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Abstract

Understanding the dynamics of the volatility of global bond markets is of great im-

portance, especially in risk management. This paper proposes a Hierarchical Stochastic

Volatility dynamic Nelson-Siegel model to capture the global dynamics of volatility across

major bond markets, specifically Germany, the US, Japan, and the UK. The model is an

extension on the work of Diebold et al. (2008) on global yield factors. Using Bayesian

Markov Chain Monte Carlo simulations, I show that the global yield factors exhibit sub-

stantial time-varying volatility, which increases during economic crises. The volatility of

the global curvature factor closely resembles the MOVE index, a US Treasury volatility

proxy. Furthermore, the analysis re-evaluates the connection between the global factors

and macroeconomic fundamentals, revealing a weakening link between the global level

factor and expected inflation after the Great Financial Crisis. Additionally, the global

slope factor is found to be strongly negatively correlated with the G-7 unemployment

rate.

Keywords: Global Factors, Dynamic Nelson-Siegel, Stochastic Volatility, Bayesian Econo-

metrics, Time-Varying Parameters
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1 Introduction

The term structure of interest rates contains valuable information about the macroeconomy

and serves as a crucial tool in areas such as bond pricing, portfolio management, and asset

allocation. Due to its capability of capturing a wide variety of shapes and its relatively simple

estimation, using latent factors to model the yield curve is a popular approach in literature

(e.g. Diebold and Li (2006)). Domestic yield curves have been shown to interact and evolve

dynamically, and to be driven by so-called “global” yield factors, which are derived using the

aforementioned latent factors of several countries (e.g. Diebold et al. (2008) and Abbritti

et al. (2013)). These global factors explain a large portion of national variances, showcasing

their importance. Additionally, several papers link these global factors with macroeconomic

fundamentals, such as expected inflation, real activity, and economic uncertainty and senti-

ment measures (e.g. Jotikasthira et al. (2015) and Byrne et al. (2019)). However, much of

the literature on global yield modeling overlooks time-varying volatility in these underlying

global yield factors. Incorporating time-varying volatility into global bond market models is

crucial for risk management policymakers, as it more accurately reflects real-world conditions

and accounts for the risks associated with changes in bond market volatility.

This paper aims to extend the literature on global yield factors by incorporating

stochastic volatility in these global factors. By analyzing these stochastic processes, I aim

to obtain more insights into the dynamics and the driving forces behind volatility of the

global bond market. More specifically, I expand the pioneering work of Diebold et al. (2008)

on global factors using a Hierarchical Stochastic Volatility dynamic Nelson-Siegel model.

This model is based on the work of Tornese (2023), who conducts similar research on the

integration of Eurozone bond markets. For the stochastic volatility method, I opt for the

framework of Hautsch and Yang (2012), specifically designed for yield curve modeling. My

analysis focuses on government bond yields of Germany, the United States, Japan, and the

United Kingdom over the past 30 years. I utilize the one-step estimation method of Byrne

et al. (2019) in combination with the stochastic volatlity estimation procedure of Hautsch

and Yang (2012), which involve Bayesian Markov Chain Monte Carlo (MCMC) simulations

that account for parameter uncertainty across all estimated parameters. Using fresh data

and a one-step estimation technique, I reassess the global factors’ links with macroeconomic

fundamentals found in the literature. In addition, the importance of the Bayesian MCMC

estimation method is evaluated.

An important cornerstone in term structure modeling is the Nelson-Siegel model
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proposed by Nelson and Siegel (1987), which introduces three parameters to explain the

yield curve. Diebold and Li (2006) extend this model by allowing the three parameters

to vary over time and model them using (V)AR specifications, thereby proposing the Dy-

namic Nelson-Siegel (DNS) model. In this approach, the three time-varying parameters are

treated as latent variables, and are interpreted as the level, slope, and curvature factor of the

yield curve. Diebold et al. (2006) employ the same state-space representation, incorporating

macroeconomic indicators to enhance the fitting and forecasting of the yield curve. Both

DNS models outperform standard time series models in forecasting and are, therefore, widely

used in modeling the term structure of interest rates.

Most of the existing literature focuses on modeling the term structure of a single

country, thereby ignoring the relationship between cross-country bond yields. Diebold et al.

(2008) initiated the literature on multi-country term structure modeling by expanding the

DNS model. Using the bond yield data of Germany, the US, Japan, and the UK, their study

highlights the existence of a global level and slope factor that explain a large part of national

variances. In addition, their global level factor shares a correlation of 0.75 with the G-7

inflation. Jotikasthira et al. (2015) and Byrne et al. (2019) delve deeper into the driving

forces behind global bond yields, combining latent factors and macroeconomic fundamentals

to explain them. Jotikasthira et al. (2015) find that global inflation and the US level factor

explain over 70% of German and UK yields. Similarly, Byrne et al. (2019) demonstrate that

economic and sentiment measures account for a large portion of the information in global

yield factors. Furthermore, Tornese (2023) extends the work of Diebold et al. (2008) by

incorporating stochastic volatility into their model in a study on the driving forces behind

Eurozone bond markets.

The majority of empirical studies on term structure modeling assume constant in-

terest rate volatility. However, in the DNS literature, Koopman et al. (2010) introduce the

concept of time-varying volatility in interest rates, incorporating it directly into the yield pro-

cesses through a common component following a univariate GARCH process. Hautsch and

Ou (2008) take a different approach, capturing stochastic volatility directly within the under-

lying yield factors, where the resulting volatility processes follow a first-order autoregressive

process. Byrne et al. (2019) allow for stochastic volatility in the global yield factors by using

a forgetting factor. However, since the forgetting factor introduces prior bias, Tornese (2023)

adopt the stochastic volatility approach of Cogley and Sargent (2005), specialized for VAR

models. Under certain assumptions, this approach models the stochastic volatility processes

as a random walk. Furthermore, Hautsch and Yang (2012) improve the computational effi-
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ciency of the approach of Hautsch and Ou (2008). The resulting framework uses Bayesian

Markov Chain Monte Carlo simulations, and opposite to Tornese (2023), does not assume

high persistence in the stochastic volatility processes. Therefore, I use their method.

The one-step Bayesian MCMC estimation method extracts country-specific factors,

global factors, and the stochastic volatility processes within the global factors. The empirical

results show strong evidence supporting the time-varying volatility within the global yield

factors. The stochastic volatility processes are highly persistent, show signs of co-movement

and increase in periods of economic downturns. Additionally, the volatility of the global

curvature factor closely resembles the MOVE index, a US Treasury volatility proxy. Fur-

thermore, the flexible framework highlights the influence of common forces on the national

variances, which peaks during times of high volatility. However, the impact of global factors

on their country-specific counterpart has decreased compared to Diebold et al. (2008), indi-

cating a stronger presence of idiosyncratic forces in domestic bond markets post-2008.

Examining the global factors’ connection to real world conditions reveals that the re-

lationship between the expected inflation and the global factor has weakened since the Great

Recession. The global slope factor, however, is highly negatively correlated with the G-7

unemployment rate. The results show no significant evidence that supports the co-movement

between the global factors and economic uncertainty and sentiment measures. Furthermore,

the incorporation of parameter uncertainty in the country-specific factors yields minimal dif-

ferences compared to the OLS estimation in Diebold et al. (2008) for the country level and

slope factors. For the country curvature factors, however, a greater degree of divergence

between the results of the two estimation methods is found.

The remainder of this paper is as follows. Section 2 introduces the Hierarchical

Stochastic Volatility dynamic Nelson-Siegel model. Section 3 illustrates the Bayesian Markov

Chain Monte Carlo procedure used for estimation. In section 4, the data used in the empirical

study is described. Section 5 presents the empirical results, while section 6 summarizes and

concludes the research.

2 Modeling Framework

In this chapter, I first introduce the Dynamic Nelson-Siegel (DNS) model proposed by Diebold

and Li (2006) in section 2.1. Then, in section 2.2, I present the Hierarchical Stochastic

Volatility dynamic Nelson-Siegel (HSV-DNS) model, which builds on the DNS model.
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2.1 The Dynamic Nelson-Siegel Model

Nelson and Siegel (1987) introduce a parsimonious way to model the yield curve by several

latent factors. Diebold and Li (2006) extend this approach and introduce the DNS model,

which comes down to the following. For a yield series yt(τj) at time t with the set of maturities

{τj}mj=1 the yield curve is described by the following formulation

yt(τj) = lt + st

(
1− e−λτj

λτj

)
+ ct

(
1− e−λτj

λτj
− e−λτj

)
+ vt(τj), (1)

where λ is a fixed coefficient that determines the exponential decay of the second and third

factor, and vt(τj) represents the Gaussian distributed pricing error. The formula shows that

the latent factors lt, st, and ct, and their respective factors loadings, determine the yield

curve. The first factor loading takes the value 1, indicating that the loading influences the

overall level of yields of all maturities. Therefore, lt is interpreted as the level factor. The

second factor loading converges to one as τ −→ 0 and to zero as τ −→ ∞. This suggests that

it primarily affects short-term rates, thus shaping the yield curve’s slope. Consequently, st is

interpreted as the slope factor. The third factor loading converges to zero for both τ −→ 0 and

τ −→ ∞, and is concave in the maturity τ . Therefore, it mostly influences medium-term rates,

hence shaping the curvature of the yield curve. Thus, ct is interpreted as the curvature factor.

The DNS model and its interpretation of the latent factors are exploited in the multi-country

framework, presented in the next section.

2.2 Multi-Country Framework

Diebold et al. (2008) pioneered multi-country term structure modeling by extending the DNS

model such that for each country i = 1, ..., N at time t for maturities {τj}mj=1, the dynamics

of the yield curve are modeled by

yi,t(τj) = li,t + si,t

(
1− eλτj

λτj

)
+ ci,t

(
1− eλτj

λτj
− e−λτj

)
+ vi,t(τj), (2)

where yi,t(τj) is the zero-coupon bond yield at time t of a treasury bond of country i with

maturity τj . The latent variables li,t, si,t, ci,t are the level, slope, and curvature factor for

each country i, respectively, as explained in the previous section. The decay factor λ is set

constant across countries and time. Furthermore, vi,t(τj) are the pricing errors. I assume

the vector of pricing errors vi,t = {vi,t(τ1), ..., vi,t(τm)}′ to follow the normal distribution

6



N (0,Σvi), where Σvi is a m x m diagonal matrix. The assumption of uncorrelated pricing

errors across maturities is common in literature and arises because the zero-coupon yields

used in estimation are bootstrapped from coupon-bearing bonds, leading to measurement

errors across maturities which are not correlated. For parsimony, Diebold et al. (2008) omit

the curvature factor from their model. However, Mönch (2012) and Abbritti et al. (2013)

suggest that incorporating the curvature factor is beneficial for uncovering the dynamics of

the term premium, and therefore I include it.

