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Abstract

The implied volatility surface (IVS) is important for many different types of investors. Accur-

ately forecasting the IVS may lead to substantial profits. Through this paper, we aim to expand

the literature on weekly options IVS forecasting on the S&P 500 index by using machine learn-

ing (ML) methods. A comparison is made between five different methods, of which three ML

methods: Elastic Net (ENet), Random Forest (RF), and the Neural Network (NN). We find that

the non-linear ML method Random Forest (RF) consistently performs best for the level, slope,

and curvature characteristics of the IVS. Additionally, to be able to interpret certain models,

we make use of the cumulative sum of squared error difference (CSSED) and the permutation

variable importance (VI) metrics.

Keywords: Option pricing, S&P 500 index, European Options, Modeling, Forecasting, Implied
Volatility Surface Characteristics, Machine Learning, Random Forest regression, Neural Networks, Long
Short-Term Memory (LSTM), Ordinary Least Squares (OLS), Autoregressive model (AR), Elastic Net
(ENet), Hyperparameter Tuning, Out-of-Sample R-squared, Root mean squared error (RMSE), Cumu-
lative Sum of Squared Error Difference (CSSED), Permuted Variable Importance (VI)
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1 Introduction

Financial investors have been interested in forecasting the stock market for many years. Accur-

ate forecasts on stock prices can aid investors in making knowledgeable choices and potentially

increase the returns on their investments. With regard to forecasting these returns, the use

of machine learning (ML) techniques has grown in popularity due to advances in technology

and Big Data. In addition, considerable research has focused on applying ML methods to pre-

dict stock market trends. However, only a few papers dive into forecasting option prices of

‘weeklys’ (options that mature in one week or five trading days). Nowadays, these options may

be considered one of the most important options as their trading volume covers over 45% of

the trading market. Hence, accurate pricing or forecasting weeklys could be highly beneficial to

various types of investors. Therefore, the main goal of the research is to fill in this gap in the

current literature regarding pricing options.

The approach to the problem is directly via the implied volatilities (IV), which is more practical

than using option prices. This is due to the fact that we can easily compare implied volatilities

in the cross section, which is harder if we were to be using option prices. As the price of an

option has a one-to-one mapping with its implied volatility, we can relate the results of the

implied volatility surface (IVS) directly to the options’ prices. Many investors use volatility

surfaces to develop trading strategies that can lead to more informed decisions and potentially

higher returns if applied correctly. The options used in this paper are weeklys on the Standard

and Poor index (S&P 500).

There are numerous methods to model implied volatility, and in this study, we explore five

of them. The first method is the Ordinary Least Squares (OLS) method. On top of that, we

also look at an autoregressive model of order one (AR(1)). These two methods can be con-

sidered as reference methods as the more sophisticated models are expected to outperform these

relatively simple models. As the title of this paper already suggests, our primary focus is on

exploring the performance of several ML methods. We take linear and non-linear ML methods

into account to look at whether we can make a distinction in performance for these two different

types of ML methods. The linear ML method that we consider in this paper is the Elastic Net

method (ENet). Vrontos et al. (2021) strongly advise this method as “it can be used to narrow

down the number and identify the important predictors”. Finally, the two non-linear ML meth-
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ods that are discussed in this paper are the Random Forest (RF) method and an artificial neural

network (NN) method. The RF method seems to be performing quite well with large datasets,

and is also suggested by many papers, for instance, by Gu et al. (2020). The NN method also

performs well in this context and is thus incorporated in the study.

The forecasting procedure will contain three steps: the first step is to calculate the three char-

acteristics of the IVS (level, slope, and curvature). As we have many different options traded

for different prices and thus with different IVs, we compute weighted averages on them for each

given day based on their moneyness levels and trading volumes. This is discussed more closely

in Section 3. Step two is validating the machine learning models. We tune the hyperparameters

of the ML models in the predefined period (January 2021 to December 2021). Then finally, in

the forecasting period (January 2022 to December 2022), using the trained and tuned models,

forecasts are made for the IVS characteristics. We split the data into three different samples,

in which the three steps are subsequently executed. For a more comprehensive explanation on

this, refer to Section 3.

The main research question that this paper answers is:

How do machine learning methods perform in forecasting the characteristics of the

implied volatility surface for weekly type options on the S&P 500 index?

To be able to answer this research question, we construct various sub-questions. Our first

sub-question reads: How well do the ML methods perform compared to the non-learning-based

models? Secondly, we ask ourselves: Are the findings for the weeklys in line with prior research

on long-term IV predictive performance? Additionally, we look at whether the non-linear ML

methods (RF and NN) outperform the linear ML method (ENet) or not. Finally, it is also

interesting to study the variable selection of the models. These aspects encapsulate the topics

that are addressed in this paper.

The results in this paper show that for all three characteristics of the IVS, the Random Forest

model outperforms all other models. For the level and curvature characteristics it even out-

performs all other models significantly. The non-learning-based models perform relatively well

when forecasting the slope characteristic. Moreover, it is observed that the previous values of the
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characteristics are the most important for making predictions (lagged variables). Furthermore,

we find that the Neural Network machine learning model underperforms as a result of overfitting

issues. The findings in this paper are interesting for anyone who wishes to forecast the IVS.

The remainder of this paper is organized as follows. First, in Section 2 we give a brief overview

of the literature related to this topic. In Section 3 the data that is used and adjusted for this re-

search is described. In addition, multiple variables are constructed in this section. Subsequently,

the methodology is explained in Section 4. After we discuss the methodology, the results can

be found in Section 5. Subsequently, we make our final conclusions in Section 6. Finally, the

appendices can be found in Appendices A, B, C, and D.

2 Literature

The IVS is of great importance for several groups of investors. Options traders can make use

of the IVS by comparing multiple IVs of similar options and thus may find options that are

mispriced. Differences in IVs can signal arbitrage opportunities. There are also other types

of investors, such as portfolio managers, who can use the IVS to manage the risk associated

with other options in their portfolio. Furthermore, the IVS is interesting to market makers who

want to ensure that liquidity is provided while minimizing their own risk. Recently, we have

observed a change in trading preferences. Namely, nowadays, the short-term options, also known

as ‘weeklys’, account for over 45% of the trading volume (see Almeida et al. (2024)). Hence,

accurately forecasting their IVS’s can result in large profits. Due to this recent shift in trading

preferences, there has not yet been much research on this topic, even though many researchers

do write about IVS forecasting for many different options. Most of these researches focus on

options that mature relatively far ahead in the future, often 21 trading days (1 month) or more

(Almeida et al., 2023; Almeida and Freire, 2022; Christoffersen et al., 2013; Liu et al., 2019).

Some articles do examine options that mature within a week (Almeida et al., 2024; Andersen

et al., 2017), but not so much on their characteristics. This research aims at expanding the

literature on the ‘weeklys’ IVS modeling.

The IVS can be studied by looking at its characteristics. Chen et al. (2023) splits up the

IVS by looking its level, slope, and curvature characteristics. For forecasting these characterist-

ics of the IVS, many methods and models can be used. Nowadays, machine learning methods
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are often utilized to make forecasts as they are capable of solving complex problems. Papers as

Gu et al. (2020); Medvedev and Wang (2022); Vrontos et al. (2021) make use of different ML

models which are also used in this paper. It is also interesting to implement simple models to

make a comparison between the non-learning-based models and the ML models. Gu et al. (2020)

also uses the simple linear model (OLS), and due to the fact that implied volatilities are highly

autocorrelated (Cont and Da Fonseca, 2002), using an AR(1) model is likely to capture most of

the persistence. These two models are usually used in this literature for reference purposes.

3 Data

Before being able to analyze the data, we first have to introduce some data-specific variables,

such as moneyness, which can be found in the first subsection below. In the second subsection,

we dive deeper into a data-specific analysis.

3.1 Variable construction

The Implied Volatility Surface can be considered as a mapping of time t, the strike price of

the option K, and the expiration date T plotted against implied volatility. One may also plot

the implied volatility against moneyness and time-to-maturity to obtain the IVS. Using these

variables is advantageous as they facilitate the comparison of options with varying prices and

expiration dates. It is also possible to opt for a stronger measure of moneyness, such as the

log-moneyness or even the standardized log-moneyness, as is used in the paper of Almeida et al.

