we see that on average dwellings lie closer to nature in 2021 than in

2013, implying that nature proximity has become less scarce. Furthermore, it was found

that the effect of nature on house prices reaches further for the density specification when

considering ONA, but less far for CANA nature. However, this is more a consequence

of the density estimation than of model significance.

Given the estimation results, the total value of the nature amenity asset in 2021 is

estimated to be approximately 43.9 billion euro using both the density specification and

the discrete distance specification. This again shows that results of both specification

lie relatively close to each other. Compared to the coefficients estimated on the 2013

data, this value is approximately 38% lower. The estimated value of the nature amenity

service in 2021 is estimated to be approximately 818.2 million euro using the discrete

specification, and 817.2 million euro using the density specification.

Heterogeneity across urbanization degrees was also investigated, using two specifica-

tions of urbanization, one defining urbanization per PC4 area, and one defining it per

municipality. It was found that there is indeed heterogeneity in the estimated coeffi-

cients across urbanization degrees for both specifications. Both specifications also lead

to a higher adjusted R2, with the specification on PC4 level attaining the highest ad-

justed R2. In both models, it was found that property buyers in the highest urbanization

degree tend to value CANA more than ONA, whereas the opposite is true for the lowest

urbanization degree.

Furthermore, a comparison was made between the use of assessed values and market

transactions. Based on estimation on transaction data ranging from 2020 until 2024,

we find that estimated coefficients are generally lower when estimated on transactions

than on assessed values for the discrete distance specification, when coefficients differed

significantly. However, the gradual decay across space persists also in estimation on

transactions, and the number of significantly different estimates are limited. The es-

timated coefficients for the ONA and CANA density do not differ significantly across

models. As differences are limited, we conclude that the use of assessed value is a decent

proxy. Further, the use of assessed values does allow us to observe the full housing stock,

which is necessary for the valuation of the ecosystem amenity service. Important to note

is that, in this study, the transaction values come from sales in the period of 2020 until

2024, but due to limited data availability, they were linked to housing characteristics

observed in 2021. Therefore, there might be some slight mismatches between dependent

and independent variable, although these cases should be limited.

Overall, the results from this study may be of value in the debate of nature conser-
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vation and renovation. Further, it informs in the debate of urban planning. The result

that there is significant heterogeneity in nature valuation per urbanization degree gives

insights in the construction plans per municipality or PC4 area. Given the finding that

highly attractive nature provides most value in densely populated areas, but only little

value in non-urban areas, preservation of CANA near urban areas should be prioritized

over CANA near non-urban areas, as well as over ONA. Contrarily, ONA is valued more

in the non-urban areas, and should thus be prioritized in preservation over CANA near

non-urban areas.

9 Limitations and Future Research

The research conducted in this study comes with several limitations. First of all, the way

CANA is defined leaves some questions. The current methodology of defining these areas

of attractive nature sometimes leads to illogical clusters. It is unclear why only part of

the Veluwe would be attractive, and there are seemingly arbitrary clusters of attractive

nature in the middle of the IJssel lake. Different methods of defining the attractive clus-

ters might lead to more logical results. A promising method of eliminating the seemingly

random, small clusters is the use of a different clustering algorithm, namely DBSCAN.

This method eliminates noisy points, but still leads to properly defined clusters. An

example of the use of this method in a similar context can be found in (Daams, Sijtsma,

& Veneri, 2019). Alternatively, the marked points from the Greenmapper survey could

be overlapped with natural areas, and then some areas could be assigned the CANA

status manually such that the clusters are more logical.

The second limitation comes from the treatment of outliers. Using a robust MM-

estimator, it was found that the removal of outliers as described in Section 3.3 did not

properly take care of outliers in the full covariate space, and therefore robust regression

lead to different estimation results. Therefore, in future research, the use of robust

estimation methods is recommended.

As for the main methodology, hedonic pricing models come with some limitations.

