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Abstract

This paper explores the application of neural networks to correct implied volatility surface (IVS) models,

focusing on equity options rather than the more commonly studied index options. Better predictions

enable market participants to make more informed financial decisions while providing deeper insights

into the dynamics of underlying stock prices. The study employs neural networks to model error terms in

traditional parametric IVS models, integrating machine learning techniques with the economic principles

underlying these models. The neural network correction method yields significantly lower Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE) values across long-term forecasting and daily

interpolation and prediction tasks. These results highlight the potential of this approach for both market

practitioners seeking precise implied volatility estimates, as well as for researchers aiming to develop robust

models to capture IVS dynamics. Furthermore, this approach is not limited to financial applications, as

it can be applied to studies in other disciplines aiming to enhance forecasting accuracy.
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1 Introduction

Option prices play an important role in financial markets, because they are influenced by

many different factors such as expectations on underlying assets and the market as a whole.

The price of an option is closely related to its Implied Volatility (IV). The IV of an option

varies over time to maturity and moneyness, defined as the price of the underlying asset

divided by the strike price, forming an Implied Volatility Surface (IVS). The predictability in

IVS dynamics is well-documented in the literature (Bernales & Guidolin, 2014; Cont & Da

Fonseca, 2002; Dumas et al., 1998). This predictability offers valuable insights into market

expectations of future volatility, encompassing crucial information about market sentiment,

risk, and the behavior of underlying assets. This allows traders and investors to make better

informed decisions, leading to more effective speculative or hedging strategies. In addition

to providing practical market insights, modeling IVS levels holds significant scientific impor-

tance, as evidenced by the ongoing research and interest in IV since its introduction by Black

and Scholes (1973).

Despite extensive research efforts, conventional parametric IVS models can fall short due to

their inability to capture the complex, non-linear IVS dynamics. This has led to the ex-

ploration of advanced computational techniques to model these variables. The recent surge

in popularity of machine learning methods has greatly improved our understanding of these

techniques, making them an excellent candidate to model non-linear IVS dynamics. While

neural networks can be utilized to directly model variables of interest, they can also be used

to model the error terms of traditional IVS models (Almeida et al., 2023). This corrective

procedure aims to improve predictive power while keeping the original framework of the para-

metric models intact. Further investigation of such methods contributes to both theoretical

and practical advancements in financial modeling.

In this paper, I investigate whether the nonparametric correction of parametric models lead

to improved equity option IVS predictions. This analysis focuses on IVS levels of options

with stocks as their underlying assets. Despite the robustness of parametric models, they

can fail to capture complex, non-linear patterns present in financial data (Hutchinson et al.,

1994). This research aims to determine to what extend the integration of neural networks

as nonparametric corrections can address this issue. This results in the following research
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question:

To what extend can neural network corrected models increase the forecasting accuracy of

parametric equity option IVS models?.

Equity option data fromWharton Research Data Services, n.d. is used to answer this research

question. The data consists of approximately 34 million observations of options, spanning a

five-year period from 2018 to 2023. Various methods are employed in this research. Initially,

different parametric models are used to make IVS predictions. These models include the

baseline model introduced by Black and Scholes (1973), as well as more sophisticated models

presented in the works of Dumas et al. (1998) and Carr and Wu (2016). Each of these models

has a neural network corrected (NNC) counterpart, where the errors terms are modeled using

a neural network. Three distinct prediction exercises are conducted to assess the viability of

these models for different applications. The first exercise involves daily interpolation, mim-

icking how a market practitioner would employ an IVS model. The second exercise focuses

on predictions for one day, one week and one month ahead, evaluating the robustness and

predictive accuracy of the different models. Lastly, the long-term predictions of the models

are assessed to determine whether the NNC correction provides long-term stability. The

models are evaluated using standard performance measures, alongside an assessment of their

model-implied moments. This allows for a comprehensive assessment of the models’ ability

to capture the dynamics of the IVS and the options’ underlying asset returns.

The majority of IVS research has focused on IV values of options with an index as their un-

derlying asset. Consequently, IV models for options with equities as their underlying assets

remain relatively underexplored. Additionally, there is reason to believe that equity option

prices exhibit greater volatility compared to index option prices, given that individual stocks

tend to be more volatile than broad market indices. As a result, the IV values of equity

options are expected to reflect this high price volatility, enriching them with valuable infor-

mation. In this paper, I aim to fill the gap in the literature by focusing on IVS models for

equity options to provide deeper insights into their dynamics. Understanding these nuances

can lead to more accurate pricing models for both options and the underlying equity assets.
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I find that the NNC models produce predictions with significantly lower prediction errors

compared to their original counterparts. In the daily interpolation exercise, the average de-

crease in RMSE and MAE across all different models is 35%. For the daily one day, one

week and one month ahead predictions, the average prediction error decreases by 22%, with

the largest improvements observed for the shorter horizons. For longer-term prediction ex-

tending up to two years, the NNC models also show a decrease of the average prediction

error, with an average reduction of 22%. Diebold-Mariano test results confirm that all these

decreases are statistically significant. Additionally, model performance is evaluated based on

the options’ underlying assets. The results indicate that the reduction in error metrics is

consistent across options for all underlying assets, and not specifically linked to the liquidity

of options.

This paper presents a method to estimate IV values more accurately, with these findings

extending beyond the scope of option pricing. They demonstrate that incorporating a neu-

ral network can enhance predictive accuracy while maintaining the setup of the parametric

models. This is particularly valuable for models based on theoretical assumptions or empir-

ical observations. The hybrid approach preserves the theoretical foundations of parametric

models while leveraging the flexibility and predictive power of neural networks. The random

nature of errors in statistical models make them particularly suitable to model using neural

networks, which can be criticized in certain applications for their lack of transparency. The

broad applicability of this approach suggests potential improvements in predictability across

other fields of research where similar prediction challenges exist. Consequently, this research

not only advances the field of financial modeling but also offers valuable insights for other

research areas interested in enhancing predictive models through the integration of machine

learning techniques.

This remainder of this paper is structured as follows. Section 2 provides an overview of the

relevant literature on IVS modeling. Section 3 details the data used in the study, after which

section 4 describes the various models and evaluation methods used in this research. The

results are presented in section 5. Finally, section 6 concludes the paper and offers suggestions

for further research.
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2 Literature Review

Implied volatility was first introduced through the option pricing formula of Black and Scholes

(1973), where it serves as the volatility parameter that returns market observed option prices.

The Black-Scholes (BS) formula establishes a direct relationship between option prices and

IV values, which has encouraged extensive research into IVS models. Although this formula

laid the foundation of the option pricing literature, some of its assumptions do not hold in

practice. Most notably, the BS framework assumes that IV values are constant across strike

prices and maturities. This assumption is often violated in practice, as IV’s typically increase

for moneyness levels further from one, leading to the well-documented phenomenon known

as the “volatility smile” (Derman & Kani, 1994; Rubinstein, 1994). As a result, various

models arose that incorporate the volatility smile into IVS modeling. Dumas et al. (1998)

and Gonçalves and Guidolin (2006) introduce frameworks that model the IV of an option

based on factors such as the option’s moneyness and time to maturity. The direct modeling

of IV values allows for non-constant IV values, dropping the assumption of constant volatil-

ity. More recent models, such as those by Carr and Wu (2016) and Ulrich et al. (2023), also

propose parametric models to directly estimate IV values.

Recently, nonparametric methods have gained prominence in option pricing literature. Among

these, machine learning techniques such as neural networks have emerged as effective tools to

conduct complex research in the field of finance. Hutchinson et al. (1994) demonstrate that

neural networks provide good results in option pricing, largely due to their ability to capture

non-linear relationships. This notion is supported by the findings of Bali et al. (2021), who

find that allowing for non-linearities in option pricing models significantly enhances perfor-

mance. These promising results extend to the IVS modeling literature, aligning with the

finding that IVS values also exhibit non-linear dynamics (Andersen et al., 2015). Cao et al.

(2020) and Hamid and Iqbal (2004) show that neural networks are able to accurately predict

IV values directly. These findings underscore the potential of neural networks to directly

model IVS levels.

However, recent advancements in research have revealed that neural networks can also be

used to enhance the performance of conventional models. Almeida et al. (2023) demonstrate

that applying neural networks to model the error terms of existing models enhances the pre-
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diction accuracy of index option IVS levels. This framework of nonparametrically correcting

parametric models will be extended in this research to predict IVS levels for equity options

rather than index options.

The majority of IVS research has concentrated on index IVS levels due to their substantial

trading volumes. However, equity options, which also represent a significant segment of fi-

nancial markets, remain relatively underexplored in the literature. Given that equity options

are the second most exchange traded derivative product (World Federation of Exchanges

(WFE) Full Year 2023 Market Highlights), expanding IVS research towards equity options

can provide valuable insights. Equity IVS modeling is not completely uncharted territory, as

evidenced by Ulrich et al. (2023) who successfully model IV values of options with stocks as

underlying values. Moreover, the extensive index IVS literature can prove to be helpful in

equity option IVS modeling, as Bernales and Guidolin (2014) demonstrate that IVS levels of

options on the S&P 500 index can help predict equity option IVS levels.

The IVS models proposed in the literature can be employed to predict an option’s IV value,

which can subsequently be converted into option prices. Breeden and Litzenberger (1978)

show how option prices can be utilized to derive probability distributions of the returns of

the underlying assets, offering valuable insights into the movement of the underlying asset.

Extending this research, Bakshi et al. (2003) demonstrate a method where option prices are

used to construct moments of the risk-neutral distribution of the underlying asset’s returns.

More recent studies also focus on extracting moments from IVS models (François et al.,

2022), highlighting the potential of using option-derived moments to gain more information

about the return distributions of underlying assets. Therefore, models that more accurately

predict IVS levels, and thereby option prices, are extremely valuable as they enhance the

ability to derive a deeper understanding of asset behaviour, improving the ability to make

informed financial decisions.
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3 Data

To conduct the research on IVS models for equity options, I use equity option data from

OptionMetrics via the Wharton Research Data Services database (OptionMetrics, 2024).

The dataset spans a five-year period from February 28, 2018 to February 28, 2023. This

time period includes high volatility periods like the COVID-19 pandemic, as well as more

stable periods. This variety allows the models to be trained and tested under diverse market

conditions. The dataset consists of approximately 34 million observations of options with

different underlying assets. Every observation contains information on expiry dates, strike

prices, best bid and ask prices, and IV values. Option prices are constructed as the average

of the best bid and ask prices. Additionally, underlying asset prices are included to calculate

the moneyness of the options.

The options in this dataset are written on different stocks. These stocks are ranked based

on the number of options written on them, and the top fifty are selected to ensure that the

most liquid options are used in this research. The fifty selected stocks and the exact amount

of options written on them can be found in table 6.1 in the appendix. This selection strikes a

balance between giving a broad overview of the market and ensuring that the quality of the

options included is sufficient, as illiquid options can cause significant prediction challenges.

The decision to focus on a subset of underlying assets is influenced by the research objective,

which prioritizes gaining insights into equity option IVS dynamics over reducing dataset di-

mensions.

The option data for the fifty most traded underlying assets is filtered before being used in the

models. Given that equity options are less liquid than index options (Bernales & Guidolin,

2014), using filters from existing literature on index IVS modeling would result in an insuf-

ficiently small sample. As a result, less restrictive filtering criteria are utilized to maintain a

sufficiently large sample for meaningful model estimation and prediction. Options with zero

trading volume are not excluded, as the bid and ask quotes on non-trading days still pro-

vide useful information that should be captured in the models (Bernales & Guidolin, 2014).

However, options with zero open interest are excluded to eliminate options with no liquidity

that offer little useful information (Goyal & Saretto, 2009). Options with a bid price of zero

are also omitted, as they do not reflect realistic market conditions.
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Table 3.1: Underlying Assets Statistics

Ticker Amount Mean IV St. Dev. Ticker Amount Mean IV St. Dev.

