
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Econometrics and Management Science:

programme Business Analytics and Quantataive Marketing

Soft Isolation Forests

Sven Nieuwkerk

Student number: 542549

Abstract

In this thesis, soft splitting is proposed as an enhancement for the isolation-based anomaly

detection method Isolation Forest (iForest). It is shown how a loss of information is created by

the hard splitting used in that method and the Soft Isolation Forest (SIF) is proposed to address

these shortcomings. To perform soft splitting, the relation between the splitting criterion in a

node and the distance is set out and the concept soft isolation is defined. The algorithms of

iForest are adapted with new hyperparameters and measures to perform soft splitting forming

the SIF algorithm. For the evaluation multiple simulated and real world datasets are used.

Soft splitting is found to improve predictive performance for datasets with a high number of

attributes and with scattered anomalies. Predictive performance on datasets with few attributes

and clustered anomalies decreases and computations times increase massively for all datasets.

Supervisor: Eoghan O’Neill

Second assessor: Mikhail Zhelonkin

Date final version: 25 July 2024

The content of this thesis is the sole responsibility of the author and does not reflect the view of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University.



Contents

1 Introduction 2

2 Soft splitting for Isolation Forests 6

3 Methodology 10

3.1 Building of Soft Isolation Forest and Soft Isolation Trees . . . . . . . . . . . . . . . . 10

3.2 Computing the anomaly score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Data and evaluation metrics 17

4.1 Real world datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Simulated datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results 20

5.1 Visualisation of anomaly scores SIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Effect of newly introduced parameters on performance of SIF algorithm . . . . . . . 24

5.2.1 Effect of the threshold for soft isolation and steepness of the kernel on perfor-

mance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Effect of threshold for empty nodes on performance . . . . . . . . . . . . . . 29

5.3 Comparison effects existing parameters between SIF and iForest . . . . . . . . . . . 31

5.4 Comparison performance SIF and iForest on wide range of real world datasets . . . . 34

5.5 Comparison measures of soft isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion 44

A Oblique splitting using soft splitting 48

1



1 Introduction

In anomaly detection the goal is to identify data points that do not follow the expected behaviour.

These point are called anomalies or outliers in most research. Anomaly detection has applications

in intrusion detection systems, detecting credit-card fraud, medical diagnosis, law enforcement and

earth sciences (Aggarwal and Aggarwal, 2017). According to Aggarwal and Aggarwal (2017) a lot

of outlier detection algorithms are model-based. This means that a profile of normal instances is

created and is then used to identify instances that don’t conform to this profile as anomalous. Liu

et al. (2008) state that drawbacks of this approach are that these anomaly detectors are optimised

to identify normal instances instead of anomalies and are constricted to low dimensional data and

small data size because of the higher computational complexity.

Isolation Forest (iForest) is an anomaly detection method introduced by Liu et al. (2008) and

differs from most earlier introduced anomaly detection methods by being isolation-based. Instead of

building an entire model, isolation-based methods use the fact that anomalies are “few and different”

to find the anomalies. In this case few means that anomalies are a small percentage of the total

instances and and different means that they have values that are very different from those of normal

instances. Using these properties, is it easier for isolation-based methods to isolate anomalies than

normal instances, which allows them to detect the anomalies. As this no longer requires building

a model for normal instances, isolation-based methods have several advantages over model-based

methods. These include linear time complexity, small memory requirement and robustness to noise,

irrelevant attributes and data density distribution (Cao et al., 2024). Furthermore, isolation-based

methods are unsupervised, meaning that labels are only used to evaluate the model performance

and thus not in the building of the model.

iForest determines an anomaly score for every instance based on how easy it is to isolate it

using random splits. For this it uses an ensemble of Isolation Trees. In every node of an Isolation

Tree, an attribute is selected together with a random splitting point for that attribute. Instances

on one side of the splitting point are passed down to the left node, whilst the instances on the other

side are passed down to the right node. When a node only consists of one instance that instance

is considered isolated and that node is made a terminal node. The anomaly score of the iForest

is the average of the path lengths in all the trees in the ensemble. Due to the earlier discussed

properties of anomalies, these should be isolated earlier leading to smaller path lengths and are

thus differentiable from normal instances.

2



This thesis proposes to extend the Isolation Forest with soft splitting. Instead of assigning an

instance completely to the left or right side of a split, using soft splitting instances are distributed

with weights over the nodes after a split. Irsoy et al. (2012) implemented soft splitting in decision

trees and showed several advantages of soft splitting. Soft splitting increases the information used

in every split. This leads to less complex and thus smaller trees. Furthermore, due to soft splitting

the output had a smoother fit around splitting boundaries which leads to smaller biases at those

places. These properties would be advantageous if they would also apply to Isolation Forests and

could lead to an increased ability to detect anomalies. However, the introduction of soft splitting

into a isolation algorithm gives a paradox. Using soft splitting, every instance is in every node with

a certain weight, implicating that a node is never really isolated. This highlights a few problems in

definition that arise when implementing soft splitting in Isolation Forests. Firstly, the distribution

of weights over the nodes after the splits needs to be determined. Then, it needs to be determined

when an instance is isolated. As all instances are present in every node, no instance will ever be

the only instance in a node and thus trees can keep growing forever without a sufficient stopping

criterion. Furthermore, when computing anomaly scores, one instance doesn’t just have a single

depth in one of the trees of the ensemble anymore. So a new method for calculating how easy it is

to isolate a point needs to be studied.

In recent literature, there have been many developments related to Isolation Forests. Hariri

et al. (2019) showed Isolation Forests can have biased anomaly scores due to axis-parallel splitting.

In some cases this could even lead to ghost clusters, which are groups of point that collectively

have a lower anomaly score than the points around them whilst being just as anomalous. It was

concluded that Isolation Forests have trouble with more complex data structures. To solve this,

the Extended Isolation Forest (EIF) is proposed, which uses random hyperplanes to split the data.

At every node a new random slope and intercept vector are drawn for the hyperplane in that split.

Using heatmaps of the anomaly score, it was shown that the anomaly scores are no longer biased

along the axes.

Lesouple et al. (2021) proposed the Generalized Isolation Forest (GIF), which chooses the inter-

cepts between the minimum and maximum of the projections of the datapoints on the normal vector.

This was done to prevent the many empty branches that were created by the EIF, because many

of the selected intercepts fell outside of the convex hull of the data point in the node. SCiForest,

introduced by Liu et al. (2010), is another Isolation Forest method that uses hyperplanes instead

of axis-parallel splitting. This implementation generates multiple hyperplanes in every node and

3



then proceeds to chose the hyperplane that minimises the standard deviation in the children nodes.

It is notable that this method also does not use completely random splits, but the split is guided

towards splitting between different groups of data. A similar approach was used by Tokovarov and

Karczmarek (2022), which extended regular Isolation Forests by replacing random splitting with a

probabilistic approach. Instead of using a uniform distribution for the place of the splitting point,

splits are made with a higher probability in places where data is more sparse. This again should

increase the probability of splitting between different groups of data.

Further improvements to detect anomalies in complex data structures were made by Liu et al.

(2024). They introduced a Layered Isolation Forest, where in each layer an Isolation Forest is made

on a smaller subspace of the data. This is because, as the authors claim, on smaller spaces complex

data structures become simpler and anomalies thus can be identified easier. Zhang et al. (2017)

created a Local Sensitivity Hashing (LSH) framework for Isolation Forests, which also was able

to detect anomalies in complex data structures. Furthermore, they showed some of the existing

isolation based detection methods, including iForest, were special cases of their framework using a

specific LSH family.

The introduction of soft splitting in the framework of isolation-based anomaly detection extends

current research and as to the knowledge of the author has not been done before. The central

question of this thesis is if soft splitting can improve the performance of Isolation Forests. The

main improvement of using soft splitting could be the increase of information used in every node

according to Irsoy et al. (2012). Due to this increase amount of information used in every split,

the predictive performance of the algorithm could improve. This increase in performance can be a

general improvement, but the increased information used in every split could possibly even solve

problems the Isolation Forests have with recognising complex data structures, which was highlighted

by Hariri et al. (2019) and Liu et al. (2024). Next to the predictive performance, soft splitting could

also improve the computational performance of the algorithm. In Irsoy et al. (2012) it was also

shown that the increased amount of information used in every split could lead to smaller trees. On

the other hand are the computations in every node more complex, which potentially could lead

to more computations. Especially if the extra information used in every split doesn’t improve the

decision by much, this could lead to a worse computational performance.

To find the effect of soft splitting in isolation based outlier detection, this thesis generalises the

concept of hard splitting in Isolation Forests to a soft splitting framework. For this, it is shown

that the distance from an instance to a splitting hyperplane is equivalent to how much the instance

4



complies to the splitting criterion of that split. The concept of soft isolation is introduced to solve

the problem of instances never being fully isolated using soft splitting. The Soft Isolation Forest

(SIF) algorithm is introduced, extending the iForest algorithm with soft splitting. For this SIF

algorithm a set of new hyperparameters are introduced to control the soft splitting process. In

order to evaluate the performance of the SIF algorithm, two types of datasets are used. Simulated

2-dimensional datasets are used to visualise the effects of the newly introduced hyperparameters

and to study the ability of the SIF algorithm to recognise complex data structures. Furthermore,

a set of 13 real world datasets is used to evaluate the performance of the SIF algorithm. To

evaluate the performance, the effects of the newly introduced parameters on the performance of the

SIF algorithm are studied and benchmarks are set for these parameters. Then, the effects of the

existing hyperparameters in the iForest algorithm are compared between the SIF algorithm and the

iForest algorithm. Finally, the performance of the SIF algorithm using different measures for soft

isolation is also studied.

In this thesis, it is found that soft splitting can improve the predictive performance on some

datasets, especially ones with a high number of attributes and without clustered anomalies. How-

ever, on datasets with less attributes and clustered anomalies performance is most of the times

worse than that of iForest. Furthermore, the computational performance declines massively com-

pared to the iForest algorithm. The computation time can increases for most datasets by a factor

of 100. This is caused by a big increase in the number of computations needed to perform soft

splitting and an increase in the number of nodes used in the ensemble. Both predictive performance

and computational performance are limited by the inability to optimally set hyperparameters, as

hyperparameter optimisation in unsupervised outlier detection algorithms is still an active area of

research (Ma et al., 2023). It is shown that the optimal setting of hyperparameters depend on

both the settings of the other hyperparameters and on the dataset, which increases the difficulty

of optimally setting the hyperparameters without optimisation. If the hyperparameters were to be

optimised, both the predictive performance and computational performance of the SIF algorithm

could be further improved, but that is left beyond the scope of this thesis. However, as these further

improvements are only potential for now, soft splitting cannot be seen as an overall improvement

from hard splitting without a better method to optimise the hyperparameters and enhancements to

decrease the computation time. If these improvements can be made however, soft splitting shows

potential to improve the performance for especially datasets with a high number of attributes.

This thesis is structured as follows: In Section 2 the soft splitting framework is formalised.

5



Section 3 proceeds to transform this framework into the SIF algorithm. The data and evaluation

metrics used in this thesis are set out in Section 4. In Section 5 the effects of the hyperparameters

on the performance of the SIF algorithm are studied and the performance of the SIF algorithm is

compared to that of the iForest algorithm. Section 6 provides a discussion on the found results and

concludes this this thesis.