In this study we impose a log-linear structure, whereas the relationship is likely non-

linear (Rosen, 1974). Therefore, exploring different model specifications, either non-

linear or non-parametric is recommended. However, non-parametric methods come with

difficulties in the interpretation of the results. Furthermore, as extensively discussed,

spatial correlation and omitted variable bias plays a big role in these models. Comparison

of results from this hedonic study with a study in a controlled setting, like the contingent

valuation method, could be used as either a validation or rebuttal of the results.

Further, the estimation methodology was highly limited by computational feasibility.
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The spatial lag, spatial error, and fixed effects model can not be estimated on the

full dataset, and model averaging over subsets takes a considerable amount of time.

Constructing a reliable, representative subset of the data on which the models can be

estimated, after which the results can be generalized to the full data, could lead to

valuable insights and a more reliable comparison of model performance.

In terms of the valuation of the ecosystem amenity service, one could argue that

adding together all separate values of houses attributable to nature proximity is not

completely valid, given that the value of houses is correlated across dwellings. Therefore,

further research as to how to properly aggregate the individual values attributable to

nature is desirable. Furthermore, the use of the same estimated fractions for several

years in a row, as currently done in Statistics Netherlands and WUR (2022), has some

limitations. As is the case with all hedonic models, when prices increase by an external

factor, like inflation, this increase in price is distributed among all features included

in the model, proportional to their estimated contributions. However, assigning more

value to the ecosystem amenity service when prices increase due to for instance economic

activity is likely incorrect, as this would assume that the economic value of the amenity

service grows proportional to house prices. Therefore, one should be careful when using

the estimated fractions for several years, without correcting for inflation, or re-estimating

the models.

An important final notion is that the valuation of nature in our study, and any

study for that matter, is only an economic valuation based on statistical modelling. The

intrinsic value of nature can not be overstated, and therefore can and should not be

monetized, just like any life on earth.
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A ECOSYSTEM TYPES

A Ecosystem Types

TABLE A1. Ecosystem types in the Netherlands. An * indicates that the ecosystem type is considered
as nature in this study.

Category Subcategory Ecosystem type

Natural and Grassland Tall Herbs*

Forest Area Floodplain*

Semi-natural Grassland*

Other natural Grassland*

Forest Area (Semi-)Natural Forest*

Hedges and Treelines *

Plantation Forest*

Swamp Forest*

Other Forest*

Heathland and Driftsand Heathland*

Driftsand*

Bogs and Fens Bogs*

Fens*

Coastal and Dune Area Coastal Dunes*

Beach*

Shoals*

Salt Marshes*

Water Streams and Rivers Streams and Rivers*

Lakes and Reservoirs Lakes*

Brackish*

Other*

Marine Estaurium*

Intertidal and Mud Flats*

Wadden sea*

North sea*

Agriculture Cropland and Horticulture Cropland, regular

Cropland, extensive

Biodiverse Cropland

Perannuals, regular

Perannuals, extensive

Pasture, temporal

Fallowland

Arable Field Margins

Nursery Container Fields

Grassland Pasture, permanent

Pasture, extensive

Other Agricultural Grassland

(Semi-)built-up land Built-up Area Greenhouse Hortictulture

Built-up (urban)

Built-up (rural)

Business Park

Mining, Land Fills, etc.

Infrastructural

Infrastructural Green

Marine, other

Other Terrain

Urban Green and Recreation Public Park (large)*

Public Park (small)*

Public Green Space, other*

Semi-public Green Space

Sport Park

Residential Recreation

Landscape Garden



B VARIABLE DISTRIBUTION

B Variable Distribution

In the figures below, the histograms of the skewed variables (Assessed Value, Living

Area, and their ratio) are presented in the upper graphs. In the lower graphs, the

distribution of their natural logarithm are shown. The first and last percentile of the

dataset are trimmed of for the figures presented. After taking the natural logarithm,

all these variables are close to normally distributed around the center, validating the

use of normal distribution in the procedure in Subsection 3.3. The Jarque-Bera test

statistics are approximately 43249, 14150, and 217129 for the logarithm of assessed

value, logarithm of living area, and their ratio, respectively. Note that these all have a

p-value of nearly zero, rejecting normality. However, in very large samples rejection is

likely to happen even when a single observation does not fit the normal distribution.