(2024). However, in this paper, where the emphasis is primarily on the comparison of various

forecasting models, using the basic definition of moneyness is sufficient. We define the basic

definition of moneyness as stated in Equation 1.

mt =
St

K
(1)

In Figure 1a an example of an IVS is plotted. Firstly, note that in the paper of Cont and

Da Fonseca (2002), from where this figure has been captured, moneyness*1 is defined as K/St.

Therefore, in our case the IVS can be regarded to as an approximated mirrored plot of this

figure. As can be observed in Figure 1a, we conclude that the implied volatility is relatively high

when the moneyness* of the option is low, and that it is at its lowest point when the moneyness*

1The moneyness that is used in the paper of Cont and Da Fonseca (2002) is referred to as moneyness* to
avoid confusion. Therefore, the conclusions made might not seem consistent but in fact, they are.
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of the option is a little bit greater than 1.0.

In this paper, we make a distinction between certain values of moneyness. This is mainly done

to be able to obtain the characteristics of the IVS. The levels of moneyness that are used are:

mt ∈ [0.80, 0.90); [0.90, 0.97); [0.97, 1.03); [1.03, 1.10); [1.10, 1.60] for Deep-Out-of-the-Money-

Call (DOTMC), Out-of-the-Money-Call (OTMC), At-the-Money (ATM), Out-of-the-Money-Put

(OTMP), and Deep-Out-of-the-Money-Put (DOTMP), respectively. In Figure 3, a histogram

is plotted to show how often a contract is traded in relation to their value of moneyness. As

can be seen, options that are close to ATM option moneyness levels are traded relatively more

regularly than, for instance, DOTM call options. Moreover, DOTM put options are traded with

a higher frequency compared to the DOTM call options.

As already described in the introduction, the main purpose of this paper is to close the gap

in the literature regarding the weekly contract IVS forecasting. Many researchers have done

research on longer-term maturity contracts, but, as we can observe in Figure 1a, the IVs for

short-term time-to-maturity contracts lie somewhat higher than those of long-term time-to-

maturity contracts. As a result of the recent increase in demand for these short-term options,

the disparity between IVs for short- and long-term contracts has increased even further. Fig-

ure 1b plots the average IVS of the S&P 500 weeklys for the data period of January 2020 to

December 2022. Note that this does not look like a surface such as Figure 1a. This is due to

the fact that we only incorporate weekly options instead of including all options (with a higher

number of days to expiration). Therefore, this third dimension disappears for our analysis. If

you compare both Figure 1a and 1b, you do see a likewise ‘volatility smile’ when only looking

at a time-to-maturity of close to 0 years (in Figure 1a). In addition, it can be noticed that

IVs are higher for particular moneyness levels than others. Now, just like in the paper of Cont

and Da Fonseca (2002), we see that for high levels of moneyness, the IVs are higher than for

low levels of moneyness (when using the definition of Equation 1). The main reason for this

phenomenon is that OTM put options are higher in demand on short-term notice as they can

be used for protection against downside risk. These types of options are often called protective

puts or married puts (Merton et al., 1982).

For the calculation of the IV on a specific date for a certain moneyness level, we make use of
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an aggregation method. In our dataset, we have many different options which take on different

strike prices, trading volumes, etc. Therefore, to be able to obtain a time series of observations

which we can work with, we take a weighted average over all IVs for similar2 contracts that are

traded on a specific date with a maturity of at most one week or 5 trading days (weighted on

the trading volume; see Equation 5). This results in a time series of weeklys’ IVs per level of

moneyness. Subsequently, this can be used to construct the IVS, or, as plotted in Figure 1b, an

average IVS, where we take the average IVS over the entire sample.

Figure 1: Visualizations of the IVS

(a) Example of an IVS (b) Average IVS (weeklys)

Note: sub-figure (a) corresponds with the average IVS of the S&P 500 stock at March 1999, where they take
the average over the IVS’s in that particular month. Also note that the moneyness in this sub-figure is defined
as the strike price of the option divided by its current stock price, instead of the other way around (as is done in
my paper). Moreover, the time-to-maturity shown in the sub-figure is measured in years. This figure is obtained
from the paper of Cont and Da Fonseca (2002). Sub-figure (b) corresponds with the average IVS, where we take
the average IVS over time (January 2020 to December 2022) for the weekly options.

For the calculation of IV, the well-known Black-Scholes3 formula for a call and a put options

can be used. The BS formula for a Call option is as follows:

C(St,K, τ, σ) = StΦ(d1)− e−rTKΦ(d2), (2)

where

d1 =
log(St

K ) + (r + σ2

2 )τ

σ
√
τ

, and d1 − d2 = σ
√
τ , with τ = T − t, (3)

and Φ denotes the cumulative distribution function of the standard normal distribution. Con-

versely, as also pointed out by Wenyong Zhang and Zhang (2023), it is widely recognized that

2This is based on the moneyness level of the contracts. If one contract falls within the same level of moneyness
as the other, we include it in the moneyness-specific averaging procedure.

3also see Black and Scholes (1973) for a more comprehensive explanation on their obtained formula
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the Black-Scholes model is incorrectly specified. To obtain the implied volatility, one should

solve for σ from Equation 4.

C(St,K, τ, σ) = Cmarket, (4)

where Cmarket corresponds to the observed market price of the call option.

3.2 Data analysis

We perform our analysis on one of the most reliable indicators of overall health and direction

of the US stock market: the Standard and Poor index (S&P 500 or SPX). We obtain data of

the option metrics on the S&P 500 via OptionMetrics, which is available in the Wharton Re-

search Data Services (WRDS) database4. In this paper, only European options are considered.

We filter out all options that do not have an implied volatility available, options that have a

volume of 0, and options that are too deep out of the money, as is done in Almeida et al. (2023);

contracts with a moneyness of mt ∈ (0, 0.80) for a call or mt ∈ (1.60,+∞) for a put are left

out of the analysis. We only make use of OTM options, as these are relatively more liquid and

reliable than their counterparts: the ITM options. For computing the moneyness, we require

data on the stock price of the S&P 500. Historical stock price data is available from the Center

for Research in Security Prices (CRSP), which is also available in WRDS.

The IVS can be studied by looking at its characteristics. In this paper, we examine three

characteristics, namely its level, slope, and curvature, as is done in the paper of Chen et al.

(2023). We capture the characteristics by using several different measures. For the level char-

acteristic, we simply look at the average IV of all option contracts traded on a specific date (see

Equation 6). For the second characteristic, the slope of the IVS, we consider the measure which

is made by taking the difference between the IV of OTM put options and the IV of OTM call

options (see Equation 7). Finally, for the third characteristic, the curvature of the IVS, we make

use of a measure inspired by Chen et al. (2023) (see Equation 8). These measures represent the

characteristics of the IVS for weeklys. This results in a daily dataset of the characteristics of

the IVS across the entire dataset, which correspond to our dependent variables.

WIVt,Jt =
1

VJt

j∈Jt∑
IVj · Vj , (5)

4https://wrds-www.wharton.upenn.edu/
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IV l
t = WIVt,ALL, (6)

IV s
t = WIVt,OTMP −WIVt,OTMC , (7)

IV c
t =

WIVt,OTMP +WIVt,OTMC

2
−WIVt,ATM , (8)

where WIVt,Jt represents the weighted average of all options that fall within the moneyness level

Jt, where the weights are based on the trading volume per option. Vj represents the volume of

option j ∈ Jt. Jt corresponds with the set of all options that have moneyness level J at day t.

VJt is the total volume of the options that fall within a certain moneyness level J on day t.

In Figure 2 the three time series of the characteristics of the IVS are plotted. We can observe

a large peak in the time series of the level and the slope characteristic during the COVID-19

recession. In Table 1 the descriptive statistics of the three characteristics of the IVS are shown.

We observe that the standard deviation for the level characteristic is the highest, while for the

curvature characteristic it is the lowest. Furthermore, we observe that all characteristics exhibit

a right-skewed distribution. For a standard Normal distribution, the skewness should be ap-

proximately equal to 0 and the kurtosis should be approximately equal to 3. We find that for

the level and slope characteristics of the IVS, the skewness is relatively high. This suggests the

presence of large outliers, which is also confirmed by the maximum values stated in the table.