2 Soft splitting for Isolation Forests

This section will proceed to explain how soft splitting works in the context of Isolation Forests. To

do this, first some shortcomings of hard splitting in the Isolation Forest are pointed out. Then, it is

shown how soft splitting can be used to overcome these shortcomings. Finally, new challenges that

arise due to soft splitting are set out.

In a normal Isolation Forest, the trees are build by randomly partitioning the instances. Due

to anomalies being few and different, they will be isolated more easily from the other instances and

thus have shorter paths in the Isolation Trees (Liu et al., 2008). However, these random splits can

be arbitrary, as a slightly different split could lead to a point being isolated earlier or later in the

Isolation Tree. This could also lead to two points being isolated from each other whilst being really

close together. High dimensional data could especially suffer from this, because another split in the

same dimension could decrease the effect of a possibly badly placed split. For high dimensional data

it is, however, less likely that another split is made in the same dimension. This problem is created

by a loss of information that is introduced by hard splitting, as after the split instances are either

on the left or right side of the split. All information about how much the instance complied with

the splitting criterion in the split, is lost. Hard splitting also leads to large biases around decision

boundaries, because as soon a scoring instance crosses the splitting criterion the output changes

completely. However, a small shift of the instance should not result in a major change in output,

especially since the place of the decision boundary is somewhat arbitrary.

A visualisation of the mentioned loss of information in a highly stylised setting can be seen in

Figure 1. Here, three possible splits across the x-axis are shown together with 4 instances. It should

be clear that an isolation-based algorithm aims to isolate both points A and D and wants to keep

points B and C together. Despite the three splits shown being really close together, the results of

the three splits are very different. Using split 1, the information saved reflects that point A complies

less than the other points to the splitting criterion, but not that B and C also comply less to the

6



Figure 1: Visualisation of some shortcomings of hard splitting in Isolation Forrest

criterion than point D. For further nodes point B and C are recorded to have the same compliance

to split 1 as point D whilst this is clearly not the case. Split 3 has the completely opposite effect,

only switching the results for point A and point D. A small shift of the splitting hyperplane has

caused the opposite information to be saved and either the information about the relation between

point A or point D with points B and C is lost. Split 2 makes the loss of information even worse

as the output gives that points A and B comply less to the splitting criteria than points C and D.

However, it is not reflected that the compliances of points B and C to the split are almost equal, the

compliance of point A is way more than those and the compliance of point D is way less. Using this

split, not only is both the relation between point A and points B and C and the relation between

point D and points B and C lost, but also the relation between point B and C themselves. This also

shows the problems about the sharp decision boundaries as a small shift from point C to B, gives

a completely different output for the instance, while the information known about the instance has

barely changed. In practise, these shortcomings are mostly solved by the Isolation Forest being an

ensemble method, meaning that the shortcomings of the multiple agents can be masked by each

other. This means that by solving these shortcomings, Isolation Forests using soft splitting could

potentially need a smaller ensemble to reach the same predictive performance.

To solve these shortcoming, this thesis introduces soft splitting in the Isolation Forest framework.

Soft splitting was earlier implemented in decision trees by Irsoy et al. (2012). In soft splitting

instances are no longer entirely in either the right split or the left split, but get a weight to be in

either of the splits based on how much the instance complies to the splitting criterion of the split.

Compared to hard splitting, this means that splits are no longer determined by a binary 0 or 1,

but on a continuous scale from 0 to 1. An instance complies more to the split compared to another

instance if it would satisfy a stricter version of the splitting criterion. For axis-parallel splitting this

7



criterion is

xq − p < o, (1)

where q is the selected attribute, xq the value of the instance X for attribute q and p the split

point. o, which is mostly set to 0, is the strictness of the criterion with a lower value of o meaning a

stricter criterion. It can easily be seen that an instance complying more to this split is geometrically

equivalent to the instance having a smaller signed distance,

sigd(X, p, q) = xq − p = sign(xq − p) ∗ d(X, p, q), (2)

to the splitting hyperplane. The signed distance here is just a combination of the rotation and the

distance of the instance towards the splitting hyperplane. This equivalence also holds when using

oblique splitting, as in the EIF algorithm (Hariri et al., 2019). There the splitting criterion is

(x⃗− p⃗) · n⃗ < o, (3)

where p⃗ is the splitting point and n⃗ is the normal of the splitting hyperplane, whilst the signed

distance is

sigd(x⃗, p⃗, n⃗) =
(x⃗− p⃗) · n⃗
||n⃗||

. (4)

Here the length of the normal vector n⃗ is used to normalise the distance. This can be done as

scaling with ||n⃗|| on both sides in Equation 3 doesn’t influence which instances satisfy the splitting

criterion. So in this way, soft splitting can use the distance between an instance and the splitting

hyperplane to determine the weight an instance should get after every split.

Figure 1 can now again be used to show how the loss of information is now solved. All three

splits now reflect points B and C with really similar weights as they both have a similar distance

to the splitting hyperplane, even if split 2 is used. Furthermore, both point A and point D have

very different weights from point B and C, where with hard splitting splits 1 and 3 were only able

to reflect the difference of either point A or point D to points B and C. Thus loss of information

about the differences between the instances is completely solved. Furthermore, the large biases

around decision boundaries are also solved. This can be seen as the output changes slowly as the

distance of the instance to the splitting hyperplane increases, leading to smooth transitions around

the decision boundaries. A small shift of an instance can no longer lead to big difference in output,

but is now represented proportional to the distance of the shift. The shortcomings of hard splitting

showed earlier in this subsection are resolved.

8



Soft splitting, however, does introduce some new challenges that need solutions before it can

be implemented. Firstly, short splitting makes it impossible to isolate an instance from all other

instances. This is because in every split, all instances will be present with a certain weight. This

gives a paradox as the goal of the algorithm is to isolate every point from each other, whilst no

instances can ever be isolated from each other. Therefore, the concept of soft isolation needs to be

defined. A natural definition of this would be that an instance is softly isolated when the weight of

an instance in a node is large compared to the weights of all other instances. In the most extreme

case this would mean that an instance is isolated, when the proportion of the weight of that instance

in the node goes to 1, while the proportion of the weights of the other instances go to 0. This would

be equivalent with the definition of isolation when using hard splitting, showing that soft isolation is

a more general concept. Therefore, soft isolation could possibly lead to a wider range of options to

detect outliers. For example, not the the isolation of a single instance could be the goal, but rather

the isolation of a group of instances to detect grouped anomalies. The importance of detecting

clustered anomalies using Isolation Forests is emphasised in Liu et al. (2010).

Another implication of every instance being in every node is that in theory a node is never

empty and thus can always be further expanded upon. Although, in most nodes at some point

one instance will be isolated, the weights might already be so little that the output is no longer

influenced by the results of these nodes. Therefore, to save computation power, branches with little

weight should be pruned early. A final implication of every instance being present in every node is

that the area in which the splitting intercepts of the hyperplanes are selected is the same for every

node and does not shrink when proceeding further into the tree. With hard splitting this does

happen as the area in which the intercepts can be selected is bounded by the instances present in

the node. This allows Isolation Forests to zoom in on the small differences between the instances

left in the node and differentiate between them. Using soft splitting this is harder all intercepts

are chosen on a global level, significantly decreasing the probability of choosing a splitting point

that would differentiate between two close instances. Furthermore, if a new split falls completely

or mostly outside of an already made split, no new information will be revealed by the split. These

splits will thus not improve the predictive performance, whilst increasing the computation time.

The evaluation stage of the algorithm also needs to be slightly changed to incorporate soft

splitting. This is because as every point is in every split, instances no longer have a single depth.

A natural way to get a single depth for a point in a tree, is to take the weighted average with

the weights the point has in every terminal node. Notable is that following this method more

9



information is used in the computation of the anomaly scores. In hard splitting an instance follows

a single path through a certain number of splits, s, to a terminal node. In soft splitting the instances

follows all the possible paths with a certain weight. This means that if it reaches the same depth

of the hard splitting path in all the paths, it uses 2s−1 splits. This again, could especially be useful

in a high-dimensional dataset, as the increased number of splits increases number of attributes the

attributes and thus information used to compute the anomaly score, using more of the available

data.

3 Methodology

In this section, the method for performing soft splitting in Isolation Forests, called Soft Isolation

Forest (SIF), is introduced, as laid out by the previous section. The methodology of this algorithm

can be split up in three algorithms, like in most research in Isolation Forests, where the first two

algorithms are part of the training phase and the final algorithm is part of the scoring phase. The

first algorithm is trivial as it combines the different agents of the Soft Isolation Forest into an

ensemble. The second algorithm concerns the building of an individual Isolation Tree using soft

splitting. The third and final algorithm computes the weighted path length of an instance. The

algorithms are adaptations of the iForest algorithms of Liu et al. (2008), which they resemble very

closely. To perform soft splitting, new functions and parameters are introduced to measure soft

isolation and to transform the distance in a split into a weight,.

3.1 Building of Soft Isolation Forest and Soft Isolation Trees

The algorithm for building the ensemble of the Soft Isolation Forest, given in Algorithm 1, barely

changes from the original algorithm for building the iForest. The only notable change is that the

maximum tree height limit l is no longer set to ceiling(log2 ψ), but to another function h of the

subsample size ψ. This is because splitting is slightly different from the original algorithm, making

it unclear if the logarithm still gives a good relation between subsample size and the maximum tree

height.

Soft splitting does affect the algorithm for building an Isolation Tree. The new algorithm can

be seen in Algorithm 2. This algorithm uses axis-parallel splitting, similarly to the original iForest

algorithm by Liu et al. (2008). However, this can easily be adapted for oblique splitting. This

adaption is not studied further in this thesis, but it can be found in Appendix A.

10



Algorithm 1 SIF

Input: X - input data, t - number of trees, ψ - sub-sampling size, i - stopping threshold for isolation

measure, o - stopping threshold for empty nodes

Output: A set of t Soft iTrees

1: Initialize Forest

2: Set height limit l = h(ψ)

3: for i = 1 to t do

4: X ′ ← sample(X, ψ)

5: Forest ← Forest ∪ Soft Isolation Tree(X ′, 0, l, i, o)

6: end for

7: return Forest

Algorithm 2 Soft Isolation Tree

Inputs: X - input data, w - weight of every data point, e - current tree height, l - height limit, i

-stopping threshold for soft isolation, o - stopping threshold for empty nodes, k - base steepness of

the kernel

Output: a Soft Isoltaion Tree

1: if e ≥ l or isolation(w) ≤ i or sum(w) < o then

2: return exNode{Weights← w}

3: else

4: Let Q be the list of attributes in X

5: Randomly select an attribute q ∈ Q

6: Randomly select an intercept point p between the in the range of q in X

7: wl ← g(X, q, n, k)

8: wr ← 1− wl
9: return inNode{Left← Soft Isolation Tree(X,w ∗ wl, e+ 1, l, i, o, k),

10: Right← Soft Isolation Tree(X,w ∗ wr, e+ 1, l, i, o, k),

11: Attribute← q,

12: Intercept← p}

13: end if

11



The first change of Algorithm 2 compared to the iForest algorithm is the criterion which deter-

mines whether a node is a terminal node on row 1. Here, isolation(w) ≤ i has replaced |X| ≤ 1 as

criterion for a point to be isolated. isolation is a function that measures the level of soft isolation, as

defined in Section 2, in a node and i the threshold to determine the level of soft isolation needed for

the node to be made a terminal node. A possible choice for isolation could be an impurity measure.

