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Abstract

Clustering analysis is fundamental in unsupervised learning to to identify natural group-

ings within a dataset. Traditional clustering algorithms often encounter instability due to

the non-convex nature of their objective functions. In contrast, convex clustering meth-

ods offer stability by optimizing a global objective, ensuring consistent clustering outcomes.

This thesis introduces a novel approach designed to handle datasets with both numerical

and categorical features. Building upon the AMA algorithm by Chi and Lange (2015) and

incorporating methodologies from M. Wang and Allen (2021) and Witten and Tibshirani

(2010), our convex clustering method integrates feature selection within a convex cluster-

ing framework. This method additionally addresses the challenge of high-dimensional data,

where feature reduction is critical for effective clustering. Through extensive simulation ex-

periments and application to gene expression datasets, our method demonstrates superior

performance over traditional clustering methods. It effectively identifies both convex and

non-convex cluster shapes while selecting features essential for accurate clustering. This

capability proves crucial in scenarios with substantial feature noise. Overall, we present

our method as a solution for clustering (high dimensional) mixed data, ensuring stable and

accurate cluster identification in complex real-world datasets.

1 Introduction

Clustering analysis is a popular method in data mining and pattern recognition used to find

natural groupings or clusters in a dataset. It helps uncover patterns and relationships in the

data, making it easier to explore and make decisions. Clustering is used in many areas, such as

customer segmentation, image analysis, and detecting anomalies. There are various algorithms

that have unique ways of defining clusters and finding them efficiently. For example, hierarchical

clustering algorithms (Patel, Sihmar & Jatain, 2015) look at how data points connect, k-means

clustering (MacQueen et al., 1967) groups data around central points, and distribution based

models like the Gaussian mixture model (Dempster, Laird & Rubin, 1977) assume a certain data

distribution and calculate the probability that each observations belongs to a certain cluster.

However, most popular clustering methods suffer from instability due to the non-convex

nature of the optimization problem, and this instability mainly comes from how they start the

process. This general clustering approach selects certain observations as initial centroids, leading

to varying cluster allocations with different starting centroids. To address this instability, one

approach is to run the algorithm multiple times (Arthur & Vassilvitskii, 2006) with different

starting centroids and select the cluster allocation based on criteria such as the Silhouette coef-

ficient, Gap statistic, or Elbow method. However, these methods may yield inconclusive results

as they may not agree on the optimal number of clusters. Alternatively, focusing on a centroid

initialization scheme (Xu, Xu, Zhang, Zhang & Hou, 2009; Lemaire, Ismaili & Cornuéjols, 2015)

rather than relying on chance selection may mitigate this issue, although it does not guarantee

finding the optimal clustering.

Moreover, datasets often contain both numeric and categorical features, although stand-

ard clustering implementations typically assume datasets with solely numerical features. Both

types of data can significantly influence object clustering, making a method capable of handling

both types preferable. Fortunately, most clustering methods can be accommodated to handle
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categorical data by incorporating different loss functions for each data type. For example, K-

prototypes (Huang, 1997) incorporates different losses for numerical and categorical data type,

while hierarchical clustering employs predefined dissimilarity measures such as the Gower dis-

tance (Gower, 1971), which is a popular distance measure for mixed data types. However, these

methods still face the same instability issues as their counterparts that handle only numerical

data since they are based on the same non-convex algorithm. Additionally, not all features

hold equal importance for clustering, with noisy features potentially leading to a less accurate

clustering. An algorithm equipped to filter out unimportant features could enhance both cluster

accuracy and interpretability.

To address the above problems, this thesis proposes a novel convex clustering algorithm

capable of handling mixed data, including both numerical and categorical features. The al-

gorithm also incorporates the functionality of feature selection, in order to yield interpretable

clusters. Our algorithm extends the convex clustering algorithm based on AMA by Chi and

Lange (2015)to incorporate categorical features. Moreover, by incorporating the feature selec-

tion framework proposed by Witten and Tibshirani (2010) and M. Wang and Allen (2021), the

algorithm implements a more rigorous approach to select features. Summarizing, our method

investigates the following research question: “How can we extend the convex clustering frame-

work to incorporate both numerical and categorical data, while also performing feature selection

in high-dimensional datasets?”

Our results demonstrate that our mixed convex clustering algorithm can nearly perfectly

retrieve both spherical and non-spherical clusters. This is shown through simulations using

data generated from Gaussian distributions as well as the Half-Moon dataset. By varying the

amount of noise in the data, we found that convex clustering still effectively recovered the true

cluster shapes. Furthermore, when applied to a high-dimensional mixed gene expression dataset,

our method successfully selected the relevant features to accurately identify the true clusters.

Therefore, our contribution to the literature lies in introducing a convex clustering algorithm

adept at processing both numerical and categorical data in high-dimensional datasets.

In Section 2, we provide a general overview of convex clustering, examining different al-

gorithms and applications. Following this, Section 3 briefly summarizes the dataset that is used

in this study and how it is obtained. Section 4 provides a detailed explanation of our novel

convex clustering approach. Then, we begin by evaluating its performance on simulated data,

detailed in Section 5, where we analyze its ability to accurately detect clusters under controlled

conditions. Moving to Section 6, we present the outcomes of applying our method to a real-world

dataset, showcasing its performance in uncovering groups compared to other methods. Finally,

in Section 7, we briefly summarize our findings, and discuss their implications, and highlight

avenues for future research in the field of convex clustering.

2 Literature

Cluster analysis is the task of grouping a set of objects in such a way that objects within the

same group are more similar to each other than to those in separate groups. A popular algorithm
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is the k-means algorithm. The k-means algorithm minimizes the following objective function:

K∑
k=1

∑
i∈Ck

||xi − x̄k||2 (1)

The basic concept to solve this objective is the following: Beginning with an initial clustering

that may not be optimal, move each point to its closest new center, adjust the clustering centers

by computing the mean of the member points, and continue this relocation and updating process

until certain convergence criteria. While this approach is conceptually simple and computation-

ally scalable, it generally converges to spurious local solutions both in theory and in practice

(Qian, Zhang & Chen, 2021). One way to deal with the initialization of the clusters is by using

multiple random starts or choose the initial cluster centers carefully. For example, Su and Dy

(2004) propose a deterministic method based on Principal component analysis, while Jia and

Song (2020) propose an initialization scheme based on density. However, despite the potential

improvements in clustering and convergence offered by these methods, there is still no guarantee

of achieving an optimal global solution. In addition, this method proves to be less effective in

high-dimensional datasets due to the presence of possible noise and outliers (X.-D. Wang, Chen

& Yan, 2019). Moreover, this algorithm is confined to spherical cluster structures which limits its

ability to capture more complex structures (Drineas, Frieze, Kannan, Vempala & Vinay, 2004).

Challenges also arise with different variable types, namely categorical and numerical data.

Model-based clustering approaches represent another methodology for clustering objects.

These approaches operate under the assumption that observations are generated from specific

distributions. For instance, in Gaussian Mixture Models (GMMs), it is assumed that the data

arise from a mixture of K components, each characterized by its own Gaussian density para-

metrized by mean µ and covariance matrix Σ. The objective is to minimize the log likelihood

function given by:
n∏

i=1

K∑
k=1

πkϕ(xi|µk,Σk) (2)

Dempster et al. (1977) introduced the Expectation-Maximization (EM) algorithm to optimize

this objective. Despite the popularity of this method, one drawback of model-based approaches

lies in the assumption of a predefined underlying distribution. Moreover, similar to the K-means

algorithm, the EM algorithm is susceptible to convergence to local optima, which can lead to

instability in the clustering results.

Another group of clustering methods diverge from optimizing explicit objective functions and

instead adopt heuristic approaches. These include connectivity-based methods like hierarchical

clustering and density-based methods such as Density-based spatial clustering of applications

with noise (DBSCAN) (Ester, Kriegel, Sander, Xu et al., 1996). However, these methods often

require more careful parameter tuning than models which optimize an objective. For example,

hierarchical clustering includes various linkages such as single linkage (which connects clusters

based on their closest points) and average linkage (which connects clusters based on the av-

erage distance). Each method may yield different clustering outcomes. Thus, the selection of

parameters plays a crucial role.

Furthermore, addressing high-dimensional datasets may entail applying feature selection
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procedures, such as decomposing the original data matrix into a smaller, sparse matrix and

conducting clustering on it (Tamayo et al., 2007; Bernardo et al., 2003). However, Witten and

Tibshirani (2010) argue that there is no assurance that this decomposed matrix contains the

desired signal for clustering detection. In fact, Chang (1983) explore the impact of perform-

ing Principal Component Analysis (PCA) to reduce data dimensionality before clustering and

discover that the principal components with the largest eigenvalues may not always yield op-

timal subgroup separation. Therefore, an alternative approach involves applying a penalty to

induce sparsity in the features (S. Wang & Zhu, 2008; Xie, Pan & Shen, 2008), as model-based

clustering naturally lends itself to this approach. This is the approach we will adopt as well.

To deal with the problem of local optimum, we utilize the convex clustering method. The

earliest mentions of convex clustering are by Pelckmans, De Brabanter, Suykens and De Moor

(2005); Lindsten, Ohlsson and Ljung (2011); Hocking, Vert, Bach and Joulin (2011). Lindsten

et al. (2011) formulates convex clustering as a convex relaxation of k-means clustering, while

Hocking et al. (2011) explain it as a convex relaxation of hierarchical clustering. This approach

formulates the clustering task as a convex optimization problem, such that we do end up in

a global solution. Lindsten et al. (2011) also show that convex clustering is able to capture

non-convex cluster shapes. The objective that we seek to minimize is the following:

min
A∈Rn×p

1

2

n∑
i=1

||xi· − ai·||2q + γ
∑
l∈E

wl||al1 − al2 ||q, (3)

where xi denotes the data for observation i and ai denotes the cluster centroids assigned to

observation i. The algorithm groups observations into the same cluster by determining whether

the cluster centroids are close enough, a process controlled by γ in the second term, which

encourages shrinkage of cluster centroids.

Several studies have delved into the properties of convex clustering. Tan and Witten (2015)

establish that convex clustering is closely related to single linkage hierarchical clustering and k-

means clustering, determining the tuning parameter range for non-trivial solutions and offering

a finite sample bound for prediction error. Panahi, Dubhashi, Johansson and Bhattacharyya

(2017) and Zhu, Xu, Leng and Yan (2014) prove perfect recovery of the convex clustering model

with uniformly weighted all-pairwise-differences regularization, Additionally, Sun, Toh and Yuan

(2021) establish sufficient conditions for the perfect recovery guarantee of the general weighted

convex clustering model.

Despite the advantages, convex clustering’s adoption remains limited due to its computa-

tionally intensive nature (Weylandt, Nagorski & Allen, 2020). This motivates our focus on

achieving fast computation time, a key advantage of methods like K-Means and hierarchical

clustering. Fortunately, several efficient algorithms have been proposed for convex clustering.

Chi and Lange (2015) present two splitting splitting methods for convex clustering based on

Alternating Direction Method of Multipliers (ADMM) and Alternation Minimization Algorithm

(AMA). Weylandt et al. (2020) extends these methods by applying Algorithmic Regularization

Paths, which showed increases in computation time. Additionally, Sun et al. (2021) propose an

efficient algorithm based on a semismooth Newton-based augmented Lagrangian method, while

Touw, Groenen and Terada (2023) utilize majorization minimization for convex clustering.
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Thus, multiple efficient algorithms for convex clustering have been proposed. However,

addressing datasets with high dimensions and categorical data poses additional challenges.