Diebold and Li (2006) recognize the strong persistence in the latent factors, implying

these factors can be forecasted with high precision. Therefore, the DNS model allows the

latent factors to follow a first-order autoregressive process. The multi-country yield curve

framework deviates from this approach by allowing the country-specific latent factors to load

on common factors, such that

fi,t = αf
i,t + βfi Ft + efi,t, (3)

where fi,t ∈ [li,t, si,t, ci,t] denotes the country factors, βfi ∈ [βli, β
s
i , β

c
i ] are the loadings on the

global factor, and Ft ∈ [Lt, St, Ct] are the global factors, specifically the global level, slope and

curvature factor. Diebold et al. (2008) and Byrne et al. (2019) endow autoregressive properties

on the disturbances efi,t ∈ [eli,t, e
s
i,t, e

c
i,t], and fix each αf

i,t ∈ [αl
i,t, α

s
i,t, α

c
i,t] over time. However,

the introduction of the country-specific time-varying intercept αf
i,t by Tornese (2023) allows

the innovations efi,t to be uncorrelated across i and t, and to follow the normal distribution

N (0, σ2
efi
). Furthermore, the global factors and their loadings are separately identified by

assuming
∑N

i=1 β
f
i = 1. This assumption allows for the comparison of the relative influence

of the common forces on each country.

To complete the hierarchical features of the model, the law of motion of the time-

varying intercepts αf
i,t and the global factors F̄t = {Lt, St, Ct}′ is given by

αf
i,t = γfi + ψf

i α
f
i,t−1 + ufi,t (4)

F̄t = C +ΦF̄t−1 + ηt, (5)

where γfi ∈ [γli, γ
s
i , γ

c
i ] and ψ

f
i ∈ [ψl

i, ψ
s
i , ψ

c
i ] are the coefficients of the first-order autoregressive

process that describes the dynamics of the time-varying intercept αf
i,t of the country factors

for each country i. The intercept term γfi is identified as γfi = µ
αfi
(1 − ψf

i ), where µ
αfi

denotes the mean of the serie αf
i,t. In the model, the error terms ufi,t follow the normal

distribution N (0, σ2
ufi
). Furthermore, the intercept vector C = {cL, cS , cC}′ of the vector
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autoregressive process of the global factors is identified as C = (I − Φ)µF , where the vector

µF = {µL, µS , µC}′ contains the means of the global factors. Diebold et al. (2008) and Tornese

(2023) validate the use of a diagonal coefficient matrix Φ, therefore I set Φ = diag{ϕL, ϕS , ϕC}.

Furthermore, assume the error terms ηt = {ηLt , ηSt , ηCt }′ to be normally distributed as ηt ∼

N (0,Ωt). The variance term Ωt introduces stochastic volatility into the model.

The proposed model deviates from Tornese (2023) in three ways. Tornese (2023)

allows the factor loadings βfi to have random walk properties, the variance of error terms ufi,t

to incorporate time variation, and the global factor error terms ηt to follow the stochastic

volatility approach of Cogley and Sargent (2005). The focus of this paper lies not in the

changing dynamics of the countries over time and therefore, to avoid overfitting and increase

computational efficiency, I assume βfi and the variance of ufi,t to be constant over time.

However, since this paper focusses on incorporating stochastic volatility in the variance of

the global factor error terms, I adopt the more advanced stochastic volatility approach of

Hautsch and Yang (2012), designed specifically for DNS models.

The stochastic volatility approach by Hautsch and Yang (2012) performs a Cholesky

decomposition to obtain Ωt = Ση,tΣ
T
η,t, specified as

diag(ln Ση,tΣ
′
η,t) =


hLt

hSt

hCt

 (6)


hLt+1 − µLh

hSt+1 − µSh

hCt+1 − µCh

 =


πL 0 0

0 πS 0

0 0 πC



hLt − µLh

hSt − µSh

hCt − µCh

+


σLξLt

σSξSt

σCξCt

 , (7)

where ξFt
i.i.d.∼ N (0, 1), and πF is the first-order autoregressive coefficient of the global fac-

tors for F = L, S,C. Tornese (2023) assumes all πF coefficients to be equal to one. The

disturbances ηt are assumed to be contemporaneously uncorrelated, resulting in a diagonal

covariance matrix Ωt at each time t. Then, transforming the model back to ηt yields
ηLt

ηSt

ηCt

 =


eh

L
t /2 0 0

0 eh
S
t /2 0

0 0 eh
C
t /2



ζLt

ζSt

ζCt

 , (8)

where ζFt
i.i.d.∼ N (0, 1) for F = L, S,C. Thus, hFt with F = L, S,C are the latent stochas-

tic volatility processes of the global factors and can be summarized in the vector ht =
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{hLt , hSt , hCt }′. Due to the transformation, the components hLt , h
S
t , and h

C
t can be interpreted

as the time-varying volatilities of the extracted global level, slope, and curvature factor.

Since the factor hLt captures the uncertainty related to the volatility of the global level fac-

tor, thereby influencing the bond yields of different maturities equally, it can be seen as a

model implied proxy of the global bond market volatility. Furthermore, hLt can be interpreted

as the yield curve slope volatility since it captures the time-variation associated with the yield

spreads. Lastly, the stochastic volatility component hCt captures the volatility related to port-

folios that are dominated by mid-term maturities and can therefore be interpreted as yield

curve curvature volatility.

3 Model Estimation

In this chapter, I propose the models and methods used for factor extraction and parameter

estimation. Section 3.1 presents the state-space systems used to exploit the Bayesian Markov

Chain Monte Carlo (MCMC) simulations estimation method, which is described in section

3.2. Section 3.3 discusses the initialization techniques and the choice of priors for the MCMC

simulations.

3.1 State-Space Form

Section 2.2 introduces the HSV-DNS model. The hierarchical nature of the model introduces

four sets of latent variables: the country factors ft, the global factors F̄t, the time-varying

intercepts αt, and the volatility processes ht. These latent time series are extracted by

exploiting state-space systems, which I present in this section.

To identify the country factors ft, I follow Tornese (2023), who shows that one can

extract the country factors ft out of the government bond yields using the following state

space representation

yt = Π(λ)ft + vt, vt ∼ N(0,Σv), (9)

ft = αt +BF̄t + et, et ∼ N(0,Σe), (10)
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for t = 1, ..., T where yt = {y1,t(τ1), y1,t(τ2), ..., yN,t(τm)}′, ft = {l1,t, s1,t, ..., cN,t}′, αt =

{αl
1,t, α

s
1,t, ..., α

c
N,t}′, et = {el1,t, es1,t, ..., ecN,t}′, vt = {v1,t(τ1), v1,t(τ2), ..., vN,t(τm)}′, and

Π(λ) =



1
(
1−e−λτ1

λτ1

) (
1−e−λτ1

λτ1
− e−λτ1

)
0 . . . . . . 0

1
(
1−e−λτ2

λτ2

) (
1−e−λτ2

λτ2
− e−λτ2

)
0 . . . . . . 0

...
...

...
. . .

...
...

...

0 . . . . . . . . . 1
(
1−e−λτm

λτm

) (
1−e−λτm

λτm
− e−λτm

)


,

B =


βl1 0 0

0 βs1 0
...

...
...

0 0 βcN

 .

Tornese (2023) highlights a key distinction in transition eq.(10) from Diebold et al. (2008),

Moench et al. (2013), and Byrne et al. (2019): the assumption of serially uncorrelated error

terms efi,t, achieved through the time-varying intercept αf
i,t. This approach eliminates the

need for the quasi-differencing operator, making the country factors ft exclusively dependent

on exogenous variables and therefore omitting the need to perform the Carter and Kohn

(1994) backwards smoothing algorithm. As a result, the country factors ft can be sampled

from the normal distribution where the mean and variance are obtained through a simplified

Kalman Filter, in which only the noise et has to be separated from ft.

Next, I present the state-space system used to extract the global factors Ft. The

coefficient matrix Φ and variance matrix Ωt are diagonal. Therefore, the time series of the

global factors Lt, St, and Ct can be extracted separately. For illustration purposes, I present

the state-space form needed to extract the global level factor Lt as
l1,t
...

lN,t

 =


αl
1,t

...

αl
N,t

+


βl1,t
...

l
N,t

Lt +


el1,t
...

elN,t

 ,

el1,t
...

elN,t

 ∼ N(0,Σel) (11)

Lt = ϕLLt−1 + ηLt , ΩL
t ∼ N(0, ωL

t ), (12)

where ϕL and ωL
t represent the diagonal elements of Φ and Ωt respectively, corresponding with

the global level factor. This representation allows for the use of the Carter and Kohn (1994)

(CK) backwards smoothing algorithm. The CK algorithm performs the Kalman Filter, after
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which the estimated states and variances are smoothed using a backward recursion method,

the Kalman Smoother. The smoothed estimates are then used to sample the unobserved

states.

For extracting the time-varying intercepts αf
i,t, I again employ the CK backwards

smoothing algorithm. The assumption of serial uncorrelated error terms ufi,t across i and t,

allows for extracting each αf
i,t separately. For example, for the level factor of country i = 1,

the time-varying intercept αl
1,t can be extracted using the following state space representation

l1,t = αl
1,t + βl1Lt + el1,t, el1,t ∼ N (0, σ2

el1
), (13)

αl
1,t = γl1 + ψl

1 α
l
1,t−1 + ul1,t, ul1,t ∼ N (0, σ2

ul1
). (14)

Finally, define Γ = (γl1, γ
s
1, ...γ

c
N ) and Ψ = (ψl

1, ψ
s
1, ..., ψ

c
N ). This notation will be useful for

the next subsection.

Lastly, I propose the state-space representation Hautsch and Yang (2012) use to

extract the volatility processes ht. Define

eht/2 = diag{ehLt /2, ehSt /2, ehCt /2},

µh = {µhL , µhS , µhC}′,

π = diag{πL, πS , πC}′

Σh = diag{σ2hL , σ
2
hS , σ

2
hC}

′,

ξt = {ξLt , ξSt , ξCt }′,

ζt = {ζLt , ζSt , ζCt }′,

such that eq.(7) and eq.(8) can be rewritten as

ηt = eht/2ζt, (15)

ht+1 − µh = π(ht − µh) + Σ
1/2
h ξt. (16)

This transformation yields a state-space system where eq.(15) serves as the measurement

equation and eq.(16) as the transition equation. However, the measurement equation is non-

linear and non-Gaussian, which are crucial assumptions for the CK algorithm. Nonetheless,

S. Kim et al. (1998) show that this equation can be transformed into a mixture of normals

model, thereby enabling the use of the Kalman Filter and a simulation smoother. Their
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approach uses the transformation

ln η2t = ht + ln ζ2t , (17)

to introduce linearity and, under the right specifications, normality. Define y∗t = ln (η2t + c)

and zt = ln ζ2t , where c is the ”offset” introduced in stochastic volatility literature by Fuller

(1996), and typically set to c = 0.001. Substituting these transformations yields the following

state-space system

y∗t = ht + zt (18)

ht+1 − µh = π(ht − µh) + σξt. (19)

The stochastic volatility processes ht can now be extracted using the S. Kim et al. (1998)

mixture of normals approach, which I explain in depth in the next section.

