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Abstract

The generalised impulse response function of a Markov-switching vector autoregression (MS-

VAR) is used to construct a time-varying spillover index (SI). The MS-VAR is estimated by

means of maximum likelihood subject to adaptive elastic net penalisation with a view to

the construction of the SI for the high-dimensional global bank stock return volatility data-

set of Demirer, Diebold, Liu and Yilmaz (2018). It is found that the parameter estimates

of the MS-VAR are preferred over those of a vector autoregression based on an appropri-

ate information criterion. The time-variation in the SI of the MS-VAR, however, mainly

consists of switching between the full-sample SIs of the prevailing regimes. It is recommen-

ded to combine the MS-VAR with rolling windows to obtain the dynamic SI. To advance

the analysis and interpretation of the spillover networks that are hereby obtained, I apply

network-theoretic methods to inquire into regional patterns of spillovers and the evolution

of the network structure over time. A community detection algorithm is used to determine

clusters of nodes. It is found that the MS-VAR leads to markedly different networks that can

be linked to the differences in the parameter estimates over the regimes. When aggregating

the banks to obtain a network at the level of the country by means of multiple shock impulse

response functions, similar results are obtained. Finally, I attempt to improve the predictive

performance of spillover networks by means of graph embeddings. It is found that the graph

embeddings are competitive with the SI as features in a classifier.

Keywords: Spillover index, Markov-switching vector autoregression, Adaptive elastic net,

Bank network, Graph embedding, Systemic event prediction.
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1 Introduction

The spillover index (SI), developed by Diebold and Yilmaz (2009, 2012), is one of the main

metrics employed in the analysis of connectedness between financial and economic time series.

Empirically, it has been applied extensively, among others, to volatility connectedness of financial

institutions (Diebold & Yilmaz, 2014; Diebold & Yilmaz, 2015b; Demirer, Diebold, Liu & Yil-

maz, 2018), commodity returns (Diebold, Liu & Yilmaz, 2017) and international market indices

(Beraich, Amzile, Laamire, Zirari & Fadali, 2022), return connectedness of asset classes (Bouri,

Cepni, Gabauer & Gupta, 2021), cryptocurrencies (Kumar, Iqbal, Mitra, Kristoufek & Bouri,

2022), exchange rates (Antonakakis, Chatziantoniou & Gabauer, 2020), oil markets (Zhang &

Wang, 2014), implied volatility (Kae-Yih, 2023), housing prices (Gabauer, Gupta, Marfatia &

Miller, 2024) and in the variety of settings of Diebold and Yilmaz (2015a). Methodologically, it

has been extended by means of a spectral representation of the SI (Baruńık & Křehĺık, 2018),

by modelling the conditional quantiles of time series rather than their conditional means (Bouri,

Lucey, Saeed & Vinh Vo, 2020) and by means of refining the definition of the SI (Lastrapes &

Wiesen, 2021).

This thesis will focus on another aspect, namely, the time-variation in the SI. A recurring theme

in many of the aformentioned applications is the emphasis on periods in which connectedness

increases. These coincide with uncertain and volatile episodes in the economy and in financial

markets such as the great financial crisis, the COVID-19 pandemic and the Russo-Ukrainian

war. In the development of the SI, as well as in other metrics of connectedness (e.g. Billio,

Getmansky, Lo & Pelizzon, 2012; Dungey & Martin, 2007), the ability to describe such periods

is considered to be of importance. By inducing dynamics in the SI, the connectedness of the

system can be monitored in these periods.

These dynamics are conventionally obtained by estimating a vector autoregression (VAR) us-

ing a rolling window of observations. Alternatively, time-varying parameter VARs have been

proposed by Antonakakis et al. (2020) to better capture dynamics in the SI and for volatility

connectedness, the DCC-GARCH has been proposed by Gabauer (2020).1 These methods are

suited for smooth changes in the parameters over time (Granger, 2008).2 Consequently, changes

in the SI over time are often gradual. Yet, it is desirable that the SI swiftly responds to changes

in underlying connectedness.3 Moreover, the number of observations decreases drastically when

using rolling windows.

For both financial (Ang & Timmermann, 2012) and economic time series (Hamilton, 2016),

changes are often of a more abrupt nature. Regime-switching models, in which the process

governing the regimes is typically described by a Markov process, are frequently used to model

such changes in the parameters (Guidolin, 2011). BenSäıda, Litimi and Abdallah (2018) and

Kim and Lee (2023) to my knowledge are the only applications of a Markov-switching VAR (MS-

VAR) to obtain regime-specific SIs.4 Thus, the use of regime-switching is rare and moreover

1 DCC-GARCH stands for dynamic conditional correlation generalised autoregressive conditional heteroske-
dasicity.

2 Cf. Diebold & Yilmaz (2015a), pp. 22-23.
3 Cf. Korobilis & Yilmaz (2018), pp. 2.
4 Regime-switching models for volatility spillovers through volatility models have been in place for longer, e.g.
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has been limited to low-dimensional data. Recently, Kole and Van Dijk (2023) have derived

a closed-form expression of the generalised impulse response function (GIRF) of the MS-VAR,

which takes account of the regimes over time in the determination of the impulse response. This

enables going beyond regime-specific SIs and allows for time-variation in the SI.

A drawback of the SI is that high-dimensional systems can lead to inaccurate parameter es-

timates due to the parametrisation of a VAR. For the estimation of large systems, containing

dozens of variables or more, recourse must be had to the methods of high-dimensional VARs.

This holds a fortiori for MS-VARs, as these require parameter estimates for every regime. The

least absolute shrinkage and selection operator (LASSO) and the elastic net are popular meth-

ods to obtain high-dimensional SIs. Examples are Demirer et al. (2018), Yi, Xu and Wang

(2018), Bostanci and Yilmaz (2020), Gabauer et al. (2024) and Chen and Schienle (2022), who

also extend the methodology to a vector error correction model in which the LASSO selects

the cointegration relations.5 The inclusion of more variables into the system is not only of

interest because such variables could be informative per se, but also because this enables the

description of more extensive networks. For example, Gabauer et al. (2024) describe housing

price connectedness for the states of the United States and, precisely this level of aggregation

being of interest, this necessitates a high-dimensional system. The aforementioned applications

however, do not provide for in-built, i.e. without resorting to a rolling window, dynamics in the

parameter estimates.

To that end, recent contributions in the area of high-dimensional MS-VARs are useful, with

different forms of penalised maximum likelihood (ML) estimation having been developed by

Monbet and Ailliot (2017), Maung (2023) and Chavez-Martinez, Agarwal, Khalili and Ahmed

(2023) respectively. The main contribution of this thesis will therefore be the application of an

MS-VAR with adaptive elastic net penalisation to obtain SIs, which enables both the estimation

of high-dimensional systems, as well as the incorporation of abrupt changes in model parameters.

In an application to the global bank stock return volatility dataset of Demirer et al. (2018), it

will be seen that the use of an MS-VAR estimated by means of penalised ML is preferred to

that of a VAR based on an appropriate information criterion. The SI of the MS-VAR will

exhibit time-variation, but it mostly coincides with the full-sample SI of the prevailing, inferred

regime, although time-variation stemming from the forecast error variance is also present. The

bootstrap method of Choi and Shin (2020) will be applied to the SI of the VAR to construct

confidence intervals thereof. Using this method, it will also be shown that directional spillovers

differ significantly across regions.

The second contribution of this thesis pertains to the networks defined by the generalised forecast

error variance (GFEVD) and their analysis. Node centrality scores will be used to extend

the analysis of regional spillovers to an inquiry into the centrality of regions over time, which

Baele (2005). Another more recent and closely related example is the work of Kangogo and Volkov (2022), who
use the historical decomposition of an MS-VAR.

5 Another method to deal with the problem of parameter proliferation in the VAR that has been applied in this
context is the global VAR (Greenwood-Nimmo, Nguyen & Shin, 2021). The measurement of volatility spillovers
by conditional correlations can also be subjected to regularisation with the sparse multivariate GARCH models of
Dhaene, Sercu and Wu (2022). To my knowledge, time-varying parameter VARs have not been extended to the
high-dimensional case, as the Markov chain Monte Carlo methods involved are too burdensome computationally.
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differ in a more pronounced fashion than the spillovers. Chan-Lau (2018) introduced the use

of community detection algorithms to spillover networks and in this thesis, I will use node

embeddings for this purpose, a new method in this context. These are used in a full-sample

analysis of communities across regimes and it will be seen how the parameter estimates affect

the network structure. The effect of aggregating the individual banks by means of multiple

shock impulse response functions (MSIRF), introduced by Van der Zwan (2023), into a country

network will also be explored. It will be seen that the networks contain clear, interpretable

clusters, but that these break down for different regimes in the MS-VAR. The evolution of the

network structure over time will also be considered, as in Isogai (2017) who obtained clusters of

networks over time. To that end, I propose the use of graph embeddings and it is found that

the networks are similar to such an extent that no clusters are found.

Finally, graph embeddings will be used to inquire into the predictive power of spillover networks

and a comparison will be made with that of the SI, which has been used for these purposes

in Korobilis and Yilmaz (2018) and Arsov, Canetti, Kodres and Mitra (2013). The graph

embeddings and the SI are used as features in a logistic regression model by means of which

trading days are classified as constituting a systemic event (SE). A comparison of these models

shows that the graph embeddings can be fruitfully applied as features for these purposes and

that they are competitive with the SI, both with respect to in-sample fit, as well as with respect

to classification performance.

The remainder of this thesis will be structured as follows. In Section 2, I will discuss the VAR

and the MS-VAR and their estimation subject to adaptive elastic net penalisation. The criteria

which are used to select specifications of the respective models are discussed as well. In Section

3, I will discuss the SI and the GIRF which is its main building block. The bootstrap method, as

well as the network-theoretic methods and the node and graph embedding algorithms employed

will also be discussed. In Section 4, I will discuss the global bank stock return volatility dataset

that is used in an empirical application of the aforementioned methods. In Section 5, I will first

discuss the obtained model specifications and their estimation results, followed by the obtained

SIs. Furthermore, I will present an analysis of the obtained networks and I will discuss prediction

results obtained by means of graph embeddings. In Section 6, I will summarise the findings of

this thesis and draw conclusions therefrom.

2 Markov-Switching Vector Autoregression

2.1 Model Formulation

In the following description of the MS-VAR, the notation follows Kole and Van Dijk (2023)

with some adjustments. Let yt be a k-dimensional vector of time series and st be the prevailing

regime at a time t. If there areM different regimes, st can take values 1, . . . , M and the general

MS(M)-VAR(p) can be formulated as follows:

yt “ cst ` Φ1,styt´1 ` . . .` Φp,styt´p ` ut, ut „ N p0,Σstq, t “ p` 1, . . . , T (2.1)
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where cst is a vector of intercepts. The reduced form error terms ut can be decomposed as

Λstεt, such that ΛstΛ
1
st “ Σst “ Varryt|st, yt´1, . . . , yt´ps, the conditional variance of yt.

Λst can be identified using a Cholesky decomposition. The structural error terms εt are serially

uncorrelated, Erεtε
1
t`ss “ O, s ‰ 0. The VAR, which corresponds to equation (2.1) withM “ 1,

is assumed to be stable. This entails that all of the roots of |Ik ´
řp

l“1Φlz| “ 0, an equation in z

with Ik being the k-dimensional identity matrix, are outside the complex unit circle. This implies

that an infinite-order moving average representation of the VAR exists, which is required for the

evaluation of its GIRF. This condition is equivalent to the spectral radius of the autoregressive

parameter matrix of its VAR(1) representation not being greater than or equal to one. For the

MS-VAR, a similar restriction on the spectral radius holds (Kole & Van Dijk, 2023).6

It is generally not desirable to labour under the assumption of Gaussian error terms for a linear

VAR in practice, as it is not plausible. This lead for example Diebold and Yilmaz (2014) to

apply natural logarithms to the volatilities of United States financial institution stock returns.

The MS-VAR could provide another advantage. As such transformations might not be neces-

sary, more information is retained in the data, although in this thesis, the MS-VAR will be

applied to the same data as the benchmark VAR. The MS-VAR can generate skewed, leptokur-

tic distributions of yt and conditional heteroskedasticity, Gaussianity of the error terms within

regimes notwithstanding (Krolzig, 1997). Moreover, Kole and Van Dijk (2023) show that the

Gaussian MS-VAR corresponds to a non-Gaussian linear VAR. Although even within regimes

this assumption need not necessarily hold, this assumption is much weaker than for a VAR. It

is moreover used very frequently in the literature on the MS-VAR (Maung, 2023). Therefore, as

well as with a view to evaluating the GIRF, I proceed with the assumption of Gaussianity.