For the curvature characteristic, we only see a relatively small positive skewness compared to the

other two characteristics, which can also be seen when looking at Figure 2. On top of that, the

curvature characteristic does not contain many outliers in the time series, resulting in a negative

kurtosis. Thus, it can be concluded with confidence that none of the characteristics adhere to a

Normal distribution. On the other hand, after performing the Augmented Dickey-Fuller (ADF)

test, all three characteristics are found to be stationary based on a 5% significance level for the

ADF test. Hence, no adjustments are necessary on the time series to ensure reliable results.

In Equation 9 the variance-covariance matrix (V̂) and the correlation matrix (ρ̂) are shown,

where the first, second, and third row and column correspond with the level, slope, and curvature

characteristic of the IVS, respectively. We see that the correlations between the three charac-

teristics are quite low, especially for the slope and curvature characteristic. We also show the

partial autocorrelations in Figure 13 in Appendix A. These plots are used in our decision to take

lagged values of the IVS characteristics into account.

9



Table 1: Descriptive statistics of the three characteristics of the IVS

Mean Std. Dev. Max Min Skewness Kurtosis

Level 0.325 0.152 1.538 0.115 16.0 3.13

Slope 0.119 0.057 0.657 -0.031 16.7 2.47

Curvature 0.059 0.028 0.159 -0.055 1.1 -0.11

Note: we display the mean, standard deviation, maximum value, minimum value,
skewness, and kurtosis in this table. The three characteristics are calculated as
stated in Equation 6, 7, and 8.

V̂ =


0.023 0.005 −0.002

0.005 0.003 0.000

−0.002 0.000 0.001

 ; ρ̂ =


1.00 0.54 −0.45

0.54 1.00 0.02

−0.45 0.02 1.00

 (9)

Figure 2: The time series of the characteristics of the IVS

(a) Time series level IVS (b) Time series slope IVS

(c) Time series Curvature IVS

Note: The level, slope, and curvature characteristics of the IVS are calculated following Equations 6, 7, and 8
respectively.
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To assess the predictability of the weeklys’ IVS, many variables are used. In this paper, we

consider four different types of variables, namely: Option specific variables, macroeconomic

variables, S&P 500 related variables, and finally, a cryptocurrency price (Bitcoin). The specific

variables used are stated in Table 7 in Appendix A. The macroeconomic variables (including

VIX ) and the Bitcoin variable are obtained from the Federal Reserve Bank of St. Louis5. Al-

though Bitcoin may appear as an unconventional choice among our variables, its significant

insights into market volatility suggest that it could help predict the characteristics of the IVS.

While there are also other cryptocurrencies, we only consider Bitcoin as it is the largest by market

capitalization. When looking at the properties of the characteristics of the IVS, we find that each

one of them experiences high partial autocorrelations (refer to Figure 13 in Appendix C). This

implies that the variables are highly persistent and thus it is recommended to take lagged IVS

characteristics as explanatory variables into account for the modeling and forecasting procedure.

The data set runs from January 2, 2020, to December 30, 2022. As the stock market is only

open on business days, this also results in the data set being based on business days; there

are 756 observation dates and due to including lagged variables (1-day-lag), we work with 755

observations in total. This data is split up into three parts, where every split consists of one

year (252/252/251 days respectively) of data. The first split is used for estimation, the second

split for validation, and the third split is solely used for forecasting evaluation purposes. It is

important to note that the second period, after having served as a validation set, is also included

in the training set for forecast purposes. As a result, we generate 251 forecasts spanning from

January 3, 2022, to December 30, 2022.

In our dataset, we have a couple of variables for which some data is missing. This is the

case for some of the variables that have been collected from the Federal Reserve Bank of St.

Louis database. The five variables for which this was the case are shown in bold in Table 7

in Appendix A. To obtain a complete dataset, linear interpolation has been applied to these

variables.

As part of this study, several data transformations were necessary to enhance robustness. It

is well known that when an explanatory variable is not stable or stationary, this can lead to

5https://fred.stlouisfed.org/
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overfitting in predictive modeling, where the model fits the noise in the data instead of the

underlying patterns. Subsequently, this may reduce the predictive performance of our models.

We use the Augmented Dickey-Fuller (ADF) test to find out which variables are non-stationary

(refer to Section 4 for more information on this test). In Table 7 in Appendix A, the variables

that have underwent a transformation are indicated with an ‘l’, ‘s’, and/or ‘d’. ‘l’ indicates

a logarithmic-transformation, ‘s’ indicates a shift-transformation (we shift the variable by the

minimal value (+1) recorded in the time series such that we can take the log over that variable),

and ‘d’ indicates a simple first differencing procedure which removes the trend in the time series,

making it stationary.

Figure 3: Distribution of the types of option contracts based on their moneyness

Note: this histogram is split up into 40 separate bars; every bar corresponds with an interval of 0.02.
Moneyness is defined as in Equation 1.

4 Methodology

In this section, we dive deeper into the methods used to model and predict the IVS. We explore

five different methods that are chosen due to their comparatively strong results in previous

studies.
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4.1 Non-learning-based models

First, we discuss the non-learning-based methods, which are regularly used as reference models.

The models that we discuss are the Ordinary Least Squares, and an autoregressive model.

4.1.1 Ordinary Least Squares (OLS)

The first method we examine is the well-known ordinary least squares (OLS) method. We

expect this method to perform the worst when it comes to forecasting the IVS as it is only

able to capture linear relations between the characteristics and the explanatory variables. In

addition, using many variables in the model often leads to overfitting of the in-sample data. As

a result, this often leads to inaccurate forecasts. Its mathematical form is as follows:

yt = β0 + β1x1t + β2x2t + ...+ βkxkt + ϵt, (10)

where yt denotes either one of the three IVS characteristics, xt = (1, x1t, x2t, ..., xkt) represents

the explanatory variables as listed in Table 7 in Appendix A, β = (β0, β1, β2, ..., βk) is the

coefficient vector associated with these explanatory variables (and a constant term), and ϵt

represents the idiosyncratic error component.

4.1.2 Autoregressive model (AR)

The second model that is used as a benchmark, is the autoregressive model of order one, or also

called the AR(1) model. This model is also straightforward, yet effective. As implied volatilities

often exhibit high serial correlation, this model is very suitable in the context of this paper. In

Figure 13 in Appendix C this feature of the IVS characteristics is confirmed. In Equation 11

the mathematical description of the AR(1) model is shown.

yt = c+ ϕyt−1 + ϵt (11)

Generally, this model performs relatively well, but again, as this model uses only linear relations,

it is expected that this model does not perform as well as some of the ML methods described

in the following subsection.

Before using this model, we first have to check whether the stationarity assumption holds.

This is done by using the ADF test, further explained in Section 4.3. The AR(1) model assumes
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a constant mean over time (indicated with c in Equation 11) so it cannot adequately model a

changing mean, which would lead to poor predictions. If the variance is not constant, this could

also lead to unreliable estimates. The main consequence of a non-stationary time series is that

it could either lead to spurious results and/or unreliable predictions. Therefore, it is important

to ensure that the time series is stationary.

4.2 Machine Learning methods

Moving onward to the most interesting part of this research, the ML methods. Why they are

interesting to look at, is due to the fact that machine learning methods are able to capture

non-linearity in the data which may not be captured by less complex methods. Hence, using

ML methods offers another angle to address the issue at hand. There are two types of ML

methods, namely linear- and non-linear ML methods. As this study aims to determine which

method provides the most precise forecasts, both types of ML methods are examined. The two

non-linear ML methods are the Random Forest method (RF) and the artificial neural network

(NN).

4.2.1 Elastic Net (ENet)

First, the Elastic Net method (ENet) is considered. This method is the only linear ML method

that we discuss in this paper. Prior research has shown that this method works relatively well

when forecasting IVs, see Vrontos et al. (2021). The main reason for this is due to the fact that

the ENet method is able to narrow down the number of predictors, while also identifying the

most important predictors. This can also be seen in Equation 12. The |βi| penalization term sets

certain unimportant predictors exactly equal to zero, which leads to the reduction of predictors.

ENet is a combination of LASSO penalization and Ridge Regression (RR) penalization. If α

were set equal to zero, the minimization problem would be reduced to the RR model. On the

other hand, if α is set equal to one, the minimization problem reduces to the LASSO problem.

The α is optimally tuned in the validation set, to obtain the most accurate results. The main

advantage of the RR compared to LASSO is that it is less prone to overfitting and that it handles

highly correlated predictors better. The main advantage from LASSO is that it shrinks some

coefficient to exactly zero, removing them from the estimation process.