AMZN 2,734,828 0.385 0.136 AZO 503,835 0.328 0.110

TSLA 1,739,849 0.703 0.222 SQ 501,233 0.607 0.198

GOOGL 1,639,177 0.330 0.102 NOW 498,366 0.446 0.133

GOOG 1,502,404 0.329 0.104 REGN 496,257 0.374 0.101

BKNG 1,434,118 0.373 0.143 BIIB 493,773 0.435 0.168

SHOP 1,026,193 0.609 0.190 LMT 490,139 0.285 0.100

NFLX 1,020,231 0.465 0.144 CRM 486,838 0.399 0.126

CMG 974,942 0.390 0.138 V 483,448 0.310 0.113

NVDA 912,362 0.498 0.132 ULTA 482,667 0.435 0.166

META 771,065 0.403 0.125 PYPL 470,100 0.428 0.147

BA 757,149 0.447 0.211 TWLO 469,647 0.617 0.200

AAPL 734,189 0.353 0.115 AMD 457,406 0.549 0.129

ADBE 728,721 0.392 0.134 BLK 447,588 0.320 0.115

MSFT 692,378 0.321 0.099 LULU 444,095 0.459 0.174

BABA 683,526 0.452 0.143 RH 436,787 0.600 0.196

MELI 656,538 0.563 0.166 W 417,768 0.738 0.279

LRCX 646,893 0.456 0.127 PANW 413,141 0.409 0.132

ROKU 593,691 0.722 0.210 MDB 399,738 0.653 0.193

ISRG 588,171 0.371 0.124 CHTR 396,929 0.341 0.112

COST 562,737 0.302 0.118 NOC 388,337 0.302 0.095

GS 561,009 0.344 0.130 NTES 367,503 0.446 0.117

AVGO 548,645 0.372 0.117 MSTR 367,227 0.958 0.309

MA 538,827 0.342 0.124 ILMN 366,757 0.432 0.137

TTD 522,596 0.663 0.194 ALGN 363,472 0.511 0.175

HD 504,415 0.311 0.119 HUM 352,310 0.328 0.106

Notes: Statistics of the different underlying assets in the dataset after filtering. Per underlying asset (Ticker), the amount of

observations, the mean Implied Volatility (IV) and the standard deviation (St. Dev.) is shown.
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The final filters are based on the moneyness of the options. Only out-of-the-money (OTM)

options are retained because the put-call parity ensures that the information of a call option

is mirrored in a put option with the same strike price and time to maturity (Klemkosky &

Resnick, 1979). Following the design of Almeida et al. (2023) and Andersen et al. (2015),

only OTM options are used, as they contain more information because they are traded more

often than in-the-money (ITM) options (Aı̈t-Sahalia & Lo, 1998). Consequently, puts with

moneyness greater than one and calls with moneyness less than one are included. Outliers

with extreme moneyness values are also filtered out of the sample. Several studies on index

option IVS only keep options with moneyness levels close to one (Dumas et al., 1998; Heston

& Nandi, 2000). However, this study opts for more lenient moneyness bounds of [0.5, 2]

to maximize the trade off between maintaining a large sample size and ensuring moneyness

levels remain reasonably close to one. These less strict bounds also acknowledge the higher

volatility equity options possess compared to index options.

Figure 1 provides deeper insights into the filtered data by visualising the IVS of options on

the first day of the sample. The graph is created by averaging the observed IV values across

the fifty different underlying assets, offering a broad indication of the relation between mon-

eyness levels and IV values. This average IV is plotted against moneyness levels for different

maturities, with each dotted line representing a different time to maturity. This figure clearly

illustrates the presence of the implied volatility smile in the data, where moneyness values

near one exhibit lower IV values, while other moneyness values show a higher IV. This effect

is particularly pronounced for shorter smaller maturities and diminishes for longer maturities.

As a result of the applied filters, the remaining dataset consists of 34.070.015 observations

over a five-year period. Table 3.1 presents the summary statistics of options on the different

underlying assets. Within this dataset, Amazon.com, Inc. (AMZN) is the stock with the

highest number of options written on it, followed by Tesla, Inc. (TSLA) and Alphabet Inc.

(GOOGL and GOOG). It is important to note the distinction between the tickers GOOGL

and GOOG, as the former grants voting rights, whereas the latter does not, leading to a

small price difference that justifies their separate inclusion in this study.
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Figure 1: First Day Implied Volatility Surface

Notes: Implied Volatility values plotted against moneyness, taking the average implied volatility across the underlying assets. Every

dotted line corresponds to a single time to maturity. The data is from the first day of the sample (2018-02-28)

The underlying assets of the options are diverse, spanning different sectors. AMZN is the

stock on which the most options are written, and it falls within the consumer discretionary

sector. In contrast, Apple Inc. (AAPL) and Microsoft Corporation (MSFT) are categorized

under the information technology sector. The Boeing Company (BA) is an example of a

stock in the industrial sector, while Biogen Inc. (BIIB) and The Goldman Sachs Group, Inc.

(GS) originate from the healthcare and financial sectors, respectively. An examination of

the properties of options on the different stocks, illustrated in table 3.1, reveals considerable

variation in mean and standard deviation of the IV values across the different underlying

assets. Among the most traded options, TSLA stands out with a high mean IV of 0.703 and

a standard deviation of 0.222, underscoring its reputation as a volatile stock. Conversely,

options on MSFT exhibit the lowest standard deviation of 0.099. These statistics highlight

the diversity within the market, underlining the challenges and insights that can be gained

from modeling equity options.
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4 Methodology

This paper aims to model implied volatility surfaces (IVS), which are defined as implied

volatility (IV) levels of options on a specific underlying asset across different strike prices

(K) and times to maturity (τ). On day t, option i with corresponding K and τ has an IV of

σi,t, and these values across K and τ form the IVS. The Black-Scholes (BS), ad-hoc Black-

Scholes (AHBS) and Carr-Wu (CW) models are used as baseline parametric models, yielding

IV predictions σ̂
(M)
i,t for option i with corresponding strike price K and time to maturity τ ,

using the different modelsM ∈ {BS,AHBS,CW}. These baseline models are then enhanced

by incorporating a neural network to model the prediction errors, following the approach of

Almeida et al. (2023), who show that this method improves prediction accuracy for index

options. This section continues with an explanation of the baseline models. This is followed

by a thorough explanation of the workings of neural networks, and how they are employed

in this research. Finally, the used evaluation methods are introduced.

4.1 Parametric Models

4.1.1 Black-Scholes Model

The BS model, introduced by Black and Scholes (1973), is widely recognized as the foundation

of option pricing literature. At the heart of this model is the assumption that a stock

price St follows a geometric Brownian motion with constant drift and volatility. This is

mathematically represented as:
dSt

St

= µdt + σdWt, (1)

where µ represents the expected rate of return on the stock and σ denotes the volatility that

drives the stock’s returns. Wiener process Wt introduces randomness into stock price move-

ments, modeling the unpredictable nature of financial markets. The drift term µdt accounts

for the average expected return over time, while the volatility term σdWt models the random

fluctuations around this drift.
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By dynamically hedging options with this underlying price process, Black and Scholes (1973)

show that, at time t, the price of a European call option with strike K and time to maturity

τ can be calculated as:

C(St, K, τ, r, σ) = Φ(d1)St − Φ(d2)Ke(−rτ), (2)

d1 =
1

σ
√
τ

[
ln

(
St

K

)
+

(
r +

σ2

2

)
τ

]
,

d2 = d1 − σ
√
τ ,

where r is the risk-free rate and Φ(·) is the cumulative distribution function of the standard

normal distribution. In the BS model, IV values are determined as the value of σ that equates

the theoretical price derived from equation 2 to the market-observed option price. However,

equation 2 illustrates that σ is independent of the strike price K, the time to maturity τ and

the time t, indicating that the model assumes constant volatilities across strike prices and

maturities. Consequently, in this research the BS IV predictions for the test set (σ̂BS
i,t ), are

computed as the average of the IV values observed in the model’s training set.

However, this assumption of constant volatility is inconsistent with actual market behaviour,

where IV values typically exhibit a ‘volatility smile’ (Derman & Kani, 1994). This phe-

nomenon is characterized by lower IV values for at-the-money options compared to those

that are in-the-money or out-of-the-money options. This caveat suggests that, while the

BS model serves as a valuable benchmark, more advanced techniques have the potential to

significantly enhance the accuracy of IVS predictions. In this research, the BS model is also

used as a benchmark against which more sophisticated approaches are evaluated.

4.1.2 Ad-hoc Black-Scholes Model

The ad-hoc or practitioner Black-Scholes (AHBS) model, as proposed by Dumas et al. (1998),

is an extension of the traditional BS model that drops the assumption of constant volatil-

ity, allowing IV values to vary across moneyness and time to maturity. The term ‘ad-hoc’

reflects the fact that the model is tailored to market conditions, rather than derived from

a fundamental theoretical model. The title ‘practitioner’ stems from the assumption that

practitioners employ the AHBS model to fit observed IV levels and subsequently use the BS

framework to derive option prices.
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The AHBS model distinguishes itself from the BS model by allowing IV values to vary with

the option’s moneyness and time to maturity. This variation is achieved by fitting IV values

to these variables through a quadratic equation. Specifically, the IV of option i at time t,

with time to maturity τi,t and moneyness mi,t is estimated through the following regression:

σi,t(at,mi,t, τi,t) = a0,t + a1,tmi,t + a2,tm
2
i,t + a3,tτi,t + a4,tτ

2
i,t + a5,tmi,tτi,t + ϵi,t, (3)

The parameter vector at captures the influence of the moneyness and time to maturity levels

on the IV values. This vector is estimated through ordinary least squares, aiming to minimise

the difference between the observed IV values and those predicted by the model:

at = argmin
at

(
1

N

N∑
i=1

[
σi,t − σ̂i,t(ât,mi,t, τi,t)

]2)
, (4)

where N represents the number of observations in the training set. Equation 4 results in

parameter vector ât, which is subsequently substituted into equation 3 to compute the IV

values calculated using the AHBS model, denoted as σ̂AHBS
i,t (ât,mi,t, τi,t). The AHBS model

diverges from the theoretical assumption of constant volatility inherent to the BS framework,

offering a more accurate representation of IV values by incorporating the volatility smile

observed in the market.

4.1.3 Carr-Wu Model

The CW model, introduced by Carr and Wu (2016), presents an alternative option pric-

ing framework that differs from the BS model. Unlike the BS framework, which models the

underlying price process, the CW model directly models IVS dynamics. This approach is con-

sistent with market practices, where institutional investors manage their positions through

IV values. The model derives IV values by applying no-arbitrage constraints to the shape of

the IVS, enabling accurately modeling the volatility smile while ensuring that the informa-

tion embedded within this smile is captured by the model.
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Carr and Wu (2016) assume that at time t, an option with strike priceK and time to maturity

τ has the following dynamics for its underlying asset price St and implied volatility σt(K, τ):

dSt

St

=
√
vtdWt, (5)

dσt (K, τ)

σt (K, τ)
= e−ηtτ (mtdt+ wtdZt) ,

where vt is the time t instantaneous variance rate of the underlying asset price, mt and wt are

the respective drift and volatility of the implied volatility process and e−ηt is an exponential

dampening factor to accommodate for the empirical observation that implied volatilities of

options with long maturities tend to move less. The processes Zt and Wt are modeled as

Brownian Motions that are used as shocks for the stock price and volatility process. They

have correlation ρt, which is a stochastic process that takes on values in the interval [−1, 1].

The values of mt, wt and ηt are allowed to be stochastic processes, uncorrelated to K, τ and

σt(K, τ).

Using no-arbitrage constraints on the shape of the IVS, Carr and Wu (2016) show that the

following quadratic equation must hold for every option i with strike K, time to maturity τ ,

implied volatility σi,t and relative strike k = ln(K/St) on day t:

1

4
e−2ntτw2

t τ
2σ4

i,t +
(
1− 2e−2ntτmtτ − e−ntτwtρt

√
vtτ
)
σ2
i,t

−
(
vt + 2e−ntτwtρt

√
vtk + e−2ntτw2

t k
2
)
= 0.

