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Abstract

This paper explores the interconnectedness between European banks using both

the copula model and the extreme value theory model. Currently, stock market data

is not utilized effectively in regulation, which could lead to significant improvements

in accuracy and regulatory efficiency. By comparing full model copula graphs with

tail-specific extremal graphs, this study enhances the understanding of banking net-

works. Using daily stock prices from January 2000 to April 2024 for 55 banks, the

extremal model reveals a stronger relationship between G-SIB scores and central-

ity metrics, providing valuable insights into interconnectedness scores and capital

surcharges. Moreover, the centrality-based analysis compares full and tail-based

modelling methods, finding extremal models to be superior in graphical analysis,

based on significance. Despite this, the models perform similarly during periods of

economic stress, with the main differences in performance due to the model type

rather than the measure used. In conclusion, the study suggests adopting extremal

models for the potential integration of market data into Basel regulations.
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1 Introduction

The Great Financial Crisis (GFC) of 2007-2008 and more recent bank failures such as First

Republic Bank (2023) have reiterated the importance of robust financial systems. The

GFC led to the collapse of major financial institutions, massive bailouts, and a significant

downturn in global economic activity. More recently, bank failures have continued to

threaten financial stability (e.g. Silicon Valley Bank), underlining the critical need for

resilient financial systems. A single bank failure can pose a significant risk to the entire

financial system and the global economy. For banks deemed “too big to fail”, failure may

even result in government-supported bailouts ultimately funded by taxpayers (Rosas,

2006; Stiglitz, 2009). To accurately assess the importance of banks and their roles within

the financial system, the Basel Committee has introduced comprehensive models and

extensive legislation to recapitalize banks and impose stronger capital requirements on

key institutions.(Rubio & Carrasco-Gallego, 2016). Consequently, new models must be

consistently pioneered to ensure that regulations remain efficient and effective.

The systemic importance of banks can stem from various characteristics. The Basel

Committee builds on five categories: size, interconnectedness, substitutability, complex-

ity, and cross-jurisdictional activity. Size has been thoroughly discussed in Zhou (2010),

finding that size should not be considered a direct proxy and that the too-big-to-fail ar-

gument does not always hold. However, large banks with diversified banking activities

might become systemically important, tying into the case for complexity and the find-

ings in Carmassi and Herring (2016) on globally systemically important banks (G-SIBs).

Substitutability carries relatively little weight as discussed in Allahrakha, Glasserman

and Young (2015), leaving the cross-jurisdictional and interconnectedness scores as the

primary categories to consider. Busch, Cappelletti, Marincas, Meller and Wildmann

(2021) show that there is a lot to gain in these topics as the current G-SIB framework

uses only balance sheet information, omitting market data. This opens up significant

opportunities to strengthen the identification of key banks, particularly within the inter-

connectedness category, by using direct market relations. Building on this, we introduce

extremal models, compare them with existing copula models, and evaluate the initial

effectiveness of the methodology in integrating market data into Basel regulations.

Understanding the connectedness between institutions remains crucial for effectively

preventing or handling financial crises. Underestimating risks or incorrectly identifying

key banks could lead to failures due to insufficient capital requirements, while overly capit-

alizing banks could result in unproductiveness and reduced international competitiveness.

Furthermore, Engle, Jondeau and Rockinger (2014) find that their measure of systemic

risk directly Granger-causes industrial production and business confidence indices, sig-

nalling distress in economies and the significant importance of a strong financial system.

Additionally, banks designated as G-SIBs capitalize on better debt guarantees and sig-
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nificantly higher implicit guarantee values compared to non-G-SIBs (Schich & Toader,

2017) suggesting a direct impact of the assigned scores.

Identifying key institutions that are subject to higher contagion or whose failure could

cause a further breakdown in the system is thus central to this framework. Overall, this

research will benefit regulators by contributing to the literature on interbank relations.

Possibly contributing to the open problem that is the continuing development of Basel

IV.

The current literature on the interconnectedness problem already uses network mod-

els to help identify key relationships. For example, Cerchiello and Giudici (2016) plot

directional risk relations, aiming to visualise the discussed interconnectedness using mar-

ket data. However, because most systemic risk is concentrated during economic crises

and regulatory overhauls, research may benefit from shifting from a general approach to

a more tail-centric focus. For example, Baumöhl, Bouri, Hoang, Shahzad and Výrost

(2022) focus on tail dependence.

The tail has also been explored in the works of Z. Zhang, Zhang, Wu and Ji (2021)

and Denkowska and Wanat (2020), which use copula models to take the tail into account.

Unfortunately, the copula methodology still requires us to model the entire distribution.

An even more targeted methodology may thus be applied, using extreme value theory to

model the tail itself. Thus, to further explore interbank relationships and the impact of

events on these relationships, this study investigates how copula-based and EVT (Extreme

Value Theory) based graphical models compare in identifying and evaluating the systemic

importance of banks. Specifically, the study examines the centrality of banks in these

models and their effectiveness in capturing interbank dependencies under various market

conditions. The tail model should, in theory, be less influenced by general observations,

allowing for stronger results in non-crisis periods and increased accuracy of the inferences.

Consequently, during crisis periods, the models should exhibit higher levels of similarity

as the data used becomes more uniform.

The models utilize daily stock prices retrieved from Refinitiv Eikon for STOXX600

banks, along with macroeconomic indicators from Eurostat and the Office of Financial

Research. Because stock prices are forward-looking, they have significant predictive power

for potential financial distress. Europe is selected for its diversity of countries, allowing

unique clusterings under the same regulatory framework.

Using the Copula and EVT methodologies, graphs are fit for the last five years showing

interpretations of the European framework. In addition, a time series of graphs spanning

January 2000 up to April 2024 is used to explore graphical implications through centrality

measures and to identify the relationship between the models. By examining the centrality

of banks in the individual models and the rank correlation between the centrality measures

across the models it is found that: Firstly, EVT-based centrality scores seem to be far

more effective at explaining bank importance compared to the copula-based scores. This
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is likely due to a stronger focus on extremes rather than general observations, which are

dominated by local market effects. Secondly, the rank correlation between the graphs

seems influenced by economic conditions, rising significantly in bear markets and crises.