These are used in decision trees to decide the best possible split by measuring how homogeneous a

split is. The misclassification error is the simplest impurity measure and the impurity measure that

is closest to the original definition of isolation. It is computed as

misclassification(w) = 1−max
i∈X

pi., (5)

where pi is the relative weight of instance i compared to the weight of all instances in X

pi =
wi∑
j∈X wj

. (6)

Thus, the misclassification error measures the isolation of the most isolated instance and using this

measure an instance is softly isolated when the relative weight of the instance is higher than 1− i. If

i would be set to 0, an instance would have to be completely isolated to reach soft isolation and the

isolation criterion would be the same as when using hard splitting. The Gini-impurity and Entropy

are more sophisticated impurity measures. They can be computed following

Gini(w) = 1−
∑
i∈X

pi
2, (7)

Entropy(w) = −
∑
i∈X

pi log2 pi. (8)

Both these use the weights of all instances in a node to determine how homogeneous the weights in

the node are distributed. As these impurity are more sophisticated, they might be able to improve

the detection of isolated instances. This could improve both the predictive performance through

more accurate depths and the computational performance through smaller trees. Furthermore, as

the weights of all instances are used to measure the level of isolation, they could potentially be used

to better detect the presence of clustered anomalies. For setting the threshold for soft isolation it

is important to note that all of these measures for soft isolation have different ranges of potential

values. All three have a lower bound of 0, which is the most strict form of isolation. The upper

bound however differs between them. For the misclassification error the upper bound is always 1,

whilst for the Gini-impurity and the Entropy it depends on the subsample size ψ. The upper bound

of the Gini-impurity is 1− 1
ψ and the upper bound of the Entropy is log2 ψ.

12



In the first row sum(w) < o is also added to stop the algorithm developing further on empty

nodes. The sum of weights w is used as a measure for how many instances are left in the node and

the threshold o determines how much weight should be left in a node to not be cut off. By adding

this condition, the algorithm is not able to infinitely expand on already empty nodes. There are

other alternatives to determine whether a node is empty. For example, the instance with the highest

weight could be used instead of the sum of weights. The threshold o could also be improved. In

the current implementation the threshold is static, but it could use the depth of the node e. The

expected weight of every instance decreases by a factor of 2 for every extra level of depth. By

incorporating this decrease in the threshold, the weights of the instances in the node can be checked

against their expected weights to see if the weights are low enough to be considered empty.

In rows 5 and 6 the splitting attribute and point are determined, which together form the

splitting hyperplane. This does not change from the original algorithm. However, as explained in

Section 2 contrary to the hard splitting algorithm the area in which the splitting point is selected

does not shrink. Thus, the children of a node can have overlapping areas on earlier split attributes

and can make the exact same split as the parents. Some enhancements to the algorithm are possible

to shrink the selecting area. Firstly, the area in which the intercepts is selected in row 6 can be

bounded by the splits in the parent nodes. Another option is to only use the area spanned by

instances that have a weight higher than a certain threshold. Then the area in which the intercept

is selected only uses relevant instances. Furthermore, other enhancements could also serve the same

purpose. However, as this thesis will not use any enhancement to shrink the area in which the

splitting area is selected, it will not proceed to dive further into this topic.

In rows 7 and 8 the hard splits of the iForest algorithm are replaced by a gating function g. The

gating function g assigns weights between 0 and 1 to determine how much a point is in the split. As

discussed in Section 2, these weights should use the signed distance between the instance and the

splitting hyperplane as a measure of how much an instance complies to to splitting criterion. The

distance should be transformed to weights between 0 and 1, where points with bigger distances to the

split should be closer to either 0 or 1, depending on their rotation towards the split. Furthermore,

the weights in the right and the left split should sum up to 1 meaning that a change in distance

should have the same effect on the right and left split. This implies this transformation should be

symmetric around a signed distance of 0 and the weight at that distance is 0.5 for both sides of the

split. For this, a sigmoid function can be used. A sigmoid function that is often used in literature

13



is the logistic function. The logistic function is defined as

f(x) =
L

1 + exp(−k(x− x0))
, (9)

where L is the number the function approaches if x goes to +∞, x0 the midpoint of the function

and k the steepness of the function. As f goes to 0 when x goes to −∞, the logistic function with

L = 1 and xo = 0, satisfies all conditions. Thus, using the signed distance in equation 2, the gating

function g can be written as

g(X, p, q, k) =
1

1 + exp(−k ∗ sigd(X, p, q))
. (10)

The gating function determines the weights of the split using the distance of the instances to the

splitting hyperplane and the steepness of the kernel k. k determines how fast the weights go to 0

or 1 for higher distances to the splitting hyperplane. As k is constant, every split has the same

importance in computing the final weight of an instance. Alternatively, k could be scaled for different

properties of the split. For example, k could be scaled using the tree depth e, to make later splits

have a greater importance. This, however, is not adapted in this paper.

The scaling of different attributes directly influences the weights via the signed distance. Splits

on attributes with a larger variance therefore always have more extreme weights. To resolve this,

every attribute should be standardised before using the algorithm. Equivalently, k could also be

scaled with the standard deviation of the attribute in every split.

Figure 2: Plots of the allocated weight for a distance of an instance for different levels of steepness

The weights produced by the gating function g for different steepnesses of the kernel and distances

is shown in Figure 2. The standardisation of the data also helps with the interpretation of the

14



weights given at a certain distance. The weights can be compared to the proportion of values that

falls under the standard normal distribution at that distance. If the centre of the standard normal

distribution is at the mean of the attribute, a signed distance of 1 means that 84.2% is expected to

comply more to the splitting criterion and 15.8% to comply less. At this distance a steepness k of

0.5 gives a weight of 0.62, a steepness of 1 gives a weight of 0.73, a steepness of 2 gives a weight of

0.88 and a steepness of 5 already a weight of 0.99. Thus, by setting the steepness of the kernel k, the

ratio between the weight distributed at a distance and the proportion of the data present at that

distance can be set. The small example also shows how quickly the weights rise for higher levels of

the steepness of the kernel and it is clear that the weights distributed to both nodes converge to

hard splitting as k goes to infinity. In the figure it can already be seen that the weights distributed

to the nodes at k set to 25 already come very close to hard splitting.

Using this gating function, the algorithm can compute the weights on both the left and right

side of the split in rows 7 and 8. The weights for the right side can be calculated by subtracting the

calculated weights from 1, as the weights on both sides of the split should sum to 1. The algorithm

then proceeds by calling the same function recursively for the left and right child, whilst saving the

splitting attribute and intercept for the scoring phase.

3.2 Computing the anomaly score

In the iForest algorithm the anomaly scores are based on the path length of a point in different

Isolation Trees. However, using soft splitting instance no longer have a single path length, as

explained in Section 2. Instead, the weighted path length can be used. In Algorithm 3 this is

computed. The only changes of this algorithm are that on rows 6 and 7 the weights for the left and

right side of the split are computed using gating function g and that the returned value on row 8 is

now the weighted path length of both children, instead of only the path length of one those nodes.

On row 2, c(n) is still added to the returned tree depth as compensation for the early termination

when the maximum tree height is reached. As Isolation Trees with hard splitting have an equivalent

structure to Binary Search Trees the expected path length c(n) of an Isolation Tree with a n training

instances can be computed in the same way as the expected path length of an unsuccesful search

in a Binary search Tree. This computation is

c(n) = 1n>22H(n− 1)− (2(n− 1)/n), (11)

where H(i) is the harmonic number estimated by log(i)+0.5772156649 (Euler’s constant). Therefore

15



Algorithm 3 WeightedPathLength

Input: x - an instance, T - an iTree, e - current path length; to be initialized to zero when first

called, k - base steepness of the kernel

Output: path length of x

1: if T is an terminal node then

2: return e + c(sum(T.Weights))

3: end if

4: q ← T.Attribute

5: p← T.Intercept

6: wl ← g(x, q, p, k)

7: wr ← 1− wl
8: return wl · WeightedPathLength(x, T.left, e + 1, k) + wr · WeightedPathLength(x, T.right,

e+ 1, k)

c(n) can be used to estimate the remaining path length of a branch that is terminated early by the

tree height limit. However, using soft splitting the assumption of equivalence to a Binary Search

Tree no longer holds. This can for example be seen, if the threshold for empty nodes o is set to

a low level. Then empty nodes will keep being expended on, which would lead to higher expected

path lengths than when using hard splitting and thus then will be predicted by the Binary Search.

Thus, c(n) will underestimate the expected remaining path length for nodes. Cortes (2021) showed

that more variations of Isolation Forests that ore often used in literature, suffer from an inaccurate

expected path length.

The computation of the anomaly scores of instance x is the same as in the iForest algorithm,

given by

s(x, ψ) = 2
−

1
t
∑

(h(x))

c(ψ) , (12)

where t is the number of trees in the forest and h(x) is the weighted path length of point x. Here,

c(ψ) is the expected path length of a tree trained with ψ training instances. This estimation is again

biased. However, in this case the expected path length is only used to scale the anomaly scores.

Therefore, it will only impact the interpretation of the anomaly scores and not the performance.

16



4 Data and evaluation metrics

This section gives an overview of the datasets and evaluation metrics used in this research. This

research uses a combination of both real world datasets and simulated datasets, which is a common

approach in the anomaly detection literature. The most important evaluation metric is the Area

Under The Curve (AUC) of the Receiver Operating Charecteristics (ROC) curve.

4.1 Real world datasets

In this research 13 real world datasets are used to evaluate the performance of the Soft Isolation

Forest. These datasets are obtained from Shebuti (2016). Table 1 gives an overview of different

datasets with their properties. The number of instances can differ between almost 600000 and

around 500. Most datasets have around 5 numerical attributes with two datasets having more (36

and 274 respectively. Anomaly percentage can differ between very low percentages under 1% for the

larger datasets to 35% for some of the smaller datasets. Of these datasets, Http and Annthyroid

are identified by Liu et al. (2010) to only have clustered anomalies, whilst Satellite, Pima, Breastw

and Ionosphere are identified to have mostly scattered anomalies. Here, clustered anomalies are

anomalies that have close proximity to each other, whilst scattered anomalies are anomalies that

do not have a close proximity to both other outliers and the normal instances.

4.2 Simulated datasets

In addition to the real world datasets, this research uses some simulated datasets. These are used

to show how different structures of the data affect the output of the algorithm. As this will be

done using visualisations, like in Hariri et al. (2019) and Liu et al. (2024), these datasets are 2-

dimensional. Three different datasets are simulated. In the first the data follow the shape of a

sinusoid, in the second a spiral and in the third the normal data consist of multiple small clusters,

called small blobs. The sinusoid is generated using

y = 10 · sin
(
2π

5
· x

)
+ ϵ, (13)

where x varies from 0 to 5. ϵ represents noise following a Normal distribution with mean 0 and

standard deviation of 2. In total 3000 points are generated with x-values evenly spread out between

0 and 5. The spiral is generated using the equation for a spiral in polar coordinates, r = 1
2π · θ,

17



Number of instances Number of attributes Anomaly percentage

Http (KDDCUP99) 567497 3 0.4%

ForestCover 286048 10 0.9%

Smtp (KDDCUP99) 95156 3 0.03%

Shuttle 49097 9 7.2%

Mammography 11183 6 2.3%

Annthyroid 7200 6 7.4%

Satellite 6435 36 31.6%

Thyroid 3772 6 2.5%

Cardio 1831 21 9.6%

Pima 768 8 34.9%

Breastw 683 9 35.0%

Arrhythmia 452 274 14.6%

Ionosphere 351 33 35.9%

Table 1: Overview of the datasets containing some properties of the dataset

which gives the following formulas for the x- and y-coordinates

x = (r + ϵx) · cos(θ), (14)

y = (r + ϵy) · sin(θ). (15)

Here θ varies from 0 to 3 × 2π and ϵx and ϵy are both distributed uniformly between 0 and 0.4.