3.2 Estimation Procedure

Diebold et al. (2008) pioneered the estimation of multi-country DNS models and use a two-

step estimation approach. In the first step, they perform OLS estimation in eq.(2) to obtain

the country-specific factors. These factors are used as observed variables in the second step,

where they perform Bayesian MCMC simulations to obtain the remaining parameters and

factors. This approach ignores the parameter uncertainty related to the country-specific

factors. Byrne et al. (2019) propose a one-step approach that incorporates the parameter

uncertainty of all estimated parameters, by also using MCMC simulations. More specifically,

they use the Gibbs Sampler, a statistical method designed to generate a sequence of samples

from the joint distribution of a set of variables. This technique is particularly helpful in

models with a high number of variables, as it sidesteps the challenge of deriving a closed-

form solution for the joint distribution. It does so by iteratively sampling from the conditional

distribution of each variable, given the others, until the sequence of samples converges to the

joint distribution. In this paper, I follow this approach and specify it specifically for the

proposed HSV-DNS model.

To illustrate the process of the Gibbs sampler, I explain a simplified example using

Casella and George (1992). In Bayesian analysis, one can sample the parameter of interest θ

from its posterior distribution p(y|θ). To determine this distribution, a prior belief is specified,

12



and the likelihood function of the data y is utilized. By applying Bayes’ rule, we obtain:

p(θ|y) ∝ p(θ)p(y|θ),

where p(θ) is the prior distribution of parameter θ and p(y|θ) is the likelihood function of the

data y as a function of the model parameters θ.

For Gibbs sampling, let θ be a random vector which can be divided in k blocks with

posterior density p(θ1, ..., θk|y). Then,

1 : Initialize θ(0) = (θ
(0)
1 , ..., θ

(0)
k ) and set m = 0.

2 : Sample

θ
(m+1)
1 from p(θ1 | θ(m)

1 , θ
(m)
2 , ..., θ

(m)
k , y)

θ
(m+1)
2 from p(θ2 | θ(m+1)

1 , θ
(m)
3 , ..., θ

(m)
k , y)

θ
(m+1)
3 from p(θ3 | θ(m+1)

1 , θ
(m+1)
2 , ..., θ

(m)
k , y)

...

θ
(m+1)
k from p(θ1 | θ(m+1)

1 , θ
(m+1)
2 , ..., θ

(m+1)
k−1 , y)

3 : set m = m+ 1, and go to step 2.

After the Markov chain has converged, at m = m∗, the simulated values {θ(m),m ≥ m∗} can

be used as a sample from the joint posterior distribution p(θ1, ..., θk|y).

Now let’s specify the Gibbs sampler tailored to our model. Let Θ = {θ, ft, F̄t, αt, H}

be the set of variables of interest. Define θ = {Σv,Σe,Σu,B, C,Φ,Γ,Ψ} as the time-invariant

variables unrelated to the stochastic volatility processes ht and store the variables related

to stochastic volatility in H = {ht, st, π, µh,Σh}. The full procedure of the Gibbs Sampler

is shown in Appendix A. For conciseness, I present the summarized version of the Gibbs

sampler as follows

1. Initialize Θ

2. Sample the variables in Θ from Θ|yt using S replications, where the initial S0 samples

are discarded

(a) Sample the variables θ from p(θ|yt, ft, F̄t, αt, H) using inverse-Gamma and Gaus-

sian distributions

(b) Sample the country factors ft from p(fi,t|yt, θ, F̄t, αt, H) using a simplified Kalman

Filter method
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(c) Sample the global factors F̄t from p(Ft|yt, θ, ft, αt, H) using the Carter and Kohn

(1994) algorithm

(d) Sample the idiosyncratic components αt from p(αf
i,t|yt, θ, ft, F̄t, H) using the Carter

and Kohn (1994) algorithm

(e) Sample the block H from p(H|yt, θ, ft, F̄t, αt) using the Hautsch and Yang (2012)

approach

The derivations of the posterior density functions of the time-invariant parameters are exhib-

ited in Appendix B.1. Appendix B.2 explains the simplified Kalman Filter used to extract

the country factors ft, while Appendix B.3 gives a detailed derivation of the Carter and Kohn

(1994) algorithm. To sample the stochastic volatility processes ht, S. Kim et al. (1998) show

that we can make eq.(18) linear by approximating the distribution of zFt as a mixture of

Gaussian densities, such that

zFt |st ∼ fN (mst , ν
2
st), (20)

where fN (mst , ν
2
st) is a Gaussian probability density function, and st ∈ {1, 2, ..., 7} denotes

the state at time t

P [st = i] = qi, i ≤ 7, t ≤ T. (21)

Table 1: Parameters of the Seven States Gaussian Mixture Distrubition Approximation of
zt

st qi mst ν2st
1 0.00730 -11.40039 5.79596

2 0.10556 -5.24321 2.61369

3 0.00002 -9.83726 5.17950

4 0.04395 1.50746 0.16735

5 0.34001 -0.65098 0.64009

6 0.24566 0.52478 0.34023

7 0.25750 -2.35859 1.26261

Table 1 shows the values of the parameters {qi,mst , ν
2
st} given by S. Kim et al.

(1998). By approximating the distribution of zFt as a mixture of Gaussian densities, the

distribution of y∗t | st, µh, σh, π becomes Gaussian and therefore the CK algorithm can be

used to sample the stochastic volatility component ht from ht | y∗t , s, µh, σh, π. Finally, the

states st can then be sampled from st | y∗t , ht, by independently sampling each st from its

probability mass function

P [st = i | y∗t , ht] ∝ qifN (y∗t |ht + mi, ν
2
i ). (22)
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3.3 Initializations and Priors

Step 1 of the Gibbs sampler is crucial for the estimation process. Poor initialization leads to

slow convergence and suboptimal results, and vice versa. The same holds for the choice of

priors. In this section, the initialization process and the choice of priors for all parameters

in Θ is explained. The country factors fi,t are initialized by performing Ordinary Least

Squares (OLS) estimation separately on each country for t = 1, ..., T . The global factors

Ft are initialized separately using the first principal component obtained from a Principal

Component Analysis (PCA) on all related country factors. To initialize the global factors

loadings βfi , each initialized country factors fOLS
i,t regresses on its complementary global factor

FPCA
t . The residuals from these regressions are used as the initial values for the time-varying

intercepts αf
i,t. To initialize all variables in H, I run step 2d of the Gibbs sampler. The

remaining variables in θ are initialized by running the step in the Gibbs sampler associated

with sampling that specific variable. Furthermore, I specify the values that initialize the CK

algorithms. Following Primiceri (2005), the mean and variance of F0 that start the algorithm

are chosen as the full sample mean and four times the variance from the previous iteration.

The same approach is used for time-varying idiosyncratic components α0, and the stochastic

volatility processes h0.

The choice of priors for the (truncated) normal distributions is a bit more tricky.

Tornese (2023) calibrates the priors with a small sub-sample of the data, resulting in the

loss of these observations. On the contrary, Hautsch and Yang (2012) use diffuse priors

in their analysis. I choose to follow this approach, as the small sub-sample may not be

representative of the entire sample, and retaining all observations is essential for a robust

analysis. Furthermore, the choice of inverse-Gamma priors yields the same trade-off. Hautsch

and Yang (2012) use non-informative priors, while Tornese (2023) uses a small subsample to

calibrate the priors. Again, I follow Hautsch and Yang (2012). In a robustness check, I used

the first 36 (3 years) observations to calibrate the priors and found no sensible changes in the

results.

4 Data

This section describes the data used in our empirical study. Section 4.1 shows the government

bond yields, and explains them through their summary statistics. In section 4.2, I present

the macroeconomic variables that potentially link the driving forces behind the yield data to

15



real-world conditions.

4.1 Government Bond Yield Data

For the empirical analysis in this thesis, I use monthly data consisting of the constant matu-

rity yields of government zero-coupon bonds from the United States, Germany, Japan, and

the United Kingdom, all expressed in local currency terms. The yields are calculated and

provided by Refinitiv Eikon, which uses the cubic spline method, developed by Waggoner

(1997), to extract zero-coupon yields from a variety of liquid instruments. The dataset con-

sists of end-of-month yields for the period of January 1995 till March 2024 for the maturities

3 and 6 months, and 1, 2, 3, 5, 7, and 10 years, with the tickers given in Appendix C.

Figure 1 plots the cross-section of yields over the sample period across countries.

Co-movement between the country yields is clearly visible, especially within the level, where

we observe a downward trend up to 2020. The variety in yield curve slopes and curvatures is

also displayed, highlighted by a concave yield curve at the start and an inverted yield curve

at the end of the sample for the US, Germany, and the UK. Furthermore, the figure exhibits

distinctions in the magnitude of the level, slope, and curvature movements over time, which

could indicate the presence of time-varying volatility in their common driving factors. In-

terestingly, the behavior of the Japanese yield curve differs from that of the other countries.

This divergence can be explained by the Bank of Japan’s battle against deflation since the

1990s, resulting in prolonged periods of low and negative interest rates, as shown in the figure.

Table 2 presents the mean, standard deviation, minimum, and maximum as well as

the 1-month, 1-year, and 2-year auto-correlations of the yields of a set of maturities for each

country. The maturities are chosen based on representability for short-, mid- and long-term

government bonds, where the 3-month represents the short-term, 1- and 5-year the mid-term

maturities, and the 10-year maturity portrays the long-end of the yield curve. Furthermore,

a slope and a curvature proxy are exhibited in the table. The proxy for the slope of the yield

curve is defined as yt(120)− yt(3), where yt(τ) is the yield of a government bond with time-

to-maturity τ , measured in months. The curvature proxy is given by the butterfly spread

[yt(24)− yt(3)]− [yt(120)− yt(24)].
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Figure 1: Yield Curves across Time ranging from January 1995 till March 2024

(a) Germany Yield Curve (b) United States Yield Curve

(c) Japan Yield Curve (d) United Kingdom Yield Curve

Note: These figures plot the government bond yields of Germany, the United States, Japan, and the United
Kingdom across time and maturity. The sample ranges from January 1995 till March 2024 and considers eight
maturities.

Some stylized facts of the yield curve are clearly visible when reviewing the table.

The average yield, depicted by the mean, increases as maturities extend. Additionally, yields

exhibit high persistence, generally more so for long maturities compared to shorter ones,

with the exception of the 10-year UK Gilt. The variances of yields show some interesting

properties. For German and Japanese yields, variance increases with maturity. Typically,

the long end of the curve is more volatile than the short end. The short end of the curve

is closely related to central bank interest rates and their expectations, while the long end

is more sensible to changes in macroeconomic conditions. The Bank of Japan’s rate has

remained between -0.1% and 0.5% throughout the entire sample period. Consequently, the

short-end of the Japanese curve has been very stable, and Japan’s overall yield curve volatil-

ity is considerably lower than in other countries, where central bank rates have been more

volatile. For Germany, the summary statistics over the last 30 years indicate that changes

in economic factors have had a greater impact on yields than the fluctuations in short-term

rates set by the European Central Bank. Furthermore, the positive mean for each slope
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proxy, combined with the negative mean for all curvature proxies, confirms the increasingly

flattening behaviour of the average yield curves. In addition, the slope of the yield curve is

generally less persistent than its curvature, except in Japan. This difference may be due to

Japan’s long-term economic conditions and monetary policies, which have resulted in stable

short-term rates that increased the slope’s persistence.