(6)

It is crucial to note that the solution of this equation only depends on the current values of

the five processes (vt,mt, wt, ηt, ρt). Consequently, parameter vector θt = (vt,mt, wt, ηt, ρt),

must be estimated daily through non-linear least squares. Using option data from day t,

where the IV of option i is σi,t = σt(ki,t, τi,t), θt+1 can be estimated as follows:

θ̂t+1 = argmin
θt

n∑
i=1

[
1

4
e−2ηtτi,tw2

t τ
2
i,tσ

4
i,t +

(
1− 2e−2ntτi,tmtτi,t − e−ntτi,twtρt

√
vtτi,t

)
σ2
i,t

− (vt + 2e−ntτi,twtρt
√
vtki,t + e−2ntτi,tw2

t k
2
i,t)

]2
,

(7)

where n represents the number of observations in the training set. After obtaining θ̂t, IV

estimates σ̂CW
i,t can be obtained for the test set by solving equation 6, using θ̂t and the relative

strike k and time to maturity τ of the option as inputs.
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4.2 Neural Networks

The models introduced in section 4.1 generate IV predictions σ̂
(M)
i,t , whereM ∈ {BS,AHBS,CW}.

To improve the accuracy of these predictions, they are refined using neural networks, result-

ing in enhanced neural network-corrected (NNC) predictions for each model: σ̂
(M,NNC)
i,t . This

subsection begins with an explanation of the fundamental mechanisms underlying neural

networks, followed by an explanation of their application within the context of this research.

4.2.1 Neural Network Framework

The feed-forward neural networks used in this research map input vectors x to predicted

outputs y, effectively learning the function f(x) = y. This is done through a series of in-

terconnected layers of neurons, consisting of an input layer, one or more hidden layers and

an output layer. The neurons in each layer are connected to every neuron in the previous

layer, forming a network capable of approximating complex functions. Figure 2 provides a

schematic overview of such a network, where a neural network maps x ∈ R3 onto y ∈ R1

through three hidden layers, each containing four neurons. The number of hidden layers

and the amount of neurons within those hidden layers, known as the respective depth and

width of the neural network, are hyperparameters that can be adjusted to influence model

performance.

Figure 2: Neural Network Framework Example

Notes: Schematic overview of a Neural Network with 3 hidden layers, 4 neurons per hidden layer, 3 input variables and one output

variable.
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In a neural network, each neuron receives input, which is subsequently transformed into

output. The input of a neuron is the weighted sum of the outputs from the neurons in the

previous layer. Denoting n
(i)
l as the output of the i-th neuron in layer l, its input is equal to:

w
(1)
i,l n

(1)
l−1 + w

(2)
i,l n

(2)
l−1 + · · ·+ w

(K)
i,l n

(K)
l−1 , (8)

where w
(k)
i,l represents the weight of the connection between n

(i)
l and n

(k)
l−1, and K denotes the

number of neurons in layer l − 1. To obtain output n
(i)
l , a bias term is added to the sum of

inputs, and the resulting value is passed through an activation function a(·):

n
(i)
l = a

(
bi,l +

K∑
k=1

w
(k)
i,l n

(k)
l−1

)
. (9)

The output value of the neuron reflects its level of activity and the importance within the

network. Neurons with higher values are more active and have a bigger influence on the

output of the network. The same principle applies to weights, which play a crucial part

in determining the significance of connections between neurons. Higher weights indicate

stronger connections, implying that the value of the previous neuron substantially influences

the value of the current neuron. At its core, the weights determine the relative importance

of specific inputs on the prediction process.

Extending equation 9 to matrix algebra, the outputs of all the neurons in layer l can be

represented as:

Nl = a (WlNl−1 +Bl) , (10)

where Wl denotes the weights corresponding to the connections between layer l − 1 and

layer l, Nl−1 represents the outputs of the neurons in layer l − 1, and Bl denotes the biases

for layer l. The activation function a(·) is a critical component, introducing non-linearity

into the model. It determines whether a neuron should be activated and its level of impor-

tance. Popular choices include the sigmoid function
(
a(x) = ex

1+ex

)
and the ReLu function(

a(x) = max(0, x)
)
, both of which are simple non-linear functions that map the input onto

a nonnegative output space. In this context, the biases Bl play a significant role in the acti-

vation of the neurons. Adjustments in bias shift the activation threshold, directly influencing

whether neurons remain active or become dormant. These adjustments are essential for a

neural network’s ability to learn and adapt to different data.
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Equation 10 underscores the influence that weights and biases have on neuron outputs, high-

lighting the importance of accurately estimating these parameters. The process of estimating

these variables and training the neural network is known as backpropagation. Training data

is used to make N predictions, and the Root Mean Squared Error (RMSE) between the

predictions and the target variables is calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi), (11)

where ŷi represents the output of the model, specifically the value of the neuron in the final

layer L. Due to the recursive nature of equation 10. The model output can be expressed in

terms of the model input N0 = x as follows:

NL = a
(
WLa

(
WL−1 · · · a(W1x+B1) + · · ·+BL−1

)
+BL

)
(12)

The value of NL can be optimized by selecting appropriate values for the weights and biases.

This optimization is achieved using algorithms like gradient descent, which iteratively adjust

the weights and biases to reduce the RMSE. This process involves computing the gradient

of the error surface, resulting in a vector that indicates the direction in which the weights

and biases should be adjusted to achieve the biggest loss in RMSE. Each observation in the

training set provides a small update to the parameters, nudging them towards the values

that yield the lowest possible error term.

This section provided a broad overview of neural networks, highlighting key components

and mechanisms. However, it only offers a brief introduction to the intricate workings and

potential of these systems. For a more in-depth understanding of neural networks and their

applications in finance, readers are referred to the work of Gu et al. (2020). Additionally,

Schmidhuber (2015) offer a comprehensive overview of the existing neural network literature.

4.2.2 Implementation of Neural Network

This research employs neural networks to correct parametric models, following an approach

similar to that of Almeida et al. (2023) for index option IVS models. The parametric models

generate IV predictions σ̂
(M)
i,t , where M ∈ {BS,AHBS,CW}, for option i with strike price

K and time to maturity τ . A neural network is then applied to correct these predictions

by modeling their error terms. The error terms for model M are defined as the difference
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between the model’s predictions and the observed values:

ϵ
(M)
i,t = σi,t − σ̂

(M)
i,t . (13)

Subsequently, a neural network is employed to model the function f
(M)
t (·), which aims to

capture the error the IV prediction of option i made by model M , based on its strike price K

and time to maturity τ as f
(M)
t (K, τ) = ϵ

(M)
i,t . The NNC predictions are then constructed by

combining the original model predictions with the errors modeled by the neural networks:

σ̂
(M,NNC)
i,t = σ̂

(M)
i,t + f

(M)
t (K, τ). (14)

This method leverages the structure provided by the parametric model while improving pre-

dictive accuracy through a neural network. This approach is advantageous as it combines

the parametric model assumptions with the flexibility of neural networks.

4.2.3 Neural Network Configuration

The initialization of a neural network requires several critical decisions, including the choice

of activation function, the size of the hidden layer and the choice of solver, among other

considerations. In this study, the ReLu activation function
(
a(x) = max(0, x)

)
is employed

due to its computational efficiency and its ability to deactivate neurons by assigning them

a value of zero when their influence on the model is minimal. The neural network structure

utilized in this research comprises a single hidden layer containing 1,000 neurons. This con-

figuration is selected after experimentation, which demonstrated that a single layer with a

large number of neurons outperformed multi-layered structures.

This finding is illustrated in figure 3, which visualizes the IV predictions generated by two

NNC models with different neural network structures. The NNC model with a single hidden

layer of 1,000 neurons, denoted in red, is compared against an NNC model employing three

hidden layers, consisting of 32, 16 and 8 neurons, denoted in blue. This latter configuration

is the set-up that yielded the best results in the study by Almeida et al. (2023). Figure 3

demonstrates that the IV predictions of the NNC model with a single hidden layer more

closely resemble the true IV values for AMZN options on the first day of the sample. This

pattern is consistent across the sample and the different models. One possible explanation

for this outcome is that neural networks with multiple hidden layers are prone to overfitting,
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particularly when trained on a small sample size (Li et al., 2019). In this study, the neural

networks are trained on daily equity option data, which can have limited sample sizes com-

pared to index options.

Figure 3: Neural Network Correction Black-Scholes Implied Volatility Surface

Notes: This graph compares true IV values against Black-Scholes predictions, and these predictions corrected with two different

Neural Networks, one with a single hidden layer of 1,000 nodes, and one with three hidden layers with respective sizes 32, 16 and

8. The options in question have AMZN as their underlying asset and day t = 2018-02-28.

Additionally, the neural network framework provided by scikit-learn library in Python (Pe-

dregosa et al., 2011) is employed. Specifically, the MLPRegressor function is utilized with

the default stochastic gradient descent based solver ‘adam’, the random_state variable set

to 1 and the max_iter variable set to 500. All other settings are left at their default. It is

important to emphasize that the primary objective of this paper is to explore the applica-

tion of neural networks to enhance parametric models. Consequently, this study does not

focus on hyperparameter optimization to achieve the lowest possible error metrics. As a re-

sult, the findings presented in this paper should be interpreted as indicative of the potential

capabilities of neural networks, rather than as definitive benchmarks.

4.3 Implementation Details of Models

Following the approach outlined by Almeida et al. (2023), the IV predictions from models are

evaluated from both a practitioner’s and an academic’s perspective. Practitioners in financial

markets typically use IVS models to interpolate observed IVS levels to estimate target IV
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values due to the unavailability of many exact IV values on the market. Additionally, market

practitioners use these models to make one day, one week (five trading days) and one month

(twenty-one trading days) ahead IV predictions to help make informed trading decisions.

Given the volatile nature of the options market, predictions beyond these horizons tend to

be unreliable (Brownlees et al., 2011). However, the long-term behaviour of these models

holds significant interest to researchers who seek to understand whether the neural networks

help in capturing the complexities of IVS fluctuations over extended periods. Consequently,

this study evaluates both the short-term interpolation and predictive performance, as well

as the long-term performance of the models. This subsection now briefly explains how these

predictions are constructed.

In the interpolation exercise, the models are used to make same-day predictions. Following

the setup from Almeida et al. (2023), approximately 60% of the daily data is reserved for

training. This training dataset is created by sorting daily option data on strike price and

time to maturity, and then selecting the first, third and fifth observation from every set of

five. This sampling technique ensures a diverse and representative training dataset. The

remaining 40% of the data serves as the test set, where IV values are estimated to evaluate

model performance. For the daily prediction task, the training set comprises all option data

from day t, while the different test sets consist of data for day t + h, where h represents 1,

5 or 20 trading days. Due to the high volatility inherent to the options market, only data

from day t is used to estimate the models.

For long-term predictions, the training set includes the first three years of the sample period

(28 February 2018 to 28 February 2021), while the test set comprises the last two years

(1 March 2021 to 28 February 2023). Notably, the CW model is excluded from long-term

prediction tasks due to its dependence on time-specific values of five dynamic processes

θt = (vt,mt, wt, ηt, ρt). Although daily CW predictions can be generated by estimating θt

at day t, this approach is not feasible for extending predictions up to two years. This limi-

tation arises because the values of θt are time-dynamic processes which are fundamental for

the model. Consequently, using the CW-model for long-term forecasts would not result in

reasonable results, justifying its exclusion from this exercise.
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The IV predictions of the remaining BS and AHBS models over this longer time period are

corrected using a neural network similar to those employed for the other NNC models, where

the moneyness and time to maturity of the option serve as input variables. However, an addi-

tional time-varying neural network correction procedure (denoted as NNC*) is implemented

to further enhance the accuracy of long-term IV predictions. This method utilizes a neural

network that incorporates time-varying input variables, specifically the VIX level and the

return of the option’s underlying asset. These variable are selected based on findings by Cao

et al. (2020), who found that a neural network using these inputs could accurately predict

IV values. It is important to note that a direct comparison between the parametric models

and their NNC counterparts is not entirely fair, given that the neural networks receive daily

updates. Nevertheless, this approach can be interpreted as a modeling technique aimed at

delivering optimal long-term results by correcting parametric models with neural networks,

aligning with the overarching methodology of this research.

