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Abstract

This thesis performs arbitrage correction of implied volatility surfaces of weekly options

predicted by the model-guided Neural Network approach. Fitting Neural Networks on pri-

cing errors of parametric models generate implied volatility surfaces with large arbitrage

opportunities. The arbitrage violations are especially large for Calendar spread. In order

to eliminate the arbitrage, we use Linear Programming and incorporation of arbitrage con-

ditions into the Neural Network loss function. While the Linear Programming approach is

more efficient in reducing arbitrage, the incorporation of arbitrage conditions into the Neural

Network loss function reduces out-of-sample prediction errors, on average, by a further 8% for

1-day ahead prediction and by up to 16% for 1-month ahead predictions, making it superior

to the model-guided Neural Network in terms of predictions accuracy based on Diebold-

Mariano test, while still reducing arbitrage violations in IVS compared to the original model

by 95%. Overall, we demonstrate that removing arbitrage in Machine Learning-derived IVS

not only aligns models with the no-arbitrage principle but also enhances prediction accuracy.
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1 Introduction

Volatility implied from option prices using the Black-Scholes formula contains information about

the market’s expectations for future price volatility. This information is crucial for gauging the

forward-looking market sentiment, risk perception, and are used for option pricing. Precise

prediction of implied volatility can thus help by making better-informed decisions about asset

allocation and hedging strategies; traders and market makers apply implied volatility in their

trading strategies. The implied volatility surface shows how volatility varies with respect to

moneyness and time-to-maturity. Proper modeling and forecasting of the implied volatility sur-

face (IVS) is of interest to both academics and investors. The parametric option pricing models

are derived such that arbitrage is excluded (Harrison & Kreps, 1979). No-arbitrage is an im-

portant property as it ensures that riskless profit can not be made. Issuers of options could

incur significant losses if they would price options based on models that admit arbitrage. While

nearly all parametric pricing models generate arbitrage-free IVS, Machine Learning models that

have gained popularity in recent years do not ensure to model IVS without arbitrage oppor-

tunities. The surge in the use of Machine Learning models for IVS modeling is mainly driven

by their ability to handle complex non-linear relationships and large-dimensional data. These

benefits result in increased prediction power compared to traditional models (Almeida et al.,

2023; Chen et al., 2023). However, little attention is given to the ability of these models to gen-

erate arbitrage-free IVS, while the potential for arbitrage in Machine Learning-generated IVS

can undermine the reliability of these models for practical applications. We adapt two arbitrage

removal approaches in the literature to the Cont & Vuletić (2023) arbitrage penalties and more

crucially to the Neural Network correction of parametric models as described in Almeida et al.

(2023). Note that, we adjust the definition of the Butterfly spread of Cont & Vuletić (2023) by a

more precise approximation of derivative on a discrete grid, making the Butterfly penalty more

accurate. First, ex-post method focuses on removing arbitrage on the fitted implied volatility

surfaces. An optimization problem is constructed such that one looks for the closest surface to

the Machine Learning generated while considering arbitrage constraints (Cohen et al., 2020).

Secondly, the arbitrage can be tackled by penalizing the arbitrage constraints directly during

the training of the machine learning model (Zhang et al., 2023). This is done by including the

static arbitrage constraints in the NN loss function as a regularization term. Since the Almeida

et al. (2023) parametric correction is fitted on the pricing errors rather than directly, we propose
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a method based on Zhang et al. (2023) approach to remove arbitrage in the parametric corrected

IVS. Note that the parametric correction of the Black-Scholes model is equivalent to fitting the

IVS directly, hence it can serve as a baseline model for our analysis.

This thesis thus focuses on removing arbitrage based on the two approaches adjusted to the

arbitrage penalties as defined in Cont & Vuletić (2023). Specifically, the arbitrage conditions

are incorporated into ex-post static arbitrage removal that is solved using linear programming

in the spirit of Cohen et al. (2020). We thus propose to use Linear Programming considering

the constraints as defined in Cont & Vuletić (2023). Further, we extend the Zhang et al. (2023)

method of including arbitrage conditions to a NN loss function to also work on the parametric

corrected IVS. The implied volatility is modeled directly using Neural Networks as a function of

moneyness and time-to-maturity and by fitting the Neural Network on the pricing errors made

by parametric errors as was proposed by Almeida et al. (2023). Also, we use Gatheral & Jacquier

(2014) approach of SSVI parametrization as a baseline model that fits arbitrage-free surfaces

by penalizing for crossing of the slices of total implied variances lines. We discover that the

magnitude of arbitrage violations do not substantially differ whether the surface was fit directly

or by the model-guided approach of Almeida et al. (2023). Further, we reveal that modeling the

IVS of weekly options using Neural Networks results in more arbitrage opportunities than when

fitting monthly options. This is likely to be caused by the much shorter time-to-expiry of the

weekly options. The rapid time decay, captured by the Greek Theta, can then lead to pricing

inefficiencies that lead to arbitrage opportunities. More crucially, we show that correcting for

the arbitrage leads to a reduction of the prediction error. The reduction in errors happens espe-

cially for out-of-money options, where also most arbitrage violations occur. We thus showcase

that not only the removal of arbitrage in Machine Learning derived IVS can make the models

in line with the no-arbitrage principle but also decrease the prediction errors.

The thesis is structured as follows: Section 2 introduces the relevant literature, Section 3 gives

an overview of the data used and its transformation before the analysis, Section 4 is devoted

to the description and implementation of the methods used, Section 5 then presents the most

relevant results, and Section 6 concludes the thesis.
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2 Literature Review

2.1 Arbitrage

Arbitrage opportunities offer profit without bearing any risks. It can be divided into static

and dynamic arbitrage. Static arbitrage refers to exploiting price discrepancies between assets

or derivatives at a specific point in time. While dynamic arbitrage involves taking advantage

of mispricings over time, usually through strategies that adapt to changing market conditions.

In this thesis, the no-arbitrage condition is defined by the absence of arbitrage opportunities

in Calendar, Call, and Butterfly spreads, following Carr & Madan (2005) assertion that these

criteria are sufficient to ensure no-arbitrage in option prices. The Calendar spread states that

option prices are non-decreasing in time-to-maturity; to ensure no violations of the Call spread,

the call/put option prices have to be increasing/decreasing in moneyness and the absence of

Butterfly spread translates to option prices being convex in moneyness, for more details see

Cousot (2007). The way how Calendar, Call and Butterfly spread penalties for option prices are

computed is described in Cont & Vuletić (2023). Similarly, Zhang et al. (2023) use Calendar

and Butterfly penalties in their adjusted loss arbitrage removal method, however the penalties

are directly computed for the IVS rather than for the option prices.

No arbitrage properties are essential for option pricing models. The First Fundamental The-

orem of Asset Pricing is built around no-arbitrage opportunities; crucially, it states the definition,

which states when no-arbitrage is equivalent to the existence of equivalent martingale measure

(Harrison & Kreps, 1979). Nearly all option pricing models follow no-arbitrage conditions, and

thus its IVS are arbitrage-free. However, this is not the case for IVS derived using Machine

Learning techniques. Therefore, there is a need to remove the arbitrage present in Machine

Learning-generated IVS. The literature on removing arbitrage primarily focuses on smoothing

and filtering the data (Cohen et al., 2020). The smoothing approach employs non-parametric

methods to remove arbitrage, e.g., Aıt-Sahalia & Duarte (2003), employing the polynomial ker-

nel smoothing. Fengler (2009) estimates arbitrage-free IVS by incorporating the arbitrage-free

constraints into the cubic spline smoothing. The cubic spline approach does not require the

input data to be arbitrage-free, which poses a benefit over interpolation procedures to arbitrage

removal such as Kahale (2004). Further, Orosi (2015) builds on Fengler (2009) by employing

a non-parametric regression spline model to generate arbitrage-free call price surfaces. Inter-
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estingly, enforcing the arbitrage conditions can even lead to improved estimation of the pricing

function (Fengler & Hin, 2015). The approach of Yatchew & Härdle (2006) use smoothed con-

straint estimate to enforce monotonicity and convexity of option prices. Gatheral & Jacquier

(2014) define several SVI (stochastic volatility inspired) surfaces. The authors specify several

arbitrage-free SVI surfaces that can be described by a closed-form solution. The smoothing

approaches have in common that usually Euclidean norm (ℓ2 norm penalization) is applied over

polynomial, spline, or kernel parameters to find the smoothed volatilities (Cohen et al., 2020).

As a result, the smoothing method changes most of the implied volatilities, while it is desirable

to correct only the implied volatilities that violate the arbitrage conditions. In this thesis, the ar-

bitrage correction is done by linear programming, in the spirit of Cohen et al. (2020), which only

focuses on correcting arbitrage where it occurs, thus not changing implied volatilities that do

not permit arbitrage. Filtering data is based on removing market observations based on several

specifications, for example, dropping data points with low volume or based on any benchmarks,

including other variables describing option contracts. The way filtering is done usually depends

on empirical findings and may be subjective.

Recently, generative models such as Variational Autoencoders (VAN) and Generative adversarial

networks (GAN) are being used to model implied volatility surface, given the generative nature

of the models, sampling can be used to obtain IVS without arbitrage. In the volGAN model of

Vuletić & Cont (2023), the authors use the Cont & Vuletić (2023) general re-weighting algorithm

that assigns weight to the generated paths based on the violations of arbitrage correction and

using these weights then samples the scenarios. Ning et al. (2023) then train VAE on SDE model

parameters and then sample from the posterior distribution, which is then decoded to obtain

SDE model parameters that define arbitrage-free IV surface.

Further, with the rise of machine learning techniques in modeling volatility, different approaches

to correct arbitrage have emerged. The arbitrage violations are usually treated during the

model’s training by incorporating the penalization for arbitrage constraints into the loss func-

tion. Zhang et al. (2023) and Ackerer et al. (2020) both employ similar arbitrage conditions into

the loss function by considering calendar spread, Durleman’s condition, and large moneyness

behavior. Note that the smoothing is usually applied to the price surface that is then translated

to implied volatilities, while in the adjustment of the loss function, the arbitrage conditions are
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defined on the implied volatility surface; detailed discussion on the conditions for IVS to be

arbitrage-free is in Roper (2010). In this thesis, we extend the Zhang et al. (2023) approach to

Almeida et al. (2023) non-parametric correction making it in line with the asset pricing prin-

ciple. Further, we apply Linear Programming using Cont & Vuletić (2023) arbitrage constraints,

making the two arbitrage method comparable. Further, we adjust the computation of Cont &

Vuletić (2023) Butterfly spread by using central difference as opposed to forward/backward

difference when approximating derivative on a discrete grid. Our adjustment of the Butterfly

spread should thus be more precise and robust to extreme values. Lastly, the Linear Program-

ming approach allows us to focus on correcting the arbitrage violations only where they occur,

while the smoothing approach tend to change the whole IVS even where the IVS is not violating

arbitrage conditions.