β̂ := argmin
β

T∑
t=1

(yt+1 −Xtβ) + λ

k∑
i=1

(α|βi|+ (1− α)β2
i ) (12)
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4.2.2 Random Forest (RF)

The second ML method that we consider is the Random Forest method. This method generally

performs relatively well in practice for forecasting time series such as implied volatilities. RF is

a robust and flexible ensemble learning technique that utilizes multiple decision trees to make

predictions. It is mainly advantageous to use due to its ability to manage different types of data

structures and handle them to capture relations within the data.

As an ensemble method, Random Forest constructs multiple decision trees and combines their

predictions to improve accuracy and robustness. This results in a reduction of overfitting and

simultaneously improves the overall performance of the method. Decision trees are very sensit-

ive to the specific data on which they are trained. Therefore, the RF method uses a technique

known as bootstrap aggregation, or bagging for short. What bagging does is that it uses multiple

decision trees to make a final estimation/forecast, which leads to robust results. Each decision

tree is trained on a different bootstrap sample of the data, where each bootstrap sample is cre-

ated by randomly sampling from the training data. Furthermore, RF introduces randomness in

feature selection by considering a random subset of features at each split in a tree6. This helps

create diverse trees that are less correlated with each other. Finally, the prediction of the RF is

made by taking the average over all predictions made by the individual trees; see Equation 13.

This aggregation process reduces variance and enhances the model’s accuracy.

ŷt =
1

N

N∑
i=1

ŷi,t (13)

In the equation above, ŷi,t represents the forecast made by ‘tree i ’, and N represents the number

of trees. As can be seen, this results in an aggregated predicting of all individual tree predictions

where every prediction is weighted equally. In Figure 4 the procedure is visualized. Note that

the number of trees7 is tuned and differs from the 600 trees as shown in the figure.

An important aspect of forecasting using the Random Forest method is tuning the hyperpara-

meters. For this research, for the RF method, we tune two parameters, namely the number

of features considered for splitting (‘mtry’), and the number of trees (‘ntree’). In Table 8 in

6The number of variables that are considered at each split, which is also tuned in this analysis, is called the
‘mtry’.

7The number of trees used to perform the forecasting procedure is tuned. The corresponding parameter is
‘ntree’ (see Table 8 in Appendix A).
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Appendix B the specific tuning grid for these two variables can be found.

Figure 4: Visualization of the Random Forest regression method

4.2.3 Neural Networks (NN)

The NN method is the final ML method discussed in this paper. This method is arguably one

of the most powerful ML methods, as it is able to capture non-linear relations between variables

which may not be captured by other methods. Neural networks have an input layer, one or more

hidden layers, and finally, an output layer which generates predictions. There are various forms

of neural networks. The simplest form of a neural network is the Feedforward Neural Network

(FNN). The FNN method is characterized by the direction of the flow of information between

its layers. As the name of the method already suggests, the flow of information is only from

the input layer straight towards the output layer. This method is widely used for regression

and classification tasks. The functional form of a standard neural network method is stated in

Equation 14:

ŷk(X,β) = σ

∑
j

β
(l)
kj h

(∑
s

β
(l−1)
js h

(
...h

(∑
i

β
(1)
ji Xi

))) , (14)

where l is the number of hidden layers, σ and h are the activation functions, β corresponds with

the coefficient connected with one layer to another. In this paper we choose to make use of

the rectified linear unit (ReLU) activation function. Equation 15 shows the formulation for this

activation function. In Figure 5a the parameterization of these variables as well as the FNN
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itself is visualized.

f(x) = max{0, x} (15)

An other type of neural networks is the recurring neural network (RNN). RNNs are designed for

sequential data and have certain loops which allow the model to maintain information from the

past. In this paper, we use the RNN type of neural network to make forecasts. This is because

the RNN is more qualified for time series forecasting purposes than the FNN in our case. As

we experience high autocorrelations for each one of the IVS characteristics, keeping the time

dependence intact is most likely a good idea.

A disadvantage of the RNN method is that it encounters the well-known ‘vanishing gradient

problem’. This problem is encountered when training the neural network model, and it occurs

as the sequence length increases. As this sequence length increases, the gradient magnitude is

expected to decrease. When having a long enough sequence length, this may imply that the

method cannot be trained. Hochreiter (1998) further analyses this problem and makes some

suggestions on how to overcome the problem of vanishing gradients. A method that performed

well in his analysis is the advanced NN method called the Long Short-Term Memory (LSTM)

method. This method is a type of RNN that is particularly aimed at dealing with the vanishing

gradient problem. What it does compared to a normal RNN is that it provides a short-term

memory for RNN that helps in training the model. Greff et al. (2016) define the complex

construction of different LSTM models, and we refer to this paper for a more comprehensive

description on the LSTM method. Given our relatively long sequence length, employing the

LSTM method is advisable and thus is also used in this paper. To prevent confusion, note that

we indicate the LSTM model by NN from now on.

Although NNs perform relatively well in forecasting, one of the major disadvantages of them

is that they are arguably one of the least interpretable machine learning methods due to their

complexity. In sub-Figures 5a and 5b a single-hidden-layer FNN and a LSTM block are shown

respectively. This also shows the complex interpretability of the NN as we do not know exactly

what happens in the hidden layers.

Another disadvantage of neural networks is that they tend to be heavily parameterized. As

a result, overfitting is a serious danger. It can be prevented by having a dropout rate, using reg-
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ularization methods, early stopping (stop training if the performance drops), or a simplification

of the model (by reducing the amount of hidden layers). In this paper, we use the dropout rate

of 0.2, L1 and L2 regularization, and take neural networks with at most 5 hidden layers into

consideration (also see Table 8 in Appendix B).

Previous research has shown that the non-linear ML methods RF and NN perform well in

this context (Gu et al., 2020). Therefore, the main focus of this thesis lies on these models.

Figure 5: Visualization of the different neural network models

(a) Feedforward Neural Network (FNN) (b) Long Short-Term Memory (LSTM)

Note: in these sub-figures we visualize and parameterize the feedforward neural network (a) and the LSTM (b).
Refer to Greff et al. (2016) for a more comprehensive explanation on the visualization of the LSTM model. Also
note that we use the ReLU input activation function (see Table 8 in Appendix B) instead of the suggested tanh
activation function as stated in the legend.

4.3 Stationarity

To test whether a variable is stationary or not, we make use of the augmented Dickey-Fuller

(ADF) test (Dickey and Fuller, 1979). The ADF test tests the null-hypothesis that there is a

unit root in the time series in question. Rejecting this null-hypothesis implies that the time

series in question is stationary. The functional form of the ADF test is as follows.

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + ...+ δp−1∆yt−p+1 + ϵt, (16)

where α is a constant, β the coefficient of a time trend, and p the lag order of the autoregressive

process, but most importantly γ is the coefficient which is used to obtain the test statistic (see

Equation 17).

T =
γ̂

SE(γ̂)
(17)
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If the Dickey-Fuller T-statistic is significant, this implies that we should reject the null-hypothesis

and thus conclude that the time series is stationary.

4.4 Evaluation measures

In this paper we make use of two different forecasting performance evaluation metrics. The per-

centage Out-of-Sample R-squared (R2
oos) and the percentage Root Mean Squared Error (RMSE)

are used. For parameter tuning, we also mainly make use of the RMSE to assess which para-

meter performs best in the validation set. These two measures represent how well our models

are performing and are easy to compare. The higher the R2
oos, the better the performance of

the model. For RMSE, lower values indicate better performance. The main difference between

the two models is that one (R2
oos) compares the errors of the model with those of a benchmark

model, while the other measure (RMSE) compares only the forecasts with the actual values.

The two measures are calculated as formulated in Equation 18 and 19.

RMSE =

√
1

N

∑
i

(yi − ŷi)2 (18)

R2
oos = 100%×

(
1− MSEmodel

MSEbench

)
(19)

In this paper, we make use of a historical moving average as the benchmark for the R2
oos. We

construct the forecasts of this benchmark model as stated in Equation 20.

ŷj,bencht =
1

252

t−1∑
i=t−253

IV j
i , (20)

where j indicates the type of characteristic: level, slope, or curvature. As also can be noticed in

this equation, we use a historical moving average with a range of one year (252 trading days).

This is mainly due to the fact that during the Covid-19 crisis, the values for the characteristics

of the IVS (mainly the level and slope characteristics) were not representable compared to the

more recent years. This can be observed in Figure 2.

