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Abstract

Traditional cybersecurity methods are struggling to keep pace with the rapidly evolving landscape

of sophisticated cyber-attacks and the expanding complexity of digital infrastructures. Many

conventional cyber security approaches rely on manual processes, which are ineffective against

new, unidentified threats and cannot scale with the growing volume of digital data. Static defense

mechanisms, such as firewalls and antivirus software, often fail to adapt dynamically to new

threats, leading to slower response times and gaps in defense. As a result, more dynamic and

adaptive security measures are needed to enhance cybersecurity postures. This thesis investigates

the integration of advanced Natural Language Processing (NLP) techniques within a Responsible

Artificial Intelligence (AI) framework to enhance the prediction cybersecurity vulnerabilities. It

particularly emphasizes the use of Large Language Models (LLMs), to improve the mapping

of Common Vulnerabilities and Exposures (CVE) to the MITRE ATT&CK framework. The

mapping of CVE to ATT&CK techniques is an important step in the automation for cyber risk

assessments, making the mitigation of cyber attacks easier. This research focuses on the mapping

step within the automated risk assessment.

This research evaluates two NLP models: the Semantic Mapping of CVE to MITRE ATT&CK

techniques (SMET) and MAP-SecureBERT that uses Named Entity Recoginition (NER) combined

with a fine-tuned LLM to map CVEs to MITRE ATT&CK techniques. SMET uses Semantic Role

Labeling (SRL) to extract semantic structures from CVE descriptions, linking these insights to

corresponding ATT&CK techniques through logistic regression (LR). MAP-SecureBERT employs

the fine-tuned SecureBERT adapted for cybersecurity contexts, and uses NER to identify critical

cybersecurity entities within CVE descriptions to enhance technique mapping performance. These

two models are trained and tested on two datasets, one small and one relative larger dataset and

compared to a baseline method that is constructed within this thesis. This baseline model uses

Bag-of-Words (BoW) and TF-IDF methods combined with a Random Forest (RF) algorithm.

Besides the comparison of these two NLP techniques, a new model is introduced. The Multi-

Input Cyber Security (MICS) model, as addition it includes cosine similarities to compare the text

from a single CVE entry with all possible MITRE ATT&CK techniques. This approach facilitates

a more nuanced understanding of the relationships between CVE entries and cybersecurity

techniques, enhancing predictive performance, particularly in larger and more diverse datasets

where multiple techniques are harder to distinguish.

The results indicate that the new MICS Model outperforms the baseline model. By incorpor-

ating Responsible AI principles, fairness, accountability, and transparency, the implementation

of these AI technologies hold on to ethical norms and regulations, like those specified in the EU

AI Act. Future efforts will focus on developing a model that can support fully automated risk

assessments.
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Chapter 1

Introduction

Digital transformation is reshaping society, integrating technologies into daily life and forming

the operational backbone of organizations worldwide. While this transformation encourages

innovation and efficiency, it also increases the stakes in cybersecurity. As dependence on

digital infrastructure grows, so does vulnerability to cyber attacks. These challenges position

cybersecurity not only as a technical issue but as an important protection mechanism (McKinsey,

2023). Traditional cybersecurity strategies, like firewalls, antivirus software, and security audits,

are becoming insufficient due to the evolving complexity and frequency of cyber threats. Recent

data highlights this insufficiency, with approximately 2,200 cyber attacks daily, adding up to

about 800,000 annually (World Economic Forum, 2024). The financial impact is large, with the

global average cost of a data breach escalating by 15% over the past three years to reach $4.45
million (IBM, 2023). These figures underscore the need for automated cybersecurity solutions.

Artificial Intelligence (AI) is showing its importance because it can quickly process and analyze

huge amounts of data. One important use of AI is machine learning (ML), which helps in spotting

signs of cyber attacks. However, using ML in cybersecurity is challenging. One problem is the

lack of detailed and well-annotated datasets needed to train powerful algorithms. Cybersecurity

problems like viruses, unauthorized access, and service disruptions need specific and thorough

data to build strong defenses. However, obtaining sufficient data is often challenging due to its

sensitive nature. This limits how well machine learning can predict, and so mitigate, cyber threats

(Sarker et al., 2020). Central to cybersecurity data collection are the Common Vulnerabilities

and Exposures (CVE) dataset and the MITRE ATT&CK framework dataset (MITRE, 2024b)

(MITRE, 2024a). The CVE dataset catalogs documented cybersecurity vulnerabilities, while the

MITRE ATT&CK framework offers a matrix of techniques employed by threat actors. A fully

integrated dataset linking CVE entries with specific MITRE ATT&CK techniques and mitigation

strategies remains not available, while it is necessary for performing automated risk assessments.

Large Language Models (LLMs) present a promising solution by potentially bridging this

gap. They can analyze vast amounts of unlabeled data from sources like CVE and MITRE

ATT&CK. As they can read large unlabeled data, small annotated dataset can be used only

for the prediction layer. This capability is important for training specific classification models,

such as Random Forests (RF), and for the broader application of LLMs across both labeled and

unlabeled data (Motlagh et al., 2024). Integrating LLMs into cybersecurity can enhance the

mapping of CVE entries to corresponding attack techniques in the MITRE ATT&CK framework,
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overcoming common data limitations. Moreover, the addition of techniques like Named Entity

Recognition (NER) and Semantic Role Labeling (SRL) could improve the performance of these

models, by extracting the semantic meaning of the text.

The increasing use of AI in cybersecurity emphasizes the need for both technical efficiency and

commitment to ethical standards. Responsible AI frameworks, which promote the development of

AI systems that are robust, interpretable, and explainable, ensure that these technologies benefit

humanity while being transparent, fair, and accountable. Such frameworks align with global

regulations like the EU AI Act (European Parliament, 2023). This study leverages a Responsible

AI framework to explore how pre-trained LLMs can enhance threat detection and mitigation.

This is particularly relevant for organizations like Ernst & Young (EY), which emphasize ethical

compliance and data security in their operations (Lu et al., 2023).

This research proposes a new approach to enhance the prediction and mapping of CVE to

MITRE ATT&CK techniques through the integration of LLMs with advanced NLP techniques

such as SRL and NER. Operating within a Responsible AI framework, this study not only

assesses the technical capabilities of pre-trained LLMs in improving mapping strategies but

also the development of the Multi-Input Cyber Security (MICS) model. The MICS model

represents a significant advancement by incorporating both SRL and NER to analyze and

interpret cybersecurity data. This approach not only aims to refine the prediction accuracy

of cybersecurity threats but also ensures that these predictions adhere to ethical standards,

promoting transparency and accountability in AI applications.

The main research question guiding this study is: “How does the integration of different

NLP models enhance the capability of cyber attack technique prediction within a Responsible

AI Framework?”

This leads to the following sub-questions:

• Does combining SRL and NER with pre-trained LLMs improve the performance of cyber-

security threat predictions compared to traditional attack models?

• Under what conditions related to the quality and size of datasets does semantic mapping

perform well or poorly in predicting cyber attack techniques?

• How can principles of Responsible AI be effectively embedded and operationalized within the

architecture of prediction models to enhance ethical practices in cybersecurity prediction?

The structure of this thesis will explore these questions across several key chapters, starting

with a background on the evolution of AI in cybersecurity, a literature review of current

applications, and a detailed methodology of the proposed solutions, culminating in a discussion

of the results and conclusions.
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Chapter 2

Background

2.1 Cybersecurity Fundamentals

A cyber attack is any intentional effort to steal, expose, disable, or destroy data, applications,

or other assets through unauthorized access to a network, computer system, or digital device

(IBM, 2024). In recent years, numerous organizations have struggled to defend effectively

against the increasing speed and complexity of cybersecurity attacks (NVIDIA, 2024). Research

on cyber threat detection and mitigation has primarily focused on risk identification and

framework development. Effective prevention of cyber attacks can be achieved through a phased

approach outlined by the National Institute of Standards and Technology (NIST). These phases,

Identification, Protection, Detection, Response, and Recovery, are important for a successful

cybersecurity program (National Institute of Standards and Technology, 2018).

In the Identification phase, organizations identify their cybersecurity policies, risk management

strategies, and resource weaknesses. The Protection phase aims to limit the potential impact of a

cybersecurity event, including measures such as identity management and access control, raising

awareness throughout the organization, and establishing a secure data environment. Detection is

critical for identifying specific attacks through monitoring for anomalies and rare events, although

this can be labor-intensive. After an attack is detected, the Response and Recovery phases

determine the extent of the aftermath and involve implementing recovery planning processes and

making improvements based on lessons learned. These steps help organizations limit damage

and enhance their resilience to future attacks.

This thesis specifically focuses on enhancing the Detection phase, utilizing advanced NLP tech-

niques within a Responsible AI framework to improve the accuracy and efficiency of identifying

cyber threats. This approach integrates fine-tuned AI models that not only detect but also predict

and mitigate potential cybersecurity vulnerabilities, significantly reducing the labor-intensive

nature of traditional detection methods. Building on the foundation of these cybersecurity prac-

tices, Section 2.2 will delve into the recent research conducted on AI applications in cybersecurity,

exploring how these technologies, especially the models developed in this research, can further

strengthen defense mechanisms against evolving cyber threats.
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2.2 Introduction to Artificial Intelligence in Cybersecurity

In addition to the increased cyber risk, there are several other reasons to use AI in cybersecurity.

AI can be particularly effective in the Detect and Protect pillars of the NIST framework (National

Institute of Standards and Technology, 2018). AI can learn from past experiences, where it is

analyzing and learning from past events or cybersecurity threats, to prevent similar threats in

the future (Ansari et al., 2022). AI systems are quick, they can analyze vast amounts of data

and identify anomalies to provide quicker detection. Because they can monitor network activity

in real-time, AI can quickly identify signs of similar attacks in the future. Although AI brings

efficiency and maintenance gains, it also introduces risks. While AI can automatically scan large

quantities of data to identify vulnerabilities, this capability also makes it easier for attackers to

launch targeted assaults. The algorithms can manipulate other AI systems into making harmful

decisions; for instance, introducing bias can lead to harmful decision-making. AI tends to operate

on complex algorithms that may be hard for humans to understand, lacking transparency (Tan,

2023). The integration of AI within cybersecurity operations not only promises improved efficiency

and real-time thereat detection but also introduces ethical considerations that necessitate a

Responsible AI deployment, which will be discussed in Section 3.2.

2.2.1 Evolution of AI in Cybersecurity

Machine Learning, a subset of AI, is a computational process that uses input data to achieve a

desired task without being hard coded to produce a particular outcome (El Naqa & Murphy,

2015). ML models are often made up of a set of rules, these rules are capable of detecting data

patterns, recognize sequences or anticipate behavior. Techniques like Support Vector Machines

(SVMs), Naive Bayes and Decisions Trees (DTs) are commonly used ML techniques with a cyber

application (Shaukat et al., 2020). In all the five stages of the NIST Framework, ML techniques

can be applied. However it depends on the application which ML technique is most suitable. The

study of Ahsan et al. (2022) highlights the importance of choosing the right ML per objective.

This paragraph shows different ML applications, all within the cybersecurity sector.

One of the key applications of ML in cybersecurity is in the area of intrusion detection

systems (IDS). Handa et al. (2019) demonstrates the enhancement of IDS through automation

provided by ML algorithms. Specifically identification of cyber threats by an automated IDS

shows importance. This system could detect threats such as the advanced Stuxnet worm, which

commandeered the uranium enrichment centrifuges in Iran’s Nuclear program (Langner, 2011).

