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Abstract

This paper proposes a new forecast combination method called Fore-

caster Characteristics Combination (FCC), which leverages forecaster

characteristics to combine forecasts. A key advantage of this method

is its ability to combine a large number of forecasts without increas-

ing the number of unknown parameters. Other advantages include its

ability to handle unbalanced panel data and to incorporate numerous

forecaster characteristics simultaneously, while remaining computation-

ally inexpensive. In an empirical application, the FCC method is used

to construct forecast combinations for three key U.S. macroeconomic

variables: real GDP growth, unemployment, and inflation, using expert

forecasts from the Survey of Professional Forecasters. The results show
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1 Introduction

Combined forecasts are often more accurate than forecasts from a single person or model (Arm-

strong, 2001). This phenomenon, known as the wisdom of the crowd, suggests that a group’s

collective knowledge exceeds that of any single person or model. Ideally, one would like to

exploit this wisdom. The main challenge of using the wisdom of the crowd lies in effectively

combining individual forecasts. This challenge has been studied extensively in the econometric

literature, following the seminal paper by Bates and Granger (1969). Initial efforts focused on

simple combination methods such as the equally weighted average (Clemen & Winkler, 1986;

Palm & Zellner, 1992). Later, more sophisticated methods arose, ranging from principal com-

ponents combination to multiple temporal aggregation (Diebold & Shin, 2019; Petropoulos &

Spiliotis, 2021).

This paper contributes to the field of forecast combination by introducing a new method. In

particular, we propose a method called Forecaster Characteristics Combination (FCC), which

is directly inspired by the parametric portfolio policy of Brandt et al. (2009). The FCC

method combines forecasts by leveraging forecaster characteristics such as accuracy, bias and

disconsensus. Specifically, the method calculates forecast combination weights by combining a

characteristics-based term with a baseline weight. The characteristics-based term is determined

by regressing the realisations of the predicted variable on the forecaster characteristics; a re-

gression that can be estimated conveniently using ordinary least squares. The baseline weight

is set to the equally weighted average, due to its simplicity and strong performance in the field

of forecast combination (Genre et al., 2013). Apart from the regular FCC method, we propose

several extended versions, which employ regularisation techniques such as Ridge, LASSO and

Elastic Net.

The proposed FCC method has three main advantages. First and foremost, the FCC method

is able to handle a large number of forecasters, without increasing the number of unknown para-

meters. This results in a significant dimensionality reduction compared to other forecast com-

bination approaches, for which computational complexity typically increases with the number

of forecasters. By avoiding the curse of dimensionality, the FCC method greatly reduces estim-

ation uncertainty relative to other methods. Consequently, the FCC method has the potential

to address the “forecast combination puzzle,” which is discussed in more detail in Section 2.1.

A second advantage of the FCC method arises in the context of combining expert survey

forecasts. When dealing with expert survey forecasts, an unbalanced panel emerges: unlike

model forecasts, where the number of forecasts at each point in time is fixed, the amount of expert

forecasts varies over time, because experts join and leave the panel. Such an unbalanced data

structure limits the amount of feasible forecast combination methods, making many regression

based and machine learning methods inapplicable (Montero-Manso et al., 2020; Stock & Watson,

2004). A notable advantage of the FCC method is that it is able to handle the highly unbalanced

panel structure of expert surveys without needing to discard a substantial part of the data, which

is generally required by other forecast combination methods. Specifically, the FCC method can

handle varying amounts of forecasts over time due to the specification of weights as a function

of forecaster characteristics: the number of characteristics is constant over time.

A third advantage of the FCC method is its ability to leverage numerous forecaster character-
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istics simultaneously, while remaining computationally inexpensive. Using forecaster character-

istics to construct forecast combinations is not new: Bates and Granger (1969) already weighed

forecasts inversely to the mean squared forecasting error (MSFE) of the corresponding forecaster.

There are numerous other methods that exploit forecaster characteristics in a computationally

inexpensive manner (see, inter alia, Aiolfi & Timmermann, 2006; Capistrán & Timmermann,

2009; Nowotarski et al., 2014; Pawlikowski & Chorowska, 2020). Yet, these methods exploit

only one forecaster characteristic at the time. Recently, machine learning methods that leverage

numerous forecaster characteristics simultaneously were employed to construct forecast combin-

ations (see, inter alia, Kang et al., 2022; Li et al., 2020; Ma & Fildes, 2021; Montero-Manso

et al., 2020).1 However, compared to these methods, the FCC method is much less computa-

tionally expensive, as it employs standard OLS regression instead of intricate machine learning

methods.

In an empirical application, the FCC method and its extensions are employed to construct

point forecast combinations for three key U.S. macroeconomic variables: (i) real GDP growth,

(ii) unemployment, and (iii) inflation. For that purpose, we employ expert panel data from

the Survey of Professional Forecasters issued by the Federal Reserve Bank of Philadelphia.

We construct separate forecast combinations for two horizons: nowcasts and one-step-ahead

forecasts. To evaluate the forecasts combinations, we use first vintage macroeconomic realisation

estimates from both the Federal Reserve Bank of Philadelphia and the Federal Reserve Economic

Data dataset.

We compare the performance of the FCC method to several benchmarks, namely the (i)

equally weighted average, (ii) median, (iii) trimmed mean, (iv) bias-adjusted mean, (v) discoun-

ted MSFE, and (vi) partially-egalitarian LASSO. Provided that we compare multiple models

that are estimated on a single dataset, significant results may occur by chance−a problem known

as the multiple comparison problem. To avoid this problem, we employ the model confidence

set procedure by Hansen et al. (2011), which determines a set of best performing models.

The results show that the FCC method generally outperforms the benchmarks: it achieves

superior forecasting performance for two of the three macroeconomic variables. Only for the

unemployment rate most benchmarks outperform the FCC method. Nevertheless, the FCC

method is selected into the model confidence set for the headline CPI inflation rate and the real

GDP growth rate for both forecast horizons. The favourable performance of the FCC method

can be attributed to its flexibility in varying the coefficients assigned to characteristics over time.

As a consequence, the extensions of the FCC method−which employ Ridge, LASSO and ENet

regularisation−do not improve the forecasting performance of the regular FCC method: they

impose constraints on the model’s flexibility. A sensitivity analysis shows that the results are

generally robust, for example to the removal of outliers.

The novelty of this research lies in translating a method from the field of portfolio manage-

ment to the field of forecast combination. In particular, we propose a new forecast combination

method that is directly inspired by the parametric portfolio policy of Brandt et al. (2009). To

our knowledge, this has not been explored before. In a broader societal context, forecasting mac-

1Even though these methods show promising results, they are computationally expensive and not well suited
to handle the unbalanced nature of expert surveys. Therefore, they are not further considered in the empirical
application of this paper.
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roeconomic variables holds relevance, notably for policymakers who rely on these predictions to

formulate their policies. Furthermore, improved macroeconomic forecasts benefit businesses and

investors by providing more reliable data for planning and risk management.

Much of the econometric literature on forecast combination focuses on econometric model

forecasts (Wang et al., 2023). Conversely, this paper focuses on expert forecasts. The reason

is that several studies show that expert-based forecast combinations outperform model-based

forecast combinations (see, inter alia, Ang et al., 2007; Lin et al., 2014; Loungani, 2001; Song

et al., 2013; Van Dijk & Franses, 2019). Consequently, in this paper, the term “forecaster” refers

to an expert that participates in a forecasting survey. However, the proposed FCC method has

broader applicability and can also be used to combine model forecasts, in which case “forecaster”

would refer to a forecasting model. In other words, although the empirical application in this

paper focuses on the combination of expert forecasts, the FCC method can also be employed to

combine model forecasts.

The rest of this paper is structured as follows. Section 2 explains the regular and extended

FCC methods and connects them to the literature. Section 3 describes the empirical setting used

to evaluate the FCC method. Section 4 elaborates on the forecaster characteristics included in

the FCC method. Section 5 discusses the benchmark models and evaluation metrics. Section 6

presents the results, and finally, Section 7 provides the main conclusions and limitations of the

paper.

2 Forecaster Characteristics Combination (FCC)

This section proposes a new forecast combination method called Forecaster Characteristics Com-

bination (FCC). We first connect this method to the literature, in Section 2.1, before explaining

it in more detail, in Sections 2.2 and 2.3. Implementation details are left to be discussed in

Section 2.4.

2.1 Connection to the Literature

The FCC method builds upon the parametric portfolio policy by Brandt et al. (2009), a method

from the portfolio management field. To understand why this method applies to the field

of forecast combination, it is necessary to recognise the similarities between the two fields.

Specifically, both the tasks and challenges encountered in portfolio management and forecast

combination are similar. Despite the difference in application, the main task of both fields lies in

constructing combination weights that sum to one at each point in time. An important challenge

in both fields relates to achieving an optimal bias-variance trade-off.

In the field of forecast combination, one of the main challenges stems from a surprising res-

ult: the simple equally weighted average often outperforms more complex methods (Genre et al.,

2013). This phenomenon is commonly referred to as the forecast combination puzzle, a term in-

troduced by Stock and Watson (2004). Aiming to address this puzzle, Timmermann (2013) notes

that the objective function underlying the combination problem is often mean squared forecast-

ing error (MSFE) loss. In the context of forecast combination, MSFE loss can be decomposed

into two parts: (i) squared bias, from the deviation between the estimated weights and the true
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weights and (ii) variance, from the estimation uncertainty of the weights themselves (Smith &

Wallis, 2009). Consequently, to minimise the loss function, forecast combination methods should

optimally balance the bias and variance introduced. In general, bias can be reduced by increas-

ing model complexity, but this is often accompanied by an increase in the number of parameters

to be estimated and, hence, an increase in estimation uncertainty (variance). Thus, the forecast

combination puzzle goes to show that complex methods increase the variance more than they

reduce bias, resulting in larger MSFE compared to the simple equally weighted average.

Achieving an optimal bias-variance trade-off is also a key challenge in the field of portfolio

management. In portfolio management, bias refers to the systematic error in estimating combin-

ation weights, whereas variance is the extent to which these estimates fluctuate or deviate from

their expected values. Both factors influence the performance of portfolio construction methods.

Same as in forecast combination, the simple equally weighted average often outperforms more

complex methods, a problem highlighted in the hallmark paper by DeMiguel et al. (2009). Thus,

in the field of portfolio management too, sophisticated combination methods perform worse than

the equally weighted average. The reason is the same as in the field of forecast combination:

while complex models reduce bias, they increase estimation variance even more.

Given the similarities between the challenges encountered in forecast combination and portfo-

lio management, it is sensible to explore the solutions proposed by the latter field. A prominent

solution to estimate portfolio weights is provided by Brandt et al. (2009), who parameterise

portfolio weights based on the corresponding asset’s characteristics. Hence, in this approach,

the number of parameters to be estimated is independent of the number of assets, but rather

depends on the number of characteristics included. Provided that the number of characterist-

ics is much smaller than the number of assets, this approach achieves a major dimensionality

reduction. Such a dimensionality reduction is accompanied by a decrease in estimation uncer-

tainty, because there are less parameters to be estimated. Consequently, the parametric portfolio

policy shows potential to achieve favourable performance. Several empirical applications of the

parametric portfolio policy confirm its strong performance compared to numerous benchmarks

including the equally weighted average (Behr et al., 2012; Brandt et al., 2009; Hand & Green,

2011).

Both due to the promising results of the parametric portfolio policy by Brandt et al. (2009)

and the parallels between portfolio management and forecast combination, it is interesting to

translate this method to the field of forecast combination. The parametric portfolio policy para-

meterises asset combination weights using asset characteristics. Hence, applying the method to

forecast combination would involve parameterising forecast combination weights using forecaster

characteristics. We call this approach Forecaster Characteristics Combination (FCC) because it

leverages forecaster characteristics to combine forecasts.

Similarly to the parametric portfolio policy, the FCC approach achieves a major dimensional-

ity reduction: the number of parameters to be estimated reduces from the number of forecasters

to the number of characteristics included, which is much smaller. As such, the FCC method

shows potential to address the forecast combination puzzle: it likely exhibits lower estimation

uncertainty compared to other methods and might therefore achieve lower MSFE. Addition-

ally, the FCC approach effectively accommodates the dynamic nature of an expert panel. In
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particular, varying amounts of forecasts over time can be handled due to the parameterisation

of weights as a function of forecaster characteristics: the number of characteristics is constant

over time. The remainder of this paper focuses on developing the FCC method and analysing

whether it improves forecasting performance in an empirical setting, compared to several of

benchmarks.

2.2 Introduction to FCC

This section derives the FCC method and its mathematical notation. We start the derivation

from the basics of forecast combination. An optimal forecast combination minimises the MSFE

of the combined forecast over the weights assigned to the individual forecasts. Hence, a general

notation of the forecast combination problem is:

min
{wi,t,h}

Nt,T
i=1,t=1

1

T

T∑
t=1

(rt+h − f ct+h|t)
2, rt+h, f

c
t+h|t ∈ R, (1)

s.t.

Nt∑
i=1

wi,t,h = 1 ∀t = 1, . . . , T, h ∈ Z0,+. (2)

In these expressions, rt+h denotes the realisation of the variable of interest for time period

t + h. Index t indicates time (t = 1, . . . T ) and index h denotes the forecast horizon. Index h

takes on positive integer values including zero, since forecasts for the current (h = 0) and any

future horizons may be considered.2 The problem in equation (1) is optimised for each horizon

separately. Furthermore, f ct+h|t denotes the forecast combination at time t for horizon h, which

is equal to
∑Nt

i=1wi,t,h× fi,t+h|t. Weight wi,t,h denotes the combination weight assigned to panel

member i at time t for horizon h. These combination weights are restricted to sum to one over

all forecasters, at each point in time for a given horizon, by the restriction in equation (2).

Moreover, fi,t+h|t denotes the individual forecast of panel member i for time period t+ h given

information up to time t. The number of forecasters runs from i = 1, . . . , Nt, such that the total

number of forecasters Nt varies over time. This variation is due to the dynamic nature of the

panel: members join and leave.

In sum, the crux of forecast combination is finding combination weights wi,t,h that minimise

expression (1). The essence of the parametric portfolio policy by Brandt et al. (2009) is to

parameterise portfolio weights as a function of an asset’s characteristics. To translate this

approach to forecast combination, we propose to parameterise the forecast combination weights

wi,t,h as a function of forecaster characteristics:

wi,t,h = q(zi,t,h;θh), zi,t,h ∈ RQ, (3)

in which zi,t,h denotes a vector of Q characteristics of panel member i at time t for horizon

h, θh is a vector of coefficients to be determined, and the function q(.) denotes a function that

transforms forecaster characteristics into a combination weight using θh. We specify the function

q(.) similar to Brandt et al. (2009), who propose combining a characteristics-based term with a

2For example, when forecasting macroeconomic variables, it is possible to make forecasts for the current quarter
because the realisation estimates are typically published at least one quarter later.
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baseline weight. Hence, we specify q(.) as:

wi,t,h = w̄i,t,h +
1

Nt
θ′
hẑi,t,h, w̄i,t,h ∈ R, θh, ẑi,t,h ∈ RQ. (4)

In this expression, w̄i,t,h denotes the baseline weight, which is restricted to sum to one over

all forecasters, at each point in time, for a given horizon. Furthermore, θ′
h is the transpose of

the vector θh, which is set to dimensionality Q. Vector ẑi,t,h denotes a vector of standardised

characteristics of panel member i. This vector is created by cross-sectionally standardising the

characteristics in vector zi,t,h to mean zero, for each time period.

This standardisation occurs for two reasons. Firstly, it ensures stationarity of the character-

istics over time. Secondly and importantly, the standardisation ensures that the combination

weights wi,t,h sum to one over all forecasters i, at each point in time, for a given horizon. It thus

ensures that the restriction in equation (2) is met. In more detail, the standardisation ensures

that the cross-sectional mean of θ′
hẑi,t,h equals zero at each point in time. Hence, together

with the restriction that the baseline weights sum to one, this standardisation ensures that the

portfolio weights sum to one at all points in time.

The standardisation has some consequences for the interpretation of the forecaster charac-

teristics: they measure relative rather than absolute values. We further elaborate on this issue

in Section 4.9. Furthermore, in our standardisation of forecaster characteristics, we deviate

from Brandt et al. (2009), who also standardise the characteristics to standard deviation one.