The Diebold-Mariano statistic (DM) can be used to find out whether a certain model ‘1’ signific-

antly outperforms another model ‘2’. In Equation 21, we start by computing the squared errors

for model 1 (e2t,1) and model 2 (e2t,2). Next, we find the difference between these squared errors,

resulting in the error difference measure (dt). A negative value of dt indicates that model 1 out-
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performs model 2, as a small forecast error is obviously desirable. In contrast, a positive value

dt implies that model 2 is superior. The DM-statistic is further calculated by using Equation

22.

dt = e2t,1 − e2t,2. (21)

DM =
d̄√
V (d)

. (22)

Here, d̄ represents the average and the V(d) corresponds with the variance of the error differ-

ences time series (d).

As an additional layer to this research, it is interesting to find out why some models out-

perform others. For machine learning models, it can sometimes be difficult to interpret why a

certain model outperforms another model. Therefore, to give some sort of interpretation behind

the results in this paper, we introduce the relative variable importance measure. The measure

that is used to obtain the relative variable importance is the so-called permutation Variable Im-

portance (VI). This measure is obtained by measuring the difference between prediction errors

before and after one variable is permuted. The higher the difference, the more important the

variable, as a high difference implies that leaving the variable out of the equation results in a

higher prediction error than before. In this paper, we calculate the measure in a relative way (all

VI’s add up to 1) so that they are easier to interpret. For the Random Forest model specifically,

the importance measured via ‘IncNodePurity’, which is also a measure of how much the model

error increases when a particular variable is randomly permuted or shuffled (see Tohry et al.

(2020)). Hence, since we use the same measure of VI for each model, we can also compare them

with each other.

Finally, the last measure we use is the Cumulative Sum of Squared Error Difference (CSSED).

This measure can help with interpreting forecast results as well as comparing them with other

models. For example, using this metric allows us to contrast the model of interest with a basic

model. This comparison can reveal specific times at which one model outperforms or underper-

forms relative to the other, as highlighted by the measure. This measure is mainly interesting

if one model performs unexpectedly poorly or exceptionally well. We calculate the metric as
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described in Equation 23.

CSSEDt =

t∑
i=505

(
(yi − ŷAi )

2 − (yi − ŷBi )
2
)
, (23)

where ŷXi stands for the forecast made by model X for the time-index i. Note that we use

i = 505 as a starting point as this index corresponds with the first iteration of the forecasting

period for which we calculate the CSSED. Thus, a negative value for CSSED implies that the

squared errors obtained by the forecasts made by model A are smaller than those of model B.

In contrast, if the CSSED is positive, it means that model B’s squared errors are smaller than

those of model A.

4.5 Tuning Parameters

Hyperparameter tuning is beneficial as it enhances overall predictive performance: it ensures

that the model is not too simplistic, which could result in a high bias, or that the model is too

complex, leading to a high variance. In addition, the tuning of the hyperparameters contributes

to the robustness of the model, ensuring that the predictions remain reliable under different

conditions. In Table 8 in Appendix A, the tuning grid for the elastic net, random forest, and

neural network models is reported.

We must also note that we can not use the usual K-fold Cross Validation (k-CV) for the tuning

procedure, as it randomly splits the data into k subsets (folds) and shuffles them, breaking the

temporal order of the data. When the data has trends, the temporal order of the data is cru-

cial for making accurate forecasts. Instead, we use the so-called walk-forward validation. This

method does maintain the temporal structure of the data.

5 Results

This section is split up into two parts. In the first part, the main forecast results are discussed

and evaluated. We make use of the models stated in Section 4, tune them where required, and

subsequently make forecasts on each one of the three characteristics of the IVS. In the second

part, we dive deeper into why certain methods perform better or worse than others. We look

at the variable selection of the models via the permuted variable importance (VI) measure and

also take the cumulative sum of squared error difference (CSSED) into account.
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5.1 Forecasting Results

Before we dive deeper into the evaluation of the forecast results, it is important to note that

the ML methods for which the results are shown represent the models with optimally tuned

hyperparameters. Note that for the ENet method, the second most optimal α is also included,

where ENet (1st) and ENet (2nd) indicate the ENet model with the most optimal and the second

most optimal α during the tuning part. The hyperparameter tuning grid that is used for this

research can be found in Table 8 in Appendix A.

In Table 2 and Table 3 the main forecast results of this research are shown. In these tables,

we show the forecast accuracy per model per characteristic. In Table 2 the forecast accuracy is

reported while using the percentage Out-of-Sample R-squared measure. For all values, we make

the comparison with the model stated in the first column with the historical moving average as

the benchmark model (refer to Equation 20). Hence, by using this measure, we can also directly

see whether the methods outperform the benchmark model in forecasting. If the R2
oos gives a

negative value, this indicates that the MSE of the benchmark model is smaller than the MSE

of the model in question (refer to Equation 19). There is a single instance where this occurs;

specifically, for the slope characteristic, the NN method performs quite poorly, even worse than

the historical moving average forecasts. All other methods manage to outperform the benchmark

model. In Table 3 we show the percentage RMSE. In Table 4, 5, and 6 the corresponding DM

statistics are reported.

Table 2: Forecasting accuracy in terms of Out-of-Sample R-squared (%)

Level Slope Curvature

OLS 68.2% 27.2% 21.3%

AR(1) 61.5% 28.8% 39.9%

ENet(1st) 62.1% 19.0% 33.3%

ENet(2nd) 64.6% 10.1% 33.2%

RF 75.2% 29.4% 56.4%

NN 69.1% -6.4% 23.5%

Note: The values shown above are the percentage
Out-of-Sample R2’s where we compare each model’s
performance with the historical moving average as a
benchmark (refer to Equation 19 and 20). ENet(1st)
and ENet(2nd) correspond with an elastic net model
with the optimal α and the second-best α during the
tuning procedure.
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Table 3: Forecast accuracy in terms of RMSE (%)

Level Slope Curvature

OLS 5.91% 3.66% 2.57%

AR(1) 6.50% 3.62% 2.25%

ENet(1st) 6.45% 3.86% 2.37%

ENet(2nd) 6.23% 4.07% 2.37%

RF 5.22% 3.61% 1.91%

NN 5.82% 4.43% 2.53%

Note: ENet(1st) and ENet(2nd) correspond with an
elastic net model with the optimal α and the
second-best α during the tuning procedure.

Now, let us take a closer look at the values reported in Table 2 and 3. Firstly, the level char-

acteristic. The model that performs worst is the AR(1) model. This model obtains a R2
oos of

61.5% and a RMSE of 6.50%. Although this result might be surprising, it highlights the other

models to perform really well. It was expected for the AR(1) model to perform quite well due

to the fact that the level characteristic of the IVS exhibits high autocorrelations (see Figure 13a

in Appendix C). Thus, the fact that all other models outperform the AR(1) model is surprising

but also interesting. When looking at the variable importance measure in the next subsection

(Figure 9), it is also confirmed that for all models the lagged level variable is of great importance,

indicating that these models do well by forecasting with the lagged level characteristic.

The first two models that outperform the AR(1) model are the two elastic nets. The optimally

tuned elastic net (ENet(1st)) obtains a R2
oos of 62.1% and a RMSE of 6.45% while the second-

best elastic net obtains an even higher R2
oos, namely 64.6%, and thus also a lower RMSE, 6.23%.

It is interesting that the model that performs second-best for the tuning part outperforms the

optimal model in the tuning part. The optimally tuned α corresponds with an α of 0.2 for the

level characteristic, followed by an α of 0.0 (based on RMSE). For the calibration of the optimal

α, we did not only use the RMSE metric, but also looked at how often each elastic net model

outperformed all others. For the latter metric we found that the ENet(0.2)8 outperformed all

other models only 18 times out of the 252 observations, while the ENet(0.0) outperformed all

other models 103 times out of the 252 observations. This suggests that the ENet(0.0) is con-

8We indicate an elastic net model with a certain α by ENet(α) from now on.

