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Abstract
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1 Introduction

Infrastructure forms the foundation of civilisation and economic growth and requires substan-
tial financing for large-scale projects. In their study, Schwartz et al. (2020) emphasises the
substantial financing required for large-scale infrastructure projects. Furthermore, Merna and
Njiru (2002) and Grimsey and Lewis (2002) argue that public-private partnerships (PPPs)
shift the responsibility and risk of infrastructure delivery to private entities through long-term
contracts. However, it is important to note that the success of PPPs relies on a consistent
revenue stream, and any disruption or instability in this stream can pose significant finan-
cial challenges for private entities involved in the partnership, potentially leading to project
delays, cost overruns, or even project abandonment.

Despite the associated risks, Andonov et al. (2021) note that infrastructure investments
are gaining traction due to their stable returns, low equity market correlation, and diversifica-
tion benefits. Folqué et al. (2021) further emphasises the appeal of infrastructure investments,
particularly in the energy sector, due to the rise in sustainable investing and Environmental,
Social, and Governance (ESG) scores.

Moreover, according to Bird et al. (2014) and Wurstbauer and Schäfers (2015), infrastruc-
ture stocks provide long-term cash flow visibility and inflation hedging benefits. Interest rates
are crucial in infrastructure investments, as highlighted by Bitner and Newell (2018). Roth-
baller and Kaserer (2012) explains that lower interest rates can enhance profitability by
influencing the cost of debt financing.

Blanc-Brude et al. (2014) note that interest rate fluctuations significantly affect infra-
structure investments’ value due to their impact on the discount rate used in valuation. The
relationship between interest rates and different sectors of the infrastructure asset class de-
pends on various factors, as explained by extensive research (Prud’Homme, 2004; Yeaple &
Golub, 2007).

Bamidele Oyedele (2014) finds that infrastructure assets are the main drivers of portfolio
stability during times of crisis, suggesting that they may provide a buffer against business
cycle fluctuations. However, the rise of financial instruments, funds, and indices has shifted
the infrastructure market towards more volatile demand, emphasising the need for a deeper
understanding of the dynamics of infrastructure funds within the economy.

Given these considerations, our research takes a unique approach by investigating the
sensitivity of infrastructure sectors to interest rates through a regime-switching framework.
This methodology allows a more nuanced understanding of infrastructure assets’ behaviour
under different economic conditions. Ang (2014) recognises that the driving factors can vary
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depending on the prevailing interest rate regime. These differences can become apparent when
considering different exposures to financial markets across various sectors. Consequently, our
research question is formulated as follows:

“How does the sensitivity towards U.S. interest rate regimes differ between infra-
structure sectors?”

We will employ several factor models to estimate the driving factors in different regimes
to answer this. By analysing the factor loadings, we aim to shed light on the influential
sector-specific characteristics and their sensitivity to interest rates. Rothballer and Kaserer
(2012) explains the increasing variations of infrastructure investments across various sectors,
showing the particular relevance of this sectoral perspective.

Interest rates are often subject to regulatory influences, primarily guided by central banks’
monetary policy, such as the Federal Reserve in the United States or the European Cent-
ral Bank. These institutions periodically modify interest rates to manage inflation, ensure
economic stability, and fulfil other economic objectives. Therefore, by providing a nuanced
understanding of the role of interest rates across different infrastructure sectors, this research
aims to bridge the existing knowledge gap, thereby informing more effective decision-making
in this vital sector.

In addition to the primary research question, this study will address two key subquestions.
The first is “Which regimes can we identify in the U.S. interest rate between 2010 and 2024?”
This aims to pinpoint the different interest rate regimes during this period. Ang and Bekaert
(2004) emphasises identifying these regimes as a crucial first step. This identification allows
us to examine the behaviour of infrastructure assets under varied conditions, enriching our
understanding of the complexity of the interest rate environment.

The second subquestion, “Which factors in infrastructure sectors are most susceptible
to change when transitioning between regimes?”, delves into the practical implications of
interest rate regime changes on infrastructure assets. Answering this subquestion enriches
academic understanding and provides a valuable decision-making and risk-management tool
for practitioners.

To our knowledge, limited research has been conducted on the driving factors of infra-
structure assets under a regime-switching framework. Building upon the work of Ben Ammar
and Eling (2015), who investigated the drivers of infrastructure sectors using multiple factor
models, our research extends its findings by utilising a regime-switching model. We identify
different regimes using a Hidden Markov Model on the U.S. Effective Rate.

By examining different cycles in interest rates, we can identify the most sensitive sector
within the asset class. We will analyse the daily returns of twelve infrastructure-specific
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sectors, including Airport, Communications, Datacenters, Electric Utility, Gas Utility, Multi
Utility, Others, Pipelines, Port, Railroads, Toll Roads, and Water Utility, employing three
different factor models, similar to the proposed methodology of Ben Ammar and Eling (2015).
Here, we analyse a factor model based on daily systematic factors, idiosyncratic factors, and
a combined model.

This paper is structured as follows: Section 2 provides a comprehensive overview of
the data used and the process of creating the driving factors. Section 3 details the research
approach, which includes regime detection and factor analysis. Section 4 presents the findings,
and Section 5 draws the research to a close.

2 Data

For our analysis, we delve into the twelve sectors of infrastructure assets, focusing on a fund
specialising in infrastructure, particularly the FTSE Core Infrastructure 50/50 index. This
index, a global benchmark for many investment managers, provides a comprehensive view of
the infrastructure market. We analyse the behaviour using daily data (excluding weekends)
from 01-01-2010 until 01-01-2024, resulting in 3650 observations.

2.1 Return data

As mentioned, the infrastructure assets can be categorised into twelve diverse sectors, each
with its unique characteristics and market behaviour: Airport, Communications, Datacen-
ters, Electric Utility, Gas Utility, Multi Utility, Others, Pipelines, Port, Railroads, Toll Roads,
and Water Utility. Appendix A provides an overview of the different stocks within each sec-
tor, offering a glimpse into the rich diversity of the infrastructure market.

Figure 1: Monthly returns (%) per sector between 01-01-2010 and 01-01-2012

In Figure 1, we see an overview of each sector’s daily returns aggregated to monthly
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observation over two years (2010-2012). There, we see that each sector behaves differently
regarding volatility and return direction. We observe, for example, that at the end of 2010,
Communications shot up rapidly, while Toll Roads and Gas Utilities showed a substantial
drop in returns. This stark contrast in movements and behaviour between the sectors under-
scores the complexity of our analysis.

Since we aim to utilise a factor model for different regimes, we have also obtained data
on the interest rate. As a proxy for interest rates, we use the Federal Funds Effective Rate,
a key rate in the U.S. financial market that significantly influences other interest rates. We
have sourced this data from FRED Economic Data 1.

Table 1: Overview of the value-weighted daily return per sector of infrastructure funds, and U.S.
Federal Fund Effective Rate in percentages between 01-01-2010 and 01-01-2024

Mean St. Dev Min. Max. Count
Effective Rate 0.01 0.02 0.00 0.05 -

Airport 0.16 1.43 -10.60 12.36 18
Communication 0.31 2.93 -16.87 24.51 27

Datacenter 0.07 1.28 -11.69 10.99 4
Electric Utility 0.02 1.08 -13.19 6.00 82

Gas Utility 0.07 2.75 -13.14 21.29 35
Multi Utility 0.02 1.03 -10.38 12.05 17

Other -0.13 1.43 -7.92 9.39 3
Pipelines 0.04 1.26 -16.25 14.49 14

Port 0.09 1.47 -12.28 10.72 18
Railroads 0.03 1.33 -8.98 13.06 18

Toll Roads 0.23 2.53 -10.27 14.10 25
Water Utility 0.04 1.23 -13.49 13.50 22

In Table 1, we see an overview of the summary statistics for each sector, as well as
the Federal Funds Effective Rate. From 01-01-2010 until 01-01-2024, the best-performing
sector was Communications, with an average daily return of 0.31%. Comparing this with
the negative daily return of -0.13% of the Other sector, we see a clear difference. The Other
sector is created for companies that do not fall within the remaining sector specifications
and, therefore, might not show clear dynamics. It is important to note that the number of
stocks that comprise a sector differs, ranging from three for Other and 82 for Electric utility.
When we look closer at Table 1 to the differences between sectors, we directly observe that
a similar increase in standard deviation accompanies a relatively higher return. This shows

1https://fred.stlouisfed.org/series/DFF
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that investors require a greater return for taking on more risk. A similar phenomenon is
seen in the minimum and maximum gain/loss, as the sectors with higher risk have a more
considerable all-time high gain and a more profound all-time loss.

2.2 Factor data

Next, we acquire data to create the factors for our analysis using daily data. The data
consists of the Fama and French factors: Market risk, Size, Value, and Momentum (Rm-Rf,
SMB, HML, and MOM, respectively). The data for these factors are obtained at Kennedy
and French 2. Next, we must create the lesser-known Fama and French factors for Term
and Default premium (Fama & French, 1993). Furthermore, we have created non-return
factors for Cash Flow Volatility, Leverage, and Investment Growth based on daily rankings
of firm-specific metrics. This offers a more granular analysis, allowing us to focus on specific
variables and metrics within each sector and regime. Moreover, by directly examining the
changeability of these factors, we can uncover unique insights into the relationship between
these characteristics and their sensitivity to different regimes. This approach contributes to
a novel perspective on the dynamics of these factors and their impact on stock behaviour.

We gather data on the different stocks from WSJ.com 3 4 FRED economic research 5 and
lastly from Factset 6 where we calculate these idiosyncratic factors as follows:

Term premium - This factor is constructed to find the effect of unexpected movements
in the return of government bonds. Using Equation 1, we calculate the term premium factor
as the lagged difference between a U.S. 10-year treasury bond and the one-month treasury
bill. Similar to Fama and French (1993), this is a proxy for the deviation of long-term bond
returns from expected returns due to shifts in interest rates.

TERMt = USTBOND10Yt−1 − USTBILL1Mt−1 (1)

Default premium - Secondly, we construct a factor to determine the effect of changes
in the probability of default. Since infrastructure projects are prone to high debt ratios,
this might result in an increased impact on the default premium. Fama and French (1993)
constructs the default premium factor as the difference between a market portfolio of long-
term corporate bonds and a long-term government bond. We do the same here, as seen

2https : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html
3https : //www.wsj.com/market − data/quotes/bond/BX/TMUBMUSD01M/historical − prices
4https : //www.wsj.com/market − data/quotes/bond/BX/TMUBMUSD10Y
5https : //fred.stlouisfed.org/series/DBAA
6https : //www.factset.com/
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in Equation 2, using Moody’s Seasoned Baa Corporate Bond Yields and the U.S. 10-year
treasury bond.

DEFt = MoodysBAAt−1 − USTBOND10Yt−1 (2)

Cash flow volatility - This is the only factor not observed daily but monthly. We forward-
fill the observations to create a factor with daily values. We are not worried about the
repetitive nature of cash flow now because the companies’ reporting dates are not aligned.
This results in a varying dataset when we aggregate the values to create the final dataset
for the factor. This dataset calculates the standard deviation of cash flow divided by sales
over a rolling 50-trading-day window. For each date, we rank the measurements for cashflow
volatility into the top 30%, the middle 40%, and the bottom 30%. Next, we create the
CFvolt factor by taking the daily average of the top 30% high cash flow values minus the
average of the bottom 30% low cash flow volatility.

Investments growth - We incorporate an investment growth factor because we believe
that investment will be an essential indicator of profit generation. These profits will explain
part of the variation in the equity return of an infrastructure asset or project. Chen et
al. (2011) proposes a standard investment growth factor as the change in property, plant
and equipment (PPE) with the addition of inventory divided by the lagged value of total
assets. However, we devised a different metric since infrastructure stocks usually do not have
inventory or changed assets. We divide each company’s earnings per share (EPS) by its
Capital Expenditure (CAPEX). CAPEX is the funds a company spends to acquire, upgrade,
and maintain physical fixed assets, such as property, buildings, and equipment.

INV Gi,t = EPSi,t−1

CAPEXi,t−1
(3)

Here, Equation 3 shows how we calculate the metric for investment growth for company i at
time t. These values are obtained from Factset, and after ordering the companies for every
day, we create the INV Gt factor as the average of the top 30% minus the bottom 30% on
day t.

Leverage - We construct a leverage factor based on a high and low debt-to-equity ratio
(DER) (Bhandari, 1988). Here, we divide the total debt (difference in book value of total
assets and common equity) by the market value of common equity, as seen in Equation 4
below.

DERi,t =
BV T OT ASSET

i,t−1 − BV COMEQUIT Y
i,t−1

MV COMEQUIT Y
i,t−1

(4)
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Next, we create a daily ranking based on the DER of each company i (top 30%, middle 40%,
bottom 30%). The LEVt factor is the average of the top 30% DER minus the bottom 30%
on day t.

Price/Earnings - This factor is relatively straightforward, as the metric is obtained by
dividing the price per share by the earnings per share. Here, we create the PEt factor as the
average of the top 30% PE minus the bottom 30% PE stocks on day t.

In Table 2, we see the summary statistics of the factors. Here, we note that not every
company has reported all data starting from 2010 or until 2024. Instead of only looking at
stocks with data from the beginning until the end, we perform the abovementioned analysis
by daily ranking the companies that have available data based on that observation data.

Table 2: Summary statistics on explanatory factors for the period 01-01-2010 until 01-01-2024

RM − Rf SMB HML MOM DEF TERM CFvol INVG LEV PE
Mean 0.04 -0.01 -0.00 0.02 2.56 1.56 0.10 0.24 3.80 70.75

St. Dev 0.93 0.39 0.50 0.65 0.69 1.22 0.10 0.34 1.21 24.13
Min -9.62 -5.38 -3.10 -9.40 1.42 -2.06 0.03 0.02 2.16 33.82
Max 8.33 2.05 4.16 3.57 5.97 3.87 0.79 1.13 6.60 121.54

3 Methodology

In this section, we explain the proposed methodology for this research. It consists of two
primary analyses combined to analyse the movements of infrastructure assets under changing
interest rates. The first part starts with a deep dive into the interest rate dynamics, for
which we use the Federal Fund Effective Rate as a proxy. Using a regime-switching model,
we determine the different regimes in the data. For each regime, we then estimate specific
parameters of the factor model.

3.1 Hidden Markov Model

Regime-switching models are statistical models that allow for changes in a time series’ un-
derlying structure or parameters. These models are advantageous in this setting since we
analyse data prone to exhibit periods of different behaviours or regimes.

To determine the different regimes, we utilise a Hidden Markov Model (HMM) as done by,
for example, Hou (2017), Mor et al. (2021) and Rabiner (1989). Here, we assume that there is
a (hidden/unobserved) process that drives the interest rates. Therefore, the implementation
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of an HMM provides a better understanding of the differences in the process of the driving
factor of interest rates.

As stated in the name, a HMM is, in essence, a Markov model where the states are
unobserved. With that, a HMM is a stochastic model where states are assigned with a
particular transition probability. The probability of being in a specific state depends only on
the previous state and the transition probability.

We assume a HMM with an unknown number of regimes K. Also, let {St} be an observed
process, namely the interest rate, and the unobserved state time series is denoted by {Yt}.
Furthermore, matrix A represents the transition probabilities between states, where aij is the
probability of moving from state i to state j. Here, we must assume that these probabilities
are constant over time and constrained such that ∑K

j=0 aij = 1 ∀i.
The initial state probabilities, denoted by π, represent the probabilities of starting in each

state. So, πi is the probability of starting in state i. Following the same logic as before, we
impose the constraint that ∑K

i=0 πi = 1.
The emission probabilities in a Hidden Markov Model (HMM) represent the likelihood

of observing a certain value for Sn = sn given a specific hidden state. We denote the
emission probabilities as the matrix B, where bsi

(k) represents the probability of emitting
observation si from state k. Like the transition probabilities, the emission probabilities are
also subject to constraints. Specifically, the sum of probabilities of emitting all possible
observations from a particular state should equal 1. This can be expressed as ∑n

i=0 byi
(k) =

1 ∀k, where n represents the total number of possible observations. These probabilities are
visually represented in Figure 2, where we see the different states, probabilities and emitted
observations.

Figure 2: Hidden Markov Model showing the transition and emission probabilities

Estimating the Hidden Markov Model consists of two steps: estimating the Markov para-
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meters (obtaining αij and βsi
(j)). We do this through the Baum-Welch algorithm as first

proposed by Baum et al. (1970). Secondly, we implement the Viterbi algorithm to find the
sequence of regimes that maximises the probabilities of being in state i at time t. The Viterbi
algorithm utilises the parameters we estimated with the Baum-Welch algorithm as trade-offs
between the probability of being in a specific state and moving to the next state. Both al-
gorithms use the forward-backward equations, a dynamic programming algorithm combining
two equations to determine joint probabilities (Ross, 2014).

3.1.1 Forward-Backward algorithm

We begin by explaining the general form of the forward and backward equations. This
algorithm calculates the forward probabilities, denoted by αt(i) = P{St = st, Yt = i}, which
represent the probability of being in state i at time t while having observed S1:t. Here we
know that, according to the law of conditional probability, P{Yt = i|St = st} = αt(i)∑

j
αt(j) . The

backward probabilities, denoted by βk(t) = P{St+1 = st+1, . . . , Sn = sn|Yt = k}, represent
the probability of observing the data Yt+1:T given that the system is in state k at time t.

