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Abstract

This work presents a budget constrained energy system expansion problem with integer invest-
ment options, where the objective is to minimize the operational cost related to electricity gener-
ation. This problem is modelled as a Mixed-Integer-Quadratic-Programming (MIQP) problem.
The optimal objective value represents an optimal set of investments and their corresponding
Optimal Energy Flow (OEF) schedule. Most solution approaches rely on repeatedly optim-
izing the OEF problem. Therefore, this thesis explores whether the distributed optimization
algorithm, Alternating Direction Method of Multipliers (ADMM), when applied to the OEF
problem, could increase the computational efficiency of the overall problem. It is found that,
based on multiple benchmark instances, this approach could not outperform the commercial
solver ‘Gurobi’. On the other hand, the investment optimization (i.e., identifying the optimal
investment strategy that minimizes the objective value) could not be solved in a reasonable time
by a commercial solver. Consequently, two heuristics are presented and, based on a medium-
sized energy model with 12 nodes and 8760 time-steps, the Relax & Fit heuristic achieved an
objective value only 3.26% higher than the lower bound. Additionally, it is demonstrated that
the selected investments corresponding to this result show a strong connection with the marginal
costs defined at the nodes of the system.
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1 | Introduction

1.1 Context & Motivation

Electricity generation will be characterized by a shift away from a fossil fuel based generation
in the coming decades. This offers a unique opportunity for policymakers to shape the future
energy infrastructure. Distributed and unpredictable energy generation by renewable sources
and technologies that can convert one energy-carrier into another (e.g. Power-to-Gas techno-
logies, heat pumps and Combined Heat and Power plants) will reshape the dynamics of the
energy market. The price paid for this next generation infrastructure will be in terms of com-
plexity, generation will become less predictable, load profiles will need to adapt to supply, and
heat-pumps put additional stress on the electricity network. Therefore, with the current state
of distributed energy generation from renewable sources, it becomes increasingly important to
model the integrated energy system (Krause, Andersson, Fröhlich & Vaccaro, 2011). This work
is in collaboration with the ’Fraunhofer-Institut für Solare Energiesysteme’ (ISE) department
of the Fraunhofer-Gesellschaft research institute. This department is, among other activities,
concerned with energy optimisation problems. To be more specific, they are focusing on the
most cost-effective way of satisfying certain future energy goals. These objectives could be re-
lated to expectations of energy and heat demand or limiting greenhouse gas (GHG) emission, for
example. Due to the complexity of their energy models, these optimizations are computation-
ally challenging, and consequently, for large projects the models are to a certain degree limited
in terms of input size, spatial resolution, temporal resolution, or all three. Even with these
limitations, the models are still too large and resource-intensive to solve efficiently. This thesis
aims at addressing this issue by modelling an integrated energy model (i.e. a model with more
than one energy-carrier), and presenting an effective algorithm that can determine the optimal
allocation of financial resources such that public utility is optimized. This utility function can
either be expressed in monetary value or the reduction of GHG’s.

1.2 Research direction

This work focuses on the optimal investment problem in the field of energy infrastructure limited
by financial resources and/or emission constraints. The infrastructure considered consists of an
integrated system with an electrical and a thermal network. The difficulty of this problem lies
in the fact that the utility of candidate investments is an unknown function that depends not
only on the system in which it is potentially applied, but also on other planned investment.
For example, the utility of renewable energy can be considerably higher when installed together
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with storage facilities. Secondly, increased grid capacity can increase usage of ‘cheap’ renewable
energy. Therefore, this problem is a combinatorial problem in which the utility is associated
with the combination of investments rather than its individual components. Understandably,
the numbers of possible combinations grows exponentially with the number of investment op-
tions. For this reason, we expect that a commercial solver will not be able to find the optimal
set of investments in a reasonable time. Moreover, to find the utility (i.e. the positive effect
a combination of investments has on the system measured either in monetary value or value
related to avoiding GHG emissions) we need to determine its effect against a benchmark model
in which we should consider at least a full one-year time horizon to capture seasonal effects.
This can be accomplished by running a full-year Optimal Energy Flow (OEF) problem. Overall,
we consider a large Mixed Integer Programming (MIP) problem aimed at maximizing utility.
Conceptually, this problem can be divided into two parts: an integer investment problem aimed
at finding the optimal investment strategy and secondly, a corresponding full-year OEF prob-
lem for finding the optimal energy flow that supports the objective. We expect that the OEF
problem needs to be evaluated often and even small computational efficiency gains could result
in a faster algorithm. Therefore, we explore the possibility of decomposing this problem into
smaller sub-problems.

In summary, the research question and related sub-questions are:

How can an integer investment problem in the context of energy optimization
be solved efficiently?

– What methods would be most suitable to decompose the OEF problem and how do they
perform in comparison to an out-of-the-box solver?

– What heuristic or relaxations can be proposed and efficiently used for the investment
problem?

1.3 Related work

The scheduling of electricity is a widely researched problem due to its importance in daily elec-
tricity management, and is known as the Optimal Power Flow (OPF) problem. In reality, energy
transport, whether in the form of electricity, natural gas or heat, is subjected to specific phys-
ical behavior which can seldom be captured by convex formulations. For example, gas flow is
realistically non-convex due to its pressure losses (Xu et al., 2020) along the pipe. Electricity
transmission realistically involves reactive power, transmission losses and power dependency on
the voltage squared (Chatzivasileiadis, 2018), making the flow equation non-linear and non-
convex. In this thesis however, the focus is not necessarily on the exact power scheduling with
high temporal resolution, but rather on a simplification detailed enough to evaluate the effect of
investments. This can, for example, be done by linearizing the quadratic flow equations, which
results in a simplified convex model known as the DC Power Flow Model (Chatzivasileiadis,
2018). Moreover, Moehle, Shen, Luo and Boyd (2019) propose a method where not only the
flow equations but en entire energy system can be modelled by a system of individual components
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that are all described by a convex objective function and convex constraints. These individual
components, also called devices, represent participants in the energy system and include, for
example, generators, batteries, and transmission lines. They then demonstrate that this model
can be used to determine the optimal power flow in deterministic cases as well as under uncer-
tainty. The advantage of modeling an energy system based on a network of devices is that the
model can easily be adjusted by adding or removing them. This makes it a very suitable method
for evaluating various investment strategies. Moreover, Kraning (2014) demonstrates that its
structure allows for distributed optimization using the ADMM algorithm. For these reasons,
this modelling approach will be used to construct an energy system in this thesis. However, it
will be extended by integrating a thermal network and devices that couple the electrical grid
with the thermal network.
Research with respect to optimal investment in an energy system is, for example, done by
Dvorkin, Kazempour, Baringo and Pinson (2018). To find the optimal capacity expansion plan
for certain electrical generators, the author introduces a two-stage optimization problem con-
sisting of short- and long-term decisions that are both subjected to uncertainty (e.g. operational
risk and growth demand risks). The problem is, therefore, a multi-stage stochastic optimization
problem. It requires agreement on the shared first-stage decision variables, which determine
the capacity to be installed for three types of electrical generators: coal, gas, and wind. The
objective in this paper is somewhat similar to the problem we are facing; but it only considers
three investment options and does not consider integer variables (i.e. any fractional capacity
can be installed). Instead, its focus is more on how to incorporate uncertainty, which will not be
considered in this thesis. Alternatively, in the work of Zhang, Shahidehpour, Alabdulwahab and
Abusorrah (2015), the authors construct an optimal expansion planning model that satisfies elec-
tricity, heat and natural gas demands over a fixed time horizon and show that optimizing with
respect to these commodities simultaneously offers better results compared to planning them
individually. However, they only consider continuous capacity expansion and use time-steps of
one month, which doesn’t capture the fluctuations of renewable energy generation.

1.4 Outline

The remaining of this work is be structured as follows, the next chapter describes distributed
optimization methods. The focus here is on the ‘Alternating Direction Method of Multipliers’
(ADMM) and especially the ‘Exchange ADMM’ variant as this is a recurring algorithm in the
remainder of the thesis. Subsequently, in Chapter 3 the OEF problem is introduced, how it can
be decomposed, and the distributed optimization algorithm considered for solving it. Secondly,
the optimization problem of selecting investments that maximize public utility is introduced.
Additionally, two heuristics are provided for solving this problem. Lastly, an example is in-
troduced on which the proposed methods are tested. Then, in Chapter 4 we will present the
results. Subsequently, Chapter 5 will conclude the work and provide recommendations for the
ISE department of the Fraunhofer-Gesellschaft. Additionally, Chapter 5 will discuss several
limitations of the methods and assumptions, and propose three ideas for future research.

3



2 | Distributed Optimization

This chapter provides an overview of a few algorithms developed to decompose and distribute
large optimization problems. These algorithms can be used to address the first research question
of this work. These algorithms will be divided into two categories, gradient based and cutting
planes based algorithms. The two categories share the same goal of solving large optimization
problems efficiently but their working principles differ. Although the focus will be on gradient-
based algorithms, a comprehensive comparison will be made to explain the differences.

2.1 Gradient based algorithms

Within distributed optimization, gradient based algorithms are powerful when the objective
function can be decomposed. This approach enables parallel computing, in which sub-problems
are independently solved, and uses gradient steps to move towards the optimal solution. One of
these algorithms is the ‘Alternating Direction of Multipliers’ (ADMM), which will be discussed
in the next subsections.