Table 2: Summary Statistics for Government Bond Yields

Country Maturity Mean Std Min Max ρ̂1 ρ̂12 ρ̂24

United States

3 2.315 2.164 0.005 6.386 0.988 0.745 0.382
12 2.536 2.177 0.051 7.260 0.987 0.807 0.423
60 3.231 1.855 0.229 7.890 0.979 0.811 0.582
120 3.732 1.628 0.562 7.859 0.977 0.819 0.639
Slope 1.418 1.209 -1.735 3.787 0.964 0.461 0.080
Curvature -0.501 0.448 -1.473 0.360 0.978 0.694 0.339

Germany

3 1.631 1.880 -1.020 5.122 0.989 0.807 0.616
12 1.742 1.908 -0.878 5.780 0.987 0.807 0.622
60 2.294 2.066 -0.893 7.350 0.985 0.868 0.751
120 2.876 2.103 -0.728 7.691 0.988 0.882 0.755
Slope 1.245 0.946 -1.616 3.307 0.956 0.402 0.155
Curvature -0.582 0.343 -1.362 0.183 0.957 0.542 0.145

Japan

3 0.113 0.320 -0.470 2.230 0.910 0.428 0.271
12 0.162 0.364 -0.349 2.620 0.910 0.548 0.339
60 0.570 0.676 -0.362 4.127 0.941 0.711 0.502
120 1.110 0.896 -0.280 4.661 0.965 0.786 0.606
Slope 0.997 0.676 -0.101 2.940 0.972 0.781 0.590
Curvature -0.540 0.297 -1.438 -0.082 0.973 0.746 0.567

United Kingdom

3 3.006 2.545 -0.049 7.650 0.991 0.826 0.673
12 2.978 2.517 -0.071 7.750 0.988 0.841 0.691
60 3.371 2.300 -0.104 8.651 0.986 0.849 0.703
120 3.698 2.076 0.140 8.684 0.985 0.839 0.667
Slope 0.692 1,198 -2.187 3.562 0.957 0.529 0.195
Curvature -0.327 0.476 -1.530 0.674 0.974 0.774 0.552

Note: This table exhibits the mean, standard deviation, minimum, maximum, and 1-month, 1-year, and 2-year
autocorrelation of the government bond yields of the US, Germany, Japan and the United Kingdom over the
period January 1995 to March 2024 for four maturities, corresponding with the short-, mid- and long-end of the
yield curve. In addition, the table displays the statistics of a proxy for the slope and curvature factor, defined
by yt(120)− yt(3) and [yt(60)− yt(3)]− [yt(120)− yt(60)], respectively.

As a rough proxy for the volatility of stock markets, the literature often opts for

absolute returns (see e.g. Ding et al. (1993) and Taylor (2008)). Since bond yields and bond

prices are inversely related, I consider the one-month absolute yield change as a rough proxy

for the underlying volatility of the domestic bond markets. Table 3 presents the correlation

coefficients between the absolute yield changes of the considered countries for the 3 month,

3 year, and 10 year maturities. Here, the 3 month maturity represents the short-term of the

yield curve, 3 year the mid-term, and the 10 year maturity is considered the long-term of the

curve. When analyzing the table, two observations stand out: first, the absolute yield changes

in Japan show weak co-movement with those of other countries. Second, for Germany, the

US, and the UK, there is noticeable commonality in absolute yield changes, which increases

with bond maturity. This trend could indicate the presence of common volatility drivers.
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Table 3: Correlation Matrix of Absolute Yield Changes

3M 3Y 10Y

DE US JPY UK DE US JPY UK DE US JPY UK

DE 1 0.39 0.20 0.24 1 0.54 0.22 0.56 1 0.61 0.17 0.69
US 1 0.13 0.24 1 0.21 0.48 1 0.22 0.56
JPY 1 0.11 1 0.13 1 0.19
UK 1 1 1

Note: This table exhibits the correlation coefficients between the absolute yield changes of the government
bonds of Germany (DE), the United States (US), Japan (JPY), and the United Kingdom (UK). Specifically,
the 3 month, 3 year, and 10 year maturities are considered for the time period January 1995 - March 2024.

4.2 Macroeconomic Variables

In literature on country factors, domestic macroeconomic indicators are proven to interact

and evolve dynamically with the extracted latent factors (see e.g. Ang and Piazzesi (2003)

and Diebold et al. (2006)). The level and slope factor are particularly shown to be related

with inflation and real activity measures, respectively. Consequently, Diebold et al. (2008)

investigates these relationships on a global perspective. Additionally, Abbritti et al. (2013)

and Byrne et al. (2019) propose additional variables to explain the behaviour of the global

level factor, specifically international trade activity and global uncertainty.

In this section, I introduce the macroeconomic variables used for a correlation anal-

ysis, which aims to link the theoretical findings with real-world conditions. In particular, I

consider a set of macroeconomic variables available from OECD.1 The monthly observations

of Harmonised Index of Consumer Prices (HICP), Composite Leading Indicator (CLI), Busi-

ness Leading Indicator (BCI), and Unemployment Rate are considered. For the G-7 annual

GDP growth, the G-7 and OECD inflation forecasts based on the Consumer Prices Index and

Harmonised Index of Consumer prices, quarterly data is used. In addition, I use the monthly

observations of the Economic Policy Uncertainty (EPU) indices of Baker et al. (2016). Except

for the EPU index, which ranges from January 1997 - March 2024 due to data availability,

all variable samples are from January 1995 - March 2024 (Q1 1995 - Q1 2024).

Figure 2 displays the standardized macroeconomic variables over time. Panels 2a

and 2b show monthly observations, while Panel 2c plots quarterly data. The variables CLI,

CCI, and BCI, presented in Panel 2a exhibit a high degree of co-movement, with negative

spikes during the Great Financial Crisis and COVID-19 Crisis. When considering Panel 2b,

we observe a peak in the unemployment rate during the previously mentioned crises, contrary

to the one-year CPI growth rate, which exhibits roughly the same pattern as the variables in

Panel 2a. Lastly, the variables in Panel 2c also shows signs of co-movement up to 2020, where

the annual GDP growth spikes negatively. On the contrary, the OECD and G-7 one-year

1The macroeconomic variables are available at https://data-explorer.oecd.org/
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inflation point forecasts peak in 2022.

Figure 2: Standardized Macroeconomic Variables

(a) CLI, CCI, and BCI (b) Unemployment Rate, CPI, and EPU

(c) GDP and Expected Inflation

Note: Figure (a) plots the Composite Leading Indicator (CLI), Consumer Confidence Index (CCI), and Business
Confidence Index (BCI) over time. Figure (b) plots the G-7 GDP-weighted unemployment rate (UR), the G-7
GDP-weighted one-year growth rate of the (Harmonised) Consumer Price Indices (CPI), and the G-7 GDP-
weighted Economic Policy Uncertainty (EPU). Figure (c) plots the G-7 GDP weighted annual GDP growth,
the OECD expected inflation (OECD-EI), and the G-7 GDP weighted expected inflation (G7-EI). Due to data
availability, the EPU sample period is from January 1997 to March 2024, while the sample period for the other
variables is from January 1995 to March 2024 with quarterly observations in figure (c). For comparison, all
variables are standardized.

5 Empirical Results

This chapter describes the empirical results of the Gibbs sampler estimation. In section 5.1, I

present the extracted global factors in combination with their underlying volatility processes.

Section 5.2 links the theoretical results to the macroeconomy, while section 5.3 explains the

results related to the country-specific factors. Section 5.4 exhibits the findings of the variance

decompositions and section 5.5 ends with goodness of fit tests.

5.1 Global Factors

The Gibbs sampler is run using S = 40,000 iterations, of which the first S0 = 20, 000 itera-

tions are discarded.2 Figure 3 plots the posterior mean of the estimated latent global factors,

2For simulation exercises with more than 40,000 iterations, the results remain the same.
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along with their posterior two standard deviation bands. The decay factor λ is constant over

time for each country, and fixed at λ = 0.0609 following Diebold et al. (2008). The value of

this decay factor maximizes the curvature loadings for the 2- and 3-year maturities, and thus

fits the data. The narrow confidence interval suggests that the global factors are estimated

with a high degree of precision, indicating clear convergence. The figure, in combination with

Table 4, shows strong evidence of high persistence in the global factors, which signals model

reliability and enhances economic interpretation and predictability. In addition, due to the

identification of the country factor loadings, the scale of the global factors is not relevant.

Panel 3a displays the global level factor, which has a clear downward trend up to

2020, indicating the interest paid on bonds lowered globally. The steep decline of the factor

from 1996 to 1999 is potentially caused by a combination of the Asian Financial Crisis in 1997

and the Russian Financial crisis in 1998. These crises increased global uncertainty, resulting

in investors ‘flight’ to safer assets, government bonds. Furthermore, the global level factor

increases from 2021 onwards, explained by the monetary tightening actions of the Federal

Reserve (Fed), Bank of England (BoE), and the European Central Bank (ECB) to combat

surging inflation.

In Panel 3b the global slope factor is exhibited. Important to note is that a negative

(positive) value of the factor indicates a positive (negative) slope of the yield curve. Estrella

and Mishkin (1998) and Diebold et al. (2008) argue that flat yield curves often precede eco-

nomic downturns as they signal low future interest rates. The findings are consistent with

this observation. We identify a flat slope factor in 1998, 2001, 2008, and 2019, corresponding

to the Asian and Russian Financial Crises, the recessions in Japan, the US, and Germany

in the early 2000s, the Great Financial Crisis, and the COVID-19 Pandemic, respectively. If

this pattern holds, it suggests a potential for an upcoming economic downturn.
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Figure 3: Posterior Mean and Two Posterior Standard Deviation Band of the Global Factors
(a) Global Level Factor

(b) Global Slope Factor

(c) Global Curvature Factor

Note: The posterior draws of the global level, slope and curvature factor are obtained through the Carter and
Kohn (1994) algorithm on the state space system presented in eq.(11) - (12). The posterior mean and posterior
two standard deviation band are displayed for January 1995 - March 2024 for the decay factor λ = 0.0609.

Table 4: Estimates of the Coefficient Matrix Φ.

Lt−1 St−1 Ct−1

Lt
0.988
(0.005)

0 0

St 0 0.981
(0.011)

0

Ct 0 0 0.957
(0.025)

Note: This table reports the posterior mean of the diagonal elements of the coefficient matrix Φ. In addition,
the standard errors are shown in brackets below the estimates.