2.2 Implied Volatility

The literature on modeling and predicting implied volatility primarily consists of parametric

models based on theory. These models provide a good theoretical foundation for understanding

implied volatility, however their assumptions tend to be too restrictive to correctly model the

dynamics of IV. The Black & Scholes (1973) seminal paper introduced an option pricing model

that can be used to solve for implied volatility given the observed market data. The Black-

Scholes world, however, assumes a constant implied volatility. That is, if markets would price

options based on the Black-Scholes formula, implied volatility would be the same for all options

on the same underlying asset. However, empirically, it is observed that implied volatility varies

across moneyness and time-to-maturity, which presents the so-called "volatility smile" pattern.

The Heston model approaches this issue by relaxing the strong parametric assumption of con-

stant volatility and treats it as a stochastic process (Heston, 1993). Dumas et al. (1998), on the

other hand, develop a straightforward model to capture the non-constant volatility by regressing

polynomial features of the second order of time-to-maturity and moneyness on implied volatility.

Carr & Wu (2005) then approach the problem of IVS modeling by directly modeling the implied

volatility dynamics while considering no-arbitrage conditions.

Nonetheless, recently, with the availability of extensive datasets and increased computing power,

data-driven Machine Learning (ML) methods have gained popularity. This results in Machine

Learning methods beating traditional econometrics methods in predictive tasks (Vrontos et al.,
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2021; Christensen et al., 2023; Zhang et al., 2024). Christensen et al. (2023) extensive study

compares a broad range of ML methods in forecasting realized variance and shows that Neural

Networks provide the best predictions. The flexibility and good generalization of Neural Net-

works are also utilized to fit the IVS. For example, Almeida et al. (2023) approach employs a

feed-forward neural network to correct for the pricing errors made by the parametric models.

The goal is to utilize the power of Machine Learning to model complex non-linear relationships

that can improve the predictive power of parametric models. Similarly, Zhang et al. (2023)

employ long-short term memory recurrent neural network to improve the predictions of IVS;

however, compared to Almeida et al. (2023), Zhang et al. (2023) ensures that the predicted

implied volatility surface is arbitrage-free.

While these studies focus on long-term implied volatility, little is known about the dynam-

ics of short-term options. Andersen et al. (2017) showed that short-maturity options provide

information on jump risks. Since the tenor is short, it is less prone to the expected volatility but

rather describes the risk-neutral jump process. In contrast, the variability of future volatility can

not be ignored for the long-term options. The consequent attractiveness of short-dated options is

mainly in the form of allowing to hedge or bet on market movements over a short period of time.

As a result, these options are used to hedge against heightened volatility around the earnings

announcement days (EAD) (Alexiou et al., 2021) as well as around Federal Open Market Com-

mittee (FOMC) announcements (Carr & Wu, 2005; Wright, 2020). The delta-neutral straddles,

which can be used to lay off the risk of highly anticipated stock movements in any direction,

are purchased by investors with substantial premiums. For example, Johannes et al. (2023)

extracts the FOMC event risk from short-term options. The results show that the FOMC event

risk is a good predictor of realized event risk and carries a large and significant event risk premia.

Given the different nature of short-term options compared to longer-dated options, new in-

formation can be obtained from short-term options. For instance, Todorov (2019) constructs

spot volatility measures based on short-term options offering a precise volatility proxy. Further,

Todorov (2022) leverages the information on jump risks and creates a non-parametric jump

variation measure recovered from short-dated options data.

8



3 Data

The S&P 500 short-term options data are obtained from the OptionMetrics Ivy DB dataset

available at the Wharton Research Data Services (WRDS). The time period spans from 1st

January 2018 to 28th February 2023. For each day, information on options strikes, best bid/ask,

implied volatility, time-to-maturity, and volume are gathered. The prices of the underlying S&P

500 index are obtained from Bloomberg terminal. The S&P 500 options are selected due to

their higher liquidity compared to equity options and the fact they capture the US economy

as a whole. Before proceeding with the analysis, the following filters are applied to the raw

dataset of options obtained from OptionMetrics. Firstly, time-to-maturity is determined as

the current date of an observation minus the expiration date of an option (taking into account

only trading days). The moneyness is computed as mi,t = St
Ki,t

, while the market price of an

option is determined as the midpoint of the bid-ask spread. To account for dividends being paid

out, put-call parity is applied as is a common practice in option pricing literature; we follow

the approach of Wallmeier (2024). Specifically, by considering put and call options that are

closest to at-the-money (usually the most liquid options) and have the same time-to-maturity

and moneyness, the put-call parity is employed to obtain dividend-adjusted price of the S&P

500 Index for each day in the following way:

S∗
t (K∗, T ) = Ct(K∗, T ) − Pt(K∗, T ) +K∗e−r(T −t) (1)

where K∗ denotes the strike attributed to the call and put that are closest to the current price

and S∗
t (K∗, T ) denotes the dividend-adjusted price. Hence, the S∗

t is used instead of St, allowing

us to set dividend yield to 0.

Using the adjusted data, we invert the Black Scholes formula to obtain implied volatility for

each option contract; this is done by Brent’s method using SciPy python package. Following the

common practice in literature, only out-of-money (OOM) options are considered due to their

liquidity (Almeida et al., 2023). Therefore, for moneyness ≥ 1.03, we use out-of-money Put

options to obtain the ITM call price using Put-Call parity. Specifically, the options are grouped

as in Almeida et al. (2023) to deep OTM call (DOTMC) if mi,t ∈ [0.80, 0.90), OTMcall (OTMC)

if mi,t ∈ [0.90, 0.97), ATM if mi,t ∈ [0.97, 1.03), OTM put (OTMP) if mi,t ∈ [1.03, 1.10) and

deep OTM put (DOTMP) if mi,t ∈ [1.10, 1.60]. Lastly, options that were not traded, i.e., their
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volume is 0, are discarded, as well as options with a market price less than 0.125.

In total, we have a dataset with 729,980 observations. The descriptive statistics are presen-

ted in Table 1. It can be seen that most observations are for the at-the-money options, signaling

that weekly options are mainly traded with a strike price around the current stock price, which

is consistent with the UST option’s limited time-to-maturity. Further, it can be noticed that the

options with a time to maturity of less than 3 have higher mean volatility across all moneyness

brackets and also a more intensive smile pattern of the implied volatility compared to options

with a time to maturity between 4 to 7 days. In Figure 1 we plot the implied volatility surfaces

of market data on two different days. The results for monthly options were obtained for the

same period, and the same filters were applied.

Number Mean IV Std. dev. IV
Time to maturity 1-3 4-7 1-3 4-7 1-3 4-7
Moneyness
DOTMC 2,407 4,659 0.91 0.56 0.28 0.21
OTMC 24,611 59,299 0.37 0.27 0.21 0.13
ATM 144,779 202,732 0.23 0.22 0.12 0.10
OTMP 76,578 123,205 0.39 0.31 0.15 0.11
DOTMP 21,930 69,780 0.70 0.55 0.25 0.19
Total 270,305 459,675 0.34 0.30 0.21 0.17

Table 1: Descriptive Statistic. This table depicts total number of observations, mean
implied volatility and its standard violations in buckets of moneyness over y-axis and time-to-
maturity (days) over x-axis.

In addition to the options data, this thesis makes use of following variables: VIX index, that

measures the market expectation of volatility over the next 30 years, is downloaded from the

Bloomberg terminal; Spot Volatility Index (SpotVol) developed by Andersen et al. (2017), which

provides an unbiased estimator of S&P 500 spot volatility with a minimal influence of price

jumps, is downloaded from CBOE website1. The Jump risk measure constructed based on

Bollerslev et al. (2015) describes the expected volatility caused by a sizeable negative jump in

S&P Index price over a short period. Similarly to the Spot Volatility, it can be obtained from

the CBOE website2. Note that both the Spot Volatility Index and Left Tail Volatility index are

constructed from a portfolio of mainly out-of-money short-expiry S&P 500 options, and as To-
1Spot Volatility: https://www.cboe.com/us/indices/dashboard/spotvol/
2Left Tail Volatility: https://www.cboe.com/us/indices/dashboard/LTV/

10

https://www.cboe.com/us/indices/dashboard/spotvol/
https://www.cboe.com/us/indices/dashboard/LTV/


dorov (2022) argues large portion of the IV of UST options could be explained by these indices.

Figure 1: Snapshot of Implied Volatility Surfaces. This figure shows IVS of
market data on 27th August, 2021 (left) and 25th October, 2022 (right).

4 Methodology

4.1 Parametric models

4.1.1 Black & Scholes

Black & Scholes (1973) seminal paper introduced a model for determining the price of European

options. This model sets a landmark in derivatives pricing by setting the theoretical foundations

for deriving a fair price for a European-style option. The general idea of option pricing is that

the price of an option equals its expected discounted payoff; hence, the price at any time t equals

Ct = e−r(T −t)EQ [max(ST −K, 0)] (2)

where Ct denotes a put call price, T is the time of option expiration, K is the strike price and Q

is the risk-neutral measure. Assuming the price process St follows a geometric Brownian motion,
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the Black-Scholes closed-form solution for a fair price of a European call option is:

Ct = StΦ(d1) − e−r(T −t)KΦ(d2), (3)

d1 =
log

(
St
K

)
+ (r + σ2

2 )(T − t)
σ

√
T − t

,

d2 = d1 − σ
√
T − t.

Having defined the analytical solution of the Black-Scholes option pricing model, it can be

noticed that the price depends on 4 parameters: strike price (K), risk-free rate r, time to expiry,

defined as T − t, and lastly, the volatility σ. Most importantly, the volatility parameter is

constant. Therefore, the IVS surface based on Black-Scholes is flat. To obtain the implied

volatility given the observed market price, the following equation needs to be solved

σt = C−1
BS(Ct, St,K, r, T ) (4)

where Ct is the observed market price of a call option. Since the equation has no analytical

solution, numerical methods such as Brents’s or Newton-Raphson have to be used to obtain the

volatility that gives the observed market price when plugged into the Black-Scholes formula.