This additional standardisation step removes information about the different variability of the

characteristics. To retain more information about the forecaster characteristics, we omit the

standardisation to standard deviation one. Nevertheless, we include a sensitivity analysis in

Section 6.4 to demonstrate the effects of standardising to standard deviation one.

Besides the standardisation, the normalisation term 1
Nt

in equation (4) is important to

address. This normalisation guarantees that the combination weight function can be applied to

an arbitrary and time-varying number of panel members over time. Without this normalisation,

a larger number of panel members at one point in time results in larger deviations from the

baseline weight. Thus, the normalisation accommodates the dynamic nature of the expert

panel.

With the specification of the combination weights in equation (4), we follow Brandt et al.

(2009) in defining weights that vary around a baseline weight. To complete the definition of

the combination weights, we have to determine the baseline weight w̄i,t,h. Brandt et al. (2009)

set the baseline weight to the equally weighted average. We follow them in using the equally

weighted average as baseline, due to its simplicity and strong performance in the field of forecast

combination (Genre et al., 2013). With equal weights as baseline weight w̄i,t,h, the specification

of combination weights becomes:

wi,t,h =
1

Nt
+

1

Nt
θ′
hẑi,t,h (5)

=
1

Nt
(1 + θ′

hẑi,t,h). (6)

Using this expression for the combination weights, the optimisation problem from equation (1)
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can be written as:

min
θh

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θ′

hẑi,t,h)× fi,t+h|t




2

. (7)

This adaptation of the optimisation problem drastically reduces dimensionality. In equation (1)

the minimisation is executed over weights wi,t,h for all panel members i = 1, . . . , Nt and time

periods t = 1, . . . , T , resulting in a dimensionality of
∑T

t=1Nt. Conversely, in the revised problem

in equation (7), the optimisation is executed over a vector θh with dimensionality Q, which is the

total number of characteristics. Therefore, the computational complexity of the minimisation

problem in equation (7) scales with the number of characteristics Q, rather than with the total

number of unique forecasters Nt across all time periods t = 1, . . . , T . Provided that Q is much

smaller than
∑T

t=1Nt, the dimensionality of the optimisation problem is substantially reduced.

Even when we are dealing with a balanced panel (Nt = N for all t) and constant weights over

time (wi,t,h = wi,h for all t), the number of parameters changes from N to Q. This still offers a

substantial dimensionality reduction in many cases.

The optimisation problem in equation (7) can be conveniently estimated using ordinary least

squares (OLS). A full derivation of the least squares estimator is provided in Appendix A. In

short, we rewrite equation (7) in least squares format. To that end, we define:

yt := rt+h −

 1

Nt

Nt∑
i=1

fi,t+h|t

 , yt ∈ R, (8)

xt :=
1

Nt

Nt∑
i=1

ẑi,t,h × fi,t+h|t, xt ∈ RQ. (9)

In these expressions, yt represents the dependent variable and xt the vector of independent

variables in the regression. Using these definitions, the optimisation problem in equation (7)

can be rewritten as:

min
θh

1

T

T∑
t=1

(yt − θ′
hxt)

2 (10)

No intercept is included as yt is expected to be centred very close to zero. To see this, note that

yt equals the difference between the realisation rt+h and the equally weighted average forecast.

Provided that the equally weighted average forecast approximately centres around the value of

the realisation, their difference−yt−centres approximately around zero.

Next, we stack the elements y1, . . . , yT into vector y of dimension T × 1. Additionally, we

stack the transposed vectors x′
1, . . . ,x

′
T into matrix X of dimension T ×Q. We leave the factor

1
T out of the minimisation problem in equation (7) since it does not affect the solution. As a

result, the minimisation problem from equation (7) can be rewritten as:

min
θh

∥y −Xθh∥2 , y ∈ RT , X ∈ RT×Q, θh ∈ RQ, (11)

in which ∥.∥2 denotes the L2 norm. We recognise a standard OLS problem in equation (11).
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Consequently, the least squares estimator for θh is:

θ̂h = (X′X)−1X′y. (12)

With this estimator for θh, the FCC forecast combinations are calculated as:

f c,FCC
t+h|t =

Nt∑
i=1

1

Nt
(1 + θ̂′

hẑi,t,h)× fi,t+h|t. (13)

2.3 Extensions of FCC

The model in equation (7) can be viewed as a “kitchen-sink” model in the sense that it estimates

Q variable coefficients simultaneously (Rapach et al., 2010). As a consequence, regularisation

on these variables may further improve the bias-variance trade-off of the solution. Therefore, we

extend the FCC method using several regularisation techniques: Ridge, LASSO, post-LASSO

and Elastic Net. These extensions are described in Section 2.3.1. Additionally, to avoid the

“kitchen-sink” effect, we estimate each of theQ characteristic coefficients separately and combine

the resulting single characteristic forecasts in three manners. These extensions are described in

Section 2.3.2.

2.3.1 Regularisation of the FCC Method

Econometric literature includes a wide range of regularisation techniques. The central idea is

to penalise the size of the regression coefficients−in our case the coefficients in θh. The purpose

of this penalisation is to reduce the estimation variance and thereby improve the bias-variance

trade-off of the solution. A well-known regularisation technique is Ridge regression, which was

introduced by Hoerl and Kennard (1970), who derived the method from Tikhonov (1943). This

method introduces a smooth convex penalty−the L2 norm−to shrink the coefficients towards

zero. Under Ridge regression our estimation problem becomes:

min
θh

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θ′

hẑi,t,h)× fi,t+h|t




2

+ λ

Q∑
q=1

(θh,q)
2, λ ∈ R, (14)

in which θh,q denotes the q-th element of θ and λ is a penalty parameter that controls the degree

of shrinkage. We estimate θ̂Ridge
h using equation (14) and construct FCC-Ridge combination

forecasts as follows:

f c,Ridge
t+h|t =

Nt∑
i=1

1

Nt
(1 + θ̂Ridge′

h ẑi,t,h)× fi,t+h|t. (15)

A downside of Ridge regression is that it is unable to select characteristics. In the context

of this paper, variable selection is desirable because it is interesting to know which forecaster

characteristic is relevant and which is not.

A regularisation technique that both shrinks and selects coefficients is LASSO, introduced

by Tibshirani (1996). This method is able to select coefficients, by shrinking other coefficients

9



all the way to zero. Therefore, we also perform LASSO regularisation as an extension to the

regular FCC method. To shrink the coefficients towards zero, LASSO regularisation introduces

an L1 penalty term on the coefficients. In our FCC framework this can be expressed as follows:

min
θh

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θ′

hẑi,t,h)× fi,t+h|t




2

+ λ

Q∑
q=1

∣∣θh,q∣∣ , λ ∈ R, (16)

in which |.| denotes the absolute value, and all other variables are as defined before. We estimate

θ̂LASSO
h using equation (16) and construct FCC-LASSO combination forecasts similarly as in

equation (15).

In addition to direct LASSO regularisation, we implement a post-LASSO method, following

DeMiguel et al. (2020). This post-LASSO approach first estimates θ̂LASSO
h and then removes

the characteristics with coefficients equal to zero. Subsequently, a reduced optimisation prob-

lem is estimated using the least squares estimator from equation (12), but only including the

LASSO-selected characteristics. DeMiguel et al. (2020) argue that this re-estimation circumvents

consistency concerns raised by Chatterjee and Lahiri (2011). The resulting forecast combination

is referred to as f c,postLASSO
t .

A disadvantage of LASSO regularisation is that it struggles with highly correlated vari-

ables, often arbitrarily selecting one variable from a group of highly correlated variables (Fan

& Li, 2001). In this paper, we construct forecaster characteristics that exhibit high correlations

(further discussed in Section 4.9). Therefore, it is important to address this issue and imple-

ment a regularisation technique that handles correlated variables well. A well-known technique

that fulfils this requirement is Elastic Net regularisation (ENet), introduced by Zou and Hastie

(2005). Next to handling correlated variables well, ENet regularisation is still able to select

coefficients, similar to LASSO. For that reason, we estimate the FCC method with ENet regu-

larisation. ENet regularisation combines two penalty terms: the LASSO penalty and the Ridge

penalty. Consequently, the optimisation problem under Elastic Net regularisation is formulated

as follows:

min
θh

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θ′

hẑi,t,h)× fi,t+h|t




2

+ λ

Q∑
q=1

(
αθ2h,q + (1− α)

∣∣θh,q∣∣) , λ, α ∈ R,

(17)

in which hyperparameter α determines the mixture between the Ridge and LASSO penalty. We

estimate coefficient θ̂ENet
h using equation (17) and construct FCC-ENet combination forecasts

similarly as in equation (15).

2.3.2 Single Characteristic Estimation

Apart from regularising the coefficients in the FCC model, we extend the FCC method with

an approach called single characteristic estimation. As mentioned previously, the regular FCC

model can be regarded as a “kitchen-sink” model, in which Q coefficients are estimated sim-

ultaneously. To mitigate this “kitchen-sink” effect, we estimate each of the Q characteristic

10



coefficients separately, which results in Q single characteristic forecasts. We combine these

single characteristic forecasts into a final forecast combination in three manners: by taking the

average over (i) all single characteristic forecasts, (ii) the LASSO selected single characteristic

forecasts and (iii) the ENet selected single characteristic forecasts.

This single characteristic estimation approach is inspired by Rapach et al. (2010), who find

that forecast combinations from single-variable regressions outperform forecast combinations

from “kitchen-sink” models, in which all variables are estimated simultaneously. Rapach et al.

(2010) propose a forecast combination method that involves estimating single-predictor forecasts

from single-predictor regressions. They combine these single-predictor forecasts by taking the

mean and find favourable results. In a subsequent paper, Rapach and Zhou (2020) extend this

combination method to Combination Elastic Net (C-ENet). For this method, they refine the

single-predictor combination step using regularisation: they select a subset of single-predictor

forecasts to be combined using Elastic Net regression.

Drawing from this literature, we implement three different single characteristic estimation

methods. Firstly, we apply the simple single characteristic combination method from Rapach et

al. (2010). Secondly, we implement the C-ENet method from Rapach and Zhou (2020). Provided

that the choice of Elastic Net regularisation in the selection step of C-ENet seems arbitrary, we

are interested in replacing it with LASSO regularisation. Hence, thirdly, we implement a C-

LASSO method, which extends the C-ENet method by using LASSO instead of Elastic Net.

All three single characteristic estimation methods are executed in three steps: a construc-

tion, selection and combination step. The first and third step are identical for each method, but

the second step differs. The steps are as follows:

Step 1: Construction of Single Characteristic Forecasts

In the first step, we construct forecast combinations for each characteristic separately, which

results in Q single characteristic forecasts. Particularly, we estimate coefficient θh,q for each

characteristic separately by optimising:

min
θh,q

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θh,q ẑi,t,h,q)× fi,t+h|t




2

, for q = 1, . . . , Q, (18)

in which ẑi,t,h,q denotes the q-th element of the vector of standardised characteristics ẑi,t,h and

all other variables are as defined before. Note that this optimisation problem is similar to the

one in equation (7), but only considers one characteristic at the time. We estimate θ̂h,q using

standard OLS. Consequently, we construct single characteristic forecasts for characteristic q as:

f c,qt+h|t =

Nt∑
i=1

1

Nt
(1 + θ̂h,q ẑi,t,h,q)× fi,t+h|t (19)

Step 2: Selection of Single Characteristic Forecasts

Step 2a: Simple Combination. In the simple single characteristic estimation method, all

Q single characteristic forecasts are included in the forecast combination (Rapach et al., 2010).
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There is no intermediate selection step.

Step 2b: C-ENet. In the C-ENet method, a subset of single characteristic forecasts is selec-

ted using Elastic Net regularisation (Rapach & Zhou, 2020). Specifically, a number of single

characteristic forecasts f c,qt+h|t is selected with the following regression:

min
κh,λ,α

1

T

rt+h −

 Q∑
q=1

κh,q × f c,qt+h|t




2

+ λ

Q∑
q=1

(ακ2h,q + (1− α)
∣∣κh,q∣∣), κh ∈ RQ, λ, α ∈ R,

(20)

in which κh is a vector of coefficients to be estimated, while λ and α are hyperparameters that

determine the degree of shrinkage of κh. The Elastic Net procedure “kills” some of the single

characteristic forecasts f c,qt+h|t, by setting κh,q to zero. Only single characteristic forecasts whose

corresponding coefficient κh,q is not set to zero, are selected to be combined in Step 3.

Step 2c: C-LASSO. The C-LASSO method is based on the C-ENet method by Rapach and

Zhou (2020) and selects a subset of single characteristic forecasts using LASSO instead of Elastic

Net. Hence, we estimate:

min
κh,λ

1

T

rt+h −

 Q∑
q=1

κh,q × f c,qt+h|t




2

+ λ

Q∑
q=1

(
κh,q

)2
, κh ∈ RQ, λ ∈ R, (21)

in which κh is a vector of coefficients to be estimated and λ is a hyperparameter. Similar to

the ENet procedure, the LASSO procedure “kills” some of the single characteristic forecasts by

setting κh,q to zero. Again, only single characteristic forecasts, whose corresponding coefficient

κh,q is not set to zero, are selected to be combined in Step 3.

Step 3: Combination of Single Characteristic Forecasts

The single characteristic forecasts selected in step 2 are combined with their equally weighted

average. In particular, let Jt denote the index set of the characteristics selected in Step 2. Then,

the final single characteristic combination forecast is computed as:

f ct+h|t =
1

|Jt|
∑
q∈Jt

f c,qt+h|t, (22)

in which |Jt| denotes the cardinality of Jt.

This approach results in three different forecast combinations: (i) one from simple single charac-

teristics estimation f c,Ct+h|t, (ii) one from C-ENet f c,C-ENet
t+h|t and (iii) one from C-LASSO f c,C-LASSO

t+h|t .

The application of these methods in this paper deviates from Rapach et al. (2010) and Rapach

and Zhou (2020), by combining multiple forecast combinations into a single forecast combina-

tion, rather than combining a number of forecasts into a single forecast combination. Hence,

the performance of the methods applied in this manner remains an empirical question.

12



2.4 Implementation Details

There are several implementation details of the FCC methods that are worth mentioning: (i)

the estimation of θh, (ii) the estimation of hyperparameters λ and α, and (iii) the construction

of the characteristics in ẑi,t,h.

Estimation of θh

For the out-of-sample estimation of θh, we employ both a moving and an expanding window

approach. In both approaches, the coefficients in θh are estimated at each point in time, using

only information available at that point in time. Consequently, the combination weights are

re-estimated at each point in time. According to Diebold and Pauly (1987), such time-varying

weights improve forecasting performance due to their ability to incorporate changes. After

iterative experimentation, we choose a window size of 40 time periods, which corresponds to a

time span of ten years. It is important to ensure large enough window size to avoid noisy weight

estimates (Baumeister & Kilian, 2015).

In the moving window approach, we use a fixed window size of 40 observations. During

each time period t, the model parameters are re-estimated using the 40 most recent observa-

tions. This approach ensures that the estimation relies only on the most recent data, allowing

the model to accommodate potential changes over time. Conversely, in the expanding window

approach, only the initial estimation is conducted using the first 40 observations. Then, as

new data becomes available, it is added to the estimation dataset. This method leverages the

entire history available at time t for parameter estimation. Expanding window estimation thus

incorporates more information over time, compared to the moving window approach. However,

the expanding window approach is less effective at accommodating changes over time. Which of

the estimation procedures performs better in our context remains an empirical question to be

answered in Section 6.2.

Estimation of hyperparameters λ and α

All hyperparameters (λ and α) used in the extensions of the regular FCC model are estimated

using 5-fold cross validation, which is standard practice in machine learning. The hyperpara-

meters are estimated separately for each FCC model extension. The estimation procedure for

the hyperparameters follows the estimation procedure of the coefficients in θh. Hence, if the

coefficients in θh are estimated with the moving window approach, the hyperparameters are

estimated with the moving window approach as well, using the same window of observations.

Consequently, the hyperparameters are re-optimised at each point in time.

Estimation of characteristics in ẑi,t,h

The estimation of the characteristics in ẑi,t,h is elaborately discussed in Section 4. It is important

to mention here, that these characteristics remain the same regardless of the estimation approach

of θh. Hence, also in the moving window approach, the characteristics in ẑi,t,h may exploit all

information available up to time t and not just the 40 most recent observations.
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3 Empirical Setting

To evaluate the FCC method, we establish an empirical setting. We evaluate the FCC method

by combining forecasts on three key macroeconomic variables. The data employed for this

setting consists of two parts. Firstly, we use expert forecasts from the Survey of Professional

Forecasters (SPF), described in Section 3.1. Secondly, we employ datasets with macroeconomic

realisations from the Federal Reserve Bank of Philadelphia and the Federal Reserve Economic

Data database, described in Section 3.2.