In total 2000 data points are generated evenly spread out over the range of theta. Finally, the

small blob dataset is simulated using a multivariate normal distribution with covariance matrix

Σ =

0.25 0

0 0.25

 and a different mean for every cluster. In total there are 20 clusters and each

cluster has 50 data points. In all three datasets 100 outliers are generated, where the x values of

the outliers is uniformly distributed between the minimum and the maximum value of x in that

dataset, whilst the y values are uniformly distributed between the minimum and maximum value

of y. The scatterplots of these dataset can be seen in figure 3.

18



(a) Sinusoid dataset (b) Spiral dataset (c) Small blobs dataset

Figure 3: Scatterplots of the simulated datasets with the outliers in red the outliers and the normal

data in blue

4.3 Evaluation metrics

The most important evaluation metric to measure the predictive performance of Isolation Forests

is the Area Under Curve (AUC) of the Receiver Operating Characteristics (ROC) Curve. The

ROC curve sets out the True Positive Rate (TPR) of a binary model against its False Positive

Rate (FPR). The TPR is the ratio of which the model predicts actual positive, or non-anomalous,

instances to be positive and can thus be calculated as

TPR =
TP

TP + FN
, (16)

where TP is the number of positives that are predicted to be positive, or True Positives, whilst

FN is the number of positives that are predicted to be negative, or False Negatives. On the other

hand, the FPR is the ratio of which the model predicts negative instances to be postives and thus

is calculated as

FPR =
FP

TN+ FP
, (17)

where FP is the number of negatives that are predicted to be positive, or False Positives, whilst TN

is the number of negatives that is predicted to be negative, or True Negatives. A good performing

model would have a high TPR, whilst having a low FPR.

Isolation Forests give an anomaly score to every instance, where an instance with a higher score

has a higher probability to be anomalous, or negative. A threshold needs to be set to determine

which instances are anomalous. By setting the threshold, instances over the thresold are predicted

to be negative and under the threshold to be positive, thus determining the TPR and FPR. When

the threshold rises, more instances are predicted to be positive as more instances fall under the

threshold and thus the TPR and the FPR both rise. This means that a model is better when

the TPR rises quicker than the FPR. To measure this, the ROC curve plots the combinations of

19



TPR and FPR set by all different thresholds against each other. The AUC value of this curve

then represents the performance of the model. A model that randomly chooses between predicting

positive or negative will have an AUC-value of 0.5

Next to the predictive performance of the model, the computational performance of the method

is very important. Computation time for Isolation Forest can roughly be divided into two parts.

The first part is the size of the trees, as computation time will increase as the number of nodes in a

tree increases. This also has a big impact in the amount of storage the algorithm takes. The second

part is the number of computations per node. When using soft splitting, these obviously increase

as for every instance a weight needs to be calculated in every node.

5 Results

In this section the results of this research are set out. For this, first the simulated datasets are used

together with heatmaps of the anomaly score to study how the output of the SIF algorithm differs

from the iForest algorithm. Using these simulated datasets and heatmaps, the effects of the newly

introduced parameters, the threshold for isolation and the steepness of the kernel, are set out. This

section proceeds to study the effect of different levels of these newly introduced parameters on the

performance of the model for different levels of subsample size and tree height limit. Then this is also

done for the threshold for empty nodes. Benchmarks are then set for these new parameters based on

the acquired results. These benchmarks will then be used to further study the performance of the

SIF. Optimisation of hyperparameters in unsupervised outlier detection models is still an ongoing

field of research according to Ma et al. (2023) and most literature in Isolation Forests use such

benchmarks for the different parameters (see for example Liu et al. (2024)). After benchmarks for

the new parameters are set, the effect of the subsample size, tree height limit and number of trees is

compared to the effect of these in the iForest algorithm. Then, performance of the SIF algorithm is

compared for a large number of real world datasets to the iForest algorithm in order to determine

the global performance of both algorithms. Finally, a comparison of the performance of the SIF

algorithm is made between different measures for soft isolation.

5.1 Visualisation of anomaly scores SIF

This subsection focuses on visualising the outputted anomaly scores of the SIF algorithm. These

visualisations are first used to compare the outputted anomaly score maps between the SIF algorithm

20



and the iForest algorithm. Then they are used study the effects of the two most influential new

parameters, the threshold for soft isolation and the steepness of the kernel. For these visualisations,

heatmaps of the outputted anomaly scores of the simulated 2-dimensional datasets are used.

In literature, it is widely established that the iForest algorithm has a limited capability to

recognise complex structures in datasets (Hariri et al., 2019; Cao et al., 2024). In the heatmaps

of anomaly scores, the complex structures, like sinusoid or spirals, can no be recognised, whilst

they are very present in the data. Furthermore, in the outputted anomalies scores sometimes ghost

cluster are created. Ghost clusters are regions where there are higher anomaly scores, without there

actually being more datapoints in the dataset in those regions. One of the reason these can occur

because of the symmetry of surrounding clusters together with axis-parallel splitting. In Section

2 the increased information used in every split when using soft splitting, is raised as a potential

solution for these problems. Another visual implication of the use of soft splitting in SIF should

be that the decision boundaries should be less present in the heatmaps of the outputted anomaly

scores. To study these effects the anomaly scores on the 3 simulated datasets are computed for

both the SIF and iForest algorithms and these anomaly scores are shown using heatmaps. For both

SIF and iForest, the number of trees in the ensemble is set to 50, the subsample size to 64 and the

maximum tree height to 8. Additionally for SIF the steepness of the kernel is set to 50, the measure

for soft isolation used is the misclassification error, the threshold for soft isolation is 0.3 and the

threshold for empty nodes is set to 1.

In Figure 4 the scatterplots of the normalised datasets can be seen together with the heatmaps

of the SIF and iForest algorithms for those datasets. It can clearly be see that the ability of the SIF

algorithm to recognise complex data structures has not improved very much. Comparing Subfigures

4b and 4c the sinusoid might be slightly more recognisable for the SIF algorithm than for the iForest

algorithm. However, the spiral form is not recognisable in both Subfigures 4e and 4f. The ghost

cluster problem, which can clearly be seen in some places of Subfigure 4i is also not entirely solved

by applying soft splitting. In Subfigure 4h some of the ghost clusters have disappeared. However,

in the empty spaces between the clusters anomaly scores have generally increased. This seems

to be caused by the smoother transition between decision boundaries, which makes it harder to

differentiate between clusters and the empty spaces. The SIF algorithm does better recognise the

most extreme cluster of the dataset in the top left. Although the implementation of soft splitting

does not have a big effect on the recognition of complex data structures, the smoothing out of the

decision boundaries can clearly be seen. In the heatmaps of iForest the straight, axis-parallel decision

21



(a) Scatterplot of the

normalised Sinusoid dataset

(b) Heatmap of anomaly scores

SIF for Sinusoid dataset

(c) Heatmap of anomaly scores

iForest for Sinusoid dataset

(d) Scatterplot of the

normalised spiral dataset

(e) Heatmap of anomaly scores

SIF for Spiral dataset

(f) Heatmap of anomaly scores

iForest for Spiral dataset

(g) Scatterplot of Small blobs

dataset

(h) Heatmap of anomaly scores

SIF for Small blobs dataset

(i) Heatmap of anomaly scores

iForest for Small blobs dataset

Figure 4: The scatterplots of three different simulated datasets with the heatmaps of anomaly scores

that the SIF and iForest algorithms assign to these datasets.

22



(a) iForrest (b) i: 0.2, k: 15 (c) i: 0.2, k: 75

(d) i: 0.3, k: 50 (e) i: 0.8, k: 15 (f) i: 0.8, k: 75

Figure 5: Heatmaps of the anomaly scores in the dataset with multiple clusters for different settings

of the threshold for soft isolation i and the steepness of the kernel k

boundaries are clearly visible compared to the heatmaps produced by the SIF algorithm. There,

especially away from the edges of the data, the changes in score behave much more organically.

To further study the changes between the iForest algorithm and the SIF algorithm, the effect of

two most influential newly introduced parameters is studied. These are the threshold for isolation

i and the steepness of the kernel k. This study will only use the Small blobs as the algorithms are

able to recognise the structure of this dataset, in contrast to the Sinusoid and the Spiral datasets.

Heatmaps for different combinations of these parameters are shown in Figure 5. Here Subfigures 5a

and 5d are the heatmaps of the iForest and SIF algorithms in Figure 4, whilst the other 4 subfigures

are new heatmaps of the SIF algorithm using different values for the threshold for soft isolation and

steepness of the kernel.

The effect of the steepness of the kernel can best be seen when comparing Subfigures 5b and

5e with Subfigures 5c and 5f. For lower values of the steepness of the kernel, the anomaly scores

seem to be more homogeneous. The anomaly scores are smoothed out and decision boundaries are

23



barely visible. This is different for higher values of the steepness of the kernel, where the anomaly

values are way less smooth and decision boundaries are more visible. From these heatmaps, it

can be seen that smooth decision boundaries are not always a positive. In this case, because the

anomaly scores can only change gradually, a lot of empty space has a high anomaly score just

because it is between regions with a high density of data points. Comparing Subfigures 5b and 5c

with Subfigures5e and 5f the effects of different values of the threshold for isolation i can be found.

The main effect of this parameter seems to be that anomaly scores become more focused around

real data points as the setting of this parameter becomes stricter. Regions with a high density of

points are differentiated better from regions with a low density of points. Finally the heatmap of

the iForest algorithmin Subfigure 5a most closely resembles the heatmap in Subfigure 5c. This is as

expected because as explained in section 3, an iForest can be seen as an SIF, where the threshold

for isolation i approaches 0 and the steepness of the kernel k approaches infinity.

5.2 Effect of newly introduced parameters on performance of SIF algorithm

In this subsection the effects of the three newly introduced hyperparameters on the performance of

the SIF algorithm are studied. As the effects of these parameters might depend on the settings of

the subsample size and the maximum tree height, the results are set out for different levels of those

parameters. Furthermore, the optimal values of the threshold for soft isolation and the steepness

of the kernel are expected to possibly depend on each other, whilst the threshold for empty nodes

is expected to by independent from those. Therefore, firstly the threshold for soft isolation and

the steepness of the kernel are studied, keeping the threshold for empty nodes fixed. Then, the

effect of the threshold for empty nodes is studied, keeping these other two hyperparameters fixed.

The number of trees in the ensemble is kept constant at 50, as this parameter is not expected to

influence the effects of the newly introduced hyperparameters and the misclassification error is used

as measure for soft isolation.