The forward-backwards algorithm is performed in two steps. First, the forward approach
is used to determine αt(i) according to Formula 5 (full derivation in Appendix A.2)

αt(i) = p(st|i)
∑

j

αt−1(j)aji. (5)

Starting with α1(i) = P{Y1 = i, S1 = s1} = pip(s1|i) we use Formula 5 recursively to
determine the function up to αn(i). Next, the backward approach is defined by conditioning
on Yt+1 = j using the following:

βk(t) =
∑

j

p(st+1|j)βj(t + 1)ajk. (6)

We use Formula 6 starting with βi(n − 1) = ∑
j ajip(sn|j) to determine βk(n − 2) until βk(1).

We again refer to Appendix A.2 for the full derivation of the recursion.
To utilise the sequential nature of this approach, we may simultaneously compute the

forward and backward equations starting from α1 and βn−1 until we have calculated both
αk(i) and βk(i). The joint probabilities of the observed data and the underlying states,
P(Y1:T , S1:T ), can be calculated using the forward and backward probabilities as in Formula 7

P{Sn = sn, Yk = i} = αk(i) × βk(i) (7)

Ross (2014) explains two schools of thought when analysing the unobserved states. The first

10



one is solely looking at the final observation and maximising the probability P(Yn = i|Sn =
sn). However, this would not incorporate the transition probability aij. For example, the
maximum probability at time t−1 may be attained in state j and state i for time t. However,
that must also mean the aij should be reasonably high, which is not necessarily the case.

Therefore, analysing the entire sequence in a Hidden Markov Model (HMM) is essential
for capturing the temporal dependencies inherent in financial time series data, such as interest
rates. A specific form of the forward-backwards algorithm (Viterbi algorithm) leverages the
entire sequence to compute the forward and backward probabilities. These probabilities are
then combined to yield the conditional probability of being in a specific state at each time
point, given all the observed data. This whole sequence analysis enables a nuanced under-
standing of the regime-switching behaviour in the data, offering insights into the underlying
dynamics that single-point predictions may overlook.

3.1.2 Baum-Welch algorithm

In this part, we will explain how we utilised the Baum-Welch algorithm to find the estimated
parameters under a fixed number of regimes. Here, the Markov Chain is described by θ =
(A, B, π) such that the algorithm searches for the local maxima θ∗ = argmaxθP(S|θ). After
that, we compare the estimated models across different regimes using the log-likelihood and
the AIC and BIC criteria. This will determine the number of regimes we believe are present
in the data.

The Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm consisting
of two steps. The goal of this algorithm is to find the parameters that maximise Q(θ, θk) =
Eθk

(log(pθ(S, Y ))|S = s) = ∑
s log(pθ(s, y))pθk

(y|s). This leads to the first step:

E-step In this step, we need to take the expectation of the joint distribution of the observed
data and the hidden states given the current parameter estimates, represented by θk. By
taking this expectation, we obtain the following formula:

Q(θ, θk) =
k∑

i=1
Pθk

(Y1 = i|s)log(πi) +
n∑

t=2

k∑
i=1

k∑
j=1

Pθk
(Yt−1 = i, Yt = j)log(aij)

+
n∑

t=1

k∑
i=1

Pθk
(Yt = i|s)log(f(st|Θ)). (8)

For the Baum-Welch algorithm, we can make Formulas 5 and 6 specific. This results
in the forward recursion being: αt(i) = bst(i)

∑k
j=1 αt−1(j)aji and the backward recursion is

βt(i) = ∑k
j=1 βt+1(j)aijbst+1(i). Now, we see that the probabilities in Formula 8 (after using

Bayes’ Theorem of conditional probability, see Appendix A.2) can be calculated with the
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forward-backward algorithm such that:

γt(i) = αt(i)βt(i)∑n
j=1 αt(i)βt(i)

(9)

ξt(ij) = αt(i)aijβt+1(j)bst+1(j)∑n
k=1

∑n
w=1 αt(k)akwβt+1(w)bst+1(w) . (10)

M-step Here, we take the expectation we obtained in the previous step and find the value
for θ that maximises Q(θ, θk). This is done by calculating the first-order conditions with
respect to the parameters. These derivations are omitted, but we refer to Yang et al. (2017)
and Hsiao and Schultz (2011) for the detailed description. Using Formulas 9 and 10 we can
update the Markov parameters as:

π∗
i = γ1(i) (11)

a∗
ij =

∑n−1
t=1 ξt(ij)∑n−1
t=1 γt(i)

(12)

b∗
vw

=
∑n

t=1 1(st = vw)γt(i)∑n
t=1 γt(i)

. (13)

Formula 12 calculates the number of expected transitions from state i to state j relative
to the total number of transitions from state i. Furthermore, Formula 13 calculates the
expected number of times the observation is vk while the system is in state i, relative to the
total expected number of times the system is in state i.

After updating the parameters, the algorithm circles back to the E-step and continues
the loop until it converges. This convergence is quantified by iterating until the increase
in the log-likelihood is below a certain threshold. Depending on the initial parameters, the
algorithm may converge to a different solution due to local maxima in the likelihood function.
To mitigate this, we rerun the algorithm multiple times with different (random) initial values
of θ.

3.1.3 Viterbi algorithm

The Viterbi algorithm is another variant of the forward-backwards algorithm that finds the
most probable sequence of states, known as the Viterbi path. In this section, we explain how
it works and differs from the forward-backwards algorithm. As mentioned at the beginning
of Section 3, our goal here is to predict the sequence of state Y1:T = {y1, . . . , yT } based on
the observed data S1:T = {s1, . . . , sT }. Similarly as in Churbanov and Winters-Hilt (2008),
we use Formulas 5 and 6 to compute P(Yn = (i1, . . . , in)|S1:T ) where Yn = (i1, . . . , in) is the
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vector of the first n states. This results in the following formula:

P{Yn = (i1, . . . , in)|Sn = sn} = P{Yn = (i1, . . . , in), Sn = sn}
P{Sn = sn}

. (14)

The objective function maximised by the Viterbi algorithm can be decomposed into a
series of sub-problems, each representing the maximum probability of a path leading to a
specific state at a specific time. Thus, the most probable sequence of states (or the optimal
path) combines the most probable sub-paths. Mathematically the objective function becomes
F (y) = f1(y1) + f2(y2, y1) + · · · + fn(yn, yn−1). The power of the Viterbi algorithm lies in its
ability to utilise the Markovian property. If we let Y ∗

1:T be the optimal sequence and s∗
i is

observed in regime k, then we can split the objective function into two parts as,

Fi,k(y1:i−1) = f1(y1) + f2(y2, y1) + · · · + fi(k, yi−1)

F̄i,k(yi+1,n) = fi+1(yi+1, k) + · · · + fn(yn, yn−1)

and maximise them separately. The optimal path from the start to any point in the sequence
is part of the overall optimal path. This is a property of dynamic programming problems
known as the principle of optimality. Using this logic, we can form the recursion using a
special form of the forward-backward algorithm.

The forward part of the Viterbi algorithm calculates a modified version of the forward
probabilities, denoted by Vk(j) = max

i1,...,ik−1
P{Yk−1 = (i1, . . . , ik−1, Yk = j, Sk = sk}, which

represent the maximum probability of any path that ends at state j at time k.
The calculation of Vk(j) is similar to calculating the forward probabilities in the forward-

backward algorithm. Still, instead of summing over the probabilities of each path, it keeps
only the maximum probability. This is done by taking the maximum over the previous
states. The calculation is as follows: Vk(j) = p(sk|j) max

i
Vk−1(i)aij or in terms of emission

probabilities, max
i

Vk−1(i)aijbsk
(j).

After the Vn(jn) values have been calculated for each state jn at each time step n, the
Viterbi path can be found by backtracking. Starting from the state at which the maximum
Vn(jn) is obtained at the final time step, the state at each previous time step is chosen to
be the state that maximises the product of the V value, the transition probability, and the
emission probability at that time step.

This reverse path that is traced out is the Viterbi path, i.e., the most probable sequence of
states given the observed data. This backtracking step can be seen as a backward calculation,
but it is not the same as the backward equations in the forward-backward algorithm. The
main difference is that the backtracking step in the Viterbi algorithm is used to recover
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the most likely state sequence. In contrast, the backward equations in the forward-backward
algorithm are used to compute the backward probabilities and then to calculate the posterior
state probabilities.

Using the relation Vk(j) = max
i1,...,ik−1

P{Yk−1 = (i1, . . . , ik−1, Yk = j, Sk = sk}, and seeing
that the problem in Formula 14 is maximised through the numerator, we get an iterative
algorithm for the whole sequence. The entire derivation is shown in Appendix A.2, where
Formula 15 shows the resulting maximisation.

max
i1,...,in

P{Yn = (i1, . . . , in), Sn = sn} = p(sn|jn)ain−1(jn),jnVn−1(in−1(jn)) (15)

Here, in−1(jn) is the next to last state in the maximising sequence, and we can continue
this fashion with in−2(in−1(jn)).

3.2 Factor Model

Following the identification of distinct regimes using Hidden Markov Models, we proceed to
the second part of the research. Namely, we estimate three factor models for each found
regime. For this, we propose linear models to analyse the daily effects of the factors as stated
in Section 2. The final layer of the analysis involves fitting the factor model to the aggregated
return of different sectors. The parameters of the factor models, including the factor loadings
βi,X for variable X and the error terms ϵi,t, are estimated using Generalized Least Squares
(GLS).

GLS is a variant of ordinary least squares that allows for certain types of heteroskedasti-
city and autocorrelation in the error terms. It works by applying a linear transformation to
the data to remove the heteroskedasticity and autocorrelation and then performing ordinary
least squares on the transformed data. In this context, the objective function for GLS can
be written as minα,β

∑
t(Rt − α − β′Ft)′Ω−1(Rt − α − β′Ft), where Rt are the returns, Ft

are the created factors, α and β are the parameters to be estimated, and Ω is the variance-
covariance matrix of the errors. The parameters that minimise this function can be found
using numerical optimisation techniques or, in some instances, using algebraic solutions. GLS
provides consistent and efficient estimates of the parameters under the model’s assumptions.
The most critical assumptions under GLS are a linear relation between dependent and in-
dependent variables, heteroskedasticity and autocorrelation in the error term, no perfect
multicollinearity between independent variables, and normally distributed errors.
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3.2.1 Model Estimation

As mentioned, we implement three factor models on the excess return (Ri,t − Rf,t) of each
sector i. The first one is constructed using only systematic factors as proposed by Fama and
French (1993) with the addition of the momentum term first researched by Carhart (1997)
as seen in Formula 16.

Ri,t − Rf,t = αi + βi,M(RM,t − Rf,t) + βi,SMBSMBt + βi,HMLHMLt

+ βi,MOMMOMt + βi,T ERMTERMt + βi,DEF DEFt + ϵi,t (16)

This six-factor model, which includes systematic factors such as the market premium
(RM,t − Rf,t), size (SMBt), value (HMLt), momentum (MOMt), term structure (TERMt),
and default risk (DEFt), is interesting because it allows us to capture broad market trends
and economic conditions that affect all companies to varying degrees. The factors selected
are believed to explain a significant portion of the variations in stock returns.

Secondly, we utilise four company-specific characteristics, which are captured in the Cash-
flow Volatility, Investment Growth, Leverage and Price-Earnings factors (CFvolt, INV Gt,
LEVt and PEt respectively). This regression is again done for each sector i and is shown in
Formula 17.

Ri,t − Rf,t = αi + βi,CF volCFvolt + βi,LEV LEVt

+ βi,INV GINV Gt + βi,P EPEt + ϵi,t (17)

This model is interesting because it allows us to capture firm-specific characteristics that
may affect the stock’s return, independent of macroeconomic conditions. It provides a more
detailed look at the factors influencing a particular company’s stock performance.

Lastly, we combine both models to create the model of Ben Ammar and Eling (2015),
with an additional Price-Earnings factor, which is shown in Formula 18

Ri,t − Rf,t = αi + βi,M(RM,t − Rf,t) + βi,SMBSMBt + βi,HMLHMLt

+ βi,MOMMOMt + βi,T ERMTERMt + βi,DEF DEFt

+ βi,CF volCFvolt + βi,LEV LEVt + βi,INV GINV Gt + βi,P EPEt + ϵi,t (18)

Combining the two previous models, we integrate systematic and idiosyncratic factors. This
model is particularly interesting because it provides a more holistic view of the factors that
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might influence a stock’s return. It allows for a comprehensive analysis of the market-wide
and firm-specific characteristics that drive stock returns, providing a more complete picture
of the dynamics at play.

In these formulas, αi is said to be the constant factor within sector i, βi,X represents the
factor loading in sector i on the effect of variable X and ϵi,t is the error term of sector i at
time t.

3.2.2 Model Comparison

We employ the Wald test to compare the factor loadings between different regimes. The Wald
test is a statistical test commonly used to assess the significance of individual coefficients in
regression models. In our context, it allows us to determine if there are statistically significant
differences in the factor loadings between regimes for each variable.

The test statistic for the Wald test is calculated by taking the difference in factor loadings
between the two regimes and dividing it by the square root of the difference between standard
errors. The formula for the Wald test statistic is as follows:

W = β̂1 − β̂2√
SE(β̂1)2 − SE(β̂2)2

. (19)

Here β̂1 and β̂2 are the estimated factor loadings for the two regimes being compared, and
SE(β̂1) and SE(β̂2) are the corresponding standard errors. This results in a test statistic
that follows the Chi-squared distribution.

Furthermore, we also compare the coefficients of a driving variable across the regressions of
different sectors. With this comparison, we aim to quantify the differences between industry
drivers. The test statistic for the multivariate Wald test is calculated by taking the difference
between the coefficient vector and a reference value (in this case, the mean coefficient across
different sectors) and multiplying it by the inverse of the joint covariance matrix. The
resulting test statistic follows the multivariate chi-squared distribution,

W = β̂i − β̂µ

Ω̂
. (20)

In this formula, β̂i represents the estimated coefficient vector for a specific sector or regime,
β̂µ represents the estimated coefficient vector as the reference value (e.g., the mean coefficient
across different sectors), and Ω̂ represents the estimated covariance matrix of the coefficient
estimates.

Using the (multivariate) Wald test, we can test the hypothesis of equal coefficients. A sig-

16



nificant test result indicates evidence against this hypothesis, suggesting that the coefficients
differ between the regimes or sectors being compared.

Performing the Wald test enables us to quantify the differences in factor loadings and
coefficients, providing valuable insights into the variations across regimes and sectors.

4 Results

In this section, we will discuss the results of the methodology as explained in Section 3.
We first look at the Hidden Markov Model (HMM) and then see the implications of the
factor model. We combine the current dataset (2010-2024) with a similar training set from
01-01-2000 until 31-12-2009 to capture the full dynamics in the interest rate data.

4.1 Hidden Markov Model

Since a HMM assumes that the state transition distribution is constant over time, we first
test for stationarity by implementing the Augmented-Dickey Fuller test (Dickey & Fuller,
1979). As we will use the full data set to estimate the number of regimes, we will also test
the stationarity of this sample. We obtain an ADF test statistic of −1.28 with a P-value
of 0.64. This means we reject the null hypothesis of stationarity and transform the data by
taking the first difference of the returns.

Next, we determine which HMM suits the data best using valuation criteria. As explained
in Section 3.1, we change the number of regimes (1 to 6) and compare the log-likelihood, AIC,
and BIC across the different models.

Figure 3: Valuation criteria for different Hidden Markov Model

By looking at Figure 4, we can see that there is a steep drop in the beginning, and after
two regimes, it flattens very quickly. Even though there seems to be a slight benefit for three
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regimes compared to two, the HMM could not converge to an optimal solution for more than
two regimes. Therefore, we believe the most robust answers come from a two-regime Markov
model, which we will implement from here onwards. With that, we have answered the first
subquestion as stated in Section 1.

By selecting the HMM with two regimes to be the best model, we again fit the model
to our data, utilising various (random) starting values to decrease the possibility of finding
local maxima. After the model converges, we obtain summary statistics to characterise the
two regimes.

Table 3: Transition matrix for the two regimes
HMM on interest rates between 2010 and 2024

Regime 1 Regime 2
Regime 1 0.958 0.042
Regime 2 0.766 0.234

Table 4: Statistics on the two regimes in
interest rates between 2010 and 2024

Mean St. Dev. Count
Regime 1 -0.00053 0.00014 3420
Regime 2 0.021 0.020 231

The Hidden Markov Model (HMM), as presented in Table 3, provides a dynamic per-
spective on how interest rate states transition over time. The model reveals a high degree
of persistence, particularly for regime 1, which aligns with the expectation that changes in
interest rates typically occur slowly and irregularly. Regime 1, characterised by a high self-
transition probability, indicates a stable state in the economy. This state captures periods
of relative stability when interest rates are maintained at a consistent level. This is a com-
mon scenario, as central banks often keep interest rates steady for extended periods to avoid
causing abrupt economic disruptions.

The HMM shows that in regime 2, the model is substantially less likely to retain in this
state but has a high transition probability from regime 2 to regime 1. Moreover, we note
that the model moves from regime 2 to 1 with a higher change than from regime 1 to 2.
This suggests that even when the economy experiences changes that push it away from the
steady state, there’s a strong tendency to revert to stability. Therefore, regime 1 represents
the most frequently observed state and serves as an ”attractor” that the economy tends to
gravitate towards.