Lastly, a change in trend is observed around the Brexit negotiations, after which increased

market volatility and more extreme observations potentially diluted the effect of normal

non-important observations in the copula models. Moreover, the Brexit effect also appears

in visual inspections of the graphs as the British banks move towards the outer regions

of the graphs. Ultimately, the study finds that the EVT model is better at classifying

G-SIBs and, potentially, aiding in effective regulation.

Hence, these results also have policy implications. regulators should be aware of the

differences between the models and the results produced by the different methodologies.

Using the copula model could yield less relevant results, limiting the effectiveness of

possible further regulation on the identified banks. Moreover, the results highlight that the

system remains vulnerable to large-scale events which can greatly affect the dependence

structures among banks. This suggests that after key events the interconnectedness needs

to be thoroughly reevaluated, as banks may shift in positions and thus in regulatory

importance.

The remainder of the paper is divided into the following sections. Section 2 provides

background on graphical modelling theory and overviews the extreme value interpretation

of the graphical model as pioneered by Engelke and Hitz (2020). Section 3 covers the data

and data processing for the stock prices and macroeconomic data used. Section 4 discusses

the practical implementation of the theory and the estimation of the models. Section 5

presents the results and their implications, followed by the conclusion in Section 6.

2 Theoretical Framework & Background

2.1 Graphical Models

Graph theory is a popular choice for models that require the user to describe or un-

derstand the interactions between a large set of random variables (Yang & Peng, 2020).

Graphical models have since been used to infer networks and model problems on inter-

connected entities, for example with graphical LASSO (Hallac, Park, Boyd & Leskovec,

2017). Similarly, network analysis has been directly applied to stock markets as in Huang,

Zhuang and Yao (2009), who model the topological changes in the network to infer correl-

ation patterns and guide risk management. Using their correlation threshold method they

create networks to study the relationship between network characteristics and correlation

thresholds. Furthermore, graphical models can be used to predict stock prices such as in

Li et al. (2021) and Yin, Yan, Almudaifer, Yan and Zhou (2021).

A specific subset of graphical models aims at building minimum spanning trees (MST),
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a subsection of connected graphs without cycles, which minimize the total weight of the

edges. These Non-directional connected tree models are often created using Prim’s Al-

gorithm (Prim, 1957) as it finds the minimum spanning tree in weighted, undirected

graphs. In this paper’s application, the algorithm uses weights denoted in a matrix to

compare the length of the edges. For this distance matrix, many methods have also

been used. Often, stock market analysis has been done using MSTs based on correla-

tion matrices, for example, for the Italian market (Coletti, 2016) and the Polish market

(Tomeczek, 2022). Moving past correlation matrices, Millington and Niranjan (2021) used

rank correlation and Baumöhl et al. (2022) consider the tail of the distribution. Baumöhl

et al. specifically introduced a directed model, allowing them to measure whether the

institution is a net risk transmitter or receiver; moreover, they can do so for quantiles of

the distribution, all the way up to 5%.

Moving further into the tail there are the copula models. Ranging from those developed

for exchange rates (Wang, Xie, Zhang, Han & Chen, 2014), the Chinese Financial Market

(Z. Zhang et al., 2021), to the European Insurance Market (Denkowska & Wanat, 2020).

These copula papers base their dependency measure on Spearman’s rho, a rank correla-

tion, which can be calculated using the mathematical definition of different copulas. By

doing so, the authors are able to fit various copulas with different tail dependencies to the

data and get various fits for the chosen correlation parameter. Notably, Z. Zhang et al.

(2021) also use time-varying copula parameters to achieve similar results. After selecting

their copulas, the authors select an information criterion optimal copula to make their

graph. While this method also accounts for tail dependence, it is still affected by regu-

lar observations, and for some copulas even significantly by the right tail of the return

distribution due to symmetry assumptions.

With the key focus of modelling risks in the network, it makes more sense to move

towards left tail-focused methods that only take into account extreme distress scenarios

when graphing financial interdependency. To this extent, there are either extreme value

copulas (Ribatet & Mohammed, 2013) as intermediaries, or extremal graphs based on

papers from Engelke and Hitz (2020), focusing on tree creation based on extremal coeffi-

cients. The following section reviews the literature on applying extreme value theory to

graphs.

2.2 Extreme Value Theory

2.2.1 Multivariate Pareto Distributions

The multivariate Pareto distribution is introduced in Rootzen and Tajvidi (2006). They

base their interpretation on the peak-over-threshold model and formalize a generalized

multivariate Pareto distribution.

Subsequently, Engelke and Volgushev (2022) build on this by defining multivariate
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exceedances for the vectorX as any observation where at least one component ofX exceeds

its quantile. In our case X represents the processed returns of all banks on a certain day,

with bank i ∈ V for V the set of banks, with the corresponding cumulative distribution

function F (x) = (F1(x1), ..., Fd(xd)) of X. The multivariate Pareto distribution is shown

in equation 1, for some vector Y supported on L = {x ≥ 0 : ∥x∥∞ > 1} for all points

x ∈ L. Note that F (X) ̸≤ 1 − q shows that at least one observation in X is exceeding

the marginal quantile of F−1
i (1 − q), i ∈ V . In other words, this takes the limit over all

observations for X where at least one Xj is an extreme value.

P(Y ≤ x) = lim
q→0

P(F (X) ≤ 1− q/x | F (X) ̸≤ 1− q), (1)

Engelke and Volgushev (2022) show that the random vector of returns Y has ho-

mogeneity as a structural property, linking it to the univariate Pareto distribution as

P(Y ∈ tA) = t−1P(Y ∈ A) for any transformation tA = {tx : x ∈ A} for subsets A ⊂ L
implying that for all i ∈ V it can be shown that P(Yi ≤ x|Yi > 1) = 1 − 1/x, x ≥ 1. in

other words, Yi|Yi > 1 ∼ Pareto.

