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Abstract

This thesis investigates the effectiveness of volatility timing using forecasted realized vari-

ance to enhance the performance of factor-based portfolios. Building upon the foundational

work of Moreira and Muir (2017), which demonstrated the potential benefits of volatility-

managed portfolios, this research explores the use of volatility forecasting models includ-

ing GARCH, HAR-RV, ARFIMA, MIDAS, Random Forest and two forecast combination

models. The study aims to determine whether these forecasting methods can improve risk-

adjusted returns compared to traditional factor strategies and the original volatility-managed

approach.

The empirical analysis considers returns of major factors like market (MKT), size (SMB),

value (HML), profitability (RMW), investment (CMA) and momentum (MOM) spanning

from 1966 to 2022. By incorporating transaction costs into the performance evaluation, this

thesis assesses the practical viability of volatility-managed portfolios.

The results indicate that while volatility timing with forecasted realized variance offers

theoretical benefits for some of the factors under consideration, these strategies fail to sig-

nificantly improve mean variance characteristics over the traditional factor strategies when

transaction costs are taken into account.
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1 Introduction

Portfolio management plays a crucial role in the financial industry, as it involves the strategic

allocation of assets to achieve specific investment goals while managing risk. Effective portfolio

management is essential for investors seeking to maximize returns and preserve wealth in the

face of market uncertainties.

Traditional factor investing, which involves constructing portfolios based on well-established

factors such as value, momentum, and size, has been a popular approach in the portfolio man-

agement industry. However, these traditional factors are shown to have experienced attenuation

since their discovery (Chordia et al., 2014; Linnainmaa & Roberts, 2018). This decrease in per-

formance can be attributed, among other things, to the crowding effect as more investors adopt

similar strategies (Chordia et al., 2014), and the time-varying nature of factor premia (Moreira

& Muir, 2017).

In light of these challenges, the concept of volatility-managed portfolios (VMP), as intro-

duced by Moreira and Muir (2017), has gained significant attention in the literature. Their work

proposes a novel approach to portfolio construction, where the exposure to a given factor is dy-

namically adjusted based on the factor’s realized variance (RV). By scaling factor exposures in-

versely proportional to their realized variance, the authors demonstrate that volatility-managed

portfolios can achieve superior risk-adjusted returns compared to their unmanaged counterparts.

While the findings of Moreira and Muir (2017) have generated considerable interest, sub-

sequent research has highlighted some limitations of their approach when applied out-of-sample.

Cederburg et al. (2020) take a broader sample of factors and find no evidence for a system-

atic improvement in Sharpe ratios for volatility-managed portfolios. They also attribute the

findings of Moreira and Muir (2017) to estimation error and argue that their results are not

implementable in real-time. Barroso and Detzel (2021) analyse the net-of-costs performance of

volatility-managed portfolios using a more sophisticated transaction cost model and find that

after accounting for costs, none of the volatility-managed portfolios generate positive alphas

and most have significantly smaller Sharpe ratios compared to their unmanaged counterparts.

Thus, the performance of volatility-managed portfolios has been found to be less impressive in

real-world settings, suggesting that further improvements and refinements are necessary.

This thesis aims to build upon the foundational work of (Moreira & Muir, 2017) by ex-

ploring potential enhancements to the volatility-managed portfolio framework. By considering

forecasted realized variance as a scaling factor and by introducing machine learning and com-

biner models to forecast factor realized variance we aim to improve the performance of the

volatility-managed portfolios and develop strategies that are implementable in the real world.

Furthermore, examining the impact of transaction costs, this research seeks to develop a robust

analysis of the practical performance of the volatility-managed strategies to see if they hold up

out-of-sample.

An important consideration in portfolio management is the impact of transaction costs on the

performance of trading strategies. Transaction costs can have a significant impact on the returns

of a portfolio, especially since the volatility-managed portfolios under consideration are rebal-

anced monthly. By incorporating estimated asset-level transaction costs following Hasbrouck

(2009), this research aims to provide a realistic assessment of the performance of volatility-
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managed portfolios in practice.

We employ a set of volatility forecasting models: GARCH, HAR-RV, ARFIMA, MIDAS,

Random forest and two combiner models: mean forecast combination and stacking, to identify

the most effective techniques for forecasting realized variance with the aim of producing favour-

able timing rules. The performance of these models will be evaluated based on their ability

to improve the risk-adjusted returns of volatility-managed portfolios. Additionally, net-of-costs

returns will be assessed to provide a realistic assessment of their practical viability. We select the

optimal model specification for each of the model classes which result in seven different volatility

forecasting models. We then use the forecasted realized variance from these models to construct

timing rules using different cost-mitigation techniques like scaling by realized volatility or by in-

troducing leverage constraints. These timing rules are then used to construct volatility-managed

portfolios which are compared to their unmanaged counterparts.

Having analysed six well-known factors: market (MKT), size (SMB), value (HML), profitab-

ility (RMW), investment (CMA) and momentum (MOM) with out-of-sample period 1976-2022,

we find none of the generated timing rules to produce significantly better risk-adjusted returns

compared to the traditional factor strategies. In fact, for most factors, these strategies lead to

significantly worse performance compared to their unmanaged counterparts. Interestingly, we

also find that when one would have a ’perfect’ forecast of next month’s realized variance to be

used as a timing signal, the Sharpe ratio of the market, size and momentum factor increases

substantially while the Sharpe ratio of the value, profitability and investment factor decreases

substantially.

The rest of this thesis is structured as follows: Section 2 provides an overview of the relevant

literature on volatility-managed portfolios, volatility forecasting, model validation and transac-

tion cost modelling. Section 3 describes the data used in this study and its sources. Section 4

presents a preliminary analysis of the data, including summary statistics on the performance

of volatility-managed portfolios without the use of volatility forecasting. Section 5 outlines the

volatility forecasting models used in this research and how they are tuned. Section 6 discusses

the performance evaluation metrics used to compare different volatility timing techniques based

on forecasted realized variance as well as how their significance is tested. Section 7 presents

the empirical results of the volatility-managed portfolios and the results of the model selec-

tion/tuning. Finally, Section 8 concludes the thesis with a summary of the key findings and

suggestions for future research.
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2 Literature

2.1 Volatility-managed portfolios

The concept of volatility-managed portfolios is introduced by Moreira and Muir (2017). They

construct managed portfolios based on nine factors1 where the investment in each factor is

scaled by the inverse of the factor’s realized variance. They motivate the choice for scaling

by realized variance from the perspective of a mean-variance investor, whose optimal portfolio

weight is proportional to the risk-return trade-off. Since empirical evidence shows that volatility

is highly variable, persistent and does not predict returns, they argue that taking the inverse of

the conditional variance is a good proxy for the risk-return trade-off. Portfolio construction is

then further simplified by using the realized variance as an approximation for the conditional

variance.

They find that most of the volatility-managed portfolios outperform the unmanaged portfo-

lios in terms of alpha and Sharpe ratio. Furthermore, they also show that the managed portfolios

have lower beta’s to their unmanaged counterparts during NBER recessions, thus decreasing the

managed portfolios’ exposure during historically volatile periods. After accounting for trans-

actions costs and implementing various transaction cost mitigation techniques, they show that

their managed market factor still produces positive alphas.

Moreira and Muir (2017) also show that the alphas produced by volatility-managed portfolios

are a direct measure of the comovement between risk premium and volatility. They show that

these alphas thus allow for the reconstruction of the variation in the price of risk due to volatility

for individual risk drivers. They also compare volatility timed portfolio on simulated return

data using 4 leading asset pricing models. From this, they find that at most only in 0.2%

of the simulated samples achieve matching alphas to the alphas recovered from historic data.

Thus demonstrating that their volatility-managed portfolios pose a fresh challenge to these asset

pricing models.

Cederburg et al. (2020) dispute the findings of Moreira and Muir (2017). They argue that

the superior performance of the managed portfolios is the result of an estimation error. This

estimation error is due to the fact that the performance increase is evaluated using a spanning

regression intercept. Cederburg et al. (2020) argue that this implies an optimal combination of

both unmanaged and managed portfolios with weights that are not known in real-time. There-

fore, the strategy is not implementable in practice. They also argue that evaluating performance

gains of the managed portfolios by quantifying increase in Sharpe ratio is more appropriate.

Barroso and Detzel (2021) further dispute the findings of Moreira and Muir (2017). In

their study they find that after accounting for transaction costs and despite employing six

cost-mitigation techniques, the volatility-managed portfolios do not produce significant positive

alphas (except for the momentum factor).

Another finding of Barroso and Detzel (2021) is that following high realizations of the (M.

1The market factor (MKT), size factor (SMB) and value factor (HML) (Fama & French, 1993).
The momentum factor (MOM), profitability factor (RMW) and investment factor (CMA) (Fama & French, 2015).
The investment factor (IA) and return on equity factor (ROE) (Hou et al., 2015).
The betting-against-beta (BAB) factor (Frazzini & Pedersen, 2014).
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Baker & Wurgler, 2006) sentiment index2, volatility-managed portfolio Sharpe ratios more than

doubled. On the other hand, following low realizations of the index, Sharpe ratios were reduced.

This finding aligns with the work of Yu and Yuan (2011), who demonstrated that investor

sentiment significantly affects the mean-variance trade-off in the stock market. Specifically, Yu

and Yuan (2011) found a strong positive relationship between returns and conditional volatility

in low-sentiment periods, but a weak and sometimes negative relationship in high-sentiment

periods.

DeMiguel et al. (2021) propose a multifactor perspective on volatility-managed portfolios.

They show that a portfolio constructed from the nine factors considered by Moreira and Muir

(2017) produces positive alphas, even after accounting for transaction costs. The multifactor

portfolios are formed by weighting each factor by the inverse of the market volatility and the

factors’ exposure to this volatility. They also find that their proposed multifactor strategy

performs better than the unmanaged portfolios during both high- and low-sentiment periods, in

contrast to the findings of Barroso and Detzel (2021).

2.2 Volatility forecasting

Volatility forecasting is a primary focus of this thesis. There exist various methods to forecast

volatility, ranging from simple autoregressive models to more complex machine learning models.

The literature on volatility forecasting is vast, and we will only highlight a few key studies here.

One of the more common models used for volatility modelling is the heterogeneous autore-

gressive model of realized volatility (HAR-RV) (Corsi, 2009). Y. Wang et al. (2016) forecast the

realized volatility of the S&P-500 using HAR-RV model and various extensions. They combine

several of these extensions using dynamic model averaging (DMA) as well as Bayesian model

averaging (BMA) and mean forecast combinations (MFC). They not only evaluate model per-

formance using popular error metrics such as MSE/MAE but also evaluate portfolio performance

which is constructed by considering a mean-variance utility investor. Likewise, they find that

the HAR-RV model which allow for time varying parameters performs best while the model

specification with constant parameters performs worst.

A lesser known method, not only for volatility forecasting but also for time series forecasting

in general, is the use of fractionally integrated autoregressive moving average (ARFIMA) models.

Chen et al. (2019) perform a study regarding volatility scaling portfolios where they forecast

realized volatility using a handful of ARFIMA models. They find that using a fractionally

integrated ARMA model to forecast realized volatility and scaling the factor returns by the

forecasted volatility leads to significantly improved portfolio performance compared to using

historic realized volatility to scale the factor returns.

Most models in the literature focus on forecasting one-step ahead volatility. However, in

practice, it is often more useful to forecast volatility over multiple periods. Ghysels et al.

(2009) conduct a comparative study of several approaches of producing multi-period forecasts

of volatility. They compare iterated, direct and mixed data sampling approaches as well as the

”scaling-up” method. The latter involves producing a one-step ahead forecast and scaling it

2The sentiment index by M. Baker and Wurgler (2006) is a composite index formed from several proxies of
investor sentiment: the closed-end fund discount, NYSE share turnover, the number and average first-day returns
on IPOs, the equity share in new issues, and the dividend premium (M. Baker & Wurgler, 2006).
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to the desired forecast horizon. They find that mixed data sampling (MIDAS) dominates all

other techniques from a horizon of 10 steps ahead and onwards. The performance dominance of

MIDAS is found to be most apparent at horizons of 30 periods and longer.

Machine learning models have also been applied to the problem of volatility forecasting.

Christensen et al. (2023) evaluate the performance of different machine learning models in fore-

casting the Dow Jones Industrial Average index. They compare these models’ performance

against multiple HAR models and find that the ML models are competitive with the HAR mod-

els. They also find that the ML models are able to capture the time-varying nature of volatility

better than the HAR models. In particular, they find Random Forest and Neural Network

models to outperform the HAR models. As regressors, they use lagged realized volatility (daily,

weekly and monthly), the CBOE volatility (VIX) index, the Hang Seng stock index daily squared

log-return (HSI), the Aruoba et al. (2009) business conditions (ADS) index, the US 3-month

T-bill rate (US3M), and the economic policy uncertainty (EPU) index from S. R. Baker et al.

(2016).

2.3 Model validation

In the literature, model validation is most often performed using cross-validation techniques.

This technique however, is not widely applied for time series data. Instead, most researchers

opt for the use of out-of-sample testing. Bergmeir and Beńıtez (2012) and Bergmeir et al. (2018)

counter this choice and instead argue that cross-validation techniques can successfully be applied

on time series data and models. They show that when the time series models that are used

are purely autoregressive (which is the case for most machine learning techniques) and the

data is stationary, cross-validation can be applied successfully. This has the benefit of being

able to use more of the available data for fitting and producing more reliable estimates of the

model’s performance. Only when residuals are heavily serially correlated is cross-validation not

recommended. The authors argue that this can easily be tested against by checking the residuals

of the model. In such cases traditional out-of-sample testing is recommended.

2.4 Transaction cost modelling

Our goal is to make a real-world practical assessment of the performance of volatility-managed

portfolios. This requires us to account for transaction costs. Transaction costs are an important

aspect of portfolio management and can have a significant impact on the performance of a

strategy.

One approach to transaction cost modelling is to estimate transaction costs using bid-ask

spreads. These can be estimated using high-frequency data, usually from the TAQ database.

However, this data is not always readily available and can be expensive to acquire. Additionally,

for the purpose of estimating transaction costs on the factors used in this thesis, one would need

to acquire high-frequency data on the whole universe of CRSP stocks. This would require

acquiring and processing tremendous amounts of data and is therefore not feasible for this

purpose.

Alternatively, a widely used technique is that of Hasbrouck (2009) to estimate the bid-ask

spreads. This technique involves using Bayesian Gibbs sampler to estimate trading costs using
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daily returns. The estimated effective spreads are shown by Hasbrouck (2009) to have a 96.5%

correlation with trading costs estimated from high-frequency data of 300 firms during a period

spanning from 1993 to 2005. This procedure has limitations since it does not account for the

price impact of large trades. Therefore, it is only effective in estimating costs faces by smaller

investors. An advantage however, is that it is easy to implement for all CRSP stocks as it only

requires daily returns data. Code for this procedure can be found on the author’s website.

Corwin and Schultz (2012) present another way to estimate bid-ask spreads using daily data.

They show that the bid-ask spread can be estimated using the high, low and close prices of a

stock. Similarly to Hasbrouck (2009), this method is easy to implement and can be applied to

all CRSP stocks. The authors show that their method is able to estimate the bid-ask spread

with a high degree of accuracy.

While spread estimation methods provide insights into transaction costs faced by smaller

investors, they fail to capture the impact of larger trades on market prices. A complementary

approach to transaction cost modelling is estimating Kyle’s lambda (Kyle, 1985), which measures

the price impact of trading. This method, used by studies such as Novy-Marx and Velikov (2016)

and Barroso and Detzel (2021), aims to model how larger trades affect market prices. This can

give insight into how the attraction of large capital can affect the profitability of a strategy.

For the purposes of this thesis, we employ the Hasbrouck estimator to model transaction

costs. This choice is motivated by its relative ease of implementation using readily available

daily returns data and its use in the work of Barroso and Detzel (2021). By adopting the same

methodology, we enable a more direct comparison of our results with their findings. We also

limit ourselves to the estimation of transaction costs for smaller investors and therefore do not

consider the price impact of large trades.
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3 Data

Moreira and Muir (2017) do not find evidence that any particular factors are a significant

driver of their findings. They argue that their volatility timing strategy can be applied to

any individual asset, but only becomes economically interesting when applied to a structural

risk driver. In their paper they consider the five Fama-French factors (Fama & French, 2015):

excess market return (MKT), size (SMB), value (HML), profitability (RMW) and investment

(CMA), the momentum factor (MOM) of Jegadeesh and Titman (1993), the Hou et al. (2015)

Q-factors: investment (INV) and return on equity (ROE) and the betting-against-beta (BAB)

factor of Frazzini and Pedersen (2014). In this thesis we limit the analysis to the five Fama-

French factors and the momentum factor. Returns for these factors can be obtained from the

Kenneth R. French data library. An overview of the factors and their coverage is presented

in Table 1.

Table 1
Data sources and availability for the factors used in the construction of the volatility-
managed portfolios

Factor Data source Data availability

MKT Kenneth R. French data library 1963–07 to 2024–01
SMB Kenneth R. French data library 1963–07 to 2024–01
HML Kenneth R. French data library 1963–07 to 2024–01
RMW Kenneth R. French data library 1963–07 to 2024–01
CMA Kenneth R. French data library 1963–07 to 2024–01
MOM Kenneth R. French data library 1927–01 to 2024–01

To facilitate the cost analysis, we need to know the asset weights used for the construction

of each of the factors. Since these are not made available through the data sources where the

factor returns are obtained from, we need to replicate them ourselves. To this end, stock level

data is needed. Stock price data as well as shares outstanding is obtained from CRSP, which

is used to calculate market capitalization. In addition to this, accounting data is needed to

calculate factor portfolio weights for specific factors. This accounting data is obtained from the

COMPUSTAT library. A list of accounting data which is needed to form the factor portfolios

is presented in Table 2.

Table 2
Data sources and availability for the accounting data needed to form the factor portfolios.

Accounting data Needed for factor Data source

Equity SMB, HML COMPUSTAT: Stockholders
Equity - Total (teq)

Operating profitability RMW COMPUSTAT: Gross Profit (Loss)
(gp)

Assets CMA COMPUSTAT: Assets - Total (at)

COMPUSTAT refers to WRDS: Compustat Daily Updates - Fundamentals Annually. All mentioned data is
available from 1961–03 to 2024–03.
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Sentiment index

Barroso and Detzel (2021) found that the M. Baker and Wurgler (2006) sentiment index has an

effect on the performance of the volatility-managed portfolios. Specifically, following high (low)

realizations of the index, Sharpe ratios of the managed portfolios doubled (declined). Therefore,

it is interesting to include this index in the analysis in order to construct trading rules based

on its realizations. The sentiment index is available from 1965–12 to 2022–06 with monthly

frequency from the website of Jeffrey Wurgler.

Additional covariates

Christensen et al. (2023) model realized volatility using a Random Forest model and find their

method to outperform traditional methods. For the construction of this model they add ad-

ditional covariates in addition to lagged realizations of realized variance. These additional

covariates are the VIX index, the ADS index (Aruoba et al., 2009), the EPU index (S. R. Baker

et al., 2016), the Hang Seng stock index daily returns and the 3-month T-bill rate. The data

sources and availability for these covariates are presented in Table 3.

Table 3
Data sources and availability for the additional covariates used in the analysis.

Covariate Data source Data availability

VIX index CBOE dataset on WRDS 1986–01 to 2024–02

ADS index Federal Reserve Bank Philadelphia 1960–03 to 2024–02

EPU index Economic Policy Uncertainty 1985–01 to 2024–02

Hang Seng stock index Yahoo Finance 1987–01 to 2024–02

3-month T-bill rate Federal Reserve Bank of St. Louis 1934–01 to 2024–02
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4 Preliminary analysis

4.1 Data processing

The relevant data as described in Section 3 is collected and processed resulting in daily and

monthly returns for each of the six factors. We set the time period of the data to be 1966-01

to 2022-06 in order to have the greatest coverage of all variables of interest and keep as large a

sample space as possible. The VIX, HSI and EPU indices are excluded from the analysis due

to data availability since they are found to not have a substantial impact on the performance of

the Random Forest model and were therefore too large of a limiting factor for the overall sample

size.