The interpretation of the global curvature factor, shown in Panel 3c, is a bit more

tricky compared to the previous two factors. Diebold and Li (2006) show that the factor can

be created as a summation of yields defined as [yt(24)− yt(3)]− [yt(120)− yt(24)], assuming

the decay factor λ = 0.0609. This fixed λ-value across countries and time means that the

global curvature factor mostly influences the 2- and 3-year maturities. Intuitively, a positive
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curvature factor indicates a more concave yield curve or even a humped yield curve, while a

negative curvature factor suggest a less concave or convex yield curve. Abbritti et al. (2013)

argues that peaks in the (global) curvature factor precede economic downturns. However,

the presented figure does not show significant evidence to support the findings of Abbritti

et al. (2013).

Table 5 presents the (mean) estimates of the coefficient matrix π, together with the

mean of the stochastic volatility processes ht, and the standard deviation of their error terms.

The estimates show significant evidence for high autocorrelation in the factor volatilities. The

interpretation of the mean of these processes is less relevant as it is dependent on initialization

and identification methods.

Table 5: Coefficient Estimates of the Transition Equation of the Stochastic Volatility Pro-
cesses ht

Dynamics of the stochastic volatility processes ht

hLt = −1.049
(0.074) + 0.963

(0.011) h̃Lt−1 +
0.056
(0.003) ξLt

hSt = −0.623
(0.118) + 0.933

(0.022) h̃St−1 +
0.055
(0.003) ξSt

hCt = 0.295
(0.144) + 0.925

(0.025) h̃Ct−1 +
0.056
(0.004) ξCt

Note: This table reports the posterior mean of the estimated stochastic volatility processes µh, the posterior
mean of the diagonal elements of the coefficient matrix π, and the posterior mean of the error terms of the
stochastic volatility processes ht. In addition, the standard errors are shown in brackets below the estimates.

Furthermore, I define h̃Ft−1 ≡ (hFt−1 − µhF ) for F = L, S,C.

Figure 4 plots the posterior mean of latent global factor volatility processes eht , along

with their two posterior standard deviation bands. These plots highlight the importance of

accounting for time-varying volatility in the global factors. In particular, Panel 4a illustrates

the volatility associated with the level of global bond yields. The level volatility peaks during

2008-2012, with the first peak coinciding with the Great Financial Crisis, during which central

banks implemented monetary stimulus policies to support the economies. The second peak

is likely due to the European Sovereign Debt crisis, causing investors to seek safer assets.

Additionally, we observe a sharp increase in 2023, corresponding with global inflation surges

and the monetary tightening measures to combat these issues. Overall, the volatility related

to the level factor is relatively stable and low, partly contradicting the findings of Hautsch

and Yang (2012), who find high volatility in times of high yields in the US.

Panel 4b shows the global slope volatility. We observe a peak in late 2008 to early

2009, while the impact of the European Debt Crisis in 2011-2012 seems to affect the slope

volatility less significantly. This suggests that during the European Debt Crisis, the overall

level of yields shifted, but the slope of their curves changed only slightly. Additionally, the

impact of the inflation surges in 2022-2023 and the accompanying central bank policies are
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Figure 4: Posterior Mean and Two Posterior Standard Deviation Band of the Stochastic
Volatility Processes eh

F

(a) Global Level Volatility

(b) Global Slope Volatility

(c) Global Curvature Volatilty

Note: The posterior draws of the global level volatility eh
L
, slope eh

S
, and curvature factor eh

C
are obtained

through the Carter and Kohn (1994) algorithm applied on the state space system presented in eq.(18) - (19).
The posterior mean and posterior two standard deviation band are displayed for January 1995 - March 2024.

clearly visible. Interestingly, slope volatility did not react as strongly to the central banks’

monetary tightening measures to combat the recent inflation surge as it did to the stimulus

measures during the Great Financial Crisis. The opposite seems to hold for the level factor.

This could indicate that slope volatility is more influenced by monetary tightening, while

level volatility is more affected by stimulus measures. This relationship requires further

examination, which is beyond the scope of this paper.

The curvature volatility, shown in Panel 4c, exhibits a spike from late 2001 to late

2002. This spike is potentially linked to the aftermath of the Dot-Com Bubble Burst, which

resulted in recessions in Japan, the US and Germany. Additionally, we observe peaks in

2008 and 2023, while there is no significant disturbance in mid-maturity yields during the

European Debt Crisis.
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5.2 Macroeconomic Links

One of the goals of this paper is to identify the macroeconomic forces driving government bond

yields. The literature highlights significant co-movement between the global level factor and

(expected) inflation. Specifically, Diebold et al. (2008) reports a correlation of 0.75 between

G-7 inflation and the global level factor, while Abbritti et al. (2013) finds a 0.94 correlation

between expected inflation of the OECD countries and their global level factor.3 In addition,

Byrne et al. (2019) finds that adding US and European sentiment and economic uncertainty

measures to the regression of the global level factor on global macrofactors increases the mod-

els’ explanatory power by more than 50%. Furthermore, the slope factor is often found to

exhibit co-movement with the real activity. In Abbritti et al. (2013), the correlation between

a proxy for the G-7 real activity and the slope factor is 0.74. On the other hand, Diebold et al.

(2008) finds only a 0.27 correlation between the annual G-7 GDP growth and the slope factor.

Table 6: Correlation Coefficients with the Global Level Factor

Level

Jan 1995: Sept 2008 Oct 2008 : March 2024

HICP -0.07 -0.01
OECD-EI 0.87 -0.04
G7-EI -0.11 0.09
CCI 0.19 -0.48
BCI -0.21 -0.37
EPU -0.09 -0.51

Note: This table presents the correlation coefficients between the extracted global level factor and a set of
macroeconomic variables for two subsamples. Here, the abbreviations for the macroeconomic variables are
HICP = Harmonised Index of Consumer Prices, OECDEI = OECD Expected Inflation, G7-EI = G-7 Expected
Inflation, CCI = Consumer Confidence Index, BCI = Business Confidence Index, and EPU = Economic Policy
Uncertainty.

Figure 5: Time Series of the Global Level Factor, and the OECD Inflation Forecast

Note: This figure plots the posterior mean of the global level factor, together with the OECD one-year inflation
forecast. Both time-series are standardized to illustrate the correlation. The sample consists of quarterly data
ranging from 1995Q1 - 2024Q1, and splits in September 2008..

Table 6 displays the correlation coefficients between the macroeconomic variables

3Abbritti et al. (2013) consider the yield data of Japan, Canada, Switzerland, Germany, Australia, New
Zealand, and the UK.
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and the extracted global level factor. Contrary to the findings of Diebold et al. (2008), the

correlation between the global level factor and the G-7 inflation measure, for which I use the

one-year growth rate of the G-7 Harmonised Indices of Consumer Prices, is close to zero. For

expected inflation, I consider two measures: the OECD one-year ahead inflation point fore-

cast, and the first principal component of a matrix containing the one-year ahead inflation

point forecasts for the G-7 countries. Both measures are quarterly data, so I only use the

level factor for the closing month of each quarter. The OECD expected inflation, which can

be viewed as a proxy for the world expected inflation, is highly correlated with the global

factor in the first sub-sample, robust with the findings of Abbritti et al. (2013). However, as

can be seen in Figure 5, this result radically changes for the second sub-sample. This change

is potentially due to low central bank rates causing the level of the yield curves, especially the

long-ends, to gradually decline, while expected inflation does not show this declining trend

and is instead more volatile. Interestingly, the correlation between the G-7 expected inflation

and the level factor is close to zero in the first subsample, indicating that the inflation and

its expectation were relatively flat during that period. Concluding, these results highlight

the reducing influence of inflation (expectations) on the level movements of the bond yields.

The economic policy uncertainty measure, for which I use the first principal com-

ponent extracted from the matrix containing the economic policy uncertainty indices of the

G-7 countries, has a correlation of -0.51 with the global level factor in the post-2008 period.

Additionally, the sentiment measures are also negatively correlated with the factor in the

second subsample. However, the correlation coefficients of the sentiment and policy measures

are not sufficiently convincing to establish a clear relationship between these macroeconomic

variables and the level factor.

Table 7: Correlation Coefficients with the Global Slope Factor

Slope

Jan 1995: Sept 2008 Oct 2008 : March 2024

CLI 0.46 -0.01
GDPG 0.51 -0.04
UNR -0.73 -0.77

Note: This table presents the correlation coefficients between the extracted global slope factor and a set of
macroeconomic variables for two subsamples. Here, the abbreviations for the macroeconomic variables are CLI
= Composite Leading Indicator, GDP = year-on-year quarterly Gross Domestic Product, UNR = G-7 GDP
weighted Unemployment Rate.

Tabel 7 displays the correlations between the considered macroeconomic variables

and the global slope factor. As indicators of the G-7 real activity, I consider the annual G-7

GDP growth, unemployment rate and Composite Leading Indicator (CLI). The unemploy-
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Figure 6: Time Series of the Global Slope Factor and the G-7 Unemployment Rate

Note: This figure plots the posterior mean of the global slope factor, together with the negative G-7 unem-
ployment rate. Both time-series are standardized to illustrate the correlation. The sample ranges from January
1995 till March 2024, and splits in September 2008.

ment rate is significant negatively correlated with the slope factor in the two subsamples,

as highlighted in Figure 6. The figure highlights the co-movement between the two, briefly

abrupted in 2020. Furthermore, the relationship between the slope factor and the GDP

growth, and the CLI changes after the Great Financial Crisis.

The time-varying volatility in the level factor is used as a proxy of bond market

volatility in Engle et al. (1990). Roughly at the same time, Merill Lynch introduced the Mer-

rill Lynch Option Volatility Estimate (MOVE) Index (BofA, 1988). The index measures the

implied volatility of US Treasury options. It considers options across a range of maturities,

focusing on the 2-year, 5-year, 10-year, and 30-year Treasury bonds. I compute the monthly

average of this index, available from November 2002, and correlate it with the stochastic

volatility processes eht . Figure 7 plots the MOVE index alongside the curvature volatility

process eh
C
t . The two time series have a correlation of 0.81. In comparison, the slope volatility

shares a correlation of 0.77 with the MOVE index, whereas the global level volatility shows

a correlation of only 0.52. This result indicates that the volatility in the US bond market

co-moves with portfolios constructed with mid-term global bonds.

Lips (2012) models the time-varying volatility in US yields using a two-component

GARCH specification and finds a link between the time-varying volatility component and

the VIX, the Chicago Board Options Exchange’s Volatility Index. I construct a global stock

market volatility proxy using the VIX, Volatility DAX Index, FTSE 100 Volatility Index, and

Nikkei 225 Volatility Index, and find no evidence supporting co-movement with the stochastic

volatility processes. This indicates that volatility in global stock markets and bond markets

operate independently. Additionally, for further research, it would be interesting to use a

proxy for the global bond market volatility and compare this with the obtained volatility

processes. However, constructing such a proxy requires the availability of volatility indices

for other major bond markets.

27



Figure 7: Time Series of the MOVE index, and Curvature Volatility Process eh
C
t

Note: This figures plots the posterior draws of the stochastic volatility process eh
C
t , together with the Merill

Lynch Option Volatility Estimate Index. Both time series are standardardized to illustrate the correlation. The
sample ranges from November 2002 till March 2024, due to data availability on Refinitiv.