2.2.2 Conditional Independence

Because the above multivariate Pareto distribution is not defined across the entire space

of X an auxiliary vector needs to be derived to create a non-standard form of conditional

independence. Hence, for any m ∈ V we denote Ym := Y|Ym > 1 on support space

Lm = {x ∈ L : xm > 1}.
Based on the multivariate Pareto distribution, Engelke and Volgushev (2022) define a

general conditional independence for extreme observations. For the index set V of graph

G = (V,E) over the extreme observations described by a multivariate Pareto distribution

Y with the disjoint sets A,B,C ⊂ V , then YA is conditionally independent of YC given

YB if there is no path between A,C without a node from B.

∀m ∈ {1, ..., d} : Ym
A ⊥⊥ Ym

C |Ym
B (2)

Also denoted as: YA ⊥e YC |YB where subscript e indicates it is defined for extreme

observations. Note that the implied pairwise Markov property is equivalent to the global

Markov property for the graph G as long as it is connected. Under the assumption of an

auxiliary random vectors derived from Y the conditional independence does not assume

densities, making it more general than the one described in Engelke and Hitz (2020).

2.2.3 Extremal Correlation & Extremal Variogram

The extremal equivalent of the covariance matrices used in the Gaussian model could be

the extremal correlation (Equation 3). Defined for i, j ∈ V the extremal correlation meas-
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ures the strength of dependence in the extremes of variables. The extremal correlation is

bounded by 0 and 1, with independence and complete extremal dependence at its limits

(Coles, Heffernan & Tawn, 1999). Moreover, if X is in the max-domain of attraction of

the multivariate Pareto distribution Y then the extremal correlation always exists.

χij := lim
q→0

P (Fi(Xi) > 1− q|Fj(Xj) > 1− q) (3)

However, the extremal variogram may be even better positioned to compare as an

extremal covariance. This extremal variogram can be interpreted as shown in equation

4. Implying that Γ
(m)
ij is large if the extremal dependence is weak between bank i and j,

and small when the extremal dependence is large. Note that the extremal variogram is

rooted at a node m ∈ V yet has a clear link to the extremal correlation χij which is not

rooted.

Γ
(m)
ij = Var

(
log Y m

i − log Y m
j

)
(4)

The exact relation between the extremal correlation and extremal variogram depends

on the assumed distribution of the extremal functions W1, ...,Wd that uniquely define

the distribution of Y. With extremal function Wm
i , rooted at node m for bank i. Where

Ym =(d) PWm for some Pareto random variable P and Wm
m = 1.

The Hüsler–Reiss distribution (Hüsler & Reiss, 1989), which is parametrised by the

variogram matrix of Γ, is selected because of a special property. Namely, Engelke and

Hitz (2020) show that the extremal variogram Γ(m), rooted at m, is equivalent to the

variogram matrix Γ for ∀m ∈ V . Because of this an exact relation can be made between

the extremal correlation and extremal variogram as denoted in Equation 5. Note that the

variogram matrix Γ is a symmetric conditionally negative definite matrix, closely related

to the covariance matrix through the relation Γij = E(Zi−Zj)
2 = Σii+Σjj−2Σij for banks

i, j for some random vector Z with covariance matrix Σ. However, multiple covariance

matrices may correspond to a single Γ (Farris, Kluge & Eckardt, 1970). The remainder of

this paper assumes the Hüsler–Reiss distribution, meaning that the below formula holds.

χij = 2− 2Φ(Γij/2) (5)

3 Data

The dataset is based on stock price observations retrieved from Refinitiv Eikon1 and con-

sists of the daily price observations for all constituents of the STOXX600 Banks index

(EXV1). Additionally, UBS, Morgan Stanley, Goldman Sachs, Wells Fargo, Citi, and

JP. Morgan were added to the dataset, resulting in 55 banks with observations from 1st

1Retrieved April 2nd 2024
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January 2000 to 2nd April 2024. As some banks have not publicly traded for some period

the dataset starts with 40 banks, see Appendix 8 for an overview. Table 1 shows de-

scriptive statistics for the European banks, here the average market cap is at 25ebn with

the smallest bank at 2.3ebn compared to the largest at 137ebn+. Implying significant

differences across the banks in the sample. While similar differences appear in the other

statistics, the ratios between net interest income and revenue and net income and revenue

appear relatively stable. A full overview of the banks can be found in Appendix Table 5

with Appendix Figure 9 showing the rebased prices for selected banks. Notably, the banks

follow similar patterns, with BNP Paribas generally pricing above the others. Overall the

movements are similar across the banks and, as expected, in line with the STOXX600

Banks Index.

Table 1: Descriptive statistics for European banks. Shows Market Capitalization, Net Total
Loans, Net Income, Total Revenues, and Net Interest Income (NII) in millions.

emm Market Cap Total Loans Net Income Revenue NII
Average 25,571 272,560 4,060 13,193 7,719
Median 17,203 181,909 2,577 6,200 4,487
Min 2,311 1,997 163 384 138
25% 6,195 56,804 950 3,367 2,525
75% 32,420 448,802 4,934 19,744 10,212
Max 137,566 1,094,266 25,775 60,546 43,261

Despite the daily fluctuations that are not related to the underlying, stock prices

remain the best widely available proxy for bank performance and financial risk, as also

indicated in Z. Zhang et al. (2021) for the Chinese Financial Market, Denkowska and

Wanat (2020) for the European insurance market, and van Oordt and Zhou (2019) for

systemic risk modelling in banks.

To transform the stock data we take the difference of the logs to get the log returns,

see Equation 6 for day t and bank i. The returns are negated to get the log losses.

ri,t = log(pi,t)− log(pi,t−1) (6)

After transforming to log-losses, various ARMA-GARCH models are individually fit

to all banks. The ARCH methodology is based on Bollerslev, Chou and Kroner (1992)

and the ARMA-GARCH specification is selected based on the average Akaike Information

Criterion (AIC) across the set of banks, as done in Engelke and Volgushev (2022). Based

on the average AIC the ARMA(0,2)-GARCH(1,1) model (see Equation 7) is selected.