For the volatility scaling as devised by Moreira and Muir (2017), monthly realized variance

is calculated for each factor using it’s daily returns. Monthly realized variance for factor f in

month τ is computed as:

σ2
τ (f) = R̂V

(m)
τ (f) =

21∑
i=0

(
rt−i(f)−

∑22
i=0 rt−i(f)

22

)2

, (1)

where rt(f) is the daily return of factor f on day t, where t is taken to be the last day of month

τ . The superscript (m) denotes that the realized variance is calculated on a monthly basis. The

realized variance is calculated over the last 22 days of the month as this is the average number

of trading days in a month.

In an effort to improve the performance of the volatility-managed portfolios, we forecast

realized monthly variance using different time series models and use the forecasted values to

form the managed portfolios. Some of these models target daily realized variance as the re-

sponse variable. Since daily variance is not directly observed, we use the squared daily return

as a proxy for the daily realized variance. Using intraday returns to estimate daily realized

variance is a common practice in the literature, since this provides better estimated realized

variances (Andersen & Bollerslev, 1998). However, since the factors in question are formed on

the whole universe of US stocks, it is computationally infeasible to calculate intraday returns

for each asset. Therefore, we use the daily returns as a proxy for the daily realized variance:

R̂V
(d)
t (f) = r2t (f), (2)

where rt(f) is the daily return of factor f on day t. The superscript (d) denotes that the realized

variance is calculated on a daily basis.

4.2 Volatility scaling

Volatility scaling as introduced by Moreira and Muir (2017) scales exposure to factor portfolios

by the previous month’s realized variance of that portfolio. To follow the method used by Moreira

and Muir (2017) in constructing the volatility-managed portfolios, the realized variance for factor

f in month τ is computed as in Equation (1). Given the unscaled portfolio return Rτ (f) in month

9



τ , the scaled portfolio is then constructed as:

Rτ (f
σ) =

c

σ2
τ−1(f)

Rτ (f), (3)

where fσ denotes the volatility-managed factor and c is a constant and is chosen such that the

managed portfolio has the same unconditional variance as the unmanaged portfolio, ensuring

that the overall risk level of the strategy does not change:

c =

√√√√ V (Rτ (f))

V
(

1
σ2
τ−1(f)

Rτ (f)
) . (4)

Since c is a constant, it has no effect on the Sharpe ratio of the managed portfolio. Therefore,

the use of the full sample in setting c has no effect on the outcome of the analysis.

In addition to using the past realized variance for constructing the managed portfolios, we

also construct managed portfolios using forecasted realized variance. Using the forecasted one-

period ahead monthly realized variance R̂V τ+1(f), the managed portfolio is constructed as:

Rτ (f
σ) =

c

R̂V τ+1(f)
Rτ (f), (5)

where c is again chosen such that the managed portfolio has the same unconditional variance as

the unmanaged portfolio as described by Equation (4).

4.3 Transaction costs

In order to evaluate the real world performance of our managed portfolios compared to the

unmanaged portfolios, we need to take transaction costs into account. As found by Barroso

and Detzel (2021), forming volatility-managed portfolios using prior months realized variance

can lead to a turnover increase of as much as 15 times relative to the unmanaged portfolios.

This increase in turnover can lead to substantial transaction costs and therefore could have a

non-negligible effect on net-of-costs performance. To this effect we estimate transaction costs for

each of the formed portfolios by estimating trading spreads and determining transaction costs

using the model developed by Hasbrouck (2009). We restrict ourselves to the case in which

small investors are trading and therefore do not consider the price impacts of a given strategy

attracting large capital. Since the estimated trading costs of the Hasbrouck (2009) procedure

are an effective measure for costs faced by small investors and does not account for the price

impact of large trades, this will be sufficient for our purposes.

4.3.1 Determining turnover

To determine transaction costs, we construct portfolio weights using the original authors’ meth-

odology. The procedure for constructing each factor is outlined in Appendix E. Monthly turnover

for each asset in the factor strategy can then be calculated. Turnover is defined as the difference

in weights at the end of the preceding month and the beginning of the current month. Turnover

10



for asset i in factor f at the start of month τ is calculated as:

TOi
f,τ =

∣∣∣Lτ (f)w
i
f,τ − Lτ−1(f)w

i
f,τ−

∣∣∣ for i = 1, . . . , Nf,τ , (6)

where Nf,τ is the number of assets in the portfolio f in month τ , Lτ (f) is the leverage or scaling

term in month τ as described in Equation (3)3, wi
f,τ is the weight of asset i in month τ in

portfolio f after rebalancing and wi
f,τ− is the weight of asset i in month τ in portfolio f just

before rebalancing:

wi
f,τ− =

 ∑
j∈fS,τ−1

wj
f,τ−1(1 + rj,τ−1)

−1

wi
f,τ−1 · (1 + ri,τ−1) for i ∈ fS,τ−1, and (7)

wi
f,τ− =

 ∑
j∈fL,τ−1

wj
f,τ−1(1 + rj,τ−1)

−1

wi
f,τ−1 · (1 + ri,τ−1) for i ∈ fL,τ−1, (8)

where rf,τ−1 is the return of the factor in month τ−1 and ri,τ−1 is the return of asset i in month

τ − 1 and fS,τ and fL,τ are the short and long leg of the factor in month τ respectively.

4.3.2 Transaction cost estimation

In the same manner as Barroso and Detzel (2021) we estimate trading spreads using the model

developed by Hasbrouck (2009). The procedure estimates costs using a Bayesian Gibbs sampler

on a generalized Roll (1984) model of stock price dynamics. An outline of the procedure is

presented in Appendix D.

The Hasbrouck procedure produces cost estimates for each stock in the CRSP database.

These estimates are updated for each year. We use these cost estimates to calculate the monthly

estimated incurred transaction costs for each portfolio. The monthly transaction costs for factor

f in month τ is calculated as:

TCf,τ =

Nf,τ∑
i=1

TOi
f,τ · ˆTC

i
y, (9)

where ˆTC
i
y is the estimated transaction costs for asset i in year y and TOi

f,τ is the turnover for

asset i in factor f in month τ .

We fill in missing transaction cost estimates by taking the transaction costs of the closest

asset in terms of market capitalization for the corresponding year.

4.3.3 Net-of-costs returns

Using the transaction costs estimates, we calculate the net-of-costs returns for each managed

portfolio. We take the net-of-costs return of the managed portfolios by subtracting the rebalan-

cing costs from the gross returns for each month:

R∗
τ (f

σ) = Rτ (f
σ)− TCfσ ,τ . (10)

3For the unmanaged factor portfolios, leverage is set equal to 1 for all months.
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Using the gross returns and net-of-costs returns, we can calculate both gross and net-of-costs

annualized Sharpe ratios of the portfolios as:

SR(fσ) =
E [Rτ (f

σ)]√
V [Rτ (fσ)]

·
√
12, and (11)

SR∗(fσ) =
E [R∗

τ (f
σ)]√

V [Rτ (fσ)]
·
√
12. (12)

4.4 Preliminary results

We start by analysing the performance of the unmanaged and managed factors over the sample

period using the scaling technique of Moreira and Muir (2017). This gives us a baseline result

on which we can evaluate the performance of the forecasted variance managed portfolios. We

analyse both the gross and net-of-costs performance of the factors and managed portfolios.

4.4.1 Performance of unmanaged portfolios

We start by evaluating the performance of the unmanaged portfolios. The unmanaged portfolios

consist of the six factors that were selected in Section 3. We look at their performance over

the whole sample (1966-01 to 2022-06) both gross and net of costs. The cumulative gross and

net-of-costs returns are shown in Figure 1a and Figure 1b respectively. Annualized mean return

and Sharpe ratios are presented in Table 4.

Table 4
Summary statistics for the unmanaged factors

Both gross and net-of-costs Sharpe ratios are reported. Transaction costs are reported as the average monthly
incurred transaction costs in percentages.

Sharpe ratio Transaction costs
(%)

Gross Net-of-costs

MKT 0.406 0.403 0.004
SMB 0.238 0.187 0.045
HML 0.336 0.260 0.066
RMW 0.451 0.346 0.068
CMA 0.511 0.367 0.085
MOM 0.504 -0.021 0.647

What is apparent is that all factors produce mean positive returns over the sample period

when only their gross returns are taken into account. However, when considering trading costs,

the mean return of the momentum factor become negative. This is not surprising since the

momentum factor is rebalanced monthly, while the other factors (except the market factor)

are rebalanced annually. This shows that trading costs can have a significant influence on the

performance of the factors. The transaction costs for the unmanaged portfolios are in line with

those found by Novy-Marx and Velikov (2016).

12



1970 1980 1990 2000 2010 2020
Date

0%

1000%

2000%

3000%

4000%

5000%

Cu
m

ul
at

iv
e 

Re
tu

rn
Cumulative gross returns of the unmanaged factors

Factor
MKT
SMB
HML
RMW
CMA
MOM

(a) Gross returns

1970 1980 1990 2000 2010 2020
Date

0%

500%

1000%

1500%

2000%

Cu
m

ul
at

iv
e 

Re
tu

rn

Cumulative net-of-cost returns of the unmanaged factors
Factor

MKT
SMB
HML
RMW
CMA
MOM
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Figure 1
Cumulative returns of unmanaged portfolios

4.4.2 Performance of volatility-managed portfolios

Next we look at the performance of the volatility-managed portfolios as specified by Moreira and

Muir (2017). We construct the managed portfolios using the realized variance of the previous

month as described in Section 4.2. The cumulative gross and net-of-costs returns over time are

shown in Figure 2a and Figure 2b respectively.
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Figure 2
Cumulative returns of managed portfolios
The managed portfolios are constructed using the previous months’ realized variance as the
scaling factor.

In addition to the managed portfolios constructed with the previous months realized variance,

we also construct managed portfolios using the next months realized variance. This signifies the

case in which we would have a ’perfect’ forecast of the realized variance for the coming month and

would be able to leverage our portfolio in a ’perfect’ response to the coming month’s volatility.

Annualized Sharpe ratios (gross and net-of-costs) for both the case using lagged realized variance

and next months realized variance as the scaling are presented in Table 5.

We find that the gross Sharpe ratios of the volatility-managed portfolios using lagged monthly

realized variance align with those found by Cederburg et al. (2020). An interesting observation

is that having a ’perfect’ forecast of the coming months realized variance does not universally

lead to higher Sharpe ratios. For half of the factors (HML, RMW, CMA) does the ’perfect’

forecast lead to a lower Sharpe ratio, with or without taking transaction costs into account.

While for the other half, it leads to an increase in Sharpe ratio. The net-of-costs Sharpe ratio

of the Market factor even triples. This is surprising result since one would expect that having
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Table 5
Sharpe ratios for managed factors using lagged monthly realized variance and actual
monthly realized variance.

Scaling by the actual monthly variance is equivalent to having a perfect forecast of the coming month’s variance
for construction of the volatility managed portfolios. Both gross and net-of-cost Sharpe ratios are reported.
Transaction costs are reported as the average monthly incurred transaction costs in percentages.

Lagged monthly RV Actual monthly RV

Gross SR Net-of-
costs SR

Transaction
costs (%)

Gross SR Net-of-
costs SR

Transaction
costs (%)

MKT 0.352 0.238 0.149 1.068 0.952 0.152
SMB 0.070 -0.467 0.475 0.409 -0.179 0.521
HML 0.302 -0.562 0.751 0.192 -0.835 0.894
RMW 0.619 -0.941 1.009 0.524 -1.183 1.106
CMA 0.386 -1.017 0.831 0.177 -1.166 0.797
MOM 0.991 0.002 1.217 1.201 0.223 1.205

a ’perfect’ forecast of the coming months realized variance would enable better hedging against

market uncertainties and therefore lead to a higher Sharpe ratio. Why this is not the case for

all factors is left to future research.
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5 Volatility forecasting

We add to the literature by forming volatility-managed portfolios using forecasted realized vari-

ance. We use a variety of models to forecast realized variance and compare the performance of

the managed portfolios using forecasted realized variance to the managed portfolios using past

realized variance. The models used for forecasting realized variance are the GARCH(1,1) model,

HAR-RV model, ARFIMA model, MIDAS model, and Random Forest. We also consider com-

biner models to combine the forecasts of the different models, Mean Forecast Combination and

Stacking. We start by defining how model selection and hyperparameter tuning are performed,

then we introduce the different model specifications.

5.1 Model selection and hyperparameter tuning

Some models in use either have multiple functional forms based on their specification or have

hyperparameters that need to be tuned. In an effort to keep the comparison between managed

portfolios using forecasted realized variance and managed portfolios using past realized variance

uncluttered, we apply a model selection procedure to determine the optimal model specifica-

tion / hyperparameters for each model class. This serves as a filtering step to select the best

model for each factor within each model class and does not serve as an evaluation of the model’s

ability to produce meaningful timing rules. Therefore, no statistical tests on the significance of

a difference in performance metrics are needed at this stage. That analysis is performed after

selection of the optimal model specifications.

Due to the use of two autoregressive models (GARCH and ARFIMA), it would not be suitable

to perform k-fold cross validation (Bergmeir & Beńıtez, 2012). Instead, we apply traditional

out-of-sample evaluation. A rolling window of 5 years is formed over the dataset which is moved

one month every iteration. This simulates a real-world scenario where an investor rebalances

their portfolio every month using the most recently available data. This produces out-of-sample

forecasts for each model specification for the realized variance of each month from 1971–01 to

2022–06 for the first five models and 1976–01 to 2022-06 for the combiner models.

Since we are not particularly interested in producing the most accurate volatility forecasts,

but rather in producing volatility timing rules which maximize the mean-variance trade-off,

we do not primarily evaluate the models’ performance based on the accuracy of the forecasts.

Instead, we evaluate the models based on their ability to produce managed portfolios with the

highest Sharpe ratio. For each model specification, we produce out-of-sample forecasts of the

next month’s realized variance using the rolling window. We then use these forecasts to form

volatility-managed portfolios as described in Equation (5). Transaction costs for implementing

the managed portfolio are also calculated and net-of-cost returns are used to calculate the Sharpe

ratio of the managed portfolio.

For each of the six factors, we take the net-of-costs return of the managed portfolios as in

Equation (10) and calculate the annualized net-of-costs Sharpe ratio as in Equation (12). The

model specification with the highest Sharpe ratio per factor is then selected as the optimal

model for that model class / factor combination. The only exception being the random forest

model, since it is computationally intensive to evaluate it for each of the factors, we only evaluate
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it for the market factor and fix the hyperparameters for the other factors. The optimal model

specifications for each model class are then used to form the managed portfolios for the evaluation

of the volatility timing rules.

5.2 Model specifications

5.2.1 GARCH(1,1) model

Traditionally, a popular model for modelling volatility has been the GARCH(1,1) model. It

assumes that volatility can be modelled as an ARMA(1,1) model and that the conditional

variance is a linear function of previous squared returns and previous conditional variance. The

return process is assumed to be:

rt = µ+ ϵt, with (13)

ϵt = σtzt, (14)

where µ is the mean return, ϵt is the return shock, σt is the conditional standard deviation and

zt is a standard normal random variable. The conditional variance is modelled as:

σ2
t = c+ αϵ2t−1 + βσ2

t−1. (15)

The GARCH(1,1) model makes several assumptions about the return process and the con-

ditional variance. It assumes that the return shocks are conditionally normally distributed with

mean zero and time-varying variance. The model also assumes that the conditional variance is

a positive function of the model parameters and the past squared return shocks and conditional

variances. For the GARCH(1,1) process to guarantee σ2
t ≥ 0 and be stationary, the following

conditions must hold c > 0, α ≥ 0, β ≥ 0, and α+ β < 1. The GARCH(1,1) model parameters

are estimated using Maximum Likelihood Estimation (MLE).

We implement two GARCH(1,1) models, one for daily variance and one for monthly variance.

Monthly variance forecasts are then generated directly from the monthly model and by scaling

the daily one-step ahead forecast to a monthly forecast by multiplication by 22. Which version

of the GARCH(1,1) model is used for forming managed portfolios is determined using the model

selection procedure as outlined in Section 5.1.

One caveat of the GARCH(1,1) model is that it does not accommodate long memory in

variances. The model assumes that the impact of past return shocks on the current conditional

variance decays exponentially over time, with the rate of decay determined by the sum of α and

β. This means that the model cannot capture the slow decay of the autocorrelation function

observed in realized volatility time series (Andersen et al., 2003; Corsi, 2009), which signifies a

long memory processes. The empirical autocorrelation function of realized volatility is shown to

decay at a hyperbolic rate (Andersen et al., 2003), which is slower than the exponential decay

implied by the GARCH(1,1) model.
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5.2.2 HAR-RV model

Financial return data is known to exhibit long memory and is shown to exhibit evidence of

scaling and multiscaling behaviour (Corsi, 2009). Scaling refers to the phenomena where the

return distribution has a similar shape across multiple time scales and multiscaling refers to the

phenomena where the distribution exhibits different scaling behaviour for different moments.

Traditional volatility models such as the GARCH model are not able to capture these charac-

teristics and appear as white noise when aggregated over longer time scales due to their short

memory, thus exhibiting no scaling behaviour.

To better accommodate for these characteristics Corsi (2009) propose the Heterogeneous

Autoregressive model of Realized Volatility (HAR-RV model). This model can capture the

scaling behaviour of financial returns and is shown to outperform traditional volatility models

in forecasting realized volatility (Y. Wang et al., 2016).

The HAR-RV model assumes that the realized variance can be modelled as a function of

previously realized variance, realized variance over the past week, and realized variance over the

past month. The model is specified as:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ϵt+1, with (16)

RV
(w)
t =

1

5

4∑
i=0

RV
(d)
t−i , and (17)

RV
(m)
t =

1

22

21∑
i=0

RV
(d)
t−i , (18)

where RV
(d)
t is the realized variance for day t. The parameters β(d), β(w) and β(m) are estimated

using OLS regression. Estimates for the one-step ahead daily realized variance are scaled by 22

to obtain monthly realized variance forecasts.

We also propose a variant of the HAR-RV model which models monthly realized variance

directly and may be able to better accommodate the long memory properties of realized variance.

This model is specified as:

RV
(m)
τ+1 = c+ β(m)RV (m)

τ + β(q)RV (q)
τ + β(y)RV (y)

τ + ϵτ+1, with (19)

RV (q)
τ =

1

4

4∑
i=0

RV
(m)
τ−i , and (20)

RV (y)
τ =

1

12

12∑
i=0

RV
(m)
τ−i , (21)

where RV
(m)
τ is the realized variance for month τ . The parameters β(m), β(q) and β(y) are

estimated using OLS regression.

Which version of the HAR-RV model is used for forming managed portfolios is determined

using the model selection procedure as outlined in Section 5.1.
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5.2.3 ARFIMA model

Another model that allows for long memory processes is the Fractionally Integrated ARMA

(ARFIMA) model (introduced by Baillie (1996)). It is an extension of the traditional ARMA

model. The model incorporates a fractional differencing parameter, denoted as d, which captures

the long-term dependence structure of the time series. The ARFIMA(p, d, q) model can be

expressed as:

(1− L)dΦ(L)(Xt − µ) = Θ(L)εt, (22)

where Xt is the variable of interest, L is the lag operator, such that LkXt = Xt−k and d is the

fractional differencing parameter, which can take non-integer values. The autoregressive (AR)

and moving average (MA) polynomials are defined as: Φ(L) = 1−ϕ1L−ϕ2L
2 − . . .−ϕpL

p and

Θ(L) = 1+ θ1L+ θ2L
2+ . . .+ θqL

q respectively for orders p and q. µ is the mean of the process

and εt is a white noise process with zero mean and constant variance.