Overall, the transition probabilities underscore the central role of regime 1 as the dom-
inant and stabilising force in the dynamics of interest rates. They highlight the economy’s
propensity to maintain or revert to stability, reflecting the cautious and gradual approach
typically taken by central banks in adjusting interest rates.
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Table 4 shows the summary statistics for the two different regimes, which are also visu-
alized in Figure 4. Using these statistics, we give a detailed representation of each regime as
follows:

Figure 4: Graphical representation of transition probabilities between the stable (Y1) and
volatile (Y2) regime

Regime 1 - Stable Regime: regime 1 shows a slight negative mean change in interest
rates (-0.00053), suggesting slight decreases or essentially stable rates when the system is in
this state. The very low standard deviation (0.00014) further underscores the stability of
this regime. As identified earlier, this steady state exhibits a high degree of stickiness, with
a high likelihood of remaining in this state once it has entered.

Regime 2 - Volatile Regime: regime 2 is characterised by a mean change in interest
rates of 0.021 and a relatively high standard deviation of 0.020. These characteristics suggest
a period of active fluctuations in interest rates. While the mean change is positive, indicating
an overall upward trend, the high standard deviation underscores the volatility, indicating
that rates can rise or fall when the system is in this state. Despite these fluctuations, there’s
a notable tendency to return to a steady state, reflecting the pull of the stickiness inherent
in interest rate dynamics.

These two regimes thus represent distinct states of interest rate changes: regime 1 signifies
periods of stability or slight decreases in rates, while regime 2 captures periods of growth with
volatility. The transition probabilities between these states further highlight the tendency of
the system to revert to the steady state, underscoring the stickiness of interest rate dynamics.
In Figure 5, we can see the distinction of the periods in each regime. Here, we note that
there are clear clusters of regime 2 followed by a long period of cluster 1. This shows further
evidence of the fact that regime 2 represents short but sure interest rate changes. We can see
some remarkable historical events within the plot, namely some volatile periods representing
the aftermath of the financial crisis. Also, we see the first rate increase since the economic
crisis around 2015. Finally, we observe a volatile period during the COVID pandemic in
2020.
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Figure 5: Aggregated daily returns with indication of the different regimes between 2010
and 2024

4.2 Factor model

Here, we explain the results following the factor analysis within different periods and sectors.
In Section 4.2.1, we start by analysing all three models on the total aggregated return within
each regime. After that, in Section 4.2.2, we delve into the differences between sectors. The
tables below provide an overview of the regression results of the three models in both regimes.
In every table, the β represents the coefficient value (or constant), SE shows the Standard
Error and pval is the p-value of a t-test. The last is used to determine the significance level
of the parameter, where values are bold if pval ≤ 0.1.

4.2.1 Regime analysis

As stated above, we first look at the aggregated returns, the sum of the total value-weighted
returns of all stocks. We use the Viterbi path, as specified in Section 3.1.3, to separate
the return data into observations for two time series. In Table 5, we provide an extensive
overview of the three models as can be seen in Formulas 16, 17 and 18 respectively.

We rely on several statistical measures to evaluate the adequacy of our regression models
and their fit to the data. Namely, the adjusted R-squared, a commonly used metric that
considers the number of predictors in the model, penalises the addition of unnecessary vari-
ables that do not improve the model’s explanatory power. As Wooldridge (2010) explains, a
higher adjusted R-squared indicates a better fit.

The F-statistic, on the other hand, assesses the overall significance of the model by com-
paring the explained variance to the unexplained variance. A larger F-statistic suggests a
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more significant model fit, indicating that the included predictors collectively impact the
dependent variable Tiku (1967).

Additionally, log-likelihoods measure how well the model fits the observed data based
on the probability of observing the data given the estimated model parameters. A higher
log-likelihood indicates a better fit. These three tests, adjusted R-squared, F-statistics, and
log-likelihoods, play complementary roles in assessing model fit and can help researchers
make informed conclusions about their regression models’ validity and explanatory power.

In Appendix A.4, we provide Table 24, which gives an overview of the criteria values,
as mentioned earlier. Models 1 and 3 almost always form a significant fit, and Model 2 has
trouble providing a decisive performance.

Aggregated Returns Table 5 presents the regression results of model 3 on the equally-
weighted aggregated returns, with red underlined values indicating significant variables that
display the opposite sign when moving from the first to the third model.

Table 5: Factor regression model 3 for two regimes over the aggregated returns from 2010
until 2024

Variable α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

R1
β -4.12 5.16 2.20 2.04 0.11 0.47 1.28 0.68 0.05 1.93 0.00

SE 1.51 0.14 0.34 0.24 0.19 0.17 0.35 1.47 0.12 0.53 0.01
Pval 0.01 0.00 0.00 0.00 0.57 0.01 0.00 0.65 0.69 0.00 0.60

R2
β -11.65 5.86 1.14 0.84 2.38 0.58 3.19 9.48 0.83 1.27 -0.00

SE 6.30 0.66 1.56 1.25 0.87 0.73 1.47 6.56 0.49 2.22 0.03
Pval 0.07 0.00 0.47 0.50 0.01 0.43 0.03 0.15 0.09 0.57 0.99

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.

In regime 1, the positive and significant coefficients for Mkt−Rf (5.16), SMB (2.20), and
HML (2.04) in both models indicate that market risk, company size, and value factors are
vital in shaping infrastructure returns in this regime. Here, we note that the positive value
for SMB indicates that, on average, infrastructure assets behave like small-cap stocks. In
contrast, the initial belief is that infrastructure is a large-cap stock. The significant coefficient
for DEF (1.28) suggests that default risk plays an important role. Notably, the coefficient
for Mkt − Rf is larger than those for SMB and HML, indicating that market risk might
be the most influential factor in this regime.

Contrastingly, regime 2 paints a different picture. None of the variables are significant
in model 2, implying that these factors may not hold as much relevance in this regime.
However, in model 3, leverage (LEV ) becomes significant (0.83) at the 10% level, suggesting
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that the financial structure of firms becomes an essential driver of infrastructure returns in
this regime.

Interestingly, the coefficient for PE is significant and positive (0.00) in regime 1 under
model 3, suggesting that firms with higher price-earnings ratios tend to perform better in this
regime. However, it is worth noting that this relationship is reversed in model 2, highlighting
the complexity of the relationship between the price-earnings ratio and infrastructure returns.

Furthermore, while the cash flow volatility (CFvol) is significant in model 2 for regime
1, it loses its significance in model 3. This could suggest that while cash flow volatility is
essential in a more stable economic environment, its influence may be overshadowed by other
factors in different financial conditions.

These results underscore the multifaceted nature of infrastructure returns and the import-
ance of considering different economic regimes when analysing them. The values provided by
the regime-switching model offer more nuanced insights, helping investors better understand
the dynamics at play and make more informed investment decisions in the infrastructure
sector.

4.2.2 Sector analysis

This section will discuss the results of our regressions per sector. By doing this, we better
understand the variables actively driving returns within that sector and, hopefully, gain
insight into the differences between the regimes.

Airport Here, we will discuss the results of our analysis on the Airport sector, as shown
in Table 6.

Table 6: Factor regression model 3 for two regimes over the simple return in the Airport
sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

R1
β 1.10 0.47 0.35 0.20 0.01 -0.04 -0.21 0.62 -0.03 -0.09 -0.00

SE 0.29 0.03 0.07 0.05 0.04 0.03 0.07 0.29 0.02 0.10 0.00
Pval 0.00 0.00 0.00 0.00 0.77 0.21 0.00 0.03 0.22 0.40 0.00

R2
β 0.71 0.34 0.27 0.26 -0.04 -0.13 -0.17 1.27 0.00 -0.72 0.00

SE 1.25 0.13 0.31 0.25 0.17 0.15 0.29 1.30 0.10 0.44 0.01
Pval 0.57 0.01 0.38 0.30 0.82 0.38 0.56 0.33 0.97 0.11 0.98

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes
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For the Airport sector, in regime 1, which represents a stable economy with little to no
movements in interest rates, the returns are positively influenced by market risk, company
size, and value factors, as indicated by the significant and positive coefficients for Mkt − Rf

(0.47), SMB (0.35), and HML (0.20). This suggests that larger companies with higher
Book-to-Market ratios in the Airport sector tend to offer higher returns, which align with
the overall market. This means that airports also show different characteristics for size, as
expected. However, the significant and negative coefficient for DEF (-0.21) implies that
lower default risk could potentially erode returns. Going against popular beliefs that higher
returns should go hand in hand with higher risk. Furthermore, as DEF is underlined and
significant, its significance does not hold when considering other models. This could suggest
that the impact of default risk on the Airport sector’s returns is more nuanced and potentially
influenced by other factors captured in different models. This also holds for PE but with a
substantially smaller loading.

However, in regime 2, Mkt − Rf (0.34) is the only significant coefficient. This suggests
that during periods of interest rate volatility, market risk becomes a critical concern for
returns in the Airport sector. The shift in significance from multiple factors in regime 1 to
primarily default risk in regime 2 indicates that the sector’s returns become less diversified
and more sensitive to default risk when interest rates are volatile.

The underlined coefficient for CFvol in both regimes indicates that while cash flow volat-
ility is significant under model 2, its influence diminishes under model 3. This could suggest
that the impact of cash flow volatility on the Airport sector’s returns may be contingent
on the broader economic regime or other factors included in the different models. Also, the
PE coefficient in regime 1 is significant and underlined, indicating its significance changes
between models. This suggests that the impact of the price-earnings ratio on returns is
model-dependent in this regime, highlighting the complexity of this relationship.

Looking at Table 40 in Appendix A.4, we notice no significant difference between the
loadings in regime 1 and the same loadings in regime 2. This could indicate that even though
there is less evidence in regime 2, the variables still drive as much return as in regime 1, but
due to the short sample size, the estimator’s precision is lost.
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Communication Below in Table 7, we find the results of the factor model on the simple
daily returns in the Communications industry.

Table 7: Factor regression model 3 for two regimes over the simple returns in the
Communication sector from 2010 until 2024

Variable α∗ Mkt − Rf SMB HML MOM TERM DEF ∗ CFvol LEV INV G PE

R1
β 0.36 0.26 0.20 0.10 0.17 -0.07 0.31 -1.57 -0.04 -0.40 -0.00

SE 0.62 0.06 0.14 0.10 0.08 0.07 0.14 0.61 0.05 0.22 0.00
Pval 0.57 0.00 0.15 0.31 0.02 0.33 0.03 0.01 0.39 0.07 0.17

R2
β -6.75 0.05 0.03 -0.06 0.42 -0.06 2.39 -0.51 0.26 0.18 0.01

SE 2.48 0.26 0.62 0.49 0.34 0.29 0.58 2.58 0.19 0.87 0.01
Pval 0.01 0.84 0.96 0.90 0.22 0.83 0.00 0.84 0.17 0.84 0.60

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In regime 1, the significant and positive coefficients for Mkt−Rf (0.26), MOM (0.17), and
DEF (0.31 suggest that market risk, momentum, and default risk are significant contributors
to the returns in the Communication sector during this regime. However, the negative and
significant coefficient for CFvol (-1.57) and INV G (-0.40) suggests that higher cash flow
volatility and higher investment growth can negatively impact returns in this regime. For
cashflow volatility, this is expected, as the inelastic demand should generate higher returns
when cashflow is stable. However, for investment growth, we believe that the renewal of
physical assets should result in higher returns in the long term.

Contrastingly, in regime 2, we observe a shift in the relation between the factors and
return. The coefficient for Mkt − Rf is insignificant, indicating that the sector’s returns are
less sensitive to overall market movements in this regime. However, α (-6.75) is significant,
showing a general negative return unexplained by the present factors. Interestingly, the
coefficient for DEF remains significant and positive (2.39), suggesting that default risk plays
a vital role in shaping returns in the Communication sector in this regime, potentially even
more so than in regime 1. Employing the Wald test, we can conclude that there is a significant
increase in the magnitude of the DEF loading, which means that in volatile interest rates,
there is a bigger premium for risk.

The significance of these factors changes between the two regimes indicates that the
Communication sector’s sensitivity to these factors is indeed affected by changes in interest
rates. Specifically, when interest rates are stable, the sector’s returns appear more sensitive
to market risk, momentum, and cash flow volatility. However, there does not appear to be a
significant difference in the magnitude of the coefficients between the regimes.
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Datacenters Next, we look at the results of our analysis in the Datacenters industry. This
is shown in Table 8.

Table 8: Factor regression model 3 for two regimes over the simple returns in the
Datacenters sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

R1
β -0.07 0.77 -0.45 -0.46 -0.05 0.02 -0.00 0.04 0.01 0.07 0.00

SE 0.21 0.02 0.05 0.03 0.03 0.02 0.05 0.20 0.02 0.07 0.00
Pval 0.74 0.00 0.00 0.00 0.07 0.31 0.97 0.86 0.59 0.35 0.83

R2
β -0.16 0.82 -0.13 -0.32 0.01 0.11 0.02 0.41 0.04 0.22 -0.00

SE 0.90 0.09 0.22 0.18 0.12 0.10 0.21 0.93 0.07 0.32 0.00
Pval 0.86 0.00 0.56 0.08 0.92 0.30 0.94 0.66 0.60 0.48 0.59

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In regime 1, which corresponds to a stable interest rate environment, the significant and
positive coefficient for Mkt−Rf (0.77) suggests that market risk is a crucial driver of returns
in the Datacenters sector. However, the significant and negative coefficients for SMB (-0.45),
HML (-0.46), and MOM (-0.05) indicate that smaller company sizes, lower book-to-market
ratios, and negative momentum are associated with higher returns in this sector during this
regime. These last observations are interesting, as we believe that large-cap value stocks
would outperform small-cap growth stocks.

In contrast, during the more volatile regime 2, the market risk remains a significant
driver of returns, as indicated by the significant and positive coefficient for Mkt − Rf (0.82).
Similar to regime 1, the significant and negative coefficient for HML (-0.32) suggests that
lower book-to-market ratios are again associated with higher returns in this regime.

These shifts in sensitivity between the two regimes suggest that the Datacenters sector’s
returns are sensitive to changes in interest rates. Specifically, in a stable interest rate envir-
onment (regime 1), returns in this sector are influenced by various factors, including market
risk, company size, value, and momentum. However, in a volatile interest rate environment
(regime 2), market risk and value factors become the primary drivers of returns, with com-
pany size and momentum factors losing significance. Despite a shift in significant drivers,
the loadings are not significantly different. This indicates that the driver’s importance might
differ, but the magnitude does not vary as an effect of interest rates.

25



Electric Utility In Table 9, we find the factor analysis results on the simple daily returns
in the Electric Utility industry.

Table 9: Factor regression model 3 for two regimes over the simple returns in the Electric
Utility sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

R1
β -0.24 0.35 0.32 0.18 0.03 0.01 0.06 -0.38 0.01 0.05 0.00

SE 0.22 0.02 0.05 0.04 0.03 0.03 0.05 0.22 0.02 0.08 0.00
Pval 0.28 0.00 0.00 0.00 0.36 0.81 0.22 0.08 0.55 0.54 0.29

R2
β 0.18 0.50 0.17 0.08 0.05 -0.05 -0.00 -1.17 -0.01 -0.28 0.00

SE 0.86 0.09 0.21 0.17 0.12 0.10 0.20 0.90 0.07 0.30 0.01
Pval 0.83 0.00 0.43 0.64 0.66 0.60 0.99 0.19 0.88 0.37 0.88

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

Beginning with regime 1, we observe the significant and positive coefficients for Mkt−Rf

(0.35), SMB (0.32), and HML (0.18), which suggests that market risk, company size, and
value factors are key contributors to returns in the Electric Utility sector. Meanwhile, the
significant and negative coefficient for CFvol (-0.38) suggests that higher cash flow volatility
may negatively impact returns in this sector during this regime. The underlined but non-
significant coefficient for LEV (0.01) suggests that the significance of leverage in this sector’s
returns may vary depending on the model used.

For regime 2, however, only the Mkt−Rf coefficient remains significant (0.50), indicating
that market risk continues to be a key driver of returns in the Electric Utility sector. However,
all other factors, including SMB, HML, and CFvol, lose their significance, suggesting that
their influence on returns is diminished in this volatile interest rate environment.

Analysing the shift between the two regimes, we see that the Electric Utility sector’s
returns are sensitive to changes in interest rates. Specifically, in a stable interest rate en-
vironment, returns in this sector are influenced by various factors, including market risk,
company size, and value. At the same time, higher cash flow volatility tends to reduce re-
turns. However, in a volatile interest rate environment, market risk emerges as the primary
driver of returns, while the influence of other factors seems to vanish.

Again, we do not find a significant drop or increase in the magnitude of the drivers when
transitioning to another regime. However, we can predict the loadings more precisely in the
stable regime.
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Gas Utility Table 10 summarises the results for the Gas Utility sector.

Table 10: Factor regression model 3 for two regimes over the simple returns in the Gas
Utility sector from 2010 until 2024

Variable α∗ Mkt − Rf ∗ SMB HML MOM∗ TERM DEF CFvol LEV INV G PE∗

R1
β 0.17 0.37 0.56 0.27 -0.07 0.02 -0.06 0.85 -0.12 0.42 0.00

SE 0.57 0.05 0.13 0.09 0.07 0.07 0.13 0.56 0.05 0.20 0.00
Pval 0.77 0.00 0.00 0.00 0.33 0.76 0.66 0.13 0.01 0.04 0.19

R2
β 7.18 0.83 0.74 -0.32 0.71 -0.57 -1.08 10.79 -0.14 -0.86 -0.06

SE 2.55 0.27 0.63 0.51 0.35 0.30 0.60 2.65 0.20 0.90 0.01
Pval 0.01 0.00 0.24 0.53 0.04 0.06 0.07 0.00 0.49 0.34 0.00

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In the first regime, the significant coefficients for Mkt − Rf (0.37), SMB (0.56), HML

(0.27) and INV G (0.42) indicate that the market risk, company size, value, cash flow and
investment growth factors are significant contributors to returns in this sector. Similar to
before, the positive value of the SMB factor indicates that Gas Utility stocks move more
like small-caps than large-caps. Also, contradicting financial beliefs is the significant but
negative coefficient for LEV (-0.12), which suggests that higher leverage levels may lead to
lower returns in the Gas Utility sector during this regime.