After selecting the model the residuals are obtained for each bank cleaned of their serial

dependence.
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ri,t = φ0 + εi,t + θ1εi,t−1 + θ2εi,t−2,

σ2
i,t = α0 + α1ε

2
i,t−1 + β1σ

2
i,t−1,

εi,t = σi,tzi,t, zi,t ∼ N(0, 1)

(7)

To evaluate the current state of the European banking system the last 5 years are

selected. Then, to extend past the visual comparisons, we employ a rolling window

estimation method with a three-year interval. This involves segmenting the dataset into

overlapping windows, yielding a total of 256 observations. The end dates of these windows

are updated monthly, starting from December 2002 and continuing through to December

2023. This approach enables us to capture the evolving nature of the relationships over

time.

In addition to the stock market data for the banks, seasonally adjusted quarterly GDP

growth data from Eurostat (2024) is included. Furthermore, the Financial Stress Index

(FSI) and the European-Japanese Financial Stress Index (EUJP) provided by Office of

Financial Research (2024) are included along with the G-SIB scores for individual banks.

For the G-SIB data we only consider the European banks resulting in 114 observations

split across time between 2014 and 2023, consisting of 13 different banks.

The OFR FSI was selected because it has a direct relation with decreases in economic

activity, performing well in identifying systemic financial stress scenarios (Monin, 2019).

Similarly, GDP growth acts as a proxy for the macroeconomy, which has been found to

influence systemic risk levels through the herd-like behaviour of banks (Calmès & Théoret,

2014).

Figure 1: Plot of OFR Financial Stress Index (FSI) and European Japanese subdivision of the
financial strength index. This figure shows the period 2000 to 2024 for the stress indicator

As shown in Figure 1, the FSI has moved significantly over the last 20 years, with

large spikes during the Great Financial Crisis, the Eurocrisis, and the pandemic. Overall,

the European-Japanese subsection seems to have followed similar patterns but with less
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extreme fluctuations. Furthermore, the quarterly GDP shown in Appendix Figure 10

exhibits similar movements, with quarterly decreases around the crisis periods, going

negative after the GFC, during the Eurocrisis, and in the pandemic.

4 Methodology

Using the processed data we need to estimate the relevant distance matrices for Prim’s

algorithm to create the minimum spanning tree (MST) (Prim, 1957). Prim’s algorithm

is a greedy algorithm that iteratively adds the closest vertex. This way the algorithm

always produces a tree G = (V,E) with the set of vertices V , corresponding to the banks,

and the edges E, as |E| = |V | − 1. Hence, for some set of symmetric weights (distances)

dij > 0 associated with vertices i, j ∈ V, i ̸= j the tree is given by Equation 8.

Tmst = argmin
G=(V,E)

∑
(i,j)∈E

dij (8)

The input for Prim’s algorithm can come from various models, with the key distinction

being between full models and tail models. Specifically, the focus will be on the full model

in the copula form, as discussed in Section 4.1, and the tail model, discussed in Section 4.2.

Table 2 shows that besides the model type there is also the difference in measure. Note

that while modelling a full measure from a tail model is not possible, we can use a full

model to say something about the tail. Appendix A highlights this for the copula-specific

interpretation.

Table 2: This table compares the full and tail-based modelling methodologies, along with the
corresponding full and tail-based measures used in combination with the models. A full model
can provide both a full measure and a tail measure, while a tail model can only provide a tail
measure.

Model
Full Tail

Measure
Full Section 4.1 X
Tail Appendix A Section 4.2

4.1 Copula-Based Graphs

For the copula method we choose to use the empirical CDF over the skewed Student-t

marginals (Hansen, 1994) opposed to what was suggested by previous work from Z. Zhang

et al. (2021) stating its ability of addressing skewness, kurtosis, and fat-tails remaining in

the residuals. Nevertheless, in the current implementation there are no key advantages of

fitting a specific parametric marginal over an empiric CDF. All copulas are fit based on
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the pairwise matching of the empirical Kendall’s Tau. In general, we have the copula in

Equation 9 for the processed stock prices x, y of banks X, Y .

FXY (x, y) = C (FX(x), FY (y)) . (9)

Two different copulas are compared, namely the Gumbel Copula and the Frank Cop-

ula, denoted by equations 10 and 11, respectively:

CGu(x, y; δ) = exp
(
−
(
(− log x)δ + (− log y)δ

) 1
δ

)
(10)

CFr(x, y; θ) = −1

θ
ln

[
1 +

(
e−θx − 1

) (
e−θy − 1

)
e−θ − 1

]
(11)

After fitting the copulas we calculate the pairwise Spearman’s Rho for each com-

bination using Equation 12, for copula function C(x, y; θ) representing the fitted copula

between bank X and bank Y . After calculating the Spearman’s rho we calculate the

distance measure dXY =
√

2(1− ρSPXY ).

ρSPXY = 12

∫ 1

0

∫ 1

0

C(x, y; θ)dxdy − 3, (12)

4.2 Extremal Trees

The extremal trees are based on the empirical variogram and the background methodology

explored in section 2.2. Using the same processed residuals as for the copulas, we denote

Xti for daily observations at time t for the banks i ∈ 1..d. The empirical variogram is

defined in Equation 13, where F̃i(.) is the empirical CDF of some Xi and k is the number

of exceedances selected. Note that this is the elementwise calculation of the extremal

variogram rooted at m. Moreover, the ˆV ar denotes the sample variance and k/n → q for

n → ∞.

Γ̂m
ij := ˆV ar

(
log(1− F̃i(Xti))− log(1− F̃i(Xtj) : F̃m(Xtm) ≥ 1− k/n

)
(13)

Engelke and Volgushev (2022) show that if the right side of the equation exists then

the underlying extremal conditional independence tree can be consistently recovered. Fur-

thermore, under the assumption of Hüsler–Reiss distributions the root node is irrelevant.