Alternating Direction Method of Multipliers

In the ADMM algorithm the objective function is decomposed among the primal variables. Let
us consider the following problem, where f and g are convex functions and X and Z are convex
sets:

minimize f(x) + g(z)
subject to Ax + Bz = c

x ∈ X

z ∈ Z

(2.1)

The decision variables are connected through the linking equality constraints. Although
the variables are connected, the main idea behind the ADMM algorithm is that initially, it
does not strictly enforce whether the linking constraints hold or not. Instead, the sub-problems
with respect to x and z are solved independently to optimality; and in these sub-problems,
any violation of the linking constraints is quadratically penalized. Therefore, the formulation
is different from the conventional Lagrangian relaxation and is referred to as the augmented
Lagrangian, as shown in Equation (2.2). The quadratic penalty term gives rise to very favourable
convergence properties, as described in earlier work of Boyd (2010). Also note that the quadratic
L2 regularization of a convex function (or constraint) is still convex because the second derivative
is always non-negative, and thus, the augmented Lagrangian function is also convex.
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Lρ(x, z, λ) = f(x) + g(z) + λT (Ax + Bz − c) + ρ

2∥Ax + Bz − c∥22 (2.2)

Note. Often it is easier to scale the dual variable of Equation (2.2) by 1/ρ and include
the dual penalty in the quadratic regularization:

Lρ(x, z, λ) = f(x) + g(z) + ρ

2∥Ax + Bz − c +
(1

ρ
λ

)
∥22 (2.3)

This formulation is equivalent (but not equal) to Equation (2.2). At first sight, this
may not be immediately evident, and the derivation is often not explicitly provided.
Therefore, for completion, we derive here the scaled form of ADMM, from the standard
formulation and show that the two formulations are indeed equivalent.

Consider the Lagrangian relaxation part of Equation (2.2):

λT r + ρ

2∥r∥
2
2 (A)

Where r is the primal residual Ax + Bz − c. We will show that this is equivalent to:

ρ

2∥r + λscaled∥22 (B)

Where λscaled = λ
ρ .

Including the linear term of Equation (A) in the quadratic term gives:

ρ

2∥r −
λ

ρ
∥22 −

ρ

2 ·
λ2

ρ2

Substitute λscaled in this formulation gives us:

ρ

2∥r − λscaled∥22 −
ρ

2λ2
scaled

Which is in the optimization steps of ADMM equivalent to:

ρ

2∥r − λscaled∥22 − constant(λscaled)

The constant does not play a role in the optimization with respect to x and z and therefore
scaling the dual variable leads to equal results.

Finding the optimal dual variable can be achieved by applying the dual ascent method, where
a gradient step is made each iteration based on the violation of the relaxed constraint. Applying
dual ascent on the augmented Lagrangian instead of the standard Lagrangian is referred to
as ADMM, and its algorithm is summarized in Algorithm 1. This method will converge to the
global optimum because the dual ascent method pulls the dual variable toward its optimal value,
while the primal variable optimization does this for the primal variables. In addition, strong
duality means that there is no duality gap, and the optimal primal solution correspond directly
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to the dual solution.
Also important to note is that in Algorithm 1 the x and z update can be independently computed,
which means the algorithm can take advantage of parallel computing. More information on the
convergence properties and the optimality conditions of ADMM can be found in (Boyd, 2010).

Algorithm 1 ADMM algorithm
1: Initialize Lρ(x, z, λ) = f(x) + g(z) + λT (Ax + Bz − c) + ρ

2∥Ax + Bz − c∥22
2: Initialize x0, z0, λ0 ← xinit, zinit, 0
3: k ← 0
4: µ← ϵ + 1 ▷ Set µ to an arbitrary number above ϵ for the first iteration
5: while µ ≥ ϵ do
6: xk+1 ← argminx∈X Lρ(xk, zk, λk)
7: zk+1 ← argminz∈Z Lρ(xk+1, zk, λk)
8: λk+1 ← λk + ρ(Axk+1 + Bzk+1 − c)
9: µ← ∥λk+1 − λk∥

10: k ← k + 1
11: end while

Consensus ADMM

In many real-world applications the objective function can be formulated as the sum of multiple
sub-problems, in which the z-variable reflects a decision that has to be agreed upon among the
sub-problems. These kinds of problems arise, for example, in two stage stochastic optimization.
You could decompose this optimization problem by scenario, in which all sub-problems need to
agree on this first-stage decision. In other words, there needs to be consensus among the sub-
problems regarding one or more of the variables. When using ADMM for these kind of problems,
the algorithm is also knows as ‘Consensus ADMM’ (Boyd, 2010). In this section a closer look is
taken into this special case, showing that when the z-variable is not part of the objective function,
the z-update can be solved analytically. Subsequently, the ‘Exchange ADMM’ algorithm will be
derived from ‘Consensus ADMM’. Consider the following optimization problem:

minimize
∑
i∈N

fi(xi)

subject to hi(xi) ≤ Ci, ∀i ∈ N

xi − z = 0, ∀i ∈ N

(2.4)

It can be recognized that the first set of constraints are local constraints to the sub-problem,
and the second set of constraints are considered the (difficult) coupling constraints. The aug-
mented Lagrangian with respect to the coupling constraint can be formulated as follows:

Lρ(x, z, λ) =
∑
i∈N

f(xi) + λT (xi − z) + ρ

2∥xi − z∥22 (2.5)

The subproblem with respect to the xi-update is the minimization of the augmented Lag-
rangian with respect to xi subjected to the local constraints. The z-update and the dual variable
update are very similar to the steps from Algorithm 1, and are given below:

6




xk+1

i = min
xi

(
fi(xi) + (λk

i )T xi + ρ

2∥xi − zk∥22
)

s.t. hi(xi) ≤ Ai

 , ∀i ∈ N (2.6a)

zk+1 = min
z

(
−
∑
i∈N

(λk
i )T z + ρ

2
∑
i∈N
∥xk+1

i − z∥22

)
(2.6b)

λk+1
i = λk

i + ρ(xk+1
i − zk+1) (2.6c)

Again, the x-update can be fully parallelized. Furthermore, the z-update can be simplified
by finding an analytical solution to the minimization problem. Since the optimization problem
is convex, quadratic and unconstrained, there is only one optimal solution, which corresponds
to its unique zero gradient point. Taking the derivative to z and setting the expression to zero
results in the optimal z-update. The result is given below. For completeness, the derivation is
included subsequently, as it is usually not explicitly provided.

zk+1 = min
z

(
−
∑
i∈N

(λk
i )T z + ρ

2
∑
i∈N
∥xk+1

i − z∥22

)
= 1

ρ
λ

k + xk+1 (2.7)

Derivation of Equation (2.7)
Here it is demonstrated that Equation (2.7) is the optimal z-update in the consensus ADMM
algorithm by showing that it corresponds to the zero-gradient point. Since optimization Problem
(2.6b) is unconstrained and convex quadratic, the gradient with respect to z of Equation (2.5)
needs to be equal to zero:

∇z∗

(
−
∑
i∈N

(λk
i )T z∗ + ρ

2
∑
i∈N
∥xk+1

i − z∗∥22

)
= 0

−
∑
i∈N

λk
i − ρ

∑
i∈N

(xk+1
i − z∗) = 0

∑
i∈N

λk
i + ρ

∑
i∈N

xk+1
i = ρNz∗

1
ρN

∑
i∈N

λk
i + 1

N

∑
i∈N

xk+1
i = z∗

1
ρ

λ
k + xk+1 = z∗ (2.8a)

From here it can be seen that Equation (2.7) is the optimal solution for the update of the
global variable z.

Despite the nice closed form for the z-update, the consensus ADMM algorithm can be
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simplified further. Averaging Equation (2.6c) over i ∈ N results in:

λ
k+1 = λ

k + ρ(xk+1 − zk+1)

Substituting the closed form of zk+1 from Equation (2.7), shows that λ
k+1 = 0. In other

words, the average of the dual variable update is zero after the first iteration. If the initial
values of the dual variables are zero, the initial average of the dual variables are zero (λk = 0)
and consequently, zk+1 = xk+1. After the first iteration, this also implies that zk = xk. Now,
it can be easily seen that the consensus ADMM algorithm can be described in two instead of
three updates:


xk+1

i = min
xi

(
fi(xi) + (λk

i )T xi + ρ

2∥xi − xk∥22
)

s.t. hi(xi) ≤ Ai

 , ∀i ∈ N (2.9a)

λk+1
i = λk

i + ρ(xk+1
i − xk+1) (2.9b)

Although each sub-problem is free to decide on its xi variable, they are penalized based on
their distance to the average value (i.e. averaged over all participants) of the global variable,
which is determined from the results of all sub-problems in the previous iteration. In other
words, ‘participant A’ might minimize its objective by taking on a xi value that deviates sig-
nificantly from the average in the previous iteration, thereby influencing the average value of
the global variable directly. The next iteration, all other ‘participants’ in the system will be
penalized for their distance to the average value, and are therefore indirectly respecting the
optimal choice of ‘participant A’. This continues until no participant of the system can deviate
from the common value such that its personal gain outweighs the negative impact on the overall
minimization. This last sentence shows a nice interpretation of the overall algorithm by looking
closely at the penalty term in the augmented Lagrangian.

Although, this result is achieved by reasoning, it can actually be proved that the optimal
solution satisfies a ‘Nash equilibrium’ point, i.e. a solution in which none of the participants of a
system can gain from unilaterally deviating from the equilibrium point (Holt & Roth, 2004). In
the next section the ADMM variant ‘Exchange ADMM’ is derived from the result in Equation
(2.6). An explanation will be provided as to why this variant of the algorithm can be used in the
area of energy optimization and how the optimal solution corresponds to a Nash equilibrium.

Exchange ADMM

Suppose an optimization problem involves participants who either buy or sell a certain product.
When all participants aim to minimize their respective cost functions, which can be related to
utility or profits depending on the participant, the formulation of this optimization problem can
be described as follows:

8



minimize
∑
i∈N

fi(xi)

subject to hi(xi) ≤ Ci ∀i ∈ N

1
|N |

∑
i∈N

xi = 0

(2.10)

This problem naturally occurs in (financial) markets, where the objective function can be
interpreted as the minimization of the aggregated cost/utility function of all the participants in
the market (i.e. buyers and sellers). These cost functions represent the amount a certain par-
ticipant is willing to sell/buy and for which price. The internal constraints could represent the
number of financial instruments or the amount of commodity a participant is willing to trade.
The third constraint can be interpreted as the balancing constraint, forcing that whatever is
bought at the market is also sold, which means that also the average of the exchange should
equal zero. Due to its application, literature describes this problem also as the ‘Market Clearing’
problem or as ‘Walrasian Auction’ (Joyce, 1984). How this problem connects to energy models
will be the focus of the subsequent chapter. Here, it will be explained how these problems could
benefit from a distributed optimization algorithm.