FIGURE A1. Distribution around the center of Assessed Value and the logarithm of Assessed value.
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FIGURE A2. Distribution around the center of Living Area and the logarithm of Living Area.



B VARIABLE DISTRIBUTION

FIGURE A3. Distribution around the center of Assessed Value relative to Living Area and the
logarithm of Assessed Value relative to Living Area.



C FULL REGRESSION RESULTS

C Full Regression Results

TABLE A2. Regression results for the 5 model specifications using discrete distance measures

Base model Spatial difference Fixed effects Spatial lag Spatial error

Intercept 9.544***(0.002) -0.000(0.003) 8.338***(0.764) 9.345***(0.050) 9.270***(0.034)

Living area (log) 0.652***(0.000) 0.680***(0.002) 0.706***(0.006) 0.671***(0.008) 0.689***(0.006)

Semidetached -0.120***(0.001) -0.149***(0.001) -0.117***(0.008) -0.132***(0.012) -0.116***(0.008)

End-of-terrace -0.098***(0.001) -0.234***(0.001) -0.222***(0.008) -0.118***(0.012) -0.193***(0.007)

Terraced -0.111***(0.000) -0.282***(0.001) -0.263***(0.007) -0.141***(0.011) -0.227***(0.007)

Multi-family home -0.052***(0.001) -0.344***(0.001) -0.312***(0.008) -0.075***(0.012) -0.258***(0.008)

Housing corporation -0.215***(0.000) -0.154***(0.001) -0.154***(0.004) -0.216***(0.007) -0.166***(0.005)

Other leasehold -0.109***(0.000) -0.103***(0.001) -0.102***(0.006) -0.131***(0.010) -0.107***(0.006)

Constructed

1906-1930 -0.085***(0.001) -0.010***(0.001) -0.022*(0.011) -0.139***(0.017) -0.011(0.012)

1931-1944 -0.071***(0.001) 0.025***(0.001) 0.015(0.013) -0.137***(0.020) 0.013(0.013)

1945-1959 -0.225***(0.001) -0.023***(0.001) -0.033***(0.012) -0.276***(0.017) -0.037***(0.012)

1960-1974 -0.282***(0.001) -0.044***(0.001) -0.063***(0.011) -0.337***(0.015) -0.075***(0.011)

1975-1989 -0.209***(0.001) 0.008***(0.001) 0.003(0.011) -0.265***(0.016) -0.011(0.011)

1989-2000 -0.086***(0.001) 0.112***(0.001) 0.103***(0.011) -0.143***(0.016) 0.091***(0.011)

2001-2010 -0.014***(0.001) 0.178***(0.001) 0.160***(0.012) -0.061***(0.017) 0.149***(0.012)

>2010 0.043***(0.001) 0.206***(0.002) 0.198***(0.012) -0.004***(0.018) 0.189***(0.012)

Dist. to ONA

0-50 m 0.035***(0.001) 0.037***(0.001) 0.034***(0.010) 0.035**(0.017) 0.038***(0.011)

50-100 m 0.027***(0.001) 0.020***(0.001) 0.006(0.008) -0.001(0.012) 0.014*(0.008)

100-150 m 0.012***(0.000) 0.007***(0.001) 0.008(0.007) 0.009(0.011) 0.013*(0.007)

150-200 m 0.006***(0.000) 0.003***(0.001) 0.009(0.007) -0.007(0.011) 0.011(0.007)

200-250 m 0.002***(0.000) 0.002**(0.001) 0.005(0.007) 0.001(0.010) 0.009(0.007)

250-300 m 0.002***(0.000) 0.000(0.0001) -0.002(0.007) -0.004(0.011) 0.004(0.007)

300-350 m -0.001(0.000) 0.000(0.0001) 0.001(0.007) 0.013(0.011) 0.007(0.007)

350-400 m -0.004***(0.001) -0.000*(0.0001) -0.008(0.007) -0.006(0.012) -0.009(0.008)

400-450 m -0.001**(0.001) 0.000(0.001) 0.007(0.007) -0.004(0.012) 0.007(0.008)