The fractional differencing operator (1− L)d can be expanded as follows:

(1− L)d =

∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
(L)k, (23)

where Γ(·) is the gamma function.

For an ARFIMA process to be stationary, the fractional differencing parameter d must satisfy

|d| < 0.5 (Konstantinidi et al., 2008). The interpretation of the fractional integration parameter

d is as follows:

� When d = 0, the process reduces to a standard ARMA model, indicating short memory.

� When 0 < d < 0.5, the process exhibits long memory and the autocorrelations decay

hyperbolically.

� When −0.5 < d < 0, the process is anti-persistent, meaning that positive values are more

likely to be followed by negative values, and vice versa. The autocorrelations alternate in

sign and decay hyperbolically.

The fractional differencing parameter d captures the long-term dependence structure of the time

series. It allows the ARFIMA model to describe processes that exhibit long memory, where the

impact of shocks persists over a long period. The ACF of an ARFIMA process, denoted as ρ(k)

for lag k, can be approximated as (Brailsford & Faff, 1996):

ρ(k) ∼ ck2d−1 as k → ∞, (24)

where c is a constant.

This approximation shows that the ACF decays at a rate proportional to k2d−1. When

0 < d < 0.5, the exponent 2d − 1 lies between -1 and 0, resulting in a hyperbolic decay. As

previously mentioned, the autocorrelation of realized variance is shown to exhibit hyperbolic
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decay (Andersen et al., 2003). Therefore, the ARFIMA model is expected to better capture this

aspect of the data compared to the more traditional GARCH model.

Following Chen et al. (2019) we implement an ARFIMA(1,d,1) model for monthly realized

variance. We also implement an ARFIMA(1,d,1) model for daily realized variance, where the

one period ahead forecast is transformed to a monthly forecast by multiplication by 22. The

parameters of the ARFIMA model, except d, are estimated using Maximum Likelihood Es-

timation (MLE). Due to the computational complexity of including the fractional differencing

parameter d in the MLE, we opt to treat it as a hyperparameter of the model. We form a

grid of possible values for d ranging from 0.05 to 0.45 with a step size of 0.05. The procedure

for selecting the optimal value of d and the choice between modelling daily or monthly realized

variance is outlined in Section 5.1.

5.2.4 MIDAS model

For the purposes of forming volatility-managed portfolios, we are interested in multiperiod fore-

casts of realized variance. Specifically, we need to forecast the realized variance for the next

month. In the literature there exists mostly models which directly forecast volatility at a certain

frequency or those which model volatility at a daily frequency. In the latter case a multi-period

forecast can then be obtained by iteratively forecasting multiple one-step ahead forecasts, or by

scaling the one-period ahead forecast up to a longer period.

A third method is to apply Mixed-Data Sampling (MIDAS) (proposed by Ghysels et al.,

2005, 2006). This method aims to find a middle ground between these former approaches by

directly producing multi-period forecasts using daily returns.

The MIDAS specification allows for the use of high-frequency data to forecast low-frequency

data. The model is based on the idea that the relationship between high-frequency and low-

frequency data can be captured by a lag polynomial with a certain functional form. The model

is specified as follows:

V k
t+1 = µk + ϕk

jmax∑
j=0

bk(j, θ)r
2
t−j/k + εk,t, (25)

where V k
t+1 is a measure of the k-period realized variance at time t+1, µk is the intercept term,

ϕk is a scaling parameter. The polynomial lag parameters bk(j, θ) are parametrized to be a

function of θ. The estimation of µk, ϕk and θ is done using QMLE. We take k = 22 to forecast

monthly realized variance and vary jmax ∈ [20, 25, . . . , 55, 60]. This results in the following model

specification for the realized variance forecast for month τ +1, where we set t to be the last day

of month τ :

RV
(m)
τ+1 = µ+ ϕ

jmax∑
j=0

b(j, θ)r2t−j + ετ+1. (26)

Ghysels et al. (2009) propose several functional forms for the lag polynomial b(j, θ) to model

the interactions between the daily returns and the monthly realized variance. The functional

forms are chosen to ensure that the weights are positive and sum to one. The functional forms
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are as follows4:

1. Exponential:

bk(j, θ1, θ2) =
exp{θ1j + θ2j

2}∑jmax

i=1 exp{θ1i+ θ2i2}
. (27)

This functional form guarantees positive weights for the lags and makes sure that the

weights sum to one. Positive weights are necessary to guarantee that the forecasted vari-

ance is also positive. When θ2 < 0, weights decay with lag length.

2. Beta:

bk(j, θ1, θ2) =
f(j/jmax, θ1, θ2)∑jmax

i=1 f(i/jmax, θ1, θ2)
, (28)

where: f(z, a, b) = za−1(1− z)b−1/B(a, b) and B(a, b) is based on the Gamma function, or

B(a, b) = Γ(a)Γ(b)/Γ(a+ b). The Gamma function is defined as: Γ(z) =
∫∞
0 tz−1e−t dt,

for R(z) > 0.

For θ1 = 1 and θ2 > 1 this specification has a slowly decaying pattern typical of volatility

processes.

Optimal choices for the functional form of the lag parameters as well as jmax need to be

found. This is done using the procedure described in Section 5.1, where the best performing

combination is chosen for each factor.

5.2.5 Random Forest

Using parametric models, some restriction in the functional form of the model is imposed. This

can limit the model’s ability to capture complex relationships in the data which could not be

captured by parametric models. To relax this limitation, a non-parametric model can instead be

used. Random Forest (RF) (introduced by Ho (1995)) is a popular non-parametric model that

can be used for regression tasks. It has the potential to capture complex, non-linear relationships

in the data.

RF is an ensemble learning method that constructs a range of decision trees during training

and outputs the mean prediction of the individual trees as the estimate. The key idea is to

combine many decision trees in order to reduce the risk of overfitting.

Given p available covariates, the algorithm for random forests is as follows:

1. For b ∈ (1, . . . , B) form a regression tree Tb as follows:

(a) Draw a bootstrap sample X∗ of size NB from the training data using i.i.d. bootstrap-

ping5. Where NB = max(1, round(N ∗nB)) and nB is a hyperparameter of the model

and can take values between 0 and 1.
4Ghysels et al. (2009) also propose the step function, which we do not consider in this thesis. The reason for

this being the similarity with the HAR-RV model (The HAR-RV model could be specified as a special case of the
MIDAS model with a step function as the lag polynomial). Additionally, the exact implementation of the step
function is not clearly defined in the literature and choices need to be made regarding the number and locations
of the steps. This would add a complicated extra dimension to the estimation of this model specification.

5Instead of i.i.d. bootstrapping, block bootstrapping could also be appropriate due to the serial correlation
of variance. However, Christensen et al. (2023) did not find a discernable difference in forecasting performance
between block bootstrapping and i.i.d. bootstrapping. Therefore, we implement i.i.d. bootstrapping to reduce
implementation complexity.
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(b) Grow a regression tree Tb to the bootstrapped data, by recursively repeating the

following steps for each terminal node of the tree, until the minimum node size nmin

is reached where nmin is a hyperparameter of the model.

i. Select M covariates at random from the p available covariates. Where M =

max(1, ⌊m ∗ p⌋) and m is a hyperparameter of the model and can take values

between 0 and 1.

ii. Pick the best variable/split-point among the m by minimizing sum of squared

errors.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T1, . . . , TB}.

To make a prediction at a new point x:

f̂RF (X) =
1

B

B∑
b=1

Tb(X), (29)

where (B,nB,m, nmin) are hyperparameters of the model and need to be tuned. B is the number

of trees in the forest, nB is the percentage of samples in the bootstrap sample, m is the percentage

of variables to consider at each split, and nmin is the minimum number of samples required to

split a node.

The individual trees are assumed to be i.i.d. due to the bootstrapping of the data in the

construction of each tree. RF is also robust to overfitting, as the ensemble of trees helps to

reduce the variance of the model. Additionally, RF can handle high-dimensional data and is not

sensitive to outliers or missing values.

The target variable of the RF model is set to the monthly realized variance. As covariates

we set the realized variance of the previous 22 days as well as the previous weekly realized

variance and previous monthly realized variance. Additionally, the ADS index, 3-month T-

bill rate and the Sentiment Index are included as regressors in the model. (B,NB,m, nmin)

are hyperparameters that need to be tuned. This is done using the procedure as described in

Section 5.1, where the hyperparameters are selected using Tree-structured Parzen Estimation

(TPE) (Bergstra et al., 2011)6.

TPE is a Bayesian optimization method that suggests the next set of hyperparameters to

evaluate. The tree-structured part refers to the fact that the model is able to handle tree-

structured hyperparameters, however, this aspect of the model is not used in this case. For

each parameter, a series of random draws are made, and the objective function is evaluated for

each of these draws. The sets of parameter draws are then divided into two sets based on their

objective values, split around the 10% quantile. For both sets of draws a Parzen estimator is

used to estimate the marginal probability distributions of the parameters, resulting in l(x) and

g(x), where l(x) is the probability distribution of the parameter set which is below the 10%

6Any other hyperparameter optimization procedure would be applicable as well, such as performing a grid
search. TPE was chosen out of convenience since it is available for use through the Optuna python package.
Since the focus of this thesis does not lie in finding the best hyperparameter optimization method, we will not go
further into hyperparameter optimization intricacies.
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quantile of the objective values and g(x) is the probability density of the parameter set above

the 10% quantile of the objective values. The optimal next set of parameters to evaluate is then

chosen by maximizing l(x)/g(x). The proof for this is found in Bergstra et al. (2011).

The hyperparameter ranges for the Random Forest model are as follows:

� B : {B ∈ Z | 50 ≤ B ≤ 500}.

� nB : {nB ∈ R | 0.05 ≤ nB ≤ 1.00}.

� m : {m ∈ R | 0.05 ≤ m ≤ 1.00}.

� nmin : {nmin ∈ Z | 1 ≤ nmin ≤ 50}.

5.3 Model combinations

Since different models make use of different ranges of data and make different assumptions about

relationships in the data, selecting a single ’best’ model exposes the analysis to data uncertainty

and model uncertainty (X. Wang et al., 2022). One way to combat this is to introduce combiner

models to combine the forecasts of multiple models into a single combined forecast. By combining

the forecasts of different models, combiner models can reduce the risk of overfitting and capture

different aspects of the data. There is a large range of combiner models available in the literature,

but we will restrict ourselves to two combiner models: Mean Forecast Combination (MFC) and

Stacking.

5.3.1 Mean Forecast Combination (MFC)

A popular combiner model is Mean Forecast Combination (MFC). It is a simple forecast combin-

ation technique that combines the forecasts of multiple models by taking the equally weighted

average of the individual forecasts. One of the advantages of this approach are its ease of im-

plementation since no parameter estimation is needed. Additionally, this approach can reduce

variance and bias through averaging out individual model bias (Palm & Zellner, 1992), thus

increasing out-of-sample performance.

The MFC forecast is calculated as:

ŷt =
1

Nm

Nm∑
i=1

ŷt,i, (30)

where ŷt is the combined forecast, ŷt,i is the forecast of model i, and Nm is the number of models.

MFC is easy to implement since the models can be trained individually, and their forecasts

combined by taking the average. No hyperparameter tuning or model selection is needed for

MFC.

5.3.2 Stacking

Instead of taking the simple average of the individual forecasts, one can give more weight to the

forecasts of the better performing models. One way to determine the weights is by using the

Stacking (Wolpert, 1992) model. It is a slightly more advanced forecast combination technique

that combines the forecasts of multiple models using different weights for each model. We
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restrict the combiner model to be a linear combination of the individual forecasts. In this

form, Stacking (like MFC) can reduce the risk of overfitting and reduce the variance and bias

of the models (Granger & Ramanathan, 1984), with the additional relaxation of the constraint

of equal weights. Thus Stacking adds a layer of flexibility to the forecast combination process

when compared to MFC.

The stacking procedure defines so called level-one data, which is obtained by training the

individual models on the training set and using the out-of-sample forecasts as samples in the

stacking models. The stacking models then combine the forecasts of multiple models by fitting

a combiner model on the level-one data.

For Nm individual models, we define the combiner model as:

ŷt =

Nm∑
i=1

βiŷt,i, (31)

where ŷt is the combined forecast, ŷt,i is the forecast of model i, Nm is the number of models

and βi are taken to minimize by means of OLS:

min
βi

T∑
t=1

(
yt −

Nm∑
i=1

βiŷt,i

)2

, (32)

where the constraint βi ≥ 0 is imposed to ensure that the forecasted variance is always positive.

Additionally, this restriction reduces the risk of overfitting (Breiman, 1996).

In addition to using ordinary least squares (OLS) to estimate the combiner coefficients βi,

regularization techniques such as Lasso, Ridge, and Elastic Net can be employed to potentially

improve the stacked regression model’s performance and reduce risk of overfitting.

Lasso regularization (Tibshirani, 1996) adds an ℓ1 penalty term to the optimization objective,

which encourages sparsity in the coefficients:

min
βi

T∑
t=1

(
yt −

Nm∑
i=1

βiŷt,i

)2

+ λ

Nm∑
i=1

|βi|. (33)

Ridge regularization (Hoerl & Kennard, 1970) incorporates an ℓ2 penalty term, which shrinks

the coefficients towards zero:

min
βi

T∑
t=1

(
yt −

Nm∑
i=1

βiŷt,i

)2

+ λ

Nm∑
i=1

β2
i . (34)

Elastic Net regularization (Zou & Hastie, 2005) combines both ℓ1 and ℓ2 penalties, offering

a balance between Lasso and Ridge:

min
βi

T∑
t=1

(
yt −

Nm∑
i=1

βiŷt,i

)2

+ (α)λ

Nm∑
i=1

|βi|+ (1− α)λ

Nm∑
i=1

β2
i , (35)

where 0 < α < 1.

In these regularization methods, λ and α are tuning parameters that control the strength

of the regularization. Lasso has the benefit of performing variable selection by setting some
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coefficients to exactly zero, which can be useful when dealing with many individual models.

Elastic Net strikes a balance between Lasso and Ridge, offering both sparsity and coefficient

shrinkage.

λ and α are hyperparameters that need to be tuned. This is done using the procedure as

described in Section 5.1, where the hyperparameters are selected using Tree-structured Parzen

Estimation (TPE) (Bergstra et al., 2011). The predictors are scaled up by 1 × 104. This is

done to ensure that the coefficients of the combiner model are not too small, which can lead to

convergence issues. The predictions are then scaled back down by 1 × 10−4 to obtain the final

forecast. The hyperparameter ranges are as follows:

� λ : {λ ∈ R | 0 ≤ λ ≤ 1× 103}.

� α : {α ∈ R | 0 ≤ α ≤ 1}.
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6 Portfolio performance evaluation

After having selected the optimal model for each model class, we evaluate the performance

of the volatility-managed portfolios whose scaling is a function of forecasted realized variance.

Using the optimal models for each model class, we produce out-of-sample forecasts of realized

variance over the period 1976-01 to 2022-06 using a rolling window of 5 years. We compare

the performance of the managed portfolios produced using forecasted realized variance to the

performance of the managed portfolios produced using past realized variance. We also consider

a range of transaction cost mitigation techniques to produce a more complete comparison of the

performance of using forecasted realized variance over past realized variance.

All the metrics covered are calculated for each unmanaged factor and each of the managed

portfolios over the period ranging from 1976-01 to 2022-06. This is to ensure that the sample

period is equal for all unmanaged and managed portfolios and that the performance metrics are

comparable. This is in contrast to the performance evaluation of Section 4.4 where the sample

period was the full sample period 1966-01 to 2022-06.

6.1 Evaluating portfolio performance

To compare portfolio performance, we again look at the net-of-costs return of the managed

portfolios. The net-of-costs return of the managed portfolios is calculated using Equation (10).

We then calculate the net-of-costs certainty equivalent rate (CER) and net-of-costs Sharpe

ratio (SR) of the managed portfolios. Where Sharpe ratios are calculated using Equation (12)

and the CER is calculated as:

CER = E [Rσ∗
τ (f)]− 1

2
λ · V [Rσ

τ (f)] , (36)

where λ is the risk aversion parameter and is set λ = 3 following Barroso and Detzel (2021).

Additionally, Mean Squared Forecast Errors (MSFE) of the realized variance models are

presented in Appendix C. These are not used in the evaluation of the managed portfolios but

are presented for reference.

6.2 Transaction cost mitigation

To produce a more complete comparison of the performance of using forecasted realized variance

over past realized variance, we also consider a range of transaction cost mitigation techniques.

We then compare the performance of the managed portfolios using forecasted RV to the managed

portfolios using historic RV with these transaction cost mitigation techniques.

Barroso and Detzel (2021) find that scaling the factors by the prior month’s variance increases

monthly turnover by as much as 15 times relative to the unmanaged factors. To mitigate this

sharp increase in transaction costs we look at additional ways to construct volatility-managed

portfolios that reduce turnover. Three cost mitigation techniques are introduced by Moreira and

Muir (2017) in their paper. The first technique is to scale the factors by the realized volatility

of the factors instead of the realized variance. The second technique is to scale by expected

variance instead of realized variance. Since scaling by forecasted realized variance is equivalent
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to scaling by expected variance, this will not be considered as a cost-mitigation technique. The

third technique is to cap leverage at 1.5.

A fourth technique which is mentioned by Barroso and Detzel (2021) and follows the meth-

odology of Barroso and Santa-Clara (2015) is to scale by realized volatility which is estimated

over the prior six-month period. Barroso and Detzel (2021) also consider a fifth cost-mitigation

technique by Novy-Marx and Velikov (2016) in which they exclude small-cap stocks from the

formation of the factor portfolios. They argue that small-cap stocks are associated with higher

transaction costs and that excluding them from the factor portfolios can reduce turnover.

As an additional strategy we will also evaluate managed portfolios conditional on the sen-

timent index. As found by Barroso and Detzel (2021), the Sharpe ratio of managed portfolios

doubled after high realizations of the index. Conversely, they were reduced after low realizations

of the same index. This suggests that the sentiment index can be used as a timing signal for the

managed portfolios. We will construct managed portfolios which practice volatility timing dur-

ing high realizations of the sentiment index (above the median value) and which do not practice

volatility timing during low realizations of the sentiment index (below the median value).

This results in the volatility scaling technique used by Moreira and Muir (2017), five cost-

mitigation techniques and timing conditional on the Sentiment index to consider:

1. Scaling by realized variance.

2. Scaling by realized volatility7.

3. Scaling by realized volatility over the prior six-month period.

4. Capping leverage at 1.5 (weight can not exceed 1.5).

5. Excluding small-cap stocks from factor portfolios.

6. Conditional on Sentiment index.

The last three cost-mitigation techniques require some additional explanation.

� By capping leverage at 1.5, what is meant is that the scaling of the factor returns as a

result of the volatility timing can not exceed 1.5. That is, when the managed factor is

constructed as follows:

Rτ (f
σ) =

c

σ2
τ−1(f)

Rτ (f) = Lτ (f)Rτ (f), (37)

where we impose the constraint that Lτ (f) ≤ 1.5. This is implemented by setting Lτ (f) =

min(1.5, Lτ (f)).

7Something to note for the construction of the managed portfolios scaled by realized volatility is that the
square root of the estimated realized variance is used as an estimate of the realized volatility. This introduces
bias in the estimation of the realized volatility. This is due to the well-known Jensen’s inequality, which states
that E[X2] is generally not equal to E[X]2. Molnár (2012) discussed this issue in detail and shows for a multitude
of realized volatility estimators that this bias is equal to some constant specific to the used estimator. Since
introducing a constant in the scaling factor of Equation (3) does not affect the Sharpe ratio, this bias is of no
concern for the evaluation of the portfolio performances.
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� Excluding small-cap stocks from the factor portfolios is done by constructing the factor

portfolios using only stocks which have a market capitalization above the NYSE median.