Looking carefully to Problems (2.4) and (2.10), it is evident that the latter formulation is a
variant of Formulation (2.4) in which:

z = xi −
1
N

N∑
i=0

xi = xi − x (2.11)

Substituting this result in Equation (2.9a) and (2.9b), results in the final form of the ‘Exchange
ADMM’ algorithm, which in the scaled form can be summarized as in Equation (2.12) below.
The reason of using the scaled form instead of the standard dual variable is that it reduces the
information exchange between the coordinator and the sub-problems. Instead of handing the
average value (xk−1) and the dual variable (λk−1) back to the sub-problems, in the scaled form
only the locally computed (by the coordinator) penalty term xk−1 − xk−1 − λk−1 needs to be
returned. This makes implementation of the algorithm easier and more efficient.


xk+1

i = min
xi

(
fi(xi) + ρ

2∥xi − (xk
i − xk − λk

i )∥22
)

s.t. hi(xi) ≤ Ai

 , ∀i ∈ N (2.12a)

λk+1
i = λk

i + ρxk+1 (2.12b)

Instead of decomposing Problem (2.10) into N sub-problems and solving it using the al-
gorithm above, there is a second approach. In work of (Kazempour, 2024), it is argued that the
Market Clearing problem can also be written as a Nash equilibrium problem. This formulation
consists of N + 1 optimization problems, one for each participant plus a ‘Price-setter’ optim-
ization. Then, Kazempour (2024) shows that the system of equations derived from the KKT
conditions for each of those optimization problems is equal to the KKT conditions of Problem
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(2.10), indicating that both perspectives of the Market Clearing Problem are equivalent and that
the optimal solution of Problem (2.10) satisfies a Nash equilibrium. Chapter 3 demonstrates
how this result connects to duality theory and its application in energy modeling.

Penalty term

The choice of the penalty term ρ depends on the scale of the data, but should nevertheless be
a positive non-zero number. There is no fixed rule of thumb for estimating the right parameter.
Instead, ρ could either be set to 1, and the data should be scaled such that a reasonable
convergence rate is achieved, or ρ can be determined empirically through parameter tuning.

2.2 Cutting-plane algorithms

In contrast to gradient based algorithms, under which ADMM falls, cutting-plane based al-
gorithms are not making a gradient-based step in each iteration to find an optimal solution.
Instead, constraints or variables that are important to include for finding the optimal solution
are added iteratively. For example, in Benders decomposition, the problem is separated in a
master problem containing the (difficult) linking variables, and sub-problems that optimize for
the remaining variables in which the linking variables are thought of as fixed. During each
iteration, the dual variables corresponding to the linking constraints in the sub-problems are
communicated to the master problem. The master problem then uses these dual variables to
create a new cut (constraint) that approximates the original objective function as closely as
possible. This method is especially useful for MILP problems as long as the integer variables
are restricted to the master problem (Benders, 1962). These situations occur frequently in two-
stage stochastic optimization. Based on two-stage optimization, its also clear to see how the
gradient-based consensus ADMM differs form Benders decomposition. The former decomposes
the primal variables and relaxes, but penalizes any violation of the ‘linking constraints’. Each
sub-problem has the freedom to decide on their primal variables as long as it positively impacts
the common objective. In Benders decomposition, on the other hand, the ‘difficult’ part of the
problem is fixed in each of the sub-problems. The role of the sub-problems is to generate new
constraints to the master problem that will improve the objective function.
Alternatively, Dantzig-Wolfe decomposition is a cutting-plane algorithm that is equivalent to
Benders decomposition when considering the dual problem. Instead of constraints, it generates
columns (i.e. variables) to include in the master problem. In the context of power flow op-
timization, these columns could reflect a (partial) power flow that should be beneficial in the
original problem. Additionally, the formulation of a power flow problem can be described by
a block angular restriction matrix (necessary structure for Dantzig-Wolfe), in which each block
describes the set of constraints associated with an electrical bus (i.e., a node where multiple
electrical connections intersect). The transmission lines connecting electrical buses generate a
set of linking constraints (Bastianel, Ergun & Hertem, 2022). Therefore Dantzig-Wolfe could be
a suitable alternative for our problem.
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2.3 Algorithm choice

Whether to use a gradient-based algorithm in the form of ADMM or a cutting-plane method de-
pends on the problem. Our problem consists of an energy optimization problem with investment
opportunities. Here, the integer investment problem can not be seen separately form the opera-
tional, or OEF problem. Although the OEF problem can be modelled as a convex optimization
problem, it can still become quite large. Assuming this problem needs to be evaluated frequently,
solving it efficiently could bring significant time gains. Benders decomposition will not be usable
in this context because it requires full separation of the sub-problems while the transmission
lines generate a lot of linking constraints between sub-problems. Both Dantzig-Wolfe decom-
position and ADMM are viable options. However, the ADMM algorithm is preferred. While
Dantzig-Wolfe could decompose the system per energy hub or bus, Kraning (2014) has shown
that an ADMM algorithm enables to go one step further, and decomposes the problem by each
component in the system, such as a wind turbine, a transmission line, batteries or thermal and
electrical loads. Furthermore, studies by Bastianel et al. (2022) indicate that for small to me-
dium sized problems a Dantzig-Wolfe algorithm for solving the DC OPF problem is significantly
slower compared to the commercial solver ‘Gurobi’.
Therefore, this thesis builds upon work earlier done by Kraning (2014), expanding it by integ-
rating a thermal network. The decomposition and implementation of this algorithm will be the
subject of the next chapter.
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3 | Energy system optimization with
investment options

The central theme in this thesis is the co-optimization of operation and investments within an
energy model. This chapter will introduce the problem formulation, present multiple solution
approaches, and provide an example on which these solution methods will be tested. Before for-
mulating the optimization problem, Section 3.1 first describes the adopted method of Moehle,
Busseti, Boyd and Wytock (2019) on modelling an energy system based on devices, extended
by introducing the modeling description of ‘Combined Heat and Power’ (CHP) plants. Sub-
sequently, Section 3.2 formally introduces the optimization problem. This optimization consists
of selecting the optimal set of investments, such that it minimises the overall cost of energy
generation while satisfying demand. This section will also show that this problem can not be
seen independently from the OEF problem. Therefore, Section 3.3 will dive deeper into the
OEF problem and show that an energy model based on the devices described in Section 3.1
can be decomposed and solved using the ‘exchange ADMM’ algorithm. Thereafter, Section 3.4
addresses the investment optimization and introduces two heuristics for solving this non-convex
problem. Lastly, Section 3.5 proposes an example model to evaluate the performance of the
solution approaches.

3.1 Device decomposition

This section describes how an energy system can be modelled based on devices and nodes.
The term ‘Devices’ serves as an umbrella term for all participants in the model, and include,
for example, generators, electrical loads, batteries, transmission lines, etc. Similarly, ‘nodes’
denote connection points in the model where these devices are linked. This approach was earlier
proposed in Moehle, Busseti et al. (2019), where the authors not only introduce the method but
also define specific devices in terms of constraints and cost functions, some of which are adopted
in this work. This method of modelling an energy system has the advantage that devices
can easily be added or removed to change or expand the model. Moreover, entire networks
interacting with the electricity grid can be integrated into the system using this approach.
Examples include district heating networks, low- and high-voltage electricity grids, and devices
producing hydrogen. This work considers an energy model consisting of an electrical network
and a thermal network that are interconnected through CHP plants. A schematic figure of such
a model is given in Figure 3.1.
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Figure 3.1: Schematic view of modelling an energy network based on devices and multiple energy carriers

3.1.1 Generators

In this section the generating devices are described based on their cost-function and constraints.

Conventional generators

Conventional generators are defined as generators that produce power from natural gas or other
fossil fuels. In work from Durvasulu and Hansen (2018), the authors explain that the cost-
function of these generators can be approximated by a quadratic function of the electrical output.
This is because these generators consume more fuel per unit of electrical output when they
operate away from their optimal operating point. This behaviour is described by the Heat-Rate
Curve, which plots the amount of fuel required per MWh electrical output as a function of
the total electrical output of the generator. The cost-function is repeated in Equation (3.1), in
which p is the electrical output. The parameter β corresponds to the linear part of the cost-
function and is associated with fuel cost. The parameter α represents the curvature of the cost
function and describes how the cost per MWh changes with the operating level. Fixed costs are
represented by γ.

f(p) = α · p2 + β · p + γ (3.1)

Internal constraints for the generator include ramping constraints, as previously described by
(Moehle, Busseti et al., 2019), as well as maximum capacity constraints. Ramping constraints
limit how much a generator can change its output from one hour to the next, and these limit-
ations usually vary depending on the generator’s size and type. These internal constraints are
summarized below:

pt − pt−1 ≤ Rincrease

pt − pt−1 ≥ Rreduce

 −→ Ramping constraints for increasing and reducing operation respectively

p ≤ pmax −→ Maximum capacity constraint
(3.2)
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Boiler

A boiler is a device that can provide heat to a thermal node by burning fuel. In contrast to
a conventional generator, a linear cost-function is assumed. While electrical output adheres
to optimal operating points due to design choices regarding turbines and other mechanical
equipment, heat production is a far more straightforward process of simply burning fuel. In
other words, it is assumed that burning twice as much fuel results in twice as much thermal
energy. The cost-function can therefore be described as follows:

f(q) = β · q + γ (3.3)

Furthermore, the operation of boilers is also subjected to ramping and capacity constraints.