In the second regime, the significant positive constant term (α: 7.18) implies that the
Electric Utility sector would have a positive return even when all factors are zero. Regarding
factors, market risk remains significant (Mkt − Rf : 0.83), suggesting its continued influence
on returns. The significance of momentum (MOM : 0.71) and cash flow volatility (CFvol:
10.79) indicates that these factors become more influential when interest rates are volatile.
Here, the positive loading on CFvol shows that there is a premium for more volatile cash
flows. Indicating that the sector behaves more like general markets, where stability is not
always a requirement to attract investors. On the other hand, term spread (TERM : -0.5675)
and default risk (DEF : -1.08) have significant negative coefficients, indicating that higher
term spread and default risk may negatively impact returns in this regime. This is interesting
as we would expect a positive effect on these variables.

These findings demonstrate that the Gas Utility sector’s driving factors shift as interest
rates move from stable to volatile. Notably, the sector’s returns appear to be influenced
by a broader range of factors in a volatile interest rate environment, including market risk,
momentum, term spread, default risk, cash flow volatility, and the price-earnings ratio. Notice
that together with the constant α, the loadings on Mkr − Rf , MOM and PE change
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significantly when transitioning to the other regime. This shows that the sector becomes
more influenced by these variables, indicating that past winners are believed to still perform
well in a higher volatility regime than the losers. Also, stocks with a high price-earnings ratio
in these sectors are expected to perform worse in regime 2. Lastly, the effect of market risk
is increased in regime 2 compared to regime 1, which indicates a higher premium for market
exposure for gas utility companies.

Multi Utility In this paragraph, we discuss the results for the regressions on simple returns
in the Multi Utility sector.

Table 11: Factor regression model 3 for two regimes over the simple returns in the Multi
Utility sector from 2010 until 2024

Variable α∗ Mkt − Rf ∗ SMB HML MOM TERM DEF CFvol LEV INV G PE∗

R1
β 0.05 0.59 -0.56 0.23 -0.02 0.02 -0.02 -0.17 -0.01 0.00 0.00

SE 0.16 0.02 0.04 0.03 0.02 0.02 0.04 0.16 0.01 0.06 0.00
Pval 0.74 0.00 0.00 0.00 0.42 0.39 0.62 0.28 0.55 0.99 0.79

R2
β -1.49 0.80 -0.41 0.22 -0.04 0.12 0.22 0.12 0.08 0.36 0.01

SE 0.71 0.07 0.18 0.14 0.10 0.08 0.17 0.74 0.06 0.25 0.00
Pval 0.04 0.00 0.02 0.12 0.71 0.13 0.18 0.87 0.12 0.15 0.19

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In the first regime, the returns of the Multi Utility sector are positively associated with
market risk and value factors, as indicated by the significant and positive coefficients for
Mkt−Rf (0.59) and HML (0.23). However, the significant and negative coefficient for SMB

(-0.56) suggests that bigger company sizes may lead to higher returns in this sector during
this regime. The non-significant constant term (α: 0.05) indicates that when all explanatory
factors are zero, the expected return in the Multi Utility sector is not significantly different
from zero.

Transitioning to the second regime, market risk maintains its significance (Mkt − Rf :
0.80), implying its continued influence on returns. Contrarily, the constant term becomes
significant (α: -1.49), indicating that even if all factors are zero, the ‘Multi Utility’ sector
yields a negative return. Additionally, the significance of the SMB coefficient persists, but
its negativity decreases (-0.41), suggesting a reduced impact of company size on returns in
this regime.

These findings indicate that the Multi Utility sector’s returns exhibit different sensitivities
to various factors between the two regimes. In particular, during the first regime, the sector’s
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returns seem to be influenced by broader factors, including market risk, company size, and
value factors. However, in the second regime, market risk appears to be the dominant driver
of returns, while the influence of company size on returns diminishes.

When transitioning from regime 1 to regime 2, the influence of company size on returns
diminishes slightly but not significantly, while market risk continues to play a significantly
larger role. This suggests that in a volatile interest rate environment, market risk becomes
the dominant driver of returns in the Multi Utility sector while the impact of company size
is reduced.

Other Here, we discuss the analysis of sector Other as seen in Table 12.

Table 12: Factor regression model 3 for two regimes over the simple returns in the Other
sector from 2010 until 2024

Variable α∗ Mkt − Rf SMB HML∗ MOM TERM DEF ∗ CFvol∗ LEV INV G PE

R1
β -4.61 0.05 0.16 -0.00 -0.06 0.27 0.98 1.94 0.01 1.44 0.01

SE 0.29 0.03 0.07 0.05 0.04 0.03 0.07 0.29 0.02 0.10 0.00
Pval 0.00 0.08 0.01 0.95 0.09 0.00 0.00 0.00 0.70 0.00 0.00

R2
β -2.17 0.11 0.36 0.39 -0.12 0.37 0.08 -0.58 -0.02 1.31 0.02

SE 1.05 0.11 0.26 0.21 0.14 0.12 0.25 1.10 0.08 0.37 0.01
Pval 0.04 0.33 0.17 0.06 0.42 0.00 0.18 0.31 0.14 0.07 0.00

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

Under regime 1, corresponding to a stable interest rate environment, the significant negat-
ive constant term (α: -4.61) suggests that when all explanatory factors are zero, the expected
return in the Other sector is negative. Among the factors, market risk (Mkt − Rf : 0.05),
company size (SMB: 0.16), term spread (TERM : 0.27), default risk (DEF : 0.98), cash
flow volatility (CFvol: 1.94), the level of investment (INV G: 1.44), and the price-earnings
ratio (PE: 0.01) all have significant coefficients, suggesting that these factors are important
drivers of returns in the Other sector during this regime. Remarkably, the signs of most
loadings are not directly in line with popular beliefs. The positive values for SMB, CFvol,
and PE mean this sector has reversed behaviour. Additionally, the negative coefficient for
momentum (MOM : -0.06) implies that negative momentum may lead to higher returns in
this sector during this regime.

In regime 2, representing a period of volatile interest rates, the significant and negative
constant term (α: -2.17) indicates that even when all factors are zero, there would be a
negative return in the Other sector. The significant positive coefficients for market risk
(Mkt − Rf : 0.11), company size (SMB: 0.36), Book-to-Market (HML: 0.39), term spread
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(TERM : 0.37), investment growth (INV G: 1.31) and price-earnings (PE: 0.02) suggest that
these factors are positively associated with returns in this sector during this regime. Like
regime 1, this sector shows more of a growth perspective than a value sector. In contrast to
regime 1, cash flow volatility and default risk lose significance, suggesting that these factors
are less influential in this volatile interest rate environment.

These shifts in the significant factors between the two regimes suggest that the Other
sector’s returns are sensitive to changes in interest rates. Specifically, the constant, Book-
to-Market, default premium and cash flow volatility change significantly when transitioning
between states. Most noticeable is that HML shows a reverse effect in the second regime.
In volatile times, the robustness of a growth firm is expected to drive up returns. A final
remark is that there are many significant drivers (especially in regime 1), which traces back
to the fact that the Other sector contains firms of different characteristics.

Pipelines The results for the sector Pipelines are shown in Table 13 below.

Table 13: Factor regression model 3 for two regimes over the simple returns in the Pipelines
sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM TERM∗ DEF CFvol LEV INV G PE

R1
β -0.12 0.85 -0.13 0.60 -0.07 0.03 0.04 -0.04 -0.02 0.12 0.00

SE 0.19 0.02 0.04 0.03 0.02 0.02 0.04 0.18 0.02 0.07 0.00
Pval 0.54 0.00 0.00 0.00 0.00 0.20 0.34 0.83 0.26 0.08 0.65

R2
β -0.19 0.86 -0.18 0.65 0.07 0.24 -0.23 -0.77 0.08 0.46 0.00

SE 0.72 0.08 0.18 0.14 0.10 0.08 0.17 0.75 0.06 0.25 0.00
Pval 0.79 0.00 0.31 0.00 0.47 0.00 0.18 0.31 0.14 0.07 0.95

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In regime 1, corresponding to a stable interest rate environment, the significant and
positive coefficients for Mkt − Rf (0.85), HML (0.60), and INV G (0.12) suggest that
market risk, Book-to-Market, and the level of investment are major contributors to returns
in the Pipelines sector. However, the significant and negative coefficients for SMB (-0.13)
and MOM (-0.07) indicate that smaller company sizes and negative momentum may lead
to higher returns in this sector during this regime. This implies that stocks outperforming
earlier are expected to underperform in the future and vice versa. Also, the loading on SMB

suggests that larger firms are believed to perform better than smaller firms, which might
indicate the economies of scale in this sector.

In regime 2, representing a period of volatile interest rates, the significant and positive
coefficients for Mkt − Rf (0.86) and HML (0.65) suggest that market risk and value factors
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continue to be key drivers of returns in the Pipelines sector. The significant and positive
coefficient for TERM (0.24) indicates that term spread is relevant in influencing returns in
this sector during this regime. However, the significant and positive coefficient for INV G

(0.46), underlined in both regimes, suggests that the influence of the level of investment on
returns may differ depending on the model used.

These shifts in the significant factors between the two regimes suggest that the Pipelines
sector’s returns are some what sensitive to changes in interest rates. Specifically, returns in
this sector are influenced by market risk, company size, value factors, momentum, and the
level of investment in a stable interest rate environment (regime 1). However, when interest
rates become volatile (regime 2), market risk, value factors, and term spread become the
primary drivers of returns. In contrast, the influence of company size and momentum on
returns diminishes. However, the magnitude of the loadings is statistically the same except
for the term premium. Within the second regime, the precision of the estimates is lost,
resulting in larger standard errors and, with that, a non-significant driver.

Port Here, in Table 14, we delve into the factor analysis results for the Port industry.

Table 14: Factor regression model 3 for two regimes over the simple returns in the Port
sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM∗ TERM DEF CFvol LEV INV G PE

R1
β -0.16 0.46 0.52 0.22 0.07 0.05 -0.03 -0.26 0.06 -0.03 0.00

SE 0.30 0.03 0.07 0.05 0.04 0.03 0.07 0.29 0.02 0.11 0.00
Pval 0.59 0.00 0.00 0.00 0.05 0.18 0.70 0.38 0.01 0.74 0.70

R2
β -1.31 0.36 0.24 -0.02 0.39 0.13 0.07 0.87 0.12 0.26 0.00

SE 1.17 0.12 0.29 0.23 0.16 0.14 0.27 1.22 0.09 0.41 0.01
Pval 0.26 0.00 0.41 0.93 0.02 0.34 0.78 0.48 0.17 0.54 0.51

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

Looking at regime 1, we see several factors contributing to the Port sector’s returns.
Market risk (Mkt − Rf : 0.46), company size (SMB: 0.52), Book-to-Market (HML: 0.22),
momentum (MOM : 0.07) and (LEV : 0.06) all show significant positive coefficients, indicat-
ing that these elements are positively linked with returns in this sector during stable interest
rates. Interestingly, the leverage also displays a significant positive coefficient in model 2,
suggesting that higher leverage levels might enhance returns in this sector in a stable rate
environment.

Transitioning to regime 2, market risk (Mkt − Rf : 0.36) and momentum (MOM : 0.39)
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continue to be strong influencers of returns, as suggested by their significant positive coeffi-
cients. This hints that market risk and momentum are pivotal in shaping the Port sector’s
returns despite interest rate volatility.

These findings demonstrate that the returns in the Port sector exhibit changing loadings
for different factors as interest rates shift from stable to volatile. In a stable interest rate
environment, returns are influenced by diverse factors, including market risk, company size,
value factors, momentum, and leverage. However, during the second regime, the sector’s
returns appear primarily driven by market risk and momentum, whereas the latter plays a
significantly larger role in the more volatile regime.

Railroads Table 15 provides the regression results for the Railroad sector

Table 15: Factor regression model 3 for two regimes over the simple returns in the
Railroads sector from 2010 until 2024

Variable α Mkt − Rf SMB∗ HML MOM∗ TERM DEF CFvol∗ LEV INV G PE∗

R1
β 0.27 0.39 0.80 0.34 -0.01 0.02 -0.08 -0.21 0.02 0.01 -0.00

SE 0.27 0.03 0.06 0.04 0.03 0.03 0.06 0.26 0.02 0.09 0.00
Pval 0.32 0.00 0.00 0.00 0.65 0.44 0.18 0.41 0.30 0.87 0.12

R2
β -1.54 0.48 0.22 0.34 0.26 0.18 0.18 -1.18 0.07 0.12 0.01

SE 1.16 0.12 0.29 0.23 0.16 0.14 0.27 1.21 0.09 0.41 0.01
Pval 0.19 0.00 0.44 0.14 0.10 0.17 0.51 0.33 0.43 0.78 0.07

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In the first regime, the significant coefficients for Mkt − Rf (0.39), SMB (0.80) and
HML (0.34) indicate that market risk, company size and Book-to-Market are significant
contributors to returns in the Railroads sector during this regime. These findings suggest
that smaller or value firms have an advantage over bigger or growth companies, which is
interesting as infrastructure is a predominantly large-cap industry.

In the second regime, the coefficient for Mkt − Rf (0.48) remains significant, implying
that market risk continues to influence returns in the Railroads sector. Furthermore, for
model 3 only, the price-earnings ratio (PE: 0.01) is significant. From this, we can infer that
when interest rates change, PE becomes a vital driving power source.

After a transition to regime 2, firm size loses significance with a substantial drop in the
loading. However, for HML, an increased standard error results in an insignificant driver.
The reverse is seen for PE as in a volatile regime; the price-earnings ratio is significant
in predicting the returns and significantly different from the loading in the first regime. It
is worth noting that even though MOM is just above the significant threshold, there is
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a significant difference between the two regimes, hinting at a better performance for past
winners in a volatile regime.

Toll Roads Next, we visualise the factor analysis results in the toll roads industry in Table
16.

Table 16: Factor regression model 3 for two regimes over the simple returns in the Toll
Roads sector from 2010 until 2024

Variable α∗ Mkt − Rf SMB HML MOM∗ TERM DEF ∗ CFvol LEV INV G PE∗

R1
β -0.83 0.28 0.43 0.13 0.07 0.16 0.23 -0.12 0.15 0.34 -0.01

SE 0.53 0.05 0.12 0.08 0.06 0.06 0.12 0.52 0.04 0.19 0.00
Pval 0.12 0.00 0.00 0.12 0.31 0.01 0.06 0.81 0.00 0.06 0.04

R2
β -5.71 0.55 0.10 -0.35 0.67 0.33 1.42 -0.28 0.26 0.36 0.02

SE 2.30 0.24 0.57 0.46 0.32 0.27 0.54 2.39 0.18 0.81 0.01
Pval 0.01 0.02 0.86 0.44 0.04 0.22 0.01 0.91 0.14 0.66 0.13

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

In the first regime, the significant coefficients for Mkt − Rf (0.28), SMB (0.43), TERM

(0.16), DEF (0.23), LEV (0.15) and INV G (0.34) indicate that market risk, company size,
term spread, default risk, leverage effects and investment growth are major contributors
to returns in the Toll Roads sector during this regime. Furthermore, PE (-0.01) shows a
significant negative loading, indicating that firms with a lower price-earnings ratio could
have a higher return.

In the second regime, the significant negative constant term (α: -5.71) implies that even
when all factors are zero, there would be a negative return in the Toll Roads sector. The
significant coefficient for Mkt − Rf (0.55) suggests that market risk continues to influence
returns in this sector. Additionally, the significant positive coefficient for DEF (1.42) and
MOM (0.67) indicates that default risk becomes a driver of returns in the second regime.

The differences in the coefficients between regimes 1 and 2 indicate a potential sensitivity
of the Toll Roads sector to changes in interest rates. In regime 1, company size, term spread,
leverage, investment growth, and price-earnings have significant coefficients, which are not
driving returns in regime 2. This suggests that the sector’s characteristics change during a
transition of regimes.

However, in regime 2, default risk remains a significant factor and becomes an even bigger
driver of returns. Compared to regime 1, we notice that α and MOM now show significant
explanatory power. This suggests that during volatile interest rates, market risk, momentum
and default risk become the primary drivers of returns in the Toll Roads sector; with these
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changes in loadings, as well as the varying significance of the drivers, we note that the Toll
Roads sector’s returns are sensitive to changes in interest rates.

Water Utility Lastly, we discuss the factor analysis results for the water utility sector in
Table 17.

Table 17: Factor regression model 3 for two regimes over the simple returns in the Water
Utility sector from 2010 until 2024

Variable α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

R1
β -0.04 0.32 0.01 0.23 0.03 -0.02 0.05 -0.02 0.01 -0.00 -0.00

SE 0.25 0.02 0.06 0.04 0.03 0.03 0.06 0.25 0.02 0.09 0.00
Pval 0.89 0.00 0.92 0.00 0.31 0.49 0.39 0.94 0.80 0.97 0.65

R2
β -0.41 0.17 -0.28 -0.02 -0.02 -0.10 0.29 0.52 0.06 -0.15 -0.01

SE 1.00 0.10 0.25 0.20 0.14 0.12 0.23 1.04 0.08 0.35 0.01
Pval 0.68 0.11 0.27 0.92 0.91 0.40 0.22 0.62 0.45 0.67 0.28

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Underlined coefficients represent values that have opposite significance levels between the models.