B. Wang, Zhang, Sun and Fang (2018) tackle the high-dimensional clustering scenario by em-

ploying an adaptive group-lasso penalty. They formulate sparse convex clustering for purely

numerical data as follows:

min
A∈Rn×p

1

2

n∑
i=1

||xi· − ai·||2q + γ
∑
l∈E

wl||al1 − al2 ||q + β

p∑
j=1

µj ||aj ||22, (4)

where we add an additional parameter β that penalizes large values of feature values, and µj

is an adaptive weight that adjusts the weights of the features based on their importance. In

particular, the data is centered such that we expect feature j to be informative if ||aj ||22 > 0.

As an extension, M. Wang and Allen (2021) introduce the Integrative Generalized Convex

Clustering Optimization (iGecco) method, which integrates various data views, including numer-

ical and categorical data. iGecco, based on ADMM, performs feature selection by incorporating

penalties and weights on the features using a similar adaptive group-lasso penalty as B. Wang et

al. (2018). Each feature is shrunken towards their respective loss center. The relevant features

are then features that are deviate from their specific loss center. Their generalized formulation

is described as follows:

min
A∈Rn×p

n∑
i=1

M∑
m=1

Lm(xm
i ,ami ) + γ

∑
l∈E

wl

√
||al1 − al2 ||22 + β

pm∑
j=1

µ
(m)
j ||aj − ãj ||2, (5)

where Lm denotes the loss function for data type m and ãj denotes the loss-specific centers for

each data view. M. Wang and Allen (2021) note that their method can be seen as a generalization

of the sparse convex clustering method by B. Wang et al. (2018) as it incorporates different losses

for various data views, while also employing an identical Lasso-type penalty. Specifically, iGecco

represents the sparse convex clustering method by B. Wang et al. (2018) when the data type is

solely numerical, utilizing a squared Euclidean loss function and centered data.

Our approach shares similar objectives with M. Wang and Allen (2021) but takes a different

route. Chi and Lange (2015) highlight the efficiency of AMA compared to the ADMM. Therefore,

our approach incorporates the AMA algorithm. Furthermore, rather then only employing an

adaptive group lasso penalty, we include a Ridge penalty which aims to shrink features towards

their specific loss function. Our objective with this penalty is to solely shrink the variables

without selecting them.

Given the critical role of feature selection in clustering, our objective is to implement a more

rigorous approach to ensure the selection of optimal features. For feature selection, we combine

the feature penalty approach with a different framework for feature selection in clustering,

specifically a lasso-type penalty proposed by Witten and Tibshirani (2010), which also considers

inter- and intra-cluster similarity. Their method proved to be very effective in high-dimensional

dataset.

However, we note that Witten and Tibshirani (2010) employed the standard K-means method,

which is known for its sensitivity to local optima. Consequently, our method can be viewed as an

extension of their framework, as we incorporate a convex clustering method that achieves global
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solutions and while also modifying the feature selection approach. Additionally, our convex

clustering method accommodates both numerical and categorical features.

3 Data

We assess the performance of our mixed convex clustering algorithm on datasets that contain

both numerical and categorical data. To achieve this, we utilize a combination of simulated and

various real datasets. In the simulated datasets, we control over the number of features and

noise levels to evaluate the algorithm’s robustness. The simulation study is further described in

Section 5. Moreover, for our real datasets, we focus on a high-dimensional mixed datasets.

In particular, we use a Gene expression dataset that originates from a proof-of-concept study

published by Golub et al. (1999). The dataset is available from https://www.kaggle.com/

datasets/crawford/gene-expression?select=data set ALL AML independent.csv. Golub

et al. (1999) aim to develop a generic approach to cancer classification based on gene expression

monitoring by DNA microarrays. They used human acute leukemias as a test case. A class

discovery procedure correctly discovered the difference between acute myeloid leukemia (AML)

and acute lymphoblastic leukemia (ALL) without prior knowledge of the classes.

However, in our study, we approach the dataset with the goal of clustering rather than clas-

sification. Our objective is to evaluate the quality of clusters obtained by clustering algorithms

when the true class labels (AML and ALL) are treated as potential clusters. This approach al-

lows us to assess how well clustering methods can group similar gene expression profiles without

prior knowledge of class labels.

The study utilizes two datasets: an initial training dataset comprising 38 samples and an

independent test dataset consisting of 34 samples. These datasets include numerical measure-

ments from bone marrow and peripheral blood samples for both acute lymphoblastic leukemia

(ALL) and acute myeloid leukemia (AML). The intensity values have been rescaled to ensure

that the overall intensities for each chip are equivalent. Moreover, the datasets contains categor-

ical features which indicate whether a certain gene is abstent (A), present (P) or marginal (M),

which indicates that it is too close to call. Liu et al. (2002) further explain the construction

of these call columns. There are exactly 7126 numerical and categorical features, where each

numerical and categorical feature corresponds to a gene expression.

Lastly, we note that the initial and training datasets are both imbalanced. The initial

dataset contains 38 observations, including 27 ALL patients and 11 AML patients. While

the independent dataset contains 34 observations consisting of 20 ALL patients and 14 AML

patients. Thus, the imbalance ratio is 2.45 for the training data and 1.43 for the independent

dataset.

4 Methodology

Several algorithms have been proposed to solve convex clustering efficiently. Touw et al. (2023)

introduce convex clustering through majorization-minimization (CCMM), employing iterative

procedures involving cluster fusions and a highly efficient updating scheme utilizing diagonal
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majorization. On the other hand, Sun et al. (2021) opted for a semismooth Newton-based aug-

mented Lagrangian method. Through extensive numerical experiments conducted on simulated

and real data, they demonstrate that their algorithm is highly efficient and robust for solv-

ing large-scale problems. Additionally, Chi and Lange (2015) put forth two splitting methods

based on Alternating Direction Method of Multipliers (ADMM) and Alternating Majorization-

Minimization Algorithm (AMA). Notably, they find that AMA outperforms ADMM signific-

antly. In this thesis, the choice falls on the AMA algorithm for two reasons. Firstly, AMA

exhibits notable computational efficiency, which is crucial for addressing high-dimensional con-

vex clustering problems effectively. Secondly, the algorithm has an elegant simplicity, marked

by straightforward steps and a rigorous stopping criterion for achieving optimality. Hence, the

AMA algorithm is selected as the preferred approach for the clustering tasks undertaken in this

thesis.

The methodology section is organized as follows: Section 4.1 provides an overview of the

general convex clustering framework. The extension of this framework to accommodate both

numerical and categorical data is discussed in Section 4.2. Following this, Section 4.3 addresses

tuning of the weights in convex clustering and balancing the contributions of numerical and

categorical features. Choosing the weights smartly can drastically improve cluster accuracy

and computational efficiency. Subsequently, we detail the implementation of convex clustering

for mixed data in Section 4.4. This section covers the main topics including an explanation

of the modified AMA algorithm, cluster fusions,feature selection scheme and tuning considera-

tions. Lastly, we introduce the benchmark models utilized in this thesis in Section 4.5, and the

evaluation metrics employed are described in Section 4.6.

4.1 Convex Clustering Framework

Convex clustering calculates cluster centroids by solving the minimization of a convex function.

Rather then assigning each observation to a cluster, it assigns each observation to a cluster

centroid. If the cluster centroids of two observations are sufficiently similar, then they belong to

the same cluster. Let X ∈ Rn×p denote the data matrix, where n is the amount of observations

and p the amount of features, and A ∈ Rn×p indicate the cluster centroids associated with

each observation. Hence, each xi ∈ Rp for i = 1, . . . , n is assigned to a cluster centroid ai for

i = 1, . . . , n. The convex clustering objective can then be formulated as follows:

min
A∈Rn×p

1

2

n∑
i=1

||xi· − ai·||2q + γ
∑
l∈E

wl||al1 − al2 ||q, (6)

where E = {l = (li1 , li2) : wl > 0, i1 < i2} is the set defined over all pairs of centroid centers with

non-zero weights wl. Moreover γ controls for the amount of cluster fusions. The larger the value

of γ, the more cluster centroids become fused together. When γ = 0, the optimal solution for

Â is the input matrix X. Conversely, as γ tends to infinity, the optimal solution Â converges

to the average matrix X̄.
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4.2 Convex Clustering with numerical and categorical data

The previous described convex clustering framework is only applicable to numerical data. It is

not uncommon for datasets to contain a mix of both numerical and categorical data. Effectively

utilizing both types of data in the clustering process may improve the clustering performance. As

such, we extend the convex clustering framework to accommodate both numerical and categorical

variables similar to M. Wang and Allen (2021). The mixed convex clustering objective is then

formulated as follows

min
A∈Rn×p

n∑
i=1

αLnum(xnum
i ,anumi ) + (1− α)Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||al1 − al2 ||q, (7)

where Lnum and Lcat denote the loss functions for numerical and categorical variables respect-

ively. Moreover, xnum
i ,anumi ∈ Rm and xcat

i ,acati ∈ Rm−p are the vectors corresponding to

numerical and categorical data assuming there are m numerical features and p−m categorical

features. An important aspect is that both loss functions have to be convex in order to ensure

convexity of the problem. Lastly, we add weights α to control for the trade off between numer-

ical and categorical loss functions which is a similar approach as the K-Prototypes algorithm by

Huang (1998). These weights are necessary as the categorical or numerical loss functions may

dominate over one another. In our experiments, we find that the output of the categorical loss

function tends to be larger than the numerical loss function.

4.2.1 Loss functions

We employ the standard convex squared Euclidean norm for numerical data which is used in

most convex clustering applications. This loss function penalizes large differences proportionally

more than small differences, owing to the squaring operation.

Lnum =
1

2
||xnum

i − anumi ||2, i = 1, . . . , n (8)

For categorical features, there is no direct translation from categorical to numerical values.

Therefore, we utilize dummy coding to represent the categorical data. Naturally, in this context,

it is more appropriate to select a binary categorical loss function. Additionally, since we aim

for interpretable cluster centers, the ideal range for a center’s value should be between 0 and 1.

Hence, we employ the binomial deviance formulated as:

Lcat =
p∑

j=m+1

{
K∑
k=1

−xijklog(aijk)− (1− xijk)log(1− aijk)

}
, i = 1, . . . , n

= −xcat
i · log(acati )− (1− xcat

i ) · log(1− acati ), i = 1, . . . , n

(9)

where we assume that log(0) = 0. This scenario arises in the case of perfect separation

between clusters for a binary categorical variable.

A rather intuitive understanding is that these loss functions tend to shrink the numerical

feature centroids towards the average value, while for categorical features, they shrink each

categorical center towards the proportion associated with a specific category within that feature.
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We refer to these properties as the loss-specific center since these values minimize the convex

clustering objective 7 if γ = 0.

Lastly, note that the numerical loss function is the squared Euclidean norm which typically

implies that the retrieved clusters should be spherical. At first glance, this raises questions about

how the convex clustering framework can handle non-convex cluster shapes, as demonstrated in

Hocking et al. (2011). Essentially, this can be understood by viewing which forces impact the

estimated cluster centroids A.

The numerical and categorical loss functions aim to keep each cluster centroid close to the

original observation. Simultaneously, the penalty on the differences between cluster centroids

encourages the cluster centroids with positive weights to be similar. As γ increases, the optimal

solution to the objective function balances these two forces.

Non-convex cluster shapes are generally characterized by irregular shapes, varying densities,

and connected components. By carefully choosing which cluster centroids ai, receive a positive

weight wl, we can capture these non-convex shapes. The key idea is to establish positive weights

only between observations that are close to the original observations. This approach allows for

the formation of a long chain of connected cluster centroids. The construction of these weights

will be described in the next section.