Renewable generators

Renewable generators are devices that provide their maximum available capacity with zero cost
associated with their generation. They are therefore described by only one constraint.

p = pavailable (3.4)

Electricity generation is calculated by multiplying the total installed capacity with the avail-
ability of renewable source, either sun or wind. The availability of renewable sources is de-
termined based on data from Renewable Ninjas (Pfenninger & Staffell, 2016). In case of over-
production, the power dissipation device will dissipate the excess power to ensure feasibility of
the model.

Combined Heat- and Power Plant

Combined Heat- and Power plants are fossil fuel based generators that connects electrical and
thermal networks. They have increased efficiency compared to their non-CHP peers and are
considered vital to bridge the coming decades to a fully net-zero energy infrastructure. Increased
efficiency is not due to higher thermodynamic efficiencies, but rather, as the name suggest, by
using excess heat from electricity generation to satisfy thermal demands. Considering excess
heat as ‘useful’ increases efficiency as can be seen by the following efficiency equation:

ηCHP = We + QT H

QF uel

Here, We represents the useful electrical work done by the generator, QT H represents the use-
ful heat (i.e. thermal energy) provided by the plant, and QF uel is the input heat. Modern CHP
plants can achieve efficiencies (ηCHP ) of approximately 80%, and are also able to move operation
towards more power orientated or heat orientated, depending on demand. We model the CHP
as an aggregated device consisting of a conventional power plant and a boiler. Here, the conven-
tional power plant has an additional connection to a thermal node on which (free) excess heat is
transported.
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Figure 3.2: A Combined Heat- and Power plant
is modelled as an aggregated device consisting of a
boiler and an electrical generator

The amount of thermal energy that can be re-
covered from the generator is approximately
equal to its electrical output. We conclude
that based on the fact that modern electrical
generators usually reach efficiencies up to ap-
proximately 40% (We/Qfuel), while modern
CHP plants can operate at 80% efficiency
(based on the assumption there is demand for
the excess heat). The purpose of the boiler
is to generate heat when electricity demand is
low but heat demand is high, which coincides
with the facts CHP plants can shift their op-
eration according to demand. Or in other words, when electricity is produced it is always
accompanied by the generation of free excess heat, while heat can be produced without the
generation of electricity. Therefore, the cost function of CHP plants is defined as follows:

f(p, q) = αp · p2 + βp · p + βq · q + γ (3.5)

In Equation (3.5), p denotes the electrical output of the system and q represents the thermal
energy produced by the boiler. It’s important to note that q does not necessarily represent the
thermal energy exiting the plant, as it is complemented by excess thermal energy generated from
electricity production. Furthermore, ramping constraints are defined for both internal devices,
along with a combined maximum output constraint. These constraint are described earlier in
this section.

3.1.2 Load Profiles

This section describes the electrical and thermal demand profiles.

Electrical Demand

Electrical loads are devices with a fixed hourly load profiles, a zero-cost function, and only one
constraint:

p = pload (3.6)

This work considers three groups of electrical load profiles corresponding to households, com-
mercial activity, and manufacturing. The differences between these profiles are summarized
below and are visualized in Figure 3.3.

Residential & Commercial Residential and commercial load profiles are determined based
on earlier work of Hellwig (2003), where the authors studied various types of load profiles, and
summarized their work into a Python library that facilitates the construction of annual load
profiles. The load profile for commercial activity is composed of a weighted average of different
commercial sectors, such as office buildings, restaurants, bakeries, etc. An overview on the exact
build-up can be found in Hellwig (2003).
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Figure 3.3: For illustrative purposes, hourly power consumption [kWh] for the Commercial sector,
Households, and the Manufacturing sector for a typical week. all scaled to have an annual demand of
10MWh.

Manufacturing The load profile for the manufacturing sector is constructed as a weighted av-
erage of multiple manufacturing industries. Data used to construct this load profile are provided
by Bellinguer, Girard, Bocquet and Chevalier (2023). The annual hourly dataset is normalized
and can be scaled to match any desired annual demand.

Thermal Demand

Table 3.1: Assumed efficiencies for
satisfying thermal demand.

Parameter Value

Energy loss District Heating 0.1
Efficiency District Heating 0.9
COPheating Heat-Pump 3
COPcooling Heat-Pump 2

Thermal loads represent fixed hourly load profiles that simu-
late energy usage by households for heating purposes. These
load profiles are generated based on weather data from
2019 and are sourced from Pfenninger and Staffell (2016).
Whether the thermal demand is satisfied by district heating
or a heat-pump (thermal demand satisfied by domestic gas
boilers is neglected as the natural-gas network is not mod-
elled) affects the total energy use due to differences in effi-
ciencies. Heat-pumps convert electrical energy into heat and
are therefore connected to the electrical grid. Modern heat-
pumps have a Coefficient of Performance (COP) of above
three, meaning that every joule electrical energy can add three joules of heat to an environment.
Thermal demands satisfied by district heating use (excess) heat from CHP plants and are there-
fore connected to a thermal network. Although heating an environment using district heating
requires more energy than heat-pumps, it can still be extremely efficient due to the use of heat
that would otherwise be wasted. Efficiency assumptions are summarized in Table 3.1.
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3.1.3 Transmission lines & Heat pipes

Figure 3.4: Schem-
atic depiction of a
transmission line.

Transmission lines are connection devices between two nodes. Each trans-
mission line has two input variables: the transported power from and to
both connected nodes. Constraints include that the line operates within its
limits and that the power subtracted by one node equals the power provided
by the other. In reality, power losses occur and are dependent on the react-
ive power, which in turn depends on the current squared (Chatzivasileiadis,
2018). Transferred power is proportional to current, and thus it is fair to
assume that transmission losses depend on power squared when voltage
is fixed. As mentioned earlier, these flow equations are non-convex, but
are often linearized, resulting in the DC Power Flow Model. To simu-
late power losses in a convex model, a cost-function is used that depends
on the transferred power squared. This penalizes large power flows and
simulate the additional cost made associated with these losses. This was
earlier proposed in work of Moehle, Shen et al. (2019). The cost-function
of transmission lines is defined in Equation (3.7). Here, α determines the
cost associated with power losses. In reality, this parameter will depend
on various factors such as cable diameter, voltage, length, and materials.

f(p) = α · p2 (3.7)

The constraints of the transmission line are summarized below:

p1 − p2
2 ≤ pmax

p2 − p1
2 ≤ pmax

 −→ Maximum capacity constraints

p1 + p2 = 0 −→ No energy loss

(3.8)

Because transmission lines can transport energy among nodes, they can be viewed as devices
that equalize energy prices across the network.

Transport of heat by water (or steam) could be be modelled by the same sort of device,
although the energetic loss-rate adheres to different, more complex, laws. However, currently,
heat-pipes only cover relative short distances up to ∼30 kilometer (Kavvadias & Quoilin, 2018)
and (excess) heat by industry or power plants is used only in the direct vicinity. In the future, this
might change as the economic feasibility of long distance (over 100 kilometer) heat transmission
increases, as pointed out in work of Kavvadias and Quoilin (2018). One of the potential reasons
contributing to this result can be attributed to the fact that thermal storage is significantly
cheaper than electrical storage. In this work however, the assumption is made that heat providing
devices and heat demands are connected to the same thermal node, making the modelling of heat
pipes redundant. Instead, for district heating, a fixed heat loss of 10% is assumed and directly
applied to the ‘Thermal load’ device by increasing the demand accordingly. This loss-rate was
earlier described in the work of Lämmle (2020).
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3.1.4 Storage

In contrast to connecting devices that are leveling energy prices among nodes by acting as spatial
arbitragers, storage devices can be seen as temporal arbitragers. These devices can store energy
at times when prices are low and discharge when prices are high. Therefore, these devices dampen
price volatility. The storage device has no explicit cost-function but is constrained by maximum
(dis-)charging levels and maximum storage levels. This work considers perfect storage devices
with no leakage effects. In future work an ambient temperature dependent penalty term could
be added to model efficiency decreases in cold environments. The constraints are summarized in
Equation (3.9). The variable name SoC stands for ‘State of Charge’ and represents the battery
level. The parameters CRmax and DRmax represent the maximum hourly charging rate and
dis-charging rate respectively.

p ≥ DRmax

p ≤ CRmax

 −→ Charging constraints

SoC ≥ 0

SoC ≤ SoCmax

 −→ Battery level constraints

SoCt − SoCt−1 = p −→ Change in battery level should equal the input

(3.9)

3.1.5 Dissipation devices

Dissipation devices are devices with zero cost-function that can absorb or dissipate energy,
whether it be electrical of thermal, in times of excess supply. Therefore, they ensure not only
the feasibility of the system but also keep track on how much free electricity or useful heat is
wasted. They are subjected to only one constraint, namely, they can not provide energy to the
system:

p ≥ 0

q ≥ 0

 −→ Constraints for electrical and thermal energy dissipation respectively (3.10)

Note. Instead of defining the objective functions based on operational cost, these func-
tions could alternatively be related to GHG emissions when the objective is to minimize
the total emissions of the energy model rather than the operational cost.