This automation is facilitated through techniques such as SVMs, which analyze network traffic

to identify malicious activities. Beyond intrusion detection, ML algorithms are instrumental in

classifying data, for instance, distinguishing between spam and legitimate messages. Bayesian

classifiers, in particular, have proven effective in spam detection, underscoring the versatility

of ML not only in recognizing spam but also in detecting malware and phishing attempts

(Mart́ınez Torres et al., 2019).

In addition to classic machine learning techniques, research underscores the dominance of NNs

in cybersecurity detection processes (Shaukat et al., 2020). Unlike traditional ML methods, NNs

offer the advantage of being able to learn and improve automatically from experience without
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being explicitly programmed with specific rules (Mukhamediev, 2021). This capability enables

them to effectively manage increasingly large and complex datasets prevalent in cybersecurity.

Particularly adept at processing unstructured data types such as images, audio, and text, NNs

are important for detecting malware, identifying network intrusions, and recognizing phishing

attempts, as detailed in the comprehensive review by Podder (2020) on artificial NNs for

cybersecurity applications. However, while NNs are effective for pattern recognition in structured

data, they face challenges with the nuances and context of unstructured textual data, often

requiring extensive pre-processing which can be inefficient. This limitation underscores the

need for developing more sophisticated models, such as LLMs, which can better understand the

nuances of human language in the vast and varied datasets typical in cybersecurity applications,

thereby enhancing threat detection and response capabilities.

2.3 Introduction to Large Language Models

According to (NVIDIA, 2024), “Large Language Models are deep learning algorithms (NNs) that

can recognize, summarize, translate, predict, and generate content using very large datasets.”

LLMs process text by encoding it, assigning weights to specific words, and learning to perform

various tasks based on these weights. They play a important role in enhancing productivity

across different industries. For example, LLMs can decode the language of protein sequences and

suggest viable compounds for developing new vaccines (NVIDIA, 2024).

LLMs are primarily used in generating text, summarizing content, translating languages,

classifying information, and powering chatbots. Standing at the forefront of AI, these models

have helped our ability to process, interpret, and generate human language with remarkable

efficiency, thanks to their training on large data collections.

Figure 2.1: BERT Model.

As shown in Figure 2.1, among the most advanced models in NLP is BERT (Bidirectional

Encoder Representations from Transformers). Developed by (Devlin et al., 2019), BERT un-

derstands context by analyzing text from both directions (left and right) at all layers. This

bidirectional processing is part of what sets BERT apart from its predecessors. The model
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employs a unique pre-training approach known as Masked Language Modeling (MLM), where

15% of the words in each sentence are randomly replaced with a [MASK] token during training.

BERT then learns to predict the original words based on the context provided by the other words

in the sentence. This technique forces the model to develop a deep understanding of language

context and structure, enhancing its capability for tasks such as sentiment analysis, question

answering, and language inference. Additionally, BERT uses a Next Sentence Prediction (NSP)

task during training, where it predicts whether one sentence logically follows another, further

refining its understanding of text structure.

Following BERT, the Generative Pre-trained Transformer series, particularly GPT-3, described

by (Brown et al., 2020), has set new benchmarks for text generation. Unlike BERT, which

primarily focuses on understanding context, GPT-3 employs an autoregressive model that predicts

the likelihood of word sequences, enabling it to generate coherent and contextually appropriate

text. GPT-3’s capability for few-shot learning, where it performs complex language tasks

with minimal specific training data, underscores its versatility and profound comprehension of

language. These models are based on the transformative architecture known as transformers,

which have accelerated advancements in NLP. As the field evolves, newer versions of GPT and

other domain-specific models continue to expand the capabilities of LLMs.
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Chapter 3

Literature Review

This literature review investigates the application of LLMs in cybersecurity. It specifically focuses

on their role in improving the mapping of CVE to MITRE ATT&CK techniques. The review

addresses a gap in current research, the ethical integration of LLMs in cybersecurity, particularly

for enhancing threat detection and response strategies. This work aims to highlight recent

developments for CVE to MITRE ATT&CK mapping and explore the practical application of

Responsible AI principles in this context.

3.1 Large Language Models in Cybersecurity

As highlighted in Section 2.3, BERT and GPT stand out as the most outstanding LLMs currently

available. Since their debut, a wide spectrum of applications has been explored, ranging from

healthcare (Thirunavukarasu et al., 2023) to supply chain management (Li et al., 2023), and

extending into the energy sector (Dong et al., 2024). The origin of cybersecurity challenges,

driven by the large volume of data, underscores the impracticalities of manual screening and

threat detection. The complexity of cyber attacks surpass human capabilities, necessitating the

availability and analysis of extensive datasets.

It is within this context that LLMs can prove to be valuable. However, it is important to

note that LLMs were not originally designed for cyber attack detection. Their use in this field

is often limited by the lack of specific training on relevant datasets. Despite these limitations,

the review by Nourmohammedzadeh Motlagh et al. (Motlagh et al., 2024) reveals the impact

of LLMs within the cybersecurity domain, guided by the NIST Framework’s five pillars 2.1.

The review examines the role of LLMs in identifying potential risks, managing cybersecurity

through automated risk assessments (Kereopa-Yorke, 2023), enhancing proactive protections

like web content filtration, and contributing to anomaly detection for network logs and software

vulnerabilities (Ferrag et al., 2023; Tuor et al., 2018). It delves into how LLMs create response

mechanisms, particularly through the development of honeypots (traps) that engage and delay

attackers, buying important time for mitigation efforts. Despite their broad training, LLMs

show to be adaptable to specialized tasks. This flexibility is important, considering the complex

nature of cyber threats. By applying fine-tuning and customization techniques, LLMs can be

adapted to detect and mitigate cyber threats, reducing manual effort. These fine-tuning and

customization applications will be discussed in Section 3.1.1.
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3.1.1 Fine-Tuning LLMs for Cybersecurity Applications

Most applied models are based on architectures like BERT, GPT-3, or GPT-4. Research often

involves customizing these architectures for specific tasks or domains rather than using the base

models. This customization is important as the effectiveness of general models lacks in highly

specialized tasks (Zhang et al., 2023). Fine-tuning LLMs with domain-specific data can increase

performance and efficiency while reducing irrelevant data or “noise” in the process (Naveed et

al., 2024). However, creating a domain-specific LLM has its own set of challenges, especially

in gathering high-quality training data. Examples of such tailored LLMs include SecureBERT,

CyBERT, CySecBERT, and SecurityBERT.

SecureBERT distinguishes itself not only through its language understanding derived from

BERT but also via the application of fine-tuning techniques focused on cybersecurity texts from

diverse sources, including books, blogs, security reports, and academic papers. This model uses a

custom tokenizer, building upon RoBERTa’s tokenizer to include merge English vocabulary with

new cybersecurity-relevant tokens (Liu et al., 2019). This makes SecureBERT applicable for tasks

such as phishing detection, code and malware analysis, and intrusion detection (Aghaei et al.,

2022). Likewise, CyBERT and CySecBERT represent adaptations of the BERT model fine-tuned

for cybersecurity applications. CyBERT aims to increase accuracy and efficiency of cybersecurity

tasks such as entity recognition and threat classification; it is specifically trained for industrial

control systems device documentation (Ranade et al., 2021). CySecBERT engages in domain-

adaptive pre-training (DAPT) to grasp cybersecurity language nuances, it is trained on less data

within the cyber domain compared to SecureBERT (Bayer et al., 2022). SecurityBERT employs

Privacy-Preserving Fixed-Length Encoding (PPFLE) to transform unstructured network data

into a structured format that BERT can efficiently process (Ferrag et al., 2024). This approach,

unique to SecurityBERT, integrates privacy into the training data, which is an important feature

when using sensitive data.

When deciding among CySecBERT, SecureBERT, CyBERT, and SecurityBERT, the choice

depends on the specific requirements of the task. CySecBERT suits tasks that demand a mix of

general and cybersecurity text, making it ideal for scenarios requiring domain-specific insights.

SecureBERT, with its deep domain knowledge, is preferable for tasks where an understanding

of cybersecurity terminologies and contexts is important. Being trained on more data than

CySecBERT, it can provide more detailed insights. CyBERT specializes in recognizing and

understanding cybersecurity-specific entities in control systems device documentation, making

it optimal for specific cybersecurity entity recognition tasks within this field. SecurityBERT,

with its innovative PPFLE technique and real-time IoT device deployment capabilities, is the

go-to model for high-accuracy, privacy-aware cyber threat detection. Each model offers unique

strengths: CySecBERT for versatility, SecureBERT for deep domain knowledge, CyBERT for

focused entity recognition, and SecurityBERT for high-accuracy, real-time detection and privacy

preservation.

Based on this comparison, the models trained on vulnerabilities, techniques and mitigations

for cyber attacks could be a good fit for this research. SecureBERT and CySecBERT fit this

description the most, based on the amount of data the models are trained on SecureBERT shows

to have the deepest domain knowledge. Besides training BERT models on domain-specific data,
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it is important to fine-tune the model for the specific task it will be used for, to enhance their

performance and efficiency. As demonstrated in the research by Chi Sun et al. (Sun et al., 2019),

opportunities to further fine-tune the BERT model for a better understanding of context, such as

in text classification tasks, are important. The architecture of BERT consists of multiple layers

that capture different levels of semantic and syntactic information. For example, layers closer

to the input may capture more generic features, while those closer to the output may capture

more task-specific features. Adjusting the learning rate and employing strategies to prevent

catastrophic forgetting are important in this step to retain previously learned information while

adapting to new data. The architecture of the BERT model will be further elaborated upon

within Chapter 5.

3.1.2 Generating Mitigation Strategies by LLMs

The development of automated risk assessments by LLMs is progressing, as these models identify

vulnerabilities and threats, suggesting specific mitigation tactics aligned with an organization’s

unique risk profile. The models are not yet implemented because ensuring legal compliance and

ethical integrity is difficult to ensure. The article “Using Large Language Models to Mitigate

Ransomware Threats” by Fang Wang (Wang, 2023), explores the potential of LLMs like GPT

for the development of cybersecurity policies and strategies to counter ransomware threats. In

the article they recommend to perform further research into generating mitigation strategies out

of fine-tuned domain-specific LLMs. The article by Jin et al.(Jin et al., 2024) takes a different

approach, trying to correlate CVE with MITRE ATT&CK techniques. This paper highlights the

importance of the generation of mitigation strategies trough LLMs.

One innovative approach, detailed by Basel Abdeen et al. (Abdeen, 2023) in their work on

“Semantic Mapping of CVE to ATT&CK and its Application to Cybersecurity,” uses SMET

(Semantic Mapping of CVE to ATT&CK) to automatically map CVE entries to ATT&CK

techniques based on their textual similarity. This tool leverages SRL within a domain-specific

language model, ATT&CK BERT, trained on ATT&CK techniques and mitigations, to understand

the semantic meaning of attack descriptions and make accurate mappings. This allows for a

more complete understanding of which mitigations can be applied to which vulnerabilities.