3.1 Expert Forecasts

We choose to use expert forecasts from the Survey of Professional Forecasters, because it is the

longest-running survey of macroeconomic forecasts in the U.S. The survey originates from a col-

laboration between the American Statistical Association and the National Bureau of Economic

Research, who started the survey in the fourth quarter of 1968. Currently, the Federal Reserve

Bank of Philadelphia issues the survey on a quarterly basis. The panel members are profession-

als whose job responsibilities include forecasting economic variables (Croushore, 1993). They

employ statistical models, important indicators and other surveys to construct their forecasts.

Their submissions are provided under anonymity and are identified only by an ID-number.

Although the SPF requests forecasts for 32 macroeconomic variables (Sill, 2012), this paper

focuses on three key variables: real GDP, unemployment, and inflation, following Genre et

al. (2013). Specifically, we use forecasts of the real GDP level, the annualised headline CPI

inflation rate, and the average unemployment rate.3 In the GDP level dataset, forecasts up to

1992 concern real GNP, while forecasts after 1992 concern real GDP. To reduce the effect of this

change and to ensure stationarity, we transform the GDP level forecasts to GDP growth rate

forecasts. Hence, we consider forecasts of the GDP quarterly growth rate instead of the level.

We construct separate forecast combinations for two horizons: (i) forecasts for the current

quarter, referred to as “nowcasts”, and (ii) forecasts for the next quarter, referred to as “one-

step-ahead forecasts.” The nowcasts concern the quarter during which the survey is completed.

They can still be regarded forecasts because realisations of macroeconomic variables are typically

published at least one quarter later. However, nowcasts may contain relevant information that

is already available when forecasting, which is why we also consider one-step-ahead forecasts.

Table 3.1 presents the summary statistics of the SPF forecasts included in this paper. Overall,

we include forecasts from Q4 1968 to Q4 2023, covering 221 time periods. Only the CPI dataset

starts later, and runs from Q3 1981 to Q4 2023, covering 170 time periods. The total number

of forecasts included varies for each macroeconomic variable, due to the dynamic nature of the

panel. The total number of unique forecasters is highest for real GDP and unemployment (both

equal to 457 forecasters) and lowest for CPI inflation (265 forecasters). This difference may be

attributed to the longer observation periods available for real GDP and unemployment. For all

variables, there are at least 9 forecasts available at each point in time. The maximum number

of forecasts at one point in time varies across variables and is highest for real GDP, equal to 83

3The SPF datasets can be downloaded from https://www.philadelphiafed.org/surveys-and-data/real-time-d
ata-research/individual-forecast.
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forecasts. On average, forecasters provide forecasts for around 20 time periods. However, the

total number of forecasts per expert varies considerably between a minimum of 1 forecast and

a maximum of 125 forecasts.

Table 3.1: Summary Statistics of SPF Expert Panel Forecast

GDP UMP CPI

Time Periods Included
Q4 1968 to
Q4 2023

Q4 1968 to
Q4 2023

Q3 1981 to
Q4 2023

Total Number of Nowcasts Included 8,494 8,539 5,932
Total Number of One-Step-Ahead Included 8,493 8,538 5,931
Total Number of Unique Forecasters 457 457 265
Average Number of Forecasters 34.28 38.49 34.75
Minimum Number Forecasters 9 9 9
Maximum Number Forecasters 83 78 53
Average Time Periods per Forecaster 18.51 18.61 22.29
Minimum Time Periods per Forecaster 1 1 1
Maximum Time Periods per Forecaster 125 124 119

Note: This table presents summary statistics of the SPF forecasts included in this study. “GDP” stands
for GDP level forecasts, “UMP” for the unemployment rate forecasts and “CPI” for the CPI inflation
rate forecasts. “Total Number of Unique Forecasters” is the total number of unique forecasters over the
entire forecasting period. “Average Number of Forecasters” is the average number of forecasts avail-
able at each point in time. “Minimum and Maximum Number of Forecasters” regard the number of
forecasters included at one point in time. “Average Time Periods per Forecaster” is the average num-
ber of time periods forecasters provide a forecast. “Minimum and Maximum Time Periods” regard the
number of time periods a forecaster provides a forecast.

Figure 3.1 further illustrates the dynamic nature of the panel, presenting the panel size of the

real GDP forecasts over time. The panel sizes of unemployment and CPI are nearly identical and

therefore not shown. Figure 3.1 clearly highlights the large amount of variation in the number

of forecasters over time. The panel size reaches a minimum of 9 forecasts in the second quarter

of 1990, but quickly recovers. This drop and steep increase in the number of forecasters can be

attributed to the 1990 transfer of the survey from the American Statistical Association to the

Federal Reserve Bank of Philadelphia (Croushore, 1993).

Figure 3.1: SPF Panel Size over Time for Real GDP
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3.2 Macroeconomic Realisations

We employ data on macroeconomic realisations to evaluate the forecast combinations. Unfor-

tunately, only estimates of these realisations are available and they are subject to revisions over

time. The Federal Reserve Bank of Philadelphia keeps track of these revisions and offers a real-

time dataset, which provides vintages from the first up to the most recent one. To illustrate the

significance of these revisions, we consider an example: the first vintage estimate of GDP for

Q1 1990 was published in Q2 1990 at 4,196, whereas the most recent estimate for Q1 1990, as

of Q1 2024, equals 10,091. Hence, the estimate of Q1 1990 GDP has more than doubled due to

revisions over time. These revisions occur because of changes in definitions, classifications, stat-

istical methodology, and increased availability of information (Fixler et al., 2021). We minimise

the influence of GDP level revisions by evaluating GDP growth rates rather than levels.

The revision of macroeconomic realisations poses a challenge: the choice of vintage affects

the evaluation of the forecasts combinations. One may argue that the most recent vintage

estimates are more reliable than the older first vintage estimates. However, the survey forecasts

are conducted in “real time,” such that panel members rely only on information available at the

time of the survey. Because of this “real time” nature of the survey forecasts, we evaluate the

forecasts based on first vintage estimates, following Genre et al. (2013).

I use datasets with first vintage estimates of the macroeconomic variables under consideration

from the real-time dataset for macroeconomists by the Federal Reserve Bank of Philadelphia and

the Federal Reserve Economic Data database.4 Appendix B offers a more detailed description

of the datasets and the data transformations.

Table 3.2: Summary Statistics of Macroeconomic
Realisations

GDP UMP CPI

Count 221 221 170
Mean 0.57 6.06 2.97
Standard Deviation 1.10 1.72 2.37
First-order Autocorrelation 0.03 0.90 0.42
Minimum −9.49 3.33 −8.55
25% Quantile 0.31 4.83 1.88
50% Quantile 0.63 5.73 2.94
75% Quantile 0.97 7.17 3.88
Maximum 7.41 13.03 11.92

Note: This table presents the summary statistics of the
macroeconomic realisations for all three economic variables.
“GDP” represents the real GDP quarterly growth rate, “UMP”
the unemployment rate and “CPI” the annualised CPI infla-
tion rate. All three variables are in percentages.

Table 3.2 provides the summary statistics of the realisations for all three macroeconomic vari-

ables after data transformations. The standard deviations of the unemployment rate and the

real GDP growth rate are similar, whereas the CPI inflation rate exhibits larger variability.

4These datasets are available at https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/
real-time-data-set-for-macroeconomists and https://alfred.stlouisfed.org/series?seid=CPIAUCSL.
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Furthermore, there is considerable variation in the first-order autocorrelation of the economic

variables. In particular, the real GDP quarterly growth rate shows almost no autocorrelation,

whereas the unemployment rate shows high autocorrelation. This suggests that predicting the

GDP quarterly growth rate may be more challenging compared to predicting the unemployment

rate. As expected, both the CPI inflation rate and the real GDP growth rate exhibit positive

and negative values, whereas the unemployment rate takes on only positive values. All three

macroeconomic variables contain some outliers, with a maximum as large as thirteen times the

mean for the real GDP growth rate, twice the mean for the unemployment rate and four times

the mean for the CPI inflation rate.

(a) Real GDP Growth Rate (b) Unemployment Rate

(c) CPI Inflation Rate

Figure 3.2: Time Series of Macroeconomic Realisations

To identify these outliers, Figure 3.2 presents time series plots of the three macroeconomic

variables. There are several outliers worth mentioning. Firstly, an important outlier occurs

during the onset of the COVID-19 pandemic in Q2 and Q3 2020. During this period, all

macroeconomic variables reach unusual levels: the unemployment and inflation rates peak, and

the GDP growth rate first plummets and then peaks. Figure 3.2b shows that the unemployment

rate also peaks during both the 1981-1982 recession and the Great Recession from 2008-2009.

During the Great Recession as well, the CPI inflation rate reaches noteworthy negative values,

especially during Q4 2008, see Figure 3.2c. The negative inflation rate can be explained by

the collapse of several financial institutions in September 2008, which triggered panic in the

financial markets. This panic led to a sharp decline in consumer and business spending, resulting

in reduced demand for goods and services. In response, businesses lowered prices to attract

customers, contributing to a steep decrease in the CPI inflation rate. Although all outliers are
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included in our main results, we provide a sensitivity analysis omitting several outliers in Section

6.4.

4 Forecaster Characteristics

This section elaborates on the forecaster characteristics included in the FCC method. Table 4.1

provides an overview of all characteristics included in this study and their expected coefficient

sign. The SPF identifies panel members only by an ID-number, such that most forecaster char-

acteristics are constructed from the data. As a consequence, almost all characteristics depend

on forecast horizon h. The effect of determining characteristics for each horizon separately is

examined in the sensitivity analysis in Section 6.4. The following sections describe each of the

characteristics: Sections 4.1 to 4.6 describe the regular characteristics, Section 4.7 describes the

momentum characteristics, and Section 4.8 describes the spillover characteristics. As explained

in Section 2.2, all characteristics are cross-sectionally standardised to mean zero before they

are used in the FCC method. Consequently, an analysis of the standardised characteristics is

included in Section 4.9.

Table 4.1: Forecaster Characteristics

Characteristic Abbreviation Notation Available from Sign

Panel A: Regular Characteristics

Industry Ind πi,t Q2 1990 +
Experience Exp βi,t,v first forecast of variable v +
Disconsensus Disc ψi,t,v,h first+h forecast of variable v +
Accuracy Acc ιi,t,v,h second+h forecast of variable v −
Bias Bias γi,t,v,h second+h forecast of variable v −
Consistency Cons ρi,t,v,h third+h forecast of variable v +

Panel B: Momentum Characteristics

Accuracy Momentum Acc Mom ηi,t,v,h second+h forecast of variable v −
Bias Momentum Bias Mom µi,t,v,h second+h forecast of variable v −
Consistency Momentum Cons Mom νi,t,v,h third+h forecast of variable v +

Panel C: Spillover Characteristics

Spillover Disconsensus Spill Disc Ψi,t,v,h first+h forecast of other variables +
Spillover Accuracy Spill Acc χi,t,v,h second+h forecast of other variables −
Spillover Bias Spill Bias Γi,t,v,h second+h forecast of other variables −
Spillover Consistency Spil Cons ξi,t,v,h third+h forecast of other variables +
Spillover Accuracy Momentum Spill AM Λi,t,v,h second+h forecast of other variables −
Spillover Bias Momentum Spill BM ωi,t,v,h second+h forecast of other variables −
Spillover Consistency Momentum Spill CM Ξi,t,v,h third+h forecast of other variables +

Note: This table presents a list of all forecaster characteristics included in this paper. Additionally, it provides
their notation, availability, and the expected sign of their coefficient (denoted by “Sign”). The availability of
forecaster industry is specific to a certain quarter, whereas all other characteristics are available from either the
first, second or third +h time a forecaster provides a forecast. E.g. for forecast horizon h = 1, error is available
from the third forecast onward.

4.1 Industry

From the second quarter of 1990 onwards, the SPF provides an industry token for each panel

member, indicating whether they work for a financial service provider, a nonfinancial service

provider, or if their industry is unknown. This characteristic is included in the study through
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dummy variable πi,t:

πi,t =


1 if panel member i works for a financial service provider at time t,

0 if panel member i works for a nonfinancial service provider

or if their industry is unknown at time t.

(23)

Thus, industry dummy πi,t captures whether panel member i works for a financial service pro-

vider at time t. The industry dummy is allowed to vary over time, reflecting possible job changes.

Since industry tokens are available only from Q2 1990 onwards, the industry dummy is set to

zero for all panel members before this time period. We expect the sign of the coefficient be-

longing to the industry dummy to be positive because we expect that participants working for

financial service providers produce more accurate forecasts and should, therefore, be assigned

larger weight.

4.2 Experience

The more experienced a forecaster is, the better their forecasts may be. Therefore, forecaster

experience is included as a characteristic. We expect the sign of the experience coefficient to

be positive: more experienced forecasters might provide better forecasts and should, therefore,

be assigned a larger combination weight. We measure experience by the logarithm of the total

number of times a panel member has provided a forecast:

βi,t,v = log

1 +
t∑

τ=1

1i,τ,v

 (24)

In this expression, βi,t,v denotes forecaster experience of panel member i at time t for macroeco-

nomic variable v ∈ {GDP,UMP,CPI}. The function 1i,τ,v is an indicator function that equals

one if panel member i provides a forecast (either a nowcast or a one-step-ahead forecast) for

macroeconomic variable v at time τ .

We use the logarithm of the total number of forecasting times because we expect that the

optimal forecast combination is not linearly related to experience. Instead, we expect that the

initial increases in a forecaster’s experience contribute more to their forecasting qualities than

later increases. Thus, we apply an increasing and concave function to forecaster experience: the

logarithmic function. The argument within the logarithmic function equals one plus the total

number of forecasting instances, to ensure that βi,t,v = 0 if forecaster i has never provided a

forecast and βi,t,v > 0 if forecaster i has provided a forecast at least once.

4.3 Disconsensus

According to Van Dijk and Franses (2019), disconsensus amongst expert forecasters may be

one of the key reasons for the favourable performance of combined expert forecasts, compared

to combined model forecasts. Based on their conclusion, we include a measure of disconsensus

as characteristic. We expect the sign of the corresponding coefficient to be positive, such that
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forecasters with larger disconsensus are assigned larger weight. Disconsensus is defined as:

ψi,t,v,h =


∣∣∣ζvt,h − fvi,t+h|t

∣∣∣ if 1i,t,v,h = 1,

0 otherwise,
(25)

in which ψi,t,v,h denotes the disconsensus characteristic, ζvt,h denotes the median forecast of

variable v at time t for forecast horizon h and |.| denotes the absolute value. Note that the

disconsensus characteristic only takes on non-zero values in case forecaster i has provided a

forecast for variable v at time t for horizon h (1i,t,v,h = 1). This disconsensus metric measures

the absolute distance between the forecast of panel member i at time t and the median forecast

at time t. The median, rather than the mean, is used as consensus forecast because of its

robustness to outliers.

4.4 Accuracy

The more accurate a panel member’s forecasts, the larger their combination weight should

be. Therefore, forecaster accuracy is included as characteristic. We measure accuracy by the

historical MSFE. We expect the sign of the corresponding coefficient to be negative: the larger

the historical error of a forecaster, the smaller their combination weight. In detail, we define

the accuracy characteristic as the MSFE of all previous forecasts by panel member i for a given

horizon. We include the entire error history of a forecaster to incorporate as much information

as possible. Thus, forecasting accuracy ιi,t,v,h is determined as follows:

ιi,t,v,h =


∑t−(1+h)

τ=1 1i,τ,v,h(ϵ
v
i,τ+h)

2∑t−1
τ=1 1i,τ,v

if
∑t−(1+h)

τ=1 1i,τ,v,h ≥ 1,

0 otherwise.
(26)

ϵvi,τ+h = rvτ+h − fvi,τ+h|τ . (27)

Here, ιi,t,v,h denotes the accuracy of panel member i at quarter t for macroeconomic variable v

and forecast horizon h. The forecasting error from the forecast about time τ + h by forecaster i

for variable v is denoted by ϵvi,τ+h. The variable rvτ+h denotes the realisation of macroeconomic

variable v at time τ+h, and fvi,τ+h|τ represents the forecast of panel member i for macroeconomic

variable v at time τ for horizon h. The indicator function 1i,τ,v,h equals 1 if forecaster i has

provided a forecast for variable v at time τ for forecast horizon h. The use of this indicator

function accommodates panel members that provide forecasts for non-consecutive time periods.