4.3 Weights and balancing variable types contribution

Hocking et al. (2011) are likely the first reference to include this weight wj in Equation 6,

which aimed at producing a clusterpath that is sensitive to local density in the data. Chi

and Lange (2015) employed similar exponential decaying weights, while also utilizing the K-

Nearest Neighbors (K-NN) algorithm. They note that the choice of the weights can improve

both computational efficiency and clustering quality. Consequently, we utilize these weights as

well. The weights can be formulated as

wl = I{i2 K-NN of i1}exp(−ϕd(xi1 ,xi2)), ∀i1, i2 (10)

where the first part reflects the K-NN and the second part a Gaussian kernel that slows the

coalescence of distant observations. Moreover, ϕ is non-negative and controls for how fast the

weights decrease to zero and d(·, ·) denotes the distance between two points.

A common method to calculate the dissimilarity of two items with numerical and categor-

ical variables is the Gower distance. The Gower distance adopts Max-min standardization for

numerical variable and a simple matching scheme for categorical variables.

d(xi1 ,xi2) =

m∑
j=1

|xi1,j − xi2,j |
|max(j)−min(j)|

+

p∑
j=m+1

I[xi1,j = xi2,j ], (11)

However, we emphasize the importance of achieving balanced contributions from each feature

to both the convex clustering objective 7 and the weighting scheme 11. If certain variables are

defined on larger scales, they might negatively influence the analysis, potentially reducing the

contributions of other variables. Consequently, it is common practice to standardize the data

prior to analysis, similar to methods such as PCA. However, standardization alone may not fully
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address this issue in our context.

For instance, in our weighting calculations, numerical variables undergo min-max standard-

ization to confine them within the [0,1] range, mirroring the treatment of categorical variables

in terms of scale [0,1]. Despite being standardized, we note that the average contribution of

variables may not necessarily be equal. While categorical features yield a distance of 1 when

dissimilar, numerical variables attain a distance of 1 only if the observations represent the max-

imum and minimum values. Given that most observations fall between these extremes, they

rarely achieve a distance of 1. This disparity can potentially skew the weighting scheme, leading

to less accurate neighbors to be chosen in the K-NN scheme.

Consequently, we propose the following idea in order to let the numerical and categorical

features contribute equally to the calculation of the weights 11 and the convex clustering ob-

jective 7. Let di1,i2,j = |xi1,j − xi2,j | be the distance between observation i1 and i2 for feature j.

Then, E[di1,i2,j ] denotes the expected value of the distance between two random observations i1

and i2 for feature j. Our goal is to set E[di1,i2,j ] = 1 for every feature j. We aim to achieve this

as follows. First, calculate the estimate of the expected distance for feature j or Ê[di1,i2,j ] using

the plug-in estimator:

Ê[di1,i2,j ] =
n(n− 1)

2

∑
i1<i2

di1,i2,j (12)

then, we scale all observations of feature j with

1

Ê[di1,i2,j ]
(13)

Moreover, let xj be the column that contains all n observation for feature j. Then we

continue to work with the scaled features:

xnew
j =

xold
j

Ê[di1,i2,j ]
, j = 1, . . . , p (14)

In the Gower distance, we use Max-min standardization for numerical features and a match-

ing scheme for categorical variables. We can achieve a similar expected value for each feature in

the following manner. The expected Max-min standardization distance for feature j is:

Ê[di1,i2,j ] =
n(n− 1)

2

∑
i1<i2

|xi1 − xi2 |
|max(j)−min(j)|

= b (15)

Then if we scale the features as shown in Equation 14, the expected distance for feature j is:

Ê[di1,i2,j ] =
n(n− 1)

2

∑
i1<i2

|xi1
b −

xi2
b |

|max(j)−min(j)|

=
n(n− 1)

2

1

b

∑
i1<i2

|xi1 − xi2 |
|max(j)−min(j)|

=
n(n− 1)

2

2

n(n− 1)

∑
i1<i2

|max(j)−min(j)|
|xi1 − xi2 |

∑
i1<i2

|xi1 − xi2 |
|max(j)−min(j)|

= 1

(16)
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Note that Max-min standardization is not necessary because the ranges of each feature cancel out

in the final derivations. Intuitively, Max-min standardization is essentially the absolute distance

multiplied by a constant, which is the range of the feature. By multiplying each observation by

the expected value, we ‘override’ this scaling factor, ensuring that the average expected absolute

distance is one.

And similarly for the categorical variables, we have

Ê[di1,i2,j ] =
n(n− 1)

2

∑
i1<i2

I[xi1,j = xi2,j ] = b (17)

Thus, if we scale the categorical distances by b, we obtain an expected value of one:

Ê[di1,i2,j ] =
n(n− 1)

2

1

b

∑
i1<i2

I[xi1,j = xi2,j ]

=
n(n− 1)

2

2

n(n− 1)

∑
i1<i2

I[xi1,j = xi2,j ]∑
i1<i2

I[xi1,j = xi2,j ]

= 1

(18)

4.4 Implementation

Various algorithm have been proposed to solve the convex clustering algorithms. In this thesis,

we adopt a splitting method proposed by Chi and Lange (2015) for convex clustering. Chi

and Lange (2015) present two splitting techniques: one utilizing the ADMM, and the other

employing an instance of AMA. Given that AMA demonstrated significantly superior efficiency

compared to ADMM, we opt to implement the AMA algorithm.

4.4.1 Mixed-AMA based convex clustering (MAMAC)

AMA can be motivated as a variant of the augmented Lagrangian method (ALM). The steps

to arrive at the AMA formulation are as follows. We first recast the problem as a constrained

optimization problem.

min
A∈Rn×p

n∑
i=1

αLnum(xnum
i ,anumi ) + (1− α)Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||vl||q,

subject to al1 − al2 − vl = 0 ∀l ∈ E

(19)

ALM solves the equivalent problem in Equation 20. The equivalence between Equations 19 and

20 arises from the fact that their objective functions coincide for any point that satisfies the

equality constraint.

min
A,V∈Rn×p

n∑
i=1

αLnum(xnum
i ,anumi ) + (1− α)Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||vl||q +
σ

2

∑
l∈E
||vl − al1 + al2 ||22,

subject to al1 − al2 − vl = 0 ∀l ∈ E
(20)

11



Moreover, minimizing an equality constrained optimization problem is equivalent to the identify-

ing the saddle point of the associated Lagrangian function. The augmented Lagrangian function

that AMA minimizes over for a given parameter σ > 0 is formulated as

L (a,v,Λ) =
n∑

i=1

αLnum(xnum
i ,anumi ) + (1− α)Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||vl||q

+
σ

2

∑
l∈E
||vl − al1 + al2 ||22 +

∑
l∈E
⟨λl,vl − al1 + al2⟩

(21)

As the optimization over u and a jointly is generally difficult for the augmented Lagrangrian,

AMA (and ADMM) employ a different strategy in simplying the minimization subproblems. In

AMA, this is achieved by minimizing the augmented Lagrangian one block of variables at a

time. The process can be described as follows:

at+1 = argmin
a

Lv(a,v
t,Λt)

vt+1 = argmin
v

Lv(a
t+1,v,Λt)

Λt+1 = argmin
Λ

Lv(a
t+1,vt+1,Λ)

(22)

Similar to Chi (2015), we update the steps for (v,Λ) in parallel to theirs, as these variables

are independent of the loss functions. However, due to the addition of another loss function in

the objective, the steps to derive the final algorithm differ slightly, although ultimately resuls in

a similar algorithm. Detailed derivations for the steps of (a,v,Λ) are provided in Appendix A.

The solutions are as follows:

at+1
num =

αxnum
i +

∑
l1=i λ

num
l −

∑
l2=i λ

num
l

α

at+1
cat =

(1− α)xcat
i +

∑
l1=i λ

cat
l −

∑
l2=i λ

cat
l

1− α
)

vt+1
l =

[
1−

γwl
σ

||at+1
l1 − at+1

l2 − σ−1λm
l ||2

]
+

(at+1
l1 − at+1

l2 − σ−1λm
l )

Λt+1 = λt
l + σ(vt+1

l − at+1
l1

+ at+1
l2

)

(23)

Moreover, Chi and Lange (2015) note that simplifications can be made by using Moreau’s

decomposition, which we also briefly cover in Appendix A. As a result, we do not need to updat

vl and instead only need to store the updates for a and Λ. The AMA algorithm is shown in

Algorithm 1.

This algorithm first starts by calculating the clustering centers. For this, we need the dif-

ferences between the dual variables λ which is stored in ∆. Then, we calculate the differences

between the cluster centroids which is stored in g. Following this, we update λ by projecting the

differences between the previous λ and g on the set Cl. This iterative process continues until

convergence, which we will elaborate on in the subsequent section

Lastly, as noted out by Chi and Lange (2015), this bears resemblance to a projected gradient

algorithm. Additionally, they note that Tseng (1991) demonstrates that AMA effectively per-
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Algorithm 1 AMA Algorithm for mixed data

1: Initialize λ0, αo = 1
2: for t = 1,2,3,. . . do
3: for i = 1,. . . , n do
4: ∆t

i =
∑

l1=i λ
t−1
l −

∑
l2=i λ

t−1
l

5: end for
6: for all l do

7: gtl,num =
α(xl1

−xl2
)+∆t

l1
−∆t

l2
α

8: gtl,cat =
(1−α)(xl1

−xl2
)+∆t

l1
−∆t

l2
1−α

9: λt
l = projCl

(λt−1
l − σ(gtl)) ▷ Cl = {λl : ||λ||2 ≤ γwl}

10: end for
11: αt = (1 +

√
1 + 4α2

t−1)/2 ▷ Accelerated AMA

12: λt+1
l = λt

l +
αt−1

αt
(λt

l − λt−1
l ) ▷ Accelerated AMA

13: end for

forms proximal gradient ascent to maximize the dual problem. We also point out a fast AMA

proposed by Chi and Lange (2015) which is an accelerated variant based on Nesterov accelerated

alternative.

4.4.2 Mixed-AMA stopping criterion

We can utilize the dual of the convex clustering problem 19. As the duality gap at the tth

iteration provides an upper bound on how far we are from the optimal minimum of the objective

function, we can interpret it as an indicator of optimality. First, we write the convex clustering

objective in a more general form:

min f(u) + g(v)

subject to Zu+Bc = c,
(24)

which in our case implies that Z = [Z1 . . .Zε], where ε is the number of non-zero edges and

Zl = [etl1 − etl2 ]⊗ Ip and B = −Ipε Detailed derivations are presented in Appendix B.

The dual objective can be expressed as:

D(λ) = −f∗(Ztλ)− g∗(λ), (25)

where

f∗(Ztλ) =
1

2
||Ztλnum||22 + ⟨Ztλnum,xnum⟩+ ||Ztλcat||22 + ⟨Ztλcat,xcat⟩

+ xcatlog(Ztλcat + xcat) + (1− xcat)log(1− Ztλcat − xcat)
(26)

and

g∗(λ) = δCl
(λl) (27)

which is the convex indicator function of the set Cl, namely {λl : ||λ||† ≤ γwl}. The convex

indicator function assigns a value of zero when an observation is part of the set and infinity
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otherwise. As evident from the AMA algorithm in 1, the λl are projected onto the set Cl,

ensuring that the conditions are always satisfied.

Thus, if the difference in the primal objective 19 and the dual 25 at iteration t is below a

certain threshold τ , we terminate the algorithm.

4.4.3 Feature Selection

In high-dimensional datasets, it is common for only a subset of features to significantly con-

tribute to the clustering process. Selecting these relevant features is crucial as redundant ones

may adversely affect clustering accuracy. B. Wang et al. (2018) and M. Wang and Allen (2021)

propose a novel method involving a modified group-lasso penalty in the convex clustering object-

ive. This penalty encourages cluster centroids to converge towards a center specific to the loss

function. The aim is to equalize the values of redundant features, minimizing their impact on

clustering. Features diverging from this loss-centered value are identified as potentially relevant.

Their approach demonstrates notable empirical improvements in clustering performance.