3.2 Problem Formulation

The previous section explained how an energy system can be modelled as a network consisting
of nodes, edges and devices. Figure 3.1 shows a schematic representation of such an energy
network. With the additional information from Section 3.1, such a network can also be depicted
as a bipartite graph, as illustrated in Figure 3.5.
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Figure 3.5: Schematic representation of a device-based energy model using a bipartite graph in which
device 2 represents a transmission line (it is connected to two nodes), and device 3 represents a CHP
plant (it is connected to an electrical node and a thermal node)

One of the main objectives in this thesis is concerned with investment strategies for future
energy networks. However, identifying ‘good’ investments is not straightforward and depends on
the perspective taken. For example, transmission lines can reduce price differences between two
regions by transporting energy. From the perspective of the generator on the ‘expensive’ side,
this could be disadvantageous, as it may reduce revenue. Similarly, France blocked the expansion
of the European energy network between Spain and Germany, aiming to protect its own nuclear
sector from the competition posed by cheaper renewable energy generation in Spain (Oliver,
2014). This work will focus on investments from the perspective of the public sector, meaning
that investments should benefit the public, either by minimizing energy prices or reducing GHG
emissions. In this thesis, the focus will be on minimizing energy prices. Summarizing, the
objective is to find the optimal set of investments, such that it minimises the overall energy cost
while satisfying demand. This problem is formulated in Problem (3.11), with the explanation
of the variables and sets is given at the top of the next page.

minimize
∑

i∈D∪I

fi(xi, pd
i )

subject to pe
ij =

(
pd

i

)
j

∀(ij) ∈ E −→ Energy transport on edge (ij) equals

energy sent from (potential) device i to node j

pn
j = 1
|Ej |

∑
(ij)∈E

pe
ij = 0 ∀j ∈ N −→ Energy balance at node j

Aixi + Bipi ≤ Ci ∀i ∈ D −→ Internal constraints of device i

Aixi + Bipi ≤ ziCi ∀i ∈ I −→ Internal constraints of potential device i∑
i∈I

zi · ci ≤ B −→ Budget constraint

zi ∈ {0, 1} ∀i ∈ I

(3.11)
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Symbol Description
D Set of existing devices

E Set of edges

Ei ⊂ E set of edges connected to device i
Ej ⊂ E set of edges connected to node j

I Set of investments (also called potential devices or candidate devices)

N Set of nodes

R Set of regions

k Iteration indicator

pd
i Energy flow corresponding to device i : ∈ RT ×N

pe
ij Energy flow on edge (ij) connecting device i with node j : ∈ RT

pn
j Energy imbalance at node j : ∈ RT

λe
ij Dual variable on edge (ij) connecting device i with node j : ∈ RT

xi Internal variable(s) belonging to device i

Ai Constraint matrix belonging to variable xi

Bi Constraint matrix belonging to variable pi

(M)c Indicator of cth column of matrix M

The objective function in Formulation (3.11) minimizes the total operational cost. Although
it sums over the set of existing devices and the set of investments, this does not imply that all
investments participate in the network. The investments are limited in their operation when
they are not selected. This is ensured by the fourth constraint, where zi indicates whether the
investment is selected. The first constraint ensures that energy transported on an edge equals
the amount of energy exchanged between the device and the node. The second constraint ensures
an energy balance at each node. The internal constraints for all existing devices are captured
by the third constraint. Furthermore, the fifth constraint ensures that the total investment cost
does not exceed the budget. The final constraint makes sure that no partial investment is part
of the solution.
Formulation (3.11) also clarifies why the problem can, conceptually, be viewed as two optimiz-
ation problems. The minimum operational cost for a combination of investments corresponds
to a unique flow schedule, which can be found by optimizing the OEF problem. Indirectly, two
questions need to be answered: which devices should be selected and what is the corresponding
optimal flow schedule? One strategy of solving this problem is to repeatedly fix a combina-
tion of investments and solve the corresponding OEF problem. A sophisticated version of this
approach is the Branch & Bound algorithm. This algorithm solves combinatorial optimization
problems by systematically evaluating all meaningful combinations. Applied on Problem (3.11),
this means that branching is done on each investment, and the objective at each node is found by
solving the corresponding OEF problem. Nodes are pruned when the lower bound of the node
is higher than the existing upper bound. While this method is often used in commercial solvers
for solving (Mixed) Integer Programming problems, the number of possible combinations grows
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exponentially with the number of investment options, making this method potentially inefficient.
Alternatively, Section 3.4 proposes two heuristics that evaluate only parts of the solution space
but still rely on repeatedly solving the OEF problem. Therefore, it would beneficial to solve this
problem efficiently, which will be the topic of Section 3.3.

Lower & Upper Bound

The upper and lower bound can be interpreted as the maximum and minimum operational costs
of satisfying energy demand over a full-year period, given a certain budget. The initial upper
bound can be easily defined as the benchmark model with only the existing devices. The lower
bound is calculated by adding all potential devices to the benchmark model and relaxing the
binary investment decision variables of Formulation (3.11) to continuous variables. Although the
solution may include, for example, installation of fractional wind turbines, it gives a theoretical
lower bound against which we can evaluate the performance of the heuristics.

3.3 Optimal Energy Flow

This section describes how the OEF problem can be solved using distributed optimization tech-
niques for an energy model as described in Section 3.1. Ignoring the investments decisions
from Problem (3.11) results in the optimization that is concerned with the optimal energy flow
schedule for a fixed set of devices. This problem is summarized below:

minimize
∑
i∈D

fi(xi, pd
i )

subject to pe
ij =

(
pd

i

)
j

∀(ij) ∈ E −→ Energy transport on edge (ij) equals

power sent from device i to node j

Aixi + Bipi ≤ Ci ∀i ∈ D −→ Internal constraints of device i

pn
j = 1
|Ej |

∑
(ij)∈E

pe
ij = 0 ∀j ∈ N −→ Energy balance at node n

(3.12)
Comparing Problem (3.12) and (2.10) shows their similarity, and indeed, the OEF problem

can be seen as a ‘Market Clearing Problem’, which was earlier described by Kazempour (2024).
The significance of this result is that the same ‘Exchange ADMM’ algorithm can be used to
optimize Problem (3.12). The energy balance constraint at each node acts here as the global
constraint, linking multiple devices. These constraints are therefore relaxed and included in the
Augmented Lagrangian function. Having moved the global balancing constraint to the objective
function enables the use of the Exchange ADMM algorithm, as summarized in Algorithm 2 and
described in Section 2.1. The algorithm shows that the devices can be optimized in parallel due
to their independence from each other, revealing one of the biggest advantages of distributed
optimization. Furthermore, the second step in the algorithm, calculating the imbalance at the
nodes, can also be parallelized because the nodal power balance is independent of other nodes.
However, due to the low complexity of the calculation, the time savings will probably not be as
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significant.

Algorithm 2 Exchange ADMM Algorithm with Device Decomposition

1: Initialize pe,0
ij , pd,0

i , pn,0
j , λe,0

ij , ϵ
2: k ← 0
3: µ← ϵ + 1 ▷ Set µ to an arbitrary number above ϵ for the first iteration
4: while µ ≥ ϵ do
5: for each i ∈ D do ▷ For each Device i
6: pd,k+1

i ← argminpd
i

Lρ(pd,k
i , pe,k

ij , λe,k
ij | ∀j : (ij) ∈ E) ▷ Device optimization

7: pe,k+1
ij =

(
pd,k+1

i

)
j

8: end for
9: for each j ∈ N do ▷ For each Node j

10: pn,k+1
j ← 1

|Ej |
∑

(ij)∈E pe,k+1
ij ▷ Equilibrium calculation

11: λe,k+1
ij ← λe,k

ij + ρ · pn,k+1
j ▷ Dual update

12: end for
13: µ← ∥λk+1 − λk∥
14: k+ = 1
15: end while

Dual variable interpretation

Section 2.1 explained that in Problem (3.12) there exists a Nash equilibrium as long as the
problem is convex (proof given by Banks and Duggan (2004)). Within this equilibrium, no
participant (such as a generator, battery, or other device) can deviate from this point without
negatively impacting their own objective. The optimal strategy corresponding to this result
is linked to duality theory, which states that the optimal energy price is equal to the dual
variable of the balance constraint at each node. The link between dual variables and game
theory is further discussed in work of Bradley, Hax and Magnanti (1977, Chapter 4.9). This
result provides insights to the magnitude, spatial variability and temporal variability of the dual
variables. For example, the energy price difference between two nodes is equal to the difference
of their dual variables. When this difference is large, a new transmission line could level these
prices to the point that the transmission cost (see Section 3.1.3) exceed the nodal price difference.
Alternatively, the dual variable could behave volatile over time. This could imply that there is
enough capacity of renewable energy, but that there is no cheap alternatives when renewable
sources are unavailable. Batteries can decrease this price volatility by storing ‘cheap’ renewable
energy, which increases the overall utilization of renewables and decreases the average energy
price. In other words, even without advanced modelling and optimization, the dual variables
offer insights into potential improvements that could benefit the system.

3.4 Investment Optimization

This section describes the optimization related to determining the optimal investment strategy.
By ignoring the decision variables and constraints related to the optimal energy flow from
Problem (3.11), the objective shifts solely to selecting the optimal set of investments. This
problem is summarized below:
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minimize g(z) −→ Minimizing cost

subject to
∑
i∈I

zi · ci ≤ B −→ Budget constraint

zi ∈ {0, 1}, ∀i ∈ I

(3.13)

In this formulation, z represents the vector of decision variables, where the ith element
indicates whether investment i is selected. The objective function g(z) represents the operational
cost corresponding to this decision vector, while the cost of investment i is indicated by ci. With
a bit of creativity, Formulation (3.13) can be seen as a knapsack problem. However, the difficulty
in solving this particular problem lies in the fact that the utility is not a constant but rather
an unknown function dependent on all the other decision variables. This makes Problem (3.13)
at least as hard as the knapsack problem. The next subsections will introduce two heuristics
that require fewer computational resources than a Branch & Bound algorithm, and hopefully
still provide high-quality solutions.