E.g. if a coefficient is significant in model 3 but not in 1 or 2, it will be underlined, and vice versa.
*** Variables with an asterisk (*) in the header have a significant difference in loadings between regimes

The analysis of the Water Utility sector in regime 1 reveals that, during a stable economy,
coefficients for Mkt − Rf (0.32) and HML (0.23) are significantly driving returns. This
indicates that market risk and value factors are significant contributors to returns. These
findings suggest that market conditions and the relative value of assets play a crucial role in
determining returns during stable interest rates.

However, in the second regime, the previously significant coefficient becomes non-
significant, suggesting a reduced impact of market risk on returns. This indicates that the
Water Utility sector becomes less sensitive to overall market movements during volatile in-
terest rate periods. It is worth noting that the significance of the α and DEF coefficients in
other models should be considered. Although insignificant in the presented model, they are
significant in model 1. This suggests that the influence of these variables on returns varies
depending on the inclusion of additional factors.

Furthermore, there is no significant difference in the magnitude of the loadings between
the regimes. Combined with a low number of significant drivers, this suggests that the
sector’s predictability is low, and it exhibits minimal sensitivity to fluctuations in interest
rates.

If we combine the findings of our regression models across all sectors, a few remarks will
be exciting and help us answer our second subquestion. Namely, the constant term α signific-
antly changes in all sectors where it is significant. This indicates that when the interest rates
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switch regimes, there is a substantial difference in the baseline or average market conditions.
Furthermore, this could indicate a change in investors’ sentiment regarding their risk premium
or an underlying (non-)linear relation that could not be captured. The momentum factor is
another variable that changes significantly in all models and drives substantial returns. In
the Gas Utility, Port and Toll Roads sector, we see that in actively changing interest rates,
the past winners should significantly outperform past losers. Finally, the default premium
positively affects the Communications and Toll Roads sectors. Furthermore, its loading in-
creases significantly after transitioning to the second regime. This provides further evidence
that these sectors are considerably more risky in changing interest rates, as this has a positive
sensitivity to the returns.

4.3 Comparison

This section will discuss the differences between the sectors in each regime. We want to
create a clear picture of how each variable affects each sector by determining whether or
not a coefficient in a particular sector is statistically different from the mean of the loadings
across all sectors.

Table 18: Wald test statistics for the multivariate test of equal coefficients between sectors
in regime 1

Sector α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

Airport 23.60∗
0.01

4.58∗
0.92

1.57∗
1.00

0.01∗
1.00

1.99
1.00

3.03
0.98

6.99∗
0.73

7.03
0.72

2.60
0.99

4.22
0.94

2.31∗
0.99

Communications 9.00
0.53

0.58∗
1.00

0.29
1.00

0.03
1.00

0.22∗
1.00

0.26
1.00

0.30∗
1.00

8.20∗
0.61

0.17
1.00

2.28∗
0.99

0.04
1.00

Datacenters 0.10
1.00

78.62∗
0.00

21.09∗
0.02

22.40∗
0.01

0.02∗
1.00

0.38
1.00

0.03
1.00

4.24
0.94

0.17
1.00

0.65
1.00

0.13
1.00

Electric Utility 3.50
0.97

8.60∗
0.57

6.70∗
0.75

1.48∗
1.00

0.14
1.00

0.39
1.00

0.07
1.00

5.34∗
0.87

0.34
1.00

0.00
1.00

0.40
1.00

Gas Utility 5.73
0.84

0.33∗
1.00

1.73∗
1.00

0.04∗
1.00

1.37
1.00

0.58
1.00

0.40
1.00

15.69
0.11

1.60∗
1.00

1.10∗
1.00

0.77
1.00

Multi Utility 1.08
1.00

61.21∗
0.00

64.45∗
0.00

7.78∗
0.65

0.34
1.00

0.03
1.00

0.56
1.00

1.07
1.00

0.24
1.00

0.06
1.00

0.13
1.00

Other 1671.90∗
0.00

0.92∗
1.00

3.68∗
0.96

0.39∗
1.00

0.02∗
1.00

8.65∗
0.57

90.39∗
0.00

126.80∗
0.00

0.94
1.00

139.80∗
0.00

0.55∗
1.00

Pipelines 6.37
0.78

73.09∗
0.00

8.51∗
0.58

31.99∗
0.00

4.71∗
0.91

1.05
1.00

0.82
1.00

3.07
0.98

2.46
0.99

0.00∗
1.00

1.82
1.00

Port 0.38
1.00

8.09∗
0.62

11.03∗
0.35

1.10∗
1.00

0.00∗
1.00

0.09
1.00

1.19
1.00

11.02
0.36

0.04∗
1.00

1.06
1.00

0.37
1.00

Railroads 2.55
0.99

4.06∗
0.94

30.01∗
0.00

2.50∗
0.99

2.05
1.00

1.28
1.00

4.62
0.92

5.42
0.86

1.31
0.99

1.34
0.99

1.76
0.99

Toll Roads 31.65
0.00

0.22∗
1.00

1.24∗
1.00

0.03
1.00

0.21
1.00

0.00∗
1.00

0.32∗
1.00

13.63
0.19

0.00∗
1.00

1.57∗
0.99

0.58∗
1.00

Water Utility 0.95
1.00

5.66∗
0.84

0.22
1.00

2.51∗
0.99

0.06
1.00

0.49
1.00

0.00
1.00

0.00
1.00

0.22
1.00

0.23
1.00

0.28
1.00

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Coefficients indicated with an asterisk (*) are significant drivers in the third factor model

We start by discussing the results of the Wald test in regime 1, which is visualised in
Table 18 below. Here, we see that there is no significant difference between any sector for
the variables MOM , TERM , LEV or PE. This means that, even though some variables
are significant drivers of returns within some sectors, there is no sector where these variables
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have statistically more explanatory power. Analysing further, we observe that specific sectors
exhibit significantly different variable loadings compared to the mean of those variables across
all sectors. First, the Airport sector shows significant differences in the coefficient for α,
indicating that it may have a distinct effect on returns that is not explained by any factor.

Next, the Datacenter’s sector displays significant differences in the coefficients for the
Mkt − Rf , SMB and HML variables. This indicates that the Datacenters sector may be
more sensitive to market and size-related factors in the context of interest rate changes. The
distinct variable loadings in this sector may reflect its unique characteristics and dependen-
cies, potentially resulting in differing impacts on stock returns.

The same results are found in the Multi Utility sector (except for HML), where the
market risk and size factor ensure that the sector differentiates itself from the rest. This
relative outperformance can help decision-making by highlighting the over-sensitivity towards
the factors.

Similarly, the Pipeline sector stands out with significant differences in the coefficients for
the α, Mkt−Rf , SMB, and HML variables. This suggests that the Pipeline sector may be
more susceptible to market and size-related factors, potentially making it more vulnerable
to interest rate changes than other sectors. These significant differences in variable loadings
imply that interest rate fluctuations may have a more pronounced effect on borrowing costs,
profitability, and investment decisions within the Pipeline sector.

Interestingly, the Other sector shows most deviation in variable loadings, as α, DEF ,
CFvol and PE significantly differ from their cross-sector mean. This means this sector can
utilise its above-average sensitivity towards factors to make better investment decisions.

Moreover, the Railroads and Toll Roads sectors exhibit significant differences in one vari-
able loading compared to the mean across sectors, as the bold coefficients indicate. These
findings suggest that these sectors may have distinct responses towards SMB and α respect-
ively.

On the other hand, sectors such as Communications, Electric Utility, Gas Utility, Port and
Water Utility show non-bold coefficients, indicating relatively similar loading compared to the
mean across sectors. These sectors may demonstrate a more consistent impact of interest rate
fluctuations on their borrowing costs, profitability, and investment decisions. The relatively
stable coefficients in these sectors suggest a more predictable response to changes in interest
rates, which could be advantageous for investors seeking stability and reduced uncertainty.
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Table 19: Wald test statistics for the multivariate test of equal coefficients between sectors
in regime 2

Sector α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

Airport 2.45
0.99

0.33∗
1.00

0.18
1.00

0.22
1.00

0.01
1.00

0.03
1.00

0.19
1.00

0.77
1.00

0.00
1.00

2.11
0.99

0.00
1.00

Communications 27.29∗
0.00

0.16
1.00

0.14
1.00

0.09
1.00

0.54
1.00

0.09
1.00

5.66∗
0.84

0.41
1.00

0.32
1.00

0.20
1.00

0.13
1.00

Datacenters 0.03
1.00

3.93∗
0.95

0.14
1.00

0.61∗
1.00

0.00
1.00

0.08
1.00

0.02
1.00

2.26
0.99

0.00
1.00

0.12
1.00

0.00
1.00

Electric Utility 3.50
0.97

1.79∗
1.00

0.26
1.00

0.07
1.00

0.05
1.00

0.01
1.00

0.05
1.00

9.99
0.44

0.00
1.00

0.61
1.00

0.01
1.00

Gas Utility 12.00∗
0.29

0.00∗
1.00

0.05
1.00

0.95
1.00

0.04∗
1.00

1.09∗
1.00

1.85∗
1.00

12.10∗
0.28

0.61
1.00

2.31
0.99

0.63∗
1.00

Multi Utility 13.42∗
0.20

7.12∗
0.71

1.24∗
1.00

0.75
1.00

0.01
1.00

0.35
1.00

0.43
1.00

3.27
0.97

0.16
1.00

1.24
1.00

0.04
1.00

Other 14.92∗
0.13

0.07∗
1.00

0.63∗
1.00

0.73∗
1.00

0.04
1.00

0.63∗
1.00

0.01
1.00

2.19
0.99

0.00
1.00

7.24∗
0.70

0.01∗
1.00

Pipelines 0.17
1.00

4.89∗
0.90

0.88
1.00

2.40∗
0.99

0.03
1.00

0.07∗
1.00

1.43
1.00

3.05
0.98

0.03
1.00

1.00∗
1.00

0.16
1.00

Port 10.81
0.37

0.28∗
1.00

0.09
1.00

0.03
1.00

0.32∗
1.00

0.02
1.00

0.02
1.00

2.13
0.99

0.01
1.00

0.16
1.00

0.02
1.00

Railroads 1.12
1.00

1.28∗
1.00

0.41
1.00

0.76
1.00

0.58
1.00

0.31
1.00

0.04
1.00

14.63
0.15

0.08
1.00

0.04
1.00

0.07∗
1.00

Toll Roads 38.83∗
0.00

0.35∗
1.00

0.03
1.00

0.09
1.00

0.46∗
1.00

0.12
1.00

2.65∗
0.99

4.41
0.93

0.12
1.00

0.36
1.00

0.00
1.00

Water Utility 2.11
0.99

0.13
1.00

0.37
1.00

0.00
1.00

0.00
1.00

0.04
1.00

0.57
1.00

1.83
0.99

0.02
1.00

0.07
1.00

0.00
1.00

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
** Coefficients indicated with an asterisk (*) are significant drivers in the third factor model

Next, we discuss the results for the second regime, characterised by higher volatility, as
shown in Table 19. In contrast to the substantial differences observed between sectors in
the stable regime, we observe fewer significant differences in variable loadings in the second
regime. Only the Communications and Toll Roads sectors show deviations in the α variable
compared to the average loading.

The reduced number of significant differences in variable loadings in the second regime can
be attributed to several factors, including the smaller sample size. The higher volatility during
this period introduces challenges in accurately estimating variable loadings. Nevertheless,
the deviations observed in the Communications and Toll Roads sectors highlight potential
idiosyncratic responses to changes in interest rates within these sectors.

It is important to interpret these results cautiously due to the smaller sample size and the
inherent uncertainties associated with periods of higher volatility. However, the deviations
in the α variable for the Communications and Toll Roads sectors warrant attention, as they
reflect unique characteristics and sensitivities within these sectors.

The most remarkable similarity is that most sectors positively relate to the SMB variable.
Even though we believe infrastructure to be a large-cap industry, small-caps can outperform
significantly. Furthermore, there are specific quantified differences between sectors when
transitioning between regimes. For the sectors: Communications, Datacenters, Electric Util-
ity, Ports and Water Utility, we see that in regime 1, they have around four significant drivers,
while in regime 2, they either have zero, one or two. These sectors become more complex to
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explain, but the value of their loadings is significantly different in the second regime.
Compared to the sectors Other and Toll Roads, almost all factors play a crucial role in

estimating their returns in regime 1. However, the factor model can still find many influential
loadings for the Other sector in regime 2. Furthermore, four factors are still present for Toll
Roads, three of which are significantly different from regime 1. In contrast, Gas Utility has
more significant drivers in the second regime, indicating a better fit in volatile times.

5 Conclusion

This paper proposes a regression model that combines hidden interest rate regimes with
factor analysis to examine twelve sectors in the infrastructure asset class. We analysed the
daily U.S. effective rate by implementing a Hidden Markov Model. We found strong evidence
of the presence of two regimes, which we characterise as a stable regime with low volatility
and a volatile regime with high volatility. This methodology is aimed to address the main
research question: “How does the sensitivity towards U.S. interest rate regimes differ between
infrastructure sectors?”

After segregating the daily infrastructure returns for each sector into these two regimes, we
fitted three different factor models. These models incorporated systematic and idiosyncratic
variables, including market risk, size, value, momentum, term premium, default premium,
cashflow volatility, leverage, investment growth, and price-earnings ratio.

The findings of our analysis are significant, revealing the sensitivity of infrastructure sec-
tors to U.S. interest rate regimes. Specifically, we observed that the effect of the momentum
factor significantly increased in regime 2 compared to regime 1. Furthermore, the default
premium significantly increased when its estimated loading in regime 2 was positive. Not-
ably, the default premium loadings in the second regime ultimately diminished for the sectors
Airport and Other.

In addition to these sector-specific differences, a noteworthy observation is that system-
atic variables served as significant drivers for all but two sectors in the first regime. However,
their significance diminished substantially in the second regime. This suggests a sensit-
ivity within the infrastructure asset class, wherein as interest rates become more volatile,
firm-specific characteristics captured in idiosyncratic factors become more relevant while sys-
tematic drivers lose their estimation power.

It is crucial to acknowledge the complexity of this study. Due to the inherent nature of
interest rates, the second regime has a relatively small sample size. This could influence the
estimation, resulting in insignificant loadings on some variables as the regression could only
be done using a few data points. These limitations highlight the intricacies of our research.
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While the regime-switching model has provided intriguing insights into the impact of interest
rates, it is not the most suitable forecasting method. This opens up avenues for future research
to explore more effective forecasting methods. For instance, factor models are often used to
estimate parameters that are later used to forecast returns. However, forecasting regimes
of interest rates is substantially more challenging, especially when one dataset is relatively
small. This may be circumvented by predicting interest rates and implementing the HMM
afterwards, offering a potential direction for future studies.

As stated above, effective rates are not known for their volatility. Therefore, the research
could also use a different proxy for interest rates, such as short-term bond prices. This could
help estimate the hidden states and, in turn, capture more information about the market as
bond prices incorporate investors’ beliefs about the state of the market. Additionally, when
the proxy for interest rates shows more defined characteristics, it gives us a good fit for the
regimes. Further research can then be done on implementing forecasting sector returns or on
the valuation of non-listed companies.

From a practical standpoint, the findings of this study can be applied in portfolio man-
agement settings. The variation in factor loadings across sectors can inform diversification
strategies, allowing investment managers to allocate funds to sectors with a higher or lower
sensitivity towards specific macroeconomic outcomes or firm-specific characteristics.

In conclusion, this study contributes to understanding how U.S. interest rate regimes affect
infrastructure sectors. The findings highlight the importance of integrating regime-specific
dynamics and comprehensively analysing systematic and idiosyncratic factors. This will be
essential for maximising investment opportunities and ensuring a deepened understanding of
characteristics between sectors in the infrastructure asset class.
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Wurstbauer, D., & Schäfers, W. (2015). Inflation Hedging and Protection Characteristics of

Infrastructure and Real Estate Assets. Journal of Property Investment & Finance,
33 (1), 19–44.

Yang, F., Balakrishnan, S., & Wainwright, M. J. (2017). Statistical and Computational
Guarantees for the Baum-Welch Algorithm. Journal of Machine Learning Research,
18 (125), 1–53.

Yeaple, S. R., & Golub, S. S. (2007). International Productivity Differences, Infrastructure,
and Comparative Advantage. Review of International Economics, 15 (2), 223–242.