Consequently, we introduce an additional penalty term into the objective. Specifically, we

incorporate a squared Euclidean norm (Ridge) penalty into the convex clustering objective, as

illustrated in Equation 28. The underlying principle behind this penalty is to drive irrelevant

features towards the average ã of their respective feature set. This form of shrinkage is referred

to as egalitarian ridge in the literature Diebold and Shin (2019). Importantly, since the Ridge

penalty is convex, the overall optimization problem retains its convex nature.

min
A∈Rn×p

n∑
i=1

Lnum(xnum
i ,anumi ) + Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||vl||q + β

p∑
j=1

||aj − ãj ||22,

subject to al1 − al2 − vl = 0 ∀l ∈ E

(28)

Since we added a penalty term, the optimization steps undergo slight modifications in the

AMA scheme. However, note that this change only affects updates for a since it does not involve

λ or v. Detailed derivations are provided in Appendix . The updated equations for a are as

follows:

anumi =
αxnum

i +
∑

l1=i λ
num
l −

∑
l2=i λ

num
l + βãnumi

(α+ β)
(29)

acati =
(1− α)xcat

i +
∑

l1=i λ
cat
l −

∑
l2=i λ

cat
l + βãcati

1− α+ β
(30)

Furthermore, M. Wang and Allen (2021) incorporate weights for each feature in the penalty

term, following a common approach in the literature (H. Wang and Leng (2008); Zou (2006)).

They utilize weights ζj that are proportional to loss-specific centers, calculated as ζj =
1

||xj−x̃|| ,

where x̃ denotes the loss-specific center for feature j. However, we depart from this approach

as our objective is to implement a more rigorous feature selection strategy.

In our feature selection algorithm, similar to M. Wang and Allen (2021), we employ an

adaptive scheme for feature selection. Initially, we obtain an estimate with no feature weights,

and then gradually adjust the weights to diminish the influence of less important features while
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increasing those of more important ones, a strategy alike of other adaptive methodologies such as

B. Wang et al. (2018) and Zou (2006). Since the Ridge penalty ensures that none of the features

are exactly zero but rather close to zero, we can not discard features that have shrunken exactly

to their respective loss-specific centers. Therefore, we select features based on the magnitude of

the differences with respect to their loss-specific centers.

In general, selecting the number of features in this step requires careful consideration and

is typically case-specific. In our simulations, we find that typically choosing between five and

fifteen numerical and categorical features works well. However, if one has domain knowledge

suggesting a different number of relevant features, the amount of features can be chosen as such.

M. Wang and Allen (2021) scale the importance of these features in subsequent features based

on this initial estimate. However, features chosen in the initial iteration may not necessarily

capture the signal of interest, especially in high-dimensional data where many patterns can occur

by chance. Thus, to minimize this potential bias, we also employ a feature selection framework

to further refine the feature selection process.

Here, we utilize the feature selection framework for clustering introduced by Witten and

Tibshirani (2010) propose a framework that selects features by maximizing the between-cluster

sum of squares, incorporating a lasso-type penalty to control sparsity via a hyperparameter.

Their framework is outlined as follows:

max
w;Θ∈D


p∑

j=1

ζjfj (xj ,Θ)


subject to ||ζ||2 ≤ 1, ||ζ||1 ≤ s, ζj ≥ 0 ∀j,

(31)

where fj is a function that only involves feature j. Within the framework, we seek to maximize

the total influence of each function, denoted as fj , which represents the contribution of feature j

alone. A larger influence for fj translates to a higher weight, ζj , assigned to that feature. Here,

the lasso penalty within the framework ensures that the sum of all weights remains below a

certain threshold s, which encourages sparsity by driving some weights to zero. Conversely, the

Ridge penalty generally allows for multiple non-zero weights. Thus, the importance of feature j

is encapsulated within fj , which raises the need for a metric that gauges whether fj effectively

indicates the relevance of feature j in the clustering. Witten and Tibshirani (2010) assess the

importance of each feature j based on its ability to drive a significant difference between the

between-cluster and within-cluster distances. Note that this requires that the full clusters should

be known. The between-cluster distance is defined as follows:

fj (xj ,Θ) =

 1

n

n∑
i=1

n∑
i′=1

di,i′,j −
K∑
k=1

1

nk

∑
i,i′∈Ck

di,i′,j

 , (32)

where di,i′,j denotes the dissimilarity between observation i and observation i′ along feature j.

Note that we use the original data matrix Xn×p and not the estimated centroids Â
n×p

.

The first part in this equation represents the average distance between all observations for

feature j, while the second part denotes the average distance among observations within their

respective clusters. Intuitively, important features in clustering should exhibit a larger between-
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cluster distance compared to less important features, which results in a higher weight assignment.

We also note that all variables have been standardized before calculating the overall average

distance. This standardization, detailed in Section 4.3, ensures that all features contribute

equally to the first term in Equation 32, regardless of their original units. Consequently, the

resulting weights are primarily driven by the features that minimize the within-cluster distance.

However, one might note that that features with minimal variance might inaccurately get a high

weight due to their tendency to minimize within-cluster distance across any given clustering

C1, . . . , Ck. Nevertheless, such features are less likely to be selected, as they are typically shrunk

faster towards the loss-specific center by the convex clustering method than features that are

crucial for the clustering.

The proposition in Witten and Tibshirani (2010) states that the solution to this convex

problem is λ =
S(y+,c)

||S(y+,c)||2
, where y+ denotes the positive part of y. Here, a is a vector which

contains the values of fj (xj ,Θ) for every feature j. Moreover, the soft-thresholding operator

S is defined as S(x, c) = sign(x)(|x| − c+)+. If ||ζ||1 ≤ s, then c = 0; otherwise, the value for

c > 0 is chosen such that ||λ||1 = s.

Moreover, our approach to feature selection adapts to handle the specific characteristics of

categorical data. Since these features are binary-coded, the average distance between them tends

to be much smaller compared to numerical features. This is because many features will have

zero values for most observations. To avoid this bias, we estimate weights for categorical and

numerical variables separately. Furthermore, for categorical features, we capture their overall

contribution by summing the distances of all their respective categories.

Our final feature selection approach is comprised of two distinct steps. Initially, we identify

potentially relevant features by examining the deviations between the estimated feature âj and

the loss-specific center. Then, given cluster assignments C1, . . . , Ck, we can calculate the feature

importance fj of those chosen features. However, Witten and Tibshirani (2010) obtain these

clusters C1, . . . , Ck by alternating K-means with the feature selection approach, until the features

weights converge. We typically do not have enough fusions between iterations to construct the

full clusters. To address this, we exploit the local structure discovered during the clustering

process.

For each data point, we find its closest neighbors based on the estimated cluster center Ât at

the current stage of the clustering algorithm. We deliberately limit the number of neighbors to

a small number to exploit local data density and locate features that influence cluster similarity.

Therefore, rather than directly constructing K clusters using methods like K-means, we form

many small clusters. This approach intuitively aligns with the capability of convex clustering

to accommodate non-convex cluster structures. While the clustering method iteratively merges

nearby points into larger clusters, our approach identifies features that drive the similarity within

these local regions. This mirrors the iterative merging process of convex clustering.

Summarizing, the features that drive feature cluster separation within Â, should also provide

cluster separation within the original data matrix X̂. Otherwise, our algorithm will continue to

run since the features will not stabilize. The detailed steps of our feature selection approach are

presented in Algorithm 3.
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Algorithm 2 Feature selection algorithm

Input: Data matrix Xn×p; Centroid estimation An×p; Amount of features r ; nearest

neighbors K;s

Output: Feature weights ζ

1: Let h be the vector that contains the deviations from each feature with their loss-specific

2: for j=1,. . . ,p do

3: Calculate the sum of deviation from aj with the loss-specific center ãj , hj=
∑n

i=1 aij− x̄j

4: end for

5: Select the features corresponding to the r highest values among h

6: Construct a reduced centroid Â
n×r

with the r selected features

7: Compute a dissimilarity matrix Dn×n using the reduced centroid Â
n×r

8: for i=1,. . . ,n do

9: Ci = {K-NN of observation i in D}
10: end for

11: Calculate the between-cluster distance fj for j = 1, . . . , p defined in Equation 32

12: Solve for ζ in Equation 31

13: Return the feature weights ζ

4.4.4 Cluster Fusions

Another important method to speed up computations is by fusing clusters. By fusing clusters,

we reduce the computations since we replace two observations in the dataset with one new

observation. Hocking et al. (2011) and Touw et al. (2023) implement cluster fusions, which

is something we advocate for as well. Consider two clusters, C1 and C2. If we find that

|aC1 − aC2 | < ε, we apply the following merging scheme.

aC =
|C1|āC1 + |C2|āC2

|C1|+ |C2|
(33)

This new observation replaces C1 and C2 in the original dataframe X. Intuitively, merging

clusters is logical because, in the final convex clustering solution, we anticipate that the centers of

all observations will converge for a sufficiently large γ. Essentially, we are preemptively merging

some clusters that we have identified as sufficiently close.

Next, we update the set of edges E . One posibility to determine the weights is as follows.

All observations that previously had weights associated with or now form a new edge. We set

the new weight as the sum of all positive weights between clusters C1 and C2. Alternatively, we

could use the mean weight, but we find that this does not fundamentally alter the outcome since

can still adjust the total weight through γ. The key point is that C1 and C2 are now connected.

Another option is to recalculate the weights; however, this approach does not account for the

local density of the data points. While this might not affect the shapes in convex clustering, for

datasets like the half moons dataset, where density is more significant than distance, it is better

practice to use the original edges.

However, we slightly modify this intuitive approach to determine the weights. An example

is shown in Figure 1. Assume the first two rows are fused. We then sum these two rows and

17



select the K-highest values, using the same K as in the K-NN scheme, which is three in this

case. Next, we aggregate the columns since the columns at indices zero and one represent these

fused observations. Naturally, the dissimilarity between these fused observations is zero. In this

example, we observe that the observation at index three is among the nearest neighbors. This

result indicates that while the first observation is not originally close to the third observation, the

second observation is. Thus, this weighting scheme effectively utilizes the local density within

the data.

Figure 1: Weighting scheme for cluster fusion example

Moreover, we can control the number of cluster fusions possible in a single iteration. There

are two approaches: either allow centroids to be fused multiple times or restrict each centroid

to a single fusion. Both approaches yield similar outcomes, with the main difference being the

order in which observations are fused. Additionally, we find that by allowing multiple fusions

we may increase computational speed.

Lastly, we point a small inconsistency in our merging process shown in Equation 33. While

averaging is appropriate for numerical data, it is not suitable for binary variables. Therefore,

our approach sets all binary variables to 0 if they are less than 0.5, and to 1 otherwise. This

method not only enhances interpretability but also reduces the impact of noisy features.

4.4.5 Full algorithm

With all components in hand, we can now finalize the algorithm. We have adapted the AMA-

based convex clustering algorithm by Chi and Lange (2015) to accommodate both numerical

and categorical features. Additionally, we have integrated a penalty term into the objective,

inspired by the work of B. Wang et al. (2018) and M. Wang and Allen (2021), for feature

selection. Furthermore, we’ve introduced a framework proposed byWitten and Tibshirani (2010)

to complement the penalty feature selection approach, thereby enhancing the assessment of

feature importance. The full algorithm is shown in Algorithm R.

Our algorithm begins by solving the convex clustering objective using the complete set of

features. If certain observations are sufficiently close, we merge the clusters as outlined in Section

4.4.6 .Subsequently, once the primal and dual convex clustering objective are sufficiently close,

we apply our feature selection algorithm to choose the most relevant features. Since, in practice,

there is no assurance that these selected features are indeed the most relevant, we suggest another
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iteration of the convex clustering method. We re-solve the convex clustering method using only

the selected features and repeat the feature selection process. This iterative cycle continues until

the selected features stabilize across iterations. Finally, based on the output of the final cluster

centroids A, we can allocate observations to clusters.