5.2.1 Effect of the threshold for soft isolation and steepness of the kernel on perfor-

mance

In order to do study the effects of the threshold for soft isolation and the steepness of the kernel, the

performance of SIF is computed for different levels of subsample size, tree height limit, threshold

for soft isolation and steepness of the kernel. The values for subsample size used are 16, 32, 64,

128, 256 and 512. For tree height limit, values increasing from 1 to 10 with steps of 1 are used

24



together with 12 and 15. The threshold for soft isolation uses values from 0.01 to 0.91 with steps

of 0.06. Finally, the steepness of the kernel increases on a exponential scale as differences are much

larger for small values of the kernel. Therefore the steepness is set to es, with s increasing from -1

to 0 with steps of 0.25 and then from 0 to 5 with steps of 0.5. The threshold for empty nodes to 1.

These are set to fixed values as they are not expected to influence the effects of the threshold for

soft isolation and the steepness of the kernel on predictive performance. The results are the average

across 5 folds in cross-validation. In Figures 6 and 7 and the performance of the model is set out

for either the threshold for soft isolation or steepness and the kernel in combination with either the

subsample size or the tree height limit for both the Satellite and the Annthyroid datasets. The

performance is here measured in predictive performance (AUC) and the size of the decision tree

(average number of nodes of a tree in the ensemble). Results are averaged out over the the two

hyperparameters that are not in the graphs.

Firstly the effect of of the threshold for soft isolation is studied. In Subfigures 6a and 6b it

can be seen that the predictive performance is stable for lower values of the isolation threshold

for all subsample sizes. However, in the Satellite dataset this performance breaks down when the

threshold becomes a considerable proportion of the subsample size. This can already be seen for

subsample sizes 16, 32 and 64 already. As the highest threshold for soft isolation used is 0.91, whilst

the theoretical maximum is 1, the other subsample sizes could break down for higher values of the

threshold. This also could explain why the predictive performance does not seem to break down for

the Annthyroid dataset, as the breakdown point might be higher for this dataset. In both datasets

and for all subsample sizes the number of nodes decreases as the threshold rises. The probable

cause for this is that branches can be terminated earlier as nodes do not need to be entirely isolated

anymore.

The threshold for soft isolation does not seem to have different effects for different levels of

maximum tree height, as can be seen in Subfigures 6c and 6d. The predictive performance drops for

higher levels of the isolation threshold for both the Satellite and the Annthyroid datasets. This seems

to be caused by the worse performance of models with low subsample sizes for higher thresholds, as

the performance shown in these figures are the average over all subsample sizes. Furthermore, the

predictive performance of all tree height limits seems to be less stable for the Annthyroid dataset,

which is probably caused by the smaller range of the AUC-values for that dataset. The number of

nodes again deceases for higher level of the threshold.

Overall, the optimal value of the threshold for soft isolation seems to be relatively high, to

25



(a) Effect of the isolation threshold for

different subsample sizes in the Satellite

dataset

(b) Effect of the isolation threshold for

different subsample sizes in the

Annthyroid dataset

(c) Effect of the isolation threshold for

different maximum tree heights in the

Satellite dataset

(d) Effect of the isolation threshold for

different maximum tree heights in the

Annthyroid dataset

Figure 6: The effect of the isolation threshold on the AUC and number of nodes for different values

of the subsample size and the maximum tree height. The number of nodes is shown on a logarithmic

scale.

reduce the size of the trees. However, the threshold should be lower than the breakdown point for

the subsample size used. This is interesting as the optimal value for the threshold seems to go away

from 0, the setting for the threshold of the iForest algorithm. This seems to suggest that there is a

added benefit in adding this parameter to the algorithm. This finding also seems to be somewhat in

contrast to the findings of the last subsections, where the heatmaps seemed to imply that a stricter

setting of the threshold for soft isolation could have a very positive impact on detecting anomalies.

The steepness of the kernel affects the performance less homogeneously than the isolation thresh-

old. This can clearly be seen in Subfigure 7a. For the Satellite dataset, the AUC-values increase

for all subsample sizes until the steepness reaches a certain level. This level seem to be a bit lower

for low subsample sizes (around 0.75) than for higher subsample sizes (around 1). After this, the

predictive performance drops as the steepness goes to around 3 and then rises to a stable level for

26



higher levels of steepness. For the lower subsample sizes the predictive performance is better when

the algorithm uses a lower steepness of the kernel, whilst for higher subsample sizes the performance

is best for higher levels of steepness. For the Annthyroid dataset, steepness of the kernel affects the

predictive performance differently, as seen in Subfigure 7b. Predictive performance increases for low

levels of the steepness, just as for the Satellite dataset, but instead of decreasing from around 1, it

steadies off before increasing again. This clearly shows that a higher steepness is preferred for this

dataset, which implies that soft splitting does not improve performance. This is different from the

Satellite dataset, where for some subsample sizes the performance for low levels of the steepness,

thus where soft splitting is used, actually outperform the algorithms using a higher steepness. For

both datasets, the number of nodes in the trees decreases as the steepness goes up. This is to be

expected as keeping all other parameters equal, an algorithm with a higher steepness has a bigger

difference between weights given to all instances and will thus need less splits to reach the isolation

threshold.

The maximum tree height has little influence on how the steepness of the kernel affects both

the predictive performance and the number of nodes in the tree. In the Satellite dataset, as seen in

Subfigure 7c, predictive performances are almost equal for all maximum tree heights for lower levels

of the steepness, whilst the same increasing effect can be seen for higher levels of the steepness.

For the Annthyroid dataset in Subfigure 7d the predictive performance are even almost the same

for every maximum height for every level of steepness of the kernel. In both datasets the number

nodes decreases as the steepness rises. Only for the highest maximum height the number of nodes

first slightly increases until the steepness reaches around 1 and then also decreases.

The optimal value for the steepness of the kernel is not easy to determine. For the number

of nodes in the tree and thus the computational efficiency of the model, it is clearly better to set

the steepness as high as possible. In the Annthyroid dataset this is also the case for the predictive

performance. For the Satellite dataset, however, purely looking at predictive performance the

optimal value of the steepness is around 1 depending on the subsample size. This implies that soft

splitting, which happens at low levels of the steepness, has different effects in different datasets. In

Section 2 it was pointed out that soft splitting could be beneficial especially in datasets with many

attributes. This could possibly partly explain the results found in this subsection as the Satellite

dataset has far more attributes than the Annthyroid dataset (36 attributes against 6). Further, in

Section 4 it was pointed out that the Annthyroid dataset mostly contains clustered outliers, whilst

the Satellite dataset contains mostly scattered outliers.

27



(a) Effect of the steepness of the kernel

for different subsample sizes in the

Satellite dataset

(b) Effect of the steepness of the kernel

for different subsample sizes in the

Annthyroid dataset

(c) Effect of the steepness of the kernel

for different maximum tree heights in

the Satellite dataset

(d) Effect of the steepness of the kernel

for different maximum tree heights in

the Annthyroid dataset

Figure 7: The effect of the steepness of the kernel on the AUC and number of nodes for different

values of the subsample size and the maximum tree height. The number of nodes and the steepness

of the kernel are shown on a logarithmic scale.

Finally, in Figure 8 the effects of the isolation threshold and the steepness of the kernel on each other

are studied. In both datasets the predictive performance stays stable at every level of steepness

for lower thresholds. In the Annthyroid dataset the predictive performance stays stable for higher

levels of the isolation threshold. However, in the Satellite dataset the AUC values drop when the

threshold reaches a certain level. This breakpoint is lower for higher values of the steepness. This is

very similar to how the isolation threshold impacted the performance together with the subsample

size. The number of nodes also decreases for higher levels of the isolation threshold, just as had

been found before. This shows optimal levels of both parameters affect each other.

The differences in optimal values between the datasets stresses the need for the importance

of optimisation of the hyperparameters when using the SIF algorithm. Further, as the optimal

hyperparameter setting does not only depend on the dataset, but also on the setting of other

28



(a) Satellite dataset (b) Annthyroid dataset

Figure 8: The predictive performance and number of nodes in a tree for different levels of steepness

of the kernel and isolation threshold. The number of nodes is shown on a logarithmic scale. The

values for the steepness of the kernel are rounded and not all steepness’s from earlier experiments

are used.

hyperparameters. This could for example be seen in the optimal isolation threshold that both

depends on the subsample size and the steepness of the kernel. The need for further tuning is also

amplified by the fact the the goal of the algorithm is two-sided. On the one hand the predictive

performance should be as good as possible while on the other hand the computational performance is

important. Depending on the balance between the importance of these goals, different combinations

of hyperparameters could be optimal.

However, this thesis set out to determine the potential benefit of soft splitting in Isolation

Forests. For this, the algorithm does not have to be completely optimised. To show the potential

benefit of soft splitting, the main goal of this thesis is to achieve a good predictive performance

with settings of the hyperparameters so that the algorithm clearly uses soft splitting. Therefore,

the benchmark for the steepness of the kernel that will be used in the remainder of the results will

be 1. This level is around the optimal in both datasets for the lower values of the steepness. In

the Annthyroid dataset, the predictive performance can increase further by setting the steepness

higher, but the algorithm would then more resemble hard splitting. The threshold for soft isolation

is set to 0.5, as that seem to be high enough to decrease the number of nodes a little bit at this

steepness, but not high enough to make the performance of the algorithm decrease.

5.2.2 Effect of threshold for empty nodes on performance

Next to the soft isolation threshold and the steepness of the kernel, this thesis also introduces the

threshold for empty nodes. This parameter is meant to cut off branches that are mostly empty

29



to improve computational performance. However, it should be ensured that branches are not cut

off too early, which could impact the predictive performance. To find the optimal setting for this

threshold, the predictive performance and number of nodes in the model are again set out for

different levels of the subsample size and maximum tree height in Figure 9. The subsample sizes

and maximum tree heights used, are the same as in the last section. The threshold for empty nodes

varies between 0.15 and 5 with steps of 0.15 between 0.15 and 1.95 and steps of 0.45 between 2.3

and 5. The results are the average across 5 folds in cross-validation. The performance measures are

averaged out over all values of the hyperparameter that are not shown in the figure. The number

of trees is again set to 50, as this parameter is not expected to have a big impact on the results.

The steepness of the kernel is set to 1 and the threshold for soft isolation to 0.5, as discussed in last

subsection.

In the Satellite dataset, the AUC values stay stable for the higher subsample sizes, as can be

seen in Subfigure 9a. For the lower subsample sizes, however, this is not the case. Here, after the

threshold for empty nodes reaches a certain level the predictive performance drops. This is already

around 0.75 for a subsample size of 16 and around 1.75 for a subsample size of 32. As the threshold

is a larger proportion of the total weight for lower subsample sizes, it is logical that the algorithm

suffers more from a higher threshold when it uses a lower subsample size to train. The number of

nodes decreases as the threshold goes up, which is as expected. This effect seems to be equal for

all different subsample sizes. For the Annthyroid dataset, shown in Subfigure 9b, the impact of

the threshold on performances for the different subsample sizes seems to be the same. The only

difference is that performance does not seem to be affected by the rising threshold for all subsample

sizes. It is possible that the performance only drops for higher levels of the subsample size.

In Subfigure 9c it can be seen that for the Satellite dataset that the threshold barely has an

effect on both the predictive performance and the number of nodes for low maximum tree height.