The variogram is then converted to the extremal correlation coefficient using the

element-wise relation χij = 2 − 2Φ(
√

Γij/2). The Prim algorithm is then used on the

weights dij = 2−χij ∈ [1, 2] where high extremal correlations (implying small variograms)

result in a smaller distance. This method is used over the direct empirical extremal correl-

ation because the extremal variogram is, in theory, guaranteed to recover the underlying
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tree as long as all variograms exist.

The number of exceedances k is set according to the methodology of Engelke and

Volgushev (2022), extended slightly for the smaller moving windows.

4.3 Centrality Measures

To assess the created graphs and provide a basis for comparison we need descriptive

measures of the graphs. To this extent, Z. Zhang et al. (2021) measure centrality and

density in the network by using measures derived from Spearman’s Rho’s moments. As

this is not universally applicable between our methods, we use topological measures for

centrality (Wang et al., 2014; Tomeczek, 2022). We use three centrality measures, namely

closeness, betweenness, and degree centrality. (J. Zhang & Luo, 2017)

Closeness centrality, as shown in Equation 14, measures the shortest distance of bank

v (vertex v ∈ V ) to all other banks (vertices) in the graph. d(·, ·) is the distance function
and n − 1 is a normalization term, for n banks in the graph, allowing us to compare

different sized graphs.

Cc(v) =
n− 1∑

u̸=v d(v, u)
, (14)

Similarly, we define (vertex) betweenness centrality as shown in Equation 15. (Freeman,

1978) This measures the number of times a bank (v) is bridged by the shortest path

between two other banks (s, t ∈ V ). σst is the total number of shortest paths between

s and t, while σst(v) is the number of shortest paths that go through bank v. The term
2

(n−1)(n−2)
is a normalization term.

Cb(v) =
∑
s̸=v ̸=t

σst(v)

σst

2

(n− 1)(n− 2)
(15)

Lastly, degree centrality, shown in Equation 16, is calculated which corresponds to the

number of links a bank v has to other banks. Note that we again normalize by n− 1 to

compare different sized graphs.

Cd(v) =
deg(v)

n− 1
(16)

Using the centrality scores for the individual banks we can check the G-SIB specifica-

tion assigned by the Basel Committee. We check the overall Systemic Importance Score

(SIS) and the Interconnectedness scores by means of individual regressions for each cent-

rality measure, see Equation 17 and 18, respectively. In these formulae the Cit variable

refers to one of the three centrality measures (i = (c, b, d)) for the graph ending in period

t. The regression only includes observations for European network banks as the American

network is underdeveloped and underrepresented in our dataset. After this restriction this
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leaves 114 observations.

SISt = β0 + β1Cit + εt (17)

Intt = β0 + β1Cit + εt (18)

4.4 Rank Correlation

To effectively measure the similarity between the graphs produced by various methods,

we introduce rank correlation as a new statistic. The rank correlation can be calculated

using the previously computed centrality measures for the extremal and copula graphs.

A time series is created by calculating the correlation over time using a 1-month rolling

window with a length of 3 years. The rank correlation is computed with the calculated

centrality measures using Equation 19 for Spearman’s rho, where li is the difference in

rank for some bank i between the copula and extremal trees.

ρSpearman = 1− 6
∑

l2i
n(n2 − 1)

(19)

After calculating the rank correlation we perform tests on the time series. First we test

for stationarity using the Augmented Dickey-Fuller framework. The first test is shown in

Equation 20. For rank correlation RCt in period t we assume no drift and have a null

hypothesis of non-stationarity, namely γ = 0. Note, the optimal lag number (p) is selected

using the BIC criterion.

∆RCt = γRCt−1 + δ1∆RCt−1 + δ2∆RCt−2 + . . .+ δp∆RCt−p + εt (20)

After finding that the null hypothesis is not rejected (at 5%) and that the unit root

might be present the second test in Equation 21 is performed. Here we test the null

hypothesis of γ = 0 and the null hypothesis of α = γ = 0. At both the 1% and 5% level

both null hypotheses are rejected, implying that the unit root is not present and there is

a drift.

∆RCt = α + γRCt−1 + δ1∆RCt−1 + δ2∆RCt−2 + . . .+ δp∆RCt−p + εt (21)

Furthermore, using three regressions the movements in the rank correlation are tested.

Equation 22 shows the GDP regression, Equation 23 and 24 show versions of the financial

stress index (FSI), and Equation 25 shows the multiple regression of all features. In all

equations we have the rank correlation RCt for that period t regressed on a constant β0

and the dependent variable, assuming normal errors. We include the date variable t to

12



adjust for the aforementioned drift, as suggested by Childers (2024).

RCt = β0 + β1GDPGt + β2t+ εt (22)

RCt = β0 + β1FSI + β2t+ εt (23)

RCt = β0 + β1EUJP + β2t+ εt (24)

RCt = β0 + β1GDPGt + β2FSI + β3t+ εt (25)

The drift in the rank correlation is further investigated using subsequent F-tests to find

potential structural breaks. This is an extension of the Chow test and uses the framework

from Zeileis, Kleiber, Krämer and Hornik (2003). We perform this test for both the drift

only regression as well as the regressions shown in Equation 22 and 23.

5 Empirical Results

5.1 Comparing Trees

Figure 2 and 3 show the minimum spanning trees created for the last 5 years based on the

daily stock prices. In both graphs the countries appear similarly split, clustering around

each other. However, the extremal tree moves UBS closer to the centre around Société

Générale, in contrast to the link with the German banks found in the Copula version.

Figure 3 also links the British banks through the German and Spanish banks, in contrast

to the direct link with Crédit Agricole in the Copula tree.