The previously outlined training and testing sets are applied consistently across both para-

metric models and neural networks. When neural networks are employed, they are trained on

the pricing errors generated by the parametric models within the training set. These fitting

errors provide an effective training method, thereby facilitating a fair comparison between

NNC models and their parametric counterparts.

4.4 Evaluation Methods

This subsection outlines the evaluation methods utilized in this research to assess the per-

formance of the different IVS models.

4.4.1 Implied Volatility Root Mean Squared Error

The first evaluation metric used is the Implied Volatility Root Mean Squared Error (IVRMSE),

as used by Almeida et al. (2023). This metric is defined in terms of implied volatilities and

is therefore easily interpretable. A lower IVRMSE indicates smaller errors in the model,

correlating to a good performance.
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For model M that generates IV predictions σ̂
(M)
i,t , its IVRMSE is computed by comparing

these predictions against actual IV values σi,t for the test set:

IVRMSE(M) =

√
1

N

∑
i,t

(
σi,t − σ̂

(M)
i,t

)2
, (15)

where N represents the number of observations in the test set. The RMSE framework is

widely used in research due to its ability to compare different models. Its quadratic loss

function assigns greater weight to larger errors, making it more sensitive to outliers. This

sensitivity can prove to be valuable in the context of IV prediction, where significant miscal-

culations can lead to incorrect option price predictions and substantial financial losses.

4.4.2 Mean Absolute Error

In addition to the IVRMSE, the Mean Absolute Error (MAE) metric provides an alternative

perspective by treating all errors equally. The MAE for a given model M is computed as:

MAE(M) =
1

N

∑
i,t

∣∣∣σi,t − σ̂
(M)
i,t

∣∣∣ (16)

where N denotes the number of observations in the test set. Unlike the IVRMSE, the MAE

does not square the errors but takes their absolute values. Consequently, the MAE penalizes

large errors less than the IVRMSE, focusing on the average error size and being less influ-

enced by extreme values. Employing both error metrics allows for a thorough evaluation of

model performance, enabling the identification of robust models capable of capturing differ-

ent types of errors.

4.4.3 Diebold-Mariano test

Given that this research explores the potential of neural networks to enhance parametric

models, it is crucial to compare the performance of a model with its NNC counterpart. To

formally assess this, the Diebold-Mariano (DM) test is used. Introduced by Diebold and

Mariano (1995), this test evaluates whether the difference in forecasting performance be-

tween two models is statistically significant.
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The test operates by analyzing the errors of the different models and determining which

model exhibits larger errors. Let e1,t and e2,t represent the forecast errors of model 1 and

model 2 at time t, respectively. The loss differential, computed as the difference between the

squared errors, is defined as:

dt = e21,t − e21,t. (17)

The mean of this loss differential series, d̄ = 1
T

∑T
t=1 dt, is then used to calculate the DM

statistic as:

DM =
d̄√
σ2
t /T

, (18)

where T is the number of observations and σ2
t is the variance of the loss differential series.

This statistic tests the null hypothesis that the two models have equal forecasting accuracy

(i.e., E[dt] = 0). A significantly positive (negative) DM statistic indicates that model 1 (2)

has larger forecast errors, implying lower forecast accuracy. In this research, the DM test is

employed to compare the parametric models against their NNC counterparts, where model

1 represents the original parametric model and model 2 corresponds to the NNC model. A

significant positive test statistic implies that the NNC models have lower forecast errors and

thus outperform the parametric models.

4.4.4 Moment Evaluation

The final evaluation technique determines the effectiveness of the different models in cap-

turing real-world stock dynamics. Bakshi et al. (2003) introduce a method to calculate the

moments of the risk-neutral return distribution of the underlying asset based on option prices,

which can be derived from the different IVS models. This approach yields model implied

moments for each model, which can then be compared against the moments of the observed

asset return distribution. This allows for an evaluation of which model most accurately cap-

tures the dynamics of actual asset returns.

Theorem 1 of Bakshi et al. (2003) states that the time-t, τ -period risk-neutral return skewness

can be computed as:

SKEW (t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3(

erτV (t, τ)− µ(t, τ)2
)3/2 , (19)
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and the time-t, τ -period risk-neutral return kurtosis as:

KURT (t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4(

erτV (t, τ)− µ(t, τ)2
)2 , (20)

where the values of V (t, τ), W (t, τ) and X(t, τ) are calculated as:

V (t, τ) =

∫ ∞

S(t)

2
(
1− ln

[
K
S(t)

])
K2

C(t, τ ;K) dK

+

∫ S(t)

0

2
(
1 + ln

[
S(t)
K

])
K2

P (t, τ ;K) dK, (21)

W (t, τ) =

∫ ∞

S(t)

6 ln
[

K
S(t)

]
− 3

(
ln
[

K
S(t)

])2
K2

C(t, τ ;K) dK

−
∫ S(t)

0

6 ln
[
S(t)
K

]
+ 3

(
ln
[
S(t)
K

])2
K2

P (t, τ ;K) dK, (22)

X(t, τ) =

∫ ∞

S(t)

12
(
ln
[

K
S(t)

])2
− 4

(
ln
[

K
S(t)

])3
K2

C(t, τ ;K) dK

+

∫ S(t)

0

12
(
ln
[
S(t)
K

])2
+ 4

(
ln
[
S(t)
K

])3
K2

P (t, τ ;K) dK, (23)

which can be combined to create µ(t, τ) as follows:

µ(t, τ) = erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (24)

The terms C(t, τ ;K) and P (t, τ ;K) represent the respective call and put price at time t with

strike price K and time to maturity τ . These prices are obtained by converting IV values

σ̂
(M)
i,t into option prices using BS equation (1), using the 3-month Treasury bill rate from the

St. Louis Federal Reserve Economic Data (FRED) database as a proxy for the risk-free rate.

To evaluate the performance of the parametric models and their NNC counterparts, their

model-implied one-year ahead skewness and kurtosis are calculated. The integrals in equa-

tions 21, 22 and 23 are approximated by summing over a linear grid of 1,000 strike prices,

spanning from the lowest observed strike price Kmin to the highest Kmax on day t for the

given underlying asset. Using the values on this grid strike prices, in combination with τ = 1
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and current day t, IV values σ̂
(M)
i,t are calculated for the different models M . These IV values

are then transformed into option prices through the BS formula, yielding synthetic put prices

P (t, τ ;K) and call prices C(t, τ ;K), depending on whether the moneyness of the option is

above or below one. Finally, these option prices are multiplied with the value ∆K = kmax−kmin

1000

to accurately transform the integral into a sum.

Following the computation of the model-implied yearly skewness and kurtosis levels, de-

noted as SKEW (t, 1) and KURT (t, 1), these values are compared to the actual skewness

and kurtosis levels of the underlying asset returns over the following year. This comparison

is conducted for each of the five years covered by the dataset, ensuring that the observed

skewness and kurtosis are well defined based on a full year of data. This evaluation tech-

nique measures how accurately the different models capture the return distribution of the

underlying asset, highlighting the potential that options have in predicting market behaviour.

5 Results

This section presents an evaluation of the performance of the methods introduced in section

4. It starts with an analysis of the daily predictions, which includes both daily interpolation

and prediction exercises. These methods demonstrate how the models can be utilized by

market participants for short-term forecasting or for obtaining specific IV values through

interpolation. Following this, the evaluation shifts to assessing the performance of long-

term predictions. This analysis focuses on IV prediction and the effectiveness of the NNC

procedure over extended time periods, thereby aligning with a scientific perspective aimed

at investigating the robustness and stability of the models over time.

5.1 Daily Predictions

Beginning with the results of the interpolation exercise, table 5.1 presents the average RMSE

and MAE values for the specified models and their NNC counterparts, evaluated across the

different underlying assets. The table indicates that the application of the NNC procedure

result in lower RMSE and MAE values for all three models. Specifically, the RMSE of the

BS model is reduced by approximately 50% after the application of the neural network. Sim-

ilarly, the AHBS and CW models show respective decreases of 24% and 13%.
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Table 5.1: Average Error Evaluation Daily Interpolation

BS BS-NNC AHBS AHBS-NNC CW CW-NNC

RMSE 0.110 0.055 0.072 0.052 0.100 0.087

MAE 0.071 0.030 0.041 0.031 0.062 0.038

Notes: Root Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE) for the Black-Scholes (BS) model, the ad-hoc

Black-Scholes (AHBS) model, the Carr-Wu (CW) model and their Neural Network Corrected (NNC) counterparts for a daily

interpolation exercise. The reported values are averages over fifty different underlying assets.

Table 5.2 presents the results of the DM test, which compares the average performance of

the standard models to their NNC counterparts, across all underlying assets. The results

further reinforce the superiority of the NNC models, as the DM statistics are positive across

all three models. Recalling equation 18, where the parametric models are defined as model 1

and the NNC models as model 2, a positive DM statistic implies that the errors of the stan-

dard models are larger, indicating better performance by the NNC models. The results are

statistically significant, with DM statistics exhibiting p-values effectively equal to zero. This

high level of significance is likely due to the large sample size used for making predictions,

which increase the confidence in rejecting the null hypothesis of equal performance between

the standard and NNC models. These findings underscore the potential advantages of using

neural networks to correct parametric models, particularly within an interpolation framework.

Table 5.2: Diebold-Mariano Test Statistics Daily Interpolation

BS AHBS CW

DM 650*** 315*** 98.54***

Notes: Diebold-Mariano (DM) test statistics for the comparison of the Black-Scholes (BS), ad-hoc Black-Scholes (AHBS) and

Carr-Wu (CW) models with their Neural Network Corrected (NNC) counterparts for a daily interpolation exercise. *** indicates

a P-value below 0.001

Table 5.6 presents the RMSE and MAE metrics for the models per underlying asset. The

results indicate that the NNC models consistently outperform the parametric models across

a diverse range of stocks. This effect is particularly pronounced for liquid options with un-

derlying assets such as Amazon.com, Inc. (AMZN), Alphabet Inc. (GOOGL) and Tesla,

Inc. (TSLA), where the NNC models demonstrate substantial improvements in predictive
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accuracy. Interestingly, this improved predictive performance extends beyond the most liquid

options, as options on stocks like Align Technology, Inc. (ALGN), Charter Communications,

Inc. (CHTR) and Visa Inc. (V) also exhibit more accurate IV predictions following the NNC

procedure.

However, there are instances where the NNC models yield higher RMSE values, notably

for options on Wayfair Inc. (W), MongoDB, Inc. (MDB) and MicroStrategy Incorporated

(MSTR). In these cases, the CW model in particular shows limited benefit from the NNC

procedure. It is important to note that options on these assets are not among the most ac-

tively traded, suggesting that the lower performance of the NNC models is potentially caused

by the limited number of available observations. Nevertheless, even for models with higher

RMSE values, the MAE values for the NNC models remain below those of the non-NNC

counterparts, indicating that despite the presence of some significant outliers, the NNC mod-

els generally provide more accurate predictions compared to traditional parametric models.

Table 5.3: Average Error Evaluation Daily Prediction

BS BS-NNC AHBS AHBS-NNC CW CW-NNC

t+1 RMSE 0.117 0.066 0.082 0.063 0.110 0.098

MAE 0.074 0.034 0.045 0.029 0.065 0.041

t+5 RMSE 0.128 0.091 0.102 0.093 0.126 0.122

MAE 0.080 0.048 0.056 0.044 0.074 0.054

t+21 RMSE 0.148 0.130 0.137 0.130 0.149 0.144

MAE 0.093 0.071 0.078 0.072 0.090 0.076

Notes: Root Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE) for the Black-Scholes (BS) model, the ad-hoc

Black-Scholes (AHBS) model, the Carr-Wu (CW) model and their Neural Network Corrected (NNC) counterparts for a daily

prediction exercise. The reported values are averages over fifty different underlying assets.