Brent’s solver, available in Python package SciPy, was used due to its better performance than

the Newton-Raphson method on this thesis options data. Fitting the BS model on a group

of options for the same day can be done by simple average of the options implied volatilities:

σ̂BSt = σ̄(mi,t, τi,t), where σ(mi,t, τi,t) is the market observed data and the average for day t is

taken over the option contracts i = 1, . . . , N .

The BS volatility parameter does not change with respect to the time-to-expiry or strike price.

Such property is shown to be limiting as the empirical observations show that volatility varies

across different time-to-expiry and strike prices. Therefore, the assumption of constant volatility

is too restrictive and is likely to result in an incorrect valuation of options.

4.1.2 Adhoc Black & Scholes

Building on the limitations of the Black & Scholes model that assumes constant implied volatility,

the AdHoc Black & Scholes model estimates the IV as a function of moneyness and time-to-

maturity. Dumas et al. (1998) develop this approach to mimic the way option pricing is done
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in practice: first, the implied volatility is modeled, and then the IV is translated into option

prices. For the cross-section of options, the model for the day t is written as:

σi,t = a0,t + a1,tmi,t + a2,tm
2
i,t + a3,tτi,t + a4,tτ

2
i,t + a5,tmi,tτi,t + ϵi,t, i = 1, . . . , N (5)

where σi,t is the observed market implied volatility, mi,t and τi,t denote the moneyness and

time-to-maturity. As can be seen, the model is a simple linear regression with moneyness, time-

to-maturity, and their squared and interaction terms. This model is able to account for the smile

and term structure of implied volatility while being simple and easy to estimate by ordinary

least squares. Note, however, that the simplified regression approach does not ensure that the

fitted IVS using the estimated parameters α̂̂α̂α will be arbitrage-free.

4.1.3 Carr and Wu model

The Carr & Wu (2016) model is designed to tackle the option pricing problem as is done by

practitioners; the focus is on describing the dynamics of the implied volatility rather than the

process of an underlying asset. Crucially, the near-term dynamics of the implied volatility surface

are modeled while incorporating no-arbitrage conditions that are directly applied to the IVS.

Contrary to traditional option pricing frameworks that impose no-arbitrage restrictions on the

option prices. By following the assumptions of Carr and Wu model, the model considers the

dynamics of the price process St

dSt

St
= √

vtdWt, (6)

where vt is the instantaneous variance of log(St) and Wt denotes Brownian motion. While the

instantaneous variance vt has no specification, Carr & Wu (2016) directly model the dynamics

of IVS by process, which, under risk-neutrality, has the following form

dσt(K,T ) = µtdt+ ωtdZt, (7)

µt being the drift, ωt denotes the volatility of volatility, K and T are strike and time-to-maturity,

respectively, lastly, Zt is Brownian motion. Writing the IVS process dynamics proportional to

the IVS at time t gives
dσt(K,T )
σt(K,T ) = e−ηt(T −t)(mtdt+ ωtdZt), (8)
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here, the new term mt is the average drift of IVS, wt vol of vol, ηt introduces the empirical

observation that long-dated IV tend to move less. Note that the two random elements in the

form of Brownian motions have correlation ρt, which follows a stochastic process. The fact that

mt, wt and ηt are independent of K, τ and σt(K, τ) simplifies the estimation.

Under the Carr & Wu (2016) no-arbitrage condition, the entire IVS can be obtained by solving

the following quadratic equation

1
4e

−2ηtτw2
t τ

2σ4
t +

(
1 − 2e−ηtτmtτ − e−ηtτwtρt

√
vtτ
)
σ2

t (9)

−
(
vt + 2e−ηtτwtρt

√
vtk + e−2ηtτw2

t k
2
)

= 0 (10)

with k = log(K/St) and τ = T − t. As Almeida et al. (2023) point out, the solution to the

quadratic equation depends on the values of the stochastic process only at time t. Therefore,

since the solution for σ2(k, τ) does not depend on any dynamics of these processes when cal-

ibrating the model for a specific day t, the stochastic process values (vt,mt, wt, ηt, ρt) can be

considered as parameters. Resulting in a parametric space Θt = (vt,mt, wt, ηt, ρt) over which

one minimizes the following objective function to obtain the best fit for the σ2
t (Θt, k, τ)

θ̂t = arg min
θt

n∑
i=1

[1
4e

−2ηtτi,tw2
t τ

2
i,tσ

4
i,t +

(
1 − 2e−ηtτi,tmtτi,t − e−ηtτi,twtρt

√
vtτi,t

)
σ2

i,t (11)

−
(
vt + 2e−ηtτi,twtρt

√
vtki,t + e−2ηtτi,tw2

t k
2
i,t

) ]2
(12)

where σi,t is the observed implied volatility for option with ki,t and τi,t. In order to implement the

minimization problem, we employ the SciPy package in Python – the differential evolution solver

is used due to its robust convergence. After obtaining the parameters, we obtain σ2(Θt, k, τ) by

solving the quadratic equation Equation 10 and subsequently take a square root
√
σ2(Θt, k, τ)

to obtain the IV as per Carr and Wu model.

4.1.4 SVI parametrizaiton

The stochastic volatility inspired parametrization, described by Gatheral 2004, aims to model

the volatility smile. The implied volatility is modeled as a function of log-moneyness, hence

a smile for a given maturity is modeled. This model also captures practitioners’ approach to
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implied volatility modeling as the origins of the models were developed at Merrill Lynch. The

appealing properties of this method are two-fold: firstly, the implied variance σ(k, t) is linear in

the log-strike k as k → ∞, given a fixed expiry t. Secondly, the model can be fit such that the

calendar spread arbitrage is not violated. The raw SVI parametrization is defined as

w(k;χR) = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
, (13)

where χR = {a, b, ρ,m, σ}; a ∈ R influences the general level of variance across all strike prices,

shifting the volatility smile vertically, b ≥controls the steepness of the slopes for both the put

and call wings of the volatility smile, thus tightening the smile, |ρ| < 1 adjusts the asymmetry of

the smile. An increase in ρ enhances the slope of the right wing, increasing volatility for higher

strikes, and decreases the slope of the left wing, reducing volatility for lower strikes, resulting in

a counter-clockwise rotation of the smile. The parameter m ∈ R acts as the modal or peak point

of the smile and shifts the entire structure left or right along the strike price axis, aligning the

peak with various market expectations or asset values. Lastly, σ > 0 determines the curvature

at the money, around the point m.

Since in the raw formulation, it is nearly impossible to pose restrictions on the parameters such

that the generated smiles are arbitrage-free, we work with the natural formulations (Gatheral

& Jacquier, 2014):

w(k;χN ) = ∆ + ω

2

{
1 + ζρ(k − µ) +

√
(ζ(k − µ) + ρ)2 + (1 − ρ2)

}
(14)

where the parameters, χN = {∆, µ, ρ, ω, ζ}, live in the following domains ω ≥ 0,∆ ∈ R, µ ∈

R, |ρ| < 1, and ζ > 0. To see how the parameters χN relate to the parameters of the raw

formulation, refer to Gatheral & Jacquier (2014).

Now, we write the Surface SVI (SSVI), introduced by Gatheral & Jacquier (2014), that can

be adjusted such that it produces arbitrage-free surfaces. The SSVI is a special case of the

natural formulation in Equation 14 where χN = {0, 0, ρ, θt, φ(θt)}:

w(k; θt) = θt

2

{
1 + ρφ(θt)k +

√
(φ(θt)k + ρ)2 + (1 − ρ2)

}
(15)
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where θt = σ2(0, t)t is ATM implied total variance and φ is a smooth function. We apply

the power-law parametrization for the φ function, thus φ(θ) = η/
(
θγ(1 + θ)(1+γ)

)
. Using the

power-law parametrization, the static arbitrage is guaranteed if η (1 + |ρ|) ≤ 2.

Since the values of the parameters in the above-mentioned specification can be unstable and

unintuitive, SVI Jump-Wings (SVI-JW) parametrization is used. The SVI-JW works with im-

plied variance instead of total implied variance, making the parameter more intuitive for traders.

Lastly, the SVI-JW parameters depend on time to expiration τ . To obtain the SVI-JW, only the

following transformation of the already obtained parameters from SSVI parametrization needs

to be done:

vt = θt/τ ψt = 1
2

pt = 1
2φ(θt)(1 − ρ) ct = 1

2φ(θt)(1 + ρ) (16)

ṽt = θt

τ
(1 − ρ2)

The SVI-JW parameters can also be derived from the raw parametrization; see Gatheral &

Jacquier (2014).

Now, the calibration of the SSVI model that generates arbitrage-free surfaces is done in three

steps. Firstly, we estimate the parameters for the formulation in Equation 17, so we obtain

the initial estimates v̂t, ψ̂t, p̂t, ĉt and ˆ̃vt. Each of these parameter groups define a single slice of

the volatility surface. Secondly, we eliminate butterfly arbitrage by fixing the vt, ψt, and pt and

compute the other two parameters in the following way

c′
t = p̂t + 2ψ̂t (17)

v′
t = v̂t

4p̂tc
′
t

(p̂t + c′
t)

2 (18)

such parameters define a butterfly arbitrage-free implied volatility smile. Now, due to the

continuity of parameters as described in Gatheral & Jacquier (2014) we can look for (c∗
t , v

∗
t )

that are as close as possible to the original ones by using the sum of squared option price

differences as objective function and bounds for ct defined as ct ∈ (min(ĉt, c
′
t),max(ĉt, c

′
t)) and

vt ∈ (min(v̂t, v
′
t),max(v̂t, v

′
t)). Using a sequential least squares solver, we discover the parameters
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free of butterfly arbitrage and as close as possible to the initial smile. Thirdly, we remove the

calandar spread. Using the estimated parameters up to this point as initial guesses, we find

parameters that minimize the sum of squared distances of the fitted IVs and the observed

market IVs subject to large penalties for violation of calendar arbitrage. This violation happens

if the total variance lines cross, i.e., when looking at two SVI slices that are both described

by different parameters χ1 and χ2. To quantify the crossings, the following points ki, where

i = 1, . . . , n with n ≤ 4, are determined based on where the slices cross. Next, k̃i points are

computed as
k̃1 = k1 − 1,

k̃i = 1
2(ki−1 + ki), if 2 ≤ i ≤ n,

k̃n+1 = kn + 1.