To ensure that no information from the future is used to construct the accuracy measure,

the sum in expression (26) depends on the horizon. Specifically, the accuracy measure at time

t for horizon h only includes errors up to time t − (1 + h). This is because the forecast from

one time period later, fvi,t+h|t, can only be evaluated at time t+h+1, when the realisation rvt+h

becomes available. Consequently, ιi,t,v,h is set to zero if a panel member has never provided a

forecast for macroeconomic variable v at time t− (1 + h).
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4.5 Bias

The accuracy characteristic is measured by the historical MSFE of a forecaster. As explained in

Section 2.1, the MSFE can be decomposed into squared bias and variance. To isolate the effects

of these factors, we include squared bias as characteristic as well. A variance characteristic

is not included, because it would be too strongly correlated with the accuracy characteristic.

Intuitively, a measure of squared bias captures that some panel members consistently over- or

underestimate a macroeconomic variable. We refer to the squared bias characteristic as bias for

short. We expect the sign of the bias coefficient to be negative: the larger the (squared) bias of

a forecaster, the smaller their combination weight should be. Bias is measured as follows:

γi,t,v,h =


(∑t−(1+h)

τ=1 1i,τ,v,hϵ
v
i,τ+h∑t−(1+h)

τ=1 1i,τ+h,v

)2

if
∑t−(1+h)

τ=1 1i,τ,v,h ≥ 1,

0 otherwise,

(28)

in which γi,t,v,h denotes the bias characteristic and all other variables are as defined previously.

4.6 Consistency

Apart from forecasting accuracy itself, the consistency of the forecasting accuracy is interesting

as well. Some forecasters may provide very consistent forecasts over time, whereas others may

be less consistent: they provide poor and accurate forecasts alternately. For that reason, we

include a consistency characteristic. We expect the sign of the consistency coefficient to be

positive: the more consistent a forecaster is, the larger their weight. We measure consistency

by the first-order autocorrelation of the forecasting error. This metric is appropriate because

it measures the persistence of errors over time. Specifically, a high first-order autocorrelation

indicates that the size of the forecasting errors (whether small or large) tends to be stable,

demonstrating a consistent pattern. Conversely, a low first-order autocorrelation suggests that

the errors fluctuate significantly, with large and small errors occurring alternately for a specific

forecaster. Thus, we define consistency as:

ρi,t,v,h =


∑t−(1+h)

τ=2 1i,τ,v,h1i,τ−1,v,h

(
ϵvi,τ+h−ϵ̄vi,t,h

)(
ϵvi,τ+h−1−ϵ̄vi,t,h

)
∑t−(1+h)

τ=1 1i,τ,v,h

(
ϵvi,τ+h−ϵ̄vi,t,h

)2 , if
∑t−(1+h)

τ=1 1i,τ,v,h ≥ 2,

0 otherwise,

(29)

ϵ̄vi,t,h =

∑t−(1+h)
τ=1 1i,τ,v,hϵ

v
i,τ+h∑t−(1+h)

τ=1 1i,τ,v,h

. (30)

In these expressions ρi,t,v,h denotes the consistency of panel member i at quarter t for macroe-

conomic variable v and horizon h. The variable ϵ̄vi,t,h denotes the average forecasting error of

panel member i available at time t. Hence, it measures the average errors up to time t− (1+h),

because errors after time t− (1+h) are not yet available at time t (as explained in Section 4.4).

To ensure that the denominator in equation (29) does not equal zero, ρi,t,v,h only takes nonzero

values if a panel member has provided at least two forecasts for horizon h by time t− (1 + h).
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4.7 Momentum Characteristics

We have defined the accuracy, bias and consistency characteristics in terms of a sum over all

historical forecasting errors. Apart from characteristics that incorporate the entire error history,

it is interesting to include characteristics that incorporate only the most recent errors. For

that reason, we include a number of momentum characteristics: accuracy momentum, bias

momentum and consistency momentum. These characteristics are defined similarly to their

regular counterparts, but include only the most recent forecasting errors, instead of the entire

error history. Specifically, we include information from the previous four forecasts only, because

this corresponds to the intuitive time span of a year.

For example, accuracy momentum is defined as the MSFE of the previous four forecasts.

Hence, we express accuracy momentum as follows:

ηi,t,v,h =


∑t−(1+h)

τ=t−(4+h)
1i,τ,v,h(ϵ

v
i,τ+h)

2∑t−(1+h)
τ=t−(4+h)

1i,τ,v,h

, if
∑t−(1+h)

τ=t−(4+h) 1i,τ,v,h ≥ 1,

0 otherwise.

(31)

In this expression, ηi,t,v,h denotes the accuracy momentum of panel member i for variable v

at time t for horizon h, and all other variables are as defined before. If a panel member has

not provided any forecasts during the previous four time periods, accuracy momentum is set

to zero. Similarly to the expression for accuracy in equation (26), the sum in the accuracy

momentum expression depends on the horizon h, such that no information from the future is

used to determine accuracy momentum at time t.

We include momentum characteristics for all characteristics that depend on the entire error

history of the forecaster. Thus, apart from accuracy momentum, we include momentum charac-

teristics for bias and consistency. The expressions for bias momentum (µi,t,v,h) and consistency

momentum (νi,t,v,h) are similar to their regular counterparts and are provided in appendix C.

We expect the signs of the momentum characteristics to be identical to their regular versions.

For instance, the effect of bias and recent bias on the combination weights are expected to be

the same.

4.8 Spillover Characteristics

Most of the characteristics described above are specific to a certain macroeconomic variable v.

However, it is likely that experts make their forecasts for GDP, unemployment and inflation

jointly. Therefore, a characteristic of one variable may be relevant for the forecast combination

of another variable. For example, if forecaster i exhibits small error for the unemployment rate,

this may signal that the forecaster is also accurate for the CPI inflation rate. Hence, we expect

to find correlations in forecaster characteristics across different macroeconomic variables.

To substantiate this intuition, Table 4.2 provides the correlation of the same characteristics

across different macroeconomic variables. Panel A provides the correlations for the nowcasts,

Panel B for the one-step-ahead forecasts. Overall, the table shows that there is indeed consider-

able correlation between the same characteristics across different variables. Correlations reach

values as high as 0.86. As expected, all characteristics exhibit positive correlation across mac-
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roeconomic variables. Hence, for instance, high accuracy in forecasting one variable is associated

with high accuracy in forecasting another variable.

Table 4.2: Correlation Between Characteristics Across Macroeconomic Variables

Panel A: Nowcasts

Disc Acc Bias Cons Acc Mom Bias Mom Cons Mom

UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI

GDP 0.05 0.08 0.35 0.20 0.22 0.10 0.28 0.28 0.26 0.12 0.43 0.10 0.21 0.19
UMP 0.05 0.08 0.13 0.13 0.06 0.06 0.23

Panel B: One-Step-Ahead Forecasts

Disc Acc Bias Cons Acc Mom Bias Mom Cons Mom

UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI UMP CPI

GDP 0.05 0.14 0.86 0.12 0.71 0.16 0.40 0.43 0.59 0.11 0.54 0.10 0.26 0.24
UMP 0.05 0.12 0.16 0.43 0.11 0.10 0.24

Note: This table presents the correlation for the same characteristics across different macroeconomic variables.
Panel A presents the correlations for the nowcasts, panel B for the one-step-ahead forecasts. The abbreviations of
the characteristics can be found in Table 4.1. Furthermore,“GDP” stands for the real GDP growth rate, “UMP”
for the unemployment rate and “CPI” for the annualised CPI inflation rate.

To exploit the correlations between the characteristics across different macroeconomic variables,

we include a number of spillover characteristics. We choose a straightforward way to incorporate

information from other variables: we define spillover characteristics as the average of the same

characteristic for the other variables. For example, spillover accuracy of forecaster i, at time

t and horizon h for the real GDP growth rate is defined as the average forecasting accuracy

of forecaster i, at time t and horizon h for the unemployment rate and the CPI inflation rate.

Thus, for variable v, we include spillover accuracy χi,t,v,h as follows:

χi,t,v,h =
ιi,t,m,h + ιi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (32)

in which ιi,t,m,h denotes the accuracy characteristic of variable m.

We include spillover characteristics for all characteristics that differ across macroeconomic

variables, except for experience. Most forecasters hand in forecasts for all three variables sim-

ultaneously, such that experience differs minimally across variables. Consequently, a spillover

characteristic is unnecessary, as it would be almost perfectly correlated with the regular ex-

perience characteristic. Overall, we include spillover disconsensus (Ψi,t,v,h), spillover accuracy

(χi,t,v,h), spillover bias (Γi,t,v,h), spillover consistency (ξi,t,v,h), spillover accuracy momentum

(Λi,t,v,h), spillover bias momentum (ωi,t,v,h), and spillover consistency momentum (Ξi,t,v,h). The

mathematical expressions for these spillover characteristics are similar to equation 32 and are

provided in Appendix C. We expect the signs of the coefficients of the spillover characteristics

to be identical to their regular counterparts, since all characteristics exhibit positive correlation

across variables.

4.9 Analysis of Standardised Characteristics

All characteristics described in the previous sections are cross-sectionally standardised to mean

zero before they are used in the FCC method. As explained in Section 2.2, this standardisa-
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tion ensures that the combination weights sum to one. The standardisation has an important

consequence for the interpretation of the characteristics: the relative size of the characteristics

matters more than their absolute value. Thus, the characteristics included in the FCC model

can be viewed as relative characteristics, measuring a forecaster’s characteristic relative to those

of other forecasters during the same time period. For example, at time t, the standardised

accuracy characteristic of forecaster i measures the accuracy of forecaster i compared to the

accuracy of all other forecasters included at time t.

To provide insight into the interactions between the standardised characteristics, Table 4.3

presents the correlations of the standardised characteristics for horizon h = 0 for the GDP

growth rate. The correlations for the unemployment and CPI inflation rate are similar and can

be found in Appendix D. Taking a closer look at Table 4.3, we find that large correlation occurs

between (spillover) accuracy and (spillover) bias, as expected. Similarly, large correlation is

found between (spillover) accuracy momentum and (spillover) bias momentum. Unsurprisingly,

we also find large correlation between accuracy and accuracy momentum, as well as between

bias and bias momentum. Thus, large recent error or bias is associated with large historical

error or bias.

Taking a look at the correlations between experience and the other variables, we find a sur-

prising result: experience exhibits positive correlation with accuracy. Hence, more experience is

correlated with larger error. Conversely, experience is negatively correlated with bias, such that

more experience is associated with smaller squared bias. Provided that accuracy is measured

by the MSFE, which is decomposed into squared bias and variance, we infer that more experi-

enced forecasters are associated with larger estimation variance. A possible explanation is that

experienced forecasters may rely more on personal judgement, which could result in increased

forecasting variance. Regardless, experience shows an anticipated relation with consistency:

more experienced forecasters are associated with more consistent forecasts.

Table 4.3: Correlation between Standardised Characteristics of the Real GDP Growth Rate
for Horizon h = 0

Exp Disc Acc Bias Cons
Acc Bias Cons Spill. Spill Spill Spill Spill Spill Spill
Mom Mom Mom Disc Acc Bias Cons AM BM CM

Ind −0.12 −0.02 −0.09 −0.02 −0.14 −0.05 −0.05 0.02 −0.04 −0.09 −0.01 −0.07 −0.12 −0.13 0.01
Exp −0.02 0.04 −0.14 0.25 0.05 0.09 −0.13 −0.01 −0.05 −0.11 0.21 0.02 0.06 −0.14
Disc 0.19 0.11 −0.01 0.11 0.11 0.01 0.08 0.05 0.02 −0.02 0.06 0.08 0.00
Acc 0.58 0.03 0.44 0.46 −0.03 0.06 0.13 0.02 −0.06 0.07 0.08 −0.03
Bias 0.04 0.19 0.14 0.04 0.02 0.03 0.04 −0.05 0.02 0.00 0.05
Cons 0.04 0.07 0.09 −0.01 −0.08 −0.05 0.26 −0.04 −0.07 0.08
Acc Mom 0.74 −0.03 0.05 0.05 0.01 −0.02 0.13 0.10 −0.01
Bias Mom −0.11 0.07 0.04 0.00 −0.03 0.09 0.15 −0.10
Cons Mom −0.01 −0.01 0.02 0.09 −0.02 −0.07 0.29
Spill Disc 0.05 0.02 −0.01 0.07 0.12 0.01
Spill Acc 0.79 −0.04 0.64 0.30 −0.01
Spill Bias −0.04 0.53 0.02 0.02
Spill Cons −0.01 −0.02 0.13
Spill AM 0.66 −0.01
Spill BM −0.09

Note: This table presents the correlations between the characteristics for the nowcasts of the GDP growth rate.
The abbreviations used for the characteristics can be found in Table 4.1.

To provide further insight into the distributions of the standardised characteristics, Figure 4.1

presents the histograms of several standardised forecaster characteristics with forecasting horizon
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h = 0 for the real GDP growth rate. As a result of the standardisation, all characteristics are

centred around zero. Nevertheless, the histograms show that the dispersion of each characteristic

varies. Momentum shows the widest spread, with values between -4.57 to 27.84. Conversely,

consistency shows least dispersion, with values between -0.79 to 0.82. Disconsensus, accuracy,

bias, and accuracy momentum all exhibit a right skewed distribution, such that there are a small

number of observations with large positive values for these characteristics.

(a) Experience (b) Disconsensus

(c) Accuracy (d) Bias

(e) Consistency (f) Accuracy Momentum

Figure 4.1: Histograms of Forecaster Characteristics with Horizon h = 0 for the Real GDP
Growth Rate

25



5 Benchmarks

To evaluate the FCC method, we compare its performance to several benchmark methods. For

overview, Table 5.1 lists all models used in this paper: the proposed FCC models as well as the

benchmarks. Sections 5.1 to 5.5 elaborate on each of the benchmarks and their implementation

separately. The evaluation metrics used to compare the performance of the FCC methods with

the benchmarks are provided in Section 5.6.

Table 5.1: Model Overview

Model Name Abbreviation Notation

Panel A: FCC models

Regular FCC FCC f c,FCC
t+h|h

FCC with Ridge Regularisation FCC-Ridge f c,Ridge
t+h|h

FCC with LASSO Regularisation FCC-LASSO f c,LASSO
t+h|h

FCC with post-LASSO Regularisation FCC-postLASSO f c,postLASSO
t+h|h

FCC with Elastic Net Regularisation FCC-ENet f c,ENet
t+h|h

FCC with Single Characteristic Estimation, no Regularisation FCC-C f c,Ct+h|h
FCC with Single Characteristic Estimation, LASSO Regularisation FCC-C-LASSO f c,C-LASSO

t+h|h
FCC with Single Characteristic Estimation, Elastic Net Regularisation FCC-C-ENet f c,C-ENet

t+h|h

Panel B: Benchmark models

Equally Weighted Average EWA f c,EWA
t+h|h

Trimmed Mean with 5% Trim Trimmed Mean f c,Trimmed Mean
t+h|h

Median Median f c,Median
t+h|h

Bias-Adjusted Mean Combination BAM f c,BAM
t+h|h

Discounted MSFE Combination dMSFE f c,dMSFE
t+h|h

Partially-Egalitarian LASSO peLASSO f c,peLASSO
t+h|h

Note: This table presents the models included in this paper. Detailed explanation of the FCC models can be
found in Section 2. Detailed explanation of the benchmarks models can be found in Sections 5.1 to 5.5.

5.1 Equally Weighted Average

The first and simplest benchmark we include is the equally weighted average (EWA). As men-

tioned before, this benchmark performs well in the literature (Genre et al., 2013). It is a relevant

benchmark because the FCC method employs the EWA weights as baseline. The EWA forecast

combination is calculated as:

f c,EWA
t+h|t =

1

Nt

Nt∑
i=1

fi,t+h|t. (33)

5.2 Trimmed Mean and Median

Individual forecasts may include outliers, which affect the EWA combination forecast. A more

robust method is trimmed mean combination, which excludes a portion of the smallest and

largest forecasts at each point in time. Following the advice of Armstrong (2001), who suggests

the use of trimmed means combination when there are at least 5 forecasts available, we implement
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trimmed mean combination. In particular, we implement both a symmetric 5% trim, as well as

a 50% trim, which is equivalent to using the median.