The EVT graph identifies CAGR, BNP, SOGN, ISP, SAN, DBKGn, INGA, RBIV,

and NDASE as the most important banks in the European System, while in the more

spread out Copula tree we do not identify RBIV. Notably the Copula tree does identify

ABN Amro as a potentially important bank as it links closely to the USA, however this

is most likely due to a relatively large share of the non-local revenue coming from the US

branch compared to the rest of Europe2. This may indicate that the copula based model

puts more importance on low-level information retrieved from daily market movements

of the American exchanges, opposed to risk-driven changes. Note that the results for the

Frank copula are identical to the Gumbel Copula (see Appendix C).

22023 Profit is distributed as 2,290mm in the Netherlands, 101mm in rest of Europe, 207mm in the
USA, and 97mm in rest of the world.
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Figure 2: Network structure of European banks based on the Gumbel copula. Based on last 5
years of data from April 2019 to April 2024. Bank indices are in Appendix Table 5

5.2 Centrality Driven Results

In addition to the graphical movements, we measure the centrality and relative importance

of the banks in the network. Table 3 shows a significant link between the centrality of a

bank and the bank’s G-SIB score and subsequent capital surcharges. Next to verifying

the accuracy this implies that graphical location may be a suitable determinant to add

or remove additional charges. For example, based on the previous last 5 year graph,

Deutsche Bank appears to be too strongly regulated based on its graphical importance

while ISP might need stronger capital requirements.

Table 3 also highlights significant differences between the copula and extreme value-

based graphs. Notably, the significance of the ”Interconnectedness” score, which measures

the degree of connections to other banks within the system, is significantly higher in the

extreme value-based models. This suggests that these models may be more suitable

for extracting linkages between banks. The overall systemic importance score (SIS) is
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Figure 3: Network structure of European banks based on the extreme value theory approach.
Based on last 5 years of data from April 2019 to April 2024. Bank indices are in Appendix Table
5

Table 3: Individual regressions for two OFR G-SIB Scores, Overall score in the SIS and the
Interconnectedness score, regressed on closeness, betweenness, and degree centrality measures.
The systemic importance score (SIS) is the final score awarded by the OFR and determines the
capital requirement add-on, it is based on multiple characteristics including the interconnec-
tedness score. All regressions have n=114 observations and the coefficients are not scaled. **
significant at 1% and * significant at 5%.

Copula EVT
SIS Coeff. P-value Coeff. P-value
Centrality 9534.6 0.207 16464.6 0.065
Betweenness 0.066* 0.020 0.066* 0.022
Degree 6.52 0.062 12.57* 0.013
Interconnectedness
Centrality 7354.3 0.128 14808.9** 0.009
Betweenness 0.046* 0.012 0.058** 0.001
Degree 4.06 0.069 10.12** 0.002
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less significant for both, indicating that graphs alone cannot capture the importance of

other key characteristics such as size, substitutability, complexity, or the degree of cross-

jurisdictional activity. However, the EVT graphs still outperform the general copula

models, remaining more significant across all metrics.

In addition to verifying individual importance and interconnectedness, the centrality

measures also allow an even more direct comparison between the Copula and EVT implied

graphs. By calculating a monthly rank correlation based on the closeness centrality score

we can compare the similarity and dissimilarity over time. As shown in Figure 4, the

rank correlation exhibits an upward trend and has increased significantly over the last

20 years. Based on the Dickey-Fuller test the null hypothesis of non-stationarity is not

rejected at 5%, however, when adding a drift term the null hypothesis is rejected and the

unit root is deemed not present. There is however a statistically significant drift.

Figure 4: Rank correlation of closeness centrality between copula and extreme value-based
trees, based on a three-year moving window.

The F-tests (see Appendix Figure 11) identify three moments where a structural break

may have occurred in the data. The first peak was at the Brexit announcement, the

second in the middle of the Brexit negotiations, and the third during the Covid pandemic.

Overall, this aligns well with the observation that the dependence structure of the banking

network in Europe changed significantly around these moments. Notably, in the second

series of F-tests, which included the GDP or FSI variable, only the second point remained
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significant.

To further investigate this structural break, two subsets around the Brexit negotiations

are selected, examining the five years before and the five years after March 2017. This

division allows us to assess the impact of Brexit on interbank relationships. The graphs

presented in Appendix Figures 17 and 18 for the extremal graphs, and Figures 12 and

13 for the copula-derived graphs, show clear differences. In the extremal graphs the clear

movement of Virgin Money and Investec from the centre before Brexit to the outsides of

the graph post Brexit is seen. Similarly, while linking to Poland pre-Brexit, the remainder

of UK banks now links to the American banks, Nordic banks and a Swiss bank post-Brexit.

Signalling a move away from the more central European banks. While the Copula-derived

graphs also present a move from the centre for Investec, it is this time joined by Standard

Chartered and HSBC. Again a new UK cluster is created towards the outside, but this

time it does not link to any other clusters at all. Note that this country specific clustering

is in itself also more prominent in copula-graphs regardless.

Besides Brexit, it could be argued that the heightened volatility during the pandemic

and the subsequent active markets may have resulted in the structural break. For example,

the increase in market activity may have led to more extreme stock movements, causing

the copula-based tree to resemble the structure of the extremal tree without Brexit impact

as extreme observations become more important in fitting the copula.

Nevertheless, we can also describe the changes in the rank correlation using economic

indicators. Namely, Table 4 shows the regressions of the rank correlation on the quarterly

GDP of the European Union, the Financial Stress Index (FSI), and the European subset of

the FSI. Also a multiple regression with both economic growth and the FSI was performed.

Notably, each regression includes the time as an independent variable to adjust for the

trend. The results also hold for 5-year time periods, apart from the GDP-growth (most

likely due to the length of the period).

As seen, the quarterly GDP is significant with a p-value of 0.0324, suggesting that

during periods of high economic growth, the rank correlation decreases. This is logical,

as bear markets often feature relatively more extreme observations, allowing extremal

graphs to share more similarities with copula-based graphs. Similarly, high FSI numbers

are significant at the 1% level for both the entire index and the European-Japanese Sub-

set. The positive coefficient indicates that higher financial stress levels lead to a higher

correlation between extremal and copula graphs. This aligns with the previous conclusion

drawn from the GDP effect, indicating that economic slowdowns result in higher correl-

ation across the graphs. Notably, neither sign flips in the multiple regression, with GDP

remaining significant at the 5% level.