The process that governs the regimes is modelled as an irreducible, ergodic, first-order Markov

chain with transition matrix P, wherePi,j “ pi,j “ Prst “ i|st´1 “ js. The prevailing regime can

be described by ξt “ p1 pst “ 1q , . . . , 1 pst “ Mqq, where 1 pst “ mq is an indicator function

that is equal to 1 if st “ m and 0 otherwise. The irreducibility and ergodicity of the Markov

chain implies that there exists a vector π, the elements of which are pπqm “ Prst “ is, the

ergodic probabilities of the chain such that π “ Pπ. Moreover, the Markov chain described

above is homogeneous. In principle, it is possible to model st using a non-homogenous Markov

chain, but this is outside the scope of this thesis.7

Next, unless stated otherwise, the intercepts, the autoregressive parameters and the covariance

matrix are regime-dependent and governed by the same regime. In addition, I will consider the

use of multiple, independent Markov chains.8 For example, let ts
p1q

t uTt“1 and ts
p2q

t uTt“1 be two

independent, homogeneous, irreducible, ergodic Markov chains with state space Si and transition

probability matrix Pi, i “ 1, 2. These can be modelled as one Markov chain tstu
T
t“1, which has a

state space S “ S1
Ś

S2 and a transition probability matrix P1 b P2, where
Ś

is the Cartesian

6 This condition for the MS-VAR is included in the discussion of the GIRF of the MS-VAR in Appendix D.
7 Bazzi, Blasques, Koopman and Lucas (2017) incorporate time-varying parameters using generalised autore-

gressive score parameter updates and the transition probabilities obtained differ non-trivially over time. Yet, their
inferred regimes do not markedly differ from those that are obtained using constant probabilities.

8 This can be extended to dependent Markov chains using the methodology of Catania (2022). However, this
is quite involved and will not be pursued in this thesis.
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product and b is the Kronecker product (Hamilton & Lin, 1996). The obtained Markov chain

is still homogeneous, irreducible and ergodic. The use of multiple chains can pertain both to

different sets of parameters, as well as to different equations of the system. In the latter case,

pc1, Φ1q, . . . , pcp, Φpq are different for each regime, but their rows are subject to parameter

restrictions across regimes.

2.2 Model Estimation

2.2.1 Single Regime

Estimation of high-dimensional VARs requires specific methods to deal with the problem of

parameter proliferation that these models are subject to. First, I discuss estimation of the VAR,

by means of ordinary least squares (OLS) with adaptive elastic net penalisation, a regularisation

method also used by Demirer et al. (2018), who use equally weighted LASSO- and Ridge-

penalties. The adaptive elastic net, due to Zou and Zhang (2009), can deal with multicollinearity

better than the adaptive LASSO and asymptotically has the oracle property, shown for the

VAR by Furman (2014). This requires a set of preliminary, consistent parameter estimates

that can be obtained by Ridge-penalised OLS. Weights are then obtained for pΦlqi,j by setting

wi,j;l “ p|β̂Ridge
i,j;l |q-γ , γ ą 0. As the dimension of the number of predictors is finite, Zou and Zhang

(2009) describe that any positive value of γ can be chosen and following these authors, I set

γ “ 1. Moreover, the use of the adaptive weights can also function to render the specification of

a specific sparsity pattern superfluous, as these per se provide for variable-specific penalisation

in a data-driven manner.9

For the objective function of the VAR, note that equation-by-equation estimation is equivalent

to system-based, simultaneous estimation. The imposed penalisation is also identical for both

equation-by-equation and system-based estimation and does not have a differential effect on

the parameter estimates. The objective function can thus be constructed as follows, letting

Φ “ pΦ1, . . . ,Φpq and β “ pc,Φq:

β̂i “ argmin
βi

T
ÿ

t“p`1

pyi,t ´ ci ´

p
ÿ

l“1

pΦlq
1
iyt´lq

1pyi,t ´ ci ´

p
ÿ

l“1

pΦlq
1
iyt´lq (2.2)

` λi

„

p1 ´ αiq}pΦqi}2 ` αipWi d }pΦqi}1q

ȷ

, i “ 1, . . . , k

where βi, pΦlqi and pΦqi are row i of matrices β, Φl and Φ respectively, Wi is the kp-dimensional

vector of adaptive elastic net weights, i “ 1, . . . , k, d is the Hadamard product and } ‚ }p is

the Lp-norm. Thus, the parameters are shrunk towards zero. The reason for this is that the

LASSO aims to select parameters of variables that are relevant to explain the variation in the

dependent variable. If a variable lacks such explanatory value, the parameter is set to zero and

the variable is effectively excluded from the model. In the context of a VAR, this interpretation

9 Cf. Chavez-Martinez et al. (2023), pp. 555. Other forms of penalisation, such as those discussed in
Nicholson, Matteson and Bien (2017), can be applied if desirable. Relevant examples are group-sparsity and lag-
sparsity. The former arises when the variables are part of groups that are specified a priori. Then, the parameters
of variables that are part of another group can be penalised more severely. Lag-sparsity penalises parameters of
higher-order lags more severely than those of lower-order lags.
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in accordance with the notion of Granger-causality; if the parameter(s) of a variable are all equal

to zero, this variable does not Granger-cause the dependent variable. The constant terms are

not penalised, which is usual practice since it is unrealistic to assume sparsity thereof. Finally,

I condition on the first p observations y1, . . . , yp, which also is usual practice.

Note that the penalised OLS estimate is equivalent to the penalised ML estimate under the

assumption of Gaussian error terms and the fact that Σ is non-diagonal is without repercussions,

as shown in Hamilton (1994, pp. 293 et seq.).10 Moreover, this is the case for arbitrary forms

of heteroskedasticity, i.e. time-variation in Σ.

To estimate Σ, the graphical LASSO (GLASSO) of Friedman, Hastie and Tibshirani (2008)

will be used. The GLASSO shrinks off-diagonal elements of the precision matrix Ω “ Σ´1 to

zero, which is suitable for high dimensionality. The GLASSO consists of solving the following

optimisation problem:

Ω̂ “ argmax
Ω

log |Ω| ´ trpSΩq ´ ρ}Ω ´ diagpΩq}1 (2.3)

where trp‚q denotes the trace of a matrix and S is the Gaussian ML estimate of the covariance

matrix of ut, i.e.

S “
1

T ´ p

T
ÿ

t“p`1

pyt ´ c´

p
ÿ

l“1

Φlyt´lqpyt ´ c´

p
ÿ

l“1

Φlyt´lq
1 (2.4)

Thus, Ω̂ can be obtained by plugging in β̂ into equation (2.4) and then solving equation (2.3).

Demirer, Diebold, Liu and Yilmaz (2018, pp. 5) explicitly refrain from shrinking the error term

covariance matrix, as they: “... are not necessarily comfortable with the standard ‘statistical’

shrinkage directions (e.g., toward zero).”. Under multivariate normality, Ωi,j “ 0 implies that

the error terms of variables i and j are independent conditional on the other variables (Friedman

et al., 2008). In the context of a VAR, this is a very relevant shrinkage direction.

Parameter estimates can be obtained by means of the pathwise coordinate descent (PCD) al-

gorithm of Friedman, Hastie, Höfling and Tibshirani (2007), implemented in the R package

glmnet (Friedman, Hastie & Tibshirani, 2010). The GLASSO algorithm is implemented in

the R package glasso of Friedman et al. (2008). Details on these algorithms are included in

Appendices A and B respectively.

2.2.2 Markov-Switching Regimes: Basis

Next, I describe penalised ML estimation of the MS-VAR using the adaptive elastic net. The

ML estimate of an MS-VAR is consistent (Douc, Moulines & Rydén, 2004). This result has been

extended by Kasahara and Shimotsu (2019) to the case when some of the transition probabilities

10 If the error terms are not Gaussian, then the OLS estimates are asymptotically not efficient, although they
remain unbiased. In that case, one could resort to generalised least squares estimation. This aspect seldomly
receives attention in the literature on the SI. The work of Ando, Greenwood-Nimmo and Shin (2022) is an
exception. These authors model contemporaneous correlation between the error terms of different variables by
means of another alternative, a common factor error structure.
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are equal to zero. Chavez-Martinez et al. (2023) build on Douc et al. (2004) and show that the

ML estimator is consistent for penalisation by means of the adaptive LASSO. The adaptive

elastic net also satisfies the assumptions on the penalty function under which the penalised ML

estimate is consistent. Moreover, they prove that the adaptive LASSO has the oracle property

for a suitable choice of the penalty parameter and, under their assumptions, the same holds for

the adaptive elastic net.

To obtain the ML estimate, a penalised expectation maximisation (EM) algorithm will be used.

For the MS-VAR this algorithm is favourable from a computational perspective compared to

numerical optimisation, as well as with respect to its properties regarding convergence (Krolzig,

1997). This holds true a fortiori for the high-dimensional case, with Monbet and Ailliot (2017),

Maung (2023) and Chavez-Martinez et al. (2023) each employing a version of the EM-algorithm.

In describing the EM-algorithm, I depart from the conditional likelihood fpyp`1:T |y1:p, sp; θq.

The subscript t : q indicates that observations t to q of the variable are considered jointly and

θ “ rvecpc1, . . . , cM , Φ1,1, . . . , Φp,1, . . . , Φ1,M , . . . , Φp,M , Σ1, . . . , ΣM q, p1,1, . . . , pM,1,

. . . , p1,M , . . . , pM,M s. The following derivations are due to Chavez-Martinez et al. (2023). Like

these authors, I condition on sp, the state of period p, as this simplifies matters and, following

Douc et al. (2004), the parameters that maximise the likelihood conditioned on sp are asymp-

totically equivalent to those that maximise the likelihood function that is not conditioned as

such. First, by the law of total probability it holds that

fpyp`1:T |y1:p, sp; θq “

M
ÿ

sT “1

. . .
M
ÿ

sp`1“1

˜

T
ź

t“p`1

pst´1,st

¸˜

T
ź

t“p`1

ϕpyt;µt,st ,Σstq

¸

(2.5)

where ϕp‚;µ‚,Σ‚q is a multivariate Gaussian density function for which µt,st “ cst`
řp

l“1Φl,styt´l.

Let ℓpθ; spq “ log fpyp`1:T |y1:p, sp; θq, Φ “ pΦ1,1, . . . , Φp,1, . . . , Φ1,M , . . . , Φp,M q and W be

a pkˆMkpq-dimensional matrix containing the adaptive weights, again obtained by preliminary

Ridge-estimates. Then, the penalty for the autoregressive parameters and for the off-diagonal

terms of the precision matrices respectively is defined as follows:

PΦ “ λ rp1 ´ αq}Φ}2 ´ αpW d }Φ}1qs PΩ “ ρ
M
ÿ

m“1

}Ωm ´ diagpΩmq}1

Then, the penalised ML estimate is formulated as:

θ̂ “ argmax
θ

ℓpθ; spq ´ PΦ ´ PΩ (2.6)

The EM-algorithm obtains θ̂ as follows. First, the complete data conditional likelihood is equal

to fcpyp`1:T , ξp`1:T |y1:p, sp; θq and ℓcpθ; spq “ log fpyp`1:T , ξp`1:T |y1:p, sp; θq, with the

subscript c denoting complete data. For this complete data log-likelihood it holds that

ℓcpθ; spq “

M
ÿ

i,j“1

T
ÿ

t“p`1

ˆ

ξt´1,jξt,ipi,j

˙

`

M
ÿ

m“1

T
ÿ

t“p`1

„

ξt,i log ϕpyt;µt,m,Σmq

ȷ

(2.7)
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where µt,m “ yt ´ pcm `
řp

l“1Φl,myt´lq. The E-step of the algorithm can then be calculated as

follows:

Qpθ|θpnqq “ Eξp`1:T
rℓcpθ; spq|y1:T , θ

pnqs (2.8)

“

M
ÿ

i,j“1

T
ÿ

t“p`1

ξ̂
pnq

t|T,i,jpi,j `

M
ÿ

m“1

T
ÿ

t“p`1

„ ξ̂
pnq

t|T,m

2

ˆ

| log Ωm| ´ pyt ´ µt,mq1Ωmpyt ´ µt,mq

˙ȷ

where the superscript p‚q denotes the iteration of the algorithm. ξ̂
pnq

t|T,i,j and ξ̂
pnq

t|T,m can be

obtained by means of the subsequently running the Hamilton (1989) filter and the Kim (1994)

smoother. For details thereof, the reader is referred to Appendix C. The algorithm proceeds

with the M-step as follows:

θpn`1q “ argmax
θ

Qpθ|θpnqq ´ PΦ ´ PΩ (2.9)

where inclusion of the penalty in equation (2.9) is possible following Green (1990). For this,

define Φm “ pΦ1,m, . . . , Φp,mq and βm “ pcm, Φmq. The optimisation problem for the M-step

is separable in P and pβm, Ωmq. Moreover, due to equation (2.9) being a summation in the

regimes, for the problem is separable in the regimes for the constant terms, the autoregressive

parameters and the precision matrices. For the transition probabilities this leads to the following

respective updates, where the separate cases arise due to conditioning on sp,

p̂
pn`1q

i,j “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řT
t“p`1 ξ̂

pnq

t|T,i,sp
řM

m“1

řT
t“p`1 ξ̂

pnq

t|T,m,sp

, i “ 1, . . . , M, j “ sp

řT
t“p`2 ξ̂

pnq

t|T,i,j
řM

m“1

řT
t“p`2 ξ̂

pnq

t|T,m,j

, i, j “ 1, . . . , M, j ‰ sp

(2.10)

Then, for each regime m “ 1, . . . , M , the constant terms, the autoregressive parameters and

the precision matrix can be updated by solving the following problem:

pβpn`1q
m , Ωpn`1q

m q “ argmax
pβm,Ωmq

log |Ωm| ´ trpSβm
Ωmq ´ PΦm ´ PΩm (2.11)

in which the first two terms correspond to the second term of equation (2.9) and can be rewritten

as such due to the within-regime Gaussianity using the properties of the trace. The separability

in regimes also allows for regime-specific penalisation λm, αm and ρm. Sβm corresponds to the

sample covariance matrix of the error term of the regime m where each observation is weighted

by its smoothed probability to be in that regime

Sβm “

řT
t“p`1 ξ̂t|T,m

`

pyt ´ µt,mqpyt ´ µt,mq1
˘

řT
t“p`1 ξ̂t|T,m

(2.12)

As in Maung (2023), the updates of equation (2.11) can be obtained sequentially. I first update
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the constant terms and the autoregressive parameters as follows:

βpn`1q
m “ argmin

βm

řT
t“p`1 ξ̂t|T,mpyt ´ cm ´

řp
l“1Φl,myt´lq

1Ω
pnq
m pyt ´ cm ´

řp
l“1Φl,myt´lq

řT
t“p`1 ξ̂t|T,m

` PΦm

(2.13)

It can be seen that this is of the form of the ML estimate of constant terms and autoregressive

parameters for a Gaussian error term distribution, such that the inclusion of Ω
pnq
m does not

detract from this. The parameters can therefore again be estimated on an equation-by-equation

basis, with the observations weighted accordingly.

For the error term covariance matrix, the update is obtained by plugging in ξ̂
pn`1q

t|T and β
pnq
m into

µt,m in equation (2.16) to obtain Spnq

βm
. It then follows that:

Ωpn`1q
m “ argmax

Ωm

log |Ωm| ´ trpSpn`1q

βm
Ωmq ´ PΩm (2.14)

This is a more general GLASSO estimate of equation (2.3).

For the initialisation of the EM-algorithm, I use the parameters of a Ridge-penalised VAR.

Then, the elements of the error term covariance matrices are scaled by a factor of 1.1pm´1q for

m “ 1, . . . , M , leading to higher and lower volatility regimes where the correlation structure

is preserved. When M “ 2, ci,2 “ ci,1 ` 0.25σi,i, i “ 1, . . . , k. When M ą 2, I do not opt

for different initial intercepts, to accomodate e.g. a higher volatility regime in which the level

of the series is lower. For any value of M , I do not scale the autoregressive parameter matrices

as this could lead to erratic autoregressive dynamics, such as by inducing severe within-regime

instability. Next is the transition probability matrix. Let ι be a conformable vector with 1 as

each element. Then, P is initialised as 0.8I ` 0.2
M ιι1. ξ̂0|0 is initialised as M´1ι, the effect of

which asymptotically is negligible (Chavez-Martinez et al., 2023). Note that this is different from

conditioning on sp, which pertains to the parameter estimates through the likelihood function,

whereas this pertains to the distribution of sp, which affects the Hamilton filter. After the first

iteration of the algorithm, the Hamilton filter can be initialised by means of ξ̂0|T of the previous

iteration, as in BenSäıda et al. (2018). For any value of M , sp is set to 1. This can be used to

estimate the parameters using a Ridge-penalised EM-algorithm. The Ridge-estimates are then

used to determine the adaptive weights and to initialise the algorithm for each combination of

penalty parameters. Convergence is attained when the relative increase in the expectation of

the complete data log-likelihood is less than 1‰, i.e:

Qpθ|θpn`1qq ´Qpθ|θpnqq

|Qpθ|θpnqq|
ă 0.001

For a converged EM-algorithm, the expected complete data log-likelihood, evaluated in θ is

approximately equal to the log-likelihood. As a backstop, a maximum of 250 iterations is

employed. In the implementation, conversion was always obtained in a few dozen iterations.

To ameliorate the computational burden, the smoothed probabilities are obtained only for the

parameters for the value of λ that obtain the highest likelihood.
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2.2.3 Markov-Switching Regimes: Extensions

I consider the extension mentioned in Section 2.1, namely, the use of multiple Markov chains.

First, I discuss the case of the constant terms and autoregressive parameters on the one hand

and the error term covariance matrix on the other hand being driven by their own processes.

This case will hereinafter be referred to as Extension I. Under this extension, if these parameters

do not switch simultaneously, less regimes are required to capture their dynamics, leading to

more efficient parameter estimates. For the sake of clarity, I restrict the exposition to that of

an MS(2)-VAR(p), but it trivially generalises to an MS(M)-VAR(p). The MS(2)-VAR(p) of

Extension I is marked by two β and two Σ, which together form an MS(4)-VAR(p). Assume

without loss of generality that the combination of parameters and regimes is as follows:

st “ 1:

β1, Σ1

st “ 2:

β1, Σ2

st “ 3:

β2, Σ1

st “ 4:

β2, Σ2

From equation (2.8) it is apparent that the update for β1 in the EM-algorithm is then given by

β
pn`1q

1 “ argmin
β1

T
ÿ

t“p`1

„

ξ̂t|T,1pyt ´ c1 ´

p
ÿ

l“1

Φl,1yt´lq
1Ω

pnq

1 pyt ´ c1 ´

p
ÿ

l“1

Φl,1yt´lq (2.15)

` ξ̂t|T,2pyt ´ c1 ´

p
ÿ

l“1

Φl,1yt´lq
1Ω

pnq

2 pyt ´ c1 ´

p
ÿ

l“1

Φl,1yt´lq

ȷ

` PΦ1

and the update for β2 is obtained mutatis mutandis. This corresponds to the maximisation of

a Gaussian likelihood of a sample of size 2pT ´ pq. The two sub-samples of size T ´ p have the

same values for their respective observations, but are weighted by the smoothed probabilities

to be in regimes 1 and 2 for the first and second subsample respectively. Moreover, the error

term covariance matrix is heteroskedastic. Thus, the update for β1 can again be obtained on an

equation-by-equation basis. Σ1 can then be updated by obtaining the corresponding precision

matrix through solving the GLASSO with the following sample covariance matrix:

S1 “

řT
t“p`1 ξ̂t|T,1

`

pyt ´ µt,1qpyt ´ µt,1q1
˘

` ξ̂t|T,3
`

pyt ´ µt,3qpyt ´ µt,3q1
˘

řT
t“p`1 ξ̂t|T,1 ` ξ̂t|T,3

(2.16)

and the update for Σ2 is obtained mutatis mutandis.

Next, I consider the case of different equations of the system being governed by their own Markov

chain. This extension will hereinafter be referred to as Extension II. Again, the exposition is

restricted to two-state Markov-chains and can be trivially generalised toM -state Markov chains.

This extension is motivated by the data that will be used in the empirical application. Baele

(2005) considers the possibility that stock returns and volatilites of the United States and from

those of European countries are governed by their own regimes. Within the context of the

SI, Diebold and Yilmaz (2015b) found that spillovers in stock return volatilites of financial

institutions changed directions in the course of the great recession, first mainly originating from

the United States, then bidirectional and finally mainly originating from Europe. Explicitly

modelling different regimes for the different regions could therefore lead to a more accurate

representation of the underlying connectedness.
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In the global bank stock return volatility dataset, the banks are from 29 different countries, with

40 banks being from European countries (including Russia and Turkey), 24 from the Americas

(United States, Canada and Brazil), and 32 from Asia.11 The above idea finds support in

Figure 1, which plots the volatility synchronicity for each of these regions, defined by Isogai

(2014) as the proportion of stocks for which the volatility at a period exceeds its respective 95th

empirical quantile. Hence, Extension I will be employed in which the banks are partitioned in

European, American and Asian banks such that the corresponding constant terms and rows of

the autoregressive matrices are governed by independent, two-state Markov processes, leading

to an eight-regime model.

Figure 1: The volatility synchronicity of Europe, the Americas and Asia.

So, although in the following I describe the case in which there are three independent Markov

chains, the approach can be generalised to any number of processes. Assume without loss of

generality that the first process governs equations 1 to k1, the second process governs equations

k1`1 to k2 and the third one governs equations k2`1 to k, where k2´k1, k´k2 ą 1. This entails

that β can be partitioned in three different sets of rows. Denote by βi:j the rpj ´ i ` 1q ˆ ks-

dimensional matrix of which the rows correspond to rows i to j from β. Define β1 “ β1:k1 ,

β2 “ βk1`1:k2 and β3 “ βk2`1:k. Thus, β can be partitioned as pβ1, β2, β3q1. Since each of

these vectors is governed by independent, two-state Markov chains, we can assume without loss

of generality that the combination of equations and regimes is as follows:

st “ 1:

β1;1, β2;1, β3;1, Σ1

st “ 2:

β1;2, β2;1, β3;1, Σ2

st “ 3:

β1;1, β2;2, β3;1, Σ3

st “ 4:

β1;1, β2;1, β3;2,Σ4

st “ 5:

β1;2, β2;2, β3;1, Σ5

st “ 6:

β1;2, β2;1, β3;2, Σ6

st “ 7:

β1;1, β2;2, β3;2, Σ7

st “ 8:

β1;2, β2;2, β3;2, Σ8

where the second subscript pertains to the regime. This is a special case of the general MS-VAR

with parameters pβm, Σmq for m “ 1, . . . , M , for which we know that equation-by-equation

11 One bank is from South Africa, which for the purposes of this application will be considered part of Asia.
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OLS maximises the likelihood. Namely, this is the same as the update of equation (2.13) with a

parameter restriction across regimes, which allows for summing over the regimes for which the

parameters are the same. Therefore, it holds that the update for row i of β1;1 is obtained by

solving

argmin
c1,a1

T
ÿ

t“p`1

ÿ

mPI

ξ̂t|T,mpyt ´ c1 ´

p
ÿ

l“1

k
ÿ

j“1

ai,j;l;1yj,t´lq
2 ` Pa1 (2.17)

where a1 is a vector containing the i-th rows of the autoregressive parameter matrices for regimes

1, 3, 4 and 7 and I “ t1, 3, 4, 7u and the third subscript of ai,j;l;1 denotes that this parameter

belongs to the first regime for this equation. The updates for other combinations of the process

of which row i can be part and the regime can be obtained mutatis mutandis. Σm can be

estimated as in equation (2.14).