Another instance that employs NER instead of SRL to derive useful insights from CVE entries

is highlighted in the work by Grigorescu et al. Their study, titled ’CVE2ATT&CK: BERT-Based

Mapping of CVEs to MITRE ATT&CK techniques’, demonstrates the effective use of a BERT

model to associate CVE entries with corresponding MITRE ATT&CK techniques (Grigorescu et

al., 2022). This method not only enhances the understanding of cybersecurity threats by enriching

the contextual insights for threat mitigation but also showcases how NER can be used to categorize

and prioritize threats effectively. Such a model proves important in improving automated risk

assessments and formulating precise, mitigation strategies. Another advancement is presented by

Ehsan Aghaei et al. (Aghaei & Al-Shaer, 2023) in their article on “Automated CVE Analysis for

Threat Prioritization and Impact Prediction.” Their tool, CVEDrill, goes beyond simple threat

identification to accurately estimate the Common Vulnerability Scoring System (CVSS) vector

for threat mitigation and priority ranking, as well as automating the classification of CVEs into

the appropriate CWE hierarchy classes. This approach promises to streamline the process of
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vulnerability analysis and countermeasure implementation, outperforming even sophisticated

tools like ChatGPT in terms of efficiency and accuracy.

Research highlights that the effectiveness of strategies generated by LLMs depends on the

models’ accuracy and the relevance of their training data. Hence, continuous updates with the

latest threat intelligence are essential. Ultimately, the incorporation of LLMs into cybersecurity

strategy development represents a step forward, providing organisations with the means to

respond more effectively and proactively to the myriad threats in the digital domain.

Despite the potential of LLMs in strengthening threat detection and generating mitigation

tactics, the introduction of biases remains a important concern. These biases can manifest when

models are trained on data that lack diversity, such as datasets predominantly featuring one

gender, leading to outputs that may not reliably represent the entire population (Jiang et al.,

2023). Such limitations underscore the critical need for Responsible AI practices in cybersecurity.

This necessity not only involves scrutinizing the data used for training models but also entails

a broader commitment to ensuring that AI technologies promote fairness, transparency, and

accountability. The following discussion in Section 3.2 delves into the principles and practices

that constitute Responsible AI, aiming to mitigate the adverse effects of biases and uphold the

integrity of AI applications in cybersecurity.

3.2 The Need for Responsible AI

As AI systems become integrated into important applications, the threat of these systems acting

in ways that are unaligned with ethical guidelines or human values grows, underscoring the need

for Responsible AI in modern applications. AI systems have become so advanced that they

require minimal human intervention. For most humans, the systems that perform these tasks are

hard to grasp. This raises the need for understanding how decisions are made by AI methods.

Within the last decade, researchers started implementing this concept into AI systems. It started

with the concept of interpretable AI, then came explainable AI and currently they are trying to

incorporate Responsible AI into the systems (Barredo Arrieta et al., 2020).

Interpretable AI can improve the implementability of ML techniques by providing robustness

and guaranteeing causality in model reasoning. Building on this, Explainable AI aims to create a

set of ML techniques that help human understand and manage AI systems better. The concept of

Responsible AI goes beyond these two methods, Responsible AI refers to the ethical development

of AI systems to benefit the humans, society, and environment (Lu et al., 2023). The pillars

that fall within Responsible AI are widely discussed, overall they include explainability, fairness,

accountability and privacy (Accenture, 2024).

Because of new European legislation, instances need to assure that their AI systems are

safe, transparent, and accountable, while fostering innovation and competitiveness within the

EU (European Parliament, 2023). This includes a risk assessment, classifying the system based

on the perceived risk level of AI applications from minimal to unacceptable risk. The AI Act

explicitly bans certain uses of AI that are deemed to have unacceptable risks. High-risk AI

systems require high-quality datasets to operate reliably and without bias. Besides integrating

these risk frameworks the Eu will implement market monitoring frameworks that oversee AI

products and services available in the market to ensure they adhere to the regulations.
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Based on various research Ernst & Young, developed its own framework for Responsible AI

to asses their clients AI systems, which will be explained in Section 3.2.1. This paragraph will

explore various approaches and interpretations of Responsible AI, delving into the implementation

of Responsible AI principles within LLMs.

3.2.1 Use Case: EY’s AI Framework

The Responsible AI framework developed by Ernst & Young (EY) assists clients in mitigating

AI risks while remaining compliant with emerging AI regulations (Ernst & Young Global, 2024).

This framework evaluates AI risks and builds controls around seven trust attributes defined

explicitly by EY. These attributes are Accountability, Sustainability, Transparency, Fairness,

Reliability, Privacy, and Explainability. These attributes are integral parts of the framework as

defined by Ernst & Young and are not altered by the author of this thesis.

• Accountability means that there must be unambiguous ownership over an AI system and

its impact throughout the AI development life-cycle.

• Sustainability refers to the design and deployment of AI systems that are compatible with

the goals of sustaining physical safety, social well-being, and planetary health.

• Transparency ensures appropriate levels of openness regarding the purpose, design, and

impact of AI systems, enabling end users and system designers to understand, evaluate,

and correctly use AI outputs.

• Fairness ensures AI systems are designed with consideration for the needs of all impacted

stakeholders and to promote inclusiveness and positive societal impacts.

• Explainability provides levels of explanation sufficient for decision criteria of AI systems to

be reasonably understood, challenged, and/or validated by human operators.

• Reliability ensures that the outcomes of AI systems align with stakeholder expectations and

perform at a desired level of precision and consistency, while being secure from unauthorized

access and/or corruption.

• Privacy involves designing AI systems with consideration for data rights regarding how

personal information is collected, stored, and used.

For some of the trust attributes like Sustainability, Accountability, and Privacy, documenting

the model development process and integrating these attributes within the governance structures

of the company might suffice. For other attributes like Transparency, Fairness, Explainability,

and Reliability, specific implementations within the model are necessary. These implementations

will be discussed in Section 3.2.2.

3.2.2 Responsible AI in LLMs

Fairness within AI refers to the assurance that biases in the data and model inaccuracies do not

lead to models that treat individuals unfavorably on the basis of characteristics such as race,
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gender, disabilities or political orientation (Oneto & Chiappa, 2020). An example within the

domain of cybersecurity is less straight forward. For instance, an AI-based cybersecurity algorithm

uses for detecting fraudulent activities may disproportionately flag transactions from specific

geographic locations, thereby creating a form of geographical discrimination (Kamoun et al., 2020).

The effectiveness of mitigation strategies to reduce bias within ML models depends on the context

of the data. Fairness metrics like Equalized Odds, Predictive Parity and Demographic Parity

ensure that these models do not favor or disadvantage any group on protected characteristics

(Agarwal & Mishra, 2021). If these metrics indicate unfavorable bias within the model, reweighing

the data could be an option.

The complexity of LLMs, which leverage deep learning algorithms, poses challenges to

their explainability. This issue is critical in high-stakes areas like cybersecurity, where the

accuracy of model outcomes is important. According to Zhao et al. (2024), both local and global

explanations are essential for understanding LLM decisions. Local explanations analyze how

specific predictions are made, highlighting influential features. Conversely, global explanations

offer an overarching view of the model’s decision-making process, using techniques such as probing

for learned information, neuron activation analysis, and identifying key concepts understood by

the model. Besides fairness and explainability, making a model responsible is equally important.

Accountability, in this context, is about ensuring that LLMs operate in a manner that is

responsible, traceable, and transparent, contributing to a more trustworthy and ethically sound

application of artificial intelligence. The paper written by Huang & Chang (2023) propose

incorporating a citation mechanism in LLMs as a solution, these would allow for transparency

and verifiability of the information generated by LLMs. However, these implementation are

complex because of the combination of data sources within these models, making it hard to

figure out the exact source. Ensuring privacy, especially when dealing with sensitive identifiable

information (which could be the case within the cybersecurity domain), is important. To address

this challenge, researchers use Privacy Protection Language Models, this integrates robust privacy

protection methods into the pre-processing stage and the fine-tuning of LLMs (Xiao et al., 2023).

By incorporating these methods in AI models we can try to ensure a responsible model.

3.3 Summary and Objectives of This Study

LLMs can play a central role in developing digital defense mechanisms, from enhancing threat

detection to the formation of mitigation strategies. By customizing models like BERT and GPT

for specific cybersecurity tasks, these technologies offer a promising results for reducing the

manual burden and quicken threat response. The lack of complete datasets makes automating

risk assessments difficult, using mapping techniques based on LLMs might solve this problem.

Developing LLMs for organisations needs to be done in a responsible way. The debate around

fairness, explainability, accountability, and privacy within AI models show a broader concern:

the importance to develop AI systems that not only perform effectively but are also based on

ethical standards and societal values. Further research deepening the technical approach by

creating LLMs specifically engineered for particular tasks within cybersecurity, thereby increasing

their Precision and adaptability to the threat landscape. Besides achieving higher Precision and

adaptability, addressing the ethical challenges, need to ensure responsible deployment.
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Chapter 4

Data

This research uses two fundamental databases to navigate the complexities of cybersecurity

vulnerabilities and attack techniques: the Common Vulnerabilities & Exposures (CVE) database

and the MITRE ATT&CK database (MITRE, 2024a,b). Both repositories are used for standard-

izing information across various cybersecurity frameworks, tools, and organizations, thus playing

a important role in enhancing cybersecurity practices globally.

The CVE database stands as a public repository that catalogs identified cybersecurity

vulnerabilities. It facilitates the universal sharing of data concerning security vulnerabilities

across diverse security tools and databases through each entry, known as a CVE record. These

records are systematically identified by a unique CVE-ID and include:

• CVE ID: Uniquely identifies the vulnerability (e.g., CVE-2015-7007).

• Public Date: The date the vulnerability was made public (e.g., 2015-10-21).

• Affected Products: Lists the products and versions affected by the vulnerability.

• Description: Provides a summary of the vulnerability, including its impact and how it can

be exploited.

• Problem Types: Categorizes the nature of the vulnerability.

• References: Lists URLs and other references that provide further information about the

vulnerability.

• Mitigations: Offers strategies and advice on how to mitigate the vulnerability.

• Vendor Information: Details about the vendor managing the vulnerability data.

• Update Dates: Indicates when the CVE record was last updated.

This research will focus on analyzing the CVE Description text, as it contains the most

information. An example of an CVE Description is shown here:

“Multiple vulnerabilities in Cisco SPA100 Series Analog Telephone Adapters (ATAs) could

allow an authenticated, adjacent attacker to execute arbitrary code with elevated privileges. The

vulnerabilities are due to improper validation of user-supplied input to the web-based management
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interface. An attacker could exploit these vulnerabilities by authenticating to the web-based

management interface and sending crafted requests to an affected device. A successful exploit

could allow the attacker to execute arbitrary code with elevated privileges. Note: The web-based

management interface is enabled by default.”

Complementing the CVE database, the MITRE ATT&CK database emerges as an exhaustive

collection of hostile tactics and techniques designed for a comprehensive understanding of cyber

attack behavior. This knowledge base contains:

• Tactics: The objectives attackers are trying to achieve, representing the “why” of an

ATT&CK technique (e.g., Initial Access, Execution, Persistence).

• Techniques: The methods attackers use to achieve tactical goals, detailed with a description,

examples, and mitigation advice. Techniques are often mapped to specific tactics to show

how they fit into broader attack goals.

• Procedures: Real-world examples of techniques used by cyber threat groups or malware,

providing context and illustrating how attackers operate in practice.