Algorithm 3 MAMACCAFS with Ridge penalty

Input: Data matrix Xn×p; neighbors K in K-NN algorithm; tuning parameters ϕ, γ, σ, s
Output: Cluster centroids An×p; cluster assignments; feature weights ζ
Functions: We use the followings functions for this algorithm

• calculateWeights(X,K,ϕ): returns the weights w as described in Section 4.3

• performAMAIteration(X,λ,σ): returns centroids A and dual variables λ by executing
a single iteration of the AMA algorithm as described in Section 4.4.1

• calculatePrimalObjective(X,A,w,γ): return the value of the primary objective of the
convex clustering objective as shown in Equation 7

• calculateDualObjective(X,λ): return the value of the dualy objective of the convex
clustering objective as shown in Equation 25

• calculateFeatureWeights(X,s): returns the feature weights ζ using the feature selection
algorithm in Section 4.4.3

• mergeObservations(At,threshold): checks whether cluster centroids are sufficiently
close in order to perform a cluster fusion as described in Secion 4.4.6

Initialize: ζ0 ← [ζ1 . . . ζp] where ζi =
1√
p , λ← [0 . . . 0], t← 0

1: wt ← calculateWeights(X,K,ϕ),
2: while ||ζt − ζt−1|| < ε do
3: while primal - dual > τ do
4: At,λt ← performAMAIteration(X,λt−1,σ)
5: mergeObservations(At,threshold)
6: primal ← calculatePrimalObjective(X,At,wt,γ)
7: dual ← calculateDualObjective(X,λt)
8: t← t+ 1
9: end while

10: ζt ← calculateFeatureWeights(At,s)
11: end while
12: Return At, ζt

4.4.6 Cluster assignments

In order to obtain a clustering, we may look at the difference vectors vl. Chi and Lange (2015)

merge two observations if the difference vector vl = 0 and then use a breadth-first search

algorithm to locate the connected nodes. The update for vl in AMA is given in Equation 23.

However, our approach differs from Chi and Lange (2015) since we incorporate cluster fusions

in the algorithm. As such, when the known amount of K clusters is reached, we terminate the

algorithm.

Moreover, one aspect of cluster fusions is the possibility of ending up with multiple uncon-

nected clusters. This naturally occurs when the differences between cluster centroids are not

sufficiently small, indicating that not all observations are connected. Consequently, they have
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never been instructed to merge in the first place. In this thesis, we assume the existence of dis-

tinct clusters, with a known quantity in advance, which may result in unconnected graphs. Touw

et al. (2023) propose a method to connect the graph. However, their work specifically focuses

on (hierarchical) convex clustering, which necessitates the connection of all data points within

the final hierarchy. Given our assumption of a predetermined number of clusters, encountering

more unconnected clusters than the predetermined clusters signals two potential issues: either

the selected features inadequately capture the underlying cluster structure, or the clustering

parameters need fine-tuning.

4.4.7 Tuning of the hyperparameters

This convex clustering framework involves tuning of various hyperparameters. A broad guideline

can be derived by comparing values found in various literature. Below, we outline some general

recommendations based on our experimentation.

Tuning K in the K-NN scheme and ϕ . Section 4.3 discusses the construction of

the weights w. In datasets containing predominantly relevant features, this weighting scheme

typically yields distances that accurately capture the proximity between different objects. Con-

sequently, nearby observations tend to be pulled closer to each other. However, in datasets with

noise, this weighting scheme may not perform optimally, leading to incorrect observations being

drawn towards each other. This is expected as when the amount of relative features is much

smaller than the amount of noisy features, the noisy features may impact the K-NN weighting

scheme. Another perspective is that we notice consistency, especially with low K values, in the

K-nearest neighbors (K-NN) approach utilizing the weights (w) when calculating K-NN with the

estimated output matrix Â. This is expected as we encourage these observations to converge.

However, we observe that this issue can be alleviated by opting for a relatively high number of

neighbors, which increases the likelihood of true centroids converging towards each other. Thus,

we have to adaptively change the amount of neighbors K in the algorithm. In the first stage,

when the dataset contains a lot of noise, the amount of neighbors should be high to increase

the chances of observations within the same cluster to converge to another. Then, if the feature

selection scheme has selected certain features, the amount of neighbors should be relatively low

to exploit locality of the data.

Furthermore, we find that the choice of ϕ does not impact the clustering too much. This

is due to the fact that γ is mainly responsible for the cluster centroid penalty. Throughout

our research, we used a value of ϕ = 2, which means that weights decrease quadratically with

increasing distance.

Tuning α. In the convex clustering objective 19, we introduced weights to balance the

contribution of the numerical and categorical loss function. When α = 1, all weights are directed

towards numerical features, while for α = 0, all weights prioritize categorical features. To achieve

a balanced contribution, we iterate the convex clustering method for a range of different α until

the numerical and categorical objectives are approximately comparable.

Tuning γ. The parameter γ imposes a penalty on differences among the cluster centroids

A. Consequently, a low γ results in minimal fusion among the cluster centers, while a high γ

leads to a significant fusions between the centroids. We find that the optimal value of γ varies

20



depending on the number of observations and features. Therefore, a more general approach,

as suggested by Hocking et al. (2011), is to utilize a clusterpath. This method illustrates how

observations merge as γ increases. In general, γ can be increased until we obtain exactly the

required number of clusters.

Tuning σ. The tuning parameter σ used in the AMA for convex clustering which essentially

controls for how fast the cluster centers shrink towards one another. An appropriately selected

σ can substantially affect computation time. Typically, we advise choosing a value within the

range of [0.01, 0.2]. Furthermore, if the number of neighbors (K) in the K-NN scheme is low,

we recommend to increase σ, whereas for a higher number of neighbors, we suggest opting for a

lower σ. Thus, this parameter does not impact the clustering quality, but rather computational

speed.

Tuning β. This parameter penalizes differences of the estimated feature centroids âj with

their loss-specific center ãj . We find that this parameter is crucial in this framework as it

diminishes the impact of noisy variables by pulling them closer to the loss-specific centers. The

value β depends on the size of the dataset. In general, we recommend a low value of β, typically

between 1 and 5, which encourages slight shrinkage towards the loss specific center. The main

idea is that redundant features shrink faster to their respective loss-specific center compared to

non-relevant features.

Tuning s. This parameter controls the number of features selected in the feature selection

scheme. In this thesis, we used a value of s = 2 because it generally resulted in selecting most of

the relevant features. Setting s to a value less than 2 usually retains only a few features, while

values greater than 2 can lead to instability in feature selection. Higher values might include

relevant features but also tend to incorporate noisy features, which can negatively impact the

convergence of the feature selection process.

4.5 Benchmark models

We evaluate our convex clustering algorithm designed for categorical data, employing the AMA

algorithm, against various established mixed data clustering methods. One such method is the

K-prototypes method introduced by Huang (1998), which operates on a similar principle to the

K-means algorithm. A downside of this this algorithm typically does not converge to a global

solution.

Additionally, we compare our approach to the KAy-means for MIxed LArge data (KAM-

ILA) method proposed by Foss, Markatou, Ray and Heching (2016). KAMILA addresses high-

dimensional data while ensuring fair consideration of both continuous and categorical variables

in the clustering process. Chavent, Lacaille, Mourer and Olteanu (2020) also propose a method

for high-dimensional data. Their sparse mixed clustering method is also based on the framework

introduced by Witten and Tibshirani (2010).

Lastly, we utilize Hierarchical Agglomerative Clustering (HAC). HAC iteratively merges

observations based on different criteria (linkages). In this thesis, we will use different linkages

and select the one with the best results.
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4.6 Evaluation metric

In order to compare the performance of the clustering methods, we employ the Classification

Error Rate (CER). Consider two partitions each of length n, denoted by P and Q. Partition

P represents the true class labels, while partition Q represents a partition obtained through

clustering. Assuming we have C clusters, both P = {P1, . . . , PC} and Q = {Q1, . . . , QC}
partition the observations in C subsets. Let 1P (i,i′) be an indicator whether partition P places

observations i and i′ in the same group, and the same applies for 1Q(i,i′). Then, the CER is

defined as

CER =
∑
i>i′

|1P (i,i′) − 1Q(i,i′)|(
n
2

) (34)

Note that the CER is zero if the partitions P and Q are the same.

In addition, we use the Adjusted Rand Index (ARI) to compare the results of our clustering.

The standard Rand Index (RI) can be interpreted as a measure of accuracy. In this context,

true positives (TP) refer to pairs of elements that are in the same subset in both P and Q,

and true negatives (TN) refer to pairs of elements that are in different subsets in both P and

Q. False positives (FP) are pairs of elements that are in different subsets in P but the same

subset in Q, and false negatives (FN) are pairs of elements that are in the same subset in P but

different subsets in Q. The RI is then calculated as follows:

RI =
TP + TN

TP + TN + FP + FN
(35)

The Adjusted Rand Index (ARI) is a corrected-for-chance version of the Rand Index (Rand,

1971). This correction establishes a baseline by considering the expected similarity of all pairwise

comparisons between clusterings under a random model. We can form a contingency matrix as

follows. Let ni,j = |Pi ∩Qj | be the intersection of subset i of P and subset j of Q:

Y1 Y2 · · · Ys

X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...

Xr nr1 nr2 · · · nrs ar

b1 b2 · · · bs

(36)

The Adjusted Rand Index is then formulated as:

ARI =

(∑
ij

(nij

2

)
−

∑
i (

ai
2 )

∑
j (

bj
2
)

(n2)

)
(

1
2

[∑
i

(
ai
2

)
+
∑

j

(bj
2

)]
−

∑
i (

ai
2 )

∑
j (

bj
2
)

(n2)

) (37)

Note that while the standard RI is defined between 0 and 1, the ARI can be negative if the

index is less than the expected index.
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4.7 Software

We implemented our method using Python version 3.11. For the benchmark models, we used R

for the following packages: clustMixType for K-prototypes (Szepannek, 2018), hclust for HAC

(R Core Team, 2023),kamila for KAMILA (Foss et al., 2016), and vimpclust for Sparse k-means

for mixed data via group-sparse clustering (Chavent et al., 2020).

5 Simulation study

First, we evaluate the performance of our convex clustering method on simulated data. In our

simulated data, we generate both numerical and categorical data with noise. The goal is to

asses whether our feature selection scheme effectively chooses the correct features and clusters

the correct groups. Moreover, we compare the performance of the clustering with other popular

mixed clustering models.

5.1 Simulation

Spherical cluster without noise. We assume a number of C = 3 classes. The initial q = 20

features consist of m = 10 numerical variables and q−m = 10 categorical variables, and are the

main important features that differentiate between the clusters. The numerical data for j ≤ m

is derived from a multivariate normal distribution:xj1xj2

xj3

 ∼ N


µj1

µj2

µj3

 ,

1 0 0

0 1 0

0 0 1


 j = 1, . . . ,m (38)

Specifically, Xijc ∼ N(µjc, 1) denotes the value for observation i for feature j belonging to cluster

c, where µj1 = 1, µj2 = 2, and µj3 = 3. Furthermore, we generate categorical data from a multi-

nomial distribution with K = C categories for m < j ≤ q, where Xijc ∼ Mult3(Ni, p1c, p2c, p3c):

Xijc =

xj1xj2

xj3

 ∼ Mult

Ni,

pj1cpj2c

pj3c


 j = m+ 1, . . . , q (39)

We control the strength of the signal by adjusting the probability of the respective important

cluster category for each feature. Assuming category k possesses the highest proportion in

cluster C = k, all clusters feature a distinct majority class per feature, assigned a probability of

0.75. The probabilities of the remaining three classes are set to be equal and sum up to 0.25.

Spherical cluster with noise. In this scenario, we maintain the same setting as the

spherical cluster without noise. However, we introduce additional variables that are irrelevant to

the clustering task. An equal number of numerical and categorical noise variables are generated.