41



A Appendix

A.1 Stock overview

Table 20: Factset ticker names for each stock categorized by sector

Railroads
AZJ-AU RAIL3-BR 2633-TW GET-FR 525-HK 66-HK 9020-JP
9021-JP 9022-JP CNR-CA CP-CA CSX-US NSC-US UNP-US
601333-CN BTS-TH 601006-CN FGP-GB

Communication

SLC-AU CNU-NZE DIF-TH THCOM-TH ETL-FR SESG-FR RWAY-IT
INW-IT CLNX-ES 788-HK UNIT-US SBAC-US AMT-US CCI-US
IRDM-US TBIG-ID TOWR-ID SATS-US CCOI-US CJLU-SG HTWS-GB
VTWR-DE YAHSAT-AE SITES1A.1-MX 534816-IN MTEL-ID LASITEB.1-MX

Toll Roads

TCL-AU ECOR3-BR CCRO3-BR PINFRA-MX JSMR-ID BEM-TH 532754-IN
531344-IN ALX-AU AT-IT DG-FR FER-ES 177-HK 200429-CN
995-HK 107-HK 1052-HK 152-HK 600377-CN 600350-CN 601107-CN
600012-CN 001965-CN 000828-CN FGR-FR

Pipelines APA-AU VPK-NL ENB-CA TRP-CA CU-CA ACO.X-CA PPL-CA
WMB-US OKE-US KMI-US LNG-USA TRGP-US KEY-CA ALA-CA

Airport
AIA-NZ GAPB-MX OMAB-MX ASURB-MX 5014-MY AOT-TH TAVHL.E-TR
ADP-FR FRA-DE FLU-AT AENA-ES FHZN-CH ENAV-MIL 694-HK
000089-CN 600008-CN 600009-CN 357-HK

Multi Utility
VCT-NZ RENE-PT ENGI-FR FTS-CA ED-US D-US CNP-US
SRE-US PEG-US WEC-US CMS-US AEE-US AVA-US BKH-US
NWE-US H-CA UTL-US

Electric Utility

ENBR3-BR EQTL3-BR ALUP11-BR TAEE11-BR TRPL4-BR ENELAM-CL ISA-CO
ENGI11-BR 532779-IN 532898-IN 500400-IN 015760-KR MER-PH ENJSA.E-TR
ELI-BE ORSTED-DK ADMIE-GR PPC-GR TRN-IT EVN-AT RED-ES
NG-GB SSE-LON IBE-MCE 2-HK 6-HK 9502-JP 9504-JP
9509-JP 9505-JP 9503-JP 9508-JP 9507-JP 9506-JP 9501-JP
9511-JP EMA-CA AEP-US PNW-US DUK-US ETR-US FE-US
PCG-US PPL-US EIX-US SO-US ES-US POR-US NEE-US
XEL-US AGR-US LNT-US MGEE-US IDA-US HE-US EVRG-US
ALE-US OGE-US PNM-US DTE-US 5110-SA ENELCHILE-CL CPFE3-BR
CESP3-BR 5347-MY EDPR-PT 2638-HK RNW-CA CWEN-US AQN-US
ENG-PL ECL-CL RWE-DE ANA-ES 500084-IN 539254-IN ANE-ES
AES-US DEWA-AE GVOLT-PT ELE-ES EXC-US

Water Utility

CSMG3-BR SBSP3-BR IAM-CL AGUAS.A-CL MPI-PH MWC-PH TTW-TH
UU-GB SVT-GB PNN-LON 270-HK 855-HK AWK-US CWT-US
AWR-US WTRG-US SJW-US 601158-CN 000598-CN MSEX-US SAPR11-BR
EYDAP-GR

Port
STBP3-BR 532921-IN 533248-IN 5246-MY ICT-PH NS8U-SG HHFA-DE
144-HK 1199-HKG 600018-CN 601880-CN 601000-CN 601326-CN 601298-CN
601018-CN 001872-CN 000088-CN ADPORTS-AE

Gas Utility

532702-IN 539336-IN 532514-IN PGAS-ID 036460-KR 004690-KR 539957-IN
IG-IT SRG-IT NTGY-ES ENG-ES CNA-GB ENEL-MIL 1193-HK
2688-HK 3-HK 1038-HK 1083-HK 384-HK 3633-HK 9532-JP
9531-JP 9534-JP 9536-JP 9533-JP 9543-JP OGS-US NI-US
ATO-US SR-US NWN-US 600635-CN 1600-HK TPE-PL 392-HK

Datacenters COR-US DLR-US CONE-US EQIX-US QTS-US
Other TFFIF-TH BIPC-CA BTSGIF-TH
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A.2 Methodology Algorithms

Forward-equation

αn(i) = P{Sn−1 = sn−1, Sn = sn, Yn = i}

=
∑

j

P{Sn−1 = sn−1, Yn−1 = j, Yn = i, Sn = sn}

=
∑

j

αn−1(j)P{Yn−1 = i, Sn = sn|Sn−1 = sn−1, Yn−1 = j}

=
∑

j

αn−1(j)P{Yn−1 = i, Sn = sn|Yn−1 = j}

=
∑

j

αn−1(j)ajip(snı)

= p(sn|i)
∑

j

αn−1(j)aji (21)

Backward-equation

βk(i) =
∑

j

P{Sk+1 = sk+1, . . . , Sn = sn|Yk = i, Yk+1 = j} × P{Yk+1 = j|Yk = i}

=
∑

j

P{Sk+1 = sk+1, . . . , Sn = sn|Yk+1 = j}aij

=
∑

j

P{Sk+1 = sk+1|Yk+1 = j} × P{S2 = s2, . . . , Sn = sn|Sk+1 = sk+1, Yk+1 = j}aij

=
∑

j

p(sk+1|j)P{Sk+2 = sk+2, . . . , Sn = sn|Sk+1 = sk+1, Yk+1 = j}aij

=
∑

j

p(sk+1|j)βk+1(j)aij (22)

Forward-Backward algorithm

P{Sn = sn, Yk = i} = P{Sk = sk, Yk = i} × P{Sk+1 = Sk+1, . . . , Sn = sn|Sk = sk, Yk = i}

= P{Sk = sk, Yk = i}P{Sk+1 = Sk+1, . . . , Sn = sn|Yk = i}

= αk(i) × βk(i) (23)
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Baum-Welch

log(pθ(s, y)) = log(pθ(y1)) +
n∑

t=2
log(pθ(yt|yt+1)) +

n∑
t=1

pθ(st|yt))

=
k∑

i=1
1(y1 = i)log(πi) +

n∑
t=2

k∑
i=1

k∑
j=1

1(yt−1 = i, yt = j)log(aij)

+
n∑

t=1

k∑
i=1

1(yt = i)log(f(st|Θ))

Here f(st|Θ) is the unknown emission distribution of the data, where Θ are distribution
variables.

γt(i) = P(Yt = i|S, θk) = P(Yt = i, S|θk)
P(S|θk) = αt(i)βt(i)∑n

j=1 αt(i)βt(i)
(24)

ξt(ij) = P(Yt = i, Yt+1 = j|S, θk) = P(Yt = i, Yt+1 = j, S|θk)
P(S|θk)

= αt(i)aijβt+1(j)bst+1(j)∑n
k=1

∑n
w=1 αt(k)akwβt+1(w)bst+1(w) (25)

Viterbi Using the relation Vk(j) = max
i1,...,ik−1

P{Yk−1 = (i1, . . . , ik−1, Yk = j, Sk = sk}, and
seeing that the problem in Formula 14 is maximized through the numerator, we get the
following iterative algorithm for the full sequence:

max
i1,...,in

P{Yn = (i1, . . . , in), Sn = sn}

= max
j

Vn(j)

= Vn(jn)

= max
i1,...,in−1

P{Yn = (i1, . . . , in−1, jn), Sn = sn}

= p(sn|jn)max
i

ai,jnVn−1(i)

= p(sn|jn)ain−1(jn),jnVn−1(in−1(jn)) (26)

Here in−1(jn) is the next to last state in the maximizing sequence and we can continue
this fashion with in−2(in−1(jn)) etcetera.
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A.3 Log-Return analysis

Here we provide the first analysis of the three models within two regimes, but we fit the
regression model on the simple daily log-returns. We believe that log returns might show
better fit due to fact that the normal distribution might fit better. We begin by analysing
the first factor model, as specified in Formula 16 above. In Table 21, we see the regression
results of this analyses.

Table 21: Factor regression model 1 (GLS) for two regimes over the aggregated log-returns
for 2010 until 2024

Regime 1 Regime 2
Variable Coefficient Std. Error P-Value Coefficient Std. Error P-Value

α -0.0004 0.004 0.926 -0.0231 0.017 0.177
Mkt − RF 0.0365 0.001 0.000 0.0425 0.004 0.000

SMB 0.0157 0.002 0.000 -0.0044 0.010 0.647
HML 0.0114 0.002 0.000 0.0084 0.008 0.283
MOM 0.0010 0.001 0.449 0.0054 0.005 0.315

TERM 0.0014 0.001 0.091 0.0005 0.003 0.848
DEF 0.0001 0.002 0.951 0.0117 0.007 0.119

Adj R2: 0.304; F: 1.23e-267; LogL: -5448.3 Adj R2: 0.435; F: 4.95e-22; LogL: -348.44

Secondly, Table 22 gives an overview of the GLS results after fitting the model as determ-
ined in Formula 17.

Table 22: Factor regression model 2 (GLS) for two regimes over the log-return for 2010
until 2024

Regime 1 Regime 2
Variable Coefficient Std. Error P-Value Coefficient Std. Error P-Value

α 0.0073 0.004 0.059 0.0011 0.014 0.939
CFvol 0.0081 0.012 0.508 -0.0279 0.052 0.594

LEV -0.0004 0.001 0.657 0.0001 0.004 0.975
INV G 0.0025 0.003 0.472 -0.0190 0.013 0.154

PE -5.669e-5 5.22e-5 0.278 0.0002 0.000 0.351
Adj R2: -0.001; F: 0.744; LogL: 4821.6 Adj R2: -0.008; F: 0.649; LogL: -291.8

Lastly, we look at the combined model (Formula 18) and compare that to the separate
models as given above.

45



Table 23: Factor regression model 3 (GLS) for two regimes over the log return for 2010
until 2024

Regime 1 Regime 2
Variable Coefficient Std. Error P-Value Coefficient Std. Error P-Value

α -0.0045 0.011 0.673 -0.0705 0.039 0.075
Mkt − RF 0.0365 0.001 0.000 0.0423 0.004 0.000

SMB 0.0158 0.002 0.000 -0.0027 0.010 0.786
HML 0.0113 0.002 0.000 0.0071 0.008 0.366
MOM 0.0010 0.001 0.458 0.0064 0.005 0.241

TERM 0.0025 0.001 0.038 0.0034 0.005 0.456
DEF 0.0009 0.002 0.725 0.0185 0.009 0.046

CFvol -0.0040 0.010 0.699 -0.0222 0.041 0.590
LEV 3.498e-05 0.001 0.967 0.0042 0.003 0.173

INV G 0.0061 0.004 0.098 -0.0040 0.014 0.775
PE -8.132e-06 5.34e-05 0.879 0.0002 0.000 0.332

Adj R2: 0.304; F: 8.64e-264; LogL: 5450.2 Adj R2: 0.414; F: 4.63e-20; LogL: 350.27

A.4 Model evaluation

Table 24: Model evaluation criteria, quantified in the Adjusted R-squared, F-statistic and
the Log-Likelihood for the dataset of return between 2010 and 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

R2 F LL R2 F LL R2 F LL R2 F LL R2 F LL R2 F LL
Aggregated return 0.309 4.44e-273 -11652 0.333 1.97e-16 -682.59 0.001 0.0796 -12288 -0.011 0.789 -725.86 0.311 2.76e-271 -11645 0.338 4.07e-15 -679.77

Log return 0.304 1.23e-267 5448.3 0.418 4.95e-22 348.44 -0.001 0.744 4821.6 -0.008 0.649 291.78 0.304 8.64e-264 5450.2 0.416 4.63e-20 350.27
Airport 0.083 6.81e-63 -5991.6 0.016 0.161 -354.27 0.000 0.298 -6141.9 0.008 0.234 -356.16 0.085 5.06e-62 -5985.8 0.023 0.147 -351.43

Communications 0.014 6.25e-10 -8607.7 0.066 0.0035 -491.51 0.009 2.07e-7 -8616.6 -0.010 0.728 -500.40 0.017 3.58e-11 -8599.6 0.057 0.0179 -490.31
Datacenters 0.427 0.00 -4793.5 0.318 1.68e-15 -284.24 -0.001 0.940 -5754.9 -0.017 0.968 -325.80 0.426 0.00 -4792.9 0.308 2.03e-13 -283.58

Electric Utility 0.084 3.33e-63 -5022.6 0.131 7.59e-6 -276.68 -0.001 0.715 -5175.0 -0.007 0.641 -292.69 0.084 9.6e-61 -5020.6 0.123 9.51e-5 -275.48
Gas Utility 0.017 2.39e-12 -8319.2 0.029 0.0682 -508.71 0.004 0.001 -8343.2 0.071 0.000963 -505.26 0.020 2.92e-13 -8311.7 0.126 7.55e-5 -495.93

Multi Utility 0.432 0.00 -4004.8 0.483 5.93e-27 -239.22 -0.001 0.980 -4984.1 -0.003 0.497 -307.43 0.432 0.00 -4003.9 0.487 3.02e-25 -236.19
Other 0.019 7.80e-14 -6175.4 0.018 0.147 -325.45 0.044 3.40e-33 -6133.0 0.030 0.0404 -325.22 0.108 2.94e-80 -6010.6 0.079 0.00363 -316.81

Pipelines 0.477 0.00 -4572.5 0.494 6.5e-28 -244.02 0.001 0.521 -5690.2 -0.017 0.950 -315.92 0.477 0.00 -4569.9 0.505 1.26e-26 -239.83
Port 0.079 1.61e-59 -6091.3 0.040 0.029 -339.59 0.001 0.114 -6232.4 -0.005 0.560 -345.28 0.080 7.46e-58 -6087.4 0.038 0.0631 -337.71

Railroads 0.097 2.86e-74 -56766.3 0.082 0.0008 -338.91 0.001 0.554 -5854.0 -0.005 0.563 -349.12 0.098 4.40e-72 -5673.2 0.084 0.0025 -336.61
Toll Roads 0.014 6.43e-10 -8057.2 0.041 0.0271 -477.82 0.006 5.21e-5 -8071.9 -0.015 0.902 -484.58 0.019 5.62e-12 -8047.0 0.047 0.0358 -475.09

Water Utility 0.069 1.86e-51 -5484.3 0.018 0.146 -307.58 -0.001 0.968 -5610.0 -0.013 0.841 -311.75 0.068 2.29e-48 -5484.1 0.006 0.345 -306.69
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Aggregated returns

Table 25: Factor regression model (GLS) for two regimes over the aggregated return from
2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -1.5040 0.632 0.017 -3.2966 2.740 0.230 1.9408 0.550 0.000 1.1059 2.177 0.612 -4.1220 1.506 0.006 -11.6514 6.298 0.066

Mkt − Rf 5.1642 0.139 0.000 5.8461 0.653 0.000 x x x x x x 5.1582 0.139 0.000 5.8553 0.656 0.000
SMB 2.1888 0.335 0.000 0.7896 1.547 0.610 x x x x x x 2.2048 0.335 0.000 1.1419 1.564 0.466
HML 2.0823 0.241 0.000 1.0871 1.251 0.386 x x x x x x 2.0425 0.241 0.000 0.8402 1.254 0.504
MOM 0.1100 0.185 0.553 2.2463 0.866 0.010 x x x x x x 0.1055 0.185 0.569 2.3844 0.867 0.007

TERM 0.0802 0.118 0.497 0.1888 0.434 0.664 x x x x x x 0.4661 0.171 0.007 0.5779 0.734 0.432
DEF 0.8567 0.271 0.002 1.7377 1.198 0.148 x x x x x x 1.2780 0.347 0.000 3.1871 1.472 0.032

CFvol x x x x x x 3.2331 1.737 0.063 7.9677 7.851 0.311 0.6762 1.471 0.646 9.4780 6.557 0.150
LEV x x x x x x -0.1440 0.136 0.289 0.1401 0.555 0.801 0.0486 0.121 0.688 0.8259 0.489 0.093

INV G x x x x x x 0.8885 0.497 0.074 -0.7773 1.999 0.698 1.9280 0.527 0.000 1.2656 2.222 0.570
PE x x x x x x -0.0149 0.007 0.046 -0.0100 0.032 0.758 0.0040 0.008 0.596 -0.0003 0.033 0.992

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Airport

Table 26: Factor regression model (GLS) for two regimes over the simple return in the
Airport sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.32 0.12 0.01 0.4525 0.544 0.406 0.222 0.09 0.016 -0.3282 0.352 0.353 1.0982 0.292 0.000 0.7126 1.250 0.569

Mkt − Rf 0.4663 0.027 0.000 0.3263 0.130 0.013 x x x x x x 0.4680 0.027 0.000 0.3356 0.130 0.011
SMB 0.3530 0.065 0.000 0.1612 0.307 0.600 x x x x x x 0.3510 0.065 0.000 0.2744 0.310 0.378
HML 0.1960 0.047 0.000 0.3011 0.248 0.227 x x x x x x 0.2002 0.047 0.000 0.2591 0.249 0.299
MOM 0.0118 0.036 0.742 -0.0650 0.172 0.706 x x x x x x 0.0107 0.036 0.765 -0.0385 0.172 0.823

TERM 0.0203 0.023 0.375 0.0248 0.086 0.774 x x x x x x -0.0417 0.033 0.209 -0.1275 0.146 0.382
DEF -0.0826 0.052 0.115 -0.1617 0.238 0.497 x x x x x x -0.2117 0.067 0.002 -0.1720 0.292 0.557

CFvol x x x x x x 0.59 0.29 0.043 1.0332 1.271 0.417 0.6248 0.285 0.029 1.2704 1.301 0.330
LEV x x x x x x -0.01 0.02 0.862 0.0221 0.090 0.806 -0.0288 0.023 0.220 0.0037 0.097 0.970