5.3 Country Factors

To assess the influence of using a one-step approach compared to the two-step estimation

procedure of Diebold et al. (2008), I plot the obtained posterior means of the country factors

against the same factors estimated through OLS. For the ease of the report, the figures are

displayed in Appendix D. The one-step estimation method yields minimal differences for the

level and slope factors, while we observe a greater degree of deviation in the curvature factors.

The narrow posterior standard deviation bands of all country-specific factors, displayed in

Appendix D, suggest a high degree of accuracy in the estimation method and indicate clear

convergence. The remainder of this section discusses the estimation results related to the

country factors.

Figure 8 displays the level, slope, and curvature factors for each country. The most

noticeable aspect is the deviation of Japan’s factors from those of other countries. The Bank

of Japan’s interest rates have been much less volatile historically. In 1999, the Bank of Japan

introduced its Zero Interest Rate Policy, followed by a negative rate policy lasting until March

2024. The consistent monetary policy and infrequent rate changes have resulted in more

stable yields on Japanese government bonds, which explains the deviation of the Japanese

country factors. However, overall, the country factors show clear evidence of commonality in

their dynamics. Performing PCA on each set of country factors confirms this observation,

revealing that a principal component explains 86, 56, and 67 percent of the variances for the

level, slope, and curvature factors, respectively. These findings align with and build upon

those of Diebold et al. (2008), indicating that, with the inclusion of post-2008 data, there

remains one dominant global level factor and one significant global slope factor. Additionally,

the results reveal the presence of one significant global curvature factor.

Table 8 shows the estimates of the country factor loading equations and their

idiosyncratic components αf
i,t. Overall, the high persistence in the idiosyncratic components
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Figure 8: Posterior Mean of the Country Factors of Germany, the United States, the United
Kingdom, and Japan

(a) Country Level Factors

(b) Country Slope Factors

(c) Country Curvature Factors

Note: The posterior draws of country factors li,t, si,t, and ci,t are obtained through the simplified version of
the Kalman Filter applied on the state space system presented in eq.(?? - (10). The posterior mean is displayed
for January 1995 - March 2024.

highlights the significant influence of country-specific driving forces on the country factors,

with only a few exceptions. The factor loadings of the country-level factors on the global level

factors are estimated with high precision, as indicated by their significantly higher posterior

means compared to their posterior standard deviations. Since the loadings are constrained

to sum to one, they are relative to each other. The German level loading is the highest,

and coupled with the relatively low persistence of its idiosyncratic component, this indicates

that the German level factor aligns most closely with the global level factor. In contrast,

the Japanese level loading is less than half that of its German counterpart and is the lowest

among the four, which is consistent with my explanation of the Bank of Japan’s policies.

The Japanese slope factor does not load on the global slope factor and is instead fully

explained by its country-specific part. The UK slope loading is the highest among the four

countries, followed by the US loading. Similar to the German level factor, the UK slope
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Table 8: Parameter Estimates of the Country Factor Equations

Level Factors li,t

lGM,t = αl
GM,t+

0.352
(0.001)Lt +

0.003
(0.001)ẽGM,t, αl

GM,t =
−0.160
(0.219) +

0.672
(0.427)α

l
GM,t−1+

0.004
(0.001)ũ

l
GM,t

lUS,t = αl
US,t+

0.210
(0.001)Lt +

0.021
(0.004) ẽUS,t, αl

US,t =
0.171
(0.047) + 0.910

(0.024)α
l
US,t−1+

0.028
(0.007) ũ

l
US,t

lJP,t = αl
JP,t+

0.158
(0.001)Lt +

0.007
(0.002) ẽJP,t, αl

JP,t =
−0.022
(0.009) + 0.926

(0.019)α
l
JP,t−1+

0.015
(0.003) ũ

l
JP,t

lUK,t = αl
UK,t+

0.281
(0.001)Lt +

0.006
(0.002)ẽUK,t, αl

UK,t =
0.021
(0.011) +

0.979
(0.011)α

l
UK,t−1+

0.016
(0.003)ũ

l
UK,t

Slope Factors si,t

sGM,t = αs
GM,t+

0.228
(0.017)St +

0.010
(0.003)ẽGM,t, αs

GM,t =
−0.005
(0.004) +

0.989
(0.007)α

s
GM,t−1+

0.033
(0.008)ũ

s
GM,t

sUS,t = αs
US,t+

0.348
(0.013)St +

0.010
(0.003) ẽUS,t, αs

US,t =
−0.002
(0.012) + 0.975

(0.016)α
s
US,t−1+

0.035
(0.008) ũ

s
US,t

sJP,t = αs
JP,t+

0.007
(0.009) St +

0.014
(0.003) ẽJP,t, αs

JP,t =
−0.018
(0.009) + 0.985

(0.008)α
s
JP,t−1+

0.018
(0.005) ũ

s
JP,t

sUK,t = αs
UK,t+

0.418
(0.021)St +

0.010
(0.003) ẽUK,t, αs

UK,t =
0.171
(0.050) +

0.797
(0.325)α

s
UK,t−1+

0.028
(0.009)ũ

s
UK,t

Curvature Factors ci,t

cGM,t = αc
GM,t+

0.163
(0.013)Ct +

0.050
(0.018)ẽGM,t, αc

GM,t =
−0.065
(0.027) +

0.962
(0.015)α

c
GM,t−1+

0.170
(0.030)ũ

c
GM,t

cUS,t = αc
US,t+

0.392
(0.017)Ct +

0.067
(0.020) ẽUS,t, αc

US,t =
−0.024
(0.021) + 0.962

(0.015)α
c
US,t−1+

0.121
(0.027) ũ

c
US,t

cJP,t = αc
JP,t+

0.001
(0.001)Ct +

0.018
(0.007) ẽJP,t, αc

JP,t =
−0.039
(0.019) + 0.979

(0.010)α
c
JP,t−1+

0.050
(0.017) ũ

c
JP,t

cUK,t = αc
UK,t+

0.444
(0.015)Ct +

0.054
(0.017)ẽUK,t, αc

UK,t =
−0.038
(0.029) +

0.866
(0.071)α

c
UK,t−1+

0.142
(0.037)ũ

c
UK,t

Note: This table reports the Bayesian estimates of the global model from January 1995 - March 2024 given

by eq. (3) - (4). The posterior standard deviations are reported in parenthesis. I define ẽfi,t ≡ efi,t/σefi
and

ũfi,t ≡ ufi,t/σuf
i
, such that efi,t ≡ σ

e
f
i
ẽfi,t and ufi,t ≡ σ

e
f
i
ẽfi,t. For more details, consider the text.

factor’s idiosyncratic component has a relative low persistence and high standard deviation,

indicating that the UK slope factor closely matches the global slope factor. Additionally,

the German slope loading loads on the global yield slope. This differs from the findings of

Diebold et al. (2008), where the German slope loading was found to be insignificant. This

contradicting finding suggests that the dynamics have shifted over the last fifteen years.

Furthermore, the estimates of the country-specific curvature factor equations exhibit roughly

the same results as those of the slope factors; the Japanese curvature factor is fully explained

by its country-specific part, and the UK yield curvature matches the global curvature factor

most closely.

To analyze the behavior of the country-specific factors compared to the common

forces more closely, I plot the dynamics of the idiosyncratic components αf
i,t in Figure 9.

These plots show how the country-specific factors deviate from their respective global factors

and highlight the importance of implementing time-varying idiosyncratic components. The

German level component is relatively flat, confirming that its level factor closely resembles

the global factor. Additionally, we observe contrasting movements in the level components

of Japan and the US in late 2012 and 2020. The flight to safety (from Japan to the US)
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Figure 9: Posterior Mean of the Idiosyncratic Components of Germany, the United States,
the United Kingdom, and Japan across Time

(a) Level Intercepts

(b) Slope Intercepts

(c) Curvature Intercepts

Note: The figure presents the posterior draws of idiosyncratic components αfi,t for each country, obtained

through the Carter and Kohn (1994) algorithm applied on the state-space system presented in eq.(13) - (14).
The posterior mean is displayed for January 1995 - March 2024.

at the end of 2012 is potentially linked to the political shift in Japan following the election

of Shinzo Abe, combined with the announcement of a quantitative easing round in the US.

Conversely, the pattern in 2020 can be explained by the COVID-19 pandemic, which resulted

in the Federal Reserve cutting rates to near zero and launching quantitative easing programs.

The slope and curvature time-varying intercepts, displayed in Panel 9b and Panel 9c,

exhibit less volatile behavior in the post-2008 period. This convergence suggests that the slope

and curvature factors for the US, UK, and Germany closely match their global counterparts,

potentially due to similar policy measures by their central banks. However, for the German

and US slope components, we observe counter-cyclical movements from 2012 until the end

of the sample. These movements indicate that post-2008, a flattening of the US yield curve

pairs with a steepening of the German yield curve, and vice versa. This relationship could
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be explained by changing investor preferences in short-term sovereign bonds.

5.4 Variance Decomposition

By using the one-step estimation approach combined with time-varying intercepts αf
i,t and

stochastic volatility in the global error terms ηt, the construction of the country-specific

factors differs from that in Diebold et al. (2008). These changes affect the explanatory power

of common forces on the variance of the country-specific factors. In this section, I decompose

the variance of the country-specific factors into portions driven by the common component

and the idiosyncratic components. The time-varying nature of the global factors’ variance

allows for an investigation of the dynamics of this decomposition over time. Specifically, to

identify the sources of uncertainty, I consider the short-term forecast error, given by

V [fi,t+1] = V [αf
i,t+1] + (βfi )

2V [Ft+1] + V [efi,t+1] = σ2
ufi

+ (βfi )
2ωF

t + σ2
efi
, (23)

where ωF
t is the diagonal element of Ωt corresponding with country factor f , for f = l, s, c.

The idiosyncratic part of the decomposition is given by σ2
ufi

+ σ2
efi
, while (βfi )

2ωF
t represents

the common part. Note that the decomposition is possible because the disturbances are mu-

tually uncorrelated in this model.

Figure 10 displays the common component of the one-month-ahead forecast error

variances as a percentage. At first glance, the uncertainty in the country-specific factors

driven by the common forces shows strong co-movement with the stochastic volatility pro-

cesses in these forces. Given the time-invariance of the idiosyncratic variance and factor

loadings, this result is logical. Interestingly, the percentage of uncertainty in the level fac-

tors explained by the common component is, over the entire sample period, lower for each

country compared to Diebold et al. (2008). This result suggests that the idiosyncratic forces

driving country factors have increased since 2008. Furthermore, Panel 10a accentuates the

dependence of the German level factor on the global factor.