• Mitigations: Recommendations and strategies for defending against or reducing the impact

of specific techniques.

• Software: Information about software tools, including malware and legitimate software,

that attackers use to carry out attacks.

The ATT&CK database is regularly updated to encapsulate the latest insights and evolving

threats, providing an valuable resource for cybersecurity professionals engaged in threat modeling,

security assessments, and the formulation of defensive mechanisms.

For training the models used in this research, annotated datasets are used. The small dataset

consists out of 300 entries and 41 classes, annotated by Abdeen (2023). The larger dataset

consist out of 809 entries and 66 classes, from (Center for Threat-Informed Defense, 2024), but

annotated with CVE descriptions by me. The first five entries of this large dataset is shown in

the Appendix in Table A.

The lack of seamless integration of data from the CVE and MITRE ATT&CK databases

underpins the methodology of this research, facilitating a nuanced exploration of the semantic

mapping between CVE entries and ATT&CK techniques. This data leverages the CVE entries

spanning from 2014 to 2024. Through this structured approach, the study bridges the gap

between identified vulnerabilities and the tactics and techniques of cyber attackers, thereby

proposing robust strategies for enhancing cybersecurity defenses.
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Chapter 5

Methodology

This chapter explains the implemented methodology that helps answer the research questions

proposed in this report. The focal point centers on the development of a model that leverage

SecureBERT and/or ATT&CK BERT combined with Named Entity Recognition (NER) and/or

Semantic Role Labeling (SRL) to identify vulnerabilities related to specific software or hardware

versions. Drawing on the methods and performance analytics described in Sections 5.2, 5.3.1 and

5.3.2, this thesis introduces a new model: the Multi-Input Cyber Security (MICS) Model. This

model is introduced in Section 5.3.3

5.1 Data Processing and Exploratory Data Analysis (EDA)

The initial step involves cleaning and preparation of the data extracted from JSON files containing

CVE and the MITRE ATT&CK dataset. Not all information within the datasets is relevant for

training our model and linking the CVE to the ATT&CK mitigation. Variables like, data type

and data format can be removed, only the CV E ID, CV E Description, Technique ID and

Technique Description. Text normalization is a important step for ensuring data consistency in

text processing, where inputs are standardized by converting all text to lowercase and removing

special characters. This process is important for more complex operations like NER and SRL,

which require tokenization. Tokenization divides sentences into discrete words or “tokens” that

are easier for models to process. For instance, the sentence “Jule started writing her thesis at

the first of March.” is tokenized into a list of words: [‘Jule’, ‘started’, ‘writing’, ‘her’, ‘thesis’,

‘at’, ‘the’, ‘first’, ‘of’, ‘March’]. BERT, incorporates its own tokenizer that not only splits the

text into basic tokens but also into sub-tokens, which is critical for matching words with its

pre-defined vocabulary (Devlin et al., 2019). For example, the word “unsuccessfully” might be

split into [‘un’, ‘##success’, ‘##full’]. This approach can complicate tasks like NER, where

accurately identifying entities across sub-tokens is challenging. The typical solution is to assign

the entity label to the first sub-token of a word and a continuation label to subsequent sub-tokens.

Furthermore, BERT necessitates uniform sequence lengths within batches for computational

efficiency, achieved by padding shorter sequences with a [PAD] token. It also uses attention

masks to ensure the model focuses only on meaningful tokens, not padding.

Besides data cleaning and pre-processing, EDA can be performed by analyzing the frequency

of words and bigrams. This uncovers the textual data’s core components and linguistic patterns.
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This insight into the text’s structure lays a foundation for developing robust features that are

important for building effective ML models. Such an approach ensures that model training

is based on a well-understood dataset, maximizing the potential for achieving accurate and

meaningful analytical outcomes.

Data imbalance is common in cybersecurity datasets, where some types of cyber threats or

vulnerabilities are less common than others. This imbalance can lead to the model developing

a bias towards the majority class, reducing its effectiveness in identifying less frequent but

potentially more dangerous threats. To mitigate the effect of an imbalanced dataset, resampling

techniques can be used. Oversampling the minority class or under sampling the majority

class helps balance the dataset. For instance, the Synthetic Minority Over-sampling Technique

(SMOTE) generates synthetic samples from the minority class to increase its representation in the

training set (Kotsiantis et al., 2006). Within this research it is decided to test the performance of

SMOTE on the dataset, because of the modest size of the test dataset. SMOTE is advantageous

in such scenarios as it generates synthetic samples rather than replicating existing ones, thereby

enriching our dataset without the risk of losing valuable information through under-sampling

methods.

5.2 Baseline Model

Before assessing the performance of the proposed models, it is essential to establish a baseline

model for comparison. This baseline model, constructed using traditional NLP approaches, serves

as a reference point to illustrate the enhancements achieved by the proposed methodologies. The

baseline methodology employs two widely-used text representation techniques: Bag-of-Words

(BoW) and TF-IDF. These methods are instrumental in translating the textual content of CVE

descriptions into numerical data that can be processed by ML algorithms.

The Bag-of-Words model represents text by counting the frequency of words within the

documents, ignoring the order of words but maintaining a robust approach for capturing the

presence of significant terms (Qaiser & Ali, 2018). On the other hand, TF-IDF goes a step further

by reducing the weight of words that appear frequently across documents, thus highlighting

words that are more unique to each document (HaCohen-Kerner et al., 2020). This method is

effective in identifying key terms that are indicative of specific cybersecurity threats. To classify

and map vulnerabilities described in the CVEs to corresponding ATT&CK techniques, a RF

classifier is used. Known for its efficacy in handling both linear and non-linear data, RF involves

constructing multiple decision trees during training and outputting the class that is the mode of

the classes (classification) or mean prediction (regression) of the individual trees (Breiman, 2001).

This model is chosen for its ability to manage the complex nature of multi-label classification

inherent in mapping CVE descriptions to multiple possible ATT&CK techniques.

The performance of this baseline model is evaluated using multiple metrics designed to assess

the accuracy and effectiveness of multi-label classification systems. These metrics are described

in Section 5.4.2. By employing these methods and the classifier, the baseline sets a foundational

benchmark against which the more advanced methodologies. These advanced methodologies will

be described in Section 5.3.
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5.3 Advanced Models for CVE-to-ATT&CK Semantic Mapping

This Section explores modeling techniques designed to enhance the semantic mapping of CVE

descriptions to tactics, techniques, and procedures outlined in the MITRE ATT&CK framework.

The integration of these advanced models aims to bridge the informational gap between the

detailed, often technical descriptions found in CVE entries and the insights provided by the

ATT&CK framework. By utilizing NLP and ML strategies, raw text data is converted into

structured formats such as NER or SRL to better fit the cyber context. Section 5.3.3 also

evaluates the performance of the new MICS model. This model incorporates SRL, embeddings,

and cosine similarities between CVE descriptions and all possible MITRE ATT&CK techniques

as inputs within a neural network architecture.

5.3.1 Semantic Mapping from CVE to ATT&CK Technique (SMET)

In order to systematically analyze and interpret the vulnerabilities associated within CVE entries,

we apply a Natural Language Processing (NLP) technique known as Semantic Role Labels (SRL).

SRL is a natural language processing technique designed to identify the basic who-did-what-to-

whom structure of sentences (Shi & Lin, 2019). By extracting verbs (actions), subjects (agents),

and objects (entities) that compose the semantic structure of the text, SRL facilitates a deeper

comprehension of the narrative within CVE descriptions. For example, in a CVE description like

“An attacker could send a specially crafted email to exploit a vulnerability in the email client,

potentially allowing unauthorized access to user data,” SRL would identify “send” and “exploit”

as actions, “attacker” as the agent, and “specially crafted email” and “email client” as entities.

This level of analysis facilitates a deeper comprehension of the narrative within CVE descriptions

and serves as the foundation for mapping these descriptions to the ATT&CK framework.

The steps of our method are shown in 5.1, which is called the Semantic Mapping from CVE

to ATT&CK Technique (SMET) process. This figure shows how plain text from CVE reports is

turned into a list of ATT&CK techniques, ordered by importance.

Figure 5.1: SMET - CVE to ATT&CK Technique

SRL is important in enhancing the understanding of CVE entries, as it systematically breaks

down the text into manageable, interpretable components. In the context of cybersecurity, SRL

is instrumental because it extracts and labels the actions and entities within a sentence, aligning

them to the roles they play in cybersecurity incidents. This identification helps in mapping the

narrative of CVE reports to actionable intelligence.

The ATT&CK BERT model merges the capabilities of BERT with the domain-specific intel-

ligence of the MITRE ATT&CK framework. Initially, raw text is broken down into manageable

pieces called tokens, which can be words, phrases, or parts of words. This text is also cleaned
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and preprocessed, as described in Section 5.1. Each token is then processed through BERT,

which transforms it into a high-dimensional vector. Thanks to its training on a large amount of

text, BERT comprehends the contextual use of each word. This allows the same word to yield

different vectors based on its surrounding words. After processing through BERT, the vectors

produced for each token are aggregated into a single comprehensive vector for the entire text

snippet or document. Upon processing, ATT&CK BERT descriptions of discrete attack vectors,

such as “attacker sends specially crafted email” and “attacker exploits email client vulnerability”,

into a numerical vector space. For instance, the vector representation for the first scenario might

appear as [0.85, -0.23, 0.45, 0.90, -0.12], and for the second as [0.15, 0.99, -0.30, 0.80, 0.20]. Each

dimension of these vectors captures different aspects of the cybersecurity context related to the

attack (Abdeen, 2023).

These vectorized representations are then leveraged by the LR classifier, trained to discern

the probabilities of linkage between CVE descriptions and specific ATT&CK techniques. The

probabilistic modeling, fed with the structured data derived from SRL and interpreted through

ATT&CK BERT, provides outputs on the probabilities of various ATT&CK techniques being

relevant. For example, there might be an 85% probability that the technique “Spear Phishing”

is associated with the action of sending a specially crafted email, and a 90% probability that

“Exploitation for Client Execution” corresponds to the exploitation of the email client vulnerability.

Despite the valuable insights garnered from SRL and its application in SMET, this method

primarily dissects the structural elements of language within CVE descriptions. While it effectively

aligns CVE details with corresponding ATT&CK techniques, it primarily focuses on linguistic

structure, which may lead to the oversight of deeper, contextual nuances specific to cybersecurity

terminology and interactions.

5.3.2 Named Entity Recognition using SecureBERT

For categorizing entities within CVE descriptions, NER using SecureBERT is implemented, a

pre-trained version of the BERT model tailored for cybersecurity contexts. The proposed model

is shown in Figure 5.2. NER is important for identifying specific entities within text, such as

software names, version numbers, and cybersecurity-related terms within CVE descriptions. This

method can provide a more nuanced understanding and categorization of the information in these

descriptions, which is essential for the mapping phase. Key methodologies employed for NER

are rule-based approaches, supervised learning, NN-based approaches, and transformer-based

models. This section focuses on a transformer-based model that is pre-trained and fine-tuned

on NER-specific data, this model is called CyNER. CyNER is a Python library designed for

cybersecurity NER. CyNER combines transformer-based models for extracting cybersecurity-

related entities (Alam et al., 2022). Their ability to handle long-range dependencies and capture

nuanced semantic relationships makes them popular for NER. These models show significant

improvements in recognizing and classifying named entities with high Precision and Recall

(Lothritz et al., 2020).