This is logical as nodes are already terminated by the maximum tree height before they can reach

the threshold. As the maximum tree height increases, the number of nodes in the trees start to

decrease quicker for increases in the threshold. Furthermore, the predictive performance also start

to slowly decreases, which is probably caused by the decreasing performance for lower subsample

sizes. The influence of the maximum tree height in the Annthyroid is the same, which can be seen

in Subfigure 9d. In this dataset the decrease in nodes is also more present for higher maximum tree

heights. Here, the threshold again does not seem to influence the predictive performance, which

also was found earlier.

30



(a) Effect for different subsample sizes on

Satellite dataset

(b) Effect for different subsample sizes on

Annthyroid dataset

(c) Effect for different maximum tree

heights on Satellite dataset

(d) Effect for different maximum tree

heights on Annthyroid dataset

Figure 9: The effect of different thresholds for empty nodes on the AUC and number of nodes for

different levels of the subsample size and maximum tree height. The number of nodes is shown on

a logarithmic scale.

Thus, the optimal level of threshold for empty nodes seems to be as high as the given subsample size

allows it. Higher values of this parameter increase the computational performance of the algorithm,

but when the threshold reaches a certain level, determined by the subsample size, it starts to

impact the predictive performance. The threshold for empty nodes also has a larger influence on

the performance when the algorithm uses a higher maximum tree height. For the remainder of this

thesis, the threshold will be set to 0.5 to make sure the predictive performance is not impacted.

However, this value could be set closer to the breakpoint, especially for higher subsample sizes.

5.3 Comparison effects existing parameters between SIF and iForest

In this subsection the effects of the subsample size, the maximum tree height and the number of

trees in the ensemble on the performance of the SIF algorithm are studied. Furthermore, these

effects are compared to the effects that these parameters have on the iForest algorithm. For the

31



(a) AUC Satellite dataset (b) AUC Annthyroid dataset

(c) Number of nodes Satellite dataset (d) Number of nodes Annthyroid dataset

Figure 10: The AUC and average number of nodes for different combinations of the subsample size

an tree height limit

the benchmarks for the newly introduced hyperparameters set in the last subsection are used. The

predictive and computational performances for different subsample sizes and three height limits of

the SIF algorithm and the iForest algorithm for the Satellite and the Annthyroid datasets can be

seen in Figure 10.

In Subfigure 10a it can be seen that for the Satellite dataset, the predictive performance of

the SIF algorithm goes up as the subsample size goes down. This is different from the iForest

algorithm, where the predictive performance rises as the subsample size goes up. Furthermore, it

can be seen that the optimal maximum tree height is higher for the SIF algorithm than for the

iForest algorithm. In the iForest algorithm, the performance can no longer increase for a certain

maximum tree height because all instances in the subsample are already separated from each other.

For the SIF, this is however not the case and the predictive performance keeps increasing for longer

as the maximum tree height increases. In the Annthyroid dataset, the relation between subsample

size and performance is a bit more complicated, as can be seen in Subfigure 10b. The predictive

performance of the SIF is best for the middle subsample sizes, 64 and 128, and decreases when the

32



subsample either decreases or increases. This slightly resembles the optimal subsample sizes for

the iForest algorithm in this dataset. There the optimal subsample size is 32 and the predictive

performance also decreases for both higher and lower values of the subsample size. The maximum

tree height has does not seem to have an effect on the predictive performance of the SIF algorithm

in this dataset.

In Subfigures 10c and 10d it can be seen that the number of nodes in a SIF tree grow both for

higher tree height limits and higher subsample sizes, as is to be expected. The nodes in SIF are

higher compared to the iForest algorithm, but the growth is similar between the two algorithms.

It is notable, that for the Satellite dataset the number of nodes for low subsample sizes in the

SIF algorithm is close to or lower than the number of nodes for higher subsample sizes in the

iForest algorithm. Thus using when using optimal subsample sizes for both SIF and iForest, for

the Satellite dataset SIF outperforms iForest on predictive performance and achieves similar tree

sizes. This shows that by using soft splitting extra information per split can be used to improve

the predictive performance.

Overall, optimal subsample size and tree height limit are different for the SIF algorithm than for

the iForest algorithm. The tree height limit of the SIF should be set higher, as SIF seems to benefit

longer from increasing maximum tree heights. The optimal subsample size for SIF is very hard

to set based on these datasets as for both datasets the optimal subsample sizes behave differently

from each other and from the optimal subsample size in the iForest algorithm. However, the best

predictive performances seem to be around a subsample size of 64. Furthermore, choosing a lower

level of subsample size also improves the computational performance. The optimal subsample size

can also greatly vary per dataset based on the size of the dataset. As both datasets here have very

similar number of instances, this will not be a big problem here.

Finally, the number of trees needed in the ensemble for the predictive performance to converge

is compared between SIF and iForest. For this the subsample size is set to 64 for SIF and 128 for

iForest as those values were found to be around optimal. For iForest the tree height is set following

the commonly used benchmark to ⌈log2 ψ⌉, where ψ is the subsample size. As the optimal tree

height limit for SIF should be higher, as found earlier in this section, this benchmark is changed

to ⌈1.25 · log2 ψ⌉, raising the tree height limit with 25% for every subsample size. In Figure 11 it

can be seen that the predictive performance of SIF converges for a smaller number of trees in the

ensemble for both datasets. In Section 2 this was already pointed out as a possible advantage of

using soft splitting. Furthermore, for all of the results this section an ensemble of 50 trees was used

33



(a) Satellite dataset (b) Annthyroid dataset

Figure 11: The predictive performance of SIF and iForest set out against the number of trees used

in the ensemble.

to test the properties of the different parameters in the SIF algorithm. This value seems to be high

enough for the performance of the algorithm to converge, thus confirming the earlier found results.

The results of this subsection show that the optimal settings of hyperparameters change when

using soft splitting compared to hard splitting. The optimal subsample size seems to be lower as

the improved amount of information used in every split rises. The predictive performance of SIF

suffers more from lower maximum tree heights. Finally, the SIF needs slightly less trees in the

ensemble for the predictive performance to converge, which could possibly indicate individual SIF

trees containing more complete information about the whole sample compared to iForest trees.

5.4 Comparison performance SIF and iForest on wide range of real world datasets

To evaluate the overall performance of the SIF algorithm, it is implemented on a wide range of real

world datasets and the performance on these datasets is compared to the performance of the iForest

algorithm. Here, the problem of hyperparameter setting, which was alluded to earlier, becomes very

relevant. As optimisation of the hyperparameters is computationally very expensive, the findings of

last subsection are used to make an estimate of the optimal hyperparameter setting. The effect of

different hyperparameters on the performance is however not easy to estimate and depends on both

the settings of other hyperparameters and the dataset itself. Therefore, the performance of the SIF

algorithm is very likely not optimal on most datasets. The iForest algorithm has a smaller number of

hyperparameters and its performance is thus less dependent on the settings of those. Furthermore,

Liu et al. (2008) showed that for sufficiently high values of subsample size and number of trees

predictive performance of the iForest algorithm converges.

34



Subsample size Tree height limit

Http (KDDCUP99) 256 10

ForestCover 256 10

Smtp (KDDCUP99) 256 10

Shuttle 256 10

Mammography 128 9

Annthyroid 64 8

Satellite 64 8

Thyroid 64 8

Cardio 64 8

Pima 64 8

Breastw 64 8

Arrhythmia 64 8

Ionosphere 64 8

Table 2: Overview of hyperparameters used in the SIF algorithm for different datasets.

Therefore, the suggested values of Liu et al. (2008) are used as setting for the hyperparameters of

the iForest algorithm. These are a subsample size of 256, the tree height limit to ⌈log2 ψ⌉ and the

number of trees to 50. For SIF the number of trees is also set to 50 and the tree height limit to

⌈1.25 · log2 ψ⌉, which is a bit wider than for iForest as found in Subsection 5.3. Furthermore, the

steepness of the kernel is set to 1, the threshold for isolation to 0.5 and the threshold for empty

nodes to 0.5, as suggested in Subsection 5.2. These parameters were set to optimise the predictive

performance of SIF, whilst soft splitting is performed. Therefore, the added value of soft splitting

can be found when comparing the SIF algorithm with the iForest algorithm. Finally the subsample

size needs to be set. In Subsection 5.3 it was shown that SIF seems to perform better for a lower

value of subsample size than iForest. However, this parameter should also depend on the number of

instances in the dataset. Therefore the subsample size used in the SIF algorithm is scaled based on

the number of instances in every dataset. A complete overview of the hyperparameter settings can

be found in Table 2. As the hyperparameters for the SIF algorithm are set with a little bit more care

than the benchmarks of the iForest, these settings might slightly favour the SIF algorithm. However,

as optimisation of the SIF algorithm is far more complex than that of the iForest algorithm, the

35



predictive performance of the SIF algorithm probably still has more upwards potential.

AUC SIF AUC iForest

Http (KDDCUP99) 0.995 ± 0.001 0.999 ± 0.00004

ForestCover 0.783 ± 0.046 0.847 ± 0.020

Smtp (KDDCUP99) 0.854 ± 0.046 0.907 ± 0.034

Shuttle 0.991 ± 0.003 0.996 ± 0.002

Mammography 0.863 ± 0.013 0.856 ± 0.019

Annthyroid 0.709 ± 0.033 0.812 ± 0.033

Satellite 0.748 ± 0.059 0.685 ± 0.033

Thyroid 0.940 ± 0.030 0.969 ± 0.011

Cardio 0.888 ± 0.019 0.941 ± 0.011

Pima 0.714 ± 0.049 0.672 ± 0.045

Breastw 0.994 ± 0.004 0.988 ± 0.008

Arrhythmia 0.797 ± 0.103 0.793 ± 0.086

Ionosphere 0.864 ± 0.049 0.853 ± 0.020

Average 0.857 ± 0.099 0.871 ± 0.106

Table 3: Average AUC for SIF and iForest over every fold with the standard deviation between the

folds.

The predictive performance of both the SIF and iForest algorithms can be seen in Table 3. The

SIF algorithm outperformed the iForest on 6 out of the 13 datasets, meaning the iForest algorithm

outperformed the SIF algorithm on 7 out of 13 datasets. Furthermore, it can be seen that the

differences between the performance of both algorithms is a bit smaller for datasets that favour

iForest compared to those that favour SIF. This leads to a better average performance of the

iForest algorithm. The datasets on which the SIF algorithm performs better mostly have less

instances, more attributes and a higher anomaly percentage. Of these properties especially the

number of attributes seems to be relevant, as pointed out by Section 2. The exceptions to this are

the Cardio dataset in favour of the iForest algorithm (low number of instances, many dimensions and

a reasonably high anomaly percentage), the Mammography dataset in favour of the SIF algorithm

(high number of instances, low number of dimensions, low anomaly percentage) and to a lesser

extend the Thyroid dataset in favour of the iForest algorithm (low number of instances). An

36



explanation of these differences could be that the estimated hyperparameter settings fit better

with the properties of some datasets than others. In this regard, it is interesting to see that the

two datasets on which the hyperparameter settings are based (Satellite and Annthyroid) are the

datasets that favours the SIF algorithm the most (Satellite) and the dataset that favours the iForest

algorithm the most (Annthyroid). Further, the soft splitting parameters, steepness of the kernel and

the isolation threshold, were mostly set to optimise the Satellite dataset as the optimal values for the

Annthyroid dataset converged to hard splitting. Therefore, it is not surprising that the SIF favours

datasets which have similar properties to the Satellite dataset, high number of attributes and high

anomaly percentage. There might be better hyperparameter settings for the steepness of the kernel

and the isolation threshold, that do fit the other datasets and do not converge to hard splitting.