Proceeding to the results of the daily prediction exercise, table 5.3 provides the RMSE and

MAE values of the one day, one week and one month ahead forecasts across different mod-

els. These values are averages computed over all underlying assets. The table shows that,

consistent with the findings from the interpolation exercise, the NNC models consistently

outperform their standard counterparts across all time horizons. Notably, the largest re-
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ductions are observed in the one day ahead predictions of the BS model, with both RMSE

and MAE values decreasing by approximately 50%. It should be emphasized that prediction

accuracy decreases as the forecast horizon increases, a trend observed across all models. This

decline in accuracy reflects the increasing uncertainty associated with modeling further into

the future.

Table 5.4 provides further evidence of the improvements achieved by the NNC models, pre-

senting the results of the DM test which compares the predictive performance of the paramet-

ric models with their NNC counterparts. Consistent with the DM statistics observed in the

interpolation exercise, the significant positive DM statistics indicate that the NNC models

achieve lower errors terms, thereby significantly improving predictive accuracy. The positive

and significant DM statistics across all models and time horizons highlight the robustness

of the NNC procedure within this framework. These results suggest that integrating neural

networks to model error terms of traditional models can substantially improve forecast ac-

curacy, while preserving the economic foundations underlying the models.

Table 5.4: Diebold-Mariano Test Statistics Daily Prediction

Horizon BS AHBS CW

DM t+1 1015*** 514*** 104***

DM t+5 883*** 360*** 78***

DM t+21 611*** 347*** 54***

Notes: Diebold-Mariano (DM) test statistics for the comparison of the Black-Scholes (BS), ad-hoc Black-Scholes (AHBS) and

Carr-Wu (CW) models with their Neural Network Corrected (NNC) counterparts for a daily prediction exercise. *** indicates

that the P-value is below 0.001

Table 5.7 and table 5.8 present the RMSE and MAE values for the model predictions across

individual underlying assets. The results indicate that the prediction accuracy diminishes

over longer time horizons, a consequence of the increased uncertainty associated with pre-

dicting further into the future. Notably, for nearly all underlying assets the NNC procedure

increases predictive performance. The largest improvements are observed in short-term pre-

dictions for the BS and AHBS models, consistent with the findings in table 5.3.

Similar to the interpolation exercise, the prediction accuracy of liquid options, such as those
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on stocks of Amazon.com, Inc. (AMZN) or Alphabet Inc. (GOOGL) as their underlying

assets, is notably improved by the NNC procedure. Furthermore, even options with fewer

observations in the sample, like those on Charter Communications, Inc. (CHTR) and Visa

Inc. (V), predictive accuracy improves after the NNC procedure. Nonetheless, certain op-

tions do not experience significant benefits from the NNC procedure. Consistent with the

interpolation exercise, IV predictions for options on stocks as Wayfair Inc. (W), MongoDB,

Inc. (MDB) and MicroStrategy Incorporated (MSTR) become less accurate when using the

CW-NNC model compared to the CW model. This pattern is reflected primarily in RMSE

values, where the NNC models occasionally underperform. However, MAE values generally

remain lower for NNC models compared to their parametric counterparts, indicating that

despite some significant errors, the overall predictions of NNC models are generally closer to

the true values.

As the final evaluation metric, the model-implied moments are evaluated. Table 5.5 presents

the average RMSE and MAE values for the annual skewness and kurtosis implied by the mod-

els, compared to the moments of the observed return distributions. Several notable results

arise from this analysis. Both error metrics are consistently lower for skewness than for kur-

tosis across all models. This suggests that the models more accurately capture the skewness

of the underlying assets return distributions. Given that skewness measures asymmetry and

kurtosis measures the tailedness of a distribution, these results imply that the model-implied

moments are better at capturing the direction in which the underlying asset returns move,

rather than the presence of outliers in the data. In terms of model improvement between

the parametric and NNC models, the results are mixed. For the AHBS and CW models, the

application of neural networks improves performance. Conversely, the error metrics of the

BS model increase when a correcting neural network is applied.

Remarkably, the unmodified BS model records the lowest error metrics for both skewness

and kurtosis among all evaluated models. The application of the NNC procedure to the BS

model does not improve moment estimation accuracy, despite previous findings indicating

that it increases the accuracy of IV predictions. In contrast, for the AHBS and CW models,

a correcting neural network does increase the estimation accuracy of both the skewness and

kurtosis. However, it is important to recognize that a higher risk perception can lead to
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unusual patterns in skewness and kurtosis values. Following the 1987 market crash, return

distributions have become more negatively skewed (Bates, 1991), even when the physical

process is symmetrical (Bakshi et al., 2003). This shift can introduce additional errors into

moment estimation, and the variation in skewness and kurtosis across different models may

reflect underlying market sentiment and perceived risk of extreme negative outcomes. There-

fore, while the NNC model does not enhance moment prediction accuracy for the BS model,

its performance for the AHBS and CW model suggests that it can be a valuable tool for

improving moment estimation under certain conditions. Accurate moment estimation can

be very important as these metrics provide insights into stock price behaviour. Given the

large amount of factors influencing option prices, using IVS models to refine stock movement

predictions could offer substantial benefits.

Table 5.5: Error Evaluation Model Implied Moments

BS BS-NNC AHBS AHBS-NNC CW CW-NNC

Skewness
RMSE 0.502 0.597 0.762 0.575 0.531 0.528

MAE 0.379 0.481 0.626 0.465 0.417 0.413

Kurtosis
RMSE 1.806 2.062 2.321 1.986 1.907 1.889

MAE 1.265 1.628 1.874 1.554 1.449 1.410

Notes: Root Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE) for the comparison between the Skewness and

Kurtosis of the observed return series and the Skewness and Kurtosis values implied by the Black-Scholes (BS) model, the ad-hoc

Black-Scholes (AHBS) model, the Carr-Wu (CW) model and their Neural Network Corrected (NNC) counterparts.

In conclusion, the NNC models demonstrate significant improvement in both daily interpo-

lation and prediction exercises. Although the comparison between NNC models does not

identify a clear winner, all NNC models consistently outperform their parametric counter-

parts. This underscores the overall effectiveness of neural networks in reducing error terms

and suggests that the enhancement achieved through the NNC procedure are not heavily

dependent on the choice of the underlying parametric model.
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Table 5.6: Error Evaluation Daily Interpolation per Underlying Asset