2.3 Model Selection

2.3.1 Single Regime

For the VAR, the lag-order p and penalty parameters λ and ρ and the elastic net parameter α

need to be selected. In the following, define T 1 “ T ´ p and

K “

k
ÿ

n“1

Kn `

k
ÿ

i“1

k
ÿ

j“i`1

1pΩi,j ‰ 0q

as the effective degrees of freedom (EDF), with Kn denoting the EDF of the autoregressive

parameters for the equation of variable n. K does not include the constant terms and the

diagonal elements of the error term precision matrix. The precision matrix is used, rather

than the covariance matrix, because the GLASSO determines the number of freely estimated

parameters of the former. Off-diagonal elements of the error term precision matrix are only

counted once, since it is symmetric. For the LASSO, the EDF is equal to |A|, the cardinality of

the active set, i.e. the number of coefficients that is not set to zero (Zou, Hastie & Tibshirani,

2007). Hence, the number of off-diagonal elements of the error term precision matrix that are

not set to zero are counted in the overall EDF. For Ridge-regression, the EDF can be obtained

as

tr
`

XpX 1X ` λp1 ´ αqIq´1X 1
˘

where X is a design matrix which for the VAR is equal to y1
1:T´p. The effective degrees of

freedom of the elastic net can be obtained as a combination of the two (Zou & Hastie, n.d.):

Kn “ tr
`

XA,npX 1
A,nXA,n ` λp1 ´ αqIq´1X 1

A,n

˘

, n “ 1, . . . , k (2.18)

where XA,n is the design matrix for the equation of variable n with the variables that are part of

the active set. To estimate the lag order, the corrected Akaike information criterion (AICc) of

Hurvich and Tsai (1989) will be applied.12 The AIC aims to select the lag order that minimises

12 Nicholson, Wilms, Bien and Matteson (2020) show by means of simulations that for different sparsity
patterns, the lag orders can be more accurately recovered by means of the penalised estimation of the autoregressive
parameters in accordance with the purported pattern than when using either the AIC or the Bayesian information
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the Kullback-Leibler (KL) divergence over the lag order and is asymptotically efficient. However,

the estimated lag order of the AIC is biased and tends to overfit models by selecting higher lag

orders. Yet, Gonzalo and Pitarakis (2002) show that for k “ 10, the AIC does not tend to overfit

for moderate sample sizes and performs best. However, the AIC deteriorates when pk ąą T .

The AICc corrects for the bias of the AIC and is better suited for high-dimensional data. The

formulation in terms of the likelihood function is taken from Burnham and Anderson (2004) and

is as follows:

AICc “ ´2 log fpyp`1:T ; θq ` 2K `
2KpK ` 1q

T 1 ´K ´ 1
(2.19)

For λ, Maung (2023) applies the adjusted Bayesian information criterion (BIC) due to Wang, Li

and Leng (2009). This adjustment is made to accommodate a diverging number of parameters.

For the MS-VAR, this is not necessary, however, as the number of parameters is large and

increases quadratically in the dimension of the system, but does not increase with the sample

size. Although an increase in sample size could entail selection of additional lags into the model,

the dimension of the predictor space itself is fixed. Thus, I follow Zou and Zhang (2009), who

use the BIC to tune the adaptive elastic net. The tuning strategy will be through a grid search

over α and λ. The grid of alpha will consist of t0.50, 0.75, 1.00u. For λ, a grid of 9 values

is considered. For each equation, the grid starts at a value of λ for which all but one of the

estimated parameters are set to zero, λmax, and decreases linearly on the logarithmic scale to

0.0001λmax. The 9 values correspond to the values of the grid that are equidistant with respect

to their position on the grid.13 For example, for a grid of 40 values, this entails that the values

of λ at 10%, 20%, . . ., 90% of the length of the grid will be used, i.e. the values at the 4th, 8th,

. . ., 36th indices of the grid are used. In the following, unless stated otherwise, when I refer to

the n-th value of λ, I refer to the value at index n of the grid. This procedure will be repeated

for all candidate values of the lag order. The BIC, which is due to Schwarz (1978), is as follows:

BIC “ ´2 log fpyp`1:T ; θq `K log T 1 (2.20)

Based on computational considerations, ρ will be set to a single value, namely 0.1¨0.9maxpSqi‰j ,

i.e. to a fraction of the largest off-diagonal value of the sample covariance matrix. Preliminary

estimates of the VAR indicated that low values of ρ generally led to lower values of the BIC.

The formula to determine a concrete value of ρ is based on that used by Mazumder and Hastie

(2012).

Based on the application, a preliminary selection can be made of the set of models that will

be subjected to the procedure applied above. Demirer et al. (2018), like Diebold and Yilmaz

(2014), Diebold and Yilmaz (2015a), Diebold and Yilmaz (2015b) and Diebold et al. (2017) use

a VAR(3). Yi et al. (2018) also use a VAR(3). Bostanci and Yilmaz (2020) do this too and

perform a sensitivity analysis of the SI to the lag order by using a VAR(2) and a VAR(4) as

alternatives and report that the SIs are not sensitive to the lag order selection. BenSäıda et al.

(2018) on the other hand, choose a VAR(1) Therefore, for the VAR, the lag orders considered

criterion (BIC). For the element-wise sparsity pattern employed in this thesis, this is not the case however.
13 The glmnet package supplies the user with parameter estimates at a grid containing a relatively large number

of values of λ at a high speed. The reason that a subset of these values are chosen is that other computations,
such as obtaining the log-likelihood, are slower.
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will be one to four; providing for a different number of specifications including those used most

often.

2.3.2 Markov-Switching Regimes

For Markov-switching models, specific information criteria have been developed that facilitate

simultaneous estimation of p andM .14 Although Psaradakis and Spagnolo (2006) report favour-

able results for the use of the AIC and the BIC, Smith, Naik and Tsai (2006) report that the

AIC tends to underestimate M and Psaradakis and Spagnolo (2003), in a study on determining

M , rather than M and p jointly, found that the BIC tends to underestimate M . Smith et al.

(2006) developed the Markov-switching criterion (MSC) that minimises the KL-divergence for

this class of models and show that it performs well in a variety of settings; for differing number

of regimes and sample sizes. The MSC is as follows:

MSC “ ´2 log fpyp`1:T ; θq `

M
ÿ

m“1

T̂mpT̂m `MKq

T̂m ´MK ´ 2
(2.21)

where T̂m “
řT

t“p`1 ξ̂t|T,m.

For the MS-VAR, the value of α will be used that was selected for the VAR to limit the com-

putational burden. Then, for each regime m, a grid search will be performed for three values of

λ. The highest and lowest values are obtained by means of those that performed best for the

VAR and those that performed best in the Ridge-penalised MS-VAR estimates, with the second

value chosen as the mean of the two values. For ρ, the same formula is used as for the VAR.

For each regime, the EDF can be established and the total EDF will consist of the sum of these

individual EDFs.

Taken together, the total number of parameters is counted as follows

K “ kM `MpM ´ 1q `

M
ÿ

m“1

k
ÿ

n“1

Km,n `

M
ÿ

m“1

k
ÿ

i“1

k
ÿ

j“i`1

1

ˆ

pΩmqi,j ‰ 0

˙

(2.22)

where

Kn,m “ tr
`

XA,n,mpX 1
A,n,mXA,n,m ` λmp1 ´ αqIq´1X 1

A,n,m

˘

, n “ 1, . . . , k, m “ 1, . . . , M

(2.23)

Thus, the active set is now defined over each regime. The term kM arises because for the MS-

VAR the number of intercepts is not constant across models. The term MpM ´ 1q accounts for

the number of freely estimated transition probabilities.

Finally, I consider the values of M between which a selection shall be made. BenSäıda et al.

(2018) use an MS(2)-VAR(1) based on theoretical considerations, although they report lower

BIC values for three, four and five regime VAR(1) models, although most of the decrease in the

14 Cavicchioli (2014) has proven that an MS(M)-VAR(p) admits a VAR-moving average representation with
lag orders p˚ and q˚ for the AR and MA components respectively. Then, p̂˚ can be used as an upper bound for
p (Guidolin, 2011). Unfortunately, VAR-moving average estimation is not suitable for high-dimensional data, as
penalised estimation would be prohibitively complicated.
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BIC was due to the inclusion of a second regime and it barely decreased when including a fourth

and fifth regime. Kangogo and Volkov (2022) use an MS(2)-VAR(5) for a system of 32 variables

which is estimated by unpenalised ML. Based on these results and given the dimension of the

dataset, up to four lags and four regimes will be considered for the MS-VAR.

3 Spillover Index

3.1 Generalised Impulse Response Function

After having obtained parameter estimates, it is possible to determine the GIRF. The GIRF,

developed by Koop, Pesaran and Potter (1996) and Pesaran and Shin (1998), can be used to

determine the effect of a shock in one of the variables on the other variables of the system,

while taking account of the contemporaneous correlation of this shock with those of the other

variables of the system. The GIRF is defined by the difference of the conditional expectation of

the system perturbed by an impulse at time t`h and the conditional expectation of the system

at time t`h unperturbed by the impulse. Letting νj,t be an impulse to variable j at time t, the

GIRF is as follows

GIyph, νj,t, It´1q “ Eryt`h|νj,t, It´1s ´ Eryt`h|It´1s, h “ 0, 1, . . . (3.1)

in which νj,t is typically set to σ
1
2
j,j , the standard deviation of the error term corresponding to the

j-th variable. Accordingly, the standardised GIRF can be defined as Ψyj phq “ GIyph, σ
1
2
j,j , It´1q.

This leads to the following standardised GIRF for the VAR with Gaussian error terms:

Ψyj “ σ
´ 1

2
j,j AhΣej (3.2)

where Ah is the h-th of the impulse response matrices, which corresponds to the h-th moving

average term in the moving average representation of the VAR. These matrices are recursively

defined as Ai “
ři

l“1Ai´lΦi for i “ 1, 2, . . ., with A0 “ Ik and Φi “ 0 for i ą p and ej is the

j-th basis vector of Rk which functions as a selection vector. It is the use of Gaussian error terms

that leads to this closed form solution and as a consequence, the use of Gaussianity is ubiquitous

in the literature on the SI. Namely, for other distributions, one must resort to simulations in

evaluating equation (3.1), which is cumbersome due to the sheer number of calculations that

must be made in determining the SI. For the MS-VAR, the derivation of the GIRF is due to

Kole and Van Dijk (2023). Its derivation is quite involved and for that reason, the main steps of

their derivation are reproduced in Appendix D. Here, it is relevant to note that for the MS-VAR,

I also standardise the GIRF of a variable j by specifying νj,t “ pVarryj,t|It´1sq
1
2 @ t.

The GIRF is a special case of the MSIRF. Namely, the MSIRF allows for the specification of

simultaneous shocks to n variables in the system, 1 ď n ď k (Van der Zwan, 2023). Letting

M be the set of shocked variables, this entails the substitution of an n-dimensional vector νM,t

for the scalar valued νj,t in equation (3.1). For a VAR, Van der Zwan (2023) shows by means

of simulations how this simultaneous specification leads to different impulse responses than the
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aggregation of the separate GIRFs. For the VAR, the MSIRF is as follows:

GIMph, νM,t, It´1q “ AhΣNpN1ΣNqνM,t (3.3)

where N is a matrix of dimension kˆn, the columns of which correspond to the basis vectors of

Rk that correspond to the elements of M.15 Similar to the GIRF, the standardised MSIRF ΨM

is obtained by setting the elements νM,t to the corresponding error term standard deviations.

The GIRF can be used to construct the GFEVD. Pesaran and Shin (1998) have defined it by

means of the ratio of the cumulative standardised GIRFs of a variable j to the h-step ahead

mean squared forecast error of a variable i, i.e.

δPS
i,j phq “

σ´1
i,i

řh
l“0peiAlΣejq

2

řh
l“0pe1

iAlΣA
1
leiq

, j “ 1, . . . , k (3.4)

Because Σ in general is non-diagonal,
řk

j“1 δ
PS
i,j phq ‰ 1. This is a consequence of the denominator

of equation (3.4) being inherited from the FEVD, i.e. from the decomposition for a model with

orthogonal(ised) errors. Specifically, for the FEVD, the denominator consists of the sum of the

individual squared impulse response functions (Lütkepohl, 2005). For a linear, Gaussian VAR,

this coincides with the h-step ahead mean squared forecast error of variable i. To correct this,

Lanne and Nyberg (2016) propose the following definition of the GFEVD, which will be used in

this thesis:

δi,jphq “

řh
l“0pΨyj q2i

řk
n“1

řh
l“0pΨynq2i

, j “ 1, . . . , k, yj “ yj , Ỹj (3.5)

where Ỹ corresponds to ỹ of equation (7) of Kole and Van Dijk (2023).