Now, the amounts describing how much the slices cross are given as

xi = max
(
0, w(k̃i;χ1) − w(k̃i;χ2)

)
(19)

Hence, the crossedness xi is used to impose a penalty on the crossing of two slices, which is

equivalent to a violation of calendar spread.

4.2 Non-Parametric Correction

Following Almeida et al. (2023) non-parametric correction approach of parametric models, we

first estimate the IVS of the following parametric models:

• Black-Scholes (equivalent to directly fitting IVS)

• Ad Hock Black Scholes

• Carr-Wu model

• SSVI

The pricing errors of the parametric models, ϵ̂h(mi,t, τi,t), are defined as the difference between

the fitted values, σ̂h(mi,t, τi,t), and the observed values σh(mi,t, τi,t), where h denotes a para-

metric model. The goal of the non-parametric correction is then to minimize the following

function
1
n

n∑
i=1

[ϵ̂h(mi,t, τi,t) − f(mi,t, τi,t)]2 . (20)
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This optimization problem is approached by a feedforward neural network that estimates the

pricing error function f̂(m, τ). The corrected volatility surface is then defined as σ̂h(m, τ) +

f̂(m, τ). One important note of Almeida et al. (2023) is that the non-parametric correction to

Black Scholes errors is equivalent to fitting the implied volatility surface directly – stemming

from the fact that the IV errors in Black Scholes (ϵ̂BS(mi,t, τi,t) = σBS(mi,t, τi,t) − σ̂BS(mt, τt))

are only shifted by a constant BS implied volatility (σ̂BS(mt, τt)), which does not influence

the optimization problem. Hence, essentially, we are fitting directly the market observed data

(σBS(mi,t, τi,t)). Therefore, the results presented for Black Scholes model can be thought of as

a case when the IVS is fitted directly.

4.2.1 Neural Networks

The approximation of the pricing error function is done via Neural Network, which based on the

Universal Approximation Theorem should be able to approximate any well-measurable function.

That is, theoretically, NNs should be able to learn the mapping from inputs to implied volatility.

In the feed-forward NN architecture, the data moves in one direction, starting in the input layer

(input node for each feature) and passing through n hidden layers until an output layer. The

nodes of input, hidden, and output layers are connected, and each connection has its specific

weight; the value of a node is then computed as the sum of the previous nodes multiplied by the

corresponding weights plus bias, and finally, the activation function is used to obtain the node

value. This can be written as:

hi = z (Wi−1hi−1 + bi−1) , for i = 1, . . . ,H, h0 = x (21)

f(xi,t) = WHhH + bH (22)

where xi,t = (mi,t, τi,t)
′ is an input variable, H is the total number of hidden layers, matrix

Wi denotes given weights, bi are the biases (constants), z(·) is the activation function at the

hidden layer. Lastly, hi reflects the hidden layer value, and f(xi,t) is the learnt pricing function.

The activation function is a crucial part of the NN as it introduces the non-linear nature of

the model. ReLU(x), defined as max(0, x), is a popular activation function; also, sigmoid and

hyperbolic tangent are widely used. Note that no activation function is used at the output given

the regression task at hand.
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Since the main focus of this paper is the arbitrage correction, we employ the architectures

as in Almeida et al. (2023). While we experimented with different number of hidden layers,

batch-sizes and number of epochs. The final Neural Network architecture, for which results are

presented, has 3 hidden layers consisting of 32, 16 and 8 neurons (same as the best perform-

ing NN in Almeida et al. (2023)). The decrease of number of neurons in each hidden layers is

motivated by the proven rule of geometric pyramid described in Masters (1993). Further, as

is common practice, activation function at the hidden layers is ReLU. While we experimented

with Elu activation function based on the Horvath et al. (2021) that used Elu to train Neutral

Networks to calibrate parametric models. For this problem it did not yield better results than

ReLU. The Neural Network thus has the following architecture:

Layer Type Number of Neurons Activation Function
1 Input Layer n -
2 Hidden Layer 1 32 ReLU
3 Hidden Layer 2 16 ReLU
4 Hidden Layer 3 8 ReLU
5 Output Layer 1 Linear

Table 2: Neural Network Architecture. This table presents the general architecture used
for non-parametric correction of parametric models. n is the number of features.

For the training of the NN, the number of minibatches and epochs needs to be also determined.

In each epoch, a minibatch, a subset of the dataset, is used to look for the minimimu of a loss

function. The more epochs, the longer the algorithm looks for the optimal minimum. The num-

ber of minibatches influences the speed as well as overfitting of the network. If a large batchsize

is selected than a large proportion of the training data are used for the computation of gradient

leading to a higher chance of overfitting, on the other hand, too small gradient might lead to

too much noise in the gradient steps. In the general case we set batch size to 64 and number

of epochs to 100. However, when running the NN with the customized loss function, the batch

size in increased to 128, such that we have sufficient amount of data to construct relevant IVS in

the loss function for which we compute the arbitrage penalties. Further, we use early stopping

that stops the training process once the model’s loss has not improved in last 15 epochs. The

best weights are then retrieved as the final weights. Lastly, learning rate, the length of a step

in each iteration, is set to a cosine decay. That is at the beginning of the learning process, the

algorithm makes large steps, but as the training progresses the steps are shortening such that

the algorithm is able to find and stay in a optimal minimal of the loss function. Before training
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all input data are standardized.

4.3 Static Arbitrage Correction

Since non-parametric error correction does not ensure that the IVS will be arbitrage-free, we

employ static-arbitrage correction. First, let us define the conditions that must be satisfied

such that the implied volatility surface is arbitrage-free. Following Davis & Hobson (2007), the

call/put option prices should follow the following conditions: increasing in time-to-maturity and

increasing/decreasing and convex in moneyness. These conditions can be written as 3 separate

arbitrage penalties3 (Cont & Vuletić, 2023):

p1(σ(m, τ)) =
Nm∑
i=1

Nτ∑
j=1

(
τj
c(mi, τj) − c(mi, τj+1)

τj+1 − τj

)+

, (23)

p2(σ(m, τ)) =


∑Nm

i=1
∑Nτ

j=1

(
c(mi+1,τj)−c(mi,τj)

mi−mi+1

)+
if c(mi+1, τj) and c(mi, τj) Calls∑Nm

i=1
∑Nτ

j=1

(
c(mi,τj)−c(mi+1,τj)

mi−mi+1

)+
if c(mi+1, τj) and c(mi, τj) Puts.

(24)

p3(σ(m, τ)) =
Nm∑
i=1

Nτ∑
j=1

(
c(mi, τj) − c(mi−1, τj)

mi −mi−1
− c(mi+1, τj) − c(mi, τj)

mi+1 −mi

)+
. (25)

where p1 describes the violation of calendar spread, p2 represents the call constraint and lastly

p3 measures the butterfly spread. Since, contrary to Cont & Vuletić (2023), we also consider

put options, the definition for p2 is split between call options and put options. Further, these

arbitrage conditions apply to the prices of the call/put options, more specifically to relative

call/put price defined as c(mi, τj) = 1
SCBS(S,Ki, τj , σ) to make the arbitrage conditions com-

parable across different option prices. Since the market prices are interpolated as the midpoint

price of the market quotes provided by OptionMetric, we might not necessarily observe the

true price. This can lead to the introduction of arbitrage even in the market data, especially

the Butterfly spread computed as backward minus forward differentiation, which can be very

sensitive to such slight discrepancies. For an example of market price with respect to moneyness

see Figure 8, while in general the shape is convex, when zooming on individual observation,

small deviations can be detected. In order to limit the small discrepancies mostly caused by the

interpolation of market quotes, we propose an adjusted Butterfly measure p3 that uses central

differences to approximate the derivation at each point. The central differences are a superior
3Note, that our condition differs in the denominator of the call constraint p2 due to the fact that we define

moneyness as price/strike, while Cont & Vuletić (2023) use strike/price definition. The other constraints remain
unchanged under the opposed definition.
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approach to numerically approximate derivatives compared to forward and backward differences

as it considers both the point before and the point after the point we approximate the derivative

(Turner, 1994). The adjusted Butterfly spread measure for market data is computed as:

p∗
3(σ(m, τ)) =

Nm∑
i=1

Nτ∑
j=1

(
c(mi, τj) − c(mi−2, τj)

mi −mi−2
− c(mi+1, τj) − c(mi−1, τj)

mi+1 −mi−1

)+
. (26)

the first term approximate the derivative at point mi−1 while the second term at point mi.

Hence, the penalty still checks for the convexity of prices with respect to moneyness. However,

we utilize a more precise approximation of the derivatives, such as our measure is more robust to

extreme values. When computing the arbitrage penalties, first, Black Scholes with corresponding

implied volatility need to be inverted to obtain option prices. The implied volatility surface is

said to be static-arbitrage-free if

Φ(σ(m, τ)) = p1(σ(m, τ)) + p2(σ(m, τ)) + p3((̧m, τ)) = 0. (27)

Since it is not guaranteed that the implied volatility surface will have the same shape each day,

to make the penalties comparable across days, we divide the sum of all penalties by the number

of observations in a given implied volatility surface. In this way, we obtain the arbitrage viola-

tion measure per observation, and thus, larger implied volatility surfaces can be compared with

smaller ones.

In order to correct the arbitrage violations as defined by the above-mentioned measures, we in-

clude them in a linear programming problem and apply the customized loss function as defined

by Zhang et al. (2023).

4.3.1 Linear Programming

Cohen et al. (2020) use linear programming to obtain an arbitrage-free surface. Given that this

optimization problem is run on the price surface, firstly, the implied volatilities are transformed

to prices, then the arbitrage-free prices are estimated, and finally, we invert BS to transform

the prices back into implied volatilities. Having σ̂(m, τ), generated by our Neural Network, that

violates arbitrage-free conditions, the goal is to find the closest σ(m, τ) that is arbitrage-free.