The pre-processing explained in Section 5.1 is necessary to achieve accurate results in NER.

By fine-tuning BERT models on NER specific data they are able to adapt to the task and achieve

accurate performance in NER. As mentioned in Section 3.1, there exists several LLMs trained
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Figure 5.2: MAP-SecureBERT - CVE to ATT&CK Technique

on cyber specific datasets, besides this they are trained for NER purposes as well. Because of

the selected cyber specific training data for SecureBERT and it capabilities to perform NER,

it is selected as model to apply in this research. By leveraging SecureBERT, we enhance our

methodology’s ability to detect and categorize important information from CVE descriptions.

The method used for mapping a CVE to the ATT&CK techniques is described in Figure

5.2. After the data pre-processing, CyNER is employed for NER. This involves identifying and

extracting cybersecurity-related entities present in the CVE descriptions. For example, consider

a CVE description that states, “The vulnerability in Apache Struts version 2.5 allows remote

attackers to execute arbitrary code via a crafted URL.” In this scenario, CyNER would identify

“Apache Struts” as the software, “2.5” as the version number, “remote attackers” as the threat

agent, and “crafted URL” as the attack vector. These identified entities are crucial for mapping

the CVE to specific ATT&CK techniques.

Once these entities are recognized, SecureBERT is used again to generate entity embeddings.

These high-dimensional vectors capture the essence of the extracted entities and are meticulously

designed to encapsulate the relational nuances of these entities, turning textual data into a

format ready for machine processing and analysis. For instance, the embedding for “Apache

Struts” might encode information about common vulnerabilities and exploits associated with

this software, while the embedding for “crafted URL” might highlight methods of delivery and

exploitation in cyber attacks. These vectors then serve as input to a LR model, which has been

previously trained on a labeled dataset derived from the ATT&CK Matrix. The model evaluates

these vectors and calculates a probability score for each ATT&CK technique, effectively ranking

them based on these scores. The top-ranking techniques, such as “Remote Code Execution” for

exploiting “Apache Struts,” are presumed to be the most relevant to the CVE entry, guiding

cybersecurity professionals in prioritizing their defensive strategies.

While the use of CyNER and SecureBERT for NER effectively identifies and categorizes

specific elements within descriptions of cybersecurity vulnerabilities, this technique primarily

focuses on extracting isolated pieces of information. This consideration highlights the need to

evaluate the effectiveness of NER against SRL in cybersecurity contexts, given the importance of

understanding relationships and data context. Such relationships can be important for a deeper

understanding of the narratives within CVE reports. This comparison prompts us to consider

whether the addition of SRL could complement the entity recognition capabilities of SecureBERT

by providing a more contextual understanding of the text, which is important for cybersecurity

threat analysis. This leads to a detailed view of data points, which could benefit from additional

analytical depth provided by another model, further described in section 5.3.3.
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5.3.3 Multi-Input Cyber Security Model (MICS)

The Multi-Input Cyber Security Model (MICS), developed as part of this thesis, represents a

significant advancement over existing approaches. It integrates a complex set of features including

embeddings, SRL data, and cosine similarities. This innovative combination enhances the model’s

ability to analyze and predict cyber threats with greater performance. The capabilities and

performance of MICS are illustrated in Figure 5.3.

Figure 5.3: MICS Model Development

The MICS model begins by encoding CVE descriptions and technique descriptions using the

SentenceTransformer, producing dense vector representations. These embeddings aim to capture

the deeper semantic meanings within texts, important for understanding nuanced cybersecurity

data. To enhance the analysis further, the model employs cosine similarities between these vector

representations. Cosine similarity is calculated using the formula:

Cosine Similarity =
A ·B

∥A∥∥B∥

where A and B are vector representations of text data, A ·B is the dot product of vectors A

and B, and ∥A∥ and ∥B∥ are the norms (magnitudes) of these vectors. This measure focuses on

vector orientation over magnitude, accurately quantifying the semantic closeness between various

CVE entries and cybersecurity techniques. This metric is particularly useful in text analysis

within cybersecurity, where the semantic alignment of terms often holds more significance than

their frequency or occurrence (Han et al., 2012). Cosine similarity, by assessing how vectors point

in relation to each other, effectively captures this alignment, making it superior to measures

like Euclidean distance which might emphasize volume or absolute differences in term usage.

By utilizing cosine similarities, MICS is able to better match vulnerabilities with corresponding

cybersecurity techniques based on their content, overcoming previous models’ limitations that

might not account for the true closeness between terms described differently.

The NN architecture of MICS, shown in Figure 5.4, adeptly combines these diverse inputs.

The model features several dense layers with ReLU activation and dropout layers to prevent

overfitting, effectively learning from the rich, combined data inputs. The input layer takes the

combined feature set consisting of CVE embeddings, technique embeddings, and SRL features

alongside the calculated cosine similarities. This combination allows the model to make informed

predictions across multiple labels, reflecting the complex nature of cybersecurity threats where
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Figure 5.4: Neural Network Architecture

multiple techniques may apply to a single vulnerability. Training involves splitting the data

into training and test sets, using cross-validation to ensure the model generalizes well across

different data subsets. The model employs the Adam optimizer and binary crossentropy for loss

computation, suitable for the multi-label classification tasks at hand.

The introduction of cosine similarities in MICS is innovative, quantifying the semantic

distances between CVE entries and predefined ATT&CK techniques. This not only overcomes

the limitations of previous models that did not account for the degree of closeness between data

points but also enables the model to use technique descriptions effectively.

5.4 Performance Testing and Evaluation

This segment of the chapter describes the metrics used to assess the model’s performance,

providing an understanding of its predictive power and practical utility.

5.4.1 Training, Testing and Evaluation

The methodology employed in this study aims to bridge the informational divide between two

different datasets: the CVE database and the MITRE ATT&CK database. Given the absence of

a large, fully annotated dataset linking CVE entries to ATT&CK techniques, we navigate this

challenge as explained in this section.

During the training phase, the SecureBERT LLM is employed to identify entities within

the CVE database. This extraction process gathers a wide range of named entities essential to

cybersecurity from the textual data of CVE descriptions. These entities are then transformed into

vector embeddings via SecureBERT. Simultaneously, embeddings for ATT&CK techniques are

generated from the ATT&CK database. This multi-input appraoch facilitates the development
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of a semantically informed training environment for the LR model. By leveraging the semantic

properties captured in the embeddings and the contextual cybersecurity knowledge they contain,

the model is trained to detect associations between CVE entities and ATT&CK techniques

through semantic similarity. Previous research in this domain has often relied on smaller,

expert-curated datasets where CVE entries were manually mapped to corresponding ATT&CK

techniques. To enhance the data, we incorporate additional CVE entries, which are manually

linked to the MITRE ATT&CK database, thereby broadening the scope of our evaluation dataset.

Given the constrained size of our test dataset, the application of cross-validation techniques

is important. Cross-validation divides the dataset into k subsets, sequentially engaging k-1

subsets in model training while employing the remaining subset for testing. This iterative process

optimizes data usage and enhances the robustness of our evaluation by mitigating overfitting

risks. The performance of our models will be evaluated using metrics designed to capture the

Precision of mappings and the applicability of the models in real-world scenarios

5.4.2 Evaluation Metrics

The task inherently involves a multi-label classification problem, where each CVE entry might

map to multiple ATT&CK techniques based on its description. Traditional metrics such as

Precision, Recall, and F1 score, typically used for evaluating binary classification models, are

less representative and sometimes misleading for multi-label tasks. This is due to their design

for scenarios where each instance is associated with a single label. In multi-label classification,

each instance may associate with multiple labels, introducing complexities these metrics do not

accommodate. Because of this we use adjusted versions of these metrics.

• Precision@K: Measures the proportion of true labels among the top K predictions, where

n is the total number of instances, Yi is the set of true labels for the i-th instance, Y ′
i is

the set of predicted labels, and K is the number of top predictions considered.

Precision@K =
1

n

n∑
i=1

|Yi ∩ top K predictions in Y ′
i |

K

• Recall@K: Evaluates how well the model captures the relevant labels within its top K

predictions. This metric reflects the sensitivity of the model by measuring the proportion

of true labels Yi that appear among the top K predictions Y ′
i for each instance, averaged

over all n instances.

Recall@K =
1

n

n∑
i=1

|Yi ∩ top K predictions in Y ′
i |

|Yi|

• F1@K: The harmonic mean of Precision@K and Recall@K, providing a balanced measure

of the model’s performance. It combines the assessments of both precision and recall for

the top K predictions into a single metric.

F1@K = 2 · Precision@K · Recall@K

Precision@K+ Recall@K
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To evaluate the overall ranking and error rates of the model’s predictions and make sure they

are not limited to the top K predictions. The metrics described below provide a broader view of

the model’s performance across all predictions.

• Label Ranking Average Precision (LRAP): Assesses the average precision with

respect to label ranking across all labels. It calculates the average precision by considering

the order in which true labels j from Yi are predicted among all labels, where higher

rankings of correct labels indicate better performance (Abdeen, 2023).

LRAP =
1

n

n∑
i=1

1

|Yi|
∑
j∈Yi

|{correct labels ranked above j}|+ 1

rank of j

• Coverage Error: Calculates the average number of top-ranked predictions needed to cover

all true labels for an instance. This metric evaluates the depth of predictions required to

ensure that no relevant labels are missed, with lower values indicating better performance

(Alvarez & VanBeselaere, 2005).

Coverage Error =
1

n

n∑
i=1

max(ranks of true labels in Yi)

• Ranking Loss: Measures the average number of incorrectly ordered label pairs per

instance, considering the ranks of relevant j and irrelevant k labels. Lower values indicate

that the model is more effective at ranking relevant labels higher than irrelevant ones.

Ranking Loss =
1

n

n∑
i=1

|{(j, k) : j ∈ Yi, k /∈ Yi, rank(k) < rank(j)}|
|Yi| × |Yi|

• Hamming Loss: Reflects the fraction of labels that are incorrectly predicted, normalized

over the total number of labels L. It provides an overall measure of the error rate across

all labels and predictions. (Ganda & Buch, 2018).

Hamming Loss =
1

n

n∑
i=1

|Yi∆Y ′
i |

L

Examining the confusion matrix for each class is important in multi-label classification

because it offers detailed understanding of the model’s performance on each specific label. This

helps in identifying specific labels that the model struggles with, which can inform targeted

improvements. The confusion matrix components for each class can be defined as follows:

• True Positives (TPc): This counts how many times class c was correctly identified among

the top K predictions (TopKi) for the instances where c is indeed a true label (Yi). The

indicator function I outputs 1 if c is both a true label and predicted within the top K.

TPc =

n∑
i=1

I(c ∈ Yi ∩ TopKi)
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• False Positives (FPc): Measures the occurrences where class c was predicted within the

top K predictions, but it was not a true label for that instance. This metric highlights the

over-prediction or mislabeling of class c.

FPc =
n∑

i=1

I(c /∈ Yi ∩ c ∈ TopKi)

• False Negatives (FNc): Indicates how often class c, while being a true label for an

instance, fails to appear in the top K predictions. This metric is crucial for understanding

under-predictions or misses.

FNc =
n∑

i=1

I(c ∈ Yi ∩ c /∈ TopKi)

• True Negatives (TNc): Counts the instances where class c is correctly identified as not

being applicable, both as a true label and within the top K predictions. This helps assess

the model’s ability to accurately exclude irrelevant classes.