For j > q, the numerical variables are generated from a normal distribution with mean 0

and variance 2, denoted as Xij ∼ N(0, 2), while the categorical variables follow a categorical

distribution with three categories, each with equal probability Xij ∼ Cat3(
1
3 ,

1
3 ,

1
3). We repeat

this process for various levels of feature amounts p, namely p = 20, 100, 500 and 1000.
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Table 1: Simulation experiments for spherical shapes. Bold values denote the best performing
method. The simulation has been repeated 20 times.

p=20 p=100 p=500 p=1000

CER ARI CER ARI CER ARI CER ARI

MCC
Mean 0.056 0.940 0.09 0.837 0.149 0.714 0.103 0.786

SE 0.104 0.066 0.137 0.205 0.148 0.232 0.121 0.168

K-prototypes
Mean 0.033 0.915 0.368 0.317 0.587 0.000 0.594 -0.001

SE 0.034 0.05 0.368 0.036 0.009 0.004 0.006 0.005

KAMILA
Mean 0.003 0.990 0.263 0.474 0.666 0.000 0.666 0.000

SE 0.002 0.006 0.027 0.038 0.000 0.000 0.000 0.000

Sparse k-means
Mean 0.004 0.987 0.070 0.840 0.590 -0.004 0.588 -0.007

SE 0.002 0.006 0.031 0.053 0.006 0.005 0.006 0.003

HAC
Mean 0.023 0.933 0.100 0.723 0.565 0.011 0.573 0.005

SE 0.004 0.011 0.009 0.025 0.008 0.006 0.010 0.006

The results of the simulation are presented in Table 1. When there are no noise features

(p = 20), the K-prototypes algorithm outperforms MCC because it makes use of the entire set

feature set. However, as noise is introduced, K-prototypes’ performance becomes worse as it tries

to find patterns with all features. Conversely, MCC maintains consistent performance even with

significant noise, due to its feature selection capability, which discards unimportant features.

It is important to note that we did not tune the methods and relied on the default settings.

Additionally, the errors primarily stem from our data generation process, as the algorithm

generally selects features from the important fist 20 features. The variability introduced in our

DGP could account for some inconsistencies. Nevertheless, this simulation illustrates that our

MCC algorithm effectively performs feature selection while maintaining good clustering quality.

Non-spherical cluster with small noise. Another strength of convex clustering is that

it is capable of handling non-convex cluster shape. We generate half moon data with n = 400

and 8% noise. The simulated data of two interlocking half-moons is one of the most popular test

examples in clustering. Firstly, we generate two numerical features which represent the x and y

coordinates of the points. We show the performance when there are only numerical variables.
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(a) Simulated Half Moons data with
n = 400 and 8% noise

(b) Merging process (c) Final clustering result

Figure 2: Half Moon data clustering with convex clustering. Note that in plot (b) similar colours
indicate the density of the grouped objects.

Figure 2 shows how convex clustering groups the Half Moons data. It starts by shrinking

centroids of observations that are similar to one another. These centroids are then iteratively

merged until we obtain the correct half moon clustering result. Note that since we cluster

density data, the amount of selected neighbors in our weighting scheme is crucial. Selecting a

relatively low amount of neighbors compared to the total number of observation ensures that the

correct observations obtain a weight wl. In this instance, we selected 5 neighbors, guaranteeing

that all observations in the upper and lower half moons are exclusively connected to each other.

Consequently, the task is to increase γ until reaching the desired number of clusters. Typically,

datasets contain noise, so we do not always add a weight between observations within the same

cluster. However, the same outcome can be attained by choosing a higher number of neighbors,

albeit with slightly more careful tuning of γ.

Non-spherical cluster with moderate noise. We now repeat the half-moon data exper-

iment but with roughly double the noise. We generate 200 observations with 15% noise. At this

increased noise level, we expect the convex clustering to perform slightly worse, as the weighting

scheme assigns weights between observations in different clusters regardless of the amount of

neighbors. We now introduce a single categorical variable, which consists of 2 categories. Each
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cluster has a majority category with a probability of 70%, while the minority category has a

probability of 30%. Our objective is to assess how various methods can effectively combine the

two data types.

The ARI scores are shown in Table 2. We find that the convex clustering algorithm is the

only method that can retrieve the true clusters. As discussed in Section 4.2.1, our algorithm

achieves this by smartly constructing the weights between the cluster centroids, allowing it to

handle non-convex shapes. In contrast, all other methods produce clusters that are spherical in

nature, which limits their effectiveness with non-convex cluster shapes. Moreover, while HAC

is generally capable of identifying non-spherical shapes, it typically requires minimal noise or

very high density to function properly. These conditions are not met with this dataset as we

generated the data with noise and kept the number of observations low.

Table 2: Simulation experiments for two interlocking half-moon data. Bold value denotes the
best performing method.

Cluster algorithm Adjusted Rand Index

MCC 0.917

K-prototypes 0.279

KAMILA 0.301

sparse k-means 0.448

HAC 0.329

Moreover, the results of this simulation can also be shown visually through figures. Figure

3(a) illustrates that the data points in the inner components of the half moons are closer to each

other compared to the previous simulation with 8% noise. When we apply convex clustering

only to the numerical part of the data, the clustering accuracy at the inner border declines due

to increased noise, resulting in more positive weights between observations of the two clusters.

This is shown in Figure 3(b). Whereas, applying mixed convex clustering to the mixed data in

Figure 3(c) notably improves accuracy, although it is not perfect due to noise in the categorical

data. Overall, the method effectively captures the underlying structure of the data by utilizing

the categorical data.
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(a) Simulated Half Moons data with
n = 400 and 8% noise

(b) Only numerical data (c) Numerical and categorical

Figure 3: Half Moon and categorical data clustering with convex clustering

When we apply other mixed clustering methods to the same Half Moon dataset containing

one categorical feature, they fail to identify the actual structure within the data. The clustering

results are shown in Figure 4. Since these methods are based on the K-means algorithm, they

tend to produce clusters that are spherical in nature. Moreover, Figure 4 shows that sparse

K-means divides the half-space in two to determine the two clusters. Lastly, HAC results in a

cluster shape that is spherical as well.
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(a) K-Prototypes (b) KAMILA

(c) Sparse K-means mixed data (d) HAC

Figure 4: Clustering results of (a) K-prototypes, (b) KAMILA, (c) Sparse k-means and (d) HAC
for Half Moon data with 15% noise and one categorical feature.

5.2 Sensitivity analysis

In our simulation experiments, we observed that certain hyperparameters significantly influence

the convex clustering algorithm. The recommended default values for these hyperparameters

are detailed in Section 4.4.7. The most critical parameters are γ and the number of neighbors in

the K-NN weighting scheme. The γ parameter determines whether cluster centroids fuse, while

the K-NN weighting scheme dictates the number of cluster centroids that are fused. Therefore,

the algorithm should be tuned to ensure that γ is large enough to shrink the cluster centroids

Â towards one another. However, when we choose too many neighbors, we risk clustering all

observations into one single cluster.

We present the ARI for the case of spherical clusters with noise. Specifically, when there

are p = 1000 features, 980 of which are noisy, accounting for 98% of the features. We vary the

values of K in the K-NN scheme and γ, and display the ARI values in Table 3.
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Table 3: Sensitivity analysis for spherical clusters with noise. Bold values denote ARI scores
higher than 0.7

K/ γ 0.01 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

1 0.0 0.04 0.03 0.04 0.04 0.07 0.04 0.05 0.05 0.06 0.07

2 0.0 0.1 0.16 0.17 0.17 0.17 0.16 0.16 0.19 0.19 0.19

3 0.0 0.06 0.03 0.09 0.06 0.09 0.1 0.14 0.16 0.11 0.1

4 0.0 0.48 0.66 0.51 0.52 0.47 0.52 0.6 0.45 0.49 0.55

5 0.0 0.61 0.62 0.75 0.62 0.56 0.43 0.39 0.49 0.49 0.62

6 0.0 -0.0 0.0 -0.0 -0.01 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

7 0.02 0.88 0.85 0.88 0.9 0.9 0.9 0.9 0.9 0.9 0.9

8 0.02 0.9 0.9 0.88 0.88 0.84 0.85 0.88 0.88 0.93 0.88

9 0.03 0.81 0.67 0.81 0.83 0.78 0.72 0.9 0.72 0.72 0.76

10 0.02 0.9 0.9 0.88 0.98 0.87 0.87 0.87 0.87 0.82 0.9

11 0.01 0.73 0.88 0.07 0.07 0.81 0.79 0.02 0.73 0.73 0.73

12 0.01 0.88 0.57 0.95 0.81 0.83 0.85 0.54 0.5 0.81 0.81

13 0.02 0.83 0.95 0.57 0.45 0.68 0.75 0.78 0.81 0.77 0.56

14 0.04 0.85 0.86 0.86 0.73 0.72 0.9 0.9 0.85 0.9 0.81

15 0.04 0.9 0.55 0.81 0.56 0.83 0.56 0.65 0.61 0.42 0.45

16 0.04 0.88 0.83 0.43 0.53 0.32 0.32 0.32 0.32 0.4 0.4

17 0.04 0.93 0.48 0.85 0.44 0.49 0.72 0.01 0.48 0.0 0.36

18 0.03 0.71 0.9 0.55 0.65 0.0 0.67 0.48 0.42 0.42 0.47

19 0.02 0.95 0.57 0.69 0.47 0.37 0.0 0.0 0.0 0.0 0.0

20 0.01 0.81 0.72 0.02 0.11 -0.0 0.0 0.04 0.0 0.06 0.0

21 0.02 0.49 -0.0 0.0 0.04 0.01 0.0 0.0 0.0 0.0 0.0

22 0.05 0.93 0.42 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

23 0.03 0.0 0.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

24 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26 0.02 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

27 0.01 -0.0 0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

28 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

29 0.03 0.0 0.08 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Firstly, we note that the ARI never reaches one due to the variance introduced in our Data

Generating Process (DGP). Typically, the algorithm successfully forms three main clusters that

accurately group the three distinct sets of observations, although a few observations may end

up in smaller, separate clusters. In practice, these smaller clusters could be reassigned to the

nearest larger cluster. Additionally, the algorithm usually selects the subset of features that are

most influential in driving cluster separation.

Low ARI values generally indicate one of two scenarios: either only a few cluster centroids

have fused, resulting in a high number of clusters, or all cluster centroids have fused together
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into a single cluster. While we could have terminated the algorithm if all observations fused, we

deliberately did not do this to demonstrate the variability in clustering performance.

Secondly, we find that when the number of neighbors K is relatively low, the ARI reflects

poor clustering performance due to the formation of unconnected graphs among observations

within the same group. For K values around 10% to 20% of the total observations, we observe

relatively better and more consistent performance across all values of γ. Conversely, for larger

values of K, good ARI scores are only obtained for small values of γ. Since each cluster contains

20 observations, it is ideal to select fewer than 20 neighbors to avoid fusing observations from

different clusters. Additionally, to ensure a connected graph, the number of neighbors should

not be too low, especially given that 98% of the features in our data are noisy, which can further

impact the accuracy of the K-NN scheme.

These findings align with the empirical results of Chi (2015), who concluded that it is not

necessary to find the exact K-NN and hypothesized that clustering quality would not decline

if approximate nearest neighbors are used. Therefore, based on these findings, we recommend

selecting K to be roughly between 10% and 20% of the total number of observations.