We adjust the optimization problem to the arbitrage penalties of Cont & Vuletić (2023). The
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problem is thus written as:

min
σ(mi,τj),1≤i≤Nm,1≤j≤Nτ

Nm∑
i=1

Nτ∑
j=1

|σ̂(mi, τj) − σ(mi, τj)| (28)

subject to the following constraints,

σ(mi, τj) − σ(mi, τj+1)
τj+1 − τj

≤ 0, ∀1 ≤ i < Nm, 1 ≤ j ≤ Nτ ,

σ(mi+1, τj) − σ(mi, τj)
mi −mi+1

≤ 0, if c(mi+1, τj) and c(mi, τj) Calls, ∀1 ≤ i < Nm, 1 ≤ j ≤ Nτ

σ(mi, τj) − σ(mi+1, τj)
mi −mi+1

≤ 0, if c(mi+1, τj) and c(mi, τj) Puts, ∀1 ≤ i < Nm, 1 ≤ j ≤ Nτ

σ(mi, τj) − σ(mi−1, τj)
mi −mi−1

≤ σ(mi+1, τj) − σ(mi, τj)
mi+1 −mi

, ∀1 ≤ i < Nm, 1 ≤ j ≤ Nτ .

Since this is an ex-post method, it can be applied to all the methods that generate the corrected

parametric IVS. Also, this approach is expected to yield minimal changes to the root-mean

squared error, since we look for the closest price surface that does not violate arbitrage to the

generated one.

Implementation: Since the second constraint changes depending on whether the option is

a call or put – call prices should be increasing in moneyness, while put should be decreasing.

Hence, we apply the correct constraint to each option type. In a case when σ(mi, τj) is a call

and σ(mi, τj+1) is a put, or vice versa, we do not compute the constraint. Hence, in theory, we

run the optimization two times – one with call price surface and the other time with put price

surface with only difference in the second constraint. To translate the minimization into linear

programming, firstly, the objective function in Equation 28 needs to be linearized due to the

non-linear absolute value; this is done by introducing auxiliary variable zi,j , which has following

constraints

zi,j ≥ σ̂(mi, τj) − σ(mi, τj), (29)

zi,j ≥ σ(mi, τj) − σ̂(mi, τj), (30)

given that zi,j is a non-negative variable, the constraints ensure that zi,j is equal to the absolute

value of the difference in Equation 28. Now, the objective function becomes

min
zi,j ,1≤i≤Nm,1≤j≤Nτ

Nm∑
i=1

Nτ∑
j=1

zi,j . (31)
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The constraints are then expressed as Ax ≤ b, where x is a vector of σ and z. The vector

x denoting the variables to minimize, matrix A and vector b describing the constraints are

imputed into the lingprog function of SciPy Python package, together with bounds for x, the

lower bound is not 0, but 0.125 since the data for options are filtered to contain only options

with a price higher than 0, thus x ≥ 0.125. After we obtain the corrected price surface, the

prices are converted back to implied volatilities that should not be arbitrage-free.

4.3.2 Customized Loss Function

This approach implements the arbitrage-free conditions directly into the loss function of the

NN that is being used to fit the implied volatility surface (Zhang et al., 2023). The goal is

to learn the Neural Network to generate arbitrage-free surfaces by penalizing for the arbitrage

violations during the model’s training. For the Neural Network to learn properly, the loss

function needs to be differentiable, as the updates of the weights are based on the gradient of

the loss function. Therefore, we can not directly implement the above-mentioned calendar, call,

and butterfly penalty measures that are based on the prices of the options since the training

is done on volatilities: the issue is that the penalties need to invert Black Scholes to turn the

volatilities into prices. However, this operation is not differentiable hence it can not be part of

the loss function. To overcome this issue, we use two conditions defined in Zhang et al. (2023)

that are closely related to the p1, p2 and p3 penalties, however they are directly applied to the

IVS surface. Firstly, ℓcal addresses the monotonicity of option prices with respect to time-to-

maturity and can be related to the calendar constraint p1. The IVS calendar constraint ℓcal can

be written as

ℓcal(m, τ) = σ(m, τ) + 2τ∂τσ(m, τ) ≥ 0 (32)

Secondly, the p2 and p3 constraints can be captured by Durleman’s Condition, which states that

for every (m, τ), we have

ℓdur(m, τ) =
(

1 − m∂mσ(m, τ)
σ(m, τ)

)2

−
(
σ(m, τ)τ∂mσ(m, τ)

)2
4

+ τσ(m, τ)∂mmσ(m, τ) ≥ 0.

(33)

We notice that both penalties ℓcal and ℓdur are non-linear and contain a derivative of the implied

volatility surface. Since we observe a discrete grid of (m, τ) and thus the IVS is not continuous,

the derivatives ∂τ , ∂m, ∂mm need to be approximated. Following Turner (1994), for the first
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derivative and second derivative, respectively, we employ centered numerical differentiation for

t ∈ {1, . . . , n− 1} we have

∂σ(m, τt)
∂τt

= σ(m, τt+1) − σ(m, τt−1)
τt+1 − τt−1

,
∂2σ(m0, τ)

∂m2
t

= σ(mn, τ) − 2σ(mn−11, τ) + σ(mn−2, τ)
(mn −mn−1)2 .

Edges of the IVS surface, i.e., when t ∈ {0, n}, need special treatment as the edge implied

volatility does not have a neighbor value to the left or the right. Hence, we use the forward

difference (t = 0),

∂σ(m, τ0)
∂τt

= σ(m, τ1) − σ(m, τ0)
τ1 − τ0

,
∂2σ(m0, τ)

∂m2
t

= σ(m2, τ) − 2σ(m1, τ) + σ(m0, τ)
(m1 −m0)2 ,

and backward difference when t = n,

∂σ(m, τn)
∂τt

= σ(m, τn) − σ(m, τn−1)
τn − τn−1

,
∂2σ(m0, τ)

∂m2
t

= σ(mn, τ) − 2σ(mn−11, τ) + σ(mn−2, τ)
(mn −mn−1)2 .

Similar computations also apply to the first derivative of IVS with respect to moneyness. Now,

it is possible to cast the calendar and Durleman’s condition losses of IVS using Tensorflow

Python package operations, which ensures that the loss is differentiable and, thus, gradient for

the updating step can be computed. By adding these penalization terms to the loss function

defined in Equation 27, we obtain the following customized loss function

L = L1 + λ (ℓcal + ℓdur) (34)

where L is the total loss function, L1 is the loss function as defined in Equation 20. Lastly,

to ensure smooth convergence, the ℓcal and ℓdur penalties are scaled by λ such that they do

not dominate the L1 or the other way are not so small that the penalties are negligible in the

training process. In other words, λ represents the strength of the penalization of the violations

of the static arbitrage. For simplicity, λ is the same for both penalties, however, it is possible

to tune different values for each penalty.

Applying this method to the IVS error-correction of Almeida et al. (2023) needs extra attention,

as the error-correction done does not fit the implied volatility surface directly but estimates the

pricing errors that are then added to the parametric IVS. Although a parametric model’s IVS
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is arbitrage-free, the arbitrage conditions of IVS do not apply to the pricing errors. Therefore,

when the estimated pricing errors are passed into the loss function, firstly the parametric error-

corrected IVS is constructed inside the loss
(
σ̂h(m, τ) + f̂(m, τ)

)
and after that the values for

ℓcal and ℓdur can be computed.

To evaluate the performance of the arbitrage corrections, the arbitrage penalty, as defined in

Equation 27, will be used. In this way, it will be possible to distinguish among the static arbit-

rage correction methods performances (where possible) and plot the arbitrage violations on the

(m, τ) grid.

4.4 Empirical Settings

Cross-Section: The predictions are made in the option cross-section. Each day, a parametric

model is calibrated, and its pricing errors are computed. Consequently, to perform the paramet-

ric error correction, for each day t in our dataset, the neural network takes as input and outputs

the following variables:

INPUTS

• moneyness (m)

• time-to-maturity (τ)

OUTPUT

• IVS error-correction
(
f̂(mi, τi)

)

Hence, we estimate t NNs for each day to obtain the corrected implied volatility surface. This

setting does not take into consideration any dynamics but rather focuses on the interpolation

performance. Further, the setting can be extended to h-ahead predictions by training the models

on all data belonging to day t and predicting on the t + h data. Thus, it is possible to assess

how well the non-parametric correction at time t generalizes to future periods.

Implementation: Firstly, the data for each day are divided into train/test sets. For the

interpolation results on the same day, the test set consists of every fifth observation on a given

day, which results in approximately 80/20% train/test split. Given that the dataset is sorted,

it ensures that we train the neural network on options that span most of the moneyness and

time-to-maturity grid. Further motivation for this split ratio is to have enough data points to

calibrate the parametric models consistently. Especially since the Carr and Wu model is not

converging well for the weekly options and thus needs a sufficient number of observations. For
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the h-ahead predictions, the train set consists of options belonging to a whole day t, and the test

set is the t+ h-th day. The parametric models are calibrated on the train set, next we proceed

with training the neural network on the pricing errors using the loss in Equation 20 with n = 2

using xi,t = (mi,t, τi,t)′ as an input vector to learn the pricing error function f(mi,t, τi,t). The

evaluation is done on the test set by firstly fitting a parametric model to the test data using the

parameters obtained from calibration on the train test and then applying the estimated pricing

error function f̂(mi,t, τi,t) to correct for the pricing errors made by a parametric model. Having

estimated the Machine learning-derived IVS, we apply the 3 arbitrage measures to discover the

arbitrage opportunities in the error-corrected models. In order to remove the arbitrage present

in the IVS, the Linear Programming approach is employed. While in the case of the Customized

Loss Function method, the Neural Network for the non-parametric correction is trained using

the loss with regularization of arbitrage penalties (Equation 34). After the arbitrage correction,

we again calculate the arbitrage measures to investigate the effectiveness of the arbitrage cor-

rection methods.

Option Panel: The options Panel also considers time-varying variables, and instead of training

the neural network each day, it is trained once on a panel of option data. The inputs and output

of the NN are:

INPUTS

• moneyness (m)

• time-to-maturity (τ)

• state variables: VIX, VIX9, Spot Volatil-

ity, Jump Risk Measure (yt)

OUTPUT

• IVS error-correction
(
f̂(yt,mi, τi)

)

Thus, this setting allows us to explain the mispricing using the time-varying state of economy

variables; i.e., it is possible to learn the dynamics of the parametric models’ mispricing condi-

tional on several variables.