TNc =
n∑

i=1

I(c /∈ Yi ∩ c /∈ TopKi)

By using these metrics and confusion matrix components, it is possible to better evaluate

the model’s ability to prioritize relevant ATT&CK techniques for each CVE entry and minimize

errors in label assignments. This evaluation framework helps the understanding and mitigation

of cybersecurity threats by providing a comprehensive view of model performance in multi-label

classification tasks.

5.5 Integration of Responsible AI in the Model

In this methodology section, we explain how Responsible AI principles are integrated within the

model, aligning with EY’s AI Framework detailed in subsection 3.2.1.

The integration of Accountability, Sustainability, Transparency, and Privacy will not be coded.

Accountability is maintained through rigorous documentation and version control that tracks the

development life cycle, ensuring clarity in ownership and responsibility for actions taken by the

AI system. Sustainability is promoted through strategic planning that encompasses long-term

operational viability, focusing on practices that minimize environmental impact. Transparency is

achieved by maintaining open lines of communication about the AI system’s capabilities and

limitations, supported by detailed user documentation and transparent reporting. Lastly, Privacy

is maintained through stringent data governance policies that respect user consent, secure data

handling, and compliance with strict privacy laws and regulations. In this case, which involves

open-source datasets, privacy concerns are minimal because they do not contain personal data.

The principles of Fairness, Explainability and Reliability can be incorporated within the

model by testing them with certain metrics. For Fairness the metrics Equalized Odds and

Predictive Parity do not apply, because the dataset does not include subgroups. But even without
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the existence of subgroups, bias can still exist in the way CVEs are categorized. When using

NLP techniques to convert text into embeddings, the Word Embedding Associate Test (WEAT)

is a method that can be employed to quantify bias by measuring the cosine similarity between

word vectors in the embeddings pace.

s(X,Y,A,B) =
∑
a∈A

(meanx∈X cos(a,x)−meany∈Y cos(a,y))

Here, X and Y are sets of word vectors associated with different groups, and A and B are

vectors representing the target concepts or attributes. This formula helps identify if certain

CVE-related terms are more closely associated with specific attack techniques than others.

Explainability within the model is detailed by how decisions are made through both local

and global explanation techniques. On a local level, techniques such as feature importances and

Shapley values can be employed. The Shapley value, measures the contribution of each feature

to the prediction of a particular instance. The formula for calculating the Shapley value for a

feature i is given by:

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)]

where N is the set of all features, S is a subset of features excluding i, v(S) is the prediction

model’s output with only the features in set S, and v(S ∪ {i}) is the output when feature i is

added to S. The difference v(S∪{i})−v(S) indicates the marginal contribution of feature i when

combined with features in S. Globally, techniques such as model probing and neuron activation

analysis provide insights into the model’s overall functioning and response patterns to various

inputs. These methods help to assess the general behavior of the model. By implementing both

local and global explanatory techniques, a deeper understanding is gained of how decisions are

made within the model, thus enhancing transparency and accountability.

Reliability is ensured by implementing confusion matrices to monitor the model’s performance,

ensuring it consistently identifies and classifies threats with high accuracy and minimal errors.

How a confusion matrix is constructed is described in Section 5.4.2

By integrating these Responsible AI principles, the model not only aligns with EY’s Respons-

ible AI Framework but also enhances its capability to deliver precise, understandable, and fair

outcomes in real-world applications, ensuring that all actions and decisions made by the AI are

well-documented and ethical.

28



Chapter 6

Experimental Results and Discussion

This chapter presents a comparative analysis of multiple predictive models to assess their

effectiveness in identifying and categorizing cybersecurity vulnerabilities from CVE descriptions

to MITRE ATT&CK techniques. The models tested include a baseline model employing simpler

NLP techniques, the semantic-enhanced SMET model, the entity-focused MAP-SecureBERT

model, and the MICS model, which integrates advanced NLP and deep learning techniques.

These models were chosen to cover a broad spectrum of approaches from basic to advanced

analytics in cybersecurity text processing. The analysis is structured to not only quantify the

models’ performance in terms of relevant metrics, described in 5.4.2, but also to interpret these

results within the context of EY’s responsible AI framework, as discussed in Section 3.2.1.

6.1 Exploratory Data Analysis

To understand the characteristics of the dataset used in this thesis, an exploratory data analysis

was conducted. An examination of the textual CVE description data was conducted to understand

the underlying themes and to take certain information for making modelling decisions. Initial

analysis, shown in Figure 6.1, shows a large number of stopwords alongside domain-specific terms

such as ‘vulnerability’, ‘attackers’ and ‘Windows’.

Figure 6.1: Top 20 most common words
in CVE Descriptions

Figure 6.2: Top 20 most common bi-
grams in CVE Descriptions
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Within Figure 6.2, a bi-gram frequency plot is shown. This shows the frequency distribution

of every bi-gram, which are strings of words. This graph shows the importance of extracting

informative bi-grams like ‘remote attacks’ and ‘execute code’, which underscore typical cyber-

security concerns. These observations show the necessity of text pre-processing techniques,

including stop-word removal and extracting relevant bi-grams. Especially the relevance of verbs

seems important and should be taken into account when designing the final model.

Besides looking into the CVE description, it is important to look at the distribution of

techniques in the small and large dataset. Within the figures 6.3 and 6.4 below the technique

distribution for both datasets is shown. These figures reveal an imbalance in the distribution of

techniques, with ‘Exploitation for Client Execution’ and ‘Exploit Public Facing Application’ being

the largest classes in both datasets. To address this imbalance, the application of the SMOTE

could be considered to enhance model performance by better representing underrepresented

techniques.

Figure 6.3: ATT&CK Frequency Small Dataset Figure 6.4: ATT&CK Frequency Large Dataset

The models that are being discussed in this chapter will show us the ability to correctly predict

the technique classes per CVE description. Because this problem is a multi-label classification

problem, multiple techniques can be assigned per CVE entry. The average number of techniques

per CVE within the small dataset are 1.47, while the average number of techniques per CVE

within the large dataset are 2.00. This is important to have an idea what is more or less the

optimal solution for certain metrics, like coverage error.

6.2 Baseline Model Performance

To compare the models, a baseline model was constructed following the methodology outlined in

Section 5.2. The baseline model employs simpler NLP methods, including BoW and TF-IDF,

along with a RF classifier for mapping vulnerabilities to ATT&CK techniques. Table 6.1 presents

the performance metrics for the baseline model using BoW and TF-IDF.

The baseline model exhibits moderate performance across various evaluation metrics. While

the F1 Score, Precision, and Recall metrics indicate a balanced performance in terms of false

positives and false negatives, they do not reach high performance levels. For evaluation purposes
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it is chosen to look at the top 5 ranked predictions for the evaluation metrics. The model coverage,

averaging around 6 techniques predicted per vulnerability for the small dataset, suggests that

while it captures a reasonable amount of relevant information, some details may be overlooked.

This coverage increases notably in the larger dataset to approximately 12 techniques, reflecting

the broader diversity and increased examples which may enable the model to capture a wider

array of techniques.

Metrics
Small DS Large DS

BoW TF-IDF BoW TF-IDF

Model Coverage 6.049 6.115 12.374 11.859

LRAP 0.646 0.659 0.580 0.569

Ranking Loss 0.109 0.101 0.091 0.093

Hamming Loss 0.122 0.122 0.067 0.069

Precision@5 0.203 0.203 0.258 0.248

Recall@5 0.710 0.702 0.744 0.711

F1@5 0.316 0.315 0.383 0.368

Table 6.1: Performance Metrics BoW & TF-IDF. This table presents a detailed comparison of

multilabel-specific metrics for the baseline model using Bag of Words and TF-IDF methodologies

across two different dataset sizes (small and large).

Furthermore, the Ranking Loss and LRAP metrics demonstrate a moderate ability to rank

techniques accurately, with the larger dataset showing a slight improvement in Ranking Loss

and a decrease in LRAP. This could be due to the larger dataset providing more instances of

less frequent techniques, which helps in better modeling the relationships between techniques

but also introduces more challenges in consistently ranking highly relevant techniques. Although

the Recall@5 metric is relatively high in both datasets, it is a bit higher in the larger dataset,

indicating significant relevant information captured within the top predictions and suggesting

that the model benefits from the increased data volume in terms of Recall capability.

Despite these insights, both BoW and TF-IDF representations displayed similar trends across

the datasets. Nonetheless, the TF-IDF model exhibited a slightly superior performance in the

larger dataset, particularly in handling diverse data, leading to its selection as the final baseline

model. In conclusion, while the baseline model shows adequate performance, there is room for

improvement in accuracy and coverage to better meet the demands of larger datasets. This

evaluation not only provides a benchmark for comparing the performance of other models but also

highlights areas for potential enhancements to address the complexities introduced by expanding

data volumes.
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6.3 Advanced Model Performance

This chapter describes the performance of advanced models developed to improve predictive

performance. It builds upon the baseline models and explores the capabilities of the SMET,

MAP-SecureBert and MICS models. While SMET will show the impact of SRL, Map-SecureBert

will show the impact of NER on the performance metrics. Besides to the different implementations

of NLP techniques, the MICS model will show the impact of including cosine similarities of a

CVE description to all possible MITRE ATT&CK techniques on predicting the correct labels for

each entry.

6.3.1 SMET Performance

In comparing the SMET and baseline models, the SMET model shows substantial improvements

across various performance metrics. It achieves a lower model coverage within the small dataset,

of 5.013 versus the baseline’s 6.115, suggesting better capture of relevant information (Table 6.2).

The SMET model, while demonstrating strengths in semantic modeling, shows mixed per-

formance compared to the baseline model across different dataset sizes. On the small dataset, the

SMET model exhibits a Precision of 0.234, which is slightly higher than the baseline’s Precision

that is equal to 0.203. Furthermore, its Recall at 0.826 is higher compared to the baseline’s 0.702,

leading to a F1 score of 0.372.

Metrics
Small DS Large DS

SMET TF-IDF SMET TF-IDF

Model Coverage 5.013 6.115 19.707 11.859

LRAP 0.623 0.659 0.336 0.569

Ranking Loss 0.068 0.101 0.188 0.093

Hamming Loss 0.035 0.122 0.030 0.069

Precision@5 0.234 0.203 0.146 0.248

Recall@5 0.826 0.702 0.423 0.711

F1@5 0.372 0.315 0.217 0.368

Table 6.2: Performance Comparison of SMET and TF-IDF. This table provides a comprehensive

evaluation of the SMET model’s performance relative to the baseline model’s TF-IDF technique,

across both small and large datasets.

Upon applying the SMET model to the larger dataset, expectations for similar enhancements

were not met. Contrary to the small dataset, the Precision drops to 0.146, and the Recall

decreases to 0.423. These metrics illustrate a reduction in the model’s ability to identify relevant

instances accurately as the dataset size increases, which contrasts with the baseline model that

maintains relatively stable Recall and Precision metrics across dataset sizes.

These observations suggest that while the SMET model introduces advanced semantic

understanding and effective predictive performance in smaller or more controlled environments,

its scalability and adaptability to larger, more complex datasets need further refinement. The
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Section below explores potential areas for model improvement. This analysis is important to

understand where the SMET model may under-perform and how it can be adjusted for better

scalability and robustness.