The uncertainty in the UK slope factor is primarily explained by the global slope

factor, highlighting the strong co-movement between the two. Furthermore, although the

German slope loading is lower than its US counterpart, it is more influenced by uncertainty

in the common force. This indicates that the idiosyncratic variance of the US is higher than

that of Germany, suggesting greater movement in the US yield curve slope compared to Ger-

many. Furthermore, the results of the country factor variance decomposition of the slope

and curvature factors show the divergence of the Japanese curvature factor with its global

32



Figure 10: One-Month-Ahead Forecast Error Variance
(a) Level Uncertainty

(b) Slope Uncertainty

(c) Curvature Uncertainty

Note: This figure displays the percentage of variance that is explained by the common component part for each
country factor fi,t. The variance of the posterior mean of the country-specific factors fi,t is decomposed into

a idiosyncratic part σ2

u
f
i

+ σ2

e
f
i

and a common component part (βfi )
2ωFt . The posterior mean is displayed for

January 1995 - March 2024.

counterpart. Additionally, the global curvature factor accounts for between 40-80 percent of

the US and UK curvature factors during the sample period. Contrary to Germany, where

this percentage is between 10-40 percent which confirms the higher idiosyncratic dependence

in the German curvature factor earlier found.

5.5 Goodness of Fit

To assess the goodness of fit of the model, I perform two sets of tests. For the first test, I

follow Diebold and Li (2006), who evaluate the model’s ability to capture various yield curve

shapes and accurately fit actual yields. Specifically, I compute the fitted yield curves as a

function of maturity and compare these to the actual yield curves. Figure 11 illustrates the
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model-implied fitted curves for each country on three different dates, selected to showcase

a variety of yield curve shapes. Examination reveals the model’s proficiency in replicating

concave, inverted, and even inverted-humped yield curves. Except for the curve on 1 May

2008 in Germany, the model closely aligns with the actual yield curves.

Figure 11: Fitted Yield Curves Compared to Actual Yield Curves
(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: This figure plots the model-implied fitted yield curves using the mean of the posterior country factor
draws, together with the actual yield curves. For each country, exhibited by a panel, three dates are presented
to assess to goodness of fit of the HSV-DNS model.

The second fit assessment aims to evaluate the models’ proficiency to reproduce data

characteristics and the improvement in model fit when incorporating stochastic volatility in

the global factors error terms. Meng (1994) introduces posterior predictive p-values (ppp-

values), an evaluation method of the models’ fit for Bayesian frameworks. The idea behind

the approach is to generate N draws of the data series ygent and to compute the probability

that a generated series is more extreme than the actual observed data yactt . Intuitively, if

the data fits the model well, the generated data series should be close to the actual data,

resulting in high ppp-values. More specifically, Chan et al. (2019) show that the ppp-value
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can be calculated as the relative amount of draws that exceed the actual data, which gives

ppp = P[g(ygent ) ≥ g(yactt )] =
1

N

N∑
i=1

I [g(y
gen(i)
t ) ≥ g(yactt )], (24)

where I[·] is the indicator function. Furthermore, g(·) denotes a function, which is usually

chosen as a sample statistic. In this case, the pricing errors vt(τj) of the yield data are

assumed to be normally distributed. Therefore, I choose g(.) as E[V |yx] and E[Skew|yx],

where V denotes the sample variance and Skew the sample skewness and yx can be ygent or

yactt .

Using the draws after the burn-in period from the Gibbs Sampler, I generate N =

20, 000 series of yield data ygent from

p(y
gen(i)
t |f (i)t ,Σ(i)

v ) ∼ N(Π(λ)f
(i)
t ,Σ(i)

v ), (25)

where Π(λ) is the matrix containing the country factor loadings, and f
(i)
t and Σ

(i)
v represent

the i-th draw of country factors and the yield pricing error covariance matrix, respectively.

Then, to calculate the sample variance and skewness, I compute the error terms for each

draw as v
gen(i)
t = y

gen(i)
t − Π(λ)f

(i)
t and v

act(i)
t = yactt − Π(λ)f

(i)
t . The threshold g(yactt ) is

then produced by taking the average of the considered sample statistic of all v
act(i)
t draws.

Consequently, the ppp-values can be calculated using eq.(25).

Table 9 shows the ppp-values for the HSV-DNS model and the same model that as-

sumes the global factor error terms ηt to have a constant variance, denoted as the Hierachical

dynamic Nelson-Siegel (HDNS) model. With the exception of the 10-year Treasury and the

1-year Japanese bond, both models are likely to generate yield series data that have more

extreme properties than the actual data, highlighted by the high ppp-values. This result fur-

ther emphasizes the model’s proficiency in capturing the data’s characteristics. Furthermore,

when comparing the HSV-DNS model and the HDNS model, we observe minimal differences

in model fit. This observation indicates that the estimation of the country factors is not

strongly dependent on the stochastic volatility processes of the global factors. Additionally,

the pricing error terms vt(τj) exhibit non-Gaussian skewness. To further examine, I plot the

pricing error terms vt(τj) of the HSV-DNS model in Figure 12. The figure highlights the

influence of outliers on the skewness of the error terms, for example in the German 3-month

Bund. Furthermore, the plots show the model’s weak ability to correctly price the 10-year

Treasury and Japanese bond. Overall, the model fit looks sufficient but shows the potential

for improvement, which would be an interesting topic for further research.
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Table 9: Posterior Predictive P-values

HSV-DNS HDNS

Variance Skewness Variance Skewness

τ E[V |yactt ] ppp E[S|yactt ] ppp E[V |yactt ] ppp E[S|yactt ] ppp

DE
3M 0.009 0.999 -0.850 0.999 0.009 0.999 -0.829 0.999
1Y 0.007 0.996 -0.297 0.989 0.007 0.995 -0.294 0.987
5Y 0.006 0.999 -1.105 0.999 0.006 0.999 -1.126 0.999
10Y 0.019 0.992 0.030 0.409 0.019 0.990 0.027 0.412

US
3M 0.027 0.659 -0.094 0.768 0.028 0.658 -0.095 0.772
1Y 0.005 0.999 -0.030 0.596 0.005 0.999 -0.035 0.610
5Y 0.002 0.998 -0.094 0.766 0.001 0.999 -0.094 0.766
10Y 0.006 0.963 0.771 0.001 0.006 0.964 0.776 0.001

JPY
3M 0.004 0.976 -0.717 0.999 0.004 0.975 -0.724 0.999
1Y 0.002 0.999 0.282 0.002 0.002 0.999 0.277 0.017
5Y 0.003 0.999 -0.013 0.547 0.003 0.999 -0.019 0.561
10Y 0.004 0.999 0.168 0.100 0.004 0.999 0.169 0.094

UK
3M 0.033 0.494 -1.645 0.999 0.035 0.507 -1.255 0.999
1Y 0.002 0.484 -0.408 0.999 0.017 0.482 -0.359 0.997
5Y 0.013 0.535 -0.222 0.959 0.013 0.527 -0.207 0.943
10Y 0.002 0.455 0.006 0.480 0.001 0.455 0.001 0.490

Note: This table exhibits the posterior predictive p-values p of the Hierarchical Stochastic Volatility dynamic
Nelson-Siegel model and the Hierarchical dynamic Nelson-Siegel model. The sample variance V and sample
skewness S are chosen for the function g(·) in eq.(25).

Figure 12: Yield Pricing Errors

(a) Germany (b) United States

(c) Japan (d) United Kingdom

Note: These figures plot the pricing errors vt(τj) of the HSV-DNS model across time and maturity for Germany,
the United States, Japan, and the UK. The sample ranges from January 1995 till March 2024 and considers
eight maturities.
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6 Conclusion

In this paper, I extend the work on global yield factors by Diebold et al. (2008). Although

existing literature often overlooks the time-varying volatility in global yield factors, under-

standing these dynamics is crucial, especially in the context of risk management policies. To

address this gap, I employ a Hierarchical Stochastic Volatility dynamic Nelson-Siegel model,

inspired by Tornese (2023) and incorporate the stochastic volatility framework of Hautsch

and Yang (2012), to further explore how time-varying volatility in global factors influences

global bond yields. Specifically, I consider the yields of German, US, Japanese, and UK

government bonds from January 1995 till March 2024.

Utilizing the one-step Bayesian MCMC estimation method of Byrne et al. (2019) in

combination with the stochastic volatility estimation technique of Hautsch and Yang (2012),

I extract country-specific factors, global factors, and the stochastic volatility processes in the

global factors out of the data. In my empirical study, I find strong evidence of time-varying

volatility in the global factors. The stochastic processes are highly autocorrelated, seem to

evolve dynamically, and take on large values in times of financial distress. The volatility

process of the global curvature factor shows strong co-movement with the MOVE index, a

US bond market proxy. Furthermore, when re-evaluating the global factors’ connection to

the macroeconomy, I find a drastic change in relationship between the global level factor and

the expected inflation post-2008. Additionally, the global slope factor is heavily negatively

correlated with the G-7 unemployment rate. The one-step estimation method that incor-

porates parameter uncertainty in all estimated parameters, yields small differences for the

country level and slope factors compared to standard OLS estimates, and larger ones for the

country curvature factors.

There are many opportunities for future research. To better understand the dy-

namics of global stochastic volatility processes driving bond markets, it would be valuable

to further analyze their relationship with macroeconomic fundamentals and monetary policy

channels. Additionally, with the increasing availability of daily yield data, modeling stochas-

tic volatility in this context could be of interest to market practitioners. Comparing such

volatility processes with, for example, interest rate derivative-implied volatility measures

could yield valuable insights in bond markets’ volatility. In terms of model improvement,

there is a strong case to be made for the use of non-Gaussian error terms. Researching the

influence of skewed and heavy-tailed error term distributions, along with the accommodating

changes in estimation method, could further enhance the insights into the robustness of the

results.
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A Gibbs Sampler

To enhance readability, I define θ- a the parameter set θ minus the sampled parameter at that

particular step of the algorithm, and introduce Θ- = {yt, θ, ft, F̄t, αt}. The full procedure of

the Gibbs Sampler is as follows

1. Initialize Θ

2. Sample the variables in Θ from Θ|yt using S replications, where the initial S0 samples

are discarded

(a) Sample the variables θ from p(θ|yt, ft, Zt, H)

i. Sample each diagonal element of Σv from p(σ2vi |yt, θ-, ft, F̄t, αt, H) ∼ IG

ii. Sample each diagonal element of Σe from p(σ2
efi
|yt, θ-, ft, F̄t, αt, H) ∼ IG

iii. Sample each diagonal element of Σu from p(σ2
ufi
|yt, θ-, ft, F̄t, αt, H) ∼ IG

iv. Sample each element of B from p(βfi |yt, θ-, ft, F̄t, αt, H) ∼ N

v. Sample each combination of C and Φ from p(CF , ϕF |yt, θ-, ft, F̄t, αt, H) ∼ N

vi. Sample each combination of Γ and Ψ from p(γfi , ψ
f
i |yt, θ-, ft, F̄t, αt, H) ∼ N

(b) Sample the country factors ft from p(ft|yt, θ, F̄t, αt, H) using a simplified Kalman

filter method

(c) Sample the global factors F̄t from p(Ft|yt, θ, ft, αt, H) using the Carter and Kohn

(1994) algorithm

(d) Sample the idiosyncratic components αt from p(αf
i,t|yt, θ, ft, F̄t, H) using the Carter

and Kohn (1994) algorithm

(e) Sample the block H from p(H|yt, θ, ft, F̄t, αt)

i. Compute y∗t and run the loop (ii) - (iv) 2000, burning the results of the first

500 iterations

ii. Sample the states st from p(st|y∗t , ht, µh, π, σh,Θ-)

iii. Sample each process of ht from p(hFt |y∗t , st, µh, π, σh,Θ-) using the Carter and

Kohn (1994) algorithm

iv. Sample each pair of µh and π from p(µhF , π
F |y∗t , ht, st,Θ-) ∼ N

v. Sample each diagonal element of Σh from p(σ2
hF

|y∗t , ht, st, µh, π,Θ-) ∼ IG
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B Derivation of the Posterior Distributions

B.1 Derivation of the Time-Invariant Parameter Posterior Distributions

In this section, I show the derivations of the time-invariant parameter posterior distributions

used in the Gibbs Sampler in section 3.2 and explain how to sample from them. For simplicity,

define Θ− as the subset of all elements minus the sampled parameter.