Implementation: The dataset is split into a train set that consists of options ranging from

the beginning of our dataset to 18th October 2021; the test set then spans from the end of the

train test up until 28th February of 2023. Since we are estimating the IVS over several dates, we

need to slightly adjust the loss in Equation 20 by also summing over the dates. Now, we fit the

26



IVS directly using only moneyness and time-to-maturity features (denoted as Black Scholes as

correcting for Black Scholes pricing errors is equivalent to fitting the surface directly (Almeida

et al., 2023)). Further, time-varying state variables VIX, VIX9, SPOTVOL, and Jump risk

measures are added to investigate how information describing the current state of the economy

can help with fitting the IVS. The feature importance is employed to investigate the most rel-

evant feature for IVS modeling. When applying the arbitrage correction in the panel setting,

the distinction to the cross-section setting is that the test set includes options at various dates.

Hence, when using Linear Programming as a correction of arbitrage, firstly, options are grouped

by the same date, and Linear Programming is applied to each day. In the case of the Customized

Loss Function, the approach is similar, i.e., in the loss, the arbitrage penalization is computed

for each date and then summed up.

4.5 Evaluation

In order to compare performances among our models, we employ the root mean squared error

(RMSE) as the evaluation metric. This is a common practice in a regression task such as the

one at hand. To ensure the comparability to Almeida et al. (2023), we apply the RMSE to the

% of the implied volatility, making it equivalent to the implied volatility RMSE (IVRMSE). The

evaluation metrics, for n observations, is thus defined:

(IV)RMSE =

√√√√ 1
n

n∑
i=0

(100 · σi − 100 · σ̂i)2 (35)

To compare the forecasting accuracy of two models we incorporate the Diebold and Mariano test

(Diebold & Mariano, 2002). The idea is to define a loss differential between prediction errors of

two models

ℓ = e2
1t − e2

2t (36)

where e2
it is the prediction error, defined as the difference between the actual value and the

prediction, for model i and time t. The hypothesis test is designed in a following way:

H0 : E[ℓt] = 0 (The two models have equal predictive accuracy) (37)

H1 : E[ℓt] ̸= 0 (The two models do not have equal predictive accuracy) (38)
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To evaluate the hypothesis, the Diebold-Mariano statistic, for h ≥ 1, is defined as

DM = d̄√[
γ0 + 2∑h−1

k=1 γk

]
/T

(39)

where

d̄ = 1
T

T∑
i=1

di µ = E[di]

γk = 1
T

T∑
i=k+1

(
di − d̄

) (
di−k − d̄

)
for n > k ≥ 1.

Under the null hypothesis the DM statistics is then asymptotically standard normally distrib-

uted. We thus reject the null if |DM | > zα/2, with α being the significance level and z is the

corresponding values of the standard normal distribution.

Lastly, in the options panel, we want to determine the most important features of modeling

the IVS. This is done using Shapley Values, which are based on the Game Theory game pro-

posed by Shapley (1953). The idea is to assess the contribution of each individual agent (feature)

to the final payoff (final prediction). Let N be a set of agents (features) and v function mapping

subset of agents to R such that v(∅) = 0. For a feature i ∈ N the Shapley value is defined as

Si(N, v) =
∑

A⊆N\{i}

(n− 1 − |A|)!|A|!
n! [v(A ∪ {i}) − v(A)], (40)

A denotes the subset of features not including feature i, hence we measure the contribution

of feature i to group A by v(A ∪ {i}) − v(A). The preceding term serves as a weight to each

permutation of the possible subset groups A.

5 Results

5.1 Cross-Section

The Table 3 presents the out-of-sample RMSE results for the same-day and 1-day ahead predic-

tions. The results are displayed for the parametric models, the non-parametric correction, and

subsequently for 2 static arbitrage correction methods – Linear Programming (LP) and Custom-
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Panel A: Same-day
Parametric Error correction Arbitrage Correction (LP) Arbitrage Correction (LF)

BS 10.34 0.68 0.60 0.59
AHBS 2.62 0.61 0.61 0.60
CW 3.39 0.63 0.61 0.63
SSVI 3.42 0.64 0.60 0.61

Panel B: 1-day ahead
BS 10.72 3.37 3.36 2.80
AHBS 4.54 2.91 2.92 2.64
CW 5.13 3.02 3.01 2.91
SSVI 5.26 2.97 2.91 2.84

Panel C: 5-days ahead
BS 13.93 6.34 6.28 5.85
AHBS 7.88 6.88 6.55 6.37
CW 8.42 6.18 6.23 6.05
SSVI 8.33 6.26 6.37 6.11

Panel D: 21-days ahead
BS 14.56 7.91 7.44 6.81
AHBS 11.26 8.95 7.61 7.13
CW 11.89 8.18 7.67 7.09
SSVI 11.56 8.05 7.71 7.24

Table 3: RMSE (%) of prediction in the option cross-section. This table depicts the
RMSE of prediction in the cross section for Black-Scholes, Adhoc BS, and Carr and Wu model.
LP denotes the Linear Programming method and LF the customized loss approach to removing
arbitrage. The numbers in bold stress the best-performing models.

ized Loss Function (LF). In contrast, the values of arbitrage penalties for the error correction

and violations after the arbitrage correction are in Table 5. Overall, we can notice, that the

Linear Programming approach is more efficient in removing arbitrage than the Customized Loss

Function method, however the Customized Loss method yileds the lowest RMSE. This trade-off

can be seen in Figure 2. The LF approach always has lower RMSE, but also higher magnitude

of arbitrage. Further, naturally, with the increase in the prediction period the RMSE increases,

while the arbitrage after the correction stays at a similar level. Suggesting the magnitude of

arbitrage after the correction is rather invariant to the number of prediction steps ahead. The

values of the arbitrage violations of the baseline parametric models can be seen at Table 11. The

Carr-Wu and SSVI which should generate arbitrage-free surfaces have only minimal violations of

the three arbitrage spreads, while the Adhoc BS model, that does not guarantee arbitrage-free

IVS, violates all three spreads; however at lower magnitude than the error correction.

As Table 4 presents the decrease in RMSE between parametric correction (NN) and the Linear

Programming method of removal arbitrage (NNLP) is statistically insignificant for any predic-
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Model Pair h = 1 h = 5 h = 21
NN/NNLP -1.23 (0.22) -0.91 (0.36) -0.55 (0.57)
NN/NNLF -2.25∗∗(0.02) — —
NNLP/NNLF -1.75∗(0.08) — —
Note: *p<0.1; **p<0.05; ***p<0.01

Table 4: Diebold-Mariano (DM) Test Results. This table presents the DM test results
comparing the forecasting accuracy of the models NN, NNPL, and NNLF across different forecast
horizons (h = 1, 5, 21) with Black Scholes being the parametric model. The DM statistic values
corresponding p-values in bracket indicate the relative predictive performance of the models.

tion horizont based on the Diebold-Mariano test. However, the adjustment of the loss function

approach to arbitrage removal shows a significantly lower RMSE at a 5% significance level

compared to the parametric correction. The difference between Linear Programming and Loss

Function has p-value of 0.08, suggesting that the statistical significance at α = 10. We thus show

that the Loss Function arbitrage removal yields a significant increase in predictive performance

compared to the parametric correction.

Panel A: Same Day
Error Correction Arbitrage Correction (LP) Arbitrage Correction (LF)

Calendar Call Butterfly Calendar Call Butterfly Calendar Call Butterfly
BS 0.02 8.0 × 10−8 0.05 6.4 × 10−4 0.0 2.2 × 10−15 0.01 0.00 0.03
AHBS 0.06 1.0 × 10−3 0.01 1.1 × 10−4 0.0 1.0 × 10−16 1.7 × 10−3 0.00 0.03
CW 0.05 0.09 0.08 7.5 × 10−3 0.0 3.4 × 10−17 0.02 0.00 0.01
SSVI 0.05 5.1 × 10−9 0.03 3.2 × 10−4 0.0 8.7 × 10−17 0.01 0.00 0.02

Panel B: 1 day ahead
BS 10.9 0.91 15.4 0.19 1.3 × 10−9 2.5 × 10−9 0.47 0.00 2.01
AHBS 39.3 0.22 25.1 0.26 8.8 × 10−18 8.7 × 10−8 0.43 0.00 2.44
CW 9.23 3.42 14.2 0.12 4.4 × 10−17 8.8 × 10−8 0.93 0.00 1.53
SSVI 14.1 0.29 13.4 1.22 0.0 7.23 × 10−8 1.89 0.00 0.79

Panel C: 5 day ahead
BS 89.2 0.00 29.3 0.15 0.00 5.62 × 10−9 0.88 0.00 2.01
AHBS 118 0.65 87.7 0.49 0.00 2.35 × 10−8 0.43 0.00 2.44
CW 103 22.7 54.4 0.78 0.00 4.23 × 10−8 2.74 0.00 1.53
SSVI 77.5 0.83 65.7 0.54 0.0 4.6 × 10−8 1.53 0.00 2.84

Panel D: 21 day ahead
BS 15.4 0.75 15.8 0.27 0.00 1.63 × 10−8 0.88 0.00 2.01
AHBS 68.8 0.98 34.4 0.23 0.00 8.63 × 10−8 0.43 0.00 2.44
CW 56.3 9.00 30.9 0.37 0.00 1.98 × 10−8 2.74 0.00 1.53
SSVI 43.8 1.77 18.4 0.11 0.0 3.8 × 10−8 0.35 0.00 1.12
Market 0.02 0.16 14.5 0.02 0.16 14.5 0.02 0.16 14.5

Table 5: Mean Arbitrage Errors. This table depicts the mean arbitrage errors for the
market price and for the error and arbitrage correction using linear programming. The average
is taken over 1st of February 2018 to 28th of February 2023. The Arbitrage penalizations
are based on the one-day-ahead test predictions. The numbers in bold signify large arbitrage
violations for a given model and method.

It is apparent that the non-parametric correction generates IVS surfaces with many arbitrage
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opportunities. The most prominent violations are in the calendar spread (p1); this is likely

caused by the fact that the Calendar spread is based on the arbitrage violations over the time-

to-maturity, which, in terms of the weekly option, has a limited number of possible values. On

average, we observe 4 unique time-to-maturity values each day, while the moneyness spans a

much wider grid. Hence, when correcting only using moneyness and time-to-maturity, many

options have similar values for τ , making it harder for the Neural Network to learn the effect

of the time-to-expiration. This results in the NNs likely performing poorly over the τ variable,

leading to increased arbitrage violations of the Calendar spread.