5.3 Bias-Adjusted Mean

The bias-adjusted mean (BAM) combination method is proposed by Capistrán and Timmer-

mann (2009). This method is a relevant benchmark because of its similarity to FCC in using

the equally weighted average as baseline. Specifically, the BAM method regresses the realised

value of the variable under consideration on a constant and the equally weighted average forecast

combination, as follows:

rt+h = c+ b

 1

Nt

Nt∑
i=1

fi,t+h|t

 , c, b ∈ R, (34)

in which c and b are parameters to be estimated. The constant c shifts the EWA forecast

to eliminate bias. The parameters are estimated using OLS, which results in estimates ĉ and

b̂. Following Genre et al. (2013), we estimate the BAM forecast combinations using moving

window estimation, with window size 40 (matching the window size used for FCC estimation).

Consequently, the BAM forecast combination can be expressed as:

f c,BAM
t+h|t = ĉ+ b̂

 1

Nt

Nt∑
i=1

fi,t+h|t

 , (35)

in which all parameters are as defined previously.

5.4 Discounted MSFE

The discounted mean squared forecast error (dMSFE) combination method weighs forecasts

inversely to the historical error of a forecaster (Stock & Watson, 2004). This benchmark can

be viewed as a simple version of the FCC: it makes use of only a single characteristic, namely

(discounted) accuracy. Because of this similarity with the FCC method, dMSFE combination

forms a relevant benchmark. The combination forecasts from dMSFE combination are calculated

as follows (following notation by Stock and Watson (2004)):

f c,dMSFE
t+h|t =

Nt∑
i=1

d−1
i,t+h|t∑Nt

j=1 d
−1
j,t+h|t

fi,t+h|t, ∀ di,t+h|t, dj,t+h|t ̸= 0 (36)

where di,t+h|t =

t−(1+h)∑
τ=1

δt−τ (rτ+h − fi,τ+h|t)
2, δ ≤ 1. (37)

In these equations, di,t+h|t is the discounted sum of historical MSFEs up to time t − (1 + h)

for panel member i. This sum is calculated using discount factor δ such that for δ < 1, recent

forecasting errors are assigned larger weight. We implement this method for three different values

of δ = 0.9, 0.95, 1.0, following Stock and Watson (2004). A value of δ = 1.0 corresponds to the

weighing scheme introduced by Bates and Granger (1969), in which all historical forecasting
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errors are equally weighed. Hence, a value of δ = 1.0 corresponds to weighing the forecasts

inversely to their relative accuracy characteristic (defined in Section 4.4).

5.5 Partially-Egalitarian LASSO

The partially-egalitarian LASSO method (peLASSO) is a relatively recent method, introduced

by Diebold and Shin (2019). It first selects forecasts to be combined and subsequently shrinks the

combination weights to equal weights using LASSO regularisation. We implement this method

as benchmark, for two reasons. Firstly, peLASSO has proven superior to equal weights when

applied to expert panel forecasts, making it a challenging benchmark to beat (Diebold & Shin,

2019). Secondly, this benchmark is relevant to the methods proposed in this paper as they

include regularisation techniques such as LASSO as well.

The peLASSO method solves the following minimisation problem to determine combination

weight vector wh for forecasting horizon h:

wpeLASSO
h = argminwh

 T∑
t=1

rt+h −
N∑
i=1

wh,ifi,t+h|t

2

+ λ1

N∑
i=1

∣∣wh,i

∣∣+ λ2

N∑
i=1

∣∣∣∣wh,i −
1

p(wh)

∣∣∣∣
 ,

(38)

In this expression, N denotes the total number of forecasters, λ1 and λ2 are penalty terms

that determine the amount of shrinkage, and p(wh) is the number of non-zero elements in wh.

Thus, the optimisation includes two penalty terms: the first is the standard LASSO penalty,

which selects and shrinks weights to zero, effectively removing some of the forecasts. The second

penalty term shrinks the “surviving” weights towards equal weights.

The estimation of wh presents two main challenges. Firstly, the regression model in (38),

requires a balanced panel dataset, as the total number of forecasters, N , remains constant over

time. To create a balanced dataset from our unbalanced dataset, we implement peLASSO

using a moving window approach with window size 40 (matching the window size of the FCC

estimation procedure). To balance the dataset, at each point in time, we select the 9 most

frequent forecasters within that window. This approach is inspired by Diebold and Shin (2019),

who select the 23 most frequent forecasters over their entire dataset. We select 9 forecasters

because there are at least 9 forecasts available at each point in time in the dataset. Following

Diebold and Shin (2019), we impute missing observations using a linear AR(1) filter.

A second challenge is that analytical optimisation of the problem in equation (38) is difficult

due to the discontinuity of the objective function at wh,i = 0. Therefore, we follow the two-step

implementation proposed by Diebold and Shin (2019):

Step 1. Select a subset of n forecasters from the N forecasters available using LASSO shrinkage

on the combination weight.

Step 2. Shrink the n “surviving” combination weights from Step 1 towards 1
n , using LASSO

shrinkage.

Note that Diebold and Shin (2019) recommend LASSO shrinkage for both steps due to

favourable results in expert panel forecast combinations. Since the empirical setting in this

paper is similar and further research on the peLASSO method is not our focus, we follow their
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recommendation and use LASSO for both steps. We estimate the hyperparameters in both

LASSO steps separately, using 5-fold cross validation. The resulting combination forecast is

straightforwardly constructed using weight vector ŵpeLASSO
h :

f c,peLASSO
t+h|t =

N∑
i=1

ŵpeLASSO
h,i fi,t+h|t, (39)

in which wpeLASSO
h,i denotes the i-th element of the vector ŵpeLASSO

h .

5.6 Evaluation Metrics

To compare the performance of the FCC models with the benchmarks, we need an evaluation

metric: a loss function. We use the squared forecasting error and calculate the MSFE as follows:

MSFE =
1

T − (1 + h)

T−(1+h)∑
t=1

(rt+h − f ct+h|t)
2, (40)

in which all variables are as defined previously. Note that we evaluate forecasts up to time

T − (1 + h) because the realisation for time T + h is available at T + h+ 1. The results section

only presents the MSFE of the regular FCC model and presents the relative MSFE of the other

models. The relative MSFE is defined as the MSFE of the model under consideration over the

MSFE of the regular FCC method.

A concern about the evaluation method in this paper relates to the multiple comparison

problem. When comparing several forecast models on a single dataset, significant results may

be found by chance (Genre et al., 2013). For that reason, it is not appropriate to draw conclusions

from pair-wise comparisons of predictive ability. To mitigate this problem, we employ the model

confidence set (MCS) approach introduced by Hansen et al. (2011). An MCS is a subset of models

that contains the best model with a given level of confidence. Put differently, it can be viewed

as a confidence interval for the best performing model. We execute the MCS procedure with

the bootstrap implementation and use the squared forecasting error as loss function. Following

Hansen et al. (2003), we set the number of bootstrap resamples equal to 1000 and use a confidence

level of 95%. Further details about the MCS approach and our implementation are provided in

Appendix E.

6 Results

The results in this paper focus on evaluating the forecasting performance of the FCC method.

Section 6.1 compares the FCC method’s performance to the benchmarks. Subsequently, Section

6.2 compares the performance of the FCC method to its extensions. Section 6.3 analyses the

FCC coefficients and their development over time. Finally, Section 6.4 examines the robustness

of the results with a sensitivity analysis.
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6.1 Benchmark Comparison

This section evaluates the potential of the FCC method by comparing its performance to the

benchmarks. Table 6.1 reports the MSFE and MCS results for the regular FCC method, estim-

ated with the moving window approach, as well as the benchmarks. For the FCC method, the

MSFE is presented and for the benchmarks, the relative MSFE is presented. Importantly, Table

6.1 demonstrates the strong performance of the FCC method, achieving the lowest MSFE in 5

out of 6 cases. Accordingly, the FCC method is selected to be in the 95% confidence MCS most

often, also in 5 out of 6 cases. Only in one instance, the BAM method is selected into the MCS.

We conclude that the FCC method may be considered the best performing method.

Table 6.1: MSFE Results of the FCC Method and Benchmarks

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

Panel A: FCC Method

FCC 0.110 0.130 0.543 0.442 0.397 1.604 5

Panel B: Benchmark Methods

EWA 2.33 0.53 3.16 2.16 1.68 2.79 0
Median 2.28 0.56 3.18 2.20 1.63 2.83 0
Trimmed Mean 2.35 0.55 3.15 2.16 1.65 2.79 0
BAM 2.08 0.30 2.23 1.94 1.36 2.42 1
dMSFE (δ = 0.9) 2.36 2.34 4.71 1.88 1.80 3.33 0
dMSFE (δ = 0.95) 2.28 2.30 4.42 1.93 1.81 3.21 0
dMSFE (δ = 1.0) 2.19 2.27 4.09 1.99 1.81 3.02 0
peLASSO 2.40 0.33 1.71 2.15 1.35 2.54 0

Note: This table presents the MSFE results of the FCC method and the relative MSFE of the
benchmarks. Note that the MSFE of the FCC method is presented in italics because it shows
the MSFE rather than the relative MSFE. The results for the FCC method are estimated with
moving window estimation. The MSFE of the model selected into the MCS with 95% confidence
is presented in bold. The column “MCS Count” provides the total number of times a model is
selected into the MCS. Furthermore, “GDP” stands for the real GDP growth rate, “UMP” for
the unemployment rate and “CPI” for the annualised CPI inflation rate.

To provide insight into the performances of the methods over time, Figure 6.1 plots the difference

in cumulative squared forecasting error (SFE) between the BAM and peLASSO benchmarks and

the regular FCC method. The larger the value plotted, the better the FCC method performs

compared to the benchmarks. Only when a plot reaches values below zero, the benchmarks

achieve smaller cumulative SFE compared to the regular FCC method. We examine the fore-

casting performance for each macroeconomic variable separately.

Firstly, for the real GDP growth rate in Figure 6.1a and 6.1b, the regular FCC method

consistently achieves lower forecasting error compared to BAM and peLASSO for both horizons.

Both benchmarks show a steep increase in cumulative SFE difference around the COVID outlier

in Q2 and Q3 2020, which indicates that the FCC method handles the COVID outlier better

than the peLASSO and BAM methods. Overall, we conclude that the FCC method outperforms

the benchmarks for the GDP growth rate.
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(a) Real GDP Growth Rate Nowcasts (b) Real GDP Growth Rate One-Step-Ahead

(c) Unemployment Rate Nowcasts (d) Unemployment Rate One-Step-Ahead

(e) CPI Inflation Rate Nowcasts (f) CPI Inflation Rate One-Step-Ahead

Figure 6.1: Cumulative Squared Forecasting Error Difference Between the Benchmarks and
the FCC method

Figures 6.1c and 6.1d present the cumulative SFE difference for the unemployment rate. From

both Table 6.1 and Figure 6.1c it is clear that for the nowcasts, the peLASSO and BAM meth-

ods outperform the FCC method. However, for the one-step-ahead forecasts, the forecasting
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performance of the FCC method is on average better than the BAM and peLASSO benchmarks

(see Table 6.1). Figure 6.1d shows that this result remains true only on average: for most time

periods, the cumulative forecasting error of the BAM and peLASSO methods is lower. It appears

that the FCC method achieves lower MSFE only due to the steep increase in cumulative SFE

difference around the COVID outlier. Simply put, for the unemployment rate one-step-ahead

forecasts, the FCC method achieves lower MSFE compared to the benchmarks only due to the

COVID outlier. Therefore, we conclude that for unemployment overall, the FCC method does

not outperform the benchmarks. We provide an analysis of results without outliers in Section

6.4.

Figure 6.1e and 6.1f show the cumulative squared forecasting error difference for the CPI

inflation rate. For both the nowcasts and one-step-ahead forecasts the FCC method consistently

outperforms BAM and peLASSO, as the cumulative SFE difference lies above zero during all

time periods. For the one-step-ahead forecasts in Figure 6.1f, both benchmarks exhibit a steep

increase in cumulative SFE difference during the Great Recession in Q4 2008. This implies that

the FCC method achieves lower error during this outlier compared to the benchmarks. Thus,

again, the FCC method proves to be better at handling outliers than the benchmarks.

6.2 Estimation Methods and FCC Extensions

We now turn to the comparison of the estimation methods and the performance of the extensions

of the FCC method. Table 6.2 presents the MSFE results of the FCC method and its extensions,

for both the moving window approach (Panel A) and the expanding window approach (Panel B).

Note that for the regular FCC method, the MSFE is presented, whereas for the extensions, the

relative MSFE is presented. From Table 6.2, it is clear that for all variables, horizons and all FCC

methods, moving window estimation achieves smaller MSFE than expanding window estimation.

For that reason, the results focus on the FCC results from moving window estimation.

The superior performance of moving window estimation can be explained by its larger flex-

ibility in allowing for variation in the coefficients, compared to expanding window estimation

(as explained in Section 2.4). Provided that the moving window approach results in lower fore-

casting errors, accommodating variations in the coefficients enhances forecasting performance

in our context. This implies that the importance of each forecaster characteristic changes over

time. Section 6.3 further analyses the characteristic coefficients and their variation over time.

Turning to the differences between the FCC methods, Table 6.2 demonstrates that the exten-

sions of the regular FCC method do not improve performance. Note that this table also presents

results from the 95% confidence MCS procedure on the FCC methods, performed separately for

each estimation method. The table shows that the extended methods are never selected into the

MCS. All extended methods show larger MSFEs compared to regular FCC. We examine these

inferior MSFE results for each extension separately.

Firstly, we analyse the MSFE of the regularised methods: FCC-Ridge, FCC-LASSO, FCC-

postLASSO and FCC-ENet. In all cases, the regular FCC method outperforms these regularised

methods. We may explain this result as follows. Regularisation methods are developed to prevent

overfitting by penalising more complex models. These constraints limit the model’s flexibility,

which apparently leads to reduced performance in the application of this paper. In our context,

32



the constraints applied by the regularisation techniques are strict: many coefficients are shrunk

to zero by both LASSO and ENet during most time periods. To demonstrate this, Appendix

F presents the percentage of time periods during which coefficients are set to zero by LASSO

and ENet. For many characteristics, these percentages lie above 80%. Hence, in our setting, the

benefits expected from regularisation are not fully realised because the regularisation methods

are very restrictive. This results in MSFE metrics that are comparable or even worse than those

of the unregularised FCC method.

Table 6.2: MSFE Results of the FCC Method and its Extensions

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

Panel A: Moving Window Estimation

FCC 0.110 0.130 0.543 0.442 0.397 1.604 6
FCC-Ridge 1.73 1.11 1.87 2.03 1.57 2.02 0
FCC-LASSO 1.62 1.01 1.97 2.07 1.60 2.28 0
FCC-postLASSO 1.55 1.02 1.88 2.00 1.43 2.22 0
FCC-ENet 1.64 1.02 1.93 2.07 1.62 2.33 0
FCC-C-Simple 2.11 1.14 2.81 1.89 1.69 2.42 0
FCC-C-LASSO 2.02 1.13 2.53 1.86 1.57 2.43 0
FCC-C-ENet 2.12 1.14 2.78 1.89 1.69 2.42 0

Panel B: Expanding Window Estimation

FCC 0.150 0.134 1.025 0.733 0.577 2.862 6
FCC-Ridge 1.30 1.21 1.21 1.26 1.10 1.33 0
FCC-LASSO 1.34 1.00 1.70 1.27 1.11 1.48 0
FCC-postLASSO 1.35 1.01 1.64 1.26 1.08 1.48 0
FCC-ENet 1.65 1.27 1.81 1.27 1.11 1.48 0
FCC-C-Simple 1.72 1.19 1.70 1.26 1.23 1.46 0
FCC-C-LASSO 1.70 1.16 1.62 1.21 1.21 1.49 0
FCC-C-ENet 1.72 1.32 1.69 1.26 1.23 1.46 0

Note: This table presents the MSFE of the FCC method and the relative MSFE of the exten-
sions, for each estimation method and both horizons. The MSFE of the regular FCC method
is presented in italics because it shows the MSFE rather than the relative MSFE. The table
also presents the results from the MCS procedure on the FCC methods, performed separately
for each estimation approach. The MSFE of the model selected into the MCS with 95% con-
fidence is presented in bold. The column “MCS Count” provides the total number of times a
model is selected into the MCS. In this table, “GDP” stands for the real GDP growth rate,
“UMP” for the unemployment rate and “CPI” for the annualised CPI inflation rate.