(*) = NNC BS AHBS CW (*) = NNC BS AHBS CW

Ticker RMSE MAE RMSE MAE RMSE MAE Ticker RMSE MAE RMSE MAE RMSE MAE

AAPL 0.088 0.061 0.045 0.029 0.039 0.023 LULU 0.133 0.082 0.095 0.052 0.129 0.083

AAPL* 0.038 0.023 0.036 0.022 0.033 0.019 LULU* 0.072 0.042 0.075 0.043 0.108 0.051

ADBE 0.110 0.074 0.071 0.042 0.109 0.075 MA 0.104 0.071 0.060 0.036 0.088 0.060

ADBE* 0.059 0.033 0.059 0.033 0.068 0.037 MA* 0.056 0.032 0.054 0.031 0.056 0.035

ALGN 0.137 0.089 0.093 0.055 0.109 0.068 MDB 0.141 0.087 0.093 0.052 0.136 0.079

ALGN* 0.077 0.048 0.075 0.046 0.091 0.049 MDB* 0.073 0.041 0.073 0.042 0.140 0.063

AMD 0.086 0.056 0.057 0.034 0.087 0.057 MELI 0.130 0.084 0.084 0.046 0.130 0.085

AMD* 0.051 0.030 0.051 0.030 0.066 0.035 MELI* 0.065 0.034 0.064 0.034 0.109 0.048

AMZN 0.112 0.074 0.079 0.048 0.113 0.079 META 0.091 0.059 0.055 0.032 0.049 0.026

AMZN* 0.046 0.026 0.048 0.027 0.069 0.034 META* 0.041 0.025 0.04 0.025 0.049 0.022

AVGO 0.097 0.066 0.057 0.033 0.097 0.068 MSFT 0.081 0.058 0.038 0.024 0.044 0.020

AVGO* 0.050 0.029 0.049 0.028 0.058 0.034 MSFT* 0.033 0.021 0.032 0.020 0.041 0.017

AZO 0.079 0.052 0.048 0.027 0.078 0.052 MSTR 0.225 0.150 0.141 0.089 0.224 0.153

AZO* 0.046 0.027 0.043 0.025 0.058 0.031 MSTR* 0.104 0.058 0.109 0.063 0.337 0.185

BA 0.106 0.067 0.056 0.033 0.054 0.027 NFLX 0.110 0.072 0.073 0.044 0.056 0.036

BA* 0.045 0.026 0.044 0.027 0.049 0.022 NFLX* 0.052 0.032 0.052 0.033 0.057 0.028

BABA 0.094 0.062 0.055 0.033 0.091 0.06 NOC 0.075 0.054 0.042 0.025 0.053 0.035

BABA* 0.046 0.027 0.046 0.027 0.053 0.03 NOC* 0.043 0.027 0.042 0.026 0.041 0.026

BIIB 0.122 0.071 0.087 0.047 0.124 0.073 NOW 0.105 0.069 0.068 0.039 0.099 0.064

BIIB* 0.073 0.039 0.073 0.040 0.113 0.048 NOW* 0.060 0.034 0.059 0.033 0.067 0.035

BKNG 0.102 0.067 0.059 0.035 0.103 0.071 NTES 0.084 0.053 0.058 0.032 0.076 0.046

BKNG* 0.044 0.025 0.044 0.025 0.072 0.034 NTES* 0.056 0.033 0.056 0.032 0.057 0.033

BLK 0.090 0.062 0.050 0.030 0.068 0.041 NVDA 0.104 0.068 0.065 0.037 0.102 0.069

BLK* 0.050 0.030 0.047 0.027 0.053 0.027 NVDA* 0.047 0.026 0.048 0.027 0.065 0.031

CHTR 0.090 0.058 0.062 0.033 0.091 0.061 PANW 0.106 0.067 0.073 0.040 0.108 0.071

CHTR* 0.056 0.032 0.056 0.031 0.062 0.037 PANW* 0.063 0.036 0.063 0.035 0.079 0.040

CMG 0.102 0.065 0.066 0.038 0.103 0.067 PYPL 0.098 0.064 0.063 0.037 0.095 0.061

CMG* 0.052 0.030 0.051 0.030 0.081 0.037 PYPL* 0.052 0.032 0.051 0.032 0.073 0.035

COST 0.099 0.066 0.064 0.036 0.093 0.061 REGN 0.079 0.049 0.056 0.029 0.078 0.05

COST* 0.056 0.032 0.054 0.030 0.067 0.038 REGN* 0.052 0.027 0.052 0.027 0.054 0.030

CRM 0.101 0.068 0.065 0.037 0.091 0.06 RH 0.142 0.089 0.099 0.056 0.131 0.084

CRM* 0.059 0.033 0.059 0.033 0.058 0.034 RH* 0.077 0.047 0.079 0.047 0.135 0.063

GOOG 0.084 0.059 0.049 0.031 0.070 0.047 ROKU 0.155 0.095 0.114 0.067 0.157 0.100

GOOG* 0.039 0.023 0.039 0.023 0.043 0.026 ROKU* 0.078 0.047 0.079 0.049 0.185 0.084

GOOGL 0.083 0.059 0.049 0.031 0.083 0.060 SHOP 0.133 0.084 0.089 0.053 0.115 0.073

GOOGL* 0.038 0.022 0.038 0.022 0.045 0.029 SHOP* 0.065 0.035 0.067 0.038 0.100 0.048

GS 0.102 0.069 0.054 0.031 0.100 0.065 SQ 0.132 0.081 0.084 0.047 0.133 0.084

GS* 0.048 0.028 0.047 0.026 0.070 0.035 SQ* 0.065 0.037 0.065 0.037 0.126 0.058

HD 0.094 0.066 0.048 0.028 0.057 0.029 TSLA 0.175 0.113 0.109 0.064 0.080 0.050

HD* 0.045 0.026 0.042 0.025 0.052 0.023 TSLA* 0.058 0.031 0.059 0.032 0.066 0.035

HUM 0.081 0.056 0.044 0.025 0.063 0.044 TTD 0.148 0.089 0.109 0.060 0.141 0.088

HUM* 0.047 0.029 0.044 0.026 0.045 0.029 TTD* 0.077 0.045 0.078 0.046 0.156 0.070

ILMN 0.107 0.066 0.077 0.041 0.104 0.065 TWLO 0.149 0.090 0.110 0.063 0.153 0.096

ILMN* 0.071 0.040 0.069 0.038 0.078 0.042 TWLO* 0.087 0.049 0.088 0.051 0.147 0.070

ISRG 0.102 0.065 0.064 0.035 0.090 0.056 ULTA 0.121 0.073 0.084 0.045 0.101 0.060

ISRG* 0.056 0.029 0.054 0.028 0.063 0.031 ULTA* 0.064 0.037 0.065 0.037 0.083 0.040

LMT 0.079 0.057 0.044 0.027 0.037 0.024 V 0.095 0.066 0.049 0.028 0.096 0.069

LMT* 0.043 0.027 0.041 0.026 0.034 0.022 V* 0.047 0.027 0.044 0.025 0.057 0.036

LRCX 0.104 0.068 0.072 0.038 0.094 0.060 W 0.179 0.111 0.123 0.072 0.159 0.098

LRCX* 0.063 0.032 0.064 0.032 0.060 0.032 W* 0.093 0.058 0.095 0.058 0.205 0.097

Notes: RMSE and MAE values for the BS, AHBS, CW models and their NNC counterparts for a daily interpolation exercise for different underlying assets,

denoted by their ticker. The shaded rows marked with an asterisk (*) correspond to the NNC models.
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Table 5.7: Error Evaluation Daily Prediction per Underlying Asset (part 1)

BS AHBS CW

(*) = NNC t+1 t+5 t+21 t+1 t+5 t+21 t+1 t+5 t+21

Ticker RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AAPL 0.090 0.062 0.094 0.064 0.109 0.073 0.051 0.032 0.063 0.039 0.091 0.055 0.048 0.027 0.060 0.035 0.085 0.050

AAPL* 0.043 0.024 0.057 0.033 0.087 0.050 0.042 0.024 0.057 0.033 0.087 0.051 0.043 0.022 0.057 0.031 0.085 0.048

ADBE 0.112 0.076 0.118 0.091 0.135 0.065 0.078 0.045 0.090 0.053 0.119 0.073 0.111 0.071 0.113 0.076 0.137 0.089

ADBE* 0.064 0.034 0.080 0.044 0.110 0.036 0.065 0.036 0.082 0.046 0.112 0.066 0.073 0.038 0.082 0.047 0.117 0.066

ALGN 0.143 0.093 0.161 0.103 0.185 0.123 0.106 0.060 0.138 0.077 0.177 0.109 0.138 0.079 0.159 0.093 0.195 0.121

ALGN* 0.088 0.049 0.132 0.069 0.174 0.103 0.088 0.049 0.132 0.070 0.173 0.104 0.122 0.053 0.155 0.071 0.197 0.107

AMD 0.092 0.059 0.104 0.068 0.128 0.086 0.069 0.040 0.089 0.055 0.125 0.080 0.090 0.059 0.104 0.069 0.130 0.088

AMD* 0.062 0.035 0.086 0.051 0.123 0.077 0.063 0.036 0.087 0.051 0.123 0.078 0.078 0.038 0.100 0.054 0.137 0.081

AMZN 0.116 0.076 0.121 0.080 0.133 0.089 0.087 0.051 0.099 0.059 0.120 0.075 0.120 0.081 0.124 0.085 0.138 0.093

AMZN* 0.055 0.028 0.078 0.040 0.104 0.060 0.055 0.029 0.079 0.041 0.105 0.061 0.064 0.035 0.091 0.046 0.111 0.063

AVGO 0.099 0.067 0.104 0.071 0.121 0.080 0.064 0.036 0.076 0.044 0.106 0.062 0.086 0.055 0.095 0.061 0.125 0.075

AVGO* 0.057 0.030 0.072 0.040 0.101 0.057 0.056 0.030 0.071 0.039 0.102 0.057 0.061 0.033 0.079 0.042 0.113 0.059

AZO 0.082 0.054 0.090 0.058 0.110 0.070 0.054 0.030 0.073 0.040 0.104 0.059 0.082 0.055 0.092 0.060 0.113 0.072

AZO* 0.052 0.029 0.071 0.038 0.102 0.057 0.051 0.028 0.071 0.038 0.102 0.057 0.070 0.034 0.083 0.042 0.111 0.060

BA 0.110 0.069 0.127 0.075 0.177 0.096 0.066 0.038 0.098 0.051 0.168 0.081 0.077 0.032 0.099 0.045 0.161 0.073

BA* 0.054 0.030 0.093 0.045 0.167 0.076 0.055 0.031 0.093 0.046 0.166 0.077 0.075 0.028 0.101 0.043 0.170 0.073

BABA 0.096 0.064 0.104 0.069 0.114 0.077 0.062 0.037 0.079 0.047 0.097 0.062 0.055 0.032 0.073 0.043 0.092 0.057

BABA* 0.052 0.029 0.073 0.041 0.092 0.056 0.052 0.030 0.073 0.042 0.092 0.057 0.053 0.026 0.072 0.038 0.091 0.054

BIIB 0.127 0.073 0.141 0.082 0.170 0.099 0.095 0.051 0.120 0.063 0.169 0.091 0.129 0.076 0.146 0.085 0.176 0.104

BIIB* 0.082 0.041 0.114 0.055 0.167 0.085 0.082 0.042 0.114 0.056 0.168 0.087 0.117 0.049 0.144 0.059 0.194 0.090

BKNG 0.105 0.069 0.113 0.073 0.134 0.085 0.068 0.039 0.085 0.049 0.121 0.071 0.111 0.071 0.117 0.076 0.154 0.089

BKNG* 0.055 0.029 0.078 0.042 0.116 0.065 0.055 0.029 0.079 0.042 0.117 0.065 0.089 0.037 0.104 0.048 0.148 0.068

BLK 0.091 0.063 0.096 0.066 0.113 0.074 0.057 0.033 0.068 0.040 0.099 0.056 0.075 0.033 0.083 0.040 0.097 0.054

BLK* 0.055 0.030 0.066 0.038 0.097 0.054 0.052 0.029 0.065 0.037 0.096 0.053 0.073 0.028 0.080 0.035 0.095 0.051

CHTR 0.092 0.059 0.096 0.062 0.107 0.070 0.067 0.035 0.078 0.041 0.097 0.057 0.093 0.062 0.099 0.065 0.110 0.074

CHTR* 0.060 0.031 0.076 0.038 0.095 0.054 0.060 0.031 0.075 0.038 0.095 0.054 0.062 0.036 0.084 0.044 0.099 0.057

CMG 0.106 0.067 0.118 0.074 0.146 0.091 0.075 0.043 0.096 0.055 0.138 0.079 0.108 0.070 0.121 0.077 0.151 0.094

CMG* 0.062 0.034 0.090 0.048 0.134 0.074 0.062 0.034 0.090 0.048 0.133 0.074 0.089 0.040 0.117 0.054 0.150 0.077

COST 0.101 0.068 0.107 0.070 0.120 0.078 0.069 0.038 0.080 0.044 0.103 0.059 0.098 0.063 0.103 0.067 0.120 0.077

COST* 0.058 0.031 0.073 0.038 0.098 0.053 0.058 0.031 0.073 0.038 0.098 0.054 0.065 0.038 0.077 0.044 0.102 0.057

CRM 0.104 0.070 0.111 0.073 0.124 0.083 0.073 0.042 0.086 0.050 0.112 0.067 0.101 0.059 0.118 0.065 0.125 0.076

CRM* 0.064 0.034 0.080 0.044 0.105 0.062 0.065 0.035 0.081 0.045 0.107 0.063 0.079 0.036 0.105 0.045 0.114 0.061

GOOG 0.086 0.060 0.091 0.064 0.102 0.071 0.056 0.034 0.067 0.042 0.089 0.055 0.084 0.056 0.090 0.060 0.113 0.069

GOOG* 0.045 0.026 0.061 0.035 0.084 0.050 0.045 0.026 0.061 0.035 0.085 0.050 0.055 0.030 0.067 0.038 0.101 0.051

GOOGL 0.085 0.060 0.090 0.063 0.101 0.069 0.056 0.034 0.067 0.041 0.087 0.054 0.086 0.062 0.091 0.065 0.103 0.072

GOOGL* 0.044 0.025 0.059 0.034 0.083 0.049 0.045 0.025 0.060 0.034 0.083 0.049 0.052 0.032 0.066 0.039 0.087 0.052

GS 0.104 0.070 0.109 0.073 0.129 0.081 0.060 0.034 0.073 0.041 0.110 0.058 0.115 0.067 0.105 0.070 0.143 0.081

GS* 0.052 0.028 0.067 0.036 0.106 0.053 0.052 0.028 0.067 0.036 0.106 0.054 0.084 0.035 0.081 0.042 0.132 0.058

HD 0.095 0.067 0.101 0.069 0.118 0.077 0.053 0.030 0.067 0.037 0.097 0.052 0.079 0.050 0.098 0.055 0.111 0.065

HD* 0.048 0.026 0.063 0.034 0.094 0.048 0.047 0.025 0.063 0.033 0.094 0.048 0.057 0.030 0.084 0.037 0.100 0.050

HUM 0.083 0.057 0.087 0.060 0.101 0.066 0.050 0.029 0.062 0.036 0.089 0.051 0.074 0.047 0.076 0.052 0.102 0.062

HUM* 0.050 0.029 0.061 0.036 0.087 0.050 0.048 0.027 0.060 0.035 0.088 0.050 0.060 0.030 0.063 0.037 0.095 0.051

ILMN 0.110 0.068 0.118 0.074 0.131 0.083 0.085 0.045 0.102 0.055 0.122 0.072 0.114 0.072 0.122 0.078 0.135 0.088

ILMN* 0.076 0.039 0.099 0.050 0.120 0.068 0.075 0.039 0.099 0.051 0.120 0.068 0.083 0.042 0.114 0.054 0.131 0.070

ISRG 0.104 0.066 0.109 0.069 0.126 0.078 0.070 0.038 0.082 0.046 0.114 0.065 0.104 0.066 0.108 0.070 0.129 0.081

ISRG* 0.062 0.031 0.076 0.040 0.111 0.060 0.061 0.031 0.076 0.040 0.110 0.060 0.074 0.037 0.093 0.045 0.122 0.062

LMT 0.081 0.058 0.084 0.060 0.098 0.067 0.048 0.030 0.057 0.035 0.081 0.048 0.043 0.027 0.052 0.033 0.077 0.045

LMT* 0.045 0.027 0.054 0.033 0.079 0.046 0.044 0.027 0.054 0.032 0.079 0.045 0.039 0.024 0.049 0.030 0.075 0.043

LRCX 0.107 0.070 0.112 0.073 0.123 0.082 0.079 0.043 0.089 0.051 0.109 0.067 0.108 0.072 0.113 0.076 0.125 0.085

LRCX* 0.069 0.034 0.082 0.044 0.103 0.061 0.070 0.035 0.083 0.045 0.104 0.062 0.075 0.037 0.092 0.047 0.117 0.064

Notes: Notes: RMSE and MAE values for the BS, AHBS, CW models and their NNC counterparts for a daily prediction exercise for different underlying

assets, denoted by their ticker. The shaded rows marked with an asterisk (*) correspond to the NNC models.
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Table 5.8: Error Evaluation Daily Prediction per Underlying Asset (part 2)