450-500 m -0.004***(0.001) -0.002**(0.001) 0.003(0.008) -0.012(0.013) 0.002(0.008)

Dist. to CANA

0-500 m 0.364***(0.001) 0.069***(0.003) 0.032(0.030) 0.372***(0.013) 0.288***(0.016)

500-1,000 m 0.320***(0.001) 0.040***(0.003) 0.011(0.028) 0.307***(0.012) 0.263***(0.015)

1,000-2,000 m 0.253***(0.000) 0.020***(0.003) 0.001(0.027) 0.244***(0.010) 0.237***(0.013)

2,000-3,000 m 0.189***(0.000) 0.013***(0.003) -0.011(0.027) 0.192***(0.010) 0.202***(0.013)

3,000-4,000 m 0.146***(0.000) 0.011***(0.002) -0.015(0.025) 0.148***(0.011) 0.162***(0.014)

4,000-5,000 m 0.121***(0.001) 0.000(0.002) -0.041*(0.024) 0.120***(0.010) 0.105***(0.014)

5,000-6,000 m 0.122***(0.001) 0.006***(0.002) -0.030(0.022) 0.118***(0.012) 0.091***(0.014)

6,000-7,000 m 0.102***(0.001) -0.001(0.002) -0.024(0.019) 0.112***(0.013) 0.058***(0.014)

7,000-8,000 m 0.052***(0.001) -0.006***(0.002) -0.029*(0.015) 0.040***(0.014) 0.019(0.013)

Spatial parameter - - - ρ = 0.021 λ = 0.715

Adjusted R2 0.567 0.890 0.875 - -

Observations 7,317,288 7,313,249 14,634 14,634 14,634

Note. The dependent variable is the natural logarithm of assessed value. Reference categories include

Freehold, Detached, constructed before 1905, distance to CANA > 8000 m, and distance to ONA > 500

m. Clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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TABLE A3. Regression results for the 5 model specifications using nature density measures

Base model Spatial difference Fixed effects Spatial lag Spatial error

Intercept 9.679***(0.002) -0.000(0.000) 8.313***(0.761) 9.645***(0.051) 9.323***(0.034)

Living area (log) 0.652***(0.000) 0.680***(0.001) 0.707***(0.006) 0.660***(0.009) 0.694***(0.006)

Semidetached -0.109***(0.001) -0.148***(0.001) -0.117***(0.008) -0.111***(0.013) -0.110***(0.008)

End-of-terrace -0.078***(0.001) -0.233***(0.001) -0.220***(0.008) -0.083***(0.013) -0.176***(0.008)

Terraced -0.087***(0.000) -0.281***(0.001) -0.262***(0.007) -0.100***(0.011) -0.207***(0.007)

Multi-family home 0.005***(0.001) -0.343***(0.001) -0.311***(0.008) -0.008(0.012) -0.228***(0.009)

Housing corporation -0.217***(0.000) -0.154***(0.001) -0.154***(0.004) -0.217***(0.007) -0.167***(0.005)

Other leasehold -0.102***(0.000) -0.103***(0.001) -0.102***(0.006) -0.119***(0.010) -0.100***(0.006)

Constructed

1906-1930 -0.087***(0.001) -0.011***(0.001) -0.022*(0.011) -0.145***(0.018) 0.002(0.012)

1931-1944 -0.075***(0.001) 0.024***(0.001) 0.014(0.012) -0.146***(0.019) 0.021(0.013)

1945-1959 -0.242***(0.001) -0.024***(0.001) -0.034***(0.012) -0.287***(0.019) -0.044***(0.012)

1960-1974 -0.318***(0.001) -0.045***(0.001) -0.064***(0.011) -0.369***(0.016) -0.079***(0.011)

1975-1989 -0.243***(0.001) 0.008***(0.001) 0.003(0.011) -0.295***(0.017) -0.013(0.011)

1989-2000 -0.119***(0.001) 0.111***(0.001) 0.102***(0.011) -0.176***(0.019) 0.088***(0.012)