Secondly, we examine the relative MSFE of the single characteristic estimation methods: FCC-

C-Simple, FCC-C-LASSO, FCC-C-ENet. Although none of the methods outperform regular

FCC, among these methods, the FCC-C-LASSO method achieves the lowest MSFE in 5 out of

6 cases. Thus, the C-LASSO method outperforms the original C-Simple and C-ENet methods

by Rapach et al. (2010) and Rapach and Zhou (2020). Unfortunately, overall, these methods

consistently lead to higher MSFE compared to the regular and regularised FCC methods. Thus,

in this context, the use of single coefficient estimation does not improve forecasting performance.

This can be explained as follows. In single characteristic estimation, each characteristic is

considered separately. When characteristics are correlated, such a separate estimation may not
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sufficiently capture interactions between characteristics. Provided that the characteristics in this

paper show significant correlation, as discussed in Section 4.9, single characteristic estimation

fails to capture the interactions between the characteristics sufficiently. This results in weaker

forecasting performance compared to regular FCC. The regular FCC method simultaneously

considers all characteristics and therefore provides a more accurate forecast.

Another explanation for the sub-optimal performance of the single characteristic methods

is that they were originally designed to combine individual forecasts. Conversely, in our ap-

plication, we use the methods to combine already combined forecasts. Consequently, the single

characteristic estimation methods may not be well-suited to our application. Due to the favour-

able performance of the regular FCC method compared to its extensions, the remainder of the

results focuses on the regular FCC method only.

6.3 Analysis of the FCC Coefficients

To further understand the favourable performance of the FCC method, we examine its coeffi-

cients. Panel A of Table 6.3 presents the results of the FCC regression: the average coefficients

assigned to each characteristic for both the nowcasts and the one-step-ahead forecasts. The

coefficients in this table are averages over all coefficients estimated with the moving window ap-

proach. Below each coefficient, a percentage is presented, indicating how often each coefficient

is statistically significantly different from zero throughout the entire observation period. This

statistical significance was determined by a t-test at a 95% confidence level.

Overall, Table 6.3 shows that the magnitude and sign of the average coefficients vary across

variables and forecast horizons. These differences demonstrate that each characteristic requires

varying emphasis for different macroeconomic variables. From the significance percentages, it

is evident that many coefficients are only significant during a relatively small portion of the ob-

servation period. Thus, the importance of characteristics not only varies across macroeconomic

variables, but over time as well. Hence, these results highlight the importance of the flexibility

of the FCC model.

We now inspect the average coefficients in more detail. The industry dummy shows positive

average coefficients for most variables and horizons. Thus, as expected, forecasts from individuals

that work in the financial sector are generally assigned larger weight. This is especially true for

the GDP growth rate nowcasts and one-step-ahead forecasts. For the unemployment rate, the

average coefficient lies closer to zero. The CPI inflation rate exhibits negative average coefficients

for the one-step-ahead forecasts, such that for this horizon, inflation forecasts from individuals

working in non-financial services are generally assigned larger weight instead.

Surprisingly, experience exhibits mostly negative average coefficients, indicating that fore-

casts from more experienced individuals are assigned smaller weight. Although this is not in line

with our expectation, this result may be explained by the positive correlation between experi-

ence and MSFE (as discussed in Section 4.9). Put differently, in our empirical application, more

experienced forecasters are associated with larger forecasting errors, which may justify assigning

them smaller combination weights.
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Table 6.3: Forecaster Characteristic Coefficients from the Regular FCC Method

Variable
Nowcasts One-Step-Ahead

GDP UMP CPI GDP UMP CPI

Panel A: Coefficients

Panel A.1: Regular Characteristics

Industry
1.72 0.02 2.26 6.45 0.94 -1.66
(3.87%) (0.55%) (10.77%) (2.76%) (4.97%) (5.38%)

Experience
1.17 -0.25 -0.85 -1.43 -2.24 0.62
(9.94%) (2.21%) (5.38%) (4.42%) (19.89%) (0.77%)

Disconsensus
-1.29 -4.91 1.12 -0.01 -3.07 0.73
(1.10%) (29.28%) (19.23%) (8.84%) (8.84%) (0.00%)

Accuracy
5.60 -7.27 -1.19 -7.03 19.09 1.07
(2.21%) (1.66%) (23.08%) (11.60%) (19.34%) (17.69%)

Bias
-4.95 2.53 0.28 5.50 -19.54 -0.33
(6.63%) (7.18%) (12.31%) (1.10%) (2.21%) (5.38%)

Consistency
4.61 3.40 5.02 5.21 -1.56 -15.46
(8.84%) (20.99%) (16.92%) (0.55%) (12.71%) (27.69%)

Panel A.2: Momentum Characteristics

Accuracy Momentum
1.07 -21.14 -0.81 7.30 -8.74 0.23
(3.31%) (16.57%) (3.08%) (2.76%) (16.02%) (0.00%)

Bias Momentum
-2.32 -4.45 0.72 -10.60 0.14 -1.30
(16.57%) (14.36%) (6.92%) (2.76%) (3.87%) (11.54%)

Consistency Momentum
3.93 -1.80 -5.08 -3.57 5.92 -10.58
(4.97%) (1.10%) (14.62%) (9.39%) (16.57%) (22.31%)

Panel A.3: Spillover Characteristics

Spillover Disconsensus
-0.17 1.38 -7.29 5.90 1.35 -11.06
(0.00%) (1.10%) (3.08%) (7.18%) (8.84%) (18.46%)

Spillover Accuracy
-2.53 -0.48 4.98 -1.35 -2.61 -23.91
(1.66%) (1.66%) (4.62%) (1.66%) (12.15%) (4.62%)

Spillover Bias
1.45 -1.82 -18.66 0.67 2.26 -17.30
(0.00%) (3.31%) (3.08%) (6.08%) (2.76%) (0.77%)

Spillover Consistency
3.39 -1.19 -1.90 2.16 -0.05 6.03
(6.08%) (0.55%) (0.77%) (7.18%) (19.89%) (2.31%)

Spillover Accuracy Momentum
3.45 2.69 4.69 -0.83 -1.67 -5.30
(6.63%) (4.97%) (6.15%) (0.00%) (12.15%) (2.31%)

Spillover Bias Momentum
-5.16 -4.18 -4.64 2.70 4.18 -0.19
(0.00%) (3.31%) (3.85%) (2.76%) (3.87%) (0.77%)

Spillover Consistency Momentum
-2.01 -3.10 -4.90 12.97 6.25 4.39
(5.52%) (5.52%) (3.85%) (12.15%) (12.15%) (3.85%)

Panel B: F-test Results

Null Hypothesis Rejected 11.05% 58.01% 73.85% 12.71% 39.78% 23.08%

Note: This table presents the average coefficients assigned to the forecaster characteristics by the FCC method
and the results of the F-test. Panel A presents the average coefficient values from moving window estima-
tion. Below each coefficient, between parentheses, the percentage of time periods during which a coefficient is
statistically significant is shown. Statistical significance was determined by a t-test at a 95% confidence level.
Panel B provides the results of an F-test at a 95% confidence level for the null hypothesis that all character-
istics have coefficients equal to zero. Specifically, it provides the percentage of time periods during which the
null hypothesis was rejected.
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Disconsensus exhibits mostly negative average coefficients. Hence, contrary to our expectation,

forecasts from individuals that deviate from the median forecast are generally assigned smaller

combination weight. For the CPI inflation rate, the disconsensus effect is opposite: forecasts

from individuals that deviate from the consensus forecast are assigned larger weight in general.

Thus, only for the CPI inflation rate, our expectation about the disconsensus coefficient is

met. Spillover disconsensus shows both positive and negative coefficients, such that no clear

conclusions can be drawn about this characteristic.

Surprisingly, accuracy, measured by the historical MSFE, shows both positive and negative

average coefficients, such that we cannot conclude that forecasts from individuals with lower his-

torical errors are consistently assigned larger weight. This effect is particularly surprising for the

unemployment rate one-step ahead forecasts, for which the average accuracy coefficient reaches

a positive value as large as 19.09. Accuracy momentum and spillover accuracy momentum also

exhibit both positive and negative average coefficients, such that no definite conclusion can be

drawn. Fortunately, spillover accuracy shows more anticipated coefficients: they are generally

negative. Hence, as expected, forecasts from individuals that show larger historical error for

other variables are assigned smaller weight for the variable under consideration.

Bias demonstrates both positive and negative coefficients, such that we cannot draw any

definite conclusions. The same holds for bias momentum, spillover bias, and spillover bias mo-

mentum. As expected, consistency shows mostly positive coefficients. Thus, forecasts from more

consistent forecasters are assigned larger weight. This does not hold for consistency momentum,

spillover consistency and spillover consistency momentum, for which no clear conclusions can be

drawn.

Provided that most coefficients are statistically significantly different from zero during only a

relatively small number of periods, it is interesting to analyse how often the vector of coefficients

is jointly statistically significantly different from zero. Consequently, an F-test at 95% confidence

level was performed on the null hypothesis that all characteristics have coefficients equal to zero.

Panel B in Table 6.3 presents the results of the F-test as the percentage of time periods during

which the null hypothesis was rejected. Thus, the larger the percentage presented, the more

often the vector of coefficients was jointly significantly different from zero.

To interpret these percentages, remember that the characteristic coefficients determine the

amount of deviation from the equally weighted average combination weights. Thus, when the

vector of coefficients is not statistically significantly different from zero, the forecast combination

weights are approximately equal to the equally weighted average weights. For the real GDP

growth rate nowcasts, the FCC coefficients are only significantly different from zero in 11.05%

of cases. For these forecasts, the combination forecasts often lie close to the equally weighted

average combinations. Conversely, for the CPI nowcasts, the FCC coefficients are significantly

different from zero during most time periods: in 73.85% of cases. Thus, for the CPI nowcasts,

the FCC method adjusts the equally weighted average for most time periods. Consequently the

FCC CPI forecasts achieve a larger MSFE reduction of the EWA forecasts (68%) than the FCC

GDP forecasts, who only reduce the EWA MSFE by 57% (see table 6.1).
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(a) Industry (b) Experience (c) Disconsensus

(d) Accuracy (e) Bias (f) Consistency

(g) Acc Momentum (h) Bias Momentum (i) Cons Momentum

(j) Spillover Disconsensus (k) Spillover Accuracy (l) Spillover Bias

(m) Spillover Consistency (n) Spillover Acc Momentum (o) Spillover Bias Momentum

(p) Spillover Cons Momentum

Figure 6.2: Characteristic Coefficients of the GDP Growth Rate.
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To provide further insight into the variation of the coefficients over time, Figure 6.2 plots the

coefficients of the GDP nowcasts and one-step-ahead forecasts. The coefficients for the unem-

ployment rate and the CPI inflation rate are presented in Appendix G. Overall, this figure shows

substantial variation in the coefficients over time. For instance, all coefficients cross the zero

axis multiple times during the estimation period. Hence, again, these results demonstrate the

flexible nature of the FCC model, which allows for variation of the coefficients over time. The

industry dummy exhibits mostly positive coefficients over time. This implies that−in line with

our expectation−forecasts from financial service providers are assigned larger weight by the FCC

method. For all other variables the results are ambiguous, because coefficients are both positive

and negative for a large number of periods. It is worth mentioning that most GDP coefficients

reach exceptional values just after the COVID outlier, highlighting the relevance of a sensitivity

analysis of results estimated without outliers.

6.4 Sensitivity Analysis

This section provides a sensitivity analysis of the results to three factors: (i) the removal of out-

liers, (ii) the averaging of characteristics across forecast horizons, and (iii) the standardisation

of forecaster characteristics to standard deviation one.

Sensitivity to Outliers

To analyse the effect of removing outliers, results were estimated with the most important

outliers removed. Specifically, for both the GDP growth rate and the unemployment rate, the

COVID outliers are removed: Q2 and Q3 2020. For the CPI inflation rate, the outlier during

the Great Recession is removed: Q4 2008.

Table 6.4: MSFE Results without Outliers for the FCC Methods and Benchmarks

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

Panel A: FCC Methods

FCC 0.120 0.133 0.627 0.238 0.178 1.823 4
(9.09%) (2.31%) (15.47%) (-46.15%) (-55.16%) (13.65%)

Panel B: Benchmark Methods

BAM 1.66 0.17 1.85 1.48 0.80 1.74 1
(-13.10%) (-41.03%) (-4.21%) (-58.76%) (-73.52%) (-18.24%)

peLASSO 1.83 0.32 1.48 1.43 0.74 1.84 1
(-16.67%) (-2.33%) (0.22%) (-64.21%) (-75.56%) (-17.56%)

Note: This table presents the MSFE of the FCC method and the relative MSFE of the
BAM and peLASSO benchmarks, estimated without outliers. For the estimation of these
results, time periods 2020 Q2 and 2020 Q3 were removed for the GDP growth rate and the
unemployment rate, as well as the time period 2008 Q4 for the CPI inflation rate. The
percentages in parentheses represent the percentage change from the original MSFE values
estimated with outliers included. The results for the FCC method are estimated with mov-
ing window estimation. The table also presents the results from the MCS procedure: the
method selected into the MCS with 95% certainty is presented in bold. The column “MCS
Count” provides the total number of times a model is selected into the MCS.

38



Table 6.4 presents results with the aforementioned outliers removed: the MSFE of the regular

FCC and the relative MSFEs of the BAM and peLASSO benchmarks. Below each result, the

percentual change in MSFE compared to estimation with outliers included is shown in paren-

theses. Appendix H provides the results estimated without outliers for all of the FCC methods

and benchmarks. Overall, most forecasting errors decrease when the outliers are removed. Im-

portantly, the superior performance of the regular FCC method for the GDP growth rate and

CPI inflation rate remains. However, as expected from Figure 6.1d, the superior forecasting per-

formance of the FCC method for the unemployment rate one-step-ahead forecasts disappears

when the outliers are removed. Instead, the peLASSO method achieves the lowest MSFE and

is selected into the MCS. In conclusion, the results appear relatively robust to the deletion of

outliers, as the superior performance of the FCC model remains in 4 out of 5 cases.

Sensitivity to Horizon Dependence of Forecaster Characteristics

As explained in Section 4, most of the characteristics included depend on the forecast horizon.

That is to say, these characteristics are defined separately for the nowcasts and the one-step-

ahead forecasts. However, information from one horizon may be relevant for combining forecasts

on another horizon. For example, the forecaster accuracy of the nowcasts may also be useful

for the combination of the one-step-ahead forecast. In other words, using characteristics that

include information from both horizons may lead to improved forecasting performance.

For that reason, we present results using characteristics that include information from both

horizons in Appendix H. These results are constructed with characteristics that average the two

horizon dependent characteristics. The results in Appendix H show that the performance of the

FCC method is not improved by averaging the characteristics over horizons. Nevertheless, after

performing the MCS procedure on these results and the benchmarks, the original superiority of

the regular FCC method over the benchmarks remains in all instances. Thus, the results are

robust to the horizon dependence of forecaster characteristics.

Sensitivity to Standardisation of Forecaster Characteristics

As explained in Section 2.2, each forecaster characteristic is standardised to mean zero, such

that the combination weights sum to one. In the original parametric portfolio policy by Brandt

et al. (2009), all characteristics are standardised to a standard deviation of one as well. For that

reason, we assess the robustness of the results when the characteristics are also standardised to

standard deviation one, apart from mean zero.

Appendix H provides the (relative) MSFE results of the FCC methods with forecaster char-

acteristics additionally standardised to standard deviation one. These results exhibit larger

MSFEs for most FCC methods, such that the optimality of the original results remains. This is

in line with our expectation: the additional standardisation of the standard deviation removes

information about the different variability of the characteristics. Nevertheless, after performing

the MCS procedure on the results in Appendix H and the benchmarks, the superiority of the

regular FCC method over the benchmark remains in all instances. Hence, the results are robust

to standardisation of the characteristics to standard deviation one.
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7 Conclusion

This paper develops the Forecaster Characteristics Combination (FCC) method and evaluates

its performance against several benchmarks, using expert panel macroeconomic forecasts. We

conclude that the FCC method proves to be a promising method. It generally outperforms

benchmarks such as the equally weighted average. These results are found with data from the

Survey of Professional Forecasters (SPF), focusing on three key macroeconomic indicators: the

real GDP growth rate, unemployment rate and CPI inflation rate. Notably, the FCC method

demonstrates lower MSFE across two out of three macroeconomic variables: the GDP growth

rate and the CPI inflation rate. Only for the unemployment rate, the benchmarks outperform

the FCC method.