As can be seen in the Table 5, the Linear Programming (LP) approach in removing arbit-

rage is more efficient than the Customized Loss Function (LF). The main difference is in the

ability to remove the Butterfly spread arbitrage (p3). While LP removes nearly all arbitrage in

p3, the LF method is able to reduce the Butterfly spread only to a value of 2. In contrast, the p3

values for error correction attain values as high as 87.7, in the case of the Adhoc Black Scholes,

hence the LF is still able to considerably reduce the Butterfly spread arbitrage. The Calendar

spread arbitrage, the most violated spread, is also the hardest to remove; however, both methods

perform quite similarly, with LP slightly better. The fact that Linear Programming is superior

to the LF in removing arbitrage is no surprise. The adjusted loss function approach is based on

training NN to minimize the RMSE together with arbitrage penalties on the train set, which

may then not translate to the test set. On the other hand, Linear Programming is employed

ex-post and directly targeted to the arbitrage violations in the test sets.

Although the LF approach is not so efficient in removing arbitrage, it is able to decrease the

RMSE of the error-corrected model more than the LP method. Interestingly, when looking at

Table 6, we can notice that the decrease in RMSE is mainly caused by lower RMSE in the

(deep) out-of-money puts. It is especially noticeable for the BS + NN + LF setting, where the

lowest RMSE is for the deep out-of-money put options. For 5 & 21 days ahead decomposition

of RMSE consult Table 12. Looking at the Figure 3, we can notice that most of the arbitrage

violations for BS + NN happen for the deep out-of-money options Hence, this suggests that the

removal of arbitrage opportunities in the DOTMP is connected with decreased RMSE. Even

thought the highest magnitude of arbitrage violations is recorded for the close to expiry ATM

options. These findings are observed for each of the parametric models. Hence, regularization
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Figure 2: Trade-off of Arbitrage and RMSE of 1-day Ahead Predictions:
This Figure plots the RMSE and total value of Arbitrage for the Linear Programming
Correction (LP) and Customized Loss Function approach (LF).

of the arbitrage using adjusted loss can help with predictions of the IVS, especially for the out-

of-money options. This is an important finding as the out-of-money parts of the IVS are the

areas where the parametric models and its nonparametric correction perform the worst. The

parametric models and its NN correction perform best for the at-the-money options, as is also

the case for monthly options in Almeida et al. (2023); these options are usually the most traded,

and thus, we possess the most observations for these options.

Unsurprisingly, the root mean squared error, among the parametric models, is highest for the

BS model that has constant volatility. After the error correction, each model’s RMSE remains

at similar levels. Hinting that the NN can correct for the pricing errors at similar performance

unconditional on the underlying parametric model. Looking at the 1-day ahead predictions,

the errors for the error correction increase quite substantially compared to the same-day in-

terpolation, suggesting that the short-term options error correction does not generalize well to

future errors. This might be caused by the fact that the short-term options are noisier and more

dependent on the specific time-varying state of the economy. This can also be supported by the

higher RMSE for the parametric models for the weekly options compared to monthly options

(see results for monthly options in Appendix A).
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(a) % of occurrences (b) Magnitude (Φ(m, τ))

Figure 3: Arbitrage violations on (m, τ) grid. The left part (a) denotes the per-
cetage number of violations of arbitrage contraints in the given grid, while the right part
(b) presents the total magnitude of the violations as defined in Equation 27 over the whole
period relative to the number of observations. The values are present for 1-day ahead
predictions of BS + NN.

Touching on the arbitrage present in the market data, we can notice that the market obser-

vations of weekly options are not free of arbitrage based on our Calendar, Call, and Butterfly

spreads arbitrage measures. For monthly options, Cont & Vuletić (2023) find that the market

data also tend to not be free of arbitrage. Similarly, the most arbitrage violations for monthly

options are in the Butterfly spread. Cont & Vuletić (2023) argue that it can be attributed to the

noise in the data, especially the way market price is determined – an average of the lowest ask

Panel A: 1 day ahead
DOTMC OTMC ATM OTMP DOTMP

BS 11.57 9.13 9.34 6.91 15.36
BS + NN 4.90 2.84 2.61 3.32 4.47
BS + NN + LF 4.61 2.88 2.33 2.20 1.99
AdHoc BS 8.41 4.20 2.91 4.48 6.13
AdHoc BS + NN 3.21 3.01 2.76 2.75 2.90
AdHoc BS + NN + LF 7.32 4.78 0.52 0.57 0.58
Carr Wu 8.99 4.76 2.72 4.07 6.35
Carr Wu + NN 4.52 2.52 2.33 2.99 4.01
Carr Wu + NN + LF 4.15 3.42 2.32 2.35 2.34
SSVI 8.78 4.21 2.57 4.24 6.01
SSVI + NN 4.73 2.32 2.09 2.56 4.86
SSVI + NN + LF 4.29 3.38 2.16 2.21 2.30
Number of observations 7 066 83 910 347 511 199 783 91 710

Table 6: Decomposition of RMSE. This table depicts decomposition of RMSE into (deep)
out-of-money calls: (D)OTMC, at-the-money options: ATM and (deep) out-of-money puts:
(D)OTMP. The RMSE for LP approach are omitted due to being very similar to RMSE of BS
+ NN. The number in model denotes the lowest RMSE for given models.
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and highest bid. Therefore, we might not necessarily capture the actual market price. These

minor discrepancies can be easily picked up when computing penalties. The fact that the But-

terfly spread arbitrage in the market data is due to the inefficiencies of the collected data and

not due to systematic arbitrage is supported by Figure 6, which shows that the p3 errors are

relatively evenly spread across the (m, τ) grid as opposed to error correction where the arbit-

rage opportunities usually arise for the out-of-money put options (Figure 3). Further, we argue

that specifically since the Butterfly spread checks whether the prices are convex with respect to

moneyness by looking at the differences between the forward and backward numerical differenti-

ation in each point, it may introduce further error. Hence, we propose adjusted Butterfly spread

(p3) computation by using central differences, which provide a more accurate approximation of a

derivative at a particular point. Thus possibly reducing the errors introduced by deriving market

price data from market quotes (the original and adjusted values for p3 can be found in Table 10).

By looking at the arbitrage violation on the (m, τ) grid for each spread, i.e., the decomposition

of Figure 3 at Figure 9. The Calendar spread is mainly violated for very short time-to-maturities

(1-3) days of the deep out-of-money puts, given that the weekly options are heavily traded in

this region due to the ability to hedge short-term events, the arbitrage correction is especially

relevant for that region. However the magnitude is highest for the ATM options with 1-3 days

time to maturity. One potential explanation could be that as the ATM options approach its

expiration, changes in the S&P index price can have high impact on the options prices which

could distort the market and create arbitrage opportunities. The Call spread (p2) is hardly ever

violated, the only violations happen in the top right corner of the moneyness/time-to-maturity

grid defining (deep) out-of-money puts with 5-6 days of time-to-maturity. Unlike Calendar and

Butterfly spread, the amount of arbitrage is mainly concentrated also at the top-right corncer,

however the magnitude is almost negligable compared to the other two spreads. Lastly, the

violations of the Butterfly spread are present in multiple parts of the grid, however, as for other

spreads, the most violations are present for the deep out-of-money puts and the magnitude is

most apparent for the ATM options with the highest values for the close to expiry options that

are popular for speculative trades, which can lead to short-term distortions.

In the Figure 4, the Calendar Spread violations of non-parametric error correction without

(BS + NN) and with arbitrage correction (BS + NN + LF) are plotted over time. The arbitrage
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(a) Without Arbitrage Correction (b) With Arbitrage Correction (LP)

Figure 4: Calendar Spread Violations in Time. The BS+NN model with and
without Linear Programming (LP) Arbitrage Correction for 1-Day Ahead Prediction

correction is able to correct the Calendar spread violation for most of the days; the only outlier

is during the beginning of the COVID-19 period. Still, the magnitude of the violation is lower

after the arbitrage correction than without it. Some of the arbitrage violations that are gen-

erated by the non-parametric correction, such as the one at the onset of the COVID-19 crisis,

might be due to the fact that this arbitrage was present in the market data. It is important

to mention that the magnitude of the arbitrage violations for the non-parametric correction is

considerably higher than for the market data and appears where market data has no arbitrage

violations. Thus, training the NN on market data that would be completely arbitrage-free would

still result in the non-parametric correction generating IVS with multiple arbitrage violations

(see Calendar spread in Figure 7 and Figure 9).

5.2 Option Panel

The results for the options panel setting are presented in Table 7. Since the non-parametric

correction is performing similarly across different parametric models, we only present results for

Black Scholes that correspond to fitting the IVS directly. For the weekly options, we notice that

fitting the options panel using only moneyness and τ as predictors does not lead to considerable

improvement of the RMSE compared to simple constant Black Scholes volatility. However, by

adding the time-varying variables such as VIX, VIX9, Spot Volatility, and Left Tail Risk measure

the RMSE is more than halved. From the arbitrage point of view, interestingly, when adding the

time-varying variables to the feature mix, the Calendar and Butterfly spread greatly increase,

35



while the Call spread is eliminated. Nonetheless, both of the arbitrage corrections are able to

remove most of the arbitrage and also reduce the root-mean-squared error.

BS BS + NN3 BS + NN3F BS + NN3 + LP BS + NN3 + LF BS + NN3F + LP BS + NN3F + LF
RMSE 10.34 7.31 3.03 6.85 6.64 2.83 2.81
Calendar – 2.89 12.85 4.9 × 10−17 0.47 2.3 × 10−4 0.01
Call – 4.40 0.00 1.1 × 10−15 0.18 0.00 0.00
Butterfly – 3.97 16.78 6.8 × 10−8 0.75 9.8 × 10−8 0.11

Table 7: Results for Panel Data Setting. Model + NN3F has extended feature space of
time-varying variables: VIX, VIX9, Spot Volatility, and Left Tail Risk measure. LP denotes the
Linear Programming correction and LF the customized loss approach to removing arbitrage.
Train set is 1st January 2018 to 18th October 2021; test set is ending on 28th February 2023

The RMSE is reduced by more than 5 %, when removing arbitrage. Hence, the arbitrage

correction is usually done in the right direction of the observed implied volatilities. The best-

performing model is the non-parametric correction with time-varying factors trained using the

customized loss function. The RMSE is 2.81 while there is almost no arbitrage in the Calendar

and Call spread and minimal in the Butterfly spread. Therefore, we witness similar behavior of

the two arbitrage corrections as in the cross-section setting. The LP is more efficient in removing

arbitrage, however, in the options panel the difference for p3 is not so different, while the LF

approach decreases RMSE of the non-parametric correction.