The factor portfolios are then constructed using these stocks. The realized variances of

the original factors are still used as the scaling factor for these managed portfolios.

� When constructing the managed portfolios conditional on the sentiment index, the sen-

timent index is used as a timing signal. When the sentiment index is above its median

value in an expanding window, the managed portfolios are constructed using the volatility

timing strategy. Conversely, if the sentiment index is below the median value, the leverage

term of the managed portfolio is set equal to the leverage of the preceding month:

Lτ (f) =


c

σ2
τ−1(f)

SENTτ−1 > median(SENT1, . . . , SENTτ−1)

Lτ−1(f) SENTτ−1 ≤ median(SENT1, . . . , SENTτ−1)
, (38)

where SENTτ is the value of the sentiment index in month τ .

6.3 Inference on portfolio performance

6.3.1 Sharpe ratio difference test

In order to assess the significance of Sharpe ratio improvements, we perform a statistical signific-

ance test on the difference between two Sharpe ratios. We follow the same procedure as Ledoit

and Wolf (2008). Testing the null hypothesis that the difference in Sharpe ratios is zero. Given

two investment strategies i and j whose excess returns at time t are ri,t and rj,t. It is assumed

that these returns constitute a strictly stationary time series. We test H0 : ∆SR = 0 against

H1 : ∆SR ̸= 0, with a significance level of α = 0.05.

Let µi = E(rit), µj = E(rjt), γi = E(r2it) and γj = E(r2nt). Furthermore, let v = (µi, µj , γi, γj)
′

and v̂ = (µ̂i, µ̂j , γ̂i, γ̂n)
′ be the vector of the first two moments of both return series and its

estimate respectively. Then the difference between Sharpe ratios can be written as:

∆SR = f(v) and ∆̂SR = f(v̂), (39)

with

f(v) = f(a, b, c, d) =
a√

c− a2
− b√

d− b2
. (40)

Assuming that
√
T (v̂ − v)

d−→ N(0,Ψ), the delta method then implies:

√
T (∆̂SR −∆SR)

d−→ N(0,∇′f(v)Ψ∇f(v)), (41)

with

∇′f(v) =

(
c

(c− a2)1.5
,− d

(d− b2)1.5
,−1

2

a

(c− a2)1.5
,
1

2

b

(d− b2)1.5

)
. (42)

With a consistent estimator Ψ̂ of Ψ we can estimate the standard error of ∆̂SR as:
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s(∆̂SR) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
, (43)

where Ψ̂ is obtained via Parzen kernel estimation.

Inference based on asymptotic normality has been shown to provide less accurate results

when compared to the bootstrap method (Ledoit & Wolf, 2008). Therefore, we apply circular

block bootstrapping8 (Politis & Romano, 1991) to improve inference accuracy.

Using circular block bootstrapping we generate M = 5000 bootstrapped time series realiz-

ations, where we set the window size of the circular block bootstrap to 12 months9. We can

estimate the standard error of the mth bootstrap realization ∆̂∗,m
SR as follows:

s(∆̂∗,m
SR ) =

√
∇′f(v̂∗,m)Ψ̂∗,m∇f(v̂∗,m)

T
, (44)

where v̂∗,m = (µ̂∗,m
i , µ̂∗,m

j , γ̂∗,mi , γ̂∗,mn )′ denotes the moment estimates of the mth bootstrap real-

ization and Ψ̂∗,m is the regular sample covariance matrix of the mth bootstrap realization.

We are interested in the two-sided p-value of the null hypothesis of equal Sharpe ratios.

Therefore, we calculate the p-value in the following way. Denote the ’original’ test statistic by

d as follows:

dSR =
|∆̂SR|
s(∆̂SR)

(45)

and let the centred bootstrap statistic from the mth bootstrap realization be denoted by d∗,m

for m = 1, . . . ,M :

d∗,mSR =
|∆̂∗,m

SR − ∆̂SR|
s(∆̂∗,m

SR )
. (46)

Then the two-sided p-value for the null of equal Sharpe ratios is given by (Ledoit & Wolf, 2008):

p =
#{d∗,mSR ≥ dSR}+ 1

M + 1
. (47)

6.3.2 Certainty equivalent rate difference test

Similarly to the Sharpe ratio difference test, we can perform a statistical significance test on

the difference in certainty equivalent rates. We follow the same procedure as Ledoit and Wolf

(2008), where we test the null hypothesis of equal certainty equivalent rates with a significance

level of α = 0.05.

Again, let µi = E(rit), µj = E(rjt), γi = E(r2it), γj = E(r2nt), v = (µi, µj , γi, γj)
′ and

v̂ = (µ̂i, µ̂j , γ̂i, γ̂j)
′ be the vector of the first two moments of both return series and its estimate

8The full sample (X1, . . . , Xn) is wrapped around in a ’circle’. Meaning that for i > n; Xi ≡ Xin , with in = i
mod n. The wrapped sample is then divided into n overlapping blocks Bi of length b, where Bi = (Xi, . . . , Xi+b−1).
k blocks are then sampled with replacement from (B1, . . . , Bn), where k ∼ n/b and stitched together in the order
in which they were sampled.

9As a robustness check the same procedure is performed with a window size set to 6 months. These results
are presented in Appendix B but show no notable differences in outcomes.
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respectively. Then the difference between certainty equivalent rates can be written as:

∆CER = f(v) and ∆̂CER = f(v̂), (48)

with

f(v) = f(a, b, c, d) = a− 1

2
λ(c− a2)− b+

1

2
λ(d− b2). (49)

Similarly, assuming that
√
T (v̂ − v)

d−→ N(0,Ψ), the delta method then implies:

√
T (∆̂CER −∆CER)

d−→ N(0,∇′f(v)Ψ∇f(v)), (50)

with

∇′f(v) =

(
1 + λa,−(1 + λb),−1

2
λ,

1

2
λ

)
. (51)

With a consistent estimator Ψ̂ of Ψ we can estimate the standard error of ∆̂CER as:

s(∆̂CER) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
, (52)

where Ψ̂ is obtained via the Parzen kernel estimator.

For the same reasons as with the test on the Sharpe ratio difference, we apply circular block

bootstrapping. Using circular block bootstrapping we generate M = 5000 bootstrapped time

series realizations, where we set the window size of the circular block bootstrap to 12 months10.

We can estimate the standard error of the mth bootstrap realization ∆̂∗,m
CER as follows:

s(∆̂∗,m
CER) =

√
∇′f(v̂∗,m)Ψ̂∗,m∇f(v̂∗,m)

T
, (53)

where v̂∗,m = (µ̂∗,m
i , µ̂∗,m

j , γ̂∗,mi , γ̂∗,mn )′ denotes the moment estimates of the mth bootstrap real-

ization and Ψ̂∗,m is the regular sample covariance matrix of the mth bootstrap realization.

Again, we are interested in the two-sided p-value of the null hypothesis of equal Sharpe ratios.

Therefore, we calculate the p-value in the following way. Denote the ’original’ test statistic by

d as follows:

dCER =
|∆̂CER|
s(∆̂CER)

(54)

and let the centred bootstrap statistic from the mth bootstrap realization be denoted by d∗,m

for m = 1, . . . ,M :

d∗,mCER =
|∆̂∗,m

CER − ∆̂CER|
s(∆̂∗,m

CER)
. (55)

Then the two-sided p-value for the null of equal certainty equivalent rates is given by (Ledoit &

Wolf, 2008):

p =
#{d∗,mCER ≥ dCER}+ 1

M + 1
. (56)

10As a robustness check the same procedure is performed with a window size set to 6 months. These results
are presented in Appendix B but show no notable differences in outcomes.
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7 Results

7.1 Performance evaluation

Historic volatility measures

We first look at the performance of the managed portfolios using past realized variance and the

cost-mitigation techniques. Based on the different timing rules, we form managed portfolios for

each factor. We calculate the net-of-costs Sharpe ratio and net-of-costs certainty equivalent rate

for each managed portfolio. We also test for equality of the Sharpe ratios and certainty equival-

ent rates of the managed portfolios with the unmanaged portfolios following the procedure as

outlined in Section 6.3. The resulting performance measures and inference results are presented

in Table 6. We also present the transaction costs and turnover for the managed portfolios based

on the past realized variance in Figure 3.

From Figure 3 we can see that the cost mitigation techniques do have an effect on the average

turnover and transaction costs. However, in Table 6 we see that only for the momentum factor

does a timing rule produce a higher Sharpe ratio compared to its unmanaged counterpart. For

all the other factors, employing one of the timing rules based on past realized variance leads

to a decrease in the Sharpe ratio. For the momentum factor, the highest increase in Sharpe

ratio is observed when scaling by the 6-month moving realized volatility. This is in line with the

findings of Barroso and Detzel (2021), they also found none of the timing rules based on historic

volatility to produce significant alpha’s except for the case of the momentum factor using the

6-month moving realized volatility timing rule. The certainty equivalent rates show a similar

pattern. For the momentum factor, the highest increase in certainty equivalent rate is observed

when scaling by the 6-month moving realized volatility. For the other factors, the certainty

equivalent rates decrease when employing one of the timing rules based on historic volatility.

When we consider the inference results, the story becomes even less encouraging. Even

though the momentum factor produces a higher Sharpe ratio and certainty equivalent rate

when using the 6-month moving realized volatility as a timing rule, we are unable to reject the

null hypothesis of equal Sharpe ratios and certainty equivalent rates at a 5% confidence level.

The only timing rules which produce a significant difference in performance measures are the

ones which experience a sharp decline in Sharpe ratio and certainty equivalent rate compared

to the unmanaged factor.
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Table 6
Net-of-cost performance metrics for managed factors which are constructed using different
scaling factors based on historic volatlity measures.

The scaling factors are: the lagged monthly realized variance, the lagged monthly realized volatility, the lagged 6-
month realized volatility, the capped leverage of the lagged monthly realized variance, the lagged monthly realized
variance without small-cap stocks, and the conditional sentiment scaling factor. We also report performance metric
for the unmanaged factors as reference. The performance metrics are the net-of-cost Sharpe ratio and the net-of-
cost certainty equivalent rate. The certainty equivalent rate is calculated with an investor risk aversion of 3. The
performance metrics are calculated for the period 1976-01 to 2022-06 to cover the same sample period as that of
the forecasted volatility models. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Net-of-cost Sharpe ratios for managed factors which are constructed using different scaling factors
based on historic volatlity measures. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.424 (0.53) -0.369 (0.01) -0.615 (0.00) -0.962 (0.00) -1.107 (0.00) -0.001 (0.88)
Realized Volatility 0.512 (0.94) -0.259 (0.00) -0.483 (0.00) -0.798 (0.00) -0.825 (0.00) 0.060 (0.46)
6m Realized Volatility 0.513 (0.94) -0.134 (0.00) -0.379 (0.00) -0.685 (0.00) -0.589 (0.00) 0.157 (0.18)
Capped Leverage 0.480 (0.72) -0.204 (0.01) -0.522 (0.00) -0.786 (0.00) -0.930 (0.00) -0.053 (0.95)
No small-cap 0.439 (0.62) -0.676 (0.00) -0.389 (0.04) -0.561 (0.00) -0.666 (0.00) -0.085 (0.79)
Conditional Sentiment 0.515 (0.95) -0.220 (0.00) -0.458 (0.00) -0.736 (0.00) -0.703 (0.00) 0.040 (0.58)

Panel B: Net-of-cost certainty equivalent rates for managed factors which are constructed using different scaling
factors based on historic volatlity measures. Investor risk aversion is set equal to 3. The highest CER per factor
is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.25% (0.53) -0.44% (0.00) -0.69% (0.00) -0.73% (0.00) -0.69% (0.00) -0.28% (0.85)
Realized Volatility 0.36% (0.94) -0.35% (0.00) -0.57% (0.00) -0.62% (0.00) -0.53% (0.00) -0.21% (0.49)
6m Realized Volatility 0.36% (0.94) -0.24% (0.00) -0.48% (0.00) -0.54% (0.00) -0.40% (0.00) -0.09% (0.21)
Capped Leverage 0.32% (0.72) -0.30% (0.00) -0.60% (0.00) -0.61% (0.00) -0.59% (0.00) -0.35% (0.92)
No small-cap 0.27% (0.60) -1.13% (0.00) -0.22% (0.11) -0.21% (0.00) -0.28% (0.00) -0.14% (0.35)
Conditional Sentiment 0.37% (0.94) -0.31% (0.00) -0.55% (0.00) -0.57% (0.00) -0.46% (0.00) -0.23% (0.52)
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Figure 3
Transaction costs and turnover for the managed portfolios using past realized variance and
cost-mitigation techniques.
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Forecasted volatility measures

We continue with forming managed portfolios using the forecasted realized variance from each

of the optimal models. The net-of-costs Sharpe ratios and certainty equivalent rates of the

managed portfolios as well as the p-values for the test on equality of performance measures

between unmanaged and managed portfolios are presented in Table 7. We also present the

results for the managed portfolios formed using forecasted realized volatility as a timing rule,

where realized volatility is calculated as the square root of the forecasted realized variance.

These performance metrics and their inference results are presented in Table 8.

Table 7
Net-of-cost performance metrics for VMP using forecasted realized variance.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance. The certainty equivalent
rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period from
1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics for
the unmanaged factors and the managed factors based on past realized variance are reported as reference. The
p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors are
reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of 12
months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.424 (0.55) -0.369 (0.00) -0.615 (0.00) -0.962 (0.00) -1.107 (0.00) -0.001 (0.88)
GARCH 0.451 (0.58) -0.244 (0.00) -0.519 (0.00) -0.693 (0.00) -0.826 (0.00) 0.155 (0.25)
HAR-RV 0.473 (0.66) -0.128 (0.03) -0.460 (0.00) -0.762 (0.00) -0.749 (0.00) 0.110 (0.38)
ARFIMA 0.121 (0.39) -0.246 (0.07) 0.043 (0.52) -0.091 (0.03) -0.190 (0.11) -0.210 (0.24)
MIDAS 0.401 (0.20) -0.156 (0.00) -0.407 (0.00) -0.780 (0.00) -0.635 (0.00) 0.164 (0.21)
Random Forest 0.467 (0.65) -0.213 (0.06) -0.542 (0.00) -0.838 (0.00) -0.812 (0.00) 0.107 (0.48)
MFC 0.495 (0.82) -0.207 (0.00) -0.470 (0.00) -0.755 (0.00) -0.809 (0.00) 0.151 (0.24)
Stacking 0.483 (0.66) -0.097 (0.00) -0.323 (0.13) -0.700 (0.00) -0.562 (0.00) 0.177 (0.25)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance. Investor risk aversion is set equal to 3. Only net-of-cost certainty equivalents are reported. The
highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.25% (0.53) -0.44% (0.00) -0.69% (0.00) -0.73% (0.00) -0.69% (0.00) -0.28% (0.84)
GARCH 0.28% (0.59) -0.33% (0.00) -0.60% (0.00) -0.55% (0.00) -0.53% (0.00) -0.09% (0.23)
HAR-RV 0.31% (0.66) -0.24% (0.00) -0.55% (0.00) -0.59% (0.00) -0.49% (0.00) -0.14% (0.39)
ARFIMA -0.14% (0.04) -0.33% (0.19) -0.10% (0.45) -0.14% (0.01) -0.17% (0.02) -0.55% (0.22)
MIDAS 0.22% (0.19) -0.26% (0.00) -0.50% (0.00) -0.60% (0.00) -0.42% (0.00) -0.08% (0.23)
Random Forest 0.30% (0.65) -0.31% (0.00) -0.62% (0.00) -0.64% (0.00) -0.52% (0.00) -0.15% (0.43)
MFC 0.34% (0.82) -0.30% (0.00) -0.56% (0.00) -0.59% (0.00) -0.52% (0.00) -0.09% (0.26)
Stacking 0.32% (0.66) -0.21% (0.00) -0.43% (0.25) -0.55% (0.00) -0.38% (0.00) -0.06% (0.24)
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Table 8
Net-of-cost performance metrics for VMP using forecasted realized volatility.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized volatility. The certainty equival-
ent rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period
from 1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics
for the unmanaged factors and the managed factors based on past realized variance are reported as reference.
The p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors
are reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of
12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
volatility. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Volatility 0.512 (0.94) -0.259 (0.00) -0.483 (0.00) -0.798 (0.00) -0.825 (0.00) 0.060 (0.47)
GARCH 0.505 (0.83) -0.174 (0.00) -0.417 (0.00) -0.609 (0.00) -0.665 (0.00) 0.081 (0.22)
HAR-RV 0.521 (0.96) -0.115 (0.00) -0.377 (0.00) -0.676 (0.00) -0.627 (0.00) 0.088 (0.28)
ARFIMA 0.427 (0.31) -0.308 (0.01) -0.215 (0.20) -0.254 (0.01) -0.371 (0.12) -0.156 (0.35)
MIDAS 0.471 (0.43) -0.123 (0.00) -0.343 (0.00) -0.659 (0.00) -0.553 (0.00) 0.102 (0.16)
Random Forest 0.507 (0.85) -0.165 (0.00) -0.417 (0.00) -0.673 (0.00) -0.635 (0.00) 0.082 (0.29)
MFC 0.528 (0.89) -0.143 (0.00) -0.379 (0.00) -0.698 (0.00) -0.622 (0.00) 0.105 (0.20)
Stacking 0.507 (0.80) -0.088 (0.00) -0.479 (0.00) -0.562 (0.00) -0.502 (0.00) 0.124 (0.19)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized volatility. Investor risk aversion is set equal to 3. Only net-of-cost certainty equivalents are reported.
The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Volatility 0.36% (0.93) -0.35% (0.00) -0.57% (0.00) -0.62% (0.00) -0.53% (0.00) -0.21% (0.50)
GARCH 0.35% (0.83) -0.27% (0.00) -0.51% (0.00) -0.49% (0.00) -0.44% (0.00) -0.18% (0.28)
HAR-RV 0.37% (0.97) -0.22% (0.00) -0.48% (0.00) -0.53% (0.00) -0.42% (0.00) -0.17% (0.37)
ARFIMA 0.25% (0.29) -0.39% (0.05) -0.33% (0.00) -0.25% (0.00) -0.27% (0.00) -0.48% (0.32)
MIDAS 0.31% (0.42) -0.23% (0.00) -0.45% (0.00) -0.52% (0.00) -0.38% (0.00) -0.15% (0.26)
Random Forest 0.36% (0.84) -0.27% (0.00) -0.51% (0.00) -0.53% (0.00) -0.42% (0.00) -0.18% (0.37)
MFC 0.38% (0.89) -0.25% (0.00) -0.48% (0.00) -0.55% (0.00) -0.42% (0.00) -0.15% (0.30)
Stacking 0.35% (0.79) -0.20% (0.00) -0.57% (0.00) -0.46% (0.00) -0.35% (0.00) -0.13% (0.28)

Table 7 and Table 8 show a similar pattern to the managed portfolios using historic volatility

measures. For most factors, the managed portfolios using forecasted realized variance and

realized volatility produce lower Sharpe ratios and certainty equivalent rates compared to their

unmanaged counterparts. The only exception being the market and momentum factors. The

MFC combiner model is able to produce timing rules based on realized volatility which result in

slightly higher performance measure for the market factor, but these increases are statistically

insignificant with p-values of 0.89. Conversely, for the momentum factor, the Stacking model

produces a timing rule based on realized variance and realized volatility which results in a higher

Sharpe ratio and certainty equivalent rate compared to the unmanaged factor. However, this

increase is statistically insignificant with p-values of 0.25 and 0.24 respectively.