SMET Performance Analysis

To analyze the in which cases the SMET model on the large and small dataset does not perform

correct, a confusion matrix per class is extracted. This confusion matrices are shown in the

Appendix B.1. The SMET model, which uses LR with simple labels, has several limitations.

LR is a linear model that may not capture the complex, non-linear relationships present in the

data. This can lead to misclassifications, as evidenced by the confusion matrix. For example, in

the confusion matrix, shown in Appendix B.1. For “Process Injection,” a high number of false

negatives (60) and false positives (0) can be seen, indicating that the model struggles to correctly

identify instances of this technique. Similarly, the “Exploit Public-Facing Application” category

shows a high number of false positives (101), suggesting that the model incorrectly predicts this

technique when it is not present. The confusion matrices reveal misclassification patterns, which

are further visualized in the heatmap in Figure B.2. There is confusion between conceptually

similar labels such as “Exploitation for Privilege Escalation,” “Exploitation for Client Execution,”

and “Exploitation for Defense Evasion.” Additionally, “Endpoint Denial of Service” is often

confused with “Exploitation for Privilege Escalation,” while “Data Manipulation” is frequently

mistaken for “Data from Local System” and “Data from Information Repositories.”

The heatmap for the large dataset, shown in Appendix Figure B.4, reveals similar patterns.

“Exploitation for Client Execution” is the most frequently misclassified label, often confused

with “Exploit Public-Facing Application,” “Command and Scripting Interpreter,” and “Endpoint

Denial of Service.” misclassifications among various exploitation techniques suggest insufficiently

distinct features due to their conceptual similarities. Labels such as “Compromise Host Software

Binary” and “Implant Internal Image” show minimal false positives, indicating these might be

underrepresented or more distinct in the dataset.

These trends highlight areas for improvement, such as enhancing feature engineering to better

capture the unique characteristics of each label, employing SMOTE to balance the dataset, and

exploring more complex models to improve classification accuracy. Given these limitations, we

explore more advanced models to better handle the complexities of cybersecurity data. One

such approach is the MAP-SecureBERT model, which integrates named entities SecureBERT

embeddings to analyze CVE descriptions. The second approach is a multi-input model that

calculates the cosine similarity for each CVE entry to all the possible MITRE ATT&CK techniques

and uses the technique embeddings and cosine similarities as input besides the CVE SRL and

CVE embeddings.

6.3.2 MAP-SecureBERT Performance

As outlined in Section 5.3.2, the Map-SecureBERT model integrates NER and SecureBERT

embeddings to analyze CVE descriptions. As a first step, the model employs NER to identify

and extract relevant named entities within the text. After that, these entities are processed

through SecureBERT to generate embeddings that capture their contextual significance. These
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embeddings are then used as inputs for a LR model specifically trained to predict the corresponding

MITRE ATT&CK techniques. The NER technique that is being used, is CyNER. As described

in Section 5.3.2, CyNER is a python library designed enhance cybersecurity efforts through NER

specifically tailored to cyber threat intelligence. NER tools like CyNER are designed to detect

and categorize entities such as malware names, IP addresses, software vulnerabilities, and other

cybersecurity-specific terms.

The performance metrics for the MAP-SecureBERT model, as outlined in Table 6.3, highlight

challenges in the model’s effectiveness in cybersecurity text analysis. This model is only performed

on the small dataset due to the lack of performance. Specifically, the model exhibits a high

ranking loss (0.497) compared to SMET and a low LRAP of 0.090, indicating difficulties in

ranking relevant entities correctly. The Recall@5 is also low at 0.062, suggesting the model often

fails to identify key entities among the top predictions, and a coverage error of 23.363 points to

inefficiency, as the model must predict a large number of labels to ensure all relevant entities

are captured. The model’s Recall is zero, suggesting it fails to detect most relevant entities,

leading to an F1 score of zero. This performance indicates a possible over-conservatism in entity

prediction.

Metrics
Small DS

NER SMET

Coverage Error 23.363 5.013

LRAP 0.090 0.623

Ranking Loss 0.497 0.068

Hamming Loss 0.036 0.035

Precision@5 0.020 0.234

Recall@5 0.062 0.826

F1@5 0.030 0.372

Table 6.3: Performance Metrics Comparison for MAP-SecureBERT using CyNER versus SMET

on Small Dataset: This table quantitatively compares the performance of the MAP-SecureBERT

model, which integrates NER through the CyNER library, with the SMET model across various

evaluation metrics on a small dataset.

NER is effective at pinpointing the pre-decided types of named entities, it does not inherently

capture their roles or relationships within the text, which appear to be critical for understanding

the narrative or functional context of cybersecurity threats and attacks. Semantic roles seem more

important then the named entities for this classification problem. To make sure the performance

of MAP-SecureBERT lacks performance due to NER instead of using SRL, a MAP-ATT&CK

BERt model was created. This models works the same as MAP-SecureBERT but uses instead of

SecureBERT, ATT&CK BERT as LLM which is trained on more specific data. As shown in

Table 6.4, the model shows some enhancement compared to SecureBERT. Notably, ATT&CK

BERT achieved a Ranking Loss of 0.379, indicating a more accurate prioritization of relevant

entities. Additionally, the model showed an improvement in LRAP with a score of 0.210 and

managed a Recall@5 of 0.274 compared to MAP-SecureBET. The Coverage Error was reduced to
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18.690, further confirming the model’s enhanced ability to cover critical entities without excessive

over-prediction.

Metrics
Small DS

ATT&CK BERT SecureBERT

Coverage Error 18.690 23.363

LRAP 0.210 0.090

Ranking Loss 0.379 0.497

Hamming Loss 0.036 0.036

Precision@5 0.079 0.020

Recall@5 0.274 0.062

F1@5 0.122 0.030

Table 6.4: CyNER with ATT&CK BERT & SecureBERT: This table compares the performance

of the MAP-ATT&CK BERT model, which uses ATT&CK BERT embeddings, with the MAP-

SecureBERT model employing SecureBERT embeddings, evaluated on a small dataset.

Despite these improvements, ATT&CK BERT still performs below the baseline model and

the SMET approach, particularly in extracting and leveraging relevant textual relationships as

SRL techniques do. Additionally, the impact of a different fine-tuned LLM and a separate NER

model (SecBert) was evaluated. However, SecBert did not yield improved performance and has

been omitted from this thesis for this reason. This reflects the challenge of adapting NER models

to fully grasp and utilize the context in which entities operate within cybersecurity texts.

6.3.3 Multi-Input Cybersecurity Model (MICS) Performance

This Section presents the comparative analysis of the MICS and the SMET across two different

dataset sizes: small and large as described in Section 4. In addition to testing different datasets,

the study also explored the use of CNN, RNN and LSTM as alternatives to the designed NN,

as discussed in Chapter 5. However, these methods were excluded from the results due to their

lack of performance compared to the NN structure. The multi-label classification performance of

MICS and SMET is summarized in Table 6.5

For the small dataset, MICS exhibits higher model coverage than SMET (32.459 compared

to 5.013), suggesting that MICS can capture a broader spectrum of vulnerabilities. SMET

outperforms MICS as well in LRAP, indicating better average Precision across the labels. In

terms of Ranking loss and Hamming loss, SMET shows superior performance with lower values,

implying more accurate label rankings and predictions, respectively. In the large dataset, the

roles somewhat reverse. MICS shows lower model coverage (10.265) compared to SMET (19.707)

and excels in LRAP (0.498 vs. 0.336), indicating a more precise handling of labels in larger

datasets. In this scenario, the MICS model outperforms even the baseline model, described in 6.2
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Metrics
Small DS Large DS

MICS SMET MICS SMET

Model Coverage 32.459 5.013 10.265 19.707

LRAP 0.305 0.623 0.498 0.336

Ranking Loss 0.294 0.068 0.084 0.188

Hamming Loss 0.009 0.035 0.031 0.030

Precision@5 0.085 0.234 0.230 0.146

Recall@5 0.426 0.826 0.597 0.423

F1@5 0.142 0.372 0.332 0.217

Table 6.5: Combined Comparison of MICS and SMET across Multilabel Metrics: This table

provides a comparison of the MICS and the SMET model using various multilabel-specific metrics

for both small and large datasets.

The performance of MICS and SMET on Precision, Recall, and F1 score at the top 5

predictions is detailed in Table 6.5 as well. For the small dataset, SMET shows a clear advantage

in Precision, Recall, and F1 score, demonstrating a more effective top-5 prediction capability

when handling smaller datasets. Conversely, in the large dataset, MICS outperforms SMET

in both Precision and Recall, resulting in a higher F1 score (0.332 vs. 0.217). This suggests

that MICS is better at handling the complexity and volume of larger datasets, particularly in

identifying the most relevant top-5 predictions.

Implementing SMOTE in high-dimensional text data, such as Sentence-BERT embeddings,

presents challenges. The high-dimensional space results in noisy synthetic samples that do

not represent the true data distribution. Severe class imbalance, with many classes having few

samples, renders SMOTE ineffective as it requires multiple samples to function. The complexity of

semantic roles further complicates synthetic data generation, leading to poor model performance

and overfitting. Practical constraints like computational resources and time also limit SMOTE’s

feasibility. Due to these issues, results using SMOTE are excluded from this thesis.

This research aims to improve the SMET model using a larger dataset, but the MICS model

has shown superior performance. This highlights the importance of model selection based on

dataset characteristics and underlying algorithms. MICS, utilizing a deep learning framework,

integrates multiple data inputs like text embeddings, SRL data, and cosine similarities. Its NN

architecture excels in capturing complex patterns in large datasets with non-linear relationships.

In contrast, SMET uses LR, which assumes linear relationships and is more interpretable, making

it effective for smaller datasets with simpler feature interactions.

6.4 Evaluation of Responsible AI Principles

This Section elaborates on the incorporation and evaluation of Responsible AI principles, fairness,

explainability, and reliability, within our cybersecurity threat detection model. The methodology

aligns with EY’s AI Framework as referenced in subsection 3.2.1, focusing on rigorous assessment

techniques and integrative approaches to uphold these principles.
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To assess fairness within the model, the Word Embedding Association Test (WEAT) and

t-SNE visualizations is used to analyze the word embeddings generated from cybersecurity related

texts. By conducting WEAT, we evaluate potential biases in the embeddings that could unfairly

associate CVE terms with specific attack techniques.

Cross-Validation WEAT Scores =


−0.04353

−0.05342

−0.01397

0.00515

0.05559

 (6.1)

Cross-validation of WEAT scores indicates minimal bias, as shown in vector 6.1, suggesting

that our model does not generate unfair associations, which is essential for AI applications in

cybersecurity. The t-SNE visualization further confirms these findings by displaying a distinct

clustering of semantically similar terms and effective separation between CVE-related terms and

attack techniques, as shown in Figure 6.5.

Figure 6.5: t-SNE Visualization of term embeddings. Each point represents a unique term, with
clusters indicating related terms based on their proximity in the embedding space.

The SHAP values summary graph, shown in Figure 6.6, underscores the critical role of

both SRL features and cosine similarity metrics in the model’s predictions. This visualization

highlights the individual contributions of features to the model’s output, where each point on

the plot represents the impact of a feature value on a specific prediction. SRL features like “SRL

Feature 90” and “SRL Feature 69” appear at the top of the graph, indicating large influence.