Figure 5: Feature Importance. Most important variables for the non-
parametric correction of Black Scholes including time-varying index values of
Spot Volatility, Jump Risk measure, VIX and VIX9 (BS + NN3F)
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In Figure 5 we plot the most important variables in predicting the IVS of the weekly options

based on the Shapley Values. We display it for the BS + NN3F model such that we can

compare it to the results of the monthly options in Almeida et al. (2023). It is not surprising

that the moneyness variable is the most important – considerably more than other variables.

The Spot Volatility measure, which is one of the state of the economy variables, is the second

most important variable, and tau, which has a limited range, is the third. By comparing the

most important features of weekly options with the most important variables for options with

longer maturities used in Almeida et al. (2023), the main difference is in the influence of time-

to-maturity. For the longer options, the time to maturity plays a pivotal role, while weekly

options are mostly driven by moneyness and spot volatility. Also, the VIX, which measures the

expected volatility over the next 30 days, is of relatively low importance to the options with a

time to maturity of less than 7 days. While the Spot Volatility Index, constructed from the out-

of-money short-dated options to minimize the impact of price jumps on the estimation of S&P

500 spot volatility, plays a much more important role in modeling the IVS of weekly options.

6 Conclusion

Focusing on the arbitrage correction of Machine Learning predicted implied volatility surfaces,

we apply the Linear Programming approach and adjustment of the Neural Network loss function

to achieve arbitrage-free IVS generated by the Almeida et al. (2023) non-parametric correction

of pricing errors of parametric models. We discover that the arbitrage violations of the ML

predicted IVS are similar across correcting parametric models and fitting IVS directly, which

corresponds to correcting errors of the Black-Scholes model. The arbitrage violations of the

error correction of weekly options are more pronounced than for monthly options, making the

weekly options the primal interest of this thesis. Most of the arbitrage opportunities arise for

the Calendar spread, which can be connected to the limited range of time-to-maturity of the

weekly options, making the NN perform poorly over the τ variable, which usually only takes

3 unique values in the range of 1 to 7 days. In terms of the arbitrage correction, the Linear

Programming method is consistent in removing arbitrage across all three Calendar, Call, and

Butterfly spreads. The adjustment of the loss function approach struggles to completely remove

arbitrage in the Butterfly spread. Nonetheless, it is still able to remove around 95 % of the

arbitrage generated by the non-parametric correction method. Moreover, this arbitrage method
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has better prediction accuracy compared to the parametric correction at 5% significance level

based on the Diebold-Mariano test; the removal leads to a reduction in the RMSE of 8 %

on average compared to the non-parametric correction for 1-day ahead and for 21-day ahead

prediction the reduction is around 14 %. The reduction happens especially for the deep out-of-

money puts, where the parametric as well as the non-parametric correction tends to perform the

worst. However, this comes with the cost of fitting the out-of-money calls. We also fit the IVS on

the options panel together with VIX, VIX9, Spot Volatility, and Left Tail Risk measure. After

applying the arbitrage correction to the options panel with time-varying variables, it produces

IVS with nearly no arbitrage and decreased RMSE. In the options panel setting, the most

important variables in explaining the IVS of the weekly options are moneyness, SpotVol Index,

and time-to-maturity. Comparing that to the results of monthly options in Almeida et al. (2023),

we notice that the UTS options are not driven by the VIX index but rather by the SpotVol Index,

which seems to be in line with the intuition of the options with short time-to-maturity.
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A Results for monthly options

Monthly data Panel A: Same-day
Parametric Error correction Arbitrage Correction (LP) Arbitrage Correction (LF)

BS 10.34 0.68 0.60 na
AHBS 2.62 0.61 0.61 na
CW 3.39 0.63 0.61 na

Panel A: 1-day ahead
BS 9.86 1.72 1.95 2.80
AHBS 3.5 1.96 1.98 2.64
CW 3.38 1.85 1.92 2.91

Table 8: RMSE (%) of prediction in the option cross-section. This table depicts
the RMSE of prediction in the cross section of monthly options for Black-Scholes, Adhoc Black
Scholes, and Carr and Wu models. The Parametric column denotes the RMSE error of paramet-
ric models, Error correction gives the non-parametric correction RMSE and Error + Arbitrage
presents the RMSE of nonparametric correction that limit static arbitrage.

Monthly data Panel A: Same Day
Error Correction Arbitrage Correction (LP) Arbitrage Correction (LF)

Calendar Call Butterfly Calendar Call Butterfly Calendar Call Butterfly
BS 0.02 8.0 × 10−8 0.05 6.4 × 10−4 0.0 2.2 × 10−15 na na na
AHBS 0.06 1.0 × 10−3 0.01 1.1 × 10−4 0.0 1.0 × 10−16 na na na
CW 0.05 0.09 0.08 7.5 × 10−3 0.0 3.4 × 10−17 na na na

Panel B: 1 day ahead
BS 0.05 0.00 5.87 0.00 0.00 9.38 × 10−9 0.47 0.0 2.01
AHBS 0.27 0.00 2.28 0.00 0.00 2.45 × 10−8 0.43 0.0 2.44
CW 0.29 0.01 1.69 0.00 0.00 3.25 × 10−8 0.93 0.00 1.53
Market 0.00 0.20 11.2 0.00 0.20 11.2 0.00 0.20 11.2

Table 9: Mean Arbitrage Errors. This table depicts the mean arbitrage errors of monthly
options for the market price and for the error and arbitrage correction using linear programming.
The average is taken over 1st January 2018 to 28th February 2023. The Error and Arbitrage
penalizations are based on the one-day-ahead test predictions.

B Market Data

Market data Median 90th quantile 95th quantile 99th quantile
Total 0.0 0.0 0.0 0.33
Calendar spread 0.0 0.0 0.0 0.33
Call spread 0.0 0.5 1.0 2.9
Butterfly spread adjusted 7.9 28 39 140
Butterfly spread (Cont & Vuletić, 2023) 39 108 144 409

Table 10: This table presents the values of arbitrage violations for market data at different
quantiles.
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Figure 6: The percentage number of violations of all spreads on
the moneyness and time-to-maturity grid for Market Data

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(a) % of occurrences

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(b) Magnitude Φ(m, τ)

Figure 7: The percentage number of violations of the given spread on the moneyness and time-to-maturity
grid for the Market Data
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Figure 8: The Market Price on 26th January 2022. This plot shows
the market price with respect to moneyness on x-axis.

C Supplementary Results

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(a) % of occurrences

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(b) Magnitude Φ(m, τ)

Figure 9: Decomposition of Figure 3. The percentage number of violations of the given spread on the
moneyness and time-to-maturity grid for the 1-day ahead Non-Parametric Correction (BS + NN)
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1 Day Ahead
Parametric Models

Calendar Call Butterfly
AHBS 11.4 11.8 18.1
CW 0.18 0.32 0.65
SSVI 0.50 1.78 1.24

Table 11: Mean Arbitrage Errors of Parametric Mode. This table presents the arbit-
rage violations of the parametric models for 1-day ahead prediction. The BS was excluded as
its constant volatility implies 0 arbitrage violations.

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(a) % of occurrences

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(b) Magnitude Φ(m, τ)

Figure 10: The percentage number of violations of the given spread on the moneyness and time-to-maturity
grid for the 5-day ahead Non-Parametric Correction (BS + NN)
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(a) Without Arbitrage Correction (b) With Arbitrage Correction (LP)

Figure 11: Calendar Spread Violations of Error Corrected Black & Scholes with and
without Linear Programming Arbitrage Correction for 1-Day Ahead Prediction

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(a) % of occurrences

Calendar Spread (p1) Call Spread (p2) Butterfly Spread (p3)

(b) Magnitude Φ(m, τ)

Figure 12: The percentage number of violations of the given spread on the moneyness and time-to-maturity
grid for the 21-day ahead Non-Parametric Correction (BS + NN)
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(a) Without Arbitrage Correction (b) With Arbitrage Correction (LP)

Figure 13: Calendar Spread Violations of Error Corrected Black & Scholes with and
without Linear Programming Arbitrage Correction for 1-Day Ahead Prediction
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Panel A: 5 days ahead
DOTMC OTMC ATM OTMP DOTMP

BS 15.34 13.12 12.86 11.21 18.45
BS + NN 10.74 5.82 5.24 6.95 7.52
BS + NN + LF 10.05 6.23 4.91 5.11 5.22
AdHoc BS 10.23 8.56 5.98 9.23 13.12
AdHoc BS + NN 6.95 6.02 5.18 5.61 6.45
AdHoc BS + NN + LF 9.72 8.83 5.04 5.11 6.19
Carr Wu 18.15 10.23 5.65 8.95 14.03
Carr Wu + NN 9.34 5.32 4.95 6.51 8.24
Carr Wu + NN + LF 8.89 7.11 4.85 4.93 4.91
SSVI 17.59 8.75 5.14 8.69 12.45
SSVI + NN 9.51 4.74 4.36 5.89 9.95
SSVI + NN + LF 8.68 6.85 4.54 4.61 5.03

Panel B: 21 days ahead
BS 18.92 13.78 12.12 11.55 21.40
BS + NN 12.65 7.25 6.62 8.43 11.56
BS + NN + LF 11.52 7.32 5.95 5.45 6.23
AdHoc BS 21.02 10.60 7.10 10.99 15.35
AdHoc BS + NN 8.02 7.25 6.91 6.86 7.90
AdHoc BS + NN + LF 8.93 7.87 6.43 6.20 5.81
Carr Wu 22.47 12.03 6.91 10.91 17.62
Carr Wu + NN 11.05 6.35 5.94 7.88 10.12
Carr Wu + NN + LF 10.49 8.10 5.82 5.89 5.84
SSVI 21.95 10.48 6.43 10.47 15.03
SSVI + NN 11.92 5.80 5.23 7.18 12.15
SSVI + NN + LF 10.95 8.46 5.45 5.55 5.76
Number of observations 7 066 83 910 347 511 199 783 91 710

Table 12: Decomposition of RMSE for 5 & 21 days ahead. This table depicts decom-
position of RMSE into (deep) out-of-money calls: (D)OTMC, at-the-money options: ATM and
(deep) out-of-money puts: (D)OTMP. The RMSE for LP approach are omitted due to being
very similar to RMSE of BS + NN. The number in model denotes the lowest RMSE for given
models.
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