In addition to improving the interpretation of δi,jphq, as this GFEVD by construction sums

to 1, this could ameliorate the concerns about overstating connectedness that are described by

Wiesen, Beaumont, Norrbin and Srivastava (2018). Specifically, although the GFEVD within

the meaning of Pesaran and Shin (1998) is able to identify the structural error terms, in de-

termining the contribution of the shocks in variable j to the forecast error variance of variable

i it does not take account that these shocks are in general correlated with those of other vari-

ables. If these are positively correlated, then they are overcounted. In a comparison of the two

specifications of the GFEVD, Chan-Lau (2017) found that the contributions of individual fin-

ancial institutions differed markedly, although this was not the case for results aggregated over

individual institutions. Moreover, he judged the corrected GFEVD to more adequately identify

the riskiest financial institutions as measured by the SIs based on stock returns.

The MSIRF can be used in the construction of the GFEVD for a higher level of aggregation. For

example, individual variables can be part of sectors, indices, asset classes, markets, countries or

regions. Under the assumption that a shock occurs at this level, a GFEVD can be constructed

that takes this into account. To that end, partition the variables i “ 1, . . . , k into M1, . . .Mr,

where r is the number of units at the considered level of aggregation, i.e. r ď k. Then, I define

15 The MSIRF can also be derived for the MS-VAR. However, as it is not required for this thesis, this is not
pursued.
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the GFEVD based on the MSIRF, or GFEVDM, as follows:

δMi,Mj phq “

řh
l“0pΨMj q1

Mi
pΨMj qMi

řr
q“1

řh
l“0pΨMqq1

Mi
pΨMqqMi

, j “ 1, . . . , r (3.6)

where pΨMj qMi is a vector consisting of the elements of ΨMj corresponding to the variables in

Mi. The GFEVDM uses the property of the MSIRF that it takes the correlation of shocks in

the variables of Mj into account, which is neglected when using pΨMqi “
ř

qPMpΨqqi (Van der

Zwan, 2023). The GFEVDM can be considered the MSIRF-analogue to the GFEVD of Lanne

and Nyberg (2016) and similarly,
řr

j“1 δMi,Mj phq “ 1.

3.2 Total and Directional Spillovers

The GFEVD is the main building block of the SI, defined by Diebold and Yilmaz (2009, 2012).

Sphq “

řk
i,j“1
i‰j

δi,jphq

řk
i,j“1 δi,jphq

¨ 100 (3.7)

SphqiÐ‚ “

řk
j“1
i‰j

δi,jphq

řk
j“1 δi,jphq

¨ 100, i “ 1, . . . , k

(3.8)

SphqjÑ‚ “

řk
i“1
i‰j

δi,jphq

řk
i“1 δi,jphq

¨ 100, j “ 1, . . . , k

(3.9)
Equation (3.7) denotes the total spillover, or the SI. Equations (3.8)-(3.9) denote the directional

spillovers, the spillover from all other variables to a variable i and the spillover from a variable

j to all other variables.16 The information can be summarised in matrix form:

∆phq “

¨

˚

˚

˚

˚

˝

δ1,1phq δ1,2phq . . . δ1,kphq

δ2,1phq δ2,2phq . . . δ2,kphq

...
...

. . .
...

δk,1phq δk,2phq . . . δk,kphq

˛

‹

‹

‹

‹

‚

(3.10)

It can be seen that SphqiÐ‚ and SphqjÑ‚ correspond to scaled off-diagonal row and column sums

of ∆phq respectively. Mutatis mutandis, the same definitions can be applied to the GFEVDM,

thereby obtaining an aggregate shock SI, or SIM.

From the construction of Sphq it is apparent that dynamics in the SI for the MS-VAR are

introduced by means of the time-variation in Ψ which stems from the difference in the parameters

over the regimes and the inference about the prevailing regimes and the process that generates it.

On the contrary, for a given sample, Sphq is constant if constructed using a VAR. As mentioned

above, time-variation in this case is induced by means of a rolling window. Following Demirer

et al. (2018), I set the window size to 150 days. A sensitivity analysis for the rolling window size

is performed and is included in Appendix G. In general, it can be noted that this size implies a

16 This definition deviates from those of Diebold and Yilmaz (2012) who use
řk

i,j“1 δi,jphq in the denominator.
My definition expresses the directional spillovers as a total of its corresponding row- or column sum, which is
more interpretable. Moreover, as discussed in Section 3.4, it has the interpretation of a node degree.
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trade-off between estimation uncertainty in the model parameters and oversmoothing of Sphq.

In the high-dimensional case especially, one should proceed with caution as to not set the size

of the window too small. For each rolling window, I will use the value of α that was obtained

for the entire sample based to limit the computational burden. For λ, I will perform a new grid

search in which the value of λ that is obtained for the full sample is the lowest one. Of this

new grid, four lower values, equidistant on the grid will be considered in addition. The reason

for this is that the rolling window size is relatively small. Accordingly, because of estimation

uncertainty, it is wise to consider higher values of λ. Of this new grid, the highest value of λ is

ubiquitously selected, supporting this idea.

Following Demirer et al. (2018), I set h to 10. The value of h affects Sphq due to the possibility

that shocks in one variable affect another variable with a lag and of this lag not being equal for

different variables in the system (Diebold & Yilmaz, 2015a). Hence, as a sensitivity analysis, I

also set h “ 7 and h “ 12. The differences obtained were negligible and not visually discernible.

As it by now is explained that the SI is dependent on h, it will be dropped from the notation of

the SI henceforth.

3.3 Bootstrapped Confidence Intervals

Values of S for the VAR will in general differ from those of the MS-VAR. Greenwood-Nimmo

and Tarassow (2022) note that, although asymptotic distributions of impulse response functions

have been derived for the VAR by Lütkepohl (1990), the rolling window necessarily is of a

limited length. Moreover, the asymptotic distributions hold for impulse response functions of an

orthogonal(ised) VAR and these do not necessarily correspond to those for GIRFs. To qualify

differences in S the bootstrap-based procedure of Choi and Shin (2020) can be used, which can

be summarised as follows.17

1. Given a window size w, estimate the model for each rolling sample r “ 1, . . . , R. Store

β̂prq and ûprq where û are the w vectors of estimated residuals.

2. For each r generate b “ 1, . . . , B bootstrap samples of size w by using the initial values

of rolling sample r, the resampled residuals u˚pr,bq and β̂prq.

3. For each b, obtain estimates β˚pr,bq and Σ˚pr,bq. Calculate and store S˚pr,bq, i, j “ 1, . . . , k.

4. For each r, estimate

se˚pS˚prqq “

ˆ

1

w

B
ÿ

b“1

pS˚pr,bq ´ S̄˚prqq2
˙

1
2

where S̄˚prq is the sample mean of the SI of rolling window r over all bootstrap samples.

5. For each r, construct a p1 ´ aq% confidence interval for Ŝprq as Ŝprq ˘ zαse
˚pS˚prqq, where

17 An alternative for this procedure could be the use of Bayesian methods, where the SIs can be based on
samples from the posterior distribution of parameters. This idea has been applied by Shapovalova and Eichler
(2023), who use a particle Markov Chain Monte Carlo method to estimate a multivariate stochastic volatility model
in which the logarithm of volatilites are modelled using a VAR and obtain highest posterior density intervals.
Their methods however, are limited to the low-dimensional case, both due to the computational aspects, as well
as due to the lack of shrinkage priors.
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zα is the critical value of a standard Gaussian distribution at the significance level a.

Choi and Shin (2020) show by means of simulations that the coverage for large values of T

and under a correct specification of the lag order is satisfactory, with most coverage rates being

around 92%. The bootstrap samples can be generated by means of a moving block bootstrap

scheme used by Brüggemann, Jentsch and Trenkler (2016), which is as follows:

1. Fit a VAR(p) and obtain ĉ, Φ̂1, . . . , Φ̂p. Use the estimated parameters to obtain the

residuals ût “ yt ´ ĉ´
řp

l“1 Φ̂lyt´l, t “ p` 1, . . . , T .

2. Set a block length l ă T ´ p and let N “ r
T´p
l s. Define pk ˆ lq-dimensional blocks

Bi “ pûi, . . . , ûi`lq, i “ p` 1, . . . , T ´ l. Sample ij , j “ 0, . . . , N ´ 1 from a uniform

distribution with support set tp` 1, . . . , T ´ lu. Lay blocks Bi0 , . . . , BiN´1 together and

discard the final Nl ´ pT ´ pq columns of the concatenated matrix.

3. The columns of the obtained matrix are û˚
p`1, . . . , û

˚
T . Centre these according to the rule

u˚
jl`s “ û˚

jl`s ´
1

T ´ p´ l ` 1

T´p´l
ÿ

r“0

ûs`r

for s “ p` 1, . . . , p` l and j “ 0, . . . , N ´ 1.

4. Set y˚
1 , . . . , y

˚
p “ 0. Generate y˚

t “ ĉ`
řp

l“1 Φ̂ly
˚
t´l, t “ p` 1, . . . , T .

For the block length, I apply the estimator of Politis and White (2004) to each individual series

of a rolling window sample and set l to the median of these values. The bootstrap estimates

of the parameters hereby obtained are consistent under error terms that are not independently

and identically distributed, but serially uncorrelated and subject to α-mixing conditions, an

example of which is conditional heteroskedasticity. Moreover, Furman (2014) has shown that

the residual-based bootstrap leads to consistent estimates for the VAR with adaptive elastic

net penalisation for independently and identically distributed error terms. Although Choi and

Shin (2020) recommend the use of a residual bootstrap over a moving block bootstrap, the

possible presence of regime-switching renders the above procedure preferable. Because of limited

computational resources, B will be set to 100.

3.4 Spillover Networks

Diebold and Yilmaz (2014) introduced the notion that ∆ defines a weighted, directed graph.

Specifically, let G “ pV, Eq be a graph, where V is the set of nodes and E is the set of edges.

Then, ∆1 is its adjacency matrix A. Two main aspects of economic and financial networks are

the centrality of individual nodes and the communities that are formed by the nodes. First, I

consider centrality. Chan-Lau (2018, pp. 473) describes centrality as capturing “too-connected-

to-fail” risk. SiÐ‚ and SjÑ‚ respectively correspond to the in- and out-degree of the nodes, which

for spillover networks are weighted. Another measure that readily lends itself to application of

weighted, directed graphs is eigenvector centrality. The eigenvector centrality assumes that the

centrality of each node is proportional to the centrality of each of its neighbours, weighted by

the edges. (Bloch, Jackson & Tebaldi, 2023). The eigenvector centrality of node i is defined as
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follows:

ci “
1

λmax

k
ÿ

j“1

Ai,jcj (3.11)

where λmax is the largest eigenvalue of A. The vector of node centralities can thus be determined

as Ac “ λmaxc, where c is normalised, i.e. }c} “ 1. As A is a stochastic matrix, ci also has the

interpretation of the unconditional probability of being in node i when considering the network

as a Markov chain with A containing the transition probabilities.

Centrality measures will be used in the visualisation of the spillover networks and as input for

an analysis of the regional pattern of spillovers. This analysis will consist of rank-regressions

of centrality measures on a dummy variable containing the region of the bank. These will be

performed for each period t. These regressions are of the following form:

Rpriq “ β0 ` β11pi P EUq ` β21pi P AMq ` ϵi, i “ 1, . . . , k, ri “ ci, SiÑ‚ (3.12)

where Rpriq is the centrality rank of bank i, EU is the set of European banks and AM is

the set of American banks. In recent work, Chetverikov and Wilhelm (2023) have derived the

consistency of the OLS estimator of pβ0, β1, β2q and its asymptotic normality, as well as a

consistent estimator of its asymptotic variance. These results are implemented in the R package

csranks.

Next, I consider community detection. Community detection entails finding groupings in the

nodes of the networks. This concept can be operationalised as finding a partition of the graph

such that the obtained groupings contain nodes that are most similar to each other as measured

by the elements of A (Schaub, Delvenne, Rosvall & Lambiotte, 2017). Using the obtained

communities, banks that are “too-important-to-fail” can be identified (Chan-Lau, 2018, pp.

473). Demirer et al. (2018) apply the ForceAtlas2 algorithm due to Jacomy, Venturini, Heymann

and Bastian (2014) to visualise the obtained network, which indicates the existence of country-

and region-based clusters.

However, such a cluster assignment is solely based on visual imputation, which can be prob-

lematic. First, the output of the ForceAtlas2 algorithm is dependent on the initial positions

provided. Secondly, the clusters might not be adequately demarcated. For example, it is not

clear whether the banks in the middle of the network in Figure 2 of Demirer et al. (2018) should

be considered as a single cluster. By means of community detection, such clusters can be made

explicit. Specifically, I will use the node2vec-spectral clustering algorithm of Hu, Liu, Li and

Liang (2020). The use of spectral clustering is convenient for node embeddings, as spectral

clustering can be used to simultaneously reduce the dimension of the embeddings and perform

clustering of the nodes. The algorithm consists of two components.