3.4.1 Dynamic Programming Heuristic

The difficulty of Problem (3.13) lies in the fact that the utility of each investment depends on the
set to which it belongs, rather than being constant. When simplifying the problem and ignoring
this fact, Problem (3.13) reduces to a 0/1 Knapsack problem which can be efficiently optimized
using a Dynamic Programming algorithm. This is exactly the approach used in this heuristic.
Each investment is added individually to the existing set of devices, and the OEF problem is
solved for each scenario. Then, the effect (i.e. reduction of operational cost) corresponding to
each investment is stored. The biggest disadvantage of this approach is the implicit assumption
that investment X has no influence on the profitability of investment Y and vice-versa, while it
is known this is not the case. An outcome of this assumption could be that the found solution
might invest excessively in one technology or in one region. To partly overcome this, restrictions
are imposed such that at each node, only one investment can be made for each type of technology
(e.g., generation by renewable sources and storage devices). For example, at node j it is allowed
to install a battery and a wind turbine, but not two batteries of different size or, PV and wind
turbine(s). For transmission lines this restriction is not imposed. To achieve this, investments
are categorized in certain subgroups. For example, sub-group 1 contains the following four
investment possibilities:

– Install 3 MW capacity wind turbine at node 1
– Install 6 MW capacity wind turbine at node 1
– Install 500 kW capacity PV at node 1
– Install 4 MW capacity PV at node 1

Then, from each subgroup, at most one investment can be selected. This is a special variant of
the knapsack problem that is also known as the ‘Multiple-Choice Knapsack Problem’ (MCKP)
(Kellerer, Pferschy & Pisinger, 2004). The dynamic programming table corresponding this
variant is schematically depicted in Figure 3.6, and the pseudo-code is summarized in Algorithm
3.
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Algorithm 3 Pseudo-code for Dynamic Programming Algorithm solving MCKP
1: Initialize investments ▷ List of tuples (cost, utility, subgroup)
2: budget ▷ Total cost should not exceed this value
3: dynamic programming table ▷ Size is (|I|+ 1) x (B + 1)
4: for each i ∈ I do ▷ For each investment i
5: Solve OEF of benchmark model including investment i
6: Save the objective value related to investment i in Table T
7: end for
8: Sort Table T based on subgroup
9: for each i in range 1 to |I| do

10: for each b in range 1 to B do
11: Determine the optimal selection from the investments numbered 1, 2,..., i
12: when budget b is available, and store the value in the DP-table ▷ See Fig. 3.6
13: end for
14: end for
15: Use backtracking to find the optimal solution

Figure 3.6: Schematic figure of the Dynamic Programming Table corresponding to the MCKP problem.
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3.4.2 Relax & Fit Heuristic

This section describes the ‘Relax & Fit’ heuristic. The approach is as follows, the relaxed version
of Problem (3.11) is solved and the (fractional) solution is retrieved. Each fractional investment
gets assigned a fitness-score, the closer the investment is to an existing option, the higher the
fitness-score. The investment with the highest fitness-score is selected and fixed within the
model. The investment cost of this device is then subtracted from the (residual) budget, and
the problem relaxation is solved again. This process continues until the remaining budget is
insufficient to make any further investments. Assumed is that within this approach, the fitness-
score represents the probability of a particular investment being part of the optimal solution.
The heuristic is summarized in Algorithm 4.

Algorithm 4 Pseudo-algorithm for Relax & Fit Heuristic
1: Initialize set of investments I

2: total budget B

3: s← 0 ▷ Amount of money spent
4: µ← 1 ▷ Identifier if any investment could still be added in last iteration
5: S ← ∅ ▷ Set of selected investments
6: while µ > 0 do
7: µ← 0
8: Solve the relaxation of Problem 3.11
9: for each i ∈ I do ▷ For each investment i in the set of Potential Investments

10: i← fitness-score
11: end for
12: Sort set I by fitness-score
13: for each i ∈ I do
14: if ci ≤ B − s then ▷ If investment cost is still within the residual budget
15: Fix investment i

16: Add investment i to S

17: Remove investment i from I

18: s← s + ci

19: µ← 1
20: break
21: end if
22: end for
23: end while

3.5 Network example

To evaluate the ADMM algorithm for solving the OEF problem and to test the proposed heur-
istics, a 12-bus energy model with both electrical and thermal nodes is constructed. Figure 3.7
illustrates the model, where thick black lines represent electrical nodes, thick blue lines indic-
ate thermal nodes, and thin black lines between electrical nodes denote transmission lines. The
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dashed lines are potential transmission lines that are part of the investment options. The overall
distribution of energy demand between the residential sector, the manufacturing sector, and the
commercial sector is approximately even, with each sector accounting for around one-third of
the total electrical load. This approximation is in line with values reported by U.S. Electricity
System About the U.S. Electricity System and its Impact on the Environmen (n.d.). Further-
more, approximately 30% of all households are connected to ‘District Heating’, and another 30%
of households have a connection to a heat pump. For convenience, only the thermal demand
of households is considered, and not those of commercial buildings. The network consists of
nodes with different characteristics (e.g. predominantly households, manufacturing industry,
commercial buildings, or power generation). Some of these nodes are connected and some of
them could be connected in the future when the connection is part of the investment options.
There are conventional as well as renewable electrical generators installed. The network from
Figure 3.7, without the investment options, is referred to as the benchmark model. The data
sources for the various load profiles and the availability of renewable energy are summarized
in Table 3.2. Additionally, Tables 3.3, 3.4, and 3.5 provide details on the existing devices and
transmission lines in the benchmark model. Figure 3.8 shows the cost functions of the three
fossil-fuel-based generators plotted against their electrical output. Tables 3.6 and 3.7 list all the
investment options for this model. Next, the investment costs were adjusted to ensure that all
technologies contribute approximately equally to the solution of the linear relaxation of Problem
(3.11). This adjustment aims to balance the cost-effectiveness of each technology, preventing
any single technology from dominating the optimal solution. These costs do not necessarily
reflect the capital expenditures found in reality.

Table 3.2: Data sources for weather statistics and load profiles

Device Data Source
Renewable generators Availability of Wind or Solar Renewables Ninja

[Pfenninger and Staffell
(2016), Staffell and Pfen-
ninger (2016)]

Thermal Load Thermal Load Profiles Renewables Ninja
Electrical Load Load Profiles BDEW [Hellwig (2003)]

ELMAS [Bellinguer et al.
(2023)]
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Table 3.5: Specifications of the transmission lines of the benchmark model

Transmission Line nr. From Net To Net Capacity [MW] Cost f(p)

1 1 4 2 0.25 · p2

2 1 2 2 0.25 · p2

3 2 5 2 0.25 · p2

4 3 5 2 0.25 · p2

5 3 8 2 0.25 · p2

6 4 7 3 0.25 · p2

7 5 7 4 0.25 · p2

8 6 9 4 0.25 · p2

9 6 7 4 0.25 · p2

10 7 9 4 0.25 · p2

11 7 10 4 0.25 · p2

12 8 10 4 0.25 · p2

Figure 3.8: The cost function of the three fossil-fuel based generators in the benchmark model

30



Table 3.6: Investment options (excluding transmission lines) in the benchmark model

Device Capacity [MW(h)] Possible at Nodes Cost [104$]

Renewable (Wind) 3 2 - 10 55
6 2 - 9 100

Renewable (PV) 1 1 - 10 20
4 2 - 9 38

Battery 30 2 - 10 15
60 2 - 10 28

Table 3.7: New transmission lines as part of the investment options for the benchmark model

Transmission Line From Node To Node Length Capacity [MW] Cost [104$]

Line 1 1 6 Long 2 15
4 25

Line 2 2 4 Long 2 15
4 25

Line 3 2 3 Short 2 10
4 15

Line 4 4 6 Long 2 15
4 25

Line 5 4 5 Short 2 10
4 15

Line 6 5 10 Long 2 15
4 25

Line 7 5 8 Long 2 15
4 25

Line 8 6 10 Long 2 15
4 25

Line 9 9 10 Short 2 10
4 15
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4 | Results

This chapter will present the numerical results for solving Problem (3.11) based on the example
given in Section 3.5. First, Section 4.1 presents the main results for the optimal operation of
the benchmark model (i.e. the example model with no investments). Subsequently, Section
4.2 compares the performance of distributed optimization versus centralized optimization (i.e.
non-decomposed optimization model optimized by a commercial solver) for the OEF problem.
Lastly, Section 4.3 will discuss the results of the two heuristics as described in Section 3.4 for
solving the investment optimization problem.

4.1 Benchmark Example

Solving the OEF problem corresponding to the benchmark model results in an optimal energy
flow schedule. The key results of this schedule, namely, operational cost, the amount of cur-
tailed electricity from renewable resources, and the amount of unused usable thermal energy
are summarized in Table 4.1. The yearly average dual variable at each node and the standard
deviation of the dual variable, based on 8760 hourly observations (representing one full year),
are presented on the left side of Table 4.2. The mean dual variable indicates the average nodal
energy price, while the standard deviation is listed as a proxy for price volatility. The right hand
side of Table 4.2 summarizes information regarding the operation of the transmission lines. The
left column lists the amount of time that each line operates at its maximum capacity. This can
be an indicator how often, and where potential congestion occurs in the grid, which on its turn
can sustain price differences between nodes. The right column shows the average utilization of
the transmission lines, defined as the amount of energy transferred in the full year as a per-
centage of the maximum energy that can be transferred on that line. The largest number in
each column of Table 4.2 is indicated in a bold font, and blue entries indicate that it concerns
a thermal node. Noticeable is the large standard deviation of the dual variable at node 6. This
can be explained by the lack of electricity demand and the sole presence of renewable generation
at this node. Consequently, the marginal cost of energy at node 6 is highly dependent on the
availability of solar radiation and wind, leading to considerable price fluctuations and a high
standard deviation of the dual variable. Furthermore, the transmission lines connecting node 6
to node 7 (line 9), node 6 to node 9 (line 8), and node 7 to node 10 (line 11), often operate at
their maximum capacity. The transmission lines connected to node 6 are crucial for transporting
‘cheaply’ generated renewable energy from this node, and the fact that these lines frequently
operate at their limit could indicate grid congestion issues in this area.
For illustrative purposes, Figure 4.1 shows the energy flow at node 6 over ten consecutive days.
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The diurnal pattern of solar power generation is clearly observable. It is also noticeable that a
significant amount of power is dissipated when both solar and wind power are generated. This
can occur due to a lack of demand, insufficient storage capacity, and/or insufficient capacity of
the transmission network.