Especially, since many of the other datasets that favour iForest have predictive performance using

SIF that are closer to the performance of iForest.

Another interesting explanation for the differences in performance between the algorithms, can

be found in the performances on the datasets with clustered and scattered anomalies. The SIF

algorithm performs better on all four datasets that were identified to have mostly scattered anoma-

lies (Satellite, Pima, Breastw and Ionosphere), whilst iForest massively outperforms SIF on both

datasets that only had clustered anomalies (Http and Annthyroid). This strongly implies that the

SIF algorithm has problems recognising clustered anomalies. In Section 2 a possible cause of this

has already been identified. The area in which the intersect of the splitting hyperplane is selected,

is spanned by all instances in the training set. Thus, making a split to isolate a group of clustered

anomalies from each other could be very hard for the SIF. If this group is never isolated from each

other, the path lengths to these instances will be indifferentiable from normal instances. Possible

enhancements to the algorithm to solve this problem are already proposed in Section 3. Shrinking

the area in which the intercepts can be selected could, increase the probability clustered anomalies

are isolated from each other by the splits. To make sure this separation is reflected in the outputted

weights, the steepness of the kernel should probably scale with the area in which the intercept

is selected. Furthermore, the Gini-impurity and Entropy could possibly better identify clustered

anomalies than the misclassification error, as the weights of all instances instead of only one.

In Table 4 the average time for each fold the algorithm takes to build the trees in the ensemble

and score the instances in the hold-out sample is shown. The computational performance of the

iForest is far better than that of the SIF algorithm. For all datasets the average computation time is

at least 100 times faster and for some datasets the iForest is even 500 times faster. This difference

37



Time SIF Time iForest

Http (KDDCUP99) 53.6028 ± 3.2081 0.2960 ± 0.0155

ForestCover 58.3617 ± 1.4739 0.1188 ± 0.0345

Smtp (KDDCUP99) 14.3352 ± 0.5903 0.0525 ± 0.0028

Shuttle 11.5766 ± 0.1880 0.0185 ± 0.0096

Mammography 1.4806 ± 0.1417 0.0073 ± 0.0007

Annthyroid 0.7523 ± 0.0527 0.0062 ± 0.0008

Satellite 0.8791 ± 0.0451 0.0060 ± 0.0038

Thyroid 0.5413 ± 0.0228 0.0039 ± 0.0001

Cardio 0.4530 ± 0.0376 0.0033 ± 0.0002

Pima 0.3849 ± 0.0245 0.0022 ± 0.0001

Breastw 0.4189 ± 0.0539 0.0021 ± 0.0003

Arrhythmia 0.4037 ± 0.0520 0.0040 ± 0.0027

Ionosphere 0.4551 ± 0.0560 0.0038 ± 0.0027

Average 11.050 ± 20.487 0.040 ± 0.084

Table 4: Average running time of the training and scoring for SIF and iForest over every fold with

the standard deviation between the folds.

is already present for datasets with a low number of instances. This is while these datasets use

a subsample size that is 4 times smaller for SIF compared to iForest. For these subsample sizes

the number of nodes in the trees is comparable between the two algorithms, as was shown in

Subsection 5.3. This shows that a large part of the extra computation time is caused by an increase

of computations per node. Multiple causes for this increases of computations can be identified.

Firstly, as every instance is in every node, both in training of the model and scoring of the test

instances, the algorithm has to compare more instances to every splitting hyperplane. Secondly, the

number of computations to compare an instance to the splitting hyperplane has increased. Using

hard splitting, the algorithm only has to find the side of the split the instance is on. Using soft

splitting, the exact distance of every instance to the splitting hyperplane needs to be determined

and then also be transformed into a weight. Furthermore, during the training of the model more

computations are needed to determine whether an instance is isolated or not. Finally, in the scoring

phase, instead of every instance only taking on path, every instance travels down every possible

38



path. So again are not only more computations needed to determine the weight of the instance

after a split, but these computations also need to be made for an increased number of splits.

The computational performance could, however, be improved. The hyperparameters used were

mostly picked to ensure the predictive performance of the model. Especially the threshold for

isolation, threshold for empty nodes and maximum tree height were all set were set very conser-

vatively for this end, whilst it was shown in Subsections 5.2 and 5.3 that these hyperparameters

could influence the number of nodes and thus the computation time. If the hyperparameters were

to be optimised, these could possibly be set better to also include optimising the computational

performance. It should of course be noted that the act of optimising the hyperparameters would

greatly raise computation times as optimisation would take a lot of computations. Furthermore,

the number of trees in the ensemble for SIF is set equal to the number of trees in iForest, although

Subsection 5.3 suggests that SIF might need a lower number of trees for the predictive performance

to converge. Trimming down the number of trees could again lower the number of computations.

There also could be other enhancements of the algorithm possible to further improve the computa-

tion time. An example of this could be the suggestion given in Section 3 to change the threshold for

empty nodes to a more dynamic version in order to possibly cut off empty nodes more efficiently.

Furthermore, shrinking the area in which the splitting intercept can be selected would also improve

the computational performance, as pointed out in 2.

The performance of the iForest algorithm overall still seems to be better than that of the

SIF algorithm. Soft splitting can be an improvement over hard splits for predictive performance,

especially on datasets with many attributes and with mostly scattered anomalies. This however

comes at the cost of a massively improved computation time, as the number of computations needed

for soft splitting greatly increases. There is a good possibility that the predictive performance can

further increase and the computation time can be decreased if the hyperparameters were to be

optimised. That is however, left beyond the scope of this thesis.

5.5 Comparison measures of soft isolation

Until now, only the misclassification error was used as a measure for soft isolation. However, there

are more possible options for this measure as lined out in Section 3. Furthermore, in the last sub-

section the Gini-impurity and Entropy were raised as possible solutions to solve the inability of SIF

to detect clustered anomalies. Therefore, the performance of the SIF algorithm with these impurity

measures is studied in this subsection and compared to the performance with the misclassification

39



error. Before comparing the performance of these measure of soft isolation, firstly the threshold for

soft isolation needs to be set for the new measures for soft isolation. Therefore, the effect of the

threshold for soft isolation is again set out for different subsample sizes and maximum tree heights.

However, the maximum value of both the Entropy and the Gini-impurity depends on the subsample

size. To compare the effects of the threshold for soft isolation across different subsample sizes, the

threshold is showed as fractions of the the maximum threshold for that subsample size. For this

comparison the threshold for empty nodes is again set to 1, the steepness of the kernel 1 and the

number of trees to 50.

(a) Effect for different subsample sizes on

Satellite dataset

(b) Effect for different subsample sizes on

Annthyroid dataset

(c) Effect for different maximum tree

heights on Satellite dataset

(d) Effect for different maximum tree

heights on Annthyroid dataset

Figure 12: The effect of different values of the threshold for soft isolation on the performance of

the SIF using the Gini-impurity as measure for soft isolation. The number of nodes is shown on a

logarithmic scale, whilst the threshold for soft isolation is shown as a percentage of the maximum

threshold for the subsample size

In Figure 12 the effect of the soft isolation threshold on the performance of the SIF using the Gini-

impurity can be seen for different subsample sizes and maximum tree heights. From Subfigures 12a

40



and 12b it can be seen that the different subsample sizes are mostly not affected by the thresholdfor

soft isolation. For the Satellite dataset this however, is only until a certain breakpoint after which

the predictive performance starts dropping. This breakpoint comes earlier for lower subsample sizes.

This effect might not yet show for the Annthyroid dataset as the soft isolation threshold only goes

up to 91% of the maximum threshold and the breakdown point might be closer to the maximum.

For both datasets the number of nodes decreases slightly as the threshold for soft isolation increases.

This effect is stronger for the lower subsample sizes. In Subfigures 12c and 12d it can be see that

there is no clear effect of or difference between the different maximum tree heights. The predictive

performance goes down slightly in the Satellite dataset for all maximum tree heights, but that is

probably caused by the lower subsample sizes breaking down. Overall, the effects of the threshold

for soft isolation seem very comparable to the effects when the misclassification error was used.

Again, the threshold should be set as high as possible to decrease the number of nodes in the trees,

but not high enough to make the predictive performance break down. For the Gini-impurity this

seems to be around 75% of the maximum value of the threshold.

The effects of the soft isolation threshold when the Entropy is used, can be seen in Figure

13. These again follow the same patterns as for the Gini-impurity and the misclassification error.

However the breakdown point seems to come earlier already around 60% and the drop off for both

the predictive performance and the number of nodes is way bigger.

To compare the different measures for soft isolation the performances of the SIF algorithm with

the different measures are set out against each other. As the use of a different soft isolation measure

should only impact the soft isolation threshold, the same settings for the algorithm are used as in

Subsection 5.4. This means the number of trees in the SIF is set to 50, the subsample size and the

tree height limit used are given in Table 2, the steepness of the kernel is set to 1 and the threshold

for empty nodes is set to 0.5. The soft isolation threshold is set to 0.5 for the misclassification error,

to 75% of the maximum value of the threshold for the Gini-impurity and to 55% of the maximum

value of the threshold for the Entropy.

In Table 5 the predictive performance of the SIF using the different measures for soft isolation

are given for the real-world datasets. There is not much of a difference between the measures as

the misclassification error and the Gini-impurity outperform the others for 4 datasets and Entropy

outperforms the other on 5 datasets. On average the misclassification error has the best predictive

performance but the differences between all measures all small. Entropy seems to perform slightly

better for datasets with a small number of instances and more attributes, whilst the Gini-impurity

41



(a) Effect for different subsample sizes on

Satellite dataset

(b) Effect for different subsample sizes on

Annthyroid dataset

(c) Effect for different maximum tree

heights on Satellite dataset

(d) Effect for different maximum tree

heights on Annthyroid dataset

Figure 13: The effect of different values of the threshold for soft isolation on the performance of the

SIF using the Entropy as measure for soft isolation. The number of nodes is shown on a logarithmic

scale, whilst the threshold for soft isolation is shown as a percentage of the maximum threshold for

the subsample size

performs slightly better for datasets with a large number of instances and less attributes. It is

interesting that the extra information used by using the weights of multiple instances in the Gini-

impurity and the Entropy does not lead to an increase in predictive performance. The Gini-impurity

and Entropy also only seem to perform slightly better on one of the datasets with clustered anoma-

lies, that being the Annthyroid. More sophisticated measures for soft isolation thus do not seem to

be the solution to the inability of the SIF algorithm to detect clustered anomalies.