Node embeddings are obtained using the node2vec algorithm of Grover and Leskovec (2016),

from which the following exposition is taken. f : V Ñ Rd is a function that maps nodes to d-

dimensional vectors of real numbers. The objective is to obtain vectors such that the Euclidean

distance between them is small if the corresponding nodes are close to each other in the network.

To determine, for each node u P V , what nodes it is close to, the network is sampled. These
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samples provide the network neighbourhood Npuq Ă V . The objective function can thus be

formulated as:

argmax
f

ÿ

uPV

logPrNpuq|fpuqs (3.13)

To make this problem tractable it is assumed that observing a neighbourhood node is inde-

pendent of observing another neighbourhood node, conditional on fpuq. It then holds that

PrNpuq|fpuqs “
ś

nPNpuq Prn|fpuqs. Then, the probability to observe a node of this neighbour-

hood is modelled by means of the softmax function of the dot products of the nodes of the

neighbourhood

Prn|fpuqs “
exptfpnq1fpuqu

ř

vPV exptfpvq1fpuqu

The objective function (3.13) can then be reformulated as

argmax
f

ÿ

uPV

„

´ log

˜

ÿ

vPV

exp
␣

fpvq1fpuq
(

¸

`
ÿ

nPNpuq

fpnq1fpuq

ȷ

(3.14)

which can be optimised in f , i.e. in the elements of the vectors in Rd, which is done using

stochastic gradient descent.

The embeddings are dependent on the samples. These are generated for each node by means of

second-order random walks. The unnormalised probability of transitioning from node vi´1 “ x to

node vi “ y, in which vi´2 “ w is given by py,x “ Ax,yrp´1
1py “ wq`1py ‰ wqs. The parameter

p, through which the random walk becomes of the second order, can be set to disincentivise the

random walk revisiting w, but will, following Hu et al. (2020), be set to 1.18 The dimension d

will be set to k, the number of walks will be set to 100 and the walk length will be set to 80.

The algorithm is implemented in the node2vec package in Python.

The embeddings can be collected in a matrix E of dimension |V |ˆd. From E , a similarity matrix

S using the radial basis kernel is constructed as follows:

Si,j “ exp

ˆ

´

řd
q“1pEi,q ´ Ej,qq2

2σ2

˙

in which σ2 governs the degree to which the similarity decreases as the squared Euclidean

distance between two embeddings increases. The use of the radial basis kernel is appropriate

as the differences between the embeddings are on the same scale across the dimensions of the

embeddings. Then, construct the diagonal matrix D for which Di,i “
řk

j“1 Si,j . The Laplacian

matrix is then defined as L “ D ´ S and is normalised as L̃ “ D´ 1
2LD´ 1

2 . Normalisation

is performed as this entails finding clusters that both maximise within-cluster similarity and

minimise between-cluster similarity (Von Luxburg, 2007). Clustering is then performed using

the K-means algorithm on the n normalised eigenvectors of L̃ that correspond to the lowest

eigenvalues, n ăă d. Clustering will be performed for a grid of values for σ2. To choose the

18 The node2vec algorithm also contains a parameter q by which the unnormalised transition probability will
be divided if the length of the shortest path between y and w is two, which is not applicable to spillover networks
as the corresponding graph is complete.
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value of σ2, I will use the weighted cut (WC), which corresponds to the objective function of

spectral clustering. The WC is generalised by Meilă and Pentney (2007) to weighted, directed

graphs and is defined as follows:

WCpCq “
ÿ

c

ÿ

c1‰c

ř

iPCc

ř

jPCc1
Ai,j

ř

iPCc

ř

jPV Ai,j

Put differently, a set of clusters C should be obtained that minimises over the clusters Cc the

sum of outgoing weights to CzCc “ Cc1 as a fraction of total outgoing weights. To compare the

clusters of the VAR with those of the MS-VAR, the modularity, generalised to weighted and

directed matrices will be used to gauge the degree to which clusters are formed across regimes.

Higher values of the modularity are obtained if the total weight of edges in a community is larger

than the number of edges that would have been obtained under a random graph in which the

weight of the edge between nodes i and node j is equal to the average of their respective in-

and out-degree, which would entail the absence of communities. Moreover, the modularity can

be determined for each period, indicating how the degree to which communities form develops

over time. The following definition of the modularity is taken from Molnár, Márton, Horvát and

Ercsey-Ravasz (2024):

Q “
1

A

ÿ

i,jPV

„

Ai,j ´
SiÑ‚S‚Ðj

A

ȷ

1pci “ cjq (3.15)

where A “
řk

i,j“1Ai,j and the indicator function is equal to 1 if nodes i and j share their cluster

membership.

Finally, the use of graph embeddings will be considered. Graph embeddings generalise the

notion of node embeddings discussed above to graphs. Specifically, the graph2vec algorithm

of Narayanan et al. (2017) will be used, on which the following exposition is based. Let G “

tG1, . . . GTmaxu be the graphs that correspond to the spillover networks. If the MS-VAR is used,

Tmax “ T ´ p and for the rolling window VAR, Tmax “ T ´ p´w, where w is the rolling window

size. For each node vi of graph Gt, the algorithm obtains subgraphs of degree d rooted at this

node, sg
pdq
vi . Similar to how node2vec obtains embeddings through maximising the similarity of

two nodes in the embedding space if they are frequently observed in the same neighbourhood,

graph2vec aims to construct the matrix of embeddingsG to maximise the probability of observing

sg
pdq
vi , conditional on G:

´ log
ÿ

GPG

ÿ

vPV

D
ÿ

d“0

Prsgpdq
v |Gs (3.16)

As in node2vec, the problem of maximizing this probability is made tractable by the asssumption

of conditional independence, implicit in equation (3.16) being a summation and by assuming

symmetry in the embedding space. As a consequence of the latter, similarity can be expressed by

means of the inner product, as in the node2vec algorithm. Rather than exhaustively optimising

over the set of all possible subgraphs of G, SG, a negative sampling strategy is employed for

every Gi. Let C be the set of rooted subgraphs of Gi. This strategy then entails that the

embeddings will be updated using a sample C1 Ă SG, |C1| “ n, n ăă |SG|, C1 X C “ H.

Therefore, if Gj contains subgraphs that are very similar to those of Gi, the embedding of Gi
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becomes more similar to that of Gj by virtue of how the objective function is defined. As with

the node embeddings, spectral clustering can be applied to obtain clusters of the networks,

which are indicative of sub-periods in which the network structure is (relatively) similar. The

implementation of the algorithm in the karateclub Python library has been applied with its

default parameters.

3.5 Systemic Event Prediction

Finally, the link between bank spillover networks and systemic risk will be explored. Diebold

and Yilmaz (2014) describe how the row- and column-sums of ∆ for a set of financial institutions

are closely related to, respectively, the marginal expected shortfall and the system-wide value

at risk conditional on distress of individual institutions, which are oft-used risk measures. This

motivates the use of the ∆ and the SI in the context of systemic risk. Korobilis and Yilmaz

(2018) use the lagged SI obtained using bank stock return volatilities as an independent variable

in a logistic regression and obtain McFadden R2 values of 0.2-0.4 in one-day ahead predictions

of the occurrence of an SE, which is the case when at day t the daily stock returns of more

than 25% of banks are lower than the 5th percentile of their respective empirical distributions.

This is used to construct the SE index, which equals 1 for periods in which an SE occurs and

0 otherwise. The SE index for this sample is displayed in Figure 2. The SE index is equal to 1

for 137 periods, mostly in the period of 2008-2012; the great financial crisis, the great recession

and the Euro-crisis. The following model is based on that of Korobilis and Yilmaz (2018):

PrSEt “ 1s “

exp
!

β0 ` β1SEt´l ` β2SIt´l ` β3pSIt´l ´ ŜIt´lq

)

1 ` exp
!

β0 ` β1SEt´l ` β2SIt´l ` β3pSIt´l ´ ŜIt´lq

) (3.17)

for a certain lag order l. For the value of the lag order, I consider l P t1, 2, 3, 4, 5, 10, 22u,

which respectively correspond to one to four trading days, one to two trading weeks and one

trading month in advance. SIt´l ´ ŜIt´l is an addition to the model of Korobilis and Yilmaz

(2018) and denotes the deviation of the SI from its trend value. The trend is estimated using

a linear spline. This is motivated by the idea that disrupting events could lead the SI to be

temporarily higher and that it is under these conditions that SEs become more probable. The

deviation from the trend level captures this.
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Figure 2: The systemic event index at a threshold of 0.25.

The SI effectively is a compressed form of the information contained in the spillover network. By

means of graph embeddings, this information can be used directly. Although the embeddings

are an approximation of the network, it could be the case that less information is lost than

for compression to the SI. Thus the logistic regression can then be estimated with the graph

embeddings as features, i.e. through the substitution of β1pGqt´l for β2SIt´l.

I will compare the models with respect to the McFadden R2. This will mainly serve to determine

whether the graph embeddings carry more information than the SI. Secondly, the estimated

probabilities will be used to predict whether observations are SEs. Although classification can

be considered of interest per se, it can also indicate whether the graph embeddings, due to their

high dimensionality, are not liable to overfit. To this end, the logistic regression will be estimated

for a training set consisting of 70% of the observations, randomly chosen. The training set will

be used to estimate the logistic regression for both models, whereas the test set, consisting of

the remaining 30% of observations, will serve to determine a threshold. If p̂t is below (above)

the threshold, ˆSEt “ 0 p“ 1q. To account for possible overfitting, the estimation of the logistic

regression on the graph embeddings will also performed subject to elastic net penalisation. To

obtain the values of the penalty parameters, 10-fold cross validation will be performed. A

complication with classification is that the SE index is quite unbalanced, being equal to 1 for

approximately 5.4% of the observations. Therefore, I will use the F-score to evaluate the class

assignments. The F-score is the harmonic mean of the precision, the ratio of true positives

(TP) to the sum of true positives and false positives (FP), and the recall, the proportion of true

positives to positives. Formulated, in terms of the elements of the confusion matrix, the F-score

is formulated as follows:

F “
2TP

2TP ` FP ` FN

where FN is the number of false negatives. The value of the F-score will be determined by means

of the test set. As another means to deal with class imbalance, I will allocate higher weights

to the likelihood contributions of observations that are a systemic event, thereby attributing

higher importance to these observations in estimation. This will induce parameter estimates
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that lead to higher estimated probabilities for observations of an SE, which could lead to better

class assignments. Weights of 1, 2, 4 and 8 will be applied.

4 Bank Stock Return Volatility Data

I use the dataset of Demirer et al. (2018), which consists of the volatility of the stock returns

of 96 banks. Hereinafter, I refer to these authors as DDLY. Thus, k “ 96. DDLY collected

stock return data from Thomson-Reuters from September 12th, 2003 to February 7th, 2014.

Thus, T “ 2, 676. The banks are the largest in the world, as measured by total assets, with

publicly traded stocks. All of the stocks have been publicly traded throughout the entire sample.

Specifically, daily opening, closing, high and low prices have been used for the following range-

based volatility estimate of Garman and Klass (1980):

v̂2k,t “ 0.511pHk,t ´ Lk,tq
2 ´ 0.019rpCk,t ´Ok,tqpHk,t ` Lk,t ´ 2Ok,tq (4.1)

´ 2pHk,t ´Ok,tqpLk,t ´Ok,tqs ´ 0.383pCk,t ´Ok,tq
2

where Ok,t, Ck,t, Hk,t and Lk,t are the natural logarithms of the opening, closing, high and

low prices of the stock of bank k at day t. DDLY argue in favour of this range-based estimate

based on the results of Alizadeh, Brandt and Diebold (2002), who find that such estimates are

efficient in the context of stochastic volatility models. Molnár (2012) inquires into range-based

volatility estimates for estimating daily volatility and finds that the Garman-Klass estimator per-

forms best. The volatility data can be found at http://qed.econ.queensu.ca/jae/datasets/

demirer001/. An overview of the country of each bank, its market capitalisation, its total as-

sets, its bank code and its Reuters ticker can be found on the same web page. The dataset of

DDLY does not contain the underlying daily returns which are used in the construction of the

SE index. These have been downloaded separately from Yahoo Finance for 86 banks and from

Investing.com for five banks. For the remaining five banks, the daily returns were unavailable

or available in limited quantity. Details on the collection of the stock return data and the missing

banks are included in Appendix E.