Similarly, various cosine similarity metrics, essential for measuring semantic alignments between

CVE descriptions and ATT&CK technique descriptions, demonstrate substantial impacts.

This visualization supports the principles of explainability, by making the model’s decision-

making process transparent. The notable impact of both cosine similarity and SRL features within
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Figure 6.6: SHAP Value Summary for the MICS Model. Each dot on the plot represents the
SHAP value for a feature for an individual prediction, where the color indicates the feature’s
value: red dots signify higher feature values and blue dots signify lower feature values. The
position on the x-axis reflects the impact of the feature on the model’s output. This plot provides
insight into how different feature values influence the model’s predictions across the dataset.

the SHAP values indicates that the model’s ability to accurately interpret and contextualize

cybersecurity threats relies significantly on these features, thereby enhancing its predictive

accuracy. However, due to the computational intensity of calculating these values, they are

derived only from a small subset of data. While SHAP values provide detailed insights into

specific features, Permutation Feature Importance (PFI) offers a more scalable approach for

assessing which features are most critical across the entire model.

PFI analysis across metrics such as coverage error, LRAP, precision at k, and rank loss

reinforces the importance of features identified by SHAP analysis. “Cosine Similarity 221” and

“Cosine Similarity 93”, which appear notable in coverage error and rank loss metrics, are pivotal

in minimizing predictive errors and ensuring rank integrity. The integration of SRL and CVE

features in specific importance metrics like LRAP and precision at k also provides insights into

enhancing model robustness and interpretability. For example, the prominence of “SRL Feature

18” and “CVE Embedding 631” in the LRAP metric suggests their potential contributions to

model stability and explanatory power.

By integrating WEAT, t-SNE visualization, SHAP values, and PFI metrics, the MICS model

robustly adheres to responsible AI principles. These analyses ensure that the model is fair,

interpretable, and reliable, supporting its deployment in critical real-world applications and

alignment with the Responsible AI framework constructed by EY.

38



Chapter 7

Conclusion

This thesis explores the integration of four NLP models to enhance cyber vulnerability mapping

to attack techniques within a Responsible AI framework. The primary objective was to map CVE

to MITRE ATT&CK techniques, thereby improving the mitigation of cyber threats. The study

focused on evaluating the performance of three main NLP models: SMET, MAP-SecureBERT,

and the MICS Model, comparing their effectiveness against the baseline model.

While the baseline model does not perform optimal, it is showing quite average results

already. The baseline model is easy to construct and not computational intensive. The SMET

model demonstrates improvements over the baseline model in the small dataset, achieving higher

Precision, Model Coverage, and LRAP while maintaining a lower Ranking Loss. However, it

struggles with scalability and adaptability to larger datasets, showing a substantial drop in

Recall and a high increase in coverage error. In contrast, the MAP-SecureBERT model, which

uses SecureBERT and NER techniques, faces challenges in correctly identifying and ranking

relevant entities. The instances that SMET predicts incorrectly are often linked to techniques

that are closely related to the correct ones. This shows the importance of extracting semantic

relations within the text instead of just named entities and the importance of including technique

descriptions make it easier to distinguish between techniques.

The newly constructed model, known as the Multi-Input Cyber Security Model (MICS),

outperforms the baseline and individual models for the large dataset, by integrating multiple

inputs and leveraging the strengths of various NLP techniques. MICS uses SentenceTransformer to

generate dense vector representations of CVE descriptions and technique descriptions, allowing for

a more nuanced understanding of the relationships between vulnerabilities and attack techniques.

Besides the inclusion of structured SRL data, the inclusion of cosine similarities between CVE

embeddings and all the MITRE ATT&CK technique embeddings enhances the model’s ability

accurately map CVE entries to ATT&CK techniques for the large dataset.

The MICS model strives to align with EY’s Responsible AI Framework, emphasizing trans-

parency, fairness, and explainability. It employs tools like WEAT and t-SNE visualizations to

rigorously assess fairness, ensuring minimal bias in its operations. Furthermore, evaluations

using SHAP interaction values and permutation importance metrics highlight the critical role

of cosine similarity features in boosting model accuracy and reliability. Although the thesis

successfully integrates a Responsible AI framework, its effectiveness largely depends on the

sensitivity of the data used. The thesis acknowledges the importance of feature performance
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in adherence to fairness, transparency, and explainability. However, it provides only a broad

overview, making it challenging to trace the specific impact of individual words on performance

measures and to establish causality within the model. This limitation underscores the difficulty

of fully implementing responsible AI principles in such complex models, given the current state

of technology.

The findings of this thesis highlight the importance of integrating advanced NLP models

with Responsible AI principles to enhance the capability of cyber threat prediction systems. By

combining SRL, vector embeddings and cosine similarities in a model that is tested on an ethical

framework, the MICS model not only improve technical performance but also ensure responsible

deployment. This dual focus addresses both the immediate need for effective vulnerability

mapping and the integration of responsible AI deployment in cybersecurity. The research

highlights the need for high-quality, annotated datasets to optimize the performance of semantic

mapping models, particularly for automated risk assessments. While traditional models may

be sufficient for simpler tasks, advanced NLP models like MICS are important for managing

the complex, contextual nature of cybersecurity data. These models provide a more precise

method for mapping vulnerabilities to attack techniques, thereby improving the prediction and

mitigation of cyber threats.
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Chapter 8

Limitations & Future Work

While this research demonstrates the potential of integrating NLP models with Responsible AI

principles to enhance cyber vulnerability mapping to attack techniques, several limitations must

be acknowledged. These limitations provide a foundation for future research in the field.

One of the key strengths of this study is the utilization of the most relevant and up-to-date

database. Additionally, the study employs a sufficiently large dataset, enhancing the robustness

and reliability of the models. This allows for results that can better represent real-world scenarios.

Furthermore, the integration of the most recent and refined NLP models, along with ethical

considerations, ensures the study meets high standards of accuracy, fairness, and transparency.

This is important for building trustworthy AI systems.

However, the availability of high-quality, annotated datasets is important for training effective

classification models. Acquiring well-annotated datasets is challenging, which limits the model’s

ability to generalize across various types of cyber vulnerabilities and lowers its overall performance

when predicting within larger datasets. Consequently, much of the research focuses solely on

predicting the techniques represented in the data, neglecting the broader goal of mapping them

to all available techniques within the MITRE ATT&CK matrix. To address this issue, it is

advisable to develop more rule-based descriptions of the MITRE ATT&CK techniques, making

them easier to distinguish and apply accurately in predictive models.

Besides the availability of high-quality annotated datasets, it is important that the model is

trained on a less skewed dataset. Utilizing LLMs to create new descriptions for under-represented

MITRE ATT&CK techniques may enhance the prediction performance metrics for these less

common techniques.

The SMET model demonstrates good results with smaller datasets but faces challenges in

scalability and adaptability when applied to larger, more complex datasets. Conversely, the MICS

model excels with large datasets but tends to underperform on smaller ones. Further research

is necessary to develop alternative models that offer a more robust framework for mapping

CVE descriptions to attack techniques. This study makes improvements in this direction by

incorporating cosine similarity vectors, yet there remains room for improvement within large

datasets. To address this, research should be conducted to a hybrid model approach that combines

the strengths of SMET and MICS. This model could dynamically adjust its approach based on

the dataset size, employing different strategies for small and large datasets.

The models are primarily trained and validated on specific datasets that may not be repres-
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entative for the goal of applying it for a risk assessment. This necessitates further validation to

ensure its applicability across different contexts. Additionally, the complexity and size of the

models make them time-consuming to train and implement. This makes it difficult to use them

in real-time for advice in daily practice, which is a significant limitation for applications requiring

quick decisions. Especially when comparing them to the baseline models, this model does make

improvements but it does not reach the required precision necessary.

Fully automating the process of risk assessment, including the mapping of vulnerabilities to

specific mitigation techniques (such as CWE predictions), remains a significant challenge. Current

models have not yet reached the level of precision required for fully autonomous operations

in high-stakes environments like cybersecurity. Future research could focus on developing a

model that predicts both main techniques and sub-techniques. By incorporating predictions for

sub-techniques, mitigation advice could become more accurate and effective.

In conclusion, while this thesis has made improvements in integrating NLP models with Re-

sponsible AI for cybersecurity threat prediction, several areas require further research. Addressing

these limitations and exploring new ways for improvement will be important for developing more

robust, accurate, and ethical AI systems for cybersecurity. Future research should focus on de-

veloping more annotated and high-quality datasets to improve model training and generalization,

creating hybrid models that can adapt to different dataset sizes and complexities, enhancing

the models’ scalability and real-time applicability to ensure practical deployment in various

cybersecurity scenarios, and fully automating risk assessments with high precision to support

autonomous cybersecurity operations.
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Appendix A

Dataset Sample

Index CVE ID Main Techniques Description

0 CVE-2019-15243 Command and Scripting In-
terpreter, Valid Accounts,
Exploit Public-Facing Ap-
plication

Multiple vulnerabilities in
Cisco SPA100 Series ATAs
could allow an authenticated
attacker to execute arbitrary
code with elevated privileges.

1 CVE-2019-15976 Command and Scripting In-
terpreter, Exploitation for
Privilege Escalation, Ex-
ploit Public-Facing Applic-
ation

Multiple vulnerabilities in
Cisco DCNM authentication
mechanisms could allow an at-
tacker to bypass authentica-
tion and execute with admin-
istrative privileges.

2 CVE-2019-15956 Account Manipulation, En-
dpoint Denial of Service,
Exploit Public-Facing Ap-
plication, Valid Accounts

A vulnerability in Cisco Asyn-
cOS could allow an authentic-
ated attacker to perform an
unauthorized system reset.

3 CVE-2019-15958 Command and Scripting In-
terpreter, Exploit Public-
Facing Application

A vulnerability in Cisco PI and
EPNM REST API could allow
an attacker to execute arbit-
rary code with root privileges.

4 CVE-2019-12660 Valid Accounts, Impair De-
fenses, Hijack Execution
Flow

A vulnerability in the CLI
of Cisco IOS XE Software
could allow an authenticated
attacker to write values to
device memory.

5 CVE-2019-1753 Command and Scripting In-
terpreter, Valid Accounts,
Exploitation for Privilege
Escalation, Exploit Public-
Facing Application

A vulnerability in Cisco IOS
XE Software web UI could al-
low an attacker to run priv-
ileged commands via the web
UI.

Table A.1: Sample entries from annotated CVE Dataset

48



Appendix B

Extended Results

B.1 Confusion Matrix Small Dataset

Figure B.1: Confusion Matrix Small SMET.
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B.2 Heatmap SMET Small Dataset

Figure B.2: Heatmap Small Dataset
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B.3 Confusion Matrix SMET Large Dataset

Figure B.3: Confusion Matrix Large SMET.
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B.4 Heatmap SMET Large Dataset

Figure B.4: Heatmap Large Dataset.
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B.5 Confusion Matrix MICS
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B.6 Permutation Feature Importances MICS

Figure B.6: Feature Importance Coverage Er-

ror
Figure B.7: Feature Importance LRAP

Figure B.8: Feature Importance Hamming Loss Figure B.9: Feature Importance Rank Loss

Figure B.10: Feature Importance F1 Score Figure B.11: Feature Importance Precision

Figure B.12: Feature Importance Recall
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Figure B.5: Confusion Matrix MICS.
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