1. Sample the diagonal elements σ2x (where x denotes a placeholder for v, u, e, or h) of

Σv, Σu, Σe, and Σh from the Inverse Gamma conditional posterior distribution:

σ2x | yt,Θ− ∼ IG

(
a+

T

2
, b+

T∑
t=1

u2t

)
,

where
∑T

t=1 u
2
t denotes the sum of squared errors for the corresponding variance ele-

ment. The shape parameter a and scale parameter b are derived from the prior dis-

tribution IG(a, b), and differ for each covariance matrix. The use of non-informative

priors implies a = 0.001 and b = 0.001 for all covariance elements.

2. Sample the elements βfi in B. With a prior βfi = 0 and V f
i = 104, the posterior of βfi

is sampled from βfi |yt,Θ− ∼ N(β̄fi , V̄
f
i ), where

V̄ f
i =

 T∑
t=1

F 2
t

σ2
efi

+
1

V f
i

−1

and

β̄fi = V̄ f
i

 T∑
t=1

fi,tFt

σ2
efi

+
βfi

V f
i

 .
3. Sample (cF , ϕF ). With a truncated normal prior ϕF = 0 and V Fϕ = 104 for ϕF , the

posterior conditional is derived as ϕF |yt,Θ− ∼ TN(ϕ̄F , V̄
Fϕ)· I[|ϕF | < 1], where

V̄
Fϕ =

[
T∑
t=2

(Ft−1)
2

ωF
t

+
1

V Fϕ

]
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and

ϕ̄F = V̄
Fϕ

[
T∑
t=2

(Ft − cF )(Ft−1)

ωF
t

+
ϕF

V Fϕ

]
.

For identification, estimate C = (I− Φ)µF with the latest draws of Φ and Ft.

4. Sample (γfi , ψ
f
i ). With a truncated normal prior ψf = 0 and V fψ = 104 for each ψf

i ,

the posterior conditional is derived as ψf
i |yt,Θ− ∼ TN(ψ̄f , V̄

fψ)· I[|ψf
i | < 1], where

V̄
fψ =

 T∑
t=1

(αf
i,t−1)

2

σ2
ufi

+
1

V fψ


and

ψ̄f
i = V̄

fψ

 T∑
t=2

(αf
i,t − γfi )(α

f
i,t−1)

σ2
ufi

+
ψf

V fψ

 .
For identification, estimate Γ = (I−Ψ)µα with the latest draws of Ψ and αt.

5. Sample (µhF , π
F ). The posterior of µhF is derived as µhF |yt,Θ− ∼ N(µ̄hF , V̄

h
), with a

prior µhF = 0 and V h = 104, where

V̄
h
=

[
T∑
t=1

(1− πF )2

σ2
hF

+
1

V̄
h

]−1

and

µ̄hF = V̄
h

[
T∑
t=1

(1− πF )(hFt − ϕFhFt−1)

σ2
hF

+
µhF

V h

]
.

With a truncated normal prior πF = 0 and V Fπ = 104 for ϕF , the posterior conditional

is derived as πF |yt,Θ− ∼ TN(π̄F , V̄
Fπ)· I[|πF | < 1], where

V̄
Fπ =

[
T∑
t=2

(hFt−1 − µhF )
2

σ2
hF

+
1

V Fπ

]

and

π̄F = V̄
Fπ

[
T∑
t=2

(hFt − µhF )(h
F
t−1 − µhF )

σ2
hF

+
πF

V Fπ

]
.
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B.2 Derivation of the Country Factors Posterior Distribution

Recall the state-space representation for the country factors stored in the vector ft

yt = Π(λ)ft + vt, vt ∼ N (0,Σv),

ft = αt +BF̄t + et, et ∼ N (0,Σe).

To draw the country factors ft in Step 2b of the Gibbs sampler, we derive the conditional

posterior distribution p(ft|yt, αt, B, F̄t). Define xt = {αt, F̄t}, and note that the country

factors ft are not subjected to dynamic properties. Therefore, there is no need for a backwards

recursion method and only the noise et has to be filtered out of ft, through the Kalman Filter.

In particular, I exploit the normal distribution lemma

yt
ft

∣∣∣∣∣ xt ∼ N

yt|xt
ft|xt

 ,

 V [yt|xt ] Cov[yt|x, ft|xt ]

Cov[ft|xt , yt|xt ] V [ft|xt ]

 ,

where

yt|xt = E[yt|xt] = Π(λ)(αt +BF̄t)

ft|xt = E[ft|xt] = αt +BF̄t

V [yt|xt ] = V [vt +Π(λ)et] = Σv +Π(λ)ΣeΠ(λ)
′

Cov[yt|xt , ft|xt ] = Π(λ)Cov[ft|xt , ft|xt ] = Π(λ)Σe

Cov[ft|xt , yt|xt ] = Cov[ft|xt , ft|xt ]Π(λ)
′ = ΣeΠ(λ)

′

V [ft|xt ] = Σe,

to obtain the conditional posterior distribution ft|yt, xt ∼ N (ft|t, V [ft|t]). The normal distri-

bution lemma gives

ft|t = ft|xt + Cov[ft|xt , yt|xt ]V [yt|xt ]
−1
(
yt − yt|xt

)
,

V [ft|t] = V [ft|xt ]− Cov[ft|xt , yt|xt ]V [yt|xt ]
−1Cov[yt|xt , ft|xt ].
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B.3 Derivation of the Carter and Kohn algorithm

The processes Ft, αt, and ht are estimated using the algorithm proposed by Carter and Kohn

(1994). This algorithm proposes that a latent time series can be sampled using the Kalman

Filter and Smoother. This section explains the algorithm in general form and specifies it for

each process. Use the state-space representation

yt = At +Hξt + vt vt ∼ N(0, R), (26)

ξt = C + Fξt−1 + ut ut ∼ N(0, Qt), (27)

to start the Kalman Filter for t = 1, ..., T . The prediction step is summarized by

ξt|t−1 = C +Hξt−1

Pt|t−1 = HPt−1|t−1H
′ +Qt−1

and followed by the updating step

K = Pt|t−1H
′ ·
[
HPt|t−1H

′ +R
]−1

ξt|t = ξt|t−1 · [yt − (At +Hξt)]

Pt|t = [I−KH] · Pt|t−1.

The filter is followed by a backwards smoothing algorithm, the Kalman Smoother. Given

the sample T , the previous results are used to iterate backwards and compute the smoothed

estimates, starting at T − 1, from recursion

Jt = Pt|tF
′P−1

t+1|t,

ξt|T = ξt|t + Jt(ξt+1|T − ξt+1|t),

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t.

The sampling proceeds as follows: at t = T the unobserved states are sampled using ξT |T ∼

N(ξT |T , PT |T ). Then, for t = T − 1, ..., 1, we sample the states as ξt|T ∼ N(ξt|T , Pt|T ). To

specify each process, fit the state space representation shown in section 3.1, in eq. (26) - (27).

For more details, consider C.-J. Kim, Nelson, et al. (1999).
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C Data and Tickers

Table 10: Yield Tickers by Country and Maturity

Country Maturity Ticker

Germany

3M DE3MT=RR
6M DE6MT=RR
1Y DE1YT=RR
2Y DE2YT=RR
3Y DE3YT=RR
5Y DE5YT=RR
7Y DE7YT=RR
10Y DE10YT=RR

United States

3M US3MT=RR
6M US6MT=RR
1Y US1YT=RR
2Y US2YT=RR
3Y US3YT=RR
5Y US5YT=RR
7Y US7YT=RR
10Y US10YT=RR

Japan

3M JP3MT=RR
6M JP6MT=RR
1Y JP1YT=RR
2Y JP2YT=RR
3Y JP3YT=RR
5Y JP5YT=RR
7Y JP7YT=RR
10Y JP10YT=RR

United Kingdom

3M GP3MT=RR
6M GP6MT=RR
1Y GP1YT=RR
2Y GP2YT=RR
3Y GP3YT=RR
5Y GP5YT=RR
7Y GP7YT=RR
10Y GP10YT=RR

Note: This table exhibits the tickers of the government bond yields for all maturities of Germany, the United
States, Japan, and the United Kingdom obtained from Refinitiv Eikon.
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D Estimation Results

Figure 13: Comparison of the Bayesian and OLS Estimates for Country-Specific Level
Factors

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: The figure compares the posterior mean of the curvature factors for Germany, the United States, Japan,
and the United Kingdom to the level factors obtained through OLS estimation. The analysis covers the sample
period from January 1995 to March 2024.
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Figure 14: Comparison of the Bayesian and OLS Estimates for Country-Specific Slope
Factors

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: The figure compares the posterior mean of the slope factors for Germany, the United States, Japan, and
the United Kingdom to the curvature factors obtained through OLS estimation. The analysis covers the sample
period from January 1995 to March 2024.
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Figure 15: Comparison of the Bayesian and OLS Estimates for Country-Specific Curvature
Factors

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: The figure compares the posterior mean of the curvature factors for Germany, the United States, Japan,
and the United Kingdom to the curvature factors obtained through OLS estimation. The analysis covers the
sample period from January 1995 to March 2024.
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Figure 16: The Posterior Mean of the Country-Specific Level Factors with the Posterior
Two Standard Deviation Bands

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: This figure displays the posterior mean of the level factors for Germany, the United States, Japan, and
the United Kingdom together with their two posterior standard deviation bands. The analysis covers the sample
period from January 1995 to March 2024.
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Figure 17: The Posterior Mean of the Country-Specific Slope Factors with the Posterior
Two Standard Deviation Bands

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: This figure displays the posterior mean of the slope factors for Germany, the United States, Japan,
and the United Kingdom together with their two posterior standard deviation bands. The analysis covers the
sample period from January 1995 to March 2024.
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Figure 18: The Posterior Mean of the Country-Specific Curvature Factors with the Posterior
Two Standard Deviation Bands

(a) Germany

(b) United States

(c) Japan

(d) United Kingdom

Note: This figure displays the posterior mean of the curvature factors for Germany, the United States, Japan,
and the United Kingdom together with their two posterior standard deviation bands. The analysis covers the
sample period from January 1995 to March 2024.
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