Transforming the volatility series by taking natural logarithms yields approximate normality

based on histograms and quantile-quantile plots, although some right-skewness occurs frequently.

These series are used for both the VAR and the MS-VAR. The conditional heteroskedasticity of

the underlying stock returns is apparent. Next to that, it holds that the partial autocorrelations

are significant at lower-order lags. Moreover, the autocorrelation function decays slowly, ostens-

ibly at a sub-exponential rate, indicating possible long memory. Diebold and Inoue (2001) show

that Markov-switching models (without autoregressive terms), even though they are integrated

of order zero, can generate data that even in large samples are difficult to distinguish from

fractionally integrated data. This holds especially if pi,i is close to 1 for all i, which is often the

case in empirical applications of Markov-switching models (Guidolin, 2011).

The null-hypotheses of augmented Dickey-Fuller tests with generalised least squares detrending

(ADF-GLS) for a unit root are rejected for 75 of these series at a significance level of 5% and for

47 of these at a significance level of 1%. For 21 of the series, the null-hypothesis is not rejected.
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More details on these tests are included in Appendix F. The unit root tests were performed with

the alternative hypothesis of a model with a constant term and no deterministic trend.19 The

unit root tests not rejecting the null-hypothesis for some series does not violate the assumption

of stability of the VAR. For the estimated parameter matrices, which are discussed in Section

5.1, the spectral radius is less than 1. For the MS-VAR, the spectral radius of the relevant

matrix also is less than 1.

Figure 3, the colour-scale of which is centred at the median of pairwise sample correlations,

indicates that the elastic net might be preferable over the LASSO. An interesting observation

follows from the fact that the banks are ordered by total assets. Namely, the strongest correlation

seems to be between the volatilities of the largest banks. Therefore, if the LASSO haphazardly

chooses between two banks because of multicollinearity, it is likely to do so for two important

banks, the coefficients of which are likely to be important in the (MS-)VAR. Note also that the

volatilities of the largest banks seem to most correlated with those of other banks in general.

Contrary to many applications of the elastic net, the data will not be standardised. This is

because the volatilities are all defined on the same scale, meaning that the absence of scale

invariance of the LASSO-penalty will not be to the detriment of the parameter estimates.

Figure 3: Visualisation of the sample correlation matrix.

5 Results

5.1 Estimation Results

First, I discuss the parameter estimates of the VAR. The information criteria for the different

specifications are reported in Table 1. Whereas the BIC has the lowest value for the VAR(1), the

AICc is lower for the other models. An inquiry into the EDF reveals that for lag orders 2 to 4, the

LASSO-penalty imposes a very sparse Φ, such the model reduces to a first-order autoregressive

model, with a few equations containing some distributed lags in addition. Therefore, the AICc

can hardly be considered a estimator of the lag-order and the selection between the VAR(1) and

the ‘VAR(4)’ effectively becomes a matter of selecting the penalty parameters, for which the BIC

19 Note that the absence of a deterministic trend is without prejudice to the results of the ADF-GLS tests.
On the contrary, this entails a less accurate model under the alternative hypothesis and although this is to the
detriment of the power of the test, it nevertheless rejects the null-hypotheses for most of the series
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is applied. Moreover, for lower values of λ the log-likelihood decreases markedly. For the VAR(1),

however, this is not the case, and the log-likelihood is much flatter for different values of λ, which

is positive from the perspective of model stability. Furthermore, the autoregressive structure

selected is much richer, which is of interest as our area of application is the SI. Therefore, I opt

for the VAR(1). The difference between the VAR(1) and the VAR(2)-VAR(4) could perhaps be

explained by the adaptive elastic net weights. Namely, for the VAR(1) the Ridge-penalised VAR

favoured very mild penalisation, whereas for the higher order VARs the strictest penalisation

was favoured. As a robustness check, the adaptive elastic net weights of the VAR(1) were used

for the VAR(2)-VAR(4), but these did not yield an improvement of the BIC and still led to the

aforementioned sparsity in the autoregressive coefficients.

Table 1: Model Selection Criteria for the VAR

Model AICc BIC ℓ K α

VAR(1) 588,293 557,671 -269,310 2,414 1.00
VAR(2) 564,539 569,738 -279,669 1,318 0.50
VAR(3) 564,268 569,463 -279,579 1,306 0.50
VAR(4) 563,984 569,174 -279,471 1,297 0.50

Notes: ℓ is the log-likelihood, K is the EDF and α is the selected elastic net parameter. K is
rounded to the nearest integer.

Figure 4: Estimated autoregressive parameters Φ (top-left), error term correlation matrix R
(top-right), constant terms (bottom-left), error term variances (bottom-right) and unconditional
mean (bottom) for the VAR(1).
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The estimated parameters are visualised in Figure 4. Of the 962 “ 9, 612 possible autoregressive

parameters, 1,404 are selected into the model. The distributed lags selected mostly correspond

to banks that are of a similar size, as elements closer to the diagonal of the autoregressive

parameter matrix are more often selected. The error term correlation matrix, which is displayed

as it is more insightful than the covariance matrix, is quite similar to the sample correlation

matrix of Figure 3. Of the 96 ¨ 95{2 “ 4, 560 pairwise correlations, 1,010 exceed 0.1 in absolute

value. The estimated error term variances tend to be higher for the smaller banks. For the

unconditional means, this is not the case. The estimated residuals for each individual bank are

used to test for normality. The null-hypothesis of a Jarque-Bera test is not rejected at a level of

5% for only 12 of the 96 banks. Nevertheless, histograms of the residuals show that for the vast

majority of banks, the empirical distributions of the residuals can be approximated by normal

distributions quite well.

Next are the results for the MS-VAR. The information criteria for the different specifications

of the MS-VAR are reported in Table 2. Here, based on the MSC, the preference for a lag

order of 1 is more pronounced. As in BenSäıda et al. (2018), higher values of M yield better

models. Although the MS(4)-VAR(1) has an EDF of 18,053, approximately thrice that of the

MS(2)-VAR(1) (6,173) and almost twice that of the MS(3)-VAR(1) (10,839), the log-likelihood

increased markedly, from -260,977 and -256,239 for the MS(2)- and MS(3)-VAR(1) respectively,

to -248,165 for the MS(4)-VAR(1). For comparison, the MSC of the VAR(1) is equal to 591,181,

which forms evidence for the presence of regime-switching. Moreover, Smith et al. (2006) show

that the MSC is not liable to spuriously select regime-switching models. The BIC values for

the MS-VAR(1) models on the other hand, are higher, at 570,669, 598,016 and 638,798, for

the MS(2)-, MS(3)- and MS(4)-VAR(1) respectively, in line with the results of Psaradakis and

Spagnolo (2003) in the sense that the BIC is liable to select a value of M that is too low.

Table 2: MSC values for the MS-VAR

p “ 1 p “ 2 p “ 3 p “ 4

M “ 2 518,130 536,354 536,158 535,971

M “ 3 509,470 534,734 534,568 535,583

M “ 4 493,504 534,817 534,728 534,200

The parameter estimates for the MS(4)-VAR(1) are included in Figure 5 and the inferred regimes

as per the highest smoothed probability are included in Figure 6. The first regime resembles the

VAR(1) most with respect to the autoregressive parameters, error term correlation matrix and

error term variances as it is the regime that is estimated to prevail most frequently. The number

of selected autoregressive parameters is 1,706. The unconditional mean of this regime is highest,

entailing that this regime can be considered a high-volatility regime for bank stock returns.20

It also has the highest error term variances. The first regime predominantly prevails later in

the sample, after the onset of the great financial crisis and is marked by the richest correlation

20 The unconditional means were determined in accordance with the results of Kole and Van Dijk (2023),
instead of calculating pI ´ Φmq

´1cm for each regime m.
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structure of error terms, with 1,341 pairwise correlations being larger than 0.1 in absolute value.

As the VAR most resembles this regime, it can thus be stated the years 2008-2012 are the most

informative period of the sample in the sense that it most strongly affects full-sample parameter

estimates.

The second regime predominantly occurs earlier in the sample, before the onset of the crisis, with

similar parameters to the first regime, yet seemingly ‘calmer’. 2,517 autoregressive parameters

are selected in this regime. The variances are similar to that of the first regime and the correlation

structure is similar, though sparser, with 514 pairwise correlations being larger than 0.1 in

absolute value. The unconditional means also are somewhat lower than those of the first regime.

The third and fourth regimes are marked by much richer autoregressive structures, in which the

own lagged volatility moreover is relatively less important than in the first two regimes. 4,413

and 3,815 parameters are respectively selected into the model. This entails a higher degree of

interdependence among bank stock return volatilities in these regimes. The correlation structure

of the error terms is also different in these regimes, which seems to be more dispersed, rather

than concentrated around the large banks. The number of pairwise correlations exceeding 0.1 in

absolute value is similar to that of the to that of the VAR, amounting to 1,079 and 1,099 for the

third and fourth regime respectively. One reason for these results for the third and fourth regimes

could be that the same degree of regularisation is applied across regimes, meaning that, owing

to the fewer observations in which regimes three and four prevail, the applied penalisation, in

relative terms, is less severe for these regimes. However, robustness checks for two higher values

of λ for the third and fourth regimes do not decrease the MSC. The third and fourth regimes

also have lower unconditional means and error term variances than the first two regimes and

can hence be considered low-volatility regimes.21

P̂ and π̂, which are included below as equation (5.1), show that the first regime is highly

persistent. Together with Figure 6, which shows that the first regime occurs for long periods

after 2008, accounts for the high estimated unconditional probability of this regime. The third

and fourth regime being more likely to switch to the second regime and not to the first, is likely

the consequence of the earlier years of the sample, in which the process mainly switched between

the second, third and fourth regimes. Only in the years of 2006 and 2007 does the process switch

between all regimes.

The regimes are identified extremely well, with just one period in which the maximum smoothed

probability does not exceed 0.99. This also is a consequence of the high-dimensionality of the

data; if regime switching indeed is part of the data-generating process, it becomes exponentially

more manifest in the relative likelihoods of the regimes if the dimension increases. Moreover, the

most likely a posteriori sequence of regimes estimated by the Viterbi algorithm, as described by

Franke (2012) for Markov-switching autoregressive models, is equal to the sequence of regimes

for which the smoothed probability is highest.

21 This does not preclude the possibility of the unconditional variances being higher in these regimes. De-
termining the unconditional variances for this application involves solving a system of 36.864 equations in 36.864
variables, which proved to be too memory-intensive, even when applying sparse matrix objects and solvers.
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As there are four regimes, there are 384 individual series of regimes for which a Jarque-Bera test is

employed by assigning every period to the regime for which is smoothed probability was highest.

For 193 of these series, the null-hypothesis of the test is not rejected at a significance level of

5%, indicating that within-regime normality is a more appropriate assumption than overall

normality. Again, histograms show for the majority of banks that the empirical distributions of

the residuals can be approximated quite well by normal distributions, although this is the case

to a somewhat lesser extent for the third and fourth regimes.

Figure 5: (1/2). Estimated autoregressive parameters (Φ1 top-left and Φ2 bottom-left) and error
term correlation matrices (R1 top-right and R2 bottom-right).
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Figure 5: (2/2). Estimated autoregressive parameters (Φ3 top-left and Φ4 middle-left) and error
term correlation matrices (R3 top-right and R4 middle-right), constant terms (bottom-left),
error term variances (bottom-right) and unconditional means (bottom).
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Figure 6: Regimes by highest smoothed probability.

Finally, I briefly discuss the two extensions. Extension II is estimated for p “ 1 and for two re-

gimes per set of variables, which leads toM “ 8. Estimation of more regimes per set of variables

is not pursued, as this would either entail the estimation of 27 error term covariance matrices,

or the imposition of the restriction that the error term covariance matrix is (partly) equal across

one or more of these regimes. Extension II yields an MSC of 504,759, an improvement over

the MS(2)-VAR(1) and lower than the MS(3)-VAR(1) as well. Extension I is estimated for two

regimes for the constant terms and the autoregressive parameters on the one hand and the error

term covariance matrices on the other hand. This leads toM “ 4, although vis-à-vis the MS(2)-

VAR(1) only 10 additional transition probabilities are freely estimated. Extension I yields an

MSC of 524,277, higher than that of the MS(2)-VAR(1). Extension II has also been estimated

for four regimes for each set of parameters, leading to M “ 16, but yields an even higher MSC

of 609,754. More details on the results of Extension II are included in Appendix G.