The difference between the copula-based and extreme value theory-based models is

further emphasized when considering different measures for the copula model. As shown in

Appendix A, the copula model can be utilized with a tail-dependence measure. However,

17



Table 4: Regressions for the rank correlation between the closeness centrality measures of
the copula and extreme value-based graphs. The first regression uses the seasonally adjusted
quarterly GDP growth for the European Union. The second and third regressions use measures
of financial stress provided by the OFR, specifically the general Financial Stress Index (FSI) and
the European-Japan shared Financial Stress Index (EU-JP). All regressions include a constant
and a time variable to capture the trend. Note: FSI and EU-JP coefficients are scaled by 100,
and the time coefficients are scaled by 10,000. ** indicates significance at the 1% level and *
indicates significance at the 5% level.

Regression 1 Regression 2 Regression 3 Regression 4
Coeff P-value Coeff P-value Coeff P-value Coeff P-value

n 64 181 181 64
Intercept -0.77 -9.72 -8.89 -0.71
GDP -1.57* 0.034 - - -1.60* 0.032
FSI - 0.77** 0.000 - 0.48 0.222
EU-JP - - 1.51** 0.001 -
Time 0.33** 0.000 0.39** 0.000 0.39** 0.000 0.33** 0.000

the resulting rank correlation between the tail and full measures remains one throughout

the period, as depicted in Appendix Figure 7, highlighting that the differences in the

graphs stems from the model itself. More explicitly, the measure-dependent difference

is non-existent in the current application of the full copula model. This implies that

the relationship between a tail-measure-based copula model and the extremal model is

identical to that of the full-measure copula model and the extremal model.

6 Conclusion

In conclusion, to find the optimal model to aid regulatory design and model systemic

risk through the links within banks, the copula model and extremal model have been

thoroughly compared. Differences have been highlighted in graphs and an event study

around Brexit has shown the descriptive power of using graphing frameworks. However,

the real value lies in the explanatory power of the models.

Here, the new extreme value-based graphs are found to be better at identifying the

positions of banks within the system, yielding more significant results when testing capital

surcharges and interconnectedness scores across banks. Moreover, the models are also

sometimes very similar. This is driven by economic crises and periods of stress, where the

rank correlation between the models is found to be dependent on system stress. Finally,

when compared to a copula-based tail model, the tail-based modelling approach is found to

be superior. Namely, the tail-measure-based copula models do not show any improvement

over their full-model counterparts in graphing applications.

Moreover, the results indicate that interbank risk relations are best modelled using

tail-specific models opposed to their full model counterparts. This finding is in line with

the general assumption that bank failures and other significant risk events are tail-events.
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This is particularly important as prior research has highlighted the limited use of market

data in determining banking relations, suggesting a potentially significant benefit from

incorporating extremal models in future Basel regulations.

The key limitations of the research include the sample size, with the extremal model

selecting just a subset of the data, which can be relatively small in the rolling windows.

Moreover, the panel of banks is not complete and could include more banks. For Basel

regulations, it would need to also include at least the American and Chinese banks, if not

a much larger portion of the international banking system. Despite this, the models serve

as a successful initial expedition into extremal models, yielding promising results.

Lastly, for the conceptual relationship between using full or tail-specific measures, the

copula-based models used are not optimal. Potentially, different, more complex copulas

could be tested, or an alternative full model could be considered to create another tail

measure for comparison. Nevertheless, the initial results yield significant grounds for fur-

ther exploration and the potential deployment of extremal models in estimating banking

risks and relations.
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A Tail Measure Copula Model

The intermediary option between having the full copula model and a tail model is to use

the full copula model in combination with a tail-specific measure. For various copulas,

there are explicit definitions for tail dependence. In this research, we use the Frank copula

and the Gumbel copula, which have the following tail dependences:

λU =

0 (Frank)

2− 21/θ (Gumbel)
(26)

Because of the 0 tail dependence of the Frank copula, we cannot use it to create any

graphs. Moving on, for the Gumbel copula, we find that the tail dependence, similar to

the explicit relation for Spearman’s rho (Equation 27), has a monotonic relationship with

its copula parameter θ. This is further highlighted in Figure 5, showing the similar shape.

ρSpearman = 1− 1

θ
(27)

Identical results are found across other copulas with direct relationships between the para-

meters and the measure. Equation 28 shows the relationships for the Student T Copula

with copula parameter r and degrees of freedom ν. The tail dependence is from Embrechts,

Lindskog and McNeil (2001) and the Spearman’s rho relationship is derived by Heinen

and Valdesogo (2020) for some mixing density fV (ν) for the random variable V . Note

that for Spearman’s Rho, a simplification to the Gaussian relation (ρ = 6
π
arcsin

(
r
2

)
) can

be used, which does not significantly affect the interpretation in the current application

(Heinen & Valdesogo, 2020).

λU = 2

(
1− tν+1

(√
ν + 1

√
1− r√

1 + r

))
, ρSpearman =

6

π
EV arcsin(rV ) (28)

Figure 5: Plot of tail dependence and Spearman’s rho against the θ parameter for the Gumbel
copula. Note that θ is not to scale.
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Because of the monotonic relation shared between the measures (e.g., see Figures 5 and 6),

the rank correlation of the assigned edge weights is identical. For example, the relationship

between ING and ABN Amro might have a copula parameter of 4. As long as the copula

parameter of ABN Amro and BNP Paribas is higher than 4, the lower weight will be

assigned to the edge between ABN Amro and BNP Paribas, regardless of which measure

is chosen.

More explicitly, since the ranking of the weights remains unchanged across measures,

Prim’s algorithm creates the same graphs as it iteratively adds the lowest weight edge.

Overall, this implies that while the assigned weights may differ across the measures, the

resulting graphs will be the same.