23



sistently outperforming the ENet(0.2) model, but that the ENet(0.0) model’s forecasts during

the tuning procedure has had some extreme outliers. By using the CSSED metric, we find that

this is indeed the case. In Figure 8 the corresponding CSSED time series are shown, where

ENet(0.2) corresponds to model A and ENet(0.0) to model B in Equation 23. In sub-Figure 8a

we see that just before the end of November 2021 the ENet(0.0) model fails to make accurate

forecasts compared to the ENet(0.2). This confirms that the ENet(0.0) model might perform

better in the long run, and therefore, we also take this second-best ENet model into account

for the forecast comparison. In the end, we see this indeed being the case, ENet(0.0) (insig-

nificantly) outperforming ENet(0.2). In sub-Figure 8b the forecasting performance is shown in

terms of CSSED where it can be observed that the second-best elastic net is more accurate over

time.

The next best model is the OLS model which obtains an R2
oos of 68.2% and a RMSE of 5.91%.

As expected, the two most accurate models are the ML models, where the RF model, with an

R2
oos of 75.2% outperforms the NN model (with one hidden layer), with an R2

oos of 69.1%. Thus,

the RF model is the model with the most accurate forecasts for the level characteristic . When

looking at the differences in RMSE, we also see that this difference is relatively large. It is

confirmed by the DM statistics that the RF model significantly outperforms the NN based on a

5% significance level, with a t-statistic of 2.30.

Table 4: Diebold-Mariano test statistics for the level characteristic

OLS AR(1) ENet(1st) ENet(2nd) RF NN

OLS - 1.60 1.76* 1.42 -2.30** -0.43

AR(1) -1.60 - -0.21 -0.70 -4.06*** -1.84*

ENet(1st) -1.76* 0.21 - -0.74 -3.86*** -2.07**

ENet(2nd) -1.42 0.70 0.74 - -3.14*** -1.54

RF 2.30** 4.06*** 3.86*** 3.14*** - 2.34**

NN 0.43 1.84* 2.07** 1.54 -2.34** -

Note: We compare all models with each other. In this case, the models stated in the
header row of the table are used as ‘model 1’, and the corresponding models stated in the
first column are used as ‘model 2’ (see Equation 21). Thus, this implies that whenever the
DM statistic is negative, the corresponding model in the first column performs worse than
the corresponding model in the header row, and vice versa. *,**, and *** represent with the
significance levels 10%, 5%, and 1% respectively. Thus, * indicates p ∈ (0.05, 0.10], **:
p ∈ (0.01, 0.05], and finally, *** a p-value smaller than 0.01. On top of that, we make use of
the two-sided DM test.
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For the slope characteristic, we observe some different outcomes compared to the performances

for predicting the level characteristic. The model that performed the worst for the level charac-

teristic, the AR(1) model, now outperforms all other models, except for the RF model, with a

R2
oos of 28.8% and a RMSE of 3.62%. This is interesting to see as the first autocorrelation for the

slope characteristic showcased in sub-Figure 13b in Appendix C is smaller than the value for the

first autocorrelation for the level characteristic. When using this result combining it with the

variable importance measure in the next subsection (Figure 10), we see that even though for all

models the lagged variable is the most important, the AR(1) model still manages to outperform

four out of the five other models. This indicates that these four models suffer from overfitting.

The one model that does manage to outperform the AR(1) model is, again, the RF model.

The RF model namely obtains an R2
oos of 29.4% and a RMSE of 3.61% resulting in a difference

of only 0.01% in RMSE. When looking more closely at this result via the CSSED, plotted in

Figure 6, we observe a very poor performance for the RF model around the beginning of the

month May (2022). The same holds for the OLS model (see Figure 14 in Appendix D). From

then on, one can observe a positive trend of the RF outperforming the AR(1) model, leading

up to a small outperformance in accuracy based on their final RMSEs. As a result, the RF only

outperforms the AR(1) model insignificantly for this characteristic.

Figure 6: CSSED of the AR(1) model compared to the RF model for the level characteristic

Note: In this figure the dates run from January 2022 to the end of December 2022. We compare the forecasts
of the AR(1) model with those of the RF model. Thus, we use AR(1) as model ‘A’ and RF as model ‘B’ in
Equation 23.

The worst performing model is the NN model. Its value for the R2
oos reported in Table 2 is

even negative (-6.4%), which indicates that the benchmark model, the historical moving average

model, outperforms the NN model. This is likely to be due to the variable selection of the

model. In the following subsection, we will discuss more on this topic. The elastic net models
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outperform the NN significantly, but all other models are also significantly outperforming the

elastic nets. Finally, we again see that the OLS model performs relatively well, ranking as the

third most accurate model behind the AR(1) and RF models.

Table 5: Diebold-Mariano test statistics for the slope characteristic

OLS AR(1) ENet(1st) ENet(2nd) RF NN

OLS - -0.31 1.66* 3.52*** -0.61 4.46***

AR(1) 0.31 - 2.18** 3.53*** -0.12 5.14***

ENet(1st) -1.66* -2.18** - 3.72*** -2.66*** 6.72***

ENet(2nd) -3.52*** -3.53*** -3.73*** - -4.48*** 3.46***

RF 0.61 0.12 2.66*** 4.48*** - 5.55***

NN -4.46*** -5.14*** -6.73*** -3.46*** -5.55*** -

Note: We compare all models with each other. In this case, the models stated in the header
row of the table are used as ‘model 1’, and the corresponding models stated in the first column
are used as ‘model 2’ (see Equation 21). Thus, this implies that whenever the DM statistic is
negative, the corresponding model in the first column performs worse than the corresponding
model in the header row, and vice versa. *,**, and *** represent with the significance levels
10%, 5%, and 1% respectively. Thus, * indicates p ∈ (0.05, 0.10], **: p ∈ (0.01, 0.05], and finally,
*** a p-value smaller than 0.01. On top of that, we make use of the two-sided DM test.

Finally, for the third characteristic of the IVS, curvature, the results are again interesting. We

see that the OLS model, which performed relatively well for the level and slope characteristics,

now gives the least accurate forecasts, with an R2
oos of 21.3% and a RMSE of 2.57%. The main

reason for this to be the case is that the model encounters a large forecasting error. This is

discussed more closely in the next paragraph. The model that is again performing very poorly,

is the NN model with an R2
oos of 23.5% and a RMSE of 2.53%. Next up are the elastic nets with

an R2
oos equal to 33.3% and 33.2%, and an RMSE equal to 2.37% for ENet(1st) and ENet(2nd)

respectively. Hence, these models do not differ in performance as much as they did for forecast-

ing the level and slope characteristic. The second most accurate model is the AR(1) model with

an R2
oos of 39.9% and a RMSE of 2.25%. Finally, the model that performs the best is the RF

model. The RF model significantly outperforms all other models for the curvature characteristic

forecasting procedure.

When examining the DM statistics in Table 6, we observe something interesting, namely, the

statistic for RF versus OLS is relatively low (1.73) in comparison to the statistics for RF against

all the other models (for instance, 4.26 for the AR(1) model). This might seem out of the order
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as the OLS model exhibits the lowest accuracy metrics R2
oos and RMSE for the curvature char-

acteristic as it is often the case that when these metrics are higher for a model ‘X’ compared to

a model ‘Y’, then the DM statistic between a model ‘Z’ versus ‘X’ is greater than that of the

model ‘Z’ versus ‘Y’ (given that model ‘Z’ outperforms models ‘X’ and ‘Y’ both)9. However,

this instance does not follow that pattern. Therefore, we inspect the CSSED of the OLS model

compared to the RF. In Figure 7a the CSSED is plotted10 in which we observe that the OLS

model is mainly performing poorly due to a couple observations. We see that the value of the

CSSED suddenly surges at June 13th. As a result, we find a large difference in forecasting

accuracy, while having a relatively small value for the DM statistic. This implies that the OLS

model does not generally produce poor forecasts but suffers from a few poor forecasts. When

looking at the CSSED of the NN compared to the OLS (see Figure 7b), we also see that the OLS

model is consistently forecasting more accurately than the NN model, except for the forecasts

around June 13th 2022. Therefore, only looking at the accuracy measures R2
oos and RMSE gives

a distorted picture of what is really happening. In the next subsection this result is also related

to the variable importance measure to give some further insights.