INV G x x x x x x 0.06 0.08 0.492 -0.4546 0.324 0.162 -0.0857 0.102 0.401 -0.7160 0.441 0.106
PE x x x x x x -0.002 0.001 0.165 0.0051 0.005 0.327 -0.0043 0.001 0.004 0.0001 0.007 0.984

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Communication

Table 27: Factor regression model (GLS) for two regimes over the simple returns in the
Communication sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -1.0206 0.262 0.000 -4.0224 1.069 0.000 1.2175 0.190 0.000 1.0867 0.717 0.131 0.3579 0.623 0.566 -6.7455 2.477 0.007

Mkt − Rf 0.2478 0.057 0.000 0.0579 0.255 0.820 x x x x x x 0.2567 0.057 0.000 0.0520 0.258 0.840
SMB 0.1904 0.139 0.170 -0.0317 0.604 0.958 x x x x x x 0.2011 0.138 0.146 0.0324 0.615 0.958
HML 0.0845 0.100 0.397 -0.0009 0.488 0.998 x x x x x x 0.1010 0.100 0.311 -0.0619 0.493 0.900
MOM 0.1745 0.077 0.023 0.3815 0.338 0.260 x x x x x x 0.1748 0.077 0.023 0.4227 0.341 0.217

TERM 0.0322 0.049 0.510 -0.2627 0.169 0.122 x x x x x x -0.0695 0.071 0.327 -0.0626 0.288 0.828
DEF 0.5121 0.112 0.000 1.9854 0.467 0.000 x x x x x x 0.3117 0.143 0.030 2.3914 0.579 0.000

CFvol x x x x x x -1.3614 0.599 0.023 -1.9429 2.586 0.453 -1.5714 0.609 0.010 -0.5107 2.578 0.843
LEV x x x x x x -0.0642 0.047 0.170 0.0287 0.183 0.875 -0.0433 0.050 0.388 0.2623 0.192 0.174

INV G x x x x x x -0.3707 0.171 0.031 -0.4421 0.658 0.503 -0.4000 0.218 0.066 0.1765 0.874 0.840
PE x x x x x x -0.0061 0.003 0.017 -0.0064 0.011 0.550 -0.0043 0.003 0.172 0.0070 0.013 0.595

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Datacenters

Table 28: Factor regression model (GLS) for two regimes over the simple returns in the
Datacenters sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.0844 0.087 0.330 0.0142 0.385 0.971 0.0328 0.083 0.692 0.2290 0.303 0.451 -0.0684 0.207 0.741 -0.1607 0.895 0.858

Mkt − Rf 0.7750 0.019 0.000 0.8158 0.092 0.000 x x x x x x 0.7745 0.019 0.000 0.8189 0.093 0.000
SMB -0.4509 0.046 0.000 -0.1152 0.217 0.597 x x x x x x -0.4504 0.046 0.000 -0.1297 0.222 0.560
HML -0.4610 0.033 0.000 -0.3167 0.176 0.073 x x x x x x -0.4627 0.033 0.000 -0.3151 0.178 0.078
MOM -0.0455 0.025 0.073 0.0172 0.122 0.888 x x x x x x -0.0457 0.025 0.072 0.0128 0.123 0.917

TERM 0.0077 0.016 0.633 0.0808 0.061 0.186 x x x x x x 0.0239 0.023 0.309 0.1092 0.104 0.296
DEF -0.0255 0.037 0.491 -0.0181 0.168 0.915 x x x x x x -0.0020 0.048 0.966 0.0154 0.209 0.941

CFvol x x x x x x 0.1217 0.261 0.641 0.5563 1.094 0.612 0.0360 0.202 0.858 0.4136 0.931 0.657
LEV x x x x x x 0.0095 0.020 0.641 -0.0188 0.077 0.808 0.0090 0.017 0.587 0.0367 0.069 0.598

INV G x x x x x x 0.0466 0.075 0.534 -0.0072 0.279 0.979 0.0678 0.072 0.348 0.2223 0.316 0.482
PE x x x x x x -0.0004 0.001 0.727 -0.0013 0.004 0.769 0.0002 0.001 0.826 -0.0025 0.005 0.592

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Electric Utility

Table 29: Factor regression model (GLS) for two regimes over the simple returns in the
Electric Utility sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -0.0087 0.093 0.925 -0.2258 0.371 0.544 -7.777e-05 0.070 0.999 -0.0257 0.258 0.921 -0.2386 0.221 0.280 0.1821 0.860 0.832

Mkt − Rf 0.3470 0.020 0.000 0.4934 0.088 0.000 x x x x x x 0.3470 0.020 0.000 0.4963 0.090 0.000
SMB 0.3126 0.049 0.000 0.1743 0.210 0.406 x x x x x x 0.3151 0.049 0.000 0.1679 0.213 0.432
HML 0.1818 0.035 0.000 0.0740 0.169 0.663 x x x x x x 0.1808 0.035 0.000 0.0793 0.171 0.644
MOM 0.0247 0.027 0.363 0.0537 0.117 0.647 x x x x x x 0.0250 0.027 0.358 0.0517 0.118 0.663

TERM -0.0180 0.017 0.299 -0.0237 0.059 0.687 x x x x x x 0.0061 0.025 0.809 -0.0521 0.100 0.603
DEF 0.0217 0.040 0.584 0.0795 0.162 0.624 x x x x x x 0.0621 0.051 0.222 -0.0025 0.201 0.990

CFvol x x x x x x -0.2244 0.221 0.310 -1.3633 0.929 0.144 -0.3754 0.216 0.082 -1.1743 0.895 0.191
LEV x x x x x x 0.0025 0.017 0.886 -0.0275 0.066 0.676 0.0105 0.018 0.554 -0.0101 0.067 0.879

INV G x x x x x x 0.0236 0.063 0.708 -0.1929 0.237 0.416 0.0469 0.077 0.544 -0.2756 0.303 0.365
PE x x x x x x 0.0005 0.001 0.583 0.0038 0.004 0.323 0.0012 0.001 0.291 0.0007 0.005 0.877

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Gas Utility

Table 30: Factor regression model (GLS) for two regimes over the simple returns in the Gas
Utility sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.3500 0.241 0.146 0.5316 1.163 0.648 0.0261 0.175 0.882 1.5846 0.734 0.032 0.1651 0.573 0.773 7.1836 2.546 0.005

Mkt − Rf 0.3765 0.053 0.000 0.7166 0.277 0.010 x x x x x x 0.3739 0.053 0.000 0.8283 0.265 0.002
SMB 0.5620 0.127 0.000 0.6436 0.657 0.329 x x x x x x 0.5550 0.127 0.000 0.7412 0.632 0.243
HML 0.2832 0.092 0.002 -0.3335 0.531 0.531 x x x x x x 0.2721 0.092 0.003 -0.3226 0.507 0.525
MOM -0.0694 0.071 0.325 0.7766 0.368 0.036 x x x x x x -0.0688 0.070 0.329 0.7129 0.351 0.043

TERM -0.0412 0.045 0.359 0.2736 0.184 0.139 x x x x x x 0.0200 0.065 0.759 -0.5675 0.297 0.057
DEF -0.0962 0.103 0.351 -0.2846 0.509 0.577 x x x x x x -0.0583 0.132 0.659 -1.0826 0.595 0.070

CFvol x x x x x x 0.9678 0.554 0.081 9.7953 2.648 0.000 0.8523 0.560 0.128 10.7867 2.651 0.000
LEV x x x x x x -0.1198 0.043 0.006 -0.0176 0.187 0.925 -0.1200 0.046 0.009 -0.1374 0.198 0.488

INV G x x x x x x 0.4022 0.158 0.011 0.7460 0.674 0.270 0.4172 0.200 0.037 -0.8582 0.899 0.341
PE x x x x x x 0.0041 0.002 0.087 -0.0341 0.011 0.002 0.0038 0.003 0.194 -0.0557 0.013 0.000

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Multi Utility

Table 31: Factor regression model (GLS) for two regimes over the simple returns in the
Multi Utility sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.0153 0.069 0.824 0.0180 0.308 0.953 0.0466 0.066 0.482 -0.4178 0.277 0.133 0.0543 0.164 0.741 -1.4919 0.708 0.036

Mkt − Rf 0.5918 0.015 0.000 0.8152 0.074 0.000 x x x x x x 0.5924 0.015 0.000 0.8033 0.074 0.000
SMB -0.5563 0.036 0.000 -0.4186 0.174 0.017 x x x x x x -0.5553 0.037 0.000 -0.4066 0.176 0.022
HML 0.2275 0.026 0.000 0.2376 0.141 0.093 x x x x x x 0.2279 0.026 0.000 0.2180 0.141 0.124
MOM -0.0166 0.020 0.412 -0.0528 0.097 0.589 x x x x x x -0.0164 0.020 0.417 -0.0369 0.098 0.705

TERM 0.0149 0.013 0.247 -0.0126 0.049 0.796 x x x x x x 0.0161 0.019 0.388 0.1249 0.082 0.132
DEF -0.0154 0.030 0.602 -0.0062 0.135 0.963 x x x x x x -0.0186 0.038 0.624 0.2233 0.166 0.179

CFvol x x x x x x -0.0683 0.209 0.744 0.3172 0.999 0.751 -0.1738 0.161 0.279 0.1192 0.737 0.872
LEV x x x x x x -0.0052 0.016 0.749 0.0216 0.071 0.760 -0.0078 0.013 0.552 0.0848 0.055 0.125

INV G x x x x x x 0.0184 0.060 0.758 -0.0603 0.255 0.813 0.0006 0.057 0.992 0.3641 0.250 0.147
PE x x x x x x -1.322e-05 0.001 0.988 0.0050 0.004 0.220 0.0002 0.001 0.792 0.0050 0.004 0.186

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Other

Table 32: Factor regression model (GLS) for two regimes over the simple returns in the
Other sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -1.1156 0.129 0.000 0.7430 0.472 0.117 -0.2708 0.092 0.003 -0.5108 0.303 0.093 -4.6074 0.294 0.000 -2.1723 1.054 0.041

Mkt − Rf 0.0632 0.028 0.026 0.1600 0.112 0.156 x x x x x x 0.0467 0.027 0.084 0.1074 0.110 0.329
SMB 0.1740 0.068 0.011 0.4287 0.266 0.109 x x x x x x 0.1629 0.065 0.013 0.3603 0.262 0.170
HML 0.0415 0.049 0.399 0.3791 0.215 0.080 x x x x x x -0.0032 0.047 0.946 0.3910 0.210 0.064
MOM -0.0609 0.038 0.108 -0.1276 0.149 0.393 x x x x x x -0.0606 0.036 0.094 -0.1180 0.145 0.417

TERM -0.0810 0.024 0.001 -0.0088 0.075 0.907 x x x x x x 0.2730 0.033 0.000 0.3689 0.123 0.003
DEF 0.4318 0.055 0.000 -0.3394 0.206 0.101 x x x x x x 0.9796 0.068 0.000 0.0804 0.246 0.744

CFvol x x x x x x 2.7962 0.292 0.000 0.0834 1.091 0.939 1.9372 0.287 0.000 -0.5831 1.097 0.596
LEV x x x x x x -0.1233 0.023 0.000 -0.0786 0.077 0.310 0.0092 0.024 0.698 -0.0159 0.082 0.846

INV G x x x x x x 0.6809 0.083 0.000 0.5642 0.278 0.044 1.4445 0.103 0.000 1.3082 0.372 0.001
PE x x x x x x 0.0016 0.001 0.204 0.0080 0.004 0.075 0.0144 0.001 0.000 0.0169 0.006 0.003

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

49



Pipelines

Table 33: Factor regression model (GLS) for two regimes over the simple returns in the
Pipelines sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -0.0739 0.081 0.363 0.6221 0.316 0.050 0.1202 0.081 0.139 -0.1949 0.289 0.501 -0.1182 0.194 0.542 -0.1886 0.721 0.794

Mkt − Rf 0.8449 0.018 0.000 0.8632 0.075 0.000 x x x x x x 0.8451 0.018 0.000 0.8599 0.075 0.000
SMB -0.1345 0.043 0.002 -0.1326 0.178 0.458 x x x x x x -0.1334 0.043 0.002 -0.1824 0.179 0.310
HML 0.6003 0.031 0.000 0.6378 0.144 0.000 x x x x x x 0.5984 0.031 0.000 0.6454 0.144 0.000
MOM -0.0698 0.024 0.003 0.0778 0.100 0.436 x x x x x x -0.0699 0.024 0.003 0.0719 0.099 0.470

TERM 0.0087 0.015 0.568 0.1015 0.050 0.044 x x x x x x 0.0286 0.022 0.195 0.2359 0.084 0.005
DEF 0.0316 0.035 0.364 -0.3345 0.138 0.016 x x x x x x 0.0423 0.045 0.343 -0.2280 0.169 0.178

CFvol x x x x x x 0.2254 0.257 0.380 -0.1500 1.042 0.886 -0.0416 0.189 0.826 -0.7708 0.751 0.306
LEV x x x x x x -0.0249 0.020 0.214 0.0483 0.074 0.513 -0.0176 0.016 0.259 0.0838 0.056 0.136

INV G x x x x x x 0.1006 0.073 0.170 -0.0189 0.265 0.943 0.1169 0.068 0.084 0.4641 0.254 0.070
PE x x x x x x -0.0004 0.001 0.702 0.0005 0.004 0.909 0.0004 0.001 0.648 0.0002 0.004 0.952

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Port

Table 34: Factor regression model (GLS) for two regimes over the simple returns in the
Port sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.2734 0.126 0.030 0.4034 0.506 0.426 -0.0965 0.095 0.310 -0.5327 0.334 0.112 -0.1614 0.301 0.592 -1.3141 1.168 0.262

Mkt − Rf 0.4584 0.028 0.000 0.3683 0.121 0.003 x x x x x x 0.4574 0.028 0.000 0.3609 0.122 0.003
SMB 0.5200 0.067 0.000 0.1883 0.286 0.511 x x x x x x 0.5220 0.067 0.000 0.2385 0.290 0.412
HML 0.2212 0.048 0.000 0.0186 0.231 0.936 x x x x x x 0.2209 0.048 0.000 -0.0200 0.233 0.932
MOM 0.0731 0.037 0.048 0.3635 0.160 0.024 x x x x x x 0.0731 0.037 0.048 0.3895 0.161 0.016

TERM 0.0276 0.024 0.242 0.0189 0.080 0.814 x x x x x x 0.0463 0.034 0.175 0.1311 0.136 0.336
DEF -0.0917 0.054 0.090 -0.2017 0.221 0.363 x x x x x x -0.0271 0.069 0.695 0.0749 0.273 0.784

CFvol x x x x x x -0.0830 0.300 0.782 0.9460 1.204 0.433 -0.2573 0.294 0.381 0.8666 1.216 0.477
LEV x x x x x x 0.0582 0.023 0.013 0.0734 0.085 0.390 0.0636 0.024 0.009 0.1237 0.091 0.174

INV G x x x x x x -0.1005 0.086 0.242 0.0661 0.307 0.830 -0.0345 0.105 0.743 0.2552 0.412 0.537
PE x x x x x x 0.0001 0.001 0.926 0.0017 0.005 0.739 0.0006 0.002 0.704 0.0040 0.006 0.513

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Railroads

Table 35: Factor regression model (GLS) for two regimes over the simple returns in the
Railroads sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α 0.1150 0.112 0.304 0.2442 0.504 0.629 0.0540 0.085 0.526 -0.2449 0.340 0.473 0.2650 0.267 0.320 -1.5437 1.162 0.185

Mkt − Rf 0.3883 0.025 0.000 0.4984 0.120 0.000 x x x x x x 0.3900 0.025 0.000 0.4777 0.121 0.000
SMB 0.7937 0.059 0.000 0.1960 0.285 0.492 x x x x x x 0.7981 0.059 0.000 0.2229 0.288 0.441
HML 0.3376 0.043 0.000 0.3646 0.230 0.115 x x x x x x 0.3396 0.043 0.000 0.3387 0.231 0.145
MOM -0.0139 0.033 0.671 0.2369 0.159 0.138 x x x x x x -0.0148 0.033 0.653 0.2637 0.160 0.101

TERM 0.0283 0.021 0.176 0.0257 0.080 0.748 x x x x x x 0.0236 0.030 0.437 0.1845 0.135 0.174
DEF -0.0580 0.048 0.226 -0.0675 0.220 0.760 x x x x x x -0.0822 0.061 0.181 0.1808 0.271 0.506

CFvol x x x x x x -0.0810 0.269 0.763 -1.0003 1.227 0.416 -0.2141 0.260 0.411 -1.1814 1.209 0.330
LEV x x x x x x 0.0232 0.021 0.269 0.0051 0.087 0.953 0.0222 0.021 0.300 0.0711 0.090 0.432

INV G x x x x x x -0.0029 0.077 0.970 -0.2815 0.313 0.369 0.0150 0.093 0.872 0.1151 0.410 0.779
PE x x x x x x -0.0016 0.001 0.166 0.0077 0.005 0.129 -0.0021 0.001 0.119 0.0113 0.006 0.067

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Toll Roads

Table 36: Factor regression model (GLS) for two regimes over the simple returns in the Toll
Roads sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -0.3596 0.223 0.107 -1.3186 0.999 0.189 0.5171 0.162 0.001 0.3229 0.663 0.627 -0.8322 0.531 0.117 -5.7052 2.298 0.014