Table 4.1: Main findings of the benchmark model after solving corresponding the OEF problem.

Objective value [$] Curtailed Electricity [MWh] Unused Usable Heat [MWh]
4,736,034 19,194.26 46,140.54

Table 4.2: Overview of yearly average nodal pricing of electricity and thermal energy in the left table.
The right table shows the percentage of time transmission lines operate at their maximum capacity and
the amount of energy transferred in the full year as a percentage of the maximum. The maximum values
in each column are indicated with a bold font. Blue entries indicate that it concerns a thermal node.

Node nr. Mean λ Std. Dev. λ

1 41.81 18.41
2 29.30 18.70
3 44.61 6.01
4 37.90 12.21
5 27.97 18.10
6 23.98 21.68
7 33.08 16.74
8 42.49 8.74
9 32.77 17.73
10 41.92 8.93
11 3.11 6.94
12 2.45 6.41

Line nr. Operating at Average
max. capacity [%] utilization [%]

1 2.08 63.65
2 0.00 86.16
3 6.79 50.16
4 0.00 94.96
5 1.50 50.86
6 0.00 50.61
7 16.19 56.17
8 27.34 77.25
9 38.06 69.57
10 0.43 40.69
11 39.13 68.57
12 0.00 32.20

4.2 Distributed optimization vs. Centralized optimization

One of the research questions is whether an OEF model can benefit from distributed optimiza-
tion. The ‘Exchange ADMM’ algorithm is applied to evaluate the computational time for solving
three different OEF problems varying in size and time horizons. These results are presented in
Table 4.3. Here, the 1-bus system corresponds to the benchmark model including only the first
node. In the 3-bus system, nodes one, two, and four are included along with their relevant
transmission lines. Lastly, in the 12-bus system the full benchmark model is considered. Ad-
ditionally, either 1 or 8760 time-steps are considered, corresponding with the first hour of 2019
and the full year respectively.
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Figure 4.1: For illustrative purposes, results of the incoming and outgoing power on node 6 of the
benchmark model, between March, 25th and April, 6th. Positive/negative values correspond to subtract-
ing/providing power from/to the node.

Table 4.3: Results of the comparison of a centralized optimization approach and the distributed ADMM
method. The values in last column are based on the example model from Section 3.5.

1-bus 3-bus 12-bus

Time-steps 1 8760 1 8760 1 8760

Centralized
Computational Time[s] 3.82 · 10−4 9.07 · 10−2 5.15 · 10−4 3.18 · 10−1 2.43 · 10−3 2.08

ADMM
Computational Time[s] 3.23 · 10−2 460.43 1.15 · 10−1 1122.43 14.36 > 3600

The ADMM results should be interpreted as follows: they represent the computational time
when the problem is not parallelized, despite parallelization being one of its major advantages.
Assuming the algorithm dedicates all its computational time to device optimization, with neg-
ligible time spent on the other operations, and assuming all devices require an equal amount of
optimization time, and an unlimited number of computer cores are available, the computational
time could potentially be reduced by a factor equal to the number of devices.
Even if we account for the potential parallelization, for these small to medium sized problems,
the ADMM approach is not as efficient as a centralized approach solved using a commercial
solver. ADMM would be most beneficial for cases where the full model is too large to solve,
while each subproblem is much smaller. This is not the case in the presented example model,
but this could be the case in real-life models. When applying ADMM, it is important to also
optimize the penalty parameter ρ due to its significant effect on the convergence rate.
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Figure 4.2: Magnitude of the dual variables versus the iteration number for different sizes of ρ. The left
figure corresponds to ρ = 0.1, while the middle and right figure use 1 and 10 respectively. Higher penalty
parameters are characterized with smaller lead-times, but with higher overshoot.

Penalty Parameter

Figure 4.2 plots the dual variable versus the iteration number for nodes 1 and 2 of the example
model when only one time-step is considered. This relation is plotted for three different values
of ρ, and the relation between the size of the penalty parameter and the lead-time and overshoot
can be clearly seen. Selecting the optimal penalty parameter is a well-known problem in control
theory, where the objective is to minimize lead-time and overshoot. To achieve this, it is often
beneficial to take larger steps at the beginning of the optimization and reduce the step size as
the optimal solution is approached. Instead of a fixed penalty term, a dynamically decreasing
term through the iterations could be introduced. Alternatively, the penalty term could be set
proportionally to the primal residual of the linking constraint at each node (i.e., the power
imbalance). In that case, the penalty term varies not only across iterations but also differs
across nodes based on their respective power imbalances.

4.3 Heuristics

The second research question is concerned with efficient methods for identifying the optimal
investment combination. As previously mentioned, the number of combinations increases ex-
ponentially with the number of investment options, and exact methods require too much com-
putational resources. Problem (3.11) did not terminate in reasonable time using a commercial
solver, emphasizing the dependence on heuristic methods. Therefore, we do not discuss the
numerical performance of the commercial solver further. In this section the results of the Relax
& Fit heuristic and the Dynamic Programming heuristic are presented based on their perform-
ance with respect to the benchmark model and a budget of 240 [104 $]. The main findings are
presented in Table 4.4 below. Sections 4.3.1 and 4.3.2 provide a detailed analysis of the results
obtained from the respective heuristics.
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Table 4.4: A comparison of the different methods used to solve the investment problem related to the
benchmark model from Section 3.5.

Relaxed Problem
Upper bound [$] 4,736,034
Lower bound [$] 3,077,615
Curtailed Electricity [MWh] 9,180.88
Unused usable Heat [MWh] 10,872.87

Dynamic Programming
Computational Time [s] 568.08
Objective Value [$] 3,695,707
Gap to LB [-] 16.72%
Curtailed Electricity [MWh] 5,069.23
Unused usable Heat [MWh] 19,196.37

Relax & Fit
Computational Time [s] 212.32
Objective Value [$] 3,181,253
Gap to LB [-] 3.26%
Curtailed Electricity [MWh] 9,399.23
Unused usable Heat [MWh] 12,508.25

4.3.1 Dynamic Programming

Based on the benchmark model, the investment set corresponding to the solution of the Dynamic
Programming heuristic is summarized in Table 4.5. This table lists all the devices that are
added next to the already existing ones in the benchmark model. This selection resulted in
a gap of 16.72% with respect to the lower bound found by solving the relaxation of Problem
(3.11). It significantly reduced the curtailment of electricity from renewable resources by nearly
75% compared to the benchmark model. Despite outperforming the Relax & Fit heuristic in
reducing curtailment, it resulted in more wasted thermal energy. Additionally, the objective
function is considerably higher than for the Relax & Fit heuristic. The selected investments
seem to over-expand in grid transmission capacity. This could be explained by the fact that
many transmission lines reduce the objective value considerably, but the algorithm does not
account for the fact that, as connectivity grows, the marginal gain of each additional transmission
line decreases. The relative large investment in grid capacity and electrical storage reduces
spatial price differences, temporal price differences, and electricity curtailment. However, these
technologies only facilitate the utilization of ‘cheap’ renewable energy but do not increase the
overall generation. Looking at the left-hand side of Table 4.6, it can be observed that the mean
value of the dual variable and the standard deviation of the dual variable at the different nodes
are, apart from node 1, indeed very similar. Furthermore, the right-hand side of Table 4.6 shows
that the transmission lines hardly operate at their maximum capacity anymore, indicating little
to none congestion issues.
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Table 4.5: Selected investments based on results of the Dynamic Programming heuristic

Device Capacity [MW(h)] (From) Node To Node
Transmission Line 13 2 9 10
Transmission Line 14 4 6 10
Transmission Line 15 2 5 8
Transmission Line 16 4 5 10
Transmission Line 17 2 4 5
Transmission Line 18 2 4 6
Transmission Line 19 2 2 3
Storage 30 2 -
Storage 30 5 -
Storage 30 6 -
Storage 30 7 -
Storage 30 9 -
Wind Turbine 3 3 -

Table 4.6: Information regarding the nodal prices and the operation of the transmission lines corres-
ponding to solution of the Dynamic Programming heuristic, on the left and right side respectively. Bold
transmission lines indicate the newly installed connections that are part of the solution of the Dynamic
Programming heuristic. Blue entries indicate that it concerns a thermal node.