BS AHBS CW

(*) = NNC t+1 t+5 t+21 t+1 t+5 t+21 t+1 t+5 t+21

Ticker RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LULU 0.139 0.085 0.156 0.096 0.191 0.118 0.107 0.057 0.135 0.073 0.192 0.107 0.147 0.092 0.165 0.103 0.218 0.127

LULU* 0.086 0.045 0.127 0.064 0.181 0.099 0.087 0.047 0.128 0.065 0.185 0.101 0.117 0.053 0.160 0.069 0.218 0.103

MA 0.106 0.072 0.109 0.075 0.125 0.082 0.066 0.039 0.076 0.046 0.105 0.062 0.094 0.063 0.098 0.068 0.119 0.079

MA* 0.059 0.033 0.071 0.040 0.101 0.057 0.059 0.033 0.071 0.041 0.102 0.057 0.064 0.038 0.073 0.044 0.102 0.059

MDB 0.146 0.091 0.163 0.101 0.192 0.121 0.108 0.059 0.142 0.077 0.208 0.111 0.148 0.086 0.167 0.100 0.214 0.124

MDB* 0.091 0.048 0.134 0.069 0.182 0.103 0.092 0.049 0.136 0.070 0.204 0.106 0.160 0.068 0.183 0.085 0.239 0.118

MELI 0.134 0.086 0.143 0.092 0.162 0.106 0.095 0.052 0.114 0.064 0.150 0.091 0.138 0.091 0.149 0.097 0.167 0.111

MELI* 0.077 0.040 0.106 0.056 0.146 0.085 0.077 0.040 0.107 0.057 0.146 0.085 0.111 0.051 0.152 0.067 0.180 0.094

META 0.094 0.061 0.102 0.065 0.116 0.074 0.063 0.036 0.080 0.044 0.106 0.061 0.094 0.060 0.104 0.066 0.120 0.076

META* 0.050 0.027 0.074 0.038 0.102 0.056 0.050 0.027 0.074 0.038 0.102 0.057 0.067 0.031 0.087 0.040 0.112 0.058

MSFT 0.083 0.059 0.086 0.061 0.098 0.067 0.044 0.027 0.054 0.033 0.077 0.045 0.056 0.024 0.060 0.030 0.077 0.043

MSFT* 0.039 0.022 0.051 0.029 0.075 0.043 0.038 0.021 0.050 0.029 0.075 0.042 0.054 0.020 0.058 0.027 0.077 0.041

MSTR 0.227 0.149 0.244 0.162 0.277 0.189 0.156 0.097 0.193 0.123 0.244 0.163 0.256 0.161 0.255 0.173 0.296 0.201

MSTR* 0.121 0.068 0.169 0.100 0.227 0.146 0.122 0.069 0.171 0.101 0.229 0.147 0.371 0.194 0.435 0.224 0.462 0.249

NFLX 0.115 0.075 0.125 0.082 0.146 0.099 0.082 0.048 0.102 0.060 0.134 0.085 0.081 0.042 0.099 0.054 0.134 0.080

NFLX* 0.062 0.034 0.092 0.049 0.128 0.076 0.063 0.036 0.093 0.050 0.128 0.077 0.076 0.033 0.097 0.047 0.132 0.074

NOC 0.077 0.055 0.081 0.058 0.096 0.065 0.047 0.028 0.056 0.034 0.082 0.047 0.061 0.037 0.065 0.042 0.092 0.054

NOC* 0.046 0.027 0.055 0.033 0.081 0.046 0.044 0.026 0.054 0.032 0.081 0.046 0.050 0.028 0.056 0.033 0.087 0.047

NOW 0.108 0.071 0.116 0.077 0.132 0.088 0.076 0.043 0.094 0.054 0.121 0.074 0.105 0.068 0.118 0.075 0.134 0.089

NOW* 0.068 0.037 0.091 0.049 0.119 0.070 0.068 0.037 0.090 0.049 0.118 0.071 0.079 0.038 0.106 0.051 0.129 0.072

NTES 0.087 0.055 0.097 0.062 0.111 0.073 0.066 0.037 0.083 0.048 0.105 0.065 0.089 0.056 0.098 0.063 0.114 0.075

NTES* 0.062 0.034 0.082 0.046 0.104 0.063 0.062 0.034 0.081 0.046 0.103 0.063 0.071 0.036 0.091 0.048 0.111 0.065

NVDA 0.108 0.070 0.115 0.075 0.130 0.086 0.074 0.042 0.090 0.053 0.118 0.072 0.108 0.070 0.119 0.076 0.134 0.088

NVDA* 0.057 0.030 0.081 0.043 0.113 0.065 0.058 0.031 0.082 0.044 0.113 0.065 0.077 0.034 0.102 0.047 0.127 0.068

PANW 0.110 0.070 0.119 0.076 0.137 0.090 0.082 0.044 0.100 0.055 0.132 0.078 0.108 0.067 0.123 0.075 0.144 0.092

PANW* 0.070 0.037 0.095 0.049 0.127 0.073 0.070 0.037 0.095 0.050 0.129 0.074 0.077 0.039 0.113 0.051 0.144 0.075

PYPL 0.102 0.066 0.112 0.073 0.130 0.086 0.074 0.041 0.093 0.053 0.124 0.075 0.100 0.065 0.115 0.073 0.132 0.088

PYPL* 0.063 0.034 0.089 0.048 0.121 0.072 0.063 0.035 0.089 0.048 0.121 0.072 0.075 0.037 0.108 0.050 0.134 0.074

REGN 0.080 0.050 0.084 0.053 0.097 0.060 0.059 0.031 0.068 0.037 0.086 0.049 0.078 0.041 0.074 0.045 0.109 0.056

REGN* 0.054 0.028 0.065 0.035 0.084 0.047 0.054 0.028 0.064 0.035 0.084 0.047 0.068 0.029 0.065 0.035 0.103 0.048

RH 0.150 0.094 0.174 0.109 0.214 0.142 0.116 0.063 0.156 0.084 0.221 0.133 0.153 0.096 0.180 0.112 0.224 0.148

RH* 0.097 0.053 0.169 0.078 0.227 0.126 0.098 0.054 0.171 0.078 0.229 0.128 0.161 0.069 0.202 0.089 0.264 0.140

ROKU 0.164 0.100 0.189 0.117 0.218 0.142 0.131 0.075 0.172 0.098 0.214 0.132 0.169 0.106 0.197 0.124 0.227 0.149

ROKU* 0.097 0.054 0.161 0.083 0.207 0.121 0.098 0.057 0.162 0.085 0.208 0.123 0.184 0.085 0.247 0.107 0.275 0.147

SHOP 0.137 0.087 0.146 0.095 0.167 0.109 0.098 0.059 0.116 0.072 0.150 0.095 0.121 0.077 0.134 0.086 0.164 0.104

SHOP* 0.075 0.040 0.100 0.057 0.138 0.084 0.076 0.042 0.101 0.059 0.139 0.085 0.108 0.051 0.125 0.066 0.159 0.091

SQ 0.138 0.086 0.151 0.095 0.178 0.116 0.099 0.055 0.126 0.072 0.167 0.102 0.141 0.089 0.156 0.099 0.185 0.121

SQ* 0.081 0.043 0.119 0.064 0.163 0.096 0.081 0.044 0.120 0.064 0.162 0.096 0.131 0.062 0.178 0.080 0.218 0.111

TSLA 0.179 0.116 0.192 0.125 0.219 0.146 0.119 0.071 0.146 0.088 0.190 0.123 0.107 0.061 0.133 0.079 0.193 0.114

TSLA* 0.077 0.040 0.117 0.066 0.172 0.108 0.076 0.040 0.117 0.066 0.171 0.108 0.098 0.047 0.130 0.070 0.199 0.112

TTD 0.156 0.094 0.179 0.109 0.210 0.133 0.124 0.068 0.163 0.090 0.210 0.126 0.159 0.095 0.186 0.112 0.218 0.138

TTD* 0.097 0.053 0.156 0.080 0.205 0.118 0.098 0.055 0.156 0.081 0.206 0.120 0.163 0.074 0.217 0.095 0.255 0.135

TWLO 0.156 0.095 0.174 0.107 0.199 0.126 0.123 0.070 0.154 0.088 0.191 0.116 0.162 0.101 0.181 0.115 0.206 0.134

TWLO* 0.101 0.054 0.144 0.076 0.185 0.106 0.101 0.056 0.145 0.078 0.186 0.108 0.162 0.071 0.192 0.088 0.223 0.119

ULTA 0.126 0.075 0.138 0.083 0.168 0.104 0.094 0.049 0.117 0.061 0.164 0.092 0.124 0.068 0.138 0.078 0.174 0.103

ULTA* 0.075 0.040 0.112 0.055 0.158 0.086 0.076 0.040 0.112 0.056 0.159 0.087 0.099 0.043 0.132 0.057 0.169 0.087

V 0.097 0.067 0.100 0.068 0.113 0.075 0.055 0.031 0.063 0.036 0.091 0.050 0.098 0.070 0.101 0.072 0.115 0.078

V* 0.050 0.027 0.060 0.033 0.089 0.047 0.049 0.026 0.058 0.032 0.088 0.047 0.061 0.036 0.070 0.041 0.098 0.053

W 0.188 0.117 0.214 0.133 0.258 0.166 0.140 0.081 0.185 0.104 0.253 0.154 0.189 0.115 0.217 0.133 0.271 0.171

W* 0.114 0.065 0.177 0.094 0.248 0.145 0.114 0.066 0.178 0.095 0.249 0.147 0.251 0.111 0.293 0.132 0.370 0.186

Notes: Notes: RMSE and MAE values for the BS, AHBS, CW models and their NNC counterparts for a daily prediction exercise for different underlying

assets, denoted by their ticker. The shaded rows marked with an asterisk (*) correspond to the NNC models.
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5.2 Long-term Predictions

Table 5.9 presents the RMSE and MAE values for long-term predictions for the last two years

of the sample, based on the first three years of the sample. The NNC models incorporating

time-varying variables are marked with an asterisk (NNC*). The results reveal that the NNC

models exhibit lower RMSE and MAE values compared to the original parametric models. It

is important to note that the differences in error metrics are slightly reduced, and the errors

are generally higher than those observed in the daily interpolation and prediction exercises.

This observation is expected, as the models are required to forecast further into the future,

increasing uncertainty.

Furthermore, the NNC* models, which include time-varying parameters, achieve lower error

metrics than both the parametric models and normal NNC models. However, the difference

in RMSE and MAE values between the NNC and NNC* models are not large and not statis-

tically significant. This implies that including the VIX level and the return of the underlying

asset in the neural network only slightly enhances performance compared to the classic NNC

model in this specific research setup.

Table 5.9: Average Error Evaluation Long-Term Prediction

BS BS-NNC BS-NNC* AHBS AHBS-NNC AHBS-NNC*

RMSE 0.156 0.114 0.111 0.140 0.114 0.109

MAE 0.102 0.075 0.070 0.090 0.075 0.070

Notes: Root Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE) for the Black-Scholes (BS) model, the ad-hoc

Black-Scholes (AHBS) model and their Neural Network Corrected (NNC) counterparts for a long-term prediction exercise. The

asterisk (*) for the NNC models indicates that time-varying parameters are incorporated in the neural network. The reported

values are averages over fifty different underlying assets.

Table 5.10 displays the DM statistics comparing the parametric models with their NNC

counterparts. The positive and significant DM statistics indicate that, even over extended

periods, the NNC models significantly outperform the parametric models. This holds true

for both the standard NNC and NNC* models.