The computational performance of the SIF algorithm for the different soft isolation measures is

given in Table 6. The Gini-impurity has the best computational performance on 6 of the 13 datasets,

Entropy on 5 and the misclassification error on 2. On average, Entropy has the best computational

performance. This is mostly caused by the computational performance on the Http dataset. As

42



AUC Misclassification AUC Gini AUC Entropy

Http (KDDCUP99) 0.995 ± 0.001 0.996 ± 0.0003 0.995 ± 0.00006

ForestCover 0.783 ± 0.046 0.817 ± 0.027 0.810 ± 0.045

Smtp (KDDCUP99) 0.854 ± 0.046 0.832 ± 0.075 0.810 ± 0.095

Shuttle 0.991 ± 0.003 0.991 ± 0.004 0.991 ± 0.003

Mammography 0.863 ± 0.013 0.864 ± 0.011 0.861 ± 0.010

Annthyroid 0.709 ± 0.033 0.734 ± 0.043 0.723 ± 0.076

Satellite 0.748 ± 0.059 0.714 ± 0.049 0.715 ± 0.047

Thyroid 0.940 ± 0.030 0.940 ± 0.025 0.931 ± 0.029

Cardio 0.888 ± 0.019 0.881 ± 0.014 0.890 ± 0.022

Pima 0.714 ± 0.049 0.710 ± 0.041 0.715 ± 0.047

Breastw 0.994 ± 0.004 0.994 ± 0.003 0.994 ± 0.004

Arrhythmia 0.797 ± 0.103 0.797 ± 0.087 0.807 ± 0.086

Ionosphere 0.864 ± 0.049 0.861 ± 0.039 0.872 ± 0.057

Average 0.857 ± 0.103 0.856 ± 0.103 0.855 ± 0.103

Table 5: Predictive performance of the SIF algorithm using different measures for soft isolation for

various real-life datasets

the computation time for this dataset is already way larger, this average is heavily skewed. The

Gini-impurity and Entropy have a better computational performance, whilst the computation of

the the misclassification error should be slightly easier. This seems to indicate that using these, the

algorithm might be able to prune isolated branches earlier leading to smaller trees. However, the

difference between the measures for soft isolation is still small.

Overall the choice of measure for soft isolation does not seem to have a big impact on both

the predictive performance and the computational performance of the SIF algorithm. Finally, it

should be noted that as all hyperparameters settings are the same in these experiments, except for

the measure for soft isolation and the soft isolation threshold. As the soft isolation threshold, is

picked somewhat arbitrarily, some of the differences between the measures could not be cause by

the measure itself, but by the handpicked threshold.

43



Time Misclassification Time Gini Time Entropy

Http (KDDCUP99) 53.6028 ± 3.2081 55.9468 ± 3.3510 42.9951 ± 23.6633

ForestCover 58.3617 ± 1.4739 55.6237 ± 0.7398 56.4846 ± 1.7201

Smtp (KDDCUP99) 14.3352 ± 0.5903 13.5745 ± 0.4483 13.4521 ± 0.5045

Shuttle 11.5766 ± 0.1880 11.4440 ± 0.3363 11.7521 ± 0.3897

Mammography 1.4806 ± 0.1417 1.5906 ± 0.1572 1.5132 ± 0.0517

Annthyroid 0.7523 ± 0.0527 0.7583 ± 0.0579 0.7204 ± 0.0297

Satellite 0.8791 ± 0.0451 0.8667 ± 0.0330 0.8494 ± 0.0315

Thyroid 0.5413 ± 0.0228 0.5537 ± 0.0676 0.5351 ± 0.0222

Cardio 0.4530 ± 0.0376 0.4534 ± 0.0525 0.4932 ± 0.0548

Pima 0.3849 ± 0.0245 0.3798 ± 0.0491 0.4112 ± 0.0498

Breastw 0.4189 ± 0.0539 0.4067 ± 0.0314 0.4307 ± 0.0507

Arrhythmia 0.4037 ± 0.0520 0.3865 ± 0.0254 0.4076 ± 0.0381

Ionosphere 0.4551 ± 0.0560 0.4493 ± 0.0434 0.4695 ± 0.0419

Average 11.050 ± 19.683 10.956 ± 19.580 10.040 ± 17.656

Table 6: Computational performance of the SIF algorithm using different measures for soft isolation

for various real-life datasets

6 Conclusion

This thesis set out to determine the potential value of soft splitting in Isolation Forests. Due to

soft splitting, the information used in every split can increase. This leads to several advantages in

both training of the ensemble and scoring the test data. For datasets with many attributes and

without clustered anomalies, this leads to an improvement of the predictive performance. However,

the computational performance declines massively due to a the increased number of computations

needed to perform soft splitting. This is a major drawback of using soft splitting as the low

computational complexity is one of the biggest advantages of Isolation Forests over the traditional

model-based anomaly detection methods.

A major drawback of this research is that the hyperparameters that are used to evaluate the

performance of the SIF algorithm are not optimised. If the hyperparameters were to be optimised

this could lead to both a better predictive and computational performance. A comprehensive

44



analysis is done on the effect of all hyperparameters on the performance of the SIF algorithm. From

this it is found that the optimal hyperparameters settings depend on both the characteristics of the

dataset and the setting of other hyperparameters, further accentuating the need for a good tuning

procedure. The hyperparameters used are set using this analysis and are set to study the effect of

soft splitting above optimal predictive or computational performance.

Next to optimisation, future work should mostly focus on enhancements to improve the com-

putational performance of the algorithm. In this thesis several suggestions are made for this. For

example, a dynamic threshold for empty nodes is suggested, which could possibly terminate empty

branches earlier. Furthermore, limitations on the area in which the splitting point is selected could

be introduced to reduce the probability of making unnecessary or duplicate splits. The other major

point of focus for future work should be the ability to detect clustered anomalies. A shrinking area

in which the splitting point is selected, possibly combined with steepness of the kernel that is scaled

by the size of this area, is again raised as a solution for this problem. Furthermore, possibilities

to improve the predictive performance profiting from the more general definition of the algorithm

could be found. For example, the level of soft isolation in a node , could possibly also be used to

enhance the scoring by combining it with the depth of the node. Finally, soft splitting is a possible

extension to almost all earlier extension of the iForest algorithm. Combinations of these could lead

to interesting outcomes.

45



References

Aggarwal, C. C. and Aggarwal, C. C. (2017). An introduction to outlier analysis. Springer.

Cao, Y., Xiang, H., Zhang, H., Zhu, Y., and Ting, K. M. (2024). Anomaly detection based on

isolation mechanisms: A survey. arXiv preprint arXiv:2403.10802.

Cortes, D. (2021). Revisiting randomized choices in isolation forests. arXiv preprint

arXiv:2110.13402.

Hariri, S., Kind, M. C., and Brunner, R. J. (2019). Extended isolation forest. IEEE transactions

on knowledge and data engineering, 33(4):1479–1489.

Irsoy, O., Yıldız, O. T., and Alpaydın, E. (2012). Soft decision trees. In Proceedings of the 21st

international conference on pattern recognition (ICPR2012), pages 1819–1822. IEEE.

Lesouple, J., Baudoin, C., Spigai, M., and Tourneret, J.-Y. (2021). Generalized isolation forest for

anomaly detection. Pattern Recognition Letters, 149:109–119.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth ieee international

conference on data mining, pages 413–422. IEEE.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2010). On detecting clustered anomalies using sciforest. In

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD

2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II 21, pages 274–290. Springer.

Liu, T., Zhou, Z., and Yang, L. (2024). Layered isolation forest: A multi-level subspace algorithm

for improving isolation forest. Neurocomputing, 581:127525.

Ma, M. Q., Zhao, Y., Zhang, X., and Akoglu, L. (2023). The need for unsupervised outlier model

selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD Explorations

Newsletter, 25(1):19–35.

Shebuti, R. (2016). Odds library https://odds.cs.stonybrook.edu.

Tokovarov, M. and Karczmarek, P. (2022). A probabilistic generalization of isolation forest. Infor-

mation Sciences, 584:433–449.

46



Zhang, X., Dou, W., He, Q., Zhou, R., Leckie, C., Kotagiri, R., and Salcic, Z. (2017). Lshiforest:

A generic framework for fast tree isolation based ensemble anomaly analysis. In 2017 IEEE 33rd

international conference on data engineering (ICDE), pages 983–994. IEEE.

47



A Oblique splitting using soft splitting

The algorithm for building Soft Isolation Trees in 2 can easily be adapted into using oblique split-

ting instead of axis parallel splitting just as the EIF in Hariri et al. (2019). This adaptation is

implemented in Algorithm 4. In the adapted algorithm, the process of making a note external in

Algorithm 4 Soft Isolation Tree

Inputs: X - input data, w - weight of every data point, e - current tree height, l - height limit, i -

stopping threshold for isolation measure, o - stopping threshold for empty nodes, k - base steepness

of the kernel

Output: a Soft Isoltaion Tree

1: if e ≥ l or s(w) ≤ i or max(w) < o(e) then

2: return exNode{Weights← w}

3: else

4: Randomly select a normal vector n⃗ ∈ R|X| by drawing each coordinate of n⃗ from a standard

Gaussian distribution

5: Randomly select an intercept point p⃗ ∈ R|X| in the range of X

6: distances← sigd(X, p⃗, q⃗)

7: k ← k
sd(distances)

8: wl ← g(X, n⃗, p⃗, k)

9: wr ← 1− wl
10: return inNode{Left← Soft iTree(X,w ∗ wl, e+ 1, l, i, o, k),

11: Right← Soft iTree(X,w ∗ wr, e+ 1, l, i, o, k),

12: Normal← n⃗,

13: Intercept← p⃗,

14: Steepness← k}

15: end if

row 1 to 3 does not change. The oblique split in every node is determined by the vectors n⃗ and p⃗

which are determined in row 4 and 5. n⃗ is the normal vector of the hyperplane that gives the split.

This can be simplified to axis-parallel splitting by having only one of the values of n⃗ be non-zero.

Then the split is parallel to the attribute to which the non-zero value belongs. p⃗ is the intercept of

the hyperplane, which is randomly chosen on the area of X.

An important change from the axis-parallel splitting is the scaling of k by the standard deviation

48



of the signed distances in row 7. Although the data is standardised for every attribute, the data

is not standardised for every possible splitting hyperplane. This means that the direction of the

hyperplane n⃗ determines the weights of the instances after the split. To prevent this, the steepness

of the kernel can be scaled with the standard deviation of the distances. This ensures that every

effect of every split is on the weights is equal.

The weights can then be calculated with the new steepness of the kernel k as usual. This

happens on row 8 of the algorithm, which also can reuse the distances calculated on row 6. A final

change in the algorithm building trees using oblqiue splitting is that the steepness k is stored. This

is because the scaling of the steepness of the kernel is determined by the training data and thus

cannot be retrieved in the scoring phase unless it is stored. The scoring algorithm thus has to be

slightly altered to include using the stored steepness of the kernel. This altered version can be seen

in Algorithm 5.

Algorithm 5 WeightedPathLength

Input: x - an instance, T - an iTree, e - current path length; to be initialized to zero when first

called

Output: path length of x

1: if T is an external node then

2: return e + c(T.Weights)

3: end if

4: n⃗← T.Normal

5: p⃗← T.Intercept

6: k ← T.Steepness

7: wl ← g(x, n⃗, p⃗, k)

8: wr ← 1− wl
9: return wl ·WeightedPathLength(x, T.left, e+1) + wr ·WeightedPathLength(x, T.right, e+1)

49


	Introduction
	Soft splitting for Isolation Forests
	Methodology
	Data and evaluation metrics
	Results
	Conclusion
	Oblique splitting using soft splitting