Node nr. Mean λ Std. Dev. λ

1 39.83 26.47
2 28.06 13.06
3 28.28 12.97
4 28.24 12.99
5 27.82 12.77
6 27.21 13.63
7 28.22 13.09
8 28.32 12.92
9 28.57 13.35
10 28.51 13.05
11 3.77 7.30
12 8.68 8.43

Line nr. Operating at Average
max. capacity [%] utilization [%]

1 0.11 74.32
2 0.00 80.83
3 0.00 36.63
4 0.00 44.88
5 0.00 22.95
6 0.00 7.94
7 0.06 24.15
8 1.32 55.28
9 1.30 37.99
10 0.00 20.15
11 0.00 15.68
12 0.00 15.44
13 0.57 33.43
14 5.46 51.65
15 1.28 50.46
16 0.17 35.78
17 0.00 41.75
18 0.00 63.58
19 0.00 22.64
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4.3.2 Relax & Fit Results

Based on the benchmark model, the Relax & Fit heuristic outperformed the Dynamic Program-
ming heuristic by selecting the set of investments summarized in Table 4.7. This resulted in a
gap of 3.26% with respect to the lower bound of Problem (3.11). Additionally, it resulted in less
curtailment of electricity (a reduction of approximately 50%) and less wasted thermal energy (a
reduction of more than 70%) compared to the result of the benchmark model (see Table 4.1).
Based on these results, it appears that the heuristic is effective in identifying which technologies
should be installed at which nodes to reduce the overall operational costs of the system. The
dual variables of the benchmark model, as presented in Table 4.2, provide additional insight
to this solution. A high-capacity transmission line is installed between two nodes where the
difference of the yearly average dual variables was initially among the highest in the model.
Furthermore, storage technologies are installed at nodes where the standard deviations of the
dual variable were originally the highest and fourth highest, indicating increased price volatility
at those nodes. Lastly, generators based on renewable energy sources are installed at three
nodes that rank in the top four in terms of the average dual variable in the benchmark model,
indicating high marginal costs at these nodes. These results are in line with the interpretation
of the dual variables, given in Section 3.3.
Looking at the left-hand side of Table 4.8, the system corresponding to the results of the Relax &
Fit heuristic indicates an average reduction in the marginal cost of energy at all electrical nodes
and a decrease in the standard deviation of the marginal cost at most electrical nodes. On the
contrary, both thermal nodes (nodes 11 & 12) experience price increases and probably increased
price volatility compared to the model without investments. This can be explained by the re-
duced dependency on CHPs to meet electrical demand, resulting in less ‘free’ excess thermal
energy being available. The right-hand side of Table 4.8 shows that, compared to the benchmark
model, the investment strategy significantly reduces the frequency at which transmission lines
8, 9, and 11 operate at their maximum limit. This reduction indicates fewer congestion issues
and, consequently, less spatial variability of energy prices. Additionally, the average utilization
of each transmission line, except for line 12, is lower. This suggests that the added transmission
capacity makes the system more robust, as most lines have, on average, more reserve capacity.

Table 4.7: Selected investments based on results of the Relaxed & Fit heuristic

Device Capacity [MW(h)] (From) Node To Node
Transmission Line 13 2 4 5
Transmission Line 14 4 1 6
Wind Turbine 3 3 -
Wind Turbine 6 8 -
Storage 30 5 -
Storage 30 6 -
PV 2 1 -
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Table 4.8: Information regarding the nodal prices and the operation of the transmission lines corres-
ponding to solution of the Relax & Fit heuristic, on the left and right side respectively. Bold transmission
lines indicate the newly installed connections that are part of the solution of the Relax & Fit heuristic.
Blue entries indicate that it concerns a thermal node.

Node nr. Mean λ Std. Dev. λ

1 30.20 15.03
2 26.76 15.59
3 28.66 15.24
4 28.11 15.10
5 26.37 14.89
6 26.64 16.29
7 28.14 15.41
8 28.83 15.58
9 28.35 15.99
10 30.08 14.78
11 7.89 9.17
12 8.20 9.27

Line nr. Operating at Average
max. capacity [%] utilization [%]

1 0.02 51.27
2 0.00 80.32
3 6.12 54.30
4 0.00 71.50
5 8.58 48.90
6 0.00 24.50
7 13.28 48.94
8 4.27 63.17
9 6.50 49.36
10 0.08 30.76
11 12.60 59.50
12 4.19 40.38
13 0.00 57.51
14 0.00 70.42
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5 | Conclusion & Discussion

This work considered a budget constrained energy system expansion problem. This optimiza-
tion problem is modeled as an MIQP problem, and the possibility of solving it using distributed
optimization in combination with heuristics is explored to keep the problem computationally
tractable. To assess the research questions, a medium-sized energy model is designed, consisting
of an electrical network and a thermal network interconnected by CHP plants. Solving the OEF
problem for this model using the distributed optimization algorithm ‘exchange ADMM’ did not
provide computational advantages compared to solving the same problem centrally with the
commercial solver ‘Gurobi’. Although the optimization contained over 100, 000 decision vari-
ables, the commercial solver was extremely efficient in finding the optimal objective value. When
the problem size would significantly increase, distributed optimization could become noticeably
faster compared to commercial solvers or even a necessity.

Two heuristics were assessed for identifying the (sub-)optimal set of investment options: the
Dynamic Programming heuristic and the Relax & Fit heuristic. Based on the presented model
and the data used, the Relax & Fit heuristic performed best, while the commercial solver could
not solve the model in a reasonable time. The heuristic achieved an operational cost that was
only 3.26% higher than the lower bound, which was determined by solving the relaxation of the
same problem and allowed for the installation of fractional investment options. The optimal
set of investment options has a strong connection with the dual variables (i.e. the marginal
cost of energy) defined at each node. In the solution found by the Relax & Fit heuristic, trans-
mission lines are installed between nodes whose initial dual variables differed relatively much.
Increased connectivity levels energy prices between nodes, and overall, enables the utilization of
the cheapest energy form available in the network. Furthermore, storage facilities are installed
at nodes where, initially, the standard deviation of the dual variable was high, a metric that
was used as a proxy for price volatility. These investments store ‘cheap’ renewable energy and
help absorb price shocks when energy from renewable sources is insufficient. This reduces price
volatility and increases the utilization of clean energy. Lastly, generators that run on renewable
resource are installed at nodes where generation was otherwise relatively expensive, which aligns
with the fact that power originating from renewable sources is generated with low operational
cost. Therefore, the characteristics of the dual variables, derived from the nodal pricing system,
can provide additional insights into an energy system and could help indicating technologies
that lower the overall operational cost.
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5.1 Recommendations for ‘District’

This thesis is written in collaboration with the ISE department at the Fraunhofer-Gesellschaft
research institute where they developed ‘District’, a regional sector-coupling energy model de-
signed to provide reliable insights into how a future energy network could look when constrained
by emission regulations and/or plans for expanding heat and electrical demand (Thomsen,
2017). Because large projects require extensive computational resources, the team is inter-
ested in whether decomposition techniques and distributed optimization algorithms can benefit
their operation. Although the current structure of ‘District’ does not easily allow decomposition
by device, it is suitable for decomposition by area or region. These regions consist of generating
devices, storage facilities, and electrical loads and are connected to other regions by transmission
lines and heat pipes. It is recommended to cut these connections to create smaller sub-problems,
and place a node to connect the two loose ends, as shown in Figure 5.1.

Figure 5.1: Schematic representation on how the District model could be decomposed.

From here the same algorithm as in Section 3.3 can be used. In fact, the two decomposition
techniques result in the same problem, with just different interpretations. In regional decom-
position, the coupling constraint always involves only two energy flows (i.e. energy subtracted/
supplied to the two regions at each end of the transmission line or heat pipe). Consequently,
transmission lines are not considered devices but function as nodes. The regions can be viewed
as large devices that are composed of multiple devices grouped together.

However, Chapter 4 shows that distributed optimization might not be the holy grail for
solving the ‘District’ model faster for large projects. The binary or integer decision variables pose
a real challenge regarding whether, and in what time, the problem will terminate, especially when
multiple technologies have a competitive value and branching algorithms can not easily prune.
This problem will not disappear when using a distributed optimization approach. Moreover, it
does not guarantee convergence to the global optimum. For larger projects, it is recommended
to relax the integrality constraints and use a heuristic (e.g., Relax & Fit) to construct the (sub)-
optimal solution. Parallelized distributed optimization could become valuable when projects
become so large that the commercial solver struggles to find a solution even for the relaxed
problem.
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5.2 Economic limitations

Monopolies

In Chapter 2 it is argued that generators cannot unilaterally deviate from a certain strategy while
simultaneously improving their profit, which corresponds to energy prices being equal to the
marginal cost. This result is based on the implicit assumption of a competitive market, however,
since we are dealing with a physical product, this may not hold when the transmission network
is inadequate. Consequently, certain nodes could be relatively isolated, allowing generators to
exploit their market power.

Inelastic Energy Demand

In the example network presented in Section 3.5, fixed load profiles are used to model the energy
use of different sectors. These load profiles are based on empirical research, where end-users
very likely did not have dynamic energy contracts. However, the model presented in Chapter 3
applies a pricing system that does adhere to dynamic pricing. Therefore, load profiles might not
be as inelastic as presented when there is an incentive to use energy at times prices are low. The
results presented in Chapter 4, which demonstrate potential savings for energy users from certain
investments, rely on a benchmark model and benchmark prices. These benchmark prices are
influenced by inelastic demand profiles. However, if energy purchasers were to observe dynamic
nodal prices rather than contract prices, their behaviour could change, potentially altering the
benchmark itself.

5.3 Technical limitations

Whether Problem (3.11) would be solved by the exact Branch & Bound algorithm or a heur-
istic, it is unavoidable that the OEF problem or the linear relaxation of Problem (3.11) needs
to be evaluated repeatedly. It turned out that out-of-the-box solvers are very efficient in solving
this problem on the presented model. Based on reasoning alone, it could be argued that the
implementation of parallel computing with the ADMM algorithm was not going to boost com-
putational efficiency to a level where it would outperform the commercial solver. Therefore, the
effect of parallelization is not further explored, and its impact remains uncertain. In relation
to this, it is still unclear at what problem size distributed optimization becomes faster than
commercial solvers.

5.4 Future research

As described in Section 3.1, CHP plants interconnect electrical and thermal networks. It is
shown that these devices do not significantly increase the complexity of the model and allow for
optimization of the integrated system. Future research could expand on this idea by incorpor-
ating a hydrogen network. It would be interesting to see how a hydrogen plant can be modelled
as a convex device, how the operation of the integrated system changes, and if the dynamic
nodal pricing system could be used to predict profitability. Additionally, it would be interesting
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to see how energy load profiles would change when energy users see dynamic nodal prices in-
stead of fixed contractual prices. With customers incentivized to use electricity during periods
of lower prices, research could be done how this changes behavioural patterns with respect to
energy usage. Lastly, the distributed optimization algorithm performed worse than expected,
probably due to the size of the OEF problem. It would be interesting to determine the problem
size at which commercial solvers begin to struggle with optimizing convex problems, and when
distributed optimization becomes a faster alternative.
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