Figure 6: Plot of tail dependence and Spearman’s rho against the r parameter for correlation
for the T-copula. Under the simplification to the Gaussian formula for Spearman’s rho.

The results, as expected, show a rank correlation equal to 1 throughout the period when

comparing different measures for the same copula (see Figure 7). This suggests that

the increased performance in the tail-tail model stems from the difference in modelling

method in the extremal graphs, rather than the change in measure that can be achieved

within the full model.
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Figure 7: Plot of the rank correlation of the centrality scores between the tail measure and full
measure copula-based graphs, shown for the betweenness centrality for the T-copula. Identical
graphs can be shown for the Gumbel copula across all centrality measures as well.
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B Bank Overview

Figure 8: Timeline of trading status for included banks from 2000 to 2024Q1. The plot shows
the respective initial public offerings where banks become publicly traded (orange) after private
periods (gray).
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Figure 9: Returns for BNP Paribas, ING, Barclays, Santander and the STOXX600 Banks In-
dex. Rebased to 100 for 01/01/2001 showing the price movements of the period up to 24/3/2024

Figure 10: Plot of quarterly GDP growth for European Union. The data is seasonally adjusted
and shows the period 2000 to 2024.
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Figure 11: F-test based on a three-year moving window, with the red line indicating the
5% significance level. The subsequent F-tests test for structural breaks in the rank correlation
between the copula and EVT based model between 2002 and 2024Q1
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Table 5: Description of European banks in the sample with their respective indices. Showing
market capitalization and revenue for each bank in eBn. All banks are members of the European
STOXX600 Banks benchmark.

Name RIC Market Cap Revenue
HSBC Holding HSBA 137.566 60.546
UBS BNPP 98.212 53.440
BNP Paribas BNPP 75.068 41.639
Banco Santander SAN 71.452 58.533
Banco Bilbao Vizcaya Argentaria BBVA 64.042 33.286
Intesa Sanpaolo ISP 61.060 24.560
UniCredit CRDI 59.117 23.424
ING Groep INGA 53.648 19.744
Credit Agricole CAGR 41.984 24.567
Lloyds Banking Group LLOY 38.641 27.405
Nordea Bank NDASE 37.212 11.724
CaixaBank CABK 34.390 15.653
Barclays BARC 32.420 29.033
Deutsche Bank DBKGn 29.059 28.868
Kbc Groep KBC 28.944 4.508
DNB Bank DNB 28.431 6.930
Skandinaviska Enskilda Banken SEBa 27.062 6.964
NatWest Group NWG 27.261 16.958
Danske Bank DANSKE 23.969 7.553
Swedbank SWEDa 20.889 5.968
Standard Chartered STAN 20.706 16.181
Societe Generale SOGN 19.914 21.493
Svenska Handelsbanken SHBa 18.591 5.401
Erste Group Bank ERST 17.628 10.389
Powszechna Kasa Oszczednosci Bank Polski PKO 17.203 5.288
Commerzbank CBKG 15.751 11.887
Santander Bank Polska SPL1 13.582 3.491
AIB Group AIBG 12.491 4.721
Bank Polska Kasa Opieki PEO 11.063 3.367
Bank of Ireland Group BIRG 9.989 4.512
Banco BPM BAMI 9.446 5.102
Banque Cantonale Vaudoise BCVN 9.209 1.165
FinecoBank Banca Fineco FBK 8.289 1.235
Banco de Sabadell SABE 7.918 6.200
ABN Amro Bank ABNd 7.757 8.664
Bper Banca EMII 6.187 5.404
Bankinter BKT 6.195 2.889
Raiffeisen Bank International RBIV 6.201 8.894
Investec INVP 5.799 2.173
Banca Monte dei Paschi di Siena BMPS 5.206 3.802
Jyske Bank JYSK 5.021 1.991
Banco Comercial Portugues BCP 4.746 3.744
BAWAG Group BAWG 4.582 1.517
Ringkjoebing Landbobank RILBA 4.487 0.513
Virgin Money UK VMUK 3.274 1.807
Banca Popolare Di Sondrio BPSI 3.169 1.486
Avanza Bank Holding AVANZ 3.119 0.384
Sydbank SYDB 2.728 0.898
Cembra Money Bank CMBN 2.311 0.531
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C Copula Graphs

Figure 12: Network structure of European banks based on the Gumbel copula. Based on the
5 years before the Brexit announcement of March 2017. Bank indices are in Appendix Table 5.
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Figure 13: Network structure of European banks based on the Gumbel copula. Based on the
5 years after the Brexit announcement of March 2017. Bank indices are in Appendix Table 5.
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Figure 14: Network structure of European banks based on the Frank copula. Based on last 5
years of data from April 2019 to April 2024. Bank indices are in Appendix Table 5.
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Figure 15: Network structure of European banks based on the Frank copula. Based on the 5
years before the Brexit announcement of March 2017. Bank indices are in Appendix Table 5.
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Figure 16: Network structure of European banks based on the Frank copula. Based on the 5
years after the Brexit announcement of March 2017. Bank indices are in Appendix Table 5.
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D Extremal Graphs

Figure 17: Network structure of banks based on the extreme value theory approach. Showing
the 5 years before the Brexit announcement of March 2017. Bank indices are in Appendix Table
5.
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Figure 18: Network structure of banks based on the extreme value theory approach. Showing
the 5 years after the Brexit announcement of March 2017. Bank indices are in Appendix Table
5.

37


	Introduction
	Theoretical Framework & Background
	Graphical Models
	Extreme Value Theory
	Multivariate Pareto Distributions
	Conditional Independence
	Extremal Correlation & Extremal Variogram


	Data
	Methodology
	Copula-Based Graphs
	Extremal Trees
	Centrality Measures
	Rank Correlation

	Empirical Results
	Comparing Trees
	Centrality Driven Results

	Conclusion
	References
	Tail Measure Copula Model
	Bank Overview
	Copula Graphs
	Extremal Graphs