The underperformance of the other factors is not entirely surprising since we already showed

that having a ’perfect’ forecast of the realized variance does not necessarily lead to and increase

in Sharpe ratio. The results for the managed portfolios using forecasted realized variance and

volatility support this finding.
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For reference, we also report gross performance metrics for the volatility-managed portfolios

using forecasted realized variance in Table 9. This shows that applying volatility timing based

on past realized variance or forecasted realized variance is able to increase gross Sharpe ratios

significantly compared to the unmanaged strategy for the momentum factor. Thus, underlining

the fact that due to the transactions costs associated with these strategies, potential gains are

eroded. Gross performance metrics for past realized variance based timing rules and the other

cost mitigation techniques are presented in Appendix A but not shown here since they show

similar results.

Furthermore, we employ the same cost-mitigation techniques as with the historic volatility

measures where we limit leverage to be no higher than 1.5, exclude small-cap stocks, and practice

conditional sentiment scaling. Our results show that these cost mitigation techniques generally

do not alter the main conclusions drawn from the unmitigated strategies. The managed portfolios

using these techniques still do not consistently outperform their unmanaged counterparts in

terms of net-of-costs performance metrics and show a very similar pattern to the results without

cost mitigation. For brevity, we present the results of these additional analyses in Appendix A.

But we can conclude that even when limiting leverage, excluding small-cap stocks, and practising

conditional sentiment scaling, the managed portfolios using forecasted realized variance still to

not perform significantly better than their unmanaged counterparts in terms of net-of-costs

Sharpe ratios and net-of-costs certainty equivalent rates.

This leads us to conclude that we are unable to produce timing rules which result in significant

improvement in the risk-return characteristics of the factors under consideration over the studied

sample period.
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Table 9
Gross performance metrics for VMP using forecasted realized variance.

We report gross Sharpe ratios and the gross certainty equivalent rates for volatility-managed factors which are
constructed using different scaling factors based on forecasted realized variance. The certainty equivalent rate
is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period from
1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics for
the unmanaged factors and the managed factors based on past realized variance are reported as reference. The
p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors are
reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of 12
months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance. Only gross sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Variance 0.547 (0.87) 0.286 (0.81) 0.267 (0.89) 0.696 (0.31) 0.391 (0.37) 1.058 (0.00)
GARCH 0.481 (0.74) 0.141 (0.23) 0.301 (0.97) 0.591 (0.64) 0.182 (0.02) 0.822 (0.06)
HAR-RV 0.541 (0.85) 0.265 (0.92) 0.205 (0.62) 0.678 (0.30) 0.397 (0.45) 0.867 (0.04)
ARFIMA 0.161 (0.38) 0.001 (0.39) 0.200 (0.69) 0.155 (0.11) 0.120 (0.12) -0.081 (0.00)
MIDAS 0.472 (0.58) 0.261 (0.92) 0.274 (0.90) 0.604 (0.48) 0.395 (0.41) 0.896 (0.02)
Random Forest 0.515 (0.95) 0.245 (0.96) 0.186 (0.48) 0.675 (0.24) 0.365 (0.25) 1.015 (0.01)
MFC 0.533 (0.92) 0.201 (0.50) 0.234 (0.70) 0.393 (0.64) 0.338 (0.22) 0.952 (0.01)
Stacking 0.494 (0.73) 0.235 (0.76) -0.092 (0.32) 0.565 (0.68) 0.353 (0.23) 1.001 (0.01)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance. Investor risk aversion is set equal to 3. Only gross certainty equivalents are reported. The
highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Variance 0.41% (0.86) 0.11% (0.81) 0.09% (0.89) 0.39% (0.34) 0.16% (0.48) 1.04% (0.00)
GARCH 0.32% (0.74) -0.01% (0.21) 0.13% (0.96) 0.32% (0.63) 0.05% (0.04) 0.75% (0.04)
HAR-RV 0.40% (0.84) 0.10% (0.91) 0.04% (0.63) 0.37% (0.37) 0.17% (0.56) 0.80% (0.03)
ARFIMA -0.09% (0.06) -0.13% (0.42) 0.04% (0.67) 0.02% (0.07) 0.01% (0.11) -0.38% (0.00)
MIDAS 0.31% (0.59) 0.09% (0.92) 0.10% (0.90) 0.32% (0.53) 0.17% (0.48) 0.84% (0.03)
Random Forest 0.37% (0.96) 0.08% (0.95) 0.02% (0.51) 0.37% (0.33) 0.15% (0.37) 0.99% (0.01)
MFC 0.39% (0.91) 0.04% (0.49) 0.07% (0.70) 0.18% (0.53) 0.13% (0.30) 0.91% (0.01)
Stacking 0.34% (0.73) 0.07% (0.75) -0.22% (0.36) 0.30% (0.73) 0.14% (0.29) 0.97% (0.01)
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7.2 Model selection

In this section we present the results from the model selection / hyperparameter tuning procedure

for each of the model classes.

7.2.1 GARCH model selection

As described in Section 5.1, the optimal GARCH(1,1) model (daily/monthly) is selected based on

the highest Sharpe ratio of the managed portfolios formed using the forecasted realized variance

per factor. The resulting net-of-costs Sharpe ratios as well as the optimal model per factor are

presented in Table 10.

Table 10
Model selection criteria for the GARCH models.

Both a daily and monthly GARCH model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Managed portfolios are constructed
using the forecasted realized variance as the scaling factor. Net-of-costs Sharpe ratios are calculated for each of
the managed portfolios. For each row, the highest Sharpe ratio is highlighted.

Daily Monthly Optimal

MKT 0.360 0.379 Monthly
SMB -0.480 -0.275 Monthly
HML -0.478 -0.522 Daily
RMW -0.956 -0.743 Monthly
CMA -0.813 -0.774 Monthly
MOM 0.053 0.109 Monthly

For most factors, the monthly GARCHmodel produces higher net-of-costs Sharpe ratios than

the daily model. This is in line with Ghysels et al. (2019) who find that using a daily model

and rescaling forecasts to a longer horizon produces worse forecasts than directly modelling the

longer horizon. However, for the value (HML) factor, the daily GARCH model produces the

highest net-of-costs Sharpe ratio. Therefore, we select the daily GARCH model the optimal

GARCH model for the value factor.

7.2.2 HAR-RV model selection

Similarly, as with the GARCH model, the HAR-RV model also produces higher Sharpe ratios

when using monthly realized variance forecasts compared to daily realized variance forecasts,

except for the market factor. The results are presented in Table 11.

We therefore select the daily HAR-RV model as the optimal HAR-RV model for the market

factor and the monthly HAR-RV model as the optimal HAR-RV model for the other factors.

7.2.3 ARFIMA model selection

The results of the rolling window out-of-sample evaluation for the ARFIMA model are presented

in Table 12. When comparing the specifications across the different values for the fractional

differencing parameter d, we notice that both for the daily and monthly there is no clear pattern

to be discerned in the net of costs Sharpe ratios. For almost all the factors does a different

fractional differencing parameter produce the highest net-of-costs Sharpe ratio. However, when
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Table 11
Model selection criteria for the HAR-RV models.

Both a daily and monthly HAR-RV model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Managed portfolios are constructed
using the forecasted realized variance as the scaling factor. Net-of-costs Sharpe ratios are calculated for each of
the managed portfolios. For each row, the highest Sharpe ratio is highlighted.

Daily Monthly Optimal

MKT 0.387 0.343 Daily
SMB -0.420 -0.304 Monthly
HML -0.515 -0.414 Monthly
RMW -1.019 -0.844 Monthly
CMA -0.849 -0.672 Monthly
MOM 0.052 0.137 Monthly

comparing the daily model with the monthly model, we see that for all factors except the value

(HML) factor that the daily model achieves higher net-of-costs Sharpe ratios. The optimal

ARFIMA model specifications for each factor are presented in Table 13.

Table 12
Model selection criteria for the ARFIMA models.

Both a daily and monthly ARFIMA model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Managed portfolios are constructed
using the forecasted realized variance as the scaling factor. Net-of-costs Sharpe ratios are calculated for each of
the managed portfolios. For each row, the highest Sharpe ratio is highlighted.

Panel A: Daily ARFIMA(1,d,1) model Sharpe ratios for different d values.

d = 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

MKT 0.420 0.318 0.406 0.421 0.207 0.125 0.195 0.286 0.120
SMB -0.247 -0.036 -0.334 -0.442 -0.350 -0.057 -0.462 -0.324 -0.299
HML -0.454 -0.441 -0.547 -0.471 -0.359 -0.313 -0.523 -0.430 -0.037
RMW -0.800 -0.929 -0.808 -0.224 -0.423 -0.588 0.046 -0.628 -0.276
CMA -0.838 -0.865 -0.857 -0.831 -0.801 -0.783 -0.902 -0.672 -0.012
MOM 0.069 0.052 0.116 -0.064 0.035 -0.035 0.102 0.191 -0.216

Panel B: Monthly ARFIMA(1,d,1) model Sharpe ratios for different d values.

d = 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

MKT 0.397 0.398 0.261 -0.034 0.137 0.283 0.143 0.030 0.088
SMB -0.321 -0.397 -0.389 -0.401 -0.402 -0.331 -0.391 -0.449 -0.375
HML -0.427 -0.485 -0.469 -0.472 -0.457 -0.524 -0.445 -0.273 0.042
RMW -0.882 -0.762 -0.932 -0.969 -0.999 -1.043 -1.078 -1.109 -1.129
CMA -0.743 -0.767 -0.777 -0.772 -0.795 -0.831 -0.857 -0.762 -0.537
MOM 0.064 0.068 0.053 0.056 0.082 0.021 -0.022 -0.075 -0.052

7.2.4 MIDAS model selection

The results of the rolling window out-of-sample evaluation for the MIDAS model are presented

in Table 14. When comparing the model with the exponential lag polynomial against the model

with the beta lag polynomial, we see that for all factors except the profitability (RMW) factor

that the exponential model produces more favourable timing rules. For the exponential lag

polynomial models, there is not a substantial difference across the different values for jmax with

regard to the Sharpe ratios. However, it does seem that higher values tend to produce slightly
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Table 13
Optimal ARFIMA model specifications for each factor.

Frequency d ARFIMA(p,d,q)

MKT Daily 0.2 ARFIMA(1,0.2,1)
SMB Daily 0.1 ARFIMA(1,0.1,1)
HML Monthly 0.45 ARFIMA(1,0.45,1)
RMW Daily 0.35 ARFIMA(1,0.35,1)
CMA Daily 0.45 ARFIMA(1,0.45,1)
MOM Daily 0.4 ARFIMA(1,0.4,1)

more favourable timing rules. The optimal MIDAS model specifications for each factor are

presented in Table 15.

Table 14
Model selection criteria for the MIDAS models.

Both an exponential and beta MIDAS model are estimated using a rolling window with window length of 5
years. Managed portfolios are constructed using the forecasted realized variance as the scaling factor. Net-of-
costs Sharpe ratios are calculated for each of the managed portfolios. For each row, the highest Sharpe ratio is
highlighted.

Panel A: Beta MIDAS model net-of-costs Sharpe ratios for different jmax values.

jmax = 20 25 30 35 40 45 50 55 60

MKT 0.287 0.301 0.263 0.283 0.297 0.294 0.289 0.293 0.283
SMB -0.297 -0.305 -0.290 -0.275 -0.250 -0.262 -0.247 -0.272 -0.251
HML -0.473 -0.461 -0.436 -0.480 -0.453 -0.449 -0.456 -0.458 -0.465
RMW -0.888 -0.895 -0.884 -0.874 -0.873 -0.872 -0.878 -0.865 -0.878
CMA -0.660 -0.680 -0.700 -0.734 -0.689 -0.652 -0.638 -0.699 -0.670
MOM 0.079 0.031 0.036 0.002 0.056 0.082 0.064 0.072 0.153

Panel B: Exponential MIDAS model net-of-costs Sharpe ratios for different jmax values.

jmax = 20 25 30 35 40 45 50 55 60

MKT 0.261 0.293 0.279 0.269 0.258 0.274 0.267 0.289 0.314
SMB -0.254 -0.253 -0.225 -0.231 -0.243 -0.232 -0.225 -0.221 -0.230
HML -0.373 -0.365 -0.369 -0.369 -0.384 -0.365 -0.360 -0.361 -0.356
RMW -0.874 -0.902 -0.876 -0.883 -0.884 -0.880 -0.880 -0.883 -0.873
CMA -0.629 -0.611 -0.616 -0.621 -0.628 -0.625 -0.611 -0.618 -0.631
MOM 0.116 0.139 0.093 0.079 0.169 0.166 0.157 0.148 0.147

Table 15
Optimal MIDAS model specifications for each factor.

Lag polynomial jmax

MKT Exponential 60
SMB Exponential 55
HML Exponential 60
RMW Beta 55
CMA Exponential 50
MOM Exponential 45
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7.2.5 Random Forest model selection

For the selection of the random forest model, we tune the hyperparameters (B,nB,m, nmin) using

Tree-structured Parzen Estimation (Watanabe, 2023) to find the optimal hyperparameters. We

only perform hyperparameter tuning for the market factor due to the computational load of this

procedure. These hyperparameters are then used to form the Random Forest models for the

other factors as well. The results of the tuning procedure are presented in Table 16. The results

show that the random forest model with B = 440, nB = 0.64, m = 0.36, and nmin = 3 produces

the highest net-of-costs Sharpe ratio for the market factor. We use these hyperparameters to

form the Random Forest models for the market factor and the other factors as well.

Table 16
Optimal model parameters for the random forest model.

The optimal parameters are selected based on the maximisation of the net-of-costs Sharpe ratio for the managed
market factor. Forecasted realized variance using a rolling window with a window length of 5 years is used
for construction of the managed portfolio. The optimal parameters are selected using Tree-structured Parzen
Estimation.

No. of trees B Subsample ratio nB Feature ratio m Min. node size nmin

Range 50-500 0.05-1 0.05-1 1-50
Optimal value 440 0.64 0.36 3

7.2.6 Stacking model selection

For the stacking model selection we again apply Tree-structured Parzen Estimation (Watanabe,

2023) for tuning the penalty terms for the Ridge, Lasso and Elastic Net models. The tuning

is performed for each factor separately. The results of the tuning procedure are presented in

Table 17. These optimal model parameters are then used to forecast the realized variance and

produce timing rules. The results of the rolling window out-of-sample evaluation for the stacking

model as well as the optimal model per factor are presented in Table 18.

Table 17
Optimal model parameters for the stacking models.

The optimal parameters are selected based on the maximisation of the net-of-costs Sharpe ratio for each factor.
Forecasted realized variance using a rolling window with a window length of 5 years is used for construction of
the managed portfolios. The optimal parameters are selected using Tree-structured Parzen Estimation.

Ridge Lasso Elastic net
λopt λopt αopt λopt

MKT 0.137 999.529 0.950 953.820
SMB 0.162 30.100 0.073 475.333
HML 0.226 945.784 0.440 773.005
RMW 999.821 947.099 0.968 426.149
CMA 999.780 438.741 0.545 310.894
MOM 999.517 0.155 0.207 0.265
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Table 18
Model selection criteria for the Stacking models.

All models are estimated using a rolling window with window length of 5 years. Managed portfolios are constructed
using the forecasted realized variance as the scaling factor. Net-of-costs Sharpe ratios are calculated for each of
the managed portfolios. For each row, the highest Sharpe ratio is highlighted.

Ols Ridge Lasso Elastic net Optimal

MKT 0.479 0.172 0.483 0.483 Elastic net
SMB -0.213 -0.228 -0.100 -0.097 Elastic net
HML -0.487 -0.181 -0.375 -0.379 Ridge
RMW -0.722 -0.734 -0.700 -0.704 Lasso
CMA -0.727 -0.662 -0.562 -0.562 Lasso
MOM 0.179 0.183 0.073 0.099 Ols
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8 Conclusion

Volatility-managed portfolios seem to offer superior risk reward characteristics compared to tra-

ditional buy and hold strategies. However, our findings show that while volatility-managed

portfolios based on past realized variance can offer attractive risk reward characteristics, these

gains can be easily offset by transaction costs. When we consider a range of cost mitigation tech-

niques in the spirit of Novy-Marx and Velikov (2016), we still find that net-of-costs performance

metrics are unable to outperform traditional factor strategies. These findings are in line with

the results of Barroso and Detzel (2021), who demonstrate transaction costs can substantially

diminish the performance of these strategies.

By forecasting realized variance to use as a timing signal instead of past realized variance we

aim to build upon the work of Moreira and Muir (2017) and to improve the risk return trade-off

of these strategies. We incorporate advanced volatility forecasting models, such as GARCH,

HAR-RV, ARFIMA, MIDAS and Random Forest, as well as combiner models like mean forecast

combination and stacking. However, after introducing forecasted realized variance as a timing

signal, we are still unable to produce significantly better risk return characteristics compared to

the traditional unmanaged factor strategies. For most factors these managed strategies actually

lead to significantly worse performance compared to their unmanaged counterparts. Leading us

to conclude that the forecasting of factor realized variance is not a viable strategy for improving

the risk reward characteristics of any factor strategy under consideration.

Furthermore, we find that, when one would have a ’perfect’ forecast of next months’ realized

variance to be used as a timing signal instead of past realized variance, the Sharpe ratio of the

market (MKT), size (SMB) and momentum (MOM) factor experience an increase while the

Sharpe ratio of the value (HML), profitability (RMW) and investment (CMA) factor decreases.

An explanation for this phenomenon is outside the scope of this research and is left for future

research. However, it does make the framework of Moreira and Muir (2017) more puzzling. It

would make for an interesting research question to see where this discrepancy comes from.

We find that most of the constructed timing rules lead to significantly worse performance

compared to the traditional unmanaged factor strategies. In some cases this leads to substan-

tially negative Sharpe ratios. We restricted ourselves solely to the application of volatility timing

as a means of improving mean variance characteristics of the factor strategies. However, it could

be interesting to explore whether shorting these heavily underperforming strategies could lead

to interesting trading strategies.

Also, in our analysis we only considered volatility-managed portfolios consisting of a single

managed factor. Another approach would be to follow the work of DeMiguel et al. (2021) and

consider portfolios consisting of multiple factors. In their analysis, DeMiguel et al. (2021) form

multifactor volatility-managed portfolios in which the individual factor weights are varied over

time as a function of market variance. They find that this approach to forming a multifactor

volatility-managed portfolio leads to improved risk reward characteristics compared to its un-

managed counterpart. Extending this research by considering forecasted realized variance as a

timing signal could be an interesting topic for future research.

As shown by Barroso and Detzel (2021) and DeMiguel et al. (2021) as well as our analysis,

transaction costs can have a substantial impact on the performance of volatility-managed portfo-
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lios. Therefore, to improve the performance of these strategies, it is important to consider more

advanced cost mitigation techniques. Rebalancing the portfolios at lower frequencies could help

in further reducing transaction costs at the expense of reacting to changes in market volatility.

Furthermore, introducing hysteresis in the rebalancing rules as proposed by Novy-Marx and

Velikov (2019) and in the process generate timing rules which require less frequent rebalancing

could also help in reducing transaction costs.

In summary, our research contributes to the growing body of literature on volatility-managed

portfolios. While we did not find that using forecasted realized variance significantly enhances

factor strategy performance, this study provides insights into the practical limitations of imple-

menting such strategies, and highlights the difficulties in consistently outperforming traditional

factor strategies through the use of volatility timing.
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A Additional results

Table 19
Gross performance metrics for managed factors which are constructed using different scaling
factors based on historic volatlity measures.