5.3 Weighting scheme analysis

In our next analysis, we compare the performance of the standard Gower distance with our

modified Gower distance as described in Section 4.3. The accuracy of the distance measure in

the K-NN weighting scheme is crucial as it determines which observations are fused together.

Our modified Gower distance is scaled so that the expected distance for each feature equals one.

We measure performance by calculating the average percentage of correctly chosen neighbors

across different levels of noise.

Figure 5 displays the accuracy of the K-NN scheme for the simulated spherical clusters,

based on 20 different simulated datasets. The results show that the modified Gower distance

consistently outperforms the standard Gower distance. However, the performance of both meas-

ures declines as the number of noisy features in the dataset increases. This decline is expected,

as both dissimilarity measures aim to ensure equal variable contribution to the dissimilarity:

the standard Gower distance does this by confining the range of dissimilarity for each feature,

while the modified Gower distance sets the expected distance of each feature to one. Thus, both

relevant and noisy features contribute equally, which results in the noisy feature overpowering

the relevant features.

Moreover, in our previous sensitivity analysis, we observed that the consistency of the ARI

drops when selecting around 15 neighbors, which is 25% of the total observations, in the K-NN

scheme, particularly in the case with 98% noise. Based on Figure 5(d), this selection results

in an accuracy of less than 50% for the K-NN scheme. Thus, we conjecture that the convex

clustering algorithm achieves consistent and adequate performance when the average accuracy

of the K-NN scheme is at least 50%.

Summarizing, the simulation results indicate that the K-NN weighting scheme can be signific-

antly affected by noise in the features, potentially negatively impacting clustering performance.

Given that datasets may contain thousands or even millions of features, correctly determining

the neighbors in the K-NN weighting scheme becomes a major challenge for the convex cluster-
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(a) 0% noise (b) 80% noise

(c) 96% noise (d) 98% noise

Figure 5: Accuracy of the K-NN scheme for selecting neighbors in the same cluster in different
noise scenarios

ing framework. In summary, while the convex clustering framework can handle moderate noise,

the presence of many noisy features can adversely affect clustering quality.

6 Results

In this section, we present the results of our proposed mixed convex clustering method, which

combines the AMA algorithm by Chi and Lange (2015) and the feature selection framework by

Witten and Tibshirani (2010), applied to a real gene expression dataset. The dataset includes

samples from ALL and AML patients, and our objective is to accurately cluster these two groups.

Initially, we cluster a dataset comprising 38 observations: 27 ALL patients and 11 AML

patients, across 7129 numerical and categorical features. This dataset is particularily challenging

due to its high dimension and class imbalance. The results of our clustering are detailed in Table

4.
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Table 4: Adjusted Rand Index for Different Cluster Algorithms

Cluster Algorithm Adjusted Rand Index

MCC 0.911

K-prototypes 0.041

KAMILA -

sparse k-means 0.041

HAC 0.011

Firstly, our convex clustering method performs significantly better than the benchmark mod-

els based on the ARI scores. Additionally, it is worth noting that the KAMILA algorithm failed

to cluster this dataset due to its interpolation method detecting NA (missing) values, despite our

confirmation that the dataset contains no missing values. All other methods also did not detect

any missing values. Thus, our convex clustering method demonstrates capability in performing

feature selection effectively in high-dimensional data.

One of the primary reasons the other methods perform poorly is their lack of feature selection

capability, except for the sparse weighted k-means for mixed data. This capability is crucial for

identifying the correct features that drive cluster separation. Given that the dataset contains

14252 features, these algorithms will attempt to cluster the observations using the full set of

features, which is likely to degrade clustering performance. Additionally, all these methods are

prone to getting stuck in local optima due to their non-convex nature. Therefore, the sparse

weighted k-means for mixed data is the only real contender compared to our method for this

dataset. However, due to its tendency to get stuck in local optima, its performance is comparable

to the other non-convex clustering methods.

However, it is important to note that ARI scores for our method fluctuates depending on

the number of neighbors chosen in the K-NN scheme. This variability stems from the fact that

we did not fine-tune γ for each value of K. Instead, we used a fixed value of γ = 100 for all

values of K. As a result, the clustering often produced multiple clusters rather than exactly

two clusters. However, these clusters effectively separated the underlying groups—ALL and

AML patients. Specifically, the convex clustering algorithm formed sub-clusters within each

true cluster. Therefore, any errors primarily arise from clusters not merging due to γ being set

too low, rather than incorrect pair assignments.

Consequently, we plot the values of the ARI against K in Figure 6. We observe that a high

ARI score is achieved when selecting five or six neighbors, corresponding to 13% and 16% of

the total observations, respectively. This finding aligns closely with the results of our previous

simulation experiments, where consistent clustering results were obtained for K values between

10% and 20% of the dataset.
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Figure 6: The ARIs obtained by our convex clustering method, for a range of values of neighbors
K in the K-NN weighting scheme

Next, we apply our clustering method to an independent dataset. This dataset is less im-

balanced compared to the training dataset, with 20 ALL patients and 14 AML patients. The

results are summarized in Table 5. Once again, our method demonstrates superior performance

compared to other methods. However, unlike the previous training dataset, we hesitate to con-

clude that our algorithm consistently selects the correct clusters. In this case, the lower ARI

scores are a result of incorrect pairings rather than there being multiple subclusters within the

true clusters. Figure 7 also suggests that the true clusters may not be reliably identified by our

method.

Table 5: ARI scores for cancer gene expression dataset. Bold value denotes the best performing
method.

Cluster algorithm Adjusted Rand Index

MCC 0.758

K-prototypes 0.144

KAMILA -

sparse k-means 0.144

HAC 0.144

Figure 7: The ARIs obtained by our convex clustering method, for a range of values of neighbors
K in the K-NN weighting scheme

We further investigate potential reasons for these outcomes. Our intuition suggests that the
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K-NN weighting scheme may be selecting incorrect neighbors in the K-NN weighting scheme.

Therefore, we conduct a similar experiment to assess the accuracy of the K-NN weighting scheme

in correctly assigning positive weights between observations that belong to the same cluster. The

results are presented in Figure 8.

(a) Training dataset (b) Independent dataset

Figure 8: Accuracy of the K-NN scheme for selecting neighbors in the same cluster in different
noise scenarios

Based on Figure 8, we note that the accuracy of the weighting scheme in the training dataset

is higher than the independent dataset. Thus, we have identified a potential reason for the

relatively poorer performance on the independent dataset compared to the training dataset.

Specifically, we observed that the training dataset consistently achieves an average accuracy

of 50% or higher in the weighting scheme, whereas the independent dataset falls below 50%.

In our simulation experiments, we established that our convex clustering algorithm performs

more reliably when the weighting scheme averages a 50% accuracy in neighbor selection. This

consistency was not observed in the independent dataset, which may have contributed to the

observed results.

Therefore, while our convex clustering algorithm can identify a global solution based on the

provided features, the effectiveness of the clustering itself is closely tied to number of noisy

features. While we have mitigated the instability of non-convex methods like K-means by

incorporating convex clustering, we still have to deal with the variability introduced by the

selection of features. In high-dimensional data, there are often multiple clusters that may achieve

a lower objective loss than the true signal we seek to identify.

In conclusion, our convex clustering algorithm consistently outperforms other popular clus-

tering methods across both simulation datasets and gene expression data. We find that it suc-

cessfully identifies the true clusters within the population, provided that the weighting scheme

is not overly influenced by noise.

7 Conclusion

In this thesis, we formulated an answer to the research question: “How can we extend the

convex clustering framework to incorporate both numerical and categorical data, while also

performing feature selection in high-dimensional datasets?”. We choose for a convex clustering

method since traditional clustering methods such as hierarchical agglomerative clustering and

k-means are known to suffer from algorithmic instability. Additionally, datasets often include
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both numerical and categorical features, necessitating methods that can accommodate both

types since both feature types may play a critical role in the clustering. Moreover, in high-

dimensional datasets, it is likely that only a fraction of features contribute meaningfully to

clustering, underscoring the importance of feature reduction or selection.

To integrate these diverse requirements into a unified clustering approach, we began by

adapting the AMA algorithm for convex clustering introduced by Chi and Lange (2015) to handle

categorical data. Subsequently, inspired by works such as B. Wang et al. (2018) and M. Wang

and Allen (2021), we incorporated a penalty term to regulate feature influence. Furthermore, we

integrated a feature selection framework proposed by Witten and Tibshirani (2010) to enhance

the robustness of feature selection in our clustering method.

Through extensive simulation experiments covering spherical and non-spherical cluster shapes

(including the half-moon dataset) and applications to high-dimensional mixed gene expression

datasets, our convex clustering method has demonstrated superior performance over other widely

used clustering techniques. It effectively clusters both convex and non-convex shapes while ac-

curately selecting relevant features in high-dimensional settings. Conversely, other methods

struggle when datasets exhibit non-spherical shapes or contain substantial noise in features.

However, we acknowledge that the performance of our convex clustering method can be

compromised by the presence of numerous noisy features. Our simulations and real-world data-

set analyses indicate that our method’s efficacy diminishes when the accuracy of our weight-

ing scheme falls below 50%. In our convex clustering algorithm, positive weights are assigned

between observations identified as neighbors, emphasizing proximity over exact nearest neigh-

bors as detailed by Chi and Lange (2015). This necessitates a minimum accuracy threshold of

50% for consistent results.

Moving forward, avenues for future research could focus on refining the approach to weight

selection. Given that the weighting scheme plays a pivotal role in convex clustering by de-

termining which observations merge, its accuracy is critical, especially in the presence of noisy

features. Additionally, efforts could concentrate on optimizing algorithm efficiency. Our current

implementation achieves convergence within a minute for the largest dataset (36 samples, 14,258

features). Touw et al. (2023) and Sun et al. (2021) have demonstrated faster convergence rates

compared to the AMA algorithm, suggesting potential areas for computational efficiency.
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A Derivation AMA

In AMA, we set σ = 0 in the minimization for at+1 , as such a term drops out which makes

computation straightforward. This means that we minimize an ordinary Lagrangian function

which is as follows:

l(a,v,Λ) =

n∑
i=1

Lnum(xnum
i ,anumi )+Lcat(xcat

i ,acati )+γ
∑
l∈E

wl||vl||q+
∑
l∈E
⟨λl,vl−al1+al2⟩ (40)

The first step in AMA minimizes over a in the Lagrangian specification 63

at+1 = argmin
a

n∑
i=1

Lnum(xnum
i ,anumi ) + Lcat(xcat

i ,acati ) +
∑
l∈E
⟨λl,vl − al1 + al2⟩ (41)

The objective function can be separated across all i, allowing us to compute the numerical and

categorical centroids separately since they are independent of each other. For the numerical

centroids we have

hnum :=
1

2

n∑
i=1

||xnum
i· − anumi· ||22 +

∑
l∈E
⟨λnum

l ,vnum
l − anuml1 + anuml2 ⟩ (42)
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As the squared Euclidean norm and dot product are convex functions, the overall objective is

also convex. Thus taking the derivative and setting it equal to zero results in our update for ai

dhnum

danumi

= −xnum
i + anumi −

∑
l1=i

λnum
l +

∑
l2=i

λnum
l = 0

⇒ anumi = xnum
i +

∑
l1=i

λnum
l −

∑
l2=i

λnum
l

(43)

In similar fashion, for the categorical features, we have the following function to minimize

hcat :=

p∑
j=m+1

{
K∑
k=1

−xijklog(aijk)− (1− xijk)log(1− aijk)

}
+
∑
l∈E
⟨λl, v

cat
l −acatl1 +acatl2 ⟩, i = 1, . . . , n

(44)