More detailed analysis reveals that the flexibility of the FCC method is key for its favour-

able performance. The FCC method varies the level of importance assigned to each forecaster

characteristic over time. Accordingly, the coefficients assigned to each characteristic show large

variation over time, confirming the flexible nature of the FCC forecast combination method.

Consequently, extensions employing regularisation to the regular FCC method do not improve

forecasting performance. The constraints inherent to these shrinkage techniques limit model

flexibility and, thereby, worsen forecasting performance.

The FCC method’s superior performance is even more prominent during atypical periods,

such as the Great Recession or COVID-19. During these periods, the forecasting error of the

FCC method is significantly lower than the errors of the benchmark methods. Nevertheless,

a sensitivity analysis shows that even when outliers are removed, the FCC method mostly

maintains its superior performance. Broader economic implications suggest that using the FCC

forecast combination method may lead to more reliable macroeconomic forecasts. Although

the FCC method proves even more beneficial during atypical periods, the method may improve

forecasting performance at all times.

A limitation of the application of the FCC method in this paper is that it focuses solely on

expert-based forecasts. However, the FCC method is also applicable to model forecasts. Further

research into the performance of the FCC method when combining model forecasts would be

an interesting area of further research. Another limitation of this paper is that it evaluates the

FCC method using only three macroeconomic variables and two forecast horizons. Although

the FCC method performs better for two of the three economic variables for both horizons, it

remains uncertain how the method performs over longer horizons and for other macroeconomic

variables. Hence, it would be interesting to evaluate the FCC method over more extended

horizons and with a broader range of macroeconomic variables. A final limitation of this paper

is the potential for altering or expanding the set of characteristics included. Research into

determining the optimal set of characteristics for the FCC method would be relevant.

A limitation of the FCC method itself is its assumption that the identified forecaster charac-

teristics remain relevant over the entire forecasting period. It would be worthwhile to investigate

whether incorporating new characteristics or periodically re-evaluating the existing ones could

further improve forecast accuracy. Also, the FCC method as presented in this paper is suitable

for combining point forecasts only. The combination of density forecasts with a method similar

to FCC would be an interesting area of further research.
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Appendix

A OLS Derivation

This appendix derives the least squares estimator for the vector of coefficients in the FCC

method: θh. We start from the objective function provided in equation (7), which is as follows:

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(1 + θ′

hẑi,t,h)× fi,t+h|t




2

, rt+h, fi,t+h|t ∈ R, θh, ẑi,t,h ∈ RQ. (41)

This can be rewritten as:

1

T

T∑
t=1

rt+h −

 Nt∑
i=1

1

Nt
(fi,t+h|t + θ′

hẑi,t,h × fi,t+h|t)




2

, (42)

1

T

T∑
t=1
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 1
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Nt∑
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fi,t+h|t

−

 1

Nt

Nt∑
i=1

θ′
hẑi,t,h × fi,t+h|t)




2

, (43)

1

T

T∑
t=1

rt+h −

 1

Nt

Nt∑
i=1

fi,t+h|t

− θ′
h

 1

Nt

Nt∑
i=1

ẑi,t,h × fi,t+h|t)




2

, (44)

1

T

T∑
t=1

(
yt − θ′

hxt

)2
, xt ∈ RQ. (45)

Note that when moving from equation (44) to (45), we define:

yt := rt+h −

 1

Nt

Nt∑
i=1

fi,t+h|t

 , yt ∈ R, (46)

xt :=
1

Nt

Nt∑
i=1

ẑi,t,h × fi,t+h|t, xt ∈ RQ. (47)

Next, we stack the elements y1, . . . , yT into vector y of dimension T × 1. Additionally, we stack

the transposed vectors x′
1, . . . ,x

′
T into matrix X of dimension T × Q. We leave out the factor

1
T from the minimisation problem in equation (45) as it does not affect the solution. Then, the

minimisation problem from equation (45) can be rewritten as:

∥y −Xθh∥2 , y ∈ RT , X ∈ RT×Q, θh ∈ RQ, (48)

in which ∥.∥2 denotes the L2 norm, y is T × 1, X is T ×Q and θh remains Q × 1, in which Q

is the total number of characteristics included. In equation (48), we recognise an ordinary least

squares minimisation problem, such that we can use the least squares expression to estimate θh:

θ̂h = (X′X)−1X′y. (49)
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B Realisation Data and Transformations

This appendix describes the realisation data used for each of the three macroeconomic variables

under consideration. Additionally, it provides the transformations used to achieve the correct

form of the macroeconomic variables. These transformations are necessary to match the form

of the forecasts from the SPF.

GDP Growth Rate

I evaluate the real GDP growth rate forecasts using the first vintage estimates for real GDP

level. A seasonally adjusted dataset with GDP level estimates is available in billions of real

dollars from the Federal Reserve Bank of Philadelphia. In this dataset, estimates before 1992

concern real GNP and estimates after 1992 concern real GDP. This discrepancy is consistent

with the forecasts, such that level estimates from this dataset can be used directly to construct

GDP growth rates. First vintage real GDP level estimates are available from the fourth quarter

of 1965 up to the fourth quarter of 2023. There is one missing first vintage estimate: for 1995Q4.

For this period, we use the second vintage estimate instead. In total, the number of quarterly

first vintage estimates of real GDP equals 233. We transform the GDP level estimates to growth

rate estimates as follows:

rGDP
t =

GDPt −GDPt−1

GDPt−1 × 100%
(50)

in which rGDP
t denotes the GDP growth rate realisations for t = 1, . . . , T and GDPt denotes the

first vintage GDP level estimate during quarter t.

Unemployment Rate

To evaluate the unemployment rate forecasts, we use the first vintage monthly unemployment

rate estimates from the real-time dataset for macroeconomists by the Federal Reserve Bank of

Philadelphia. Similar to the forecasts, these estimates are seasonally adjusted. The first vintage

estimates are available from Q4 1965 to Q4 2023 and thus cover the entire available period of

unemployment forecasts from the SPF. The unemployment rate estimates from the real-time

dataset for macroeconomists are recorded on a monthly basis. Conversely, the unemployment

rate forecasts are quarterly rather than monthly: they capture the quarterly average of the

underlying monthly levels. Hence, we transform the monthly unemployment rates to quarterly

unemployment rates by averaging the monthly unemployment rates over the three months be-

longing to a certain quarter:

rUMP
t =

∑3
m=1UMPM

tm

3
, t = 1, . . . , T, (51)

in which rUMP
t is the quarterly unemployment rate at quarter t and UMPM

ti is the monthly

unemployment rate retrieved from the Federal Reserve dataset at month m = 1, . . . 3 of quarter

t. We use rUMP
t to evaluate the quarterly unemployment forecasts.
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CPI Inflation Rate

To evaluate the headline CPI inflation rate forecasts we use first vintage monthly CPI level

estimates from Federal Reserve Economic Data (FRED) data base by the Federal Reserve Bank

of St. Louis. We use this dataset rather than the Federal Reserve Bank of Philadelphia dataset

because the FRED dataset contains earlier vintages for CPI level estimates. The values from

these two datasets match during overlapping periods, such that both datasets regard the same

CPI. Similar to the CPI forecasts, the FRED estimates are seasonally adjusted. Monthly first

vintage estimates are available from July 1972 to March 2024. Thus, the FRED dataset covers

the entire forecasting period between Q3 1981 and Q4 2023. Both the estimates and the vintages

are updated on a monthly basis. To construct quarterly vintages we average the three monthly

estimates belonging to a certain quarter.

Whereas the CPI estimates concern CPI level, the forecasts concern the CPI inflation rate,

defined as the annualised quarter-over-quarter percentage change of the quarterly CPI level.

For that reason, we transform the monthly CPI level estimates to quarterly CPI inflation rate

estimates as follows:

CPIQt =
CPIMt1 +CPIMt2 +CPIMt3

3
, t = 1, . . . T (52)

∆
CPIQt

=
CPIQt − CPIQt−1

CPIQt−1

, (53)

rCPI
t = ((1 + ∆CPIt)

4 − 1)× 100, (54)

in which CPIMti is the monthly CPI level obtained from the Federal Reserve data for months

m = 1, 2, 3 in quarter t = 1, . . . T , CPIQt is the quarterly average CPI level at quarter t = 1, . . . , T ,

∆
CPIQt

is the CPI quarter-over-quarter percentage change at time t and rCPI
t is the annualised

quarter-over-quarter percentage change of the quarterly CPI level at quarter t. Thus, rCPI
t is

the realisation estimate used to evaluate the forecasts of the CPI inflation rate.
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C Momentum and Spillover Characteristics

This appendix provides the mathematical expressions for the momentum and spillover charac-

teristics. Note that accuracy momentum and spillover accuracy were already defined in Sections

4.7 and 4.8.

Bias Momentum

Bias momentum is calculated as the square of the average forecasting error over the previous

four time periods:

µi,t,v,h =


(∑t−(1+h)

τ=t−(4+h)
1i,τ,v,hϵ

v
i,τ+h∑t−(1+h)

τ=1 1i,τ+h,v

)2

if
∑t−(1+h)

τ=t−(4+h) 1i,τ,v,h ≥ 1,

0 otherwise,

(55)

in which all variables are as defined before. Hence, bias momentum equals the bias over the pre-

vious four time periods, if forecaster i has provided a forecast during any of these time periods.

Otherwise, bias momentum is set to zero.

Consistency Momentum

Consistency momentum is calculated as the first-order autocorrelation of the forecasting error

over the previous four time periods:

νi,t,v,h =


∑t−(1+h)

τ=t−(3+h)
1i,τ,v,h1i,τ−1,v,h

(
ϵvi,τ+h−ϵ̄vi,t,h

)(
ϵvi,τ+h−1−ϵ̄vi,t,h

)
∑t−(1+h)

τ=1 1i,τ,v,h

(
ϵvi,τ+h−ϵ̄vi,t,h

)2 , if
∑t−(1+h)

τ=t−(4+h) 1i,τ,v,h ≥ 2,

0 otherwise,

(56)

in which all variables are as defined before. Hence, consistency momentum equals the consist-

ency over the previous four time periods, if forecaster i has provided a forecast during any of

these time periods. Otherwise, consistency momentum is set to zero.

Spillover Disconsensus

Spillover disconsensus Ψi, t, v, h is calculated by taking the average disconsensus of the other

macroeconomic variables m,n ̸= v for forecaster i at time t for horizon h:

Ψi,t,v,h =
ψi,t,m,h + ψi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (57)

in which ψi,t,m,h denotes the disconsensus of forecaster i at time t for macroeconomic variable

m and horizon h.

Spillover Bias

Spillover bias Γi,t,v,h is calculated by taking the average bias of the other macroeconomic variables
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m,n ̸= v for forecaster i at time t for horizon h:

Γi,t,v,h =
γi,t,m,h + γi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (58)

in which γi,t,m,h is the bias of forecaster i at time t for macroeconomic variable m and horizon

h.

Spillover Consistency

Spillover consistency ξi,t,v,h is calculated by taking the average consistency of the other macroe-

conomic variables m,n ̸= v for forecaster i at time t for horizon h:

ξi,t,v,h =
ρi,t,m,h + ρi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (59)

in which ρi,t,m,h is the consistency of forecaster i at time t for macroeconomic variable m and

horizon h.

Spillover Accuracy Momentum

Spillover accuracy momentum Λi,t,v,h is the average accuracy momentum of the other macroe-

conomic variables m,n ̸= v for forecaster i at time t for horizon h:

Λi,t,v,h =
ηi,t,m,h + ηi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (60)

in which ηi,t,m,h denotes the accuracy momentum of forecaster i at time t for macroeconomic

variable m and horizon h.

Spillover Bias Momentum

Spillover bias momentum ωi,t,v,h is the average bias momentum of the other macroeconomic

variables m,n ̸= v for forecaster i at time t for horizon h:

ωi,t,v,h =
µi,t,m,h + µi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (61)

in which µi,t,m,h denotes the bias momentum of forecaster i at time t for macroeconomic variable

m and horizon h.

Spillover Consistency Momentum

Spillover consistency momentum Ξi,t,v,h is the average consistency momentum of the other mac-

roeconomic variables m,n ̸= v for forecaster i at time t for horizon h:

Ξi,t,v,h =
νi,t,m,h + νi,t,n,h

2
, m, n ∈ {UMP,CPI,GDP} \ v, m ̸= n, (62)

in which νi,t,m,h denotes the consistency momentum of forecaster i at time t for macroeconomic

variable m and horizon h.
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D Correlation between Characteristics

This appendix provides the table of correlations between characteristics for all three macroeco-

nomic variables.

Table D.1: Correlation between Standardised Characteristics for Horizon h = 0

Exp Disc Acc Bias Cons
Acc Bias Cons Spill. Spill Spill Spill Spill Spill Spill
Mom Mom Mom Disc Acc Bias Cons AM BM CM

Panel A: Real GDP Growth Rate

Ind −0.12 −0.02 −0.09 −0.02 −0.14 −0.05 −0.05 0.02 −0.04 −0.09 −0.01 −0.07 −0.12 −0.13 0.01
Exp −0.02 0.04 −0.14 0.25 0.05 0.09 −0.13 −0.01 −0.05 −0.11 0.21 0.02 0.06 −0.14
Disc 0.19 0.11 −0.01 0.11 0.11 0.01 0.08 0.05 0.02 −0.02 0.06 0.08 0.00
Acc 0.58 0.03 0.44 0.46 −0.03 0.06 0.13 0.02 −0.06 0.07 0.08 −0.03
Bias 0.04 0.19 0.14 0.04 0.02 0.03 0.04 −0.05 0.02 0.00 0.05
Cons 0.04 0.07 0.09 −0.01 −0.08 −0.05 0.26 −0.04 −0.07 0.08
Acc Mom 0.74 −0.03 0.05 0.05 0.01 −0.02 0.13 0.10 −0.01
Bias Mom −0.11 0.07 0.04 0.00 −0.03 0.09 0.15 −0.10
Cons Mom −0.01 −0.01 0.02 0.09 −0.02 −0.07 0.29
Spill Disc 0.05 0.02 −0.01 0.07 0.12 0.01
Spill Acc 0.79 −0.04 0.64 0.30 −0.01
Spill Bias −0.04 0.53 0.02 0.02
Spill Cons −0.01 −0.02 0.13
Spill AM 0.66 −0.01
Spill BM −0.09

Panel B: Unemployment Rate

Ind −0.12 −0.05 0.00 −0.02 −0.06 −0.02 −0.02 0.02 −0.03 −0.10 −0.01 −0.09 −0.12 −0.13 0.01
Exp −0.02 −0.07 −0.19 0.26 0.00 0.01 −0.11 −0.02 −0.04 −0.12 0.22 0.03 0.08 −0.16
Disc 0.03 0.04 0.00 −0.03 0.00 0.01 0.08 0.05 0.05 0.00 0.04 0.03 −0.01
Acc 0.83 −0.01 0.34 0.40 0.01 0.01 0.11 0.02 −0.03 0.05 0.06 0.00
Bias −0.04 0.20 0.27 0.03 0.01 0.18 0.13 −0.06 0.09 0.05 0.03
Cons −0.01 0.03 0.06 0.02 −0.01 −0.05 0.19 0.01 0.01 0.04
Acc Mom 0.60 0.02 0.02 0.04 0.01 0.00 0.10 0.05 0.02
Bias Mom −0.02 0.02 0.04 0.00 0.01 0.06 0.13 −0.03
Cons Mom 0.01 0.00 0.03 0.11 −0.02 −0.10 0.30
Spill Disc 0.09 0.03 −0.03 0.10 0.15 0.01
Spill Acc 0.78 −0.06 0.63 0.32 −0.02
Spill Bias −0.02 0.52 0.03 0.03
Spill Cons −0.02 −0.03 0.15
Spill AM 0.68 −0.03
Spill BM −0.12

Panel C: CPI Inflation Rate

Ind −0.11 −0.02 −0.10 −0.01 −0.07 −0.12 −0.13 0.00 −0.05 −0.04 −0.03 −0.11 −0.05 −0.05 0.03
Exp −0.01 −0.05 −0.12 0.25 0.03 0.08 −0.13 −0.01 0.00 −0.25 0.34 0.04 0.08 −0.15
Disc 0.08 0.06 0.00 0.09 0.11 0.00 0.09 0.05 0.00 0.00 0.04 0.07 0.01
Acc 0.82 −0.04 0.68 0.31 −0.01 0.09 0.17 0.14 −0.04 0.07 0.06 0.00
Bias −0.01 0.61 0.04 0.03 0.05 0.03 0.14 −0.07 0.01 0.01 0.03
Cons 0.00 −0.01 0.12 0.01 0.03 −0.04 0.25 0.02 0.01 0.14
Acc Mom 0.65 −0.01 0.08 0.09 0.08 −0.02 0.12 0.13 −0.03
Bias Mom −0.10 0.10 0.12 0.04 −0.04 0.11 0.20 −0.11
Cons Mom −0.01 −0.01 0.03 0.06 0.03 −0.03 0.26
Spill Disc 0.06 0.05 0.02 0.05 0.04 0.00
Spill Acc 0.59 −0.03 0.27 0.30 −0.01
Spill Bias −0.11 0.08 0.06 0.04
Spill Cons 0.02 0.08 0.10
Spill AM 0.54 0.02
Spill BM −0.08

Note: This table presents the correlations between characteristics for the nowcasts of all three macroeconomic
variables. The abbreviations used for the characteristics can be found in Table 4.1.
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E Model Confidence Set Procedure

This appendix provides further details about the MCS approach by Hansen et al. (2011) and our

implementation. There are several benefits to the MCS approach. For example, a nice feature

of the MCS approach is that it considers the informativeness of the data used. Informative data

results in a compact MCS, while uninformative data leads to a larger MCS, potentially including

all employed models. Additionally, the MCS approach allows for the possibility that more than

one model is superior.