The scaling factors are: the lagged monthly realized variance, the lagged monthly realized volatility, the lagged 6-
month realized volatility, the capped leverage of the lagged monthly realized variance, the lagged monthly realized
variance without small-cap stocks, and the conditional sentiment scaling factor. We also report performance metric
for the unmanaged factors as reference. The performance metrics are the net-of-cost Sharpe ratio and the net-of-
cost certainty equivalent rate. The certainty equivalent rate is calculated with an investor risk aversion of 3. The
performance metrics are calculated for the period 1976-01 to 2022-06 to cover the same sample period as that of
the forecasted volatility models. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Gross Sharpe ratios for managed factors which are constructed using different scaling factors based on
historic volatlity measures. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Variance 0.547 (0.87) 0.286 (0.81) 0.267 (0.88) 0.696 (0.32) 0.391 (0.39) 1.058 (0.00)
Realized Volatility 0.581 (0.50) 0.259 (0.94) 0.320 (0.82) 0.687 (0.12) 0.452 (0.60) 0.969 (0.00)
6m Realized Volatility 0.528 (0.93) 0.241 (0.88) 0.282 (0.92) 0.631 (0.18) 0.474 (0.84) 0.913 (0.01)
Capped Leverage 0.571 (0.65) 0.333 (0.45) 0.286 (0.95) 0.708 (0.09) 0.470 (0.78) 0.916 (0.00)
No small-cap 0.543 (0.90) -0.487 (0.00) 0.173 (0.57) 0.327 (0.34) 0.135 (0.03) 0.559 (0.69)
Conditional Sentiment 0.566 (0.44) 0.247 (0.90) 0.259 (0.73) 0.708 (0.14) 0.458 (0.69) 0.877 (0.00)

Panel B: Gross certainty equivalent rates for managed factors which are constructed using different scaling
factors based on historic volatlity measures. Investor risk aversion is set equal to 3. The highest CER per factor
is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Variance 0.41% (0.86) 0.11% (0.81) 0.09% (0.89) 0.39% (0.35) 0.16% (0.49) 1.04% (0.00)
Realized Volatility 0.45% (0.48) 0.09% (0.94) 0.14% (0.82) 0.38% (0.13) 0.20% (0.70) 0.93% (0.00)
6m Realized Volatility 0.38% (0.93) 0.08% (0.87) 0.11% (0.92) 0.34% (0.29) 0.21% (0.88) 0.86% (0.01)
Capped Leverage 0.44% (0.64) 0.15% (0.44) 0.11% (0.95) 0.39% (0.12) 0.21% (0.83) 0.86% (0.00)
No small-cap 0.40% (0.90) -0.89% (0.00) 0.04% (0.65) 0.09% (0.12) 0.03% (0.03) 0.29% (0.88)
Conditional Sentiment 0.43% (0.45) 0.08% (0.89) 0.09% (0.71) 0.39% (0.10) 0.20% (0.73) 0.82% (0.00)
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Table 20
Gross performance metrics for VMP using forecasted realized volatility.

We report gross Sharpe ratios and the gross certainty equivalent rates for volatility-managed factors which are
constructed using different scaling factors based on forecasted realized volatility. The certainty equivalent rate
is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period from
1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics for
the unmanaged factors and the managed factors based on past realized variance are reported as reference. The
p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors are
reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of 12
months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
volatility. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Volatility 0.581 (0.51) 0.259 (0.94) 0.320 (0.82) 0.687 (0.11) 0.452 (0.60) 0.969 (0.00)
GARCH 0.522 (0.99) 0.204 (0.30) 0.327 (0.73) 0.632 (0.19) 0.340 (0.02) 0.775 (0.02)
HAR-RV 0.561 (0.54) 0.259 (0.94) 0.280 (0.89) 0.647 (0.13) 0.447 (0.54) 0.812 (0.04)
ARFIMA 0.485 (0.74) 0.135 (0.54) 0.284 (0.95) 0.310 (0.25) 0.213 (0.16) 0.101 (0.02)
MIDAS 0.508 (0.83) 0.263 (0.86) 0.304 (0.91) 0.590 (0.30) 0.446 (0.45) 0.801 (0.03)
Random Forest 0.535 (0.83) 0.238 (0.80) 0.258 (0.70) 0.626 (0.15) 0.429 (0.30) 0.853 (0.02)
MFC 0.550 (0.66) 0.237 (0.73) 0.285 (0.93) 0.586 (0.40) 0.413 (0.21) 0.836 (0.03)
Stacking 0.515 (0.89) 0.248 (0.86) 0.175 (0.47) 0.561 (0.58) 0.427 (0.26) 0.872 (0.02)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized volatility. Investor risk aversion is set equal to 3. Only net-of-cost certainty equivalents are reported.
The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Volatility 0.45% (0.49) 0.09% (0.95) 0.14% (0.82) 0.38% (0.13) 0.20% (0.68) 0.93% (0.00)
GARCH 0.37% (0.99) 0.04% (0.32) 0.15% (0.73) 0.34% (0.19) 0.14% (0.04) 0.69% (0.01)
HAR-RV 0.42% (0.55) 0.09% (0.93) 0.11% (0.89) 0.35% (0.23) 0.20% (0.64) 0.73% (0.02)
ARFIMA 0.33% (0.66) -0.01% (0.54) 0.11% (0.94) 0.13% (0.17) 0.06% (0.16) -0.16% (0.02)
MIDAS 0.36% (0.82) 0.09% (0.86) 0.13% (0.92) 0.31% (0.38) 0.20% (0.52) 0.72% (0.02)
Random Forest 0.39% (0.83) 0.07% (0.78) 0.09% (0.69) 0.34% (0.27) 0.19% (0.40) 0.79% (0.01)
MFC 0.41% (0.64) 0.07% (0.74) 0.11% (0.92) 0.31% (0.40) 0.18% (0.29) 0.76% (0.01)
Stacking 0.36% (0.89) 0.08% (0.87) 0.01% (0.47) 0.30% (0.64) 0.19% (0.36) 0.81% (0.01)
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Table 21
Net-of-cost performance metrics for VMP using forecasted realized variance, where the
leverage has been capped by 1.5.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where the leverage has
been capped by 1.5. The certainty equivalent rate is calculated with an investor risk aversion of 3. All performance
metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have the same number
of observations. Performance metrics for the unmanaged factors and the managed factors based on past realized
variance are reported as reference. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with capped leverage of 1.5. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per
factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.405 (0.01) -0.188 (0.00) -0.252 (0.00) -0.271 (0.03) -0.374 (0.00) -0.132 (0.18)
GARCH 0.474 (0.39) -0.022 (0.00) -0.262 (0.00) -0.248 (0.05) -0.230 (0.00) -0.108 (0.26)
HAR-RV 0.441 (0.09) -0.103 (0.00) -0.196 (0.00) -0.190 (0.03) -0.259 (0.00) -0.102 (0.40)
ARFIMA 0.514 (0.36) -0.079 (0.00) -0.241 (0.00) -0.364 (0.01) -0.412 (0.00) -0.021 (0.33)
MIDAS 0.464 (0.19) -0.108 (0.00) -0.219 (0.00) -0.134 (0.04) -0.262 (0.01) -0.136 (0.27)
Random Forest 0.427 (0.07) -0.104 (0.00) -0.176 (0.00) -0.177 (0.04) -0.259 (0.00) -0.107 (0.39)
MFC 0.463 (0.29) -0.050 (0.00) -0.196 (0.00) -0.209 (0.03) -0.224 (0.01) -0.107 (0.37)
Stacking 0.489 (0.57) -0.038 (0.00) -0.225 (0.00) -0.107 (0.06) -0.204 (0.01) -0.128 (0.37)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance with capped leverage of 1.5. Investor risk aversion is set equal to 3. Only net-of-cost certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.22% (0.01) -0.29% (0.00) -0.36% (0.00) -0.26% (0.00) -0.27% (0.00) -0.45% (0.06)
GARCH 0.31% (0.38) -0.15% (0.00) -0.37% (0.00) -0.25% (0.00) -0.19% (0.00) -0.42% (0.16)
HAR-RV 0.27% (0.08) -0.21% (0.00) -0.32% (0.00) -0.21% (0.00) -0.21% (0.00) -0.41% (0.23)
ARFIMA 0.36% (0.38) -0.19% (0.00) -0.36% (0.00) -0.32% (0.00) -0.30% (0.00) -0.31% (0.42)
MIDAS 0.30% (0.19) -0.22% (0.00) -0.34% (0.00) -0.17% (0.00) -0.21% (0.00) -0.45% (0.15)
Random Forest 0.25% (0.07) -0.21% (0.00) -0.30% (0.00) -0.20% (0.00) -0.21% (0.00) -0.42% (0.26)
MFC 0.30% (0.28) -0.17% (0.00) -0.31% (0.00) -0.22% (0.00) -0.19% (0.00) -0.42% (0.29)
Stacking 0.33% (0.55) -0.16% (0.00) -0.34% (0.00) -0.15% (0.00) -0.18% (0.00) -0.44% (0.22)

49



Table 22
Gross performance metrics for VMP using forecasted realized variance, where the leverage
has been capped by 1.5.

We report gross Sharpe ratios and the gross certainty equivalent rates for volatility-managed factors which are
constructed using different scaling factors based on forecasted realized variance, where the leverage has been
capped by 1.5. The certainty equivalent rate is calculated with an investor risk aversion of 3. All performance
metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have the same number
of observations. Performance metrics for the unmanaged factors and the managed factors based on past realized
variance are reported as reference. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with capped leverage of 1.5. Only gross sharpe ratios are reported. The highest Sharpe ratio per factor
is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Variance 0.449 (0.10) 0.224 (0.57) 0.249 (0.37) 0.384 (0.04) 0.443 (0.27) 0.270 (0.01)
GARCH 0.487 (0.50) 0.323 (0.15) 0.224 (0.23) 0.387 (0.04) 0.547 (0.31) 0.315 (0.00)
HAR-RV 0.476 (0.30) 0.229 (0.64) 0.247 (0.44) 0.362 (0.04) 0.452 (0.47) 0.279 (0.00)
ARFIMA 0.518 (0.27) 0.256 (0.75) 0.282 (0.28) 0.505 (0.46) 0.475 (0.75) 0.507 (0.25)
MIDAS 0.497 (0.55) 0.238 (0.71) 0.227 (0.32) 0.396 (0.06) 0.452 (0.53) 0.266 (0.01)
Random Forest 0.453 (0.18) 0.255 (0.99) 0.274 (0.77) 0.366 (0.04) 0.455 (0.55) 0.258 (0.01)
MFC 0.485 (0.48) 0.289 (0.50) 0.246 (0.48) 0.393 (0.02) 0.484 (0.95) 0.260 (0.00)
Stacking 0.496 (0.61) 0.264 (0.86) 0.297 (0.50) 0.441 (0.34) 0.482 (0.91) 0.235 (0.01)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models
for realized variance with capped leverage of 1.5. Investor risk aversion is set equal to 3. Only gross certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Variance 0.28% (0.10) 0.06% (0.56) 0.08% (0.37) 0.18% (0.03) 0.19% (0.30) 0.06% (0.00)
GARCH 0.33% (0.49) 0.14% (0.12) 0.06% (0.22) 0.18% (0.03) 0.25% (0.31) 0.11% (0.00)
HAR-RV 0.31% (0.30) 0.07% (0.62) 0.08% (0.43) 0.16% (0.01) 0.20% (0.49) 0.07% (0.00)
ARFIMA 0.37% (0.45) 0.09% (0.75) 0.11% (0.36) 0.26% (0.49) 0.21% (0.75) 0.35% (0.29)
MIDAS 0.34% (0.56) 0.07% (0.71) 0.06% (0.29) 0.18% (0.03) 0.20% (0.56) 0.05% (0.00)
Random Forest 0.29% (0.18) 0.09% (0.99) 0.10% (0.77) 0.16% (0.01) 0.20% (0.58) 0.04% (0.00)
MFC 0.33% (0.47) 0.12% (0.48) 0.08% (0.47) 0.18% (0.01) 0.22% (0.96) 0.04% (0.00)
Stacking 0.34% (0.60) 0.09% (0.86) 0.12% (0.49) 0.21% (0.27) 0.22% (0.92) 0.01% (0.00)
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Table 23
Net-of-cost performance metrics for VMP using forecasted realized variance, where small
cap stocks are excluded from portfolio formation.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where small cap stocks
are excluded from portfolio formation. The certainty equivalent rate is calculated with an investor risk aversion of
3. All performance metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have
the same number of observations. Performance metrics for the unmanaged factors and the managed factors based
on past realized variance are reported as reference. The p-values for the null hypothesis of equal performance
metrics between the unmanaged and managed factors are reported in parentheses. The p-values are calculated
using a window size for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with no small cap stocks. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per
factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.439 (0.61) -0.676 (0.00) -0.389 (0.05) -0.561 (0.00) -0.666 (0.00) -0.085 (0.79)
GARCH 0.471 (0.70) -0.691 (0.00) -0.393 (0.01) -0.283 (0.02) -0.797 (0.00) 0.064 (0.55)
HAR-RV 0.486 (0.78) -0.651 (0.00) -0.466 (0.00) -0.536 (0.00) -0.679 (0.00) -0.017 (0.90)
ARFIMA 0.129 (0.37) -0.299 (0.03) 0.075 (0.63) -0.161 (0.03) -0.021 (0.13) -0.227 (0.23)
MIDAS 0.412 (0.26) -0.684 (0.00) -0.523 (0.00) -0.545 (0.00) -0.590 (0.00) 0.069 (0.48)
Random Forest 0.480 (0.75) -0.656 (0.00) -0.541 (0.00) -0.548 (0.00) -0.689 (0.00) -0.005 (0.84)
MFC 0.508 (0.92) -0.700 (0.00) -0.504 (0.00) -0.504 (0.00) -0.736 (0.00) 0.017 (0.74)
Stacking 0.492 (0.75) -0.697 (0.00) -0.704 (0.03) -0.503 (0.00) -0.582 (0.00) 0.048 (0.60)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance with no small cap stocks. Investor risk aversion is set equal to 3. Only net-of-cost certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.27% (0.60) -1.13% (0.00) -0.22% (0.11) -0.21% (0.00) -0.28% (0.00) -0.14% (0.36)
GARCH 0.31% (0.69) -1.15% (0.00) -0.22% (0.08) -0.11% (0.01) -0.33% (0.00) -0.04% (0.17)
HAR-RV 0.33% (0.75) -1.10% (0.00) -0.25% (0.05) -0.20% (0.00) -0.29% (0.00) -0.09% (0.29)
ARFIMA -0.13% (0.05) -0.66% (0.13) -0.00% (0.79) -0.07% (0.06) -0.03% (0.10) -0.23% (0.51)
MIDAS 0.23% (0.26) -1.14% (0.00) -0.28% (0.01) -0.20% (0.00) -0.25% (0.00) -0.03% (0.17)
Random Forest 0.32% (0.74) -1.10% (0.00) -0.29% (0.03) -0.20% (0.00) -0.29% (0.00) -0.08% (0.24)
MFC 0.35% (0.92) -1.16% (0.00) -0.27% (0.04) -0.19% (0.00) -0.31% (0.00) -0.07% (0.22)
Stacking 0.33% (0.74) -1.16% (0.00) -0.36% (0.04) -0.19% (0.00) -0.25% (0.00) -0.05% (0.18)
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Table 24
Gross performance metrics for VMP using forecasted realized variance, where small cap
stocks are excluded from portfolio formation.

We report gross Sharpe ratios and the gross certainty equivalent rates for volatility-managed factors which are
constructed using different scaling factors based on forecasted realized variance, where small cap stocks are
excluded from portfolio formation. The certainty equivalent rate is calculated with an investor risk aversion of 3.
All performance metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have
the same number of observations. Performance metrics for the unmanaged factors and the managed factors based
on past realized variance are reported as reference. The p-values for the null hypothesis of equal performance
metrics between the unmanaged and managed factors are reported in parentheses. The p-values are calculated
using a window size for the circular block bootstrap of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with no small cap stocks. Only gross sharpe ratios are reported. The highest Sharpe ratio per factor is
highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Variance 0.543 (0.89) -0.487 (0.00) 0.173 (0.57) 0.327 (0.34) 0.135 (0.03) 0.559 (0.66)
GARCH 0.498 (0.84) -0.530 (0.00) 0.176 (0.52) 0.502 (0.93) -0.073 (0.00) 0.538 (0.77)
HAR-RV 0.546 (0.83) -0.469 (0.00) 0.062 (0.16) 0.340 (0.39) 0.126 (0.01) 0.471 (0.94)
ARFIMA 0.158 (0.38) -0.278 (0.01) 0.177 (0.62) 0.004 (0.07) 0.143 (0.09) -0.103 (0.00)
MIDAS 0.476 (0.62) -0.508 (0.00) 0.069 (0.10) 0.298 (0.28) 0.147 (0.01) 0.524 (0.83)
Random Forest 0.523 (0.99) -0.466 (0.00) 0.046 (0.16) 0.338 (0.36) 0.108 (0.01) 0.566 (0.65)
MFC 0.542 (0.85) -0.519 (0.00) 0.077 (0.20) 0.159 (0.15) 0.073 (0.00) 0.547 (0.73)
Stacking 0.502 (0.81) -0.513 (0.00) -0.026 (0.27) 0.321 (0.31) 0.120 (0.00) 0.583 (0.60)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance with no small cap stocks. Investor risk aversion is set equal to 3. Only gross certainty equivalents
are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Variance 0.40% (0.89) -0.89% (0.00) 0.04% (0.65) 0.09% (0.12) 0.03% (0.04) 0.29% (0.89)
GARCH 0.34% (0.85) -0.95% (0.00) 0.04% (0.63) 0.15% (0.32) -0.06% (0.00) 0.28% (0.84)
HAR-RV 0.40% (0.85) -0.87% (0.00) -0.01% (0.42) 0.09% (0.14) 0.02% (0.03) 0.23% (0.68)
ARFIMA -0.09% (0.06) -0.63% (0.12) 0.04% (0.72) -0.02% (0.04) 0.03% (0.07) -0.15% (0.00)
MIDAS 0.31% (0.62) -0.92% (0.00) -0.01% (0.34) 0.08% (0.10) 0.03% (0.02) 0.27% (0.79)
Random Forest 0.37% (1.00) -0.87% (0.00) -0.02% (0.39) 0.09% (0.12) 0.01% (0.02) 0.30% (0.90)
MFC 0.40% (0.85) -0.93% (0.00) -0.00% (0.42) 0.03% (0.04) 0.00% (0.01) 0.29% (0.85)
Stacking 0.35% (0.81) -0.93% (0.00) -0.05% (0.40) 0.09% (0.09) 0.02% (0.01) 0.31% (0.95)
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Table 25
Net-of-cost performance metrics for VMP using forecasted realized variance, conditional
on the sentiment index.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where voltatility timing
takes place only when the sentiment index is above its median value in an expanding window. The certainty
equivalent rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the
period from 1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance
metrics for the unmanaged factors and the managed factors based on past realized variance are reported as
reference. The p-values for the null hypothesis of equal performance metrics between the unmanaged and managed
factors are reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap
of 12 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance conditional on the sentiment index. Only net-of-cost sharpe ratios are reported. The highest Sharpe
ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.431 (0.46) -0.131 (0.06) -0.528 (0.00) -0.826 (0.00) -0.911 (0.00) 0.136 (0.38)
GARCH 0.516 (0.98) -0.303 (0.00) -0.472 (0.00) -0.573 (0.00) -0.667 (0.00) 0.133 (0.28)
HAR-RV 0.460 (0.50) -0.083 (0.01) -0.416 (0.00) -0.666 (0.00) -0.678 (0.00) 0.052 (0.56)
ARFIMA 0.122 (0.37) -0.300 (0.36) 0.040 (0.51) -0.060 (0.03) -0.143 (0.12) -0.272 (0.05)
MIDAS 0.465 (0.49) -0.027 (0.06) -0.353 (0.00) -0.754 (0.00) -0.475 (0.00) 0.130 (0.27)
Random Forest 0.527 (0.93) -0.113 (0.01) -0.494 (0.00) -0.761 (0.00) -0.697 (0.00) 0.151 (0.26)
MFC 0.526 (0.93) -0.172 (0.00) -0.424 (0.00) -0.738 (0.00) -0.685 (0.00) 0.119 (0.29)
Stacking 0.495 (0.69) -0.319 (0.00) -0.576 (0.29) -0.637 (0.00) -0.420 (0.00) 0.037 (0.72)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance conditional on the sentiment index. Investor risk aversion is set equal to 3. Only net-of-cost
certainty equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.26% (0.46) -0.24% (0.01) -0.61% (0.00) -0.64% (0.00) -0.58% (0.00) -0.11% (0.34)
GARCH 0.37% (0.98) -0.38% (0.00) -0.56% (0.00) -0.47% (0.00) -0.44% (0.00) -0.12% (0.26)
HAR-RV 0.29% (0.47) -0.20% (0.00) -0.51% (0.00) -0.53% (0.00) -0.45% (0.00) -0.22% (0.58)
ARFIMA -0.14% (0.04) -0.38% (0.31) -0.11% (0.44) -0.12% (0.01) -0.14% (0.03) -0.62% (0.28)
MIDAS 0.30% (0.48) -0.15% (0.01) -0.45% (0.00) -0.59% (0.00) -0.33% (0.00) -0.12% (0.34)
Random Forest 0.38% (0.93) -0.22% (0.00) -0.58% (0.00) -0.59% (0.00) -0.46% (0.00) -0.09% (0.27)
MFC 0.38% (0.92) -0.27% (0.00) -0.52% (0.00) -0.58% (0.00) -0.45% (0.00) -0.13% (0.31)
Stacking 0.34% (0.70) -0.40% (0.00) -0.65% (0.00) -0.51% (0.00) -0.30% (0.00) -0.24% (0.70)
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Table 26
Gross performance metrics for VMP using forecasted realized variance, conditional on the
sentiment index.