Table 6: Diebold-Mariano test statistics for the curvature characteristic

OLS AR(1) ENet(1st) ENet(2nd) RF NN

OLS - -0.92 -0.90 -0.89 -1.73* -0.11

AR(1) 0.92 - 0.85 0.86 -4.26*** 3.35***

ENet(1st) 0.90 -0.85 - 0.80 -2.92*** 1.24

ENet(2nd) 0.89 -0.86 -0.80 - -2.94*** 1.23

RF 1.73* 4.26*** 2.92*** 2.94*** - 7.58***

NN 0.11 -3.35*** -1.24 -1.23 -7.58*** -

Note: We compare all models with each other. In this case, the models stated in the
header row of the table are used as ‘model 1’, and the corresponding models stated in the
first column are used as ‘model 2’ (see Equation 21). Thus, this implies that whenever the
DM statistic is negative, the corresponding model in the first column performs worse than
the corresponding model in the header row, and vice versa. *,**, and *** represent with the
significance levels 10%, 5%, and 1% respectively. Thus, * indicates p ∈ (0.05, 0.10], **:
p ∈ (0.01, 0.05], and finally, *** a p-value smaller than 0.01. On top of that, we make use of
the two-sided DM test.

9In this case, model ‘X’ can be seen as the OLS model, ‘Y’ as some other model, let us say the AR(1) model,
and ‘Z’ as the RF model.

10where the OLS model corresponds with model ‘A’ and the RF model with model ‘B’ in Equation 23.
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Figure 7: CSSED of the OLS model compared to the RF and the NN models for the
curvature characteristic

(a) CSSED OLS-RF curvature

(b) CSSED OLS-NN curvature

Note: In these sub-figures the dates run from January 2022 to the end of December 2022. We compare the
forecasts of the OLS model with those of the RF (a) / NN (b) model. Thus, we use OLS as model ‘A’ and
RF/NN as model ‘B’ in Equation 23.

It is also interesting to mention the differences in RMSEs. As previously mentioned, the

curvature characteristic exhibits low volatility (see Table 1), which is also evident in Table

3. Specifically, it is expected for the RMSE to be small if the time series in question exhibits

low volatility. In our case the level characteristic shows the highest volatility, the slope the

second highest, and the curvature the lowest. We observe this result returning in our findings

for the RMSE; the RMSEs are highest for the level characteristic, the second highest for the

slope characteristic, and the lowest for the curvature characteristic. This result is not observed

for the R2
oos as this measure compares the models to a benchmark model, which apparently

performs relatively well for the slope characteristic, resulting in relatively low R2
oos’s compared

to the other characteristics.

By examining at the Diebold-Mariano statistics we find some more interesting results. The
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main result we find in these tables is that the RF model significantly outperforms all models

with a significance level of at most 10% except when comparing the accuracy of the OLS and

the AR(1) model for forecasting the slope characteristic. It still manages to outperform them,

but not significantly. We also find that the NN ML model performs worse than expected for the

slope and curvature characteristic. Only for the level characteristic it manages to make relat-

ively accurate forecasts. It even significantly outperforms the AR(1) and the ENet(0.0) model

for this characteristic of the IVS (or indicated as ENet(1st) in Table 4).

Figure 8: CSSED of the two ENet models for the level characteristic

(a) CSSED ENets tuning

(b) CSSED ENets forecasting

Note: In these sub-figures the dates run from January 2021 (2022) to the end of December 2021 (2022) for
sub-figure a (b). We compare the two elastic nets with each other: ENet(0.2) and ENet(0.0), where ENet(0.2)
corresponds with model ‘A’ and ENet(0.0) with model ‘B’ in Equation 23.
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5.2 Variable Importance

For the NN model, it is hard to interpret the results by only looking at the R2
oos and the RMSE.

Therefore, we also study the variable selection made by the models used in this paper. We do

this by calculating the permutation variable importance (VI) measure for all models, except

for the AR(1) model. This is due to the fact that the AR(1) model only takes the first lagged

characteristic into account, and thus the VI measure would not make much sense. It should

also be noted that for the VI of the NN model the total VI shown in the sub-figures with the

top ten most important variables is larger than 1. Although this may seem counter intuitive,

we encounter certain variables that obtain a VI smaller than 0. A variable obtains a negative

value for the relative VI if it not only fails to contribute but also harms the model’s accuracy.

In other words, if the variables for which negative values of VI are obtained would be removed

from the dataset, the model would give more accurate forecasts. As this is only the case for the

NN models, this implies that the NN models suffer from overfitting, fitting the errors instead of

the underlying time series.

We plot the top ten most important variables for each model in Figures 9, 10, and 11. Altern-

atively, in sub-Figures 9f, 10f, and 11f we include all variables to show the VI of each variable,

also illustrating the negative values for certain variables. For the level and the curvature char-

acteristic, the largest negative value of VI is obtained by the variable Bitcoin price. While there

are also some other variables for which this is the case, the difference between the Bitcoin price

variable and the others is significant. For the slope characteristic, this is primarily the SPX

return variable. We see that this variable obtains a very large negative value. This implies that

the variable is ‘hurtful’ for the forecasts and that the model performs better when not including

it. For all other models, we do not find any negative values.

When analyzing the results for the level characteristic, we find some interesting results. Namely,

for the NN model, the four most important variables are the three SPX-related variables and

the Lagged level. All models agree on the latter variable, but not so much on the SPX-related

variables. We see for the RF model, which significantly outperforms the NN model, that SPX

squared return obtains only the seventh largest value of VI. However, for all other models, the

corresponding VI measure is relatively high. This indicates that this variable is definitely useful,

but not the best one to rely on. For the SPX 5-day return variable, we even see that it is not
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in the top ten most important variables for all other models than the NN. Despite this, the NN

model performs comparatively well, being more accurate all other models, with some even being

outperformed significantly.

Figure 9: In these sub-figures the relative importance per variable are shown for forecasting
the level characteristic. Note that we only plot ten variables that have the highest importance.

(a) OLS (b) ENet(1st)

(c) ENet(2nd) (d) RF

(e) NN (f) NN full

Note: we show the ten variables which have obtained the highest values, except for sub-Figure (f) in which all
variables’ VIs are reported.

When comparing models based on their accuracy and the importance of the variables used in

their forecasts, some other interesting results are found. Firstly, for the NN model, we find

very poor results for the slope and curvature characteristics. When looking at which variables

are important for this model for forecasting the slope characteristic, the model is heavily hurt

by the variables SPX return, Risk-free rate, SPX squared return, and Mortgage rates. On the

other hand, when looking at what the well-performing models, such as RF or OLS, make use
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of, we observe that the variable SPX squared return is of relatively great importance for their

accurate forecasts. This indicates that the NN model is not able to successfully make use of

this variable variable. On top of that, the NN model its second most important variable is the

SPX 5-day return. For the OLS, ENet(1st), and RF model, this variable is either of very small

importance to no importance for the model. For the best elastic net model (ENet(1st)) this

variable obtains a coefficient equal to zero, so that this variable is not even taken into account.

Only the second-best elastic net model takes this variable into account, but as it is outperformed

by all other models (except for NN), this suggests that the variable is not very helpful for the

final forecasts.

Figure 10: In these sub-figures the relative importance per variable are shown for forecasting
the slope characteristic

(a) OLS (b) ENet(1st)

(c) ENet(2nd) (d) RF

(e) NN (f) NN full

Note: we show the ten variables which have obtained the highest values, except for sub-Figure (f) in which all
variables’ VIs are reported.
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Looking more closely at the variable importance for the NN model, we see that the SPX return

variable obtains a very high negative value (-1.86). This indicates that the variable has been

extremely detrimental to the forecasts. Compared to the other negative values that the NN

obtains for the level and curvature characteristics, we see that the magnitude of these values

is very high. This implies that the the SPX return variable introduces relatively more noise to

the forecasts than for the other forecasts for this model. Hence, we can conclude with certainty

that the model suffers from overfitting. This is also the case for the other characteristics. We

can see this result reflected in the poor accuracy metrics.

Figure 11: In these sub-figures the relative importance per variable are shown for forecasting
the curvature characteristic

(a) OLS (b) ENet(1st)

(c) ENet(2nd) (d) RF

(e) NN (f) NN full

Note: we show the ten variables which have obtained the highest values, except for sub-Figure (f) in which all
variables’ VIs are reported.
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When analyzing the results for the curvature characteristic, we immediately observe that one

particular variable is of great importance for all models, except for the NN model, namely,

Lagged curvature. Almost all models are more accurate than the NN model, except the OLS

model. However, as mentioned in the previous subsection, this model shows low accuracy due

to a few outliers in forecast errors. These large forecast errors are mainly caused by the Open

interest slope variable (in the next paragraph we discuss more on this). Hence, the reason why

the OLS model does not perform as well as the others is not due to the inclusion of the Lagged

curvature variable. Therefore, as the Lagged curvature variable is of great importance for all

models, and they all perform relatively well by using this variable, we can conclude that it is

recommended to take this lagged variable into account.