Our implementation of the MCS is as follows. We run the MCS procedure using the squared

forecasting error as loss function to determine the best performing model. To implement the

MCS approach, we use the bootstrap implementation because of its simplicity: it avoids the

estimation of high dimensional covariance matrices (Hansen et al., 2011). The bootstrap MCS

algorithm is presented in Algorithm 1. Furthermore, we employ the model-confidence-set

Python package (Chassot, 2024). Following Hansen et al. (2003) we set the number of bootstrap

resamples equal to 1000 and use a confidence level of 95%.

Algorithm 1 MCS Algorithm

• Step 0: Initialisation.

– Set the initial set of models under consideration M to the total set of models M0.
Thus, set M =M0.

– Define a loss function, we use the squared forecasting error.

– For each pair of models A and B calculate the loss differential lA,B,t = SFEA,t −
SFEB,t, in which SFEA,t denotes the squared forecasting error of model A at time t.

• Step 1: Test Statistic. Calculate the test statistics for the null hypothesis that all
models in the set M have equal predictive ability. As suggested by Hansen et al. (2011),
we use the maximum pairwise loss differential statistic, which is calculated as the max-
imum absolute value of the pairwise loss differentials.

• Step 2: Bootstrap Procedure.

– Generate bootstrap samples from the loss differentials by resampling with replace-
ments.

– Compute the test statistic for each bootstrap sample.

• Step 3: Elimination

– Calculate the p-values for the test statistics based on the bootstrap distribution.

– Remove the model with the largest p-value from the M set.

• Step 4: Iterative Testing Repeat the bootstrap and elimination steps until no model
can be removed from the set M at the required level of confidence.
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F Regularisation Results

This appendix provides the percentage of time periods during which a coefficient is set to zero

by the regularisation techniques. Note that Table F.1 includes percentages for LASSO (panel

A) and Elastic Net (panel B), but not for post-LASSO because the shrinkage percentages of

post-LASSO are identical to LASSO.

Table F.1: Percentage of Time Periods during Which Coefficients Are Set to Zero by Regular-
isation

Variable
Nowcasts One-Step-Ahead

GDP UMP CPI GDP UMP CPI

Panel A: LASSO Shrinkage to Zero (in %)

Financial Dummy 85.08 52.49 68.46 95.03 72.93 92.31
Experience 63.54 57.46 76.92 66.85 53.04 86.15
Disconsensus 78.45 51.38 33.08 75.14 81.22 84.62
Accuracy 95.03 96.69 11.54 93.92 91.71 53.85
Bias 98.90 100.00 73.08 98.90 100.00 76.15
Consistency 86.74 71.27 86.92 97.79 96.13 88.46
Accuracy Momentum 81.77 91.71 38.46 94.48 94.48 53.85
Bias Momentum 83.98 93.92 75.38 96.69 98.90 53.85
Consistency Momentum 100.00 86.74 78.46 99.45 91.16 92.31
Spillover Disconsensus 97.79 83.98 92.31 90.61 87.85 93.08
Spillover Accuracy 74.59 51.38 97.69 88.40 71.27 93.85
Spillover Bias 87.85 60.77 97.69 80.11 74.03 100.00
Spillover Consistency 83.43 95.03 86.15 99.45 92.27 97.69
Spillover Accuracy Momentum 40.88 60.77 97.69 58.56 39.78 87.69
Spillover Bias Momentum 79.01 43.09 96.92 88.40 75.69 97.69
Spillover Consistency Momentum 93.92 95.03 90.77 98.34 95.58 92.31

Panel B: Elastic Net Shrinkage to Zero (in %)

Financial Dummy 71.27 52.49 52.31 85.08 69.06 90.00
Experience 57.46 53.04 63.08 61.33 53.59 79.23
Disconsensus 61.33 45.30 27.69 69.06 69.06 83.08
Accuracy 72.38 87.29 6.92 86.74 87.29 47.69
Bias 90.06 95.58 60.00 97.24 96.69 76.92
Consistency 83.43 68.51 78.46 86.74 88.40 90.77
Accuracy Momentum 64.09 74.03 30.77 86.74 85.64 43.08
Bias Momentum 69.06 69.06 73.85 90.61 91.16 46.15
Consistency Momentum 85.64 68.51 66.92 90.61 80.66 90.00
Spillover Disconsensus 83.43 68.51 87.69 82.87 81.22 91.54
Spillover Accuracy 65.75 49.17 90.00 81.22 63.54 87.69
Spillover Bias 79.56 51.38 94.62 69.06 66.85 94.62
Spillover Consistency 79.56 85.08 83.08 93.37 77.90 93.08
Spillover Accuracy Momentum 32.60 49.72 90.77 56.91 35.91 85.38
Spillover Bias Momentum 67.40 36.46 96.15 76.24 61.88 90.00
Spillover Consistency Momentum 79.56 75.69 76.92 88.40 83.98 93.08

Note: This table presents the percentage of time periods during which a coefficient was set to zero by regularisa-
tion. Panel A presents the shrinkage percentages for LASSO regularisation, Panel B for Elastic Net regularisa-
tion. “GDP” denotes the GDP growth rate, “UMP” the unemployment rate and “CPI” the CPI inflation rate.
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G Coefficients of Unemployment and CPI inflation over Time

This appendix presents the coefficients over time for the unemployment and CPI inflation rate.

(a) Industry (b) Experience (c) Disconsensus

(d) Accuracy (e) Bias (f) Consistency

(g) Acc Momentum (h) Bias Momentum (i) Cons Momentum

(j) Spillover Disconsensus (k) Spillover Accuracy (l) Spillover Bias

(m) Spillover Consistency (n) Spillover Acc Momentum (o) Spillover Bias Momentum

(p) Spillover Cons Momentum

Figure G.1: Characteristic Coefficients of the Unemployment Rate.
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(a) Industry (b) Experience (c) Disconsensus

(d) Accuracy (e) Bias (f) Consistency

(g) Acc Momentum (h) Bias Momentum (i) Cons Momentum

(j) Spillover Disconsensus (k) Spillover Accuracy (l) Spillover Bias

(m) Spillover Consistency (n) Spillover Acc Momentum (o) Spillover Bias Momentum

(p) Spillover Cons Momentum

Figure G.2: Characteristic Coefficients of the CPI Inflation Rate.
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H Sensitivity Analysis Results

This appendix provides additional results of the sensitivity analysis.

Table H.1: MSFE Results without Outliers for the FCC Methods and Benchmarks

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

Panel A: FCC Methods

FCC 0.120 0.133 0.627 0.238 0.178 1.823 4
(9.09%) (2.31%) (15.47%) (-46.15%) (-55.16%) (13.65%)

FCC-Ridge 1.58 1.03 1.71 1.59 1.40 1.70 0
(-0.53%) (-4.86%) (5.82%) (-57.86%) (-60.10%) (-3.96%)

FCC-LASSO 1.50 1.02 1.67 1.46 1.30 1.68 0
(1.12%) (3.05%) (-2.15%) (-62.04%) (-63.58%) (-16.25%)

FCC-postLASSO 1.43 1.03 1.65 1.42 1.17 1.61 0
(0.59%) (3.01%) (1.27%) (-61.83%) (-63.27%) (-17.36%)

FCC-ENet 1.52 1.02 1.70 1.48 1.33 1.76 0
(1.11%) (1.50%) (1.33%) (-61.53%) (-63.41%) (-14.39%)

FCC-C-Simple 1.75 1.02 2.22 1.54 1.46 1.81 0
(-9.48%) (-7.48%) (-8.53%) (-56.12%) (-61.34%) (-15.30%)

FCC-C-LASSO 1.71 1.01 2.10 1.52 1.42 1.87 0
(-7.66%) (-9.46%) (-3.94%) (-56.07%) (-59.55%) (-12.26%)

FCC-C-ENet 1.75 1.02 2.23 1.54 1.46 1.81 0
(-9.87%) (-8.11%) (-7.04%) (-56.12%) (-61.34%) (-15.30%)

Panel B: Benchmark Methods

EWA 1.83 0.20 2.38 1.63 0.94 2.06 0
(-14.45%) (-62.32%) (-12.84%) (-59.39%) (-74.96%) (-16.21%)

Median 1.78 0.17 2.44 1.63 0.90 2.07 0
(-14.74%) (-68.06%) (-11.52%) (-60.16%) (-75.15%) (-16.60%)

Trimmed Mean 1.83 0.20 2.38 1.63 0.94 2.06 0
(-14.73%) (-63.38%) (-12.53%) (-59.43%) (-74.46%) (-16.10%)

BAM 1.66 0.17 1.85 1.48 0.80 1.74 1
(-13.10%) (-41.03%) (-4.21%) (-58.76%) (-73.52%) (-18.24%)

dMSFE (δ = 0.9) 1.88 4.11 4.36 1.63 3.37 2.54 0
(-13.08%) (79.93%) (6.80%) (-53.31%) (-15.97%) (-13.06%)

dMSFE (δ = 0.95) 1.85 4.10 4.20 1.61 3.34 2.49 0
(-11.55%) (82.27%) (9.83%) (-55.16%) (-17.25%) (-11.55%)

dMSFE (δ = 1.0) 1.82 4.09 3.94 1.59 3.31 2.36 0
(-9.54%) (84.41%) (11.21%) (-57.00%) (-17.83%) (-11.26%)

peLASSO 1.83 0.32 1.48 1.43 0.74 1.84 1
(-16.67%) (-2.33%) (0.22%) (-64.21%) (-75.56%) (-17.56%)

Note: This table presents the MSFE of the FCC method and the relative MSFE of the bench-
marks, estimated without outliers. For the estimation of these results, time periods 2020 Q2 and
2020 Q3 were removed for the GDP growth rate and the unemployment rate, as well as the time
period 2008 Q4 for the CPI inflation rate. The percentages in parentheses represent the percent-
age change from the original MSFE values estimated with outliers included. The results for the
FCC method are estimated with moving window estimation. The table also presents the results
from the MCS procedure: the method selected into the MCS with 95% certainty is presented in
bold.
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Table H.2: MSFE Results with Characteristics Averaged over Forecasting Horizons

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

FCC 0.123 0.130 0.572 0.556 0.472 1.433 6
(11.82%) (0.00%) (5.34%) (25.79%) (18.87%) (-10.67%)

FCC-Ridge 1.41 1.30 1.72 1.47 1.36 2.28 0
(-8.95%) (17.36%) (-3.06%) (-8.99%) (2.56%) (1.21%)

FCC-LASSO 1.37 1.05 1.65 1.45 1.33 2.99 0
(-5.06%) (4.58%) (-11.59%) (-11.63%) (-1.10%) (17.12%)

FCC-postLASSO 1.33 1.02 1.54 1.38 1.21 2.98 0
(-3.53%) (0.00%) (-13.63%) (-13.26%) (0.70%) (17.83%)

FCC-ENet 1.40 1.08 1.73 1.41 1.32 2.97 0
(-4.44%) (5.26%) (-5.52%) (-14.10%) (-3.57%) (13.76%)

FCC-C-Simple 1.85 1.15 2.71 1.51 1.41 2.75 0
(-2.16%) (2.04%) (1.71%) (0.48%) (0.00%) (1.34%)

FCC-C-LASSO 1.75 1.11 2.57 1.46 1.45 2.73 0
(-3.15%) (-2.70%) (5.98%) (-1.21%) (10.44%) (0.46%)

FCC-C-ENet 1.84 1.18 2.64 1.51 1.41 2.75 0
(-2.92%) (4.05%) (1.50%) (0.48%) (0.00%) (1.34%)

Note: This table presents the MSFE of the FCC method and the relative MSFE
of the extensions, for which the characteristics have been averaged over the
horizons. The MSFE of the FCC method is presented in italics because it
shows the MSFE rather than the relative MSFE. The results are estimated
with moving window estimation. Below each result, the percentual difference
with the original result from Table 6.1 is presented between parentheses. The
table also presents the results from the MCS procedure: the method selected
into the MCS with 95% certainty is presented in bold. The column “MCS
Count” provides the total number of times a model is selected into the MCS.
In this table, “GDP” stands for the real GDP growth rate, “UMP” for the
unemployment rate and “CPI” for the CPI inflation rate.

Table H.3: MSFE Results with Characteristics with Standardised Standard Deviation

Combination
Method

Nowcast One-Step-Ahead MCS
CountGDP UMP CPI GDP UMP CPI

FCC 0.130 0.133 0.633 0.425 0.358 1.880 6
(18.18%) (2.31%) (16.57%) (-3.85%) (-9.82%) (17.20%)

FCC-Ridge 1.60 1.08 1.58 2.05 1.80 2.02 0
(9.09%) (2.50%) (14.70%) (-2.78%) (3.67%) (2.41%)

FCC-LASSO 1.51 1.00 1.63 2.16 1.75 2.27 0
(11.18%) (2.31%) (3.80%) (0.66%) (-1.88%) (16.30%)

FCC-postLASSO 1.52 1.01 1.42 1.94 1.75 2.20 0
(12.35%) (3.08%) (8.12%) (-7.21%) (-1.05%) (15.96%)

FCC-ENet 1.53 1.00 1.60 1.83 1.73 2.22 0
(10.67%) (2.31%) (6.43%) (-15.08%) (-4.19%) (11.48%)

FCC-C-Simple 1.89 1.12 2.48 1.92 1.86 2.16 0
(5.98%) (1.36%) (11.53%) (-2.40%) (-0.45%) (10.48%)

FCC-C-LASSO 1.85 1.10 2.18 1.91 1.97 2.11 0
(4.93%) (1.46%) (12.01%) (-0.40%) (13.18%) (7.63%)

FCC-C-ENet 1.86 1.12 2.40 1.92 1.86 2.16 0
(6.08%) (1.54%) (11.24%) (-2.40%) (-0.45%) (10.48%)

Note: This table presents the MSFE of the FCC method and the relative MSFE
of the extensions, for which the characteristics have been standardised to stand-
ard deviation one. Note that the MSFE of the FCC method is presented in
italics because it shows the MSFE rather than the relative MSFE. The results
are estimated using moving window estimation. Below each result, the per-
centual difference with the original result from Table 6.1 is provided between
parentheses. The table also presents the results from the MCS procedure: the
method selected into the MCS with 95% certainty is presented in bold. The
column “MCS Count” provides the total number of times a model is selec-
ted into the MCS. In this table, “GDP” stands for the real GDP growth rate,
“UMP” for the unemployment rate and “CPI” for the CPI inflation rate.
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