We report gross Sharpe ratios and the gross certainty equivalent rates for volatility-managed factors which are
constructed using different scaling factors based on forecasted realized variance, where voltatility timing takes
place only when the sentiment index is above its median value in an expanding window. The certainty equivalent
rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period from
1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics for
the unmanaged factors and the managed factors based on past realized variance are reported as reference. The
p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors are
reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of 12
months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance conditional on the sentiment index. Only gross sharpe ratios are reported. The highest Sharpe ratio per
factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.521 ( ) 0.254 ( ) 0.294 ( ) 0.520 ( ) 0.488 ( ) 0.484 ( )
Realized Variance 0.502 (0.87) 0.316 (0.58) 0.147 (0.47) 0.725 (0.25) 0.257 (0.08) 0.991 (0.00)
GARCH 0.535 (0.89) 0.057 (0.02) 0.205 (0.63) 0.649 (0.36) 0.197 (0.03) 0.776 (0.06)
HAR-RV 0.496 (0.77) 0.273 (0.81) 0.183 (0.52) 0.717 (0.22) 0.290 (0.14) 0.789 (0.10)
ARFIMA 0.162 (0.33) -0.130 (0.28) 0.195 (0.69) 0.148 (0.10) 0.109 (0.11) -0.146 (0.00)
MIDAS 0.515 (0.93) 0.329 (0.37) 0.247 (0.73) 0.622 (0.46) 0.478 (0.94) 0.847 (0.05)
Random Forest 0.555 (0.71) 0.269 (0.87) 0.172 (0.40) 0.688 (0.22) 0.331 (0.19) 0.960 (0.01)
MFC 0.550 (0.71) 0.206 (0.47) 0.193 (0.54) 0.670 (0.27) 0.342 (0.24) 0.862 (0.03)
Stacking 0.503 (0.76) 0.011 (0.03) 0.225 (0.74) 0.507 (0.92) 0.416 (0.55) 0.754 (0.17)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance conditional on the sentiment index. Investor risk aversion is set equal to 3. Only gross certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.09% ( ) 0.12% ( ) 0.27% ( ) 0.22% ( ) 0.32% ( )
Realized Variance 0.35% (0.87) 0.14% (0.57) -0.01% (0.50) 0.41% (0.27) 0.09% (0.12) 0.96% (0.01)
GARCH 0.39% (0.87) -0.08% (0.03) 0.04% (0.63) 0.35% (0.41) 0.05% (0.05) 0.69% (0.05)
HAR-RV 0.34% (0.76) 0.10% (0.80) 0.02% (0.52) 0.40% (0.32) 0.11% (0.19) 0.71% (0.06)
ARFIMA -0.09% (0.07) -0.24% (0.40) 0.03% (0.66) 0.02% (0.06) 0.00% (0.09) -0.47% (0.00)
MIDAS 0.37% (0.93) 0.15% (0.38) 0.08% (0.71) 0.34% (0.48) 0.21% (0.95) 0.78% (0.04)
Random Forest 0.42% (0.72) 0.10% (0.86) 0.01% (0.39) 0.38% (0.31) 0.13% (0.27) 0.92% (0.01)
MFC 0.41% (0.71) 0.05% (0.47) 0.03% (0.53) 0.37% (0.28) 0.14% (0.30) 0.80% (0.02)
Stacking 0.35% (0.76) -0.12% (0.02) 0.06% (0.74) 0.26% (0.93) 0.18% (0.60) 0.66% (0.16)
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B Inference robustness check

Here we present the same results as in Section 7 and Appendix A. The only difference being a

window size of 6 months used for inference on the Sharpe ratio and CER differences as opposed

to 12 months. To limit the number of tables, we only present the robustness results of the

net-of-costs analyses.

Table 27
Net-of-cost performance metrics for managed factors which are constructed using different
scaling factors based on historic volatlity measures.

The scaling factors are: the lagged monthly realized variance, the lagged monthly realized volatility, the lagged 6-
month realized volatility, the capped leverage of the lagged monthly realized variance, the lagged monthly realized
variance without small-cap stocks, and the conditional sentiment scaling factor. We also report performance metric
for the unmanaged factors as reference. The performance metrics are the net-of-cost Sharpe ratio and the net-of-
cost certainty equivalent rate. The certainty equivalent rate is calculated with an investor risk aversion of 3. The
performance metrics are calculated for the period 1976-01 to 2022-06 to cover the same sample period as that of
the forecasted volatility models. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 6 months. P-values that are less than 0.05 are underlined.

Panel A: Net-of-cost Sharpe ratios for managed factors which are constructed using different scaling factors
based on historic volatlity measures. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.424 (0.52) -0.369 (0.00) -0.615 (0.00) -0.962 (0.00) -1.107 (0.00) -0.001 (0.87)
Realized Volatility 0.512 (0.94) -0.259 (0.00) -0.483 (0.00) -0.798 (0.00) -0.825 (0.00) 0.060 (0.45)
6m Realized Volatility 0.513 (0.94) -0.134 (0.00) -0.379 (0.00) -0.685 (0.00) -0.589 (0.00) 0.157 (0.16)
Capped Leverage 0.480 (0.70) -0.204 (0.00) -0.522 (0.00) -0.786 (0.00) -0.930 (0.00) -0.053 (0.94)
No small-cap 0.439 (0.61) -0.676 (0.00) -0.389 (0.02) -0.561 (0.00) -0.666 (0.00) -0.085 (0.79)
Conditional Sentiment 0.515 (0.95) -0.220 (0.00) -0.458 (0.00) -0.736 (0.00) -0.703 (0.00) 0.040 (0.55)

Panel B: Net-of-cost certainty equivalent rates for managed factors which are constructed using different scaling
factors based on historic volatlity measures. Investor risk aversion is set equal to 3. The highest CER per factor
is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.25% (0.51) -0.44% (0.00) -0.69% (0.00) -0.73% (0.00) -0.69% (0.00) -0.28% (0.84)
Realized Volatility 0.36% (0.94) -0.35% (0.00) -0.57% (0.00) -0.62% (0.00) -0.53% (0.00) -0.21% (0.51)
6m Realized Volatility 0.36% (0.95) -0.24% (0.00) -0.48% (0.00) -0.54% (0.00) -0.40% (0.00) -0.09% (0.20)
Capped Leverage 0.32% (0.70) -0.30% (0.00) -0.60% (0.00) -0.61% (0.00) -0.59% (0.00) -0.35% (0.92)
No small-cap 0.27% (0.60) -1.13% (0.00) -0.22% (0.10) -0.21% (0.00) -0.28% (0.00) -0.14% (0.36)
Conditional Sentiment 0.37% (0.95) -0.31% (0.00) -0.55% (0.00) -0.57% (0.00) -0.46% (0.00) -0.23% (0.52)
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Table 28
Net-of-cost performance metrics for VMP using forecasted realized variance.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance. The certainty equivalent
rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period from
1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics for
the unmanaged factors and the managed factors based on past realized variance are reported as reference. The
p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors are
reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of 6
months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.424 (0.51) -0.369 (0.00) -0.615 (0.00) -0.962 (0.00) -1.107 (0.00) -0.001 (0.88)
GARCH 0.451 (0.59) -0.244 (0.00) -0.519 (0.00) -0.693 (0.00) -0.826 (0.00) 0.155 (0.25)
HAR-RV 0.473 (0.68) -0.128 (0.02) -0.460 (0.00) -0.762 (0.00) -0.749 (0.00) 0.110 (0.37)
ARFIMA 0.121 (0.38) -0.246 (0.07) 0.043 (0.50) -0.091 (0.04) -0.190 (0.11) -0.210 (0.23)
MIDAS 0.401 (0.23) -0.156 (0.00) -0.407 (0.00) -0.780 (0.00) -0.635 (0.00) 0.164 (0.20)
Random Forest 0.467 (0.62) -0.213 (0.02) -0.542 (0.00) -0.838 (0.00) -0.812 (0.00) 0.107 (0.45)
MFC 0.495 (0.82) -0.207 (0.00) -0.470 (0.00) -0.755 (0.00) -0.809 (0.00) 0.151 (0.22)
Stacking 0.483 (0.66) -0.097 (0.00) -0.323 (0.15) -0.700 (0.00) -0.562 (0.00) 0.177 (0.21)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance. Investor risk aversion is set equal to 3. Only net-of-cost certainty equivalents are reported. The
highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.25% (0.51) -0.44% (0.00) -0.69% (0.00) -0.73% (0.00) -0.69% (0.00) -0.28% (0.85)
GARCH 0.28% (0.58) -0.33% (0.00) -0.60% (0.00) -0.55% (0.00) -0.53% (0.00) -0.09% (0.26)
HAR-RV 0.31% (0.67) -0.24% (0.00) -0.55% (0.00) -0.59% (0.00) -0.49% (0.00) -0.14% (0.39)
ARFIMA -0.14% (0.03) -0.33% (0.18) -0.10% (0.42) -0.14% (0.01) -0.17% (0.01) -0.55% (0.25)
MIDAS 0.22% (0.23) -0.26% (0.00) -0.50% (0.00) -0.60% (0.00) -0.42% (0.00) -0.08% (0.23)
Random Forest 0.30% (0.63) -0.31% (0.00) -0.62% (0.00) -0.64% (0.00) -0.52% (0.00) -0.15% (0.43)
MFC 0.34% (0.82) -0.30% (0.00) -0.56% (0.00) -0.59% (0.00) -0.52% (0.00) -0.09% (0.27)
Stacking 0.32% (0.64) -0.21% (0.00) -0.43% (0.26) -0.55% (0.00) -0.38% (0.00) -0.06% (0.23)
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Table 29
Net-of-cost performance metrics for VMP using forecasted realized volatility.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized volatility. The certainty equival-
ent rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the period
from 1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance metrics
for the unmanaged factors and the managed factors based on past realized variance are reported as reference.
The p-values for the null hypothesis of equal performance metrics between the unmanaged and managed factors
are reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap of
6 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
volatility. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Volatility 0.512 (0.94) -0.259 (0.00) -0.483 (0.00) -0.798 (0.00) -0.825 (0.00) 0.060 (0.45)
GARCH 0.505 (0.83) -0.174 (0.00) -0.417 (0.00) -0.609 (0.00) -0.665 (0.00) 0.081 (0.21)
HAR-RV 0.521 (0.97) -0.115 (0.00) -0.377 (0.00) -0.676 (0.00) -0.627 (0.00) 0.088 (0.29)
ARFIMA 0.427 (0.33) -0.308 (0.01) -0.215 (0.20) -0.254 (0.01) -0.371 (0.11) -0.156 (0.34)
MIDAS 0.471 (0.46) -0.123 (0.00) -0.343 (0.00) -0.659 (0.00) -0.553 (0.00) 0.102 (0.15)
Random Forest 0.507 (0.85) -0.165 (0.00) -0.417 (0.00) -0.673 (0.00) -0.635 (0.00) 0.082 (0.27)
MFC 0.528 (0.89) -0.143 (0.00) -0.379 (0.00) -0.698 (0.00) -0.622 (0.00) 0.105 (0.18)
Stacking 0.507 (0.80) -0.088 (0.00) -0.479 (0.00) -0.562 (0.00) -0.502 (0.00) 0.124 (0.18)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized volatility. Investor risk aversion is set equal to 3. Only net-of-cost certainty equivalents are reported.
The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Volatility 0.36% (0.93) -0.35% (0.00) -0.57% (0.00) -0.62% (0.00) -0.53% (0.00) -0.21% (0.48)
GARCH 0.35% (0.82) -0.27% (0.00) -0.51% (0.00) -0.49% (0.00) -0.44% (0.00) -0.18% (0.29)
HAR-RV 0.37% (0.97) -0.22% (0.00) -0.48% (0.00) -0.53% (0.00) -0.42% (0.00) -0.17% (0.38)
ARFIMA 0.25% (0.29) -0.39% (0.04) -0.33% (0.00) -0.25% (0.00) -0.27% (0.00) -0.48% (0.35)
MIDAS 0.31% (0.44) -0.23% (0.00) -0.45% (0.00) -0.52% (0.00) -0.38% (0.00) -0.15% (0.27)
Random Forest 0.36% (0.85) -0.27% (0.00) -0.51% (0.00) -0.53% (0.00) -0.42% (0.00) -0.18% (0.37)
MFC 0.38% (0.89) -0.25% (0.00) -0.48% (0.00) -0.55% (0.00) -0.42% (0.00) -0.15% (0.30)
Stacking 0.35% (0.80) -0.20% (0.00) -0.57% (0.00) -0.46% (0.00) -0.35% (0.00) -0.13% (0.27)
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Table 30
Net-of-cost performance metrics for VMP using forecasted realized variance, where the
leverage has been capped by 1.5.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where the leverage has
been capped by 1.5. The certainty equivalent rate is calculated with an investor risk aversion of 3. All performance
metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have the same number
of observations. Performance metrics for the unmanaged factors and the managed factors based on past realized
variance are reported as reference. The p-values for the null hypothesis of equal performance metrics between the
unmanaged and managed factors are reported in parentheses. The p-values are calculated using a window size
for the circular block bootstrap of 6 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with capped leverage of 1.5. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per
factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.405 (0.01) -0.188 (0.00) -0.252 (0.00) -0.271 (0.01) -0.374 (0.00) -0.132 (0.13)
GARCH 0.474 (0.33) -0.022 (0.00) -0.262 (0.00) -0.248 (0.01) -0.230 (0.00) -0.108 (0.22)
HAR-RV 0.441 (0.09) -0.103 (0.00) -0.196 (0.00) -0.190 (0.01) -0.259 (0.00) -0.102 (0.36)
ARFIMA 0.514 (0.38) -0.079 (0.00) -0.241 (0.00) -0.364 (0.00) -0.412 (0.00) -0.021 (0.33)
MIDAS 0.464 (0.20) -0.108 (0.00) -0.219 (0.00) -0.134 (0.01) -0.262 (0.00) -0.136 (0.21)
Random Forest 0.427 (0.06) -0.104 (0.00) -0.176 (0.00) -0.177 (0.01) -0.259 (0.00) -0.107 (0.32)
MFC 0.463 (0.27) -0.050 (0.00) -0.196 (0.00) -0.209 (0.00) -0.224 (0.00) -0.107 (0.35)
Stacking 0.489 (0.55) -0.038 (0.00) -0.225 (0.00) -0.107 (0.02) -0.204 (0.00) -0.128 (0.31)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance with capped leverage of 1.5. Investor risk aversion is set equal to 3. Only net-of-cost certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.22% (0.01) -0.29% (0.00) -0.36% (0.00) -0.26% (0.00) -0.27% (0.00) -0.45% (0.05)
GARCH 0.31% (0.32) -0.15% (0.00) -0.37% (0.00) -0.25% (0.00) -0.19% (0.00) -0.42% (0.16)
HAR-RV 0.27% (0.09) -0.21% (0.00) -0.32% (0.00) -0.21% (0.00) -0.21% (0.00) -0.41% (0.23)
ARFIMA 0.36% (0.39) -0.19% (0.00) -0.36% (0.00) -0.32% (0.00) -0.30% (0.00) -0.31% (0.42)
MIDAS 0.30% (0.20) -0.22% (0.00) -0.34% (0.00) -0.17% (0.00) -0.21% (0.00) -0.45% (0.14)
Random Forest 0.25% (0.06) -0.21% (0.00) -0.30% (0.00) -0.20% (0.00) -0.21% (0.00) -0.42% (0.24)
MFC 0.30% (0.27) -0.17% (0.00) -0.31% (0.00) -0.22% (0.00) -0.19% (0.00) -0.42% (0.28)
Stacking 0.33% (0.55) -0.16% (0.00) -0.34% (0.00) -0.15% (0.00) -0.18% (0.00) -0.44% (0.20)
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Table 31
Net-of-cost performance metrics for VMP using forecasted realized variance, where small
cap stocks are excluded from portfolio formation.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where small cap stocks
are excluded from portfolio formation. The certainty equivalent rate is calculated with an investor risk aversion of
3. All performance metrics are calculated over the period from 1976-01 to 2022-06 so that all scaling methods have
the same number of observations. Performance metrics for the unmanaged factors and the managed factors based
on past realized variance are reported as reference. The p-values for the null hypothesis of equal performance
metrics between the unmanaged and managed factors are reported in parentheses. The p-values are calculated
using a window size for the circular block bootstrap of 6 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance with no small cap stocks. Only net-of-cost sharpe ratios are reported. The highest Sharpe ratio per
factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.439 (0.61) -0.676 (0.00) -0.389 (0.02) -0.561 (0.00) -0.666 (0.00) -0.085 (0.78)
GARCH 0.471 (0.69) -0.691 (0.00) -0.393 (0.00) -0.283 (0.02) -0.797 (0.00) 0.064 (0.56)
HAR-RV 0.486 (0.78) -0.651 (0.00) -0.466 (0.00) -0.536 (0.00) -0.679 (0.00) -0.017 (0.89)
ARFIMA 0.129 (0.37) -0.299 (0.02) 0.075 (0.63) -0.161 (0.02) -0.021 (0.13) -0.227 (0.21)
MIDAS 0.412 (0.28) -0.684 (0.00) -0.523 (0.00) -0.545 (0.00) -0.590 (0.00) 0.069 (0.48)
Random Forest 0.480 (0.73) -0.656 (0.00) -0.541 (0.00) -0.548 (0.00) -0.689 (0.00) -0.005 (0.85)
MFC 0.508 (0.92) -0.700 (0.00) -0.504 (0.00) -0.504 (0.00) -0.736 (0.00) 0.017 (0.73)
Stacking 0.492 (0.75) -0.697 (0.00) -0.704 (0.01) -0.503 (0.00) -0.582 (0.00) 0.048 (0.59)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance with no small cap stocks. Investor risk aversion is set equal to 3. Only net-of-cost certainty
equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.27% (0.59) -1.13% (0.00) -0.22% (0.09) -0.21% (0.00) -0.28% (0.00) -0.14% (0.35)
GARCH 0.31% (0.69) -1.15% (0.00) -0.22% (0.07) -0.11% (0.01) -0.33% (0.00) -0.04% (0.17)
HAR-RV 0.33% (0.76) -1.10% (0.00) -0.25% (0.04) -0.20% (0.00) -0.29% (0.00) -0.09% (0.27)
ARFIMA -0.13% (0.04) -0.66% (0.12) -0.00% (0.77) -0.07% (0.04) -0.03% (0.09) -0.23% (0.50)
MIDAS 0.23% (0.28) -1.14% (0.00) -0.28% (0.01) -0.20% (0.00) -0.25% (0.00) -0.03% (0.15)
Random Forest 0.32% (0.72) -1.10% (0.00) -0.29% (0.02) -0.20% (0.00) -0.29% (0.00) -0.08% (0.24)
MFC 0.35% (0.91) -1.16% (0.00) -0.27% (0.02) -0.19% (0.00) -0.31% (0.00) -0.07% (0.21)
Stacking 0.33% (0.73) -1.16% (0.00) -0.36% (0.03) -0.19% (0.00) -0.25% (0.00) -0.05% (0.18)
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Table 32
Net-of-cost performance metrics for VMP using forecasted realized variance, conditional
on the sentiment index.