2001-2010 -0.057***(0.001) 0.178***(0.001) 0.159***(0.012) -0.095***(0.017) 0.145***(0.012)

>2010 0.008***(0.001) 0.206***(0.002) 0.197***(0.012) -0.044**(0.019) 0.195***(0.013)

ONA density 0.00001***(0.000) 0.00001***(0.000) 0.00001***(0.000) 0.00001***(0.000) 0.00002***(0.000)

CANA density 0.00006***(0.000) 0.00003***(0.000) 0.00003***(0.000) 0.00007***(0.000) 0.00006***(0.000)

Spatial parameter - - - ρ = 0.007 λ = 0.900

Adjusted R2 0.534 0.890 0.875 - -

Observations 7,317,288 7,313,249 14,634 14,634 14,634

Note. The dependent variable is the natural logarithm of assessed value. Reference categories include

Freehold, Detached, constructed before 1905, distance to CANA > 8000 m, and distance to ONA > 500

m. Clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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D Outlier Robustness

In the main analysis outliers were removed before model estimation. To verify that the

treatment of outliers is necessary for the analysis, we estimate model (5) also on the data

without any outlier treatment. Additionally, we also estimate this model using a robust

regression method, namely an MM estimator. This is in order to compare regression

results between manual outlier handling, and results when robust methods are applied.

The general estimation of the MM estimator is as follows. For a regression model given

by

y = Xβ + ε, (16)

the MM estimate β̂MM of β is given by

β̂MM = argmin
b

n∑
i=1

ρ2

(
yi − xib

σ̂s

)
, (17)

where σ̂s = σ̂M (β̂S) which is obtained from

β̂S = argmin
b

σ̂2
M (b). (18)

Here, σ̂M (b) is the solution to the equation

1

n

n∑
i=1

ρ1

(
yi − x′ib

σM (b)

)
= δ, (19)

with δ = EF [ρ1
(
X
σ

)
] ensuring Fisher consistency, and F the distribution function of X.

The loss functions ρ1 and ρ2 are both the Tukey bi-square loss function given by

ρ(x) =

 x6

6c4
− x4

2c2
+ x2

2 if |x| ≤ c

c2

6 if |x| > c
(20)

This estimation combines the highly robust S-estimator and the efficient M-estimator

in order to retain both of these desirable properties. In order to attain the highest

possible breakdown point of 50% the tuning constant is chosen to be c = 1.547 for ρ1.

When c in ρ2 is chosen to be 4.685, the estimator has an asymptotic relative efficiency

of 95% at the normal distribution (Yohai, 1987). Estimation is done using iteratively

reweighted least squares (IRLS).

Table A4 presents the results of the OLS and MM estimation of Model (5) on the

full, likely contaminated dataset.



D OUTLIER ROBUSTNESS

TABLE A4. Regression results for OLS and MM estimation of the spatial difference model on the full
(contaminated) dataset

Discrete Distance Measures

OLS MM estimator

Dist. to ONA 0-50 m 0.037***(0.000) 0.033***(0.000)

Dist. to ONA 50-100 m 0.021***(0.000) 0.018***(0.000)

Dist. to ONA 100-150 m 0.008***(0.000) 0.007***(0.000)

Dist. to ONA 150-200 m 0.002***(0.000) 0.003***(0.000)

Dist. to ONA 200-250 m 0.002***(0.000) 0.002***(0.000)

Dist. to ONA 250-300 m 0.000(0.000) -0.000(0.000)

Dist. to ONA 300-350 m -0.000(0.000) -0.000(0.000)

Dist. to ONA 350-400 m -0.001**(0.000) -0.001***(0.000)

Dist. to ONA 400-450 m 0.000(0.000) -0.000(0.000)

Dist. to ONA 450-500 m -0.002(0.000) -0.002(0.000)

Dist. to CANA 0-500 m 0.069***(0.002) 0.062***(0.002)

Dist. to CANA 500-1,000 m 0.039***(0.002) 0.038***(0.002)

Dist. to CANA 1,000-2,000 m 0.019***(0.002) 0.021***(0.002)

Dist. to CANA 2,000-3,000 m 0.012***(0.002) 0.018***(0.002)