Mkt − Rf 0.2822 0.049 0.000 0.5816 0.238 0.015 x x x x x x 0.2834 0.049 0.000 0.5499 0.239 0.023
SMB 0.4196 0.118 0.000 -0.0128 0.564 0.982 x x x x x x 0.4330 0.118 0.000 0.0992 0.571 0.862
HML 0.1359 0.085 0.110 -0.2644 0.456 0.563 x x x x x x 0.1331 0.085 0.117 -0.3527 0.458 0.442
MOM 0.0701 0.065 0.284 0.5984 0.316 0.059 x x x x x x 0.0665 0.065 0.308 0.6682 0.316 0.036

TERM 0.0972 0.042 0.020 0.0107 0.158 0.946 x x x x x x 0.1595 0.060 0.008 0.3317 0.268 0.217
DEF 0.1704 0.096 0.075 0.7570 0.437 0.085 x x x x x x 0.2320 0.122 0.058 1.4173 0.537 0.009

CFvol x x x x x x 0.2632 0.512 0.607 -0.5326 2.392 0.824 -0.1222 0.518 0.814 -0.2775 2.392 0.908
LEV x x x x x x 0.1011 0.040 0.012 0.0418 0.169 0.805 0.1464 0.043 0.001 0.2646 0.179 0.140

INV G x x x x x x 0.0011 0.146 0.994 -0.5909 0.609 0.333 0.3421 0.186 0.065 0.3606 0.811 0.657
PE x x x x x x -0.0101 0.002 0.000 0.0042 0.010 0.669 -0.0056 0.003 0.036 0.0185 0.012 0.129

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Water Utility

Table 37: Factor regression model (GLS) for two regimes over the simple returns in the
Water Utility sector from 2010 until 2024

model 1 model 2 model 3
R1 R2 R1 R2 R1 R2

Variable β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval β SE Pval
α -0.0855 0.106 0.419 -0.7588 0.432 0.081 0.0716 0.079 0.366 0.1377 0.283 0.627 -0.0363 0.252 0.886 -0.4076 1.002 0.685

Mkt − Rf 0.3228 0.023 0.000 0.1494 0.103 0.148 x x x x x x 0.3232 0.023 0.000 0.1651 0.104 0.115
SMB 0.0051 0.056 0.927 -0.2916 0.244 0.233 x x x x x x 0.0059 0.056 0.917 -0.2763 0.249 0.268
HML 0.2338 0.040 0.000 -0.0102 0.197 0.959 x x x x x x 0.2343 0.040 0.000 -0.0191 0.200 0.924
MOM 0.0320 0.031 0.303 -0.0140 0.136 0.918 x x x x x x 0.0318 0.031 0.306 -0.0154 0.138 0.911

TERM -0.0165 0.020 0.403 -0.0395 0.068 0.564 x x x x x x -0.0197 0.029 0.492 -0.0987 0.117 0.399
DEF 0.0585 0.045 0.197 0.3295 0.189 0.083 x x x x x x 0.0502 0.058 0.388 0.2886 0.234 0.219

CFvol x x x x x x 0.0843 0.251 0.737 0.2253 1.021 0.826 -0.0183 0.247 0.941 0.5193 1.044 0.619
LEV x x x x x x 0.0030 0.020 0.878 0.0417 0.072 0.564 0.0051 0.020 0.803 0.0586 0.078 0.453

INV G x x x x x x 0.0316 0.072 0.659 -0.1052 0.260 0.686 -0.0029 0.088 0.974 -0.1505 0.354 0.671
PE x x x x x x -0.0008 0.001 0.475 -0.0041 0.004 0.324 -0.0006 0.001 0.654 -0.0058 0.005 0.275

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Wald test statistics

Table 38: Wald test statistics for the univariate test of equal coefficients in model 1 between
regimes

Sector α Mkt − Rf SMB HML MOM TERM DEF

Agg. Return 0.406
0.524

1.044
0.307

0.781
0.377

0.610
0.435

5.825
0.016

0.058
0.809

0.515
0.473

Airport 0.055
0.814

1.119
0.29

0.374
0.541

0.173
0.677

0.192
0.662

0.003
0.96

0.105
0.745

Communications 7.441
0.006

0.529
0.467

0.129
0.72

0.029
0.864

0.358
0.55

2.801
0.094

9.397
0.002

Datacenters 0.032
0.859

0.189
0.663

2.282
0.131

0.651
0.42

0.255
0.614

1.343
0.246

0.002
0.966

Electric Utility 0.322
0.57

2.608
0.106

0.413
0.52

0.388
0.533

0.058
0.81

0.009
0.926

0.12
0.729

Gas Utility 0.023
0.879

1.452
0.228

0.015
0.903

1.308
0.253

5.111
0.024

2.756
0.097

0.132
0.717

Multi Utility 0.0
0.993

8.858
0.003

0.599
0.439

0.005
0.943

0.132
0.716

0.297
0.586

0.004
0.947

Other 14.441
0.0

0.698
0.403

0.857
0.354

2.333
0.127

0.188
0.664

0.847
0.358

13.042
0.0

Pipelines 4.554
0.033

0.056
0.813

0.0
0.992

0.065
0.799

2.071
0.15

3.154
0.076

6.609
0.01

Port 0.062
0.803

0.531
0.466

1.279
0.258

0.738
0.39

3.136
0.077

0.011
0.917

0.234
0.629

Railroads 0.063
0.802

0.807
0.369

4.227
0.04

0.013
0.908

2.38
0.123

0.001
0.975

0.002
0.966

Toll Roads 0.877
0.349

1.517
0.218

0.563
0.453

0.743
0.389

2.686
0.101

0.28
0.597

1.721
0.19

Water Utility 2.292
0.13

2.7
0.1

1.405
0.236

1.469
0.226

0.108
0.742

0.104
0.747

1.947
0.163

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Table 39: Wald test statistics for the univariate test of equal coefficients in model 2 between
regimes

Sector α CFvol LEV INV G PE

Agg. Return 0.012
0.913

1.963
0.161

0.065
0.798

1.913
0.166

0.684
0.408

Airport 1.601
0.206

1.49
0.222

0.008
0.927

4.023
0.045

3.234
0.072

Communications 0.002
0.969

2.767
0.096

0.068
0.794

0.207
0.649

0.221
0.638

Datacenters 0.622
0.43

0.982
0.322

0.272
0.602

0.324
0.569

0.079
0.779

Electric Utility 0.01
0.921

3.361
0.067

0.457
0.499

0.852
0.356

0.998
0.318

Gas Utility 3.753
0.053

3.398
0.065

0.5
0.479

0.069
0.792

8.009
0.005

Multi Utility 1.768
0.184

3.375
0.066

0.008
0.928

0.83
0.362

4.0
0.046

Other 0.453
0.501

1.117
0.291

0.113
0.737

0.186
0.667

0.596
0.44

Pipelines 0.872
0.35

0.69
0.406

0.678
0.41

0.252
0.616

0.121
0.728

Port 1.726
0.189

0.552
0.457

0.063
0.801

0.168
0.682

0.167
0.683

Railroads 0.29
0.59

5.727
0.017

0.286
0.593

1.472
0.225

5.544
0.019

Toll Roads 0.041
0.839

0.324
0.569

0.162
0.687

1.004
0.316

2.213
0.137

Water Utility 0.062
0.803

0.014
0.907

0.236
0.627

0.364
0.546

0.505
0.478

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1

Table 40: Wald test statistics for the univariate test of equal coefficients in model 3 between
regimes

Sector α Mkt − Rf SMB HML MOM TERM DEF CFvol LEV INV G PE

Agg. Return 1.089
0.297

1.038
0.297

0.552
0.457

0.804
0.370

6.438
0.011

0.181
0.670

1.039
0.308

0.050
0.824

2.058
0.151

0.282
0.103

0.157
0.692

Airport 0.003
0.955

1.078
0.299

0.113
0.737

0.065
0.799

0.079
0.779

0.189
0.664

0.093
0.76

0.795
0.372

0.004
0.952

2.659
0.103

0.98
0.322

Communications 7.014
0.008

0.636
0.425

0.074
0.785

0.104
0.747

0.526
0.468

0.007
0.933

10.521|
0.001

0.028
0.867

2.186
0.139

0.256
0.613

1.261
0.261

Datacenters 0.007
0.935

0.164
0.685

1.804
0.179

0.69
0.406

0.226
0.634

0.868
0.351

0.03
0.863

0.219
0.639

0.05
0.822

0.099
0.752

0.129
0.719

Electric Utility 0.762
0.383

2.456
0.117

0.451
0.502

0.379
0.538

0.075
0.784

0.537
0.464

0.483
0.487

1.916
0.166

0.376
0.54

1.529
0.216

0.034
0.854

Gas Utility 3.631
0.057

2.769
0.096

0.019
0.89

1.017
0.313

4.128
0.042

1.486
0.223

1.344
0.246

2.522
0.112

0.093
0.761

2.108
0.146

11.308
0.001

Multi Utility 3.034
0.082

7.529
0.006

0.59
0.443

0.004
0.951

0.034
0.854

2.013
0.156

0.986
0.321

0.823
0.364

1.862
0.172

1.242
0.265

2.711
0.1

Other 9.221
0.002

0.266
0.606

0.485
0.486

3.222
0.073

0.132
0.716

0.198
0.657

17.368
0.0

4.628
0.031

0.813
0.367

0.233
0.629

0.046
0.83

Pipelines 0.015
0.903

0.031
0.86

0.056
0.813

0.084
0.772

1.996
0.158

5.086
0.024

2.564
0.109

0.37
0.543

2.36
0.124

1.641
0.2

0.104
0.747

Port 1.698
0.193

0.561
0.454

0.906
0.341

0.98
0.322

3.572
0.059

0.587
0.444

0.51
0.475

1.261
0.261

0.811
0.368

0.65
0.42

0.593
0.441

Railroads 0.668
0.414

0.387
0.534

4.069
0.044

0.001
0.976

3.159
0.076

1.185
0.276

0.056
0.813

3.579
0.059

0.001
0.971

0.011
0.916

5.336
0.021

Toll Roads 4.705
0.03

1.363
0.243

0.256
0.613

1.109
0.292

3.416
0.065

0.343
0.558

5.191
0.023

0.274
0.6

0.647
0.421

0.017
0.895

3.734
0.053

Water Utility 0.31
0.578

2.096
0.148

1.212
0.271

1.515
0.218

0.125
0.723

0.349
0.555

1.274
0.259

0.371
0.542

0.647
0.421

0.108
0.743

0.864
0.353

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Table 41: Wald test statistics for the multivariate test of equal coefficients in model 1;
regime 1

Sector α Mkt − Rf SMB HML MOM TERM DEF

Agg. Return 0.406
0.524

1.044
0.307

0.781
0.377

0.610
0.435

5.825
0.016

0.058
0.809

0.515
0.473

Airport 4.989
0.545

20.922
0.002

7.51
0.276

0.039
1.0

7.754
0.257

7.007
0.32

18.613
0.005

Communications 63.676
0.0

2.691
0.847

1.451
0.963

0.161
1.0

1.175
0.978

0.0
1.0

13.284
0.039

Datacenters 5.352
0.5

329.125
0.0

99.116
0.0

103.76
0.0

0.441
0.998

0.309
0.999

0.042
1.0

Electric Utility 7.974
0.24

23.065
0.001

16.527
0.011

1.589
0.953

4.448
0.616

9.14
0.166

4.72
0.58

Gas Utility 1.634
0.95

2.24
0.896

9.162
0.165

0.529
0.997

4.754
0.576

3.793
0.705

5.765
0.45

Multi Utility 0.401
0.999

255.155
0.0

292.478
0.0

30.0
0.0

2.409
0.878

0.417
0.999

2.304
0.89

Other 253.685
0.0

4.707
0.582

14.984
0.02

3.375
0.76

0.07
1.0

0.002
1.0

61.295
0.0

Pipelines 36.24
0.0

270.017
0.0

56.269
0.0

109.312
0.0

35.048
0.0

16.024
0.014

11.855
0.065

Port 0.942
0.988

15.062
0.02

23.526
0.001

0.022
1.0

4.756
0.575

8.393
0.211

22.786
0.001

Railroads 3.973
0.68

8.163
0.226

101.023
0.0

3.834
0.699

18.32
0.005

12.468
0.052

25.62
0.0

Toll Roads 17.945
0.006

2.172
0.903

7.27
0.297

0.03
1.0

0.171
1.0

0.03
1.0

0.229
1.0

Water Utility 9.476
0.149

20.987
0.002

1.901
0.929

8.475
0.205

0.765
0.993

3.184
0.785

0.142
1.0

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Table 42: Wald test statistics for the multivariate test of equal coefficients in model 1;
regime 2

Sector α Mkt − Rf SMB HML MOM TERM DEF

Airport 1.152
0.979

0.394
0.999

0.002
1.0

0.29
1.0

0.568
0.997

0.191
1.0

1.199
0.977

Communications 45.388
0.0

0.347
0.999

0.184
1.0

0.234
1.0

1.37
0.968

0.0
1.0

16.406
0.012

Datacenters 0.073
1.0

13.881
0.031

0.837
0.991

3.682
0.72

0.065
1.0

0.004
1.0

0.185
1.0

Electric Utility 2.658
0.85

4.37
0.627

0.193
1.0

0.006
1.0

0.034
1.0

0.342
0.999

0.003
1.0

Gas Utility 0.108
1.0

0.403
0.999

0.264
1.0

1.205
0.977

0.538
0.997

0.009
1.0

1.034
0.984

Multi Utility 0.163
1.0

20.757
0.002

9.739
0.136

0.927
0.988

0.713
0.994

0.354
0.999

0.308
0.999

Other 5.314
0.504

0.004
1.0

1.053
0.984

0.68
0.995

1.53
0.957

0.568
0.997

4.404
0.622

Pipelines 4.782
0.572

13.339
0.038

5.755
0.451

5.211
0.517

1.255
0.974

0.954
0.987

13.148
0.041

Port 0.814
0.992

0.592
0.997

0.007
1.0

0.311
0.999

0.564
0.997

0.31
0.999

1.943
0.925

Railroads 0.013
1.0

1.173
0.978

0.005
1.0

0.329
0.999

0.008
1.0

0.514
0.998

1.15
0.979

Toll Roads 6.913
0.329

1.041
0.984

0.015
1.0

0.365
0.999

1.109
0.981

0.006
1.0

1.843
0.934

Water Utility 8.809
0.185

1.138
0.98

0.796
0.992

0.128
1.0

0.116
1.0

0.052
1.0

3.487
0.746

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Table 43: Wald test statistics for the multivariate test of equal coefficients in model 2
regime 1

Sector α CFvol LEV INV G PE

Airport 0.0
1.0

15.786
0.003

2.018
0.732

1.18
0.881

2.138
0.71

Communications 23.343
0.0

12.721
0.013

0.054
1.0

1.121
0.891

0.001
1.0

Datacenters 0.286
0.991

1.542
0.819

0.051
1.0

0.106
0.999

0.024
1.0

Electric Utility 0.149
0.997

2.644
0.619

0.089
0.999

0.414
0.981

0.089
0.999

Gas Utility 1.723
0.786

13.339
0.01

2.586
0.629

0.177
0.996

1.328
0.857

Multi Utility 0.147
0.997

0.055
1.0

0.033
1.0

0.024
1.0

0.015
1.0

Other 5.708
0.222

2.322
0.677

1.696
0.791

6.445
0.168

0.137
0.998

Pipelines 0.854
0.931

0.55
0.968

0.173
0.996

0.182
0.996

0.037
1.0

Port 0.001
1.0

1.745
0.783

1.023
0.906

0.064
0.999

0.351
0.986

Railroads 0.088
0.999

0.008
1.0

0.002
1.0

0.008
1.0

0.027
1.0

Toll Roads 0.752
0.945

5.001
0.287

0.558
0.968

1.162
0.884

1.633
0.803

Water Utility 0.238
0.993

0.038
1.0

0.02
1.0

0.001
1.0

0.031
1.0

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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Table 44: Wald test statistics for the multivariate test of equal coefficients in model 2
regime 2

Sector α CFvol LEV INV G PE

Airport 0.0
1.0

0.37
0.985

0.355
0.986

0.357
0.986

0.345
0.987

Communications 4.041
0.4

13.409
0.009

0.526
0.971

0.032
1.0

0.561
0.967

Datacenters 1.22
0.875

4.05
0.399

0.126
0.998

0.014
1.0

0.189
0.996

Electric Utility 1.138
0.888

11.394
0.022

0.717
0.949

0.231
0.994

0.964
0.915

Gas Utility 0.004
1.0

13.113
0.011

1.599
0.809

1.212
0.876

1.743
0.783

Multi Utility 0.038
1.0

7.916
0.095

1.075
0.898

0.279
0.991

1.111
0.892

Other 0.532
0.97

1.697
0.791

0.023
1.0

2.274
0.685

0.14
0.998

Pipelines 0.008
1.0

2.041
0.728

0.309
0.989

0.1
0.999

0.219
0.994

Port 1.315
0.859

1.032
0.905

0.02
1.0

0.0
1.0

0.0
1.0

Railroads 0.86
0.93

14.216
0.007

1.337
0.855

0.211
0.995

1.506
0.825

Toll Roads 0.213
0.995

0.065
0.999

0.024
1.0

0.228
0.994

0.014
1.0

Water Utility 0.148
0.997

0.051
1.0

0.015
1.0

0.091
0.999

0.0
1.0

* The bold coefficients indicate a value which is significant with at least pval ≤ 0.1
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