As just mentioned, the Open interest slope variable causes the forecast metrics corresponding to

the OLS model to be relatively poor. We see that this is the case when combining the CSSED

for the OLS model against the RF model (Figure 7a) with the time series of the Open interest

slope variable (Figure 12). We see a large peek in the CSSED on June 13th (2022), indicating

that the OLS model gives a very poor forecast at that date compared to the RF model. We

also see a large drop in the time series of the variable Open interest slope. When relating these

results to the variable selection of the OLS model, we indeed see that this variable is of great

importance to the OLS model. As the variable exhibits a sudden jump in value, this leads to the

model making a very poor forecast for June 13th 2022. As a result, the accuracy measures give

a distorted picture of the OLS overall performance for the curvature characteristic. In reality,

the OLS model performs quite well, except for that single observation.

Figure 12: Time series of Open interest slope

Note: this figure shows the time series of the Open interest slope variable. The date range spans from January
3rd to December 30th, and includes only trading days.
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When analyzing the variables that are most important for the best performing model (RF

in all cases), there are some variables that are consistently of great importance. The most

important variable is the lagged characteristic variable. We see this result returning for the level,

slope, and curvature characteristic of the IVS. This is in fact not surprising as the first partial

autocorrelations for each characteristic shown in sub-Figures 13a, 13b, and 13c in Appendix C

are significant. In addition, we see that the volume and open interest ‘characteristics’ are often

of high relative importance as well. Specifically, the Volume curvature (ls) variable is among the

top most important variables for the RF models. Chen et al. (2023) also find that “the common

fundamentals that drive the IV curves are related to the market liquidity”, which is in line with

our results.

6 Conclusion

The main goal of this research was to find out how machine learning methods perform in fore-

casting the characteristics of the implied volatility surface for weekly options on the S&P 500.

We used three different machine learning methods and two non-learning-based methods, where

we found that the non-learning-based methods perform comparatively well with the machine

learning methods. On the other hand, there is one model that consistently outperforms all

other models, which is the Random Forest model. An unexpected result which is found in this

paper is that the Neural Network models do not manage to make accurate forecasts for the

slope and curvature characteristic. Conversely, the Neural Network model does make relatively

accurate forecasts for the level characteristic. The linear ML method Elastic Net is consistently

outperformed by the non-linear ML method Random Forest, as well as the Neural Network

model for the level characteristic.

For the second sub-research question, we see that the results are somewhat in line with prior

research on long-term IV predictive performance. For example, we observe that the variable

selection of the models is in line with other papers, such as Chen et al. (2023). On the other

hand, while the Random Forest machine learning method performs well, the other machine

learning methods fail to fulfill their predictive potential. In many papers it is found that the

NN model performs well regarding long-term IV forecasting. The fact that it does not work for

the short-term IVS characteristic forecasting in this paper is most likely not due to the differ-

ence in contract maturity. We namely do see that the NN model does give relatively accurate
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forecasts for the level characteristic of the IVS. The poorly performing NN models for the slope

and curvature characteristics are harmed by overfitting problems.

A reason for the NN model to encounter overfitting problems could be due to the fact that

we have used a relatively small data set. NN models perform exceptionally well in a data rich

environment, but if this is not the case, forecasts made by NN models tend to be easily affected

by overfitting problems. In this study we have used only three years of data which may have

lead to the model being affected by overfitting problems. Hence, for future research, it could be

interesting to perform the same research with the same models while using a larger data set.

On top of that, note that we did not use the ‘standard’ FNN method, but we used the LSTM

variant of a RNN. Although this choice is well substantiated (see Additional remarks), there

may be a model which is even more fit for forecasting the characteristics of the IVS. According

to Medvedev and Wang (2022), their findings specifically indicate that the convolutional LSTM

model (ConvLSTM) significantly outperforms the LSTM model. Therefore, taking this model

into consideration might give even more accurate results than the Random Forest model does.

For future research, one could also look more to make an extension on the number of vari-

ables that are selected for this research. Bernales and Guidolin (2014) describe that “there are

strong cross-sectional and dynamic relationships between the IVS of equity options and the IVS

of index options”. Hence, one can take some of those variables into account in combination with

the well-performing RF model to acquire an even more accurate forecasting model. Another

adjustment that can be made is transforming the dependent variable. We saw that the three

characteristics did not follow a standard Normal distribution. Applying logarithmic transform-

ations for these characteristics might result in a better performance of the NN compared to the

results in this study.

The main takeaway from this study is that the Random Forest model is a very useful ma-

chine learning model in predicting the characteristics of the implied volatility surface. On top of

that, the variables that are of great importance to forecast the IVS are either its lagged values

or are variables that are related to the market liquidity. This study serves as a stepping stone

to future research, expanding the literature on the relatively understudied ultra short-term IVS

literature domain.
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Additional remarks

Before concluding this paper, I make some additional remarks on the progress during this thesis

process regarding the Neural Networks models performances. First, I have performed the fore-

casting procedure for a standard feedforward neural network (FNN), but due to a very poor

performance I have decided to use a more suited neural network: the Long Short-Term Memory

neural network. Using the FNN model with one hidden layer resulted in a RMSE of 15.2%

compared to a RMSE of approximately 6.0% for the other models for the level characteristic.

Changing the number of hidden layers ranging from 1 hidden layer to 5, resulted in very slight

improvements or reductions of the values corresponding with the models accuracy. Using the

LSTM neural network made this difference significantly smaller; it even managed to outperform

some of the other models for the level characteristic. Hence, the LSTM model represents the

NN method in this paper.
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Appendix

A Feature list

Table 7: Brief description of variables used

Variable Type

Lagged level of the IVS Option

Lagged slope of the IVS Option

Lagged curvature of the IVS Option

Total Open Interest (l) Option

Open Interest ‘slope’ (ls) Option

Open Interest ‘curvature’ (ls) Option

Total Volume (l) Option

Volume ‘slope’ (ls) Option

Volume ‘curvature’ (ls) Option

Mortgage index (30Y fixed rate) (d) Macroeconomic

Risk-free rate (10Y T-Bill) (d) Macroeconomic

Inflation rate (5Y break-even) (d) Macroeconomic

Gold ETF Volatility Index Macroeconomic

Crude Oil ETF Volatility Index (d) Macroeconomic

VIX SPX / Macroeconomic

SPX return SPX

SPX return squared SPX

SPX 5-(trading)day return SPX

Coinbase Bitcoin (CBBTCUSD) (ld) Cryptocurrency

Note: For the Open Interest and the Volume variables, this involves a level,
slope, and curvature measure just as is done for the IVs. The one difference is
that we now do not use a weighted average on the observations but simply look at
the total amounts (as averaging them does not make much sense). The variables
shown in bold are variables for which some data points were missing. For these
missing data points we have applied linear interpolation. Note that the letters in
the brackets represent additional adjustments made to the data; l corresponds
with a log transformation, d with first differencing, and s with a shift. More
information on this can be found in Section 3.
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B Hyperparameter Tuning Grid

Table 8: Hyperparameter tuning grid

Elastic Net Random Forest Neural Networks

α ∈ {0.1, 0.2, ..., 0.9} ntree ∈ {1, 2, ..., 500} hidden layers ∈ {1, 2, ..., 5}

mtry ∈ {1, 2, ..., 10} dropout rate = 0.2

activation function = ReLu

units per layer ∼ geometric pyramid rule

batch size = 64

epochs = 100

C Partial Autocorrelation Plots

Figure 13: Partial Autocorrelation Functions (PACF) for the three characteristics of the IVS

(a) PACF level (b) PACF slope

(c) PACF curvature
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D Additional figures

Figure 14: CSSED of the AR(1) model compared to the OLS model for the slope
characteristic

Note: In this figure the dates run from January 2022 to the end of December 2022. We compare the forecasts
of the AR(1) model with those of the OLS model. Thus, we use AR(1) as model A and OLS as model B in
Equation 23.

Figure 15: CSSED of the NN model compared to the benchmark model for the slope
characteristic

Note: In this figure the dates run from January 2022 to the end of December 2022. We compare the forecasts
of the NN model with those of the benchmark model. Thus, we use NN as model A and the benchmark as
model B in Equation 23.
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