33



Table 5.10: Diebold-Mariano Test Statistic Long-Term Prediction

BS AHBS

NNC 507*** 344***

NNC* 534*** 359***

Notes: Diebold-Mariano (DM) test statistics for the comparison of the Black-Scholes (BS), ad-hoc Black-Scholes (AHBS) and

Carr-Wu (CW) models with their Neural Network Corrected (NNC) counterparts for a long-term prediction exercise. The asterisk

(*) for the NNC models indicates that time-varying parameters are incorporated in the neural network. *** indicates that the

P-value is below 0.001

Figure 4 offers a more detailed comparison between the NNC and NNC* enhancements for a

baseline BS model, while figure 5, located in the appendix, illustrates this comparison for the

AHBS model. This figure is included to offer additional insights into why the time-varying

NNC* model does not significantly outperform the standard NNC model. It presents the

slopes of the volatility surfaces estimated by the different NNC extensions, compared to the

slope observed in the data. In both figures, the blue line represents the standard NNC model,

whereas the red line denotes the time-varying NNC* model.

Figure 4: Long-Term Prediction Daily IVS slope

Notes: This graph shows the daily moneyness slope of implied volatility surfaces with respect to moneyness. The observed slope

is compared to the slopes constructed by twice correcting the Black-Scholes model, once with a Neural Network that incorporates

time-varying inputs and once with a Neural Network without time-varying inputs.

The slopes are closely aligned, suggesting that the standard NNC model effectively captures

the majority of the underlying market dynamics. However, there are moments where the

34



slopes diverge, with certain outliers present in the NNC model but not in the time-varying

NNC* model. These deviations imply that the inclusion of time-varying inputs offers some

additional flexibility in capturing subtle changes in market dynamics, although the overall

impact remains relatively small. This finding is consistent with the results presented in table

5.9, which show that the time-varying NNC* model yields only small reductions in RMSE

and MAE values compared to the NNC versions for both the BS and AHBS models.

To conclude, these results confirm that the neural networks consistently outperform tradi-

tional parametric models, even when applied to longer time horizons. The smaller differences

and higher error metric values compared to the daily interpolation and prediction exer-

cises reflect the increased difficulty and uncertainty that is known in long-term forecasting.

Nonetheless, the significant DM statistics underscore the robustness of the NNC models,

demonstrating their superior performance over the standard parametric models across ex-

tended time horizons. The incorporation of time-varying parameters yields only modest

improvements in predictive performance, indicating that while such parameters can enhance

prediction accuracy, their impact is limited in this specific setup.

6 Conclusion

In this thesis, I explored the application of neural networks to enhance the predictive accu-

racy of IV values of equity options. The main objective was to determine the extent to which

NNC models improve the forecasting accuracy of IVS levels compared to their uncorrected

parametric counterparts. This study aimed to address the limitations of parametric models,

particularly their inability to capture non-linear relationships, by using neural networks.

The findings of this research indicate that NNC models significantly outperform their para-

metric counterparts in terms of predictive accuracy. Specifically, a daily interpolation exercise

showed an average decrease in RMSE and MAE of 35% across all models. For one day, one

week and one month ahead IV predictions, the RMSE and MAE values dropped 22% on

average. Long-term predictions, designed to assess the stability of the NNC models over

time, also showed an average decrease of 22% for RMSE and MAE values. These results are

consistent across options with various underlying assets, regardless of their liquidity levels.
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Diebold-Mariano test statistics confirmed the significance of these results, further underlining

the robustness of the NNC approach.

The practical implications of these results are significant for traders and investors in financial

markets. With more accurate IVS models, market participants can make better-informed de-

cisions, allowing for better speculative and hedging techniques. The improvements to these

models increase the accuracy of option pricing and risk management, providing a competi-

tive edge in market analysis. Furthermore, the application of neural networks to model error

terms is not limited to financial markets. This approach shows potential to increase predic-

tive accuracy across a wide range of disciplines, highlighting the potential and versatility of

machine learning techniques.

This paper provides significant contributions to the existing literature on IVS modeling, par-

ticularly by focusing on equity option IVS modeling rather than the more commonly studied

IVS models for index options. Additionally, it advances our understanding of non-linear IVS

dynamics by effectively modeling them using neural networks. The innovative approach of

using neural networks to model errors preserves the theoretical foundations of the parametric

models while improving their predictive accuracy. This methodology not only improves the

performance of IVS models, but it also has the potential to be applied to studies in other

disciplines.

Despite the promising results of this research, there are some limitations that can be ad-

dressed in further investigations. One limitation is related to the lower liquidity of options

on certain underlying assets, resulting in fewer observations of these options. This issue arose

due to the inclusion of options on a wide range of underlying assets, a deliberate choice to

evaluate whether the NNC procedure improved predictions across a wide range of options.

However, this decision led to the use of less restrictive filters to maintain a sufficiently large

sample size. While this research demonstrated that NNC models improve IVS predictions of

options on different underlying assets, a more selective panel could be beneficial for a deeper

analysis. A focused selection would allow for a more thorough investigation into the reasons

why the NNC procedure sometimes produces better results, an aspect not fully explored in

this thesis due to its broad scope and time constraints.
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Another observation from this study is the similar performance across NNC models with

different parametric model baselines. While this paper successfully demonstrated how neural

networks improved prediction accuracy of parametric models, it did not thoroughly examine

the differences between the NNC models themselves. This raises the interesting question

of how much the choice of the uncorrected parametric model impacts the accuracy of IVS

predictions. This finding suggests a potential direction for further research: examining which

models serve as the most effective baselines for NNC enhancements. Additionally, exploring

the conditions under which the NNC procedure yields the most significant improvements

could provide valuable insights. Identifying the types of parametric models that benefit

the most from NNC enhancements could be valuable information for the application of this

methodology in various other fields of research.

Overall, this research highlights the significant impact neural networks can have in the field

of IVS modeling. The combination of traditional parametric models with state-of-the-art

machine learning techniques presents a unique way to enhance predictive accuracy while pre-

serving underlying model assumptions. In the ever-involving landscape of financial markets,

the ability to leverage such hybrid methodologies is crucial for developing robust predictive

models. These findings can be extended beyond the realm of option pricing and financial

modeling to any discipline that relies on statistical modeling. The promising results encour-

age further exploration of these techniques, suggesting that the combination of traditional

and modern approaches can lead to significant improvements in predictive analytics.
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Gonçalves, S., & Guidolin, M. (2006). Predictable Dynamics in the SP 500 Index Options Implied Volatility

Surface. The Journal of Business, 79 (3), 1591–1635. http://www.jstor.org/stable/10.1086/500686

Goyal, A., & Saretto, A. (2009). Cross-section of option returns and volatility. Journal of Financial Eco-

nomics, 94 (2), 310–326. https://doi.org/https://doi.org/10.1016/j.jfineco.2009.01.001

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical Asset Pricing via Machine Learning. The Review of Financial

Studies, 33 (5), 2223–2273. https://doi.org/10.1093/rfs/hhaa009

Hamid, S. A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index futures

prices. Journal of Business Research, 57 (10), 1116–1125. https://doi.org/https://doi.org/10.1016/

S0148-2963(03)00043-2

Heston, S. L., & Nandi, S. (2000). A Closed-Form GARCH Option Valuation Model. The Review of Financial

Studies, 13 (3), 585–625. http://www.jstor.org/stable/2645997

Hutchinson, J. M., Lo, A., & Poggio, T. (1994). A Nonparametric Approach to Pricing and Hedging Derivative

Securities Via Learning Networks. (4718). https://EconPapers.repec.org/RePEc:nbr:nberwo:4718

Klemkosky, R. C., & Resnick, B. G. (1979). Put-Call Parity and Market Efficiency. The Journal of Finance,

34 (5), 1141–1155. http://www.jstor.org/stable/2327240

Li, H., Li, J., Guan, X., Liang, B., Lai, Y., & Luo, X. (2019). Research on Overfitting of Deep Learning.

2019 15th International Conference on Computational Intelligence and Security (CIS), 78–81. https:

//doi.org/10.1109/CIS.2019.00025

OptionMetrics. (2024). Ivy DB US [data set] [Retrieved fromWharton Research Data Services]. https://wrds-

web.wharton.upenn.edu/wrds

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,

& Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research, 12, 2825–2830.

Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance, 49 (3), 771–818. https://EconPapers.

repec.org/RePEc:bla:jfinan:v:49:y:1994:i:3:p:771-818

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https:

//doi.org/https://doi.org/10.1016/j.neunet.2014.09.003

Ulrich, M., Zimmer, L., & Merbecks, C. (2023). Implied volatility surfaces: a comprehensive analysis using

half a billion option prices. Review of Derivatives Research, 26 (2), 135–169.

Wharton Research Data Services. (n.d.). ”WRDS”. Retrieved February 8, 2024, from wrds.wharton.upenn.edu

http://www.jstor.org/stable/117461
http://www.jstor.org/stable/10.1086/500686
https://doi.org/https://doi.org/10.1016/j.jfineco.2009.01.001
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/https://doi.org/10.1016/S0148-2963(03)00043-2
https://doi.org/https://doi.org/10.1016/S0148-2963(03)00043-2
http://www.jstor.org/stable/2645997
https://EconPapers.repec.org/RePEc:nbr:nberwo:4718
http://www.jstor.org/stable/2327240
https://doi.org/10.1109/CIS.2019.00025
https://doi.org/10.1109/CIS.2019.00025
https://wrds-web.wharton.upenn.edu/wrds
https://wrds-web.wharton.upenn.edu/wrds
https://EconPapers.repec.org/RePEc:bla:jfinan:v:49:y:1994:i:3:p:771-818
https://EconPapers.repec.org/RePEc:bla:jfinan:v:49:y:1994:i:3:p:771-818
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
wrds.wharton.upenn.edu


Appendix

Table 6.1: Most Traded Equity Options, Unfiltered

Rank Ticker Observations Ranking Ticker Observations

1 AMZN 6,641,431 26 AVGO 1,611,456

2 TSLA 5,443,713 27 BLK 1,604,305

3 BKNG 5,005,834 28 COST 1,600,691

4 GOOGL 4,626,783 29 GS 1,596,795

5 GOOG 4,323,198 30 RH 1,529,967

6 SHOP 3,127,637 31 MA 1,522,766

7 CMG 3,089,316 32 ULTA 1,510,315

8 NFLX 2,840,092 33 LMT 1,490,225

9 NVDA 2,536,050 34 TWLO 1,477,142

10 MELI 2,326,765 35 SQ 1,475,303

11 META 2,253,784 36 HD 1,462,912

12 AZO 2,136,767 37 ALGN 1,450,013

13 AAPL 2,096,494 38 HUM 1,445,553

14 ISRG 2,059,543 39 W 1,412,516

15 BA 1,995,370 40 MSTR 1,404,711

16 ADBE 1,985,606 41 NTES 1,386,760

17 LRCX 1,967,019 42 MDB 1,371,363

18 BABA 1,914,413 43 ILMN 1,370,818

19 MSFT 1,817,530 44 PYPL 1,362,979

20 REGN 1,807,625 45 CRM 1,361,847

21 ROKU 1,705,308 46 V 1,356,189

22 TTD 1,696,684 47 AMD 1,354,024

23 CHTR 1,644,907 48 NOC 1,353,486

24 BIIB 1,639,627 49 PANW 1,339,581

25 NOW 1,638,221 50 LULU 1,329,337

Notes: This table presents the number of options on the different underlying assets present in the Wharton Research Data Services

(n.d.) dataset before any filters. The assets are denoted by their ticker and are sorted based on the number of observations.



Figure 5: Long-Term Prediction Daily IVS slope - AHBS

Notes: Notes: This graph shows the daily moneyness slope of implied volatility surfaces with respect to moneyness. The observed

slope is compared to the slopes constructed by twice correcting the ad-hoc Black-Scholes model, once with a Neural Network that

incorporates time-varying inputs and once with a Neural Network without time-varying inputs.
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