Similarly, taking the derivative and setting it equal to zero gives

dhcat

dacati

= −xcat
i

acati

+
1− xcat

i

1− acati

−
∑
l1=i

λcat
l +

∑
l2=i

λcat
l = 0

⇒ −xcat
i + acati =

∑
l1=i

λcat
l −

∑
l2=i

λcat
l

⇒ acati = xcat
i +

∑
l1=i

λcat
l −

∑
l2=i

λcat
l

(45)

Next, similar to Chi and Lange (2015), the update for λt+1
l is given by:

λt+1
l = λt

l + σ(vt+1
l − at+1

l1
+ at+1

l2
) (46)

Regarding the update for vt+1, we note that it is separable for the vectors vl.

v = argmin
v

γwl|||vl||q + ⟨λt
l ,v

t+1
l ⟩+

σ

2
||vt+1

l − at+1
l1

+ at+1
l2
||22

= argmin
v

1

2

[
||vt+1

l − (at+1
l1 − at+1

l2 − σ−1λt
l)||22 +

γwl

σ
||vt+1

l ||
]

= proxc||·||(a
t+1
l1 − at+1

l2 − σ−1λt
l)

(47)

where the proximal operator is defined as

proxcΩ(x) = argmin
v

[
cΩ(v) +

1

2
||x− v||22

]
(48)

In this case, Ω = || · ||2 and c = γwl
σ . This problem can be solved via block-wise soft-thresholding,

hence the update for vt+1 looks as follows

vt+1
l =

[
1−

γwl
σ

||at+1
l1 − at+1

l2 − σ−1λt
l ||2

]
(at+1

l1 − at+1
l2 − σ−1λt

l) (49)

Chi and Lange (2015) show that using Moreau’s decomposition (Combettes & Wajs, 2005), one
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can rewrite the proximal operator with the norm as:

proxcΩ(z) = z− projcB(z), (50)

where B = {y : ||y||†} is the unit ball of the dual norm || · ||†. In this case, the dual norm of

|| · ||2 is simply || · ||2. Moreover, we note that the solution of projection onto the unit vector

projB(z) =
z

max{1,||z||} . Thus, when we plug the formula in Equation 47, we get

vt+1
l = proxσl||·||(a

t+1
l1 − at+1

l2 − σ−1λt
l)

= al1 − al2 − σ−1λl − projcB(a
t+1
l1 − at+1

l2 − σ−1λt
l),

(51)

where in this case c = γwl
σ . Plugging this in Equation 46 leads to

λt+1
l = λt

l + σ(vt+1
l − at+1

l1
− at+1

l2
)

= λt
l + σ(at+1

l1
− at+1

l2
− σ−1λt

l − projcB(a
t+1
l1
− at+1

l2
− σ−1λt

l)− at+1
l1
− at+1

l2
)

= λt
l + σ(−σ−1λt

l − projcB(a
t+1
l1
− at+1

l2
− σ−1λt

l))

= −σ projcB(a
t+1
l1
− at+1

l2
− σ−1λt

l)

= projCl
(λt

l − σ(at+1
l1
− at+1

l2
)),

(52)

where we use the identities −projcB(z) = projcB(−z) and aprojcB(z) = projacB(−az) for a > 0.

Moreover, Cl = {λl : ||λ||† ≤ γwl}.

B AMA Dual derivation

Recall that minimizing the Lagrangian on primal variables gives the dual. For a general case,

we want to minimize:

D(λ) = min
u,v

f(a) + g(v) + ⟨λ, c−Au−Bv⟩

= min
u
{f(a)− ⟨λ,Au⟩}+min

v
{f(u)− ⟨λ,Bv⟩}

= min
u

{
f(a)− ⟨Atλ,u⟩

}
+min

v

{
f(u)− ⟨Btλ,v⟩

}
= −max

u

{
⟨Atλ,a⟩ − f(a)

}
−max

v

{
⟨Btλ,v⟩ − g(v)

}
= −f∗(Atλ)− g∗(Btλ),

(53)

where in the last line we use the convex conjugate f∗(v) = maxx∈domf {⟨x,v⟩ − f(x)}. It now

rests to find expressions for the Fenchel conjugates. The conjugate for g∗ is the same in Chi and
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Lange (2015).

g∗(λ) = sup
v

[
⟨λ,v⟩ − γ

∑
l∈E

wl||vl||

]

= sup
v

[
⟨
∑
l∈E

λ,v⟩ − γ
∑
l∈E

wl||vl||

]
=

∑
l∈E

sup
v

[⟨λ,v⟩ − γwl||vl||]

= δCl
(λl),

(54)

where in the last line we use the fact that the conjugate of the norm is the convex indicator

function of the dual norm. However, in our case f(a) is the essentially the sum of two convex

functions. As they each operate on different part of the input variables, we can treat them

separately. For the numerical data we have as loss function 1
2 ||x-a||

2
2. Using the definition of

the convex conjugate f∗, we get the problem:

f∗(z) = sup
a
⟨z,a⟩ − 1

2
||x-a||22 (55)

Taking the derivative with respect to a, we get

df∗(z)

da
= z+ x− a = 0

⇒ a = z+ x

(56)

Plugging in the formula yields:

f∗(z) = ⟨z, z+ x⟩ − 1

2
||x− z− x||22

= ||z||22 + ⟨z,x⟩ −
1

2
||z||22

=
1

2
||z||22 + ⟨z,x⟩

(57)

In similar fashion for −xlog(a)− (1− x)log(1− a), we have:

f∗(z) = sup
a
⟨z,a⟩ − (−xlog(a)− (1− x)log(1− a))

= sup
a
⟨z,a⟩+ xlog(a) + (1− x)log(1− a)

(58)

Taking the derivative with respect to ai result in:

df∗(z)

dai
= z+

x

a
− 1− x

1− a
= 0

⇒ (1− a)x− a(1− x) = −z

⇒ a = z+ x

(59)
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Plugging in the equation yields:

f∗(z) = ⟨z, z+ x⟩+ xlog(z+ x) + (1− x)log(1− z− x)

= ||z||22 + ⟨z,x⟩+ xlog(z+ x) + (1− x)log(1− z− x)
(60)

Before we move on to the final term f∗, we clarify the notation further. Now, a denote the

stacked such that a = [at1 . . .a
t
n]

t and similarily for v = [vt
1 . . .v

t
l ] and x = [xt

1 . . .x
t
n]. Recall

that we have the condition: al1−al2−vl = 0 ∀l ∈ E . Hence, if we define A as At = [At
1 . . .A

t
ε],

where ε is the number of non-zero edges and At
l = [el1 −el2 ]⊗ Ip which is an np× p matrix. For

example, Alx = [et11 − et12 ] ⊗ Ip ∗ x =


xl11 − xl21

...

xl1p − xl2p

. Moreover Atλ looks as follows, remember

At is a np× pε matrix, and λ is a stacked matrix with dimensions pε× 1. For example, assume

we take indexes l1 = 1 and l2 = 2, then

At
lλl =


Ip

−Ip
...

0(n−2)×p


np×p

×


λl1
...

λlp


p×1

=



λ1

...

λp

−λ1

...

−λp

0(n−2)×1


np×1

(61)

Hence, Atλ is essentially the sum of each At
lλl. Each block represents the sum (or subtraction

depending on whether the index i is the first or second index) of the associated λ’s. We can now

finalize the formula for the dual, namely

f∗(Atλ) =
1

2
||Atλ||22 + ⟨Atλ,x⟩+ ||Atλ||22 + ⟨Atλ,x⟩+ xlog(Atλ+ x) + (1− x)log(1−Atλ− x)

=
1

2

n∑
i=1

||∑
l1=i

λl −
∑
l2=i

λl||22 +
∑
l∈E
⟨λl,xl1 − xl2⟩

+ ||Atλ||22 + ⟨Atλ,x⟩+ xlog(Atλ+ x)

+ (1− x)log(1−Atλ− x)

(62)

C Derivation AMA with Ridge

The derivation is largely the same for the AMA objective with Ridge penalty.

l(a,v,Λ) =

n∑
i=1

Lnum(xnum
i ,anumi ) + Lcat(xcat

i ,acati ) + γ
∑
l∈E

wl||vl||q +
∑
l∈E
⟨λl,vl − al1 + al2⟩

+ β

p∑
j=1

||aj − ãj ||2

(63)
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For the numerical centroids we have

hnum := α
1

2

n∑
i=1

||xnum
i· − anumi· ||22 +

∑
l∈E
⟨λnum

l ,vnum
l − anuml1 + anuml2 ⟩+ 1

2
β

m∑
j=1

||anumj − ãnumj ||22

(64)

dhnum

danumi

= −αxnum
i + αanumi −

∑
l1=i

λnum
l +

∑
l2=i

λnum
l + β(anumi − ãnumi ) = 0

⇒ αanumi + βanumi = αxnum
i +

∑
l1=i

λnum
l −

∑
l2=i

λnum
l + βãnumi

⇒ anumi =
αxnum

i +
∑

l1=i λ
num
l −

∑
l2=i λ

num
l + βãnumi

(α+ β)

(65)

In similar fashion, for the categorical features, we have the following function to minimize

hcat :=(1− α)

p∑
j=m+1

{
K∑
k=1

−xijklog(aijk)− (1− xijk)log(1− aijk)

}
+
∑
l∈E
⟨λl, v

cat
l − acatl1 + acatl2 ⟩, i = 1, . . . , n

(66)

+
1

2
β

p∑
j=m+1

||acatj − ãcatj ||22 (67)

Similarly, taking the derivative and setting it equal to zero gives

dhcat

dacati

= (1− α)

(
−xcat

i

acati

+
1− xcat

i

1− acati

)
−

∑
l1=i

λcat
l +

∑
l2=i

λcat
l + β(acati − ãcati ) = 0

⇒ −(1− α)xcat
i + (1− α)acati + βacati =

∑
l1=i

λcat
l −

∑
l2=i

λcat
l ++βãcati

⇒ acati =
(1− α)xcat

i +
∑

l1=i λ
cat
l −

∑
l2=i λ

cat
l + βãcati

1− α+ β

(68)

The dual also remains similar except for the fact that we add the ridge penalty’s. Using the

definition of the convex conjugate f∗, we get the problem:

f∗(z) = sup
a
⟨z,a⟩ − 1

2
α||x-a||22 −

1

2
β||a− ã||22 (69)

Taking the derivative with respect to a, we get

df∗(z)

da
= z+ αx− αa− βa+ βã = 0

⇒ a =
z+ αx+ βã

α+ β

(70)
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Plugging in the formula yields:

f∗(z) = ⟨z, z+ αx+ βã

α+ β
⟩ − 1

2
||x− (

z+ αx+ βã

α+ β
)||22

=
1

1 + β

(
||z||22 + ⟨z,x⟩+ ⟨z, βã⟩

)
−−1

2
||x− (

z+ x+ βã

1 + β
)||22

(71)

In similar fashion for the categorical variables, we have:

f∗(z) = sup
a
⟨z,a⟩ − (1− α)(−xlog(a)− (1− x)log(1− a)) +

1

2
β||a− ã||22)

= sup
a
⟨z,a⟩+ (1− α)xlog(a) + (1− α)(1− x)log(1− a)− 1

2
β||a− ã||22

(72)

Taking the derivative with respect to ai result in:

df∗(z)

dai
= z+ (1− α)

x

a
− (1− α)

1− x

1− a
− βa+ βã = 0

⇒ (1− α)((1− a)x− a(1− x))− βa = −z− βã

⇒ a =
z+ (1− α)x+ βã

1− α+ β

(73)

Plugging in the equation yields:

f∗(z) = ⟨z, z+ (1− α)x+ βã

1− α+ β
⟩+ xlog(

z+ (1− α)x+ βã

1− α+ β
) + (1− x)log(1− (

z+ (1− α)x+ βã

1− α+ β
))

(74)
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