We report net-of-cost Sharpe ratios and the net-of-cost certainty equivalent rates for volatility-managed factors
which are constructed using different scaling factors based on forecasted realized variance, where voltatility timing
takes place only when the sentiment index is above its median value in an expanding window. The certainty
equivalent rate is calculated with an investor risk aversion of 3. All performance metrics are calculated over the
period from 1976-01 to 2022-06 so that all scaling methods have the same number of observations. Performance
metrics for the unmanaged factors and the managed factors based on past realized variance are reported as
reference. The p-values for the null hypothesis of equal performance metrics between the unmanaged and managed
factors are reported in parentheses. The p-values are calculated using a window size for the circular block bootstrap
of 6 months. P-values that are less than 0.05 are underlined.

Panel A: Sharpe ratios for managed factors which are constructed using different forecasting models for realized
variance conditional on the sentiment index. Only net-of-cost sharpe ratios are reported. The highest Sharpe
ratio per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.519 ( ) 0.202 ( ) 0.220 ( ) 0.420 ( ) 0.337 ( ) -0.039 ( )
Realized Variance 0.431 (0.47) -0.131 (0.03) -0.528 (0.00) -0.826 (0.00) -0.911 (0.00) 0.136 (0.34)
GARCH 0.516 (0.98) -0.303 (0.00) -0.472 (0.00) -0.573 (0.00) -0.667 (0.00) 0.133 (0.26)
HAR-RV 0.460 (0.51) -0.083 (0.00) -0.416 (0.00) -0.666 (0.00) -0.678 (0.00) 0.052 (0.56)
ARFIMA 0.122 (0.38) -0.300 (0.35) 0.040 (0.51) -0.060 (0.05) -0.143 (0.12) -0.272 (0.06)
MIDAS 0.465 (0.50) -0.027 (0.03) -0.353 (0.00) -0.754 (0.00) -0.475 (0.00) 0.130 (0.26)
Random Forest 0.527 (0.92) -0.113 (0.01) -0.494 (0.00) -0.761 (0.00) -0.697 (0.00) 0.151 (0.24)
MFC 0.526 (0.93) -0.172 (0.00) -0.424 (0.00) -0.738 (0.00) -0.685 (0.00) 0.119 (0.27)
Stacking 0.495 (0.70) -0.319 (0.00) -0.576 (0.31) -0.637 (0.00) -0.420 (0.00) 0.037 (0.70)

Panel B: Certainty equivalents for managed factors which are constructed using different forecasting models for
realized variance conditional on the sentiment index. Investor risk aversion is set equal to 3. Only net-of-cost
certainty equivalents are reported. The highest CER per factor is highlighted in bold.

MKT SMB HML RMW CMA MOM

Unmanaged 0.37% ( ) 0.04% ( ) 0.05% ( ) 0.20% ( ) 0.13% ( ) -0.33% ( )
Realized Variance 0.26% (0.46) -0.24% (0.00) -0.61% (0.00) -0.64% (0.00) -0.58% (0.00) -0.11% (0.33)
GARCH 0.37% (0.98) -0.38% (0.00) -0.56% (0.00) -0.47% (0.00) -0.44% (0.00) -0.12% (0.25)
HAR-RV 0.29% (0.52) -0.20% (0.00) -0.51% (0.00) -0.53% (0.00) -0.45% (0.00) -0.22% (0.58)
ARFIMA -0.14% (0.04) -0.38% (0.30) -0.11% (0.39) -0.12% (0.01) -0.14% (0.02) -0.62% (0.28)
MIDAS 0.30% (0.50) -0.15% (0.01) -0.45% (0.00) -0.59% (0.00) -0.33% (0.00) -0.12% (0.33)
Random Forest 0.38% (0.92) -0.22% (0.00) -0.58% (0.00) -0.59% (0.00) -0.46% (0.00) -0.09% (0.24)
MFC 0.38% (0.93) -0.27% (0.00) -0.52% (0.00) -0.58% (0.00) -0.45% (0.00) -0.13% (0.30)
Stacking 0.34% (0.70) -0.40% (0.00) -0.65% (0.00) -0.51% (0.00) -0.30% (0.00) -0.24% (0.70)
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C Forecast accuracy

To quantify the forecast performance, we look at a commonly used error metric: Mean Squared

Forecast Error (MSFE). The MSFE is defined as:

MSFE =
1

n

n∑
i=1

(ŷi − yi)
2, (57)

where ŷi is the predicted value, yi is the actual value, and n is the number of samples.

Table 33
Forecast accuracy metrics for the GARCH models.

Both a daily and monthly GARCH model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Mean squared forecast errors are
calculated for each factor time series and each model. For each row, the lowest MSFE is highlighted.

Daily Monthly

MKT 4.9E-06 2.2E-05
SMB 1.1E-07 2.7E-06
HML 2.8E-07 1.8E-06
RMW 3.8E-08 2.6E-06
CMA 3.6E-08 1.8E-07
MOM 9.4E-07 1.5E-05

Table 34
Forecast accuracy metrics for the HAR-RV models.

Both a daily and monthly HAR-RV model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Mean squared forecast errors are
calculated for each factor time series and each model. For each row, the lowest MSFE is highlighted.

Daily Monthly

MKT 4.4E-03 5.0E-03
SMB 1.1E-03 1.1E-03
HML 1.2E-03 1.2E-03
RMW 5.2E-04 6.0E-04
CMA 3.9E-04 3.8E-04
MOM 2.7E-03 2.7E-03
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Table 35
Forecast accuracy metrics for the ARFIMA models.

Both a daily and monthly ARFIMA model are estimated using a rolling window with window length of 5 years.
The daily forecasts are rescaled to a monthly frequency by multiplying by 22. Mean squared forecast errors are
calculated for each factor time series and each model. For each row, the lowest MSFE is highlighted.

Panel A: Daily ARFIMA(1,d,1) model MSFE for different d values.

d = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

MKT 1.8E-05 1.8E-05 1.8E-05 1.8E-05 1.9E-05 2.0E-05 2.3E-05 2.4E-05 2.4E-05
SMB 1.3E-06 1.3E-06 1.3E-06 1.4E-06 1.5E-06 1.5E-06 1.5E-06 1.6E-06 1.6E-06
HML 1.2E-06 1.2E-06 1.4E-06 1.5E-06 1.5E-06 1.6E-06 2.0E-06 2.0E-06 2.1E-06
RMW 2.3E-07 2.4E-07 2.5E-07 2.7E-07 2.8E-07 3.0E-07 3.2E-07 3.5E-07 3.4E-07
CMA 1.3E-07 1.5E-07 1.5E-07 1.6E-07 1.8E-07 2.0E-07 2.2E-07 2.4E-07 2.5E-07
MOM 6.8E-06 7.4E-06 7.8E-06 8.6E-06 9.3E-06 1.0E-05 1.1E-05 1.2E-05 1.3E-05

Panel B: Monthly ARFIMA(1,d,1) model MSFE for different d values.

d = 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

MKT 3.2E-05 2.5E-05 2.6E-05 2.7E-05 2.9E-05 3.0E-05 3.1E-05 3.1E-05 3.2E-05
SMB 2.0E-06 1.9E-06 1.9E-06 1.9E-06 1.9E-06 1.9E-06 1.9E-06 1.9E-06 1.8E-06
HML 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06
RMW 3.9E-07 3.9E-07 3.9E-07 3.9E-07 3.8E-07 3.7E-07 3.7E-07 3.7E-07 3.8E-07
CMA 1.4E-07 1.4E-07 1.5E-07 1.5E-07 1.5E-07 1.6E-07 1.6E-07 1.6E-07 1.7E-07
MOM 9.1E-06 7.9E-06 7.8E-06 7.3E-06 7.1E-06 7.2E-06 7.9E-06 8.0E-06 8.1E-06

Table 36
Forecast accuracy metrics for the MIDAS models.

Both an exponential and beta MIDAS model are estimated using a rolling window with window length of 5 years.
Mean squared forecast errors are calculated for each factor time series and each model. For each row, the lowest
MSFE is highlighted..

Panel A: Beta MIDAS model MSFE for different jmax values.

jmax = 20 25 30 35 40 45 50 55 60

MKT 3.1E-05 3.1E-05 3.1E-05 3.2E-05 3.1E-05 3.1E-05 3.2E-05 3.1E-05 3.1E-05
SMB 1.5E-06 1.6E-06 1.5E-06 1.6E-06 1.5E-06 1.5E-06 1.3E-06 1.5E-06 1.3E-06
HML 1.3E-06 1.4E-06 1.3E-06 1.3E-06 1.3E-06 1.4E-06 1.3E-06 1.3E-06 1.3E-06
RMW 3.3E-07 3.2E-07 3.2E-07 3.3E-07 3.2E-07 3.2E-07 3.2E-07 3.2E-07 3.2E-07
CMA 1.5E-07 1.4E-07 1.2E-07 1.2E-07 1.2E-07 1.2E-07 1.3E-07 1.3E-07 1.3E-07
MOM 8.3E-06 8.1E-06 8.4E-06 8.3E-06 8.1E-06 8.4E-06 8.5E-06 8.5E-06 8.6E-06

Panel B: Exponential MIDAS model MSFE for different jmax values.

jmax = 20 25 30 35 40 45 50 55 60

MKT 2.8E-05 3.1E-05 3.1E-05 3.1E-05 3.1E-05 3.1E-05 3.1E-05 3.0E-05 3.1E-05
SMB 1.4E-06 1.3E-06 1.3E-06 1.3E-06 1.3E-06 1.4E-06 1.4E-06 1.3E-06 1.3E-06
HML 1.4E-06 1.3E-06 1.4E-06 1.4E-06 1.4E-06 1.3E-06 1.3E-06 1.4E-06 1.5E-06
RMW 3.4E-07 3.6E-07 3.5E-07 3.5E-07 3.5E-07 3.5E-07 3.5E-07 3.5E-07 3.5E-07
CMA 1.6E-07 1.5E-07 1.4E-07 1.5E-07 1.6E-07 1.5E-07 1.5E-07 1.8E-07 1.4E-07
MOM 8.3E-06 8.7E-06 8.2E-06 8.3E-06 8.2E-06 8.2E-06 8.2E-06 8.4E-06 8.4E-06
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Table 37
Forecast accuracy metrics for the Stacking models.

All models are estimated using a rolling window with window length of 5 years. Mean squared forecast errors are
calculated for each factor time series and each model. For each row, the lowest MSFE is highlighted.

Ols Ridge Lasso Elastic net

MKT 3.0E-05 1.0E-04 2.7E-05 2.7E-05
SMB 1.4E-06 2.1E-06 1.4E-06 1.4E-06
HML 2.3E-06 2.7E-06 2.6E-06 2.4E-06
RMW 6.4E-07 5.0E-07 5.1E-07 5.0E-07
CMA 1.7E-07 1.7E-07 2.5E-07 2.5E-07
MOM 1.0E-05 1.1E-05 1.3E-05 1.3E-05

Table 38
Forecast accuracy metrics for the different optimal models.

The lowest MSFE per row is highlighted.

MKT SMB HML RMW CMA MOM

Realized Variance 2.8E-05 1.7E-06 1.2E-06 2.8E-07 1.6E-07 7.3E-06
GARCH 2.5E-05 2.6E-06 1.2E-06 2.2E-06 1.9E-07 1.8E-05
HAR-RV 1.9E-05 1.3E-06 1.3E-06 3.7E-07 1.4E-07 7.2E-06
ARFIMA 1.8E-05 1.3E-06 1.3E-06 3.1E-07 2.4E-07 1.2E-05
MIDAS 3.1E-05 1.3E-06 1.5E-06 3.2E-07 1.5E-07 8.2E-06
Random Forest 2.5E-05 1.2E-06 1.4E-06 2.9E-07 1.4E-07 6.3E-06
MFC 1.9E-05 1.2E-06 1.1E-06 2.3E-07 1.4E-07 6.6E-06
Stacking 2.7E-05 1.4E-06 2.7E-06 5.1E-07 2.5E-07 1.0E-05
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D Hasbrouck spread estimator

Roll (1984) models stock prices as:

pt = mt + cqt, with (58)

mt = mt−1 + ut, (59)

where mt is the ”true” price of the asset, pt is the observed trade price, qt takes value 1 if an

ask order is filled and −1 if a bid order is filled, ut is a random innovation modelling public

information, and c is the effective cost of trading. Equations 59 and 58 imply that:

∆pt = c∆qt + ut.

Taking the autocovariance of price changes:

Cov(∆pt,∆pt+1) = Cov(ut + c∆qt, ut+1 + c∆qt+1).

Assuming that ut and ∆qt are uncorrelated and that ut is serially uncorrelated, we have:

Cov(∆pt,∆pt+1) = c2Cov(∆qt,∆qt+1).

Roll (1984) assumes an informationally efficient market, therefore both bid and ask move to

different levels when information arrives. Leading to the bid-ask average fluctuating but the

spread remaining constant. Given that both bid and ask orders are filled with equal probability,

the covariance of ∆qt and ∆qt+1 is −1. Therefore, the covariance of price changes is −c2.

Since qt can only take values 1 and -1, we have that:

P(∆qt = 2,∆qt+1 = 2) = P(∆qt = −2,∆qt+1 = −2) = 0, and (60)

P(∆qt = 2,∆qt+1 = −2) = P(∆qt = −2,∆qt+1 = 2) = 1/8, thus (61)

E[∆qt] = 0 (62)

Where we omit the probabilities of ∆qt = 0 and ∆qt+1 = 0 as they do not contribute to the

covariance. We can calculate the covariance as follows:

Cov(∆qt,∆qt+1) = E[∆qt∆qt+1]− E[∆qt]E[∆qt+1]

=
1

8
· −4 +

1

8
· −4− 0 = −1.

Therefore:

Cov(∆pt,∆pt+1) = −c2.

Solving for c, we get:

c =
√
−Cov(∆pt,∆pt+1).
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This expression allows us to estimate the effective cost of trading (c) using the covariance of

consecutive price changes.

Earlier empirical studies use the sample autocovariances of daily price changes to estimate

transaction costs, but, as noted by Hasbrouck (2009) and Harris (1990), such an estimation

is infeasible due to the relatively high proportion of positive autocovariances between daily

changes in stock prices in the data. Hasbrouck (2009) instead advocates a Bayesian approach

to estimating the cost measure. He generalizes the previous equation to include a market return

factor:

∆pt = c∆qt + βmrm + ut,

and assumes ut ∼ N (0, σ2). Then, given the history of price data and additional assumptions

about initial values and prior distributions for the unknowns {c, σ2, q1, ..., qT }, he sequentially

draws the parameter estimates using a Gibbs sampler to characterize the posterior densities.

The average of the draws for c is then used as the estimate of the effective cost of trading.
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E Factor construction

We briefly describe the construction of the factors used in the volatility-managed portfolios. In

our analysis we considered the five Fama-French factors (Fama & French, 2015): excess market

return (MKT), size (SMB), value (HML), profitability (RMW) and investment (CMA), the

momentum factor (MOM) of Jegadeesh and Titman (1993).

E.1 Market factor (MKT)

The market factor is defined as the return on a region’s value-weight market portfolio minus the

U.S. one month T-bill rate.

Included stocks are: All CRSP firms incorporated in the US and listed on the NYSE, AMEX,

or NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t, good shares

and price data at the beginning of t, and good return data for t.

E.2 Size (SMB) and value (HML) factors

For the construction of the SMB and HML factors, six portfolios are formed based on Mar-

ket Equity (ME) and Book-to-Market Equity (B/M) at the end of June each year. The ME

breakpoint is the median NYSE market equity, and the B/M breakpoints are the 30th and 70th

percentiles of B/M. Six portfolios are formed based on the intersection of the two ME and three

B/M groups:

Median ME

70th BE/ME percentile
Small Value Big Value

30th BE/ME percentile
Small Neutral Big Neutral
Small Growth Big Growth

SMB is constructed by the equal-weight average of the returns on the three small stock

portfolios minus the average of the returns on the three big stock portfolios:

SMB =
1

3
(Small Value + Small Neutral + Small Growth)

−1

3
(Big Value + Big Neutral + Big Growth).

(63)

HML is constructed by the equal-weight average of the returns for the two high B/M portfolios

minus the average of the returns for the two low B/M portfolios,

HML =
1

2
(Small Value + Big Value)

−1

2
(Small Growth + Big Growth).

(64)

E.3 Profitability (RMW) factor

For the construction of the RMW factor, six portfolios are formed based on Market Equity

(ME) and Operating Profitability (OP) at the end of June each year. The ME breakpoint is the

median NYSE market equity, and the OP breakpoints are the 30th and 70th percentiles of OP.
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Six portfolios are formed based on the intersection of the two ME and three OP groups: RMW

Median ME

70th OP percentile
Small Robust Big Robust

30th OP percentile
Small Neutral Big Neutral
Small Weak Big Weak

is defined as the average return on the two robust operating profitability portfolios minus the

average return on the two weak operating profitability portfolios:

RMW =
1

2
(Small Robust + Big Robust)

−1

2
(Small Weak + Big Weak).

(65)

E.4 Investment (CMA) factor

For the construction of the CMA factor, six portfolios are formed based on Market Equity (ME)

and Investment-to-assets ratio (IA) at the end of June each year. The ME breakpoint is the

median NYSE market equity, and the IA breakpoints are the 30th and 70th percentiles of IA.

Investment-to-assets ratio (IA) is the change in total assets from the fiscal year ending in year

t − 2 to the fiscal year ending in t − 1, divided by t − 2 total assets at the end of each June.

Six portfolios are formed based on the intersection of the two ME and three IA groups: CMA is

Median ME

70th IA percentile
Small Aggressive Big Aggressive

30th IA percentile
Small Neutral Big Neutral

Small Conservative Big Conservative

defined as the average return on the two conservative investment portfolios minus the average

return on the two aggressive investment portfolios:

CMA =
1

2
(Small Conservative + Big Conservative)

−1

2
(Small Aggressive + Big Aggressive).

(66)

E.5 Momentum factor (MOM)

To construct the momentum factor we use six value-weighted portfolios formed on size and

prior (2-12) returns to construct Mom. The portfolios, which are formed monthly, are the

intersections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed on prior

(2-12) return. The monthly size breakpoint is the median NYSE market equity. The monthly

prior (2-12) return breakpoints are the 30th and 70th NYSE percentiles.

The momentum factor is the average return of the two high prior return portfolios minus

the average return on the two low prior return portfolios.
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Median ME

70th return percentile
Small High Big High

30th return percentile
Small Neutral Big Neutral
Small Low Big Low

MOM =
1

2
(Small High + Big High)

−1

2
(Small Low + Big Low).

(67)

The six portfolios used to construct MOM each month include NYSE, AMEX, and NASDAQ

stocks with prior return data. To be included in a portfolio for month t (formed at the end of

month t− 1), a stock must have a price for the end of month t− 13 and a good return for t− 2.

In addition, any missing returns from t− 12 to t− 3 must be −99.0, CRSP’s code for a missing

price. Each included stock also must have ME for the end of month t− 1.
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