Dist. to CANA 3,000-4,000 m 0.011***(0.002) 0.014***(0.002)

Dist. to CANA 4,000-5,000 m -0.001(0.001) 0.001(0.001)

Dist. to CANA 5,000-6,000 m 0.005***(0.001) 0.005***(0.001)

Dist. to CANA 6,000-7,000 m -0.001(0.001) -0.000(0.001)

Dist. to CANA 7,000-8,000 m -0.008***(0.001) -0.004***(0.001)

Nature Density Measures

OLS MM estimator

ONA density 0.00001***(0.000) 0.00001***(0.000)

CANA density 0.00003***(0.000) 0.00003***(0.000)

Property Characteristics Yes Yes

Constant included Yes Yes

Observations 7,317,033 7,317,033

Note. The dependent variable is the natural logarithm of assessed value relative to a reference home

within the same PC4 area. Reference categories include Freehold, Detached, constructed before 1905,

distance to ONA > 500 m, and distance to CANA > 8000 m. All models contain an intercept and

property characteristics. Clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Looking at the parameter estimates for the OLS estimator and the MM estimator,

we see that some of the parameter estimates differ quite a bit across estimation meth-

ods. This confirms the need of some outlier treatment, either using outlier removal or

robust estimation methods. We also compare the estimates to those in Table IV. We

find that the difference between the OLS estimation on the full dataset and the one on
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the filtered dataset do not differ by much, but the difference between the MM estima-

tor and OLS on the filtered dataset differ quite a bit, suggesting the filtered dataset

still contains contamination. In the MM estimator, approximately 58,000 observations

receive a weight of (almost) 0, whereas in the outlier removal, only 3,784 observations

were removed. However, in the outlier detection, only outliers in terms of the dependent

variable (logarithm of assessed value) and the logarithm of living area (and their ratio)

were examined, whereas the MM estimator takes care of outliers in the full covariate

space.

Note that for the density specification, the coefficients do not differ to the 5th dec-

imal. However, the OLS estimates are 0.0000120 and 0.0000341 for ONA and CANA

density respectively, while the MM estimates equal 0.0000297 and 0.0000136. As the

standard errors equal zero to the 6th decimal, these differences are quite substantial.

This suggests the use of robust estimation would likely lead to more accurate model

estimates. However, this leaves the question how those observations that are considered

outliers by this method should be taken into account in estimating the final value of the

amenity service.
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E Code Description

Scripts

1. Natuur kaarten.py

2. Natuur afstanden.py

3. Data preparation.R

4. Summary statistics.R

5. Model estimation.R

6. Outlier robust estimation.R

7. Urbanization heterogeneity estimation.R

8. Transaction estimation.R

9. Error clustering.R

10. Value calculation.R

Important comment

In all scripts, the locations of of files, and file names, are empty and thus given by ””.

This is because of security reasons imposed by Statistics Netherlands. Furthermore,

some python utility scripts which are needed to run the scripts is not provided, as these

are proeprty of Statistics Netherlands and can not be shared.

Code content

Natuur kaarten.py is used to create a rasterized map of nature in the Netherlands. Re-

sults are needed for the calculation of distances from dwellings to nature.

Natuur afstanden.py calculates the distance from each dwelling to the closest piece of

nature. Further, it calculates the nature density scores as described in Section 4.1 of the

report.

Data preparation.R is used to merge all data sources, construct the necessary variables,

and remove missing values and outliers.
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Summary statistics is used to get summary statistics of the dataset before and after

outlier removal.

Model estimation.R estimates all models as described in Section 4.2.

Outlier robust estimation.R is used to estimate the models in Appendix D.

Urbanization heterogeneity estimation.R is used to estimate the spatial difference model

with heterogeneity, as described in Section 6.

Transaction estimation.R is used to estimate the spatial difference model on transaction

data, as described in Section 7.

Error clustering.R is used to calculate the clustered standard errors for all spatial differ-

ence models.

Value calculation.R is used to calculate the value of the ecosystem amenity asset and

service, given in Section 5.4.
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