5.2 Connectedness Results

Now follows the discussion of the results pertaining to the spillovers. Incorporated in the dis-

cussion will be the spillovers based on the rolling window VAR(1) and the MS(4)-VAR(1).

Evaluating the GIRFs for the MS-VAR has a very high computational burden and has therefore

not been pursued for the extensions. In Figure 7 the dynamic SI is plotted for the considered

models. The vertical lines correspond to the dates of important events that are, except for the

ninth one, adopted from Korobilis and Yilmaz (2018) and Bostanci and Yilmaz (2020).22 These

events consist of the following:

1. 26th of December 2004. Indian Ocean earthquake and tsunami.

2. 7th of July 2005. London terrorist attacks.

22 For a further historical discussion of the events of the sample period and their connection to the SI for
individual banks, see Diebold and Yilmaz (2015b).
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3. 10th of May 2006. Federal Open Market Committee increases federal funds rate. Unwind-

ing of carry trades.

4. 27th of February 2007. Subprime mortgage lenders file for bankruptcy. Dow Jones drops

416 points.

5. 20th of July 2007. Asset-backed commercial paper market collapses.

6. 15th of September 2008. Lehman Brothers files for bankruptcy. On the 16th of September

2008, Reserve Primary Fund ‘breaks the buck’, triggering large withdrawals from money

market funds.23 On the 17th of September 2008, AIG is bailed out by the Federal Reserve.

7. 23rd of December 2009. Moody’s, as the final one of the Big Three, downgrades the credit

rating of the Greek government. Onset of the Euro-crisis.

8. 6th of May 2010. Flash crash on United States stock markets.

9. 5th of August 2011. Downgrade of United States federal government credit ratings.24

10. 27th of July 2012. Mario Draghi’s speech on the Euro-crisis.

11. 19th of June 2013. Ben Bernanke’s press conference on tapering of asset purchases.

The rolling window SI is able to adequately capture the stark increase in system-wide con-

nectedness as the consequence of the listed events. This is notwithstanding the sparsity of the

autoregressive coefficients; as for the rolling windows k ąą T , there are not enough observations

to (roughly, as the parameters are likely unstable over time) recover the autoregressive structure

of Figure 4. The cycles that are triggered by these events are indicative of periods of increased

connectedness vis-à-vis the trend that last around 50 days. This can be seen from the increases

of the 10th of May 2006 and the 5th of August 2011, after which no significant increases took

place for at least 200 days and it can be seen that after this period, the SI is back to its trend

level as the rolling window leaves the event behind.

With respect to the obtained trend, it is similar to that obtained by DDLY and more pronounced

than that of the smaller network of Diebold and Yilmaz (2015b). Compared to DDLY, the

differences in the SI are larger, with their values ranging between 55 and 90, whereas mine

range from 30 to 90. This could be the consequence of using the GFEVD of Lanne and Nyberg

(2016), such that for low values of the SI, connectedness is overstated when using the GFEVD

of Pesaran and Shin (1998).

Although the listed events are informative, they usually are not stand-alone. The increase in

the SI near the end of the second quarter of 2009 could not be attributed to a specific event.

Such a rise was also not found by DDLY. However, I do not find it likely that this increase

was spurious. June of 2009 was marked by multiple important events that are liable to increase

the SI. On the 11th of June, the swine flu outbreak was declared a pandemic. Secondly, it

23 Brewster, D. (2008, 17th September). Fear of money market funds ‘breaking the buck’. Financial Times.
Retrieved from https://www.ft.com/content/696e3dc0-84e4-11dd-b148-0000779fd18c

24 Brandimarte, W & Bases, D. (2011, 7th August). United States loses prized AAA credit rating from S&P. Re-
uters. Retrieved from https://www.reuters.com/article/us-usa-debt-downgrade-idUSTRE7746VF20110807/
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was around this period that it became known that a large number of economies entered or had

entered recessions. Another example is the period of September 2008. Although the bankruptcy

of Lehman Brothers proved to be important for the SI, it is unlikely that the increase can

be attributed in its entirety to this and to the other events listed under 6. For example, on

September 26th of 2008, Washington Mutual filed for bankruptcy. In early October of 2008, the

United Kingdom nationalised the Royal Bank of Scotland, the stock price of which had fallen

by two-thirds from its September 2008 high, for at least £20,000,000,000.25 Similar actions

were undertaken in other countries. The SI reaching its highest value in the end of 2009 is the

consequence of this constellation of events.

In Figure 7, the SI of the MS-VAR is also displayed. In conjunction with Figure 6 it can be

seen that this SI is mainly driven by the regime switches of the MS-VAR. As a consequence, it

is most similar to the SI of the rolling window VAR for the periods in which the process is in

the first regime, the regime that prevails most frequently. As a consequence of the first regime

being quite persistent, the SI is relatively flat in that period. This is also the period in which

the SI of the MS-VAR least often is significantly different from that of the VAR, whereas this is

ubiquitously the case before 2006 and after 2012.

For an MS-VAR in which the regimes are clearly identified, if an event is not accompanied by a

sufficiently large increase in the forecast error variance as to trigger a regime switch or at least

entail such a switch to become more likely, it will not be picked up by the SI. This lead the SI

to completely ignore the flash crash of May 2010 and the downgrade of the United States credit

rating. Conversely, not every regime-switch can be explained by an event. Although the SI

shows marked increases quickly, after the occurrence of events 2, 3, 6 and 7, i.e. within 5 days,

there are myriad of such increases throughout the sample, meaning that these events often do

not stand out.

Moreover, even if a regime change is triggered, the time-variation in the parameters of the MS-

VAR is not of the same nature as that induced by the use of a rolling window. The time-variation

is more discrete, with the SI mostly at or near the unconditional SI of the inferred regime. All

in all, I find that the MS-VAR does not seem fit to result in a dynamic SI that can function

properly as an interpretative tool of bank connectedness over time. The SI of the MS-VAR

instead should be considered as a more suitable measure of full-sample connectedness, as will be

seen in Section 5.3. To obtain a counterpart to the SI of the rolling window VAR, the MS-VAR

can be combined with a rolling window, as in BenSäıda et al. (2018) and together with the

time-variation in the GIRF, this could lead to promising results. Namely, owing to the time-

variation of the conditional mean and more importantly, of the forecast error variance and the

GIRF, it is able to produce values of the SI that are higher than the unconditional, full-sample

SI of each regime. For example, this occurs at the day of the bankruptcy of Lehman-Brothers.

Therefore, this source of time-variation can be a useful addition to that obtained by means of

rolling windows. For the current dataset however, more extensive computational resources are

required for the realisation thereof.

25 Waerden, G. (2008, 13th October). British government unveils £37bn banking bail-out plan. Guardian.
Retrieved from https://www.theguardian.com/business/2008/oct/13/marketturmoil-creditcrunch
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Figure 7: SI of the VAR using a 150-day rolling window with 95% confidence intervals and of
the MS-VAR. The red lines correspond to dates of the listed events. The green line is a trend
line obtained using a linear spline with a knot at the date of the global maximum.
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In Figures 8 and 9, regional directional spillovers are displayed. These are constructed for each

bank by taking column and row sums respectively of the index of the bank in ∆ respectively

of the elements that correspond to banks that do not share its region as a proportion of the

total column of row sum. For example, a value of 40 for the ‘from’ (‘to’) entails that for this

region, 40% of the outgoing (incoming) spillovers are directed towards (received from) the other

regions. The regional spillovers follow the general SI. This implies that increasing connectedness

is accompanied by increased connectedness across regions. Moreover, whereas the ‘to’ spillovers

are similar, the ‘from’ spillovers are significantly different across regions. As in Diebold and

Yilmaz (2015b), the American ‘from’ spillovers are relatively (and absolutely) the highest during

the great financial crisis. The European ‘from’ spillovers are relatively high during the Euro-

crisis, in 2010-2011. At the 5th of August 2011, the downgrade of the United States credit rating

again leads to a relatively high American ‘from’ spillover, as well as its highest, vis-à-vis the

other regions, ‘to’ spillover.

Figure 8: Directional ‘from’ spillovers with 95% confidence intervals per region.

Figure 9: Directional ‘to’ spillovers with 95% confidence intervals per region.
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It is apparent that Asia is a net receiver of spillovers, whereas its outgoing spillovers are mostly

confined to banks within the region. This also holds for the 2004 earthquake. This implies

that Asia is relatively unimportant in the spillover network, something that is also apparent

from the absence of more events that are linked to increases in the SI. For example, the Tōkohu

earthquake and tsunami of the 11th of March 2011 is barely discernible in Figure 7.

5.3 Network Analysis

First, I present the network that is defined by the full-sample GFEVD for the VAR and the four

networks that are defined by each regime of the MS(4)-VAR(1). To that end, spectral clustering

on the node embeddings of these networks is performed with six clusters. This number of clusters

is based on Figure 2 of DDLY. Namely, their results indicate that there is a big American-

European cluster, that there are distinctive Chinese and Japanese clusters and that there are

three peripheral clusters.

After performing spectral clustering, two-dimensional representations of the node embeddings

are obtained by means of t-distributed stochastic neighbour embedding (t-SNE).26 t-SNE aims

to construct these representations by minimising the KL-divergence between the d-dimensional

node embeddings and the two-dimensional reductions, which is a function of the two sets of

pairwise similarities of the observations, one for each space (Van der Maaten & Hinton, 2008).

The pairwise similarities define for each observation a probability distribution over the other

observations being a neighbour. By preserving the structure of pairwise similarities as well as

possible, the KL-divergence of the corresponding probability distributions is minimised. As a

consequence, the relative positions of the representations in R2 are indicative of those in Rd.

Hence, the representations can be used to initialise the position of the nodes in the ForceAtlas2

algorithm to obtain a layout of the network. For this, I use the implementation of the algorithm

in the ForceAtlas2 package in R.

The obtained clusters are checked for outliers. As the K-means algorithm assigns every bank to

a cluster, banks that do not fit well with any cluster are nevertheless assigned to the cluster to

which their distance is lowest. To deal with these outliers, clusters are again formed by means of

density-based spatial clustering of applications with noise (DBSCAN) (Ester, Kriegel, Sander &

Xu, 1996). This generally preserves the K-means cluster assignments, but assigns banks that are

too dissimilar from the other banks to a class of noise points. To improve the visualisation of the

obtained layout, loops, i.e. edges from a node to the same node, as well as edges corresponding

to δi,j ă 0.01, i.e. if bank j contributes less than 1% to the sum of squared impulse responses

of bank i, are removed.

In Figure 10, the obtained network of the VAR is displayed. The colours of the nodes correspond

to the DBSCAN cluster assignments. The clusters are contingent on the value of the distance

parameter. This parameter was chosen as to reduce the number of noise points, while retaining

as much as possible clusters that are visually coherent.27 For larger values of the distance

26 Strictly speaking, t-SNE also produces embeddings, but to prevent confusion with the node embeddings, I
speak of representations.

27 Note that visual coherence is not necessary for the clusters to be coherent in the space of eigenvectors that
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parameter, Singapore and Malaysia, which each have two banks in the sample that are relatively

close to each other, would have been assigned to a cluster, but other banks would have been

(spuriously) assigned to the Americas-Europe cluster. Conversely, a smaller value of the distance

parameter would have led to the United States banks being identified as a separate cluster,

but would have entailed (spuriously) assigning other banks to the noise class. The node size

is determined by adding the standardized eigenvector centrality score to a constant. Hence,

larger nodes are more central ones, although differences in size are of a qualitative, rather than

quantitative nature.

The main result of the VAR network is that clusters in the layout space conform to the statistical

clusters, i.e. to clusters that are based on feature representations of the nodes. Moreover, as

in DDLY, the clusters strongly correspond to countries and regions. Here too, the chief cluster

is a combination of multiple sub-clusters that are closely connected and highly integrated, as

many of the edges are not pruned. The sub-clusters themselves also correspond to countries and

regions, with United States, Canadian, Brazilian, Scandinavian and Southern European clusters

clearly discernible. The Irish, Greek, Finnish and Austrian banks are located on the periphery

of the cluster, but are still included. The Russian and Turkish banks, although ostensibly close

to the European banks, are too distant and are considered noise points.

The other clusters found are similar to those of DDLY. Contrary to their layout, this layout

indicates the network to be much more of a hub-spoke network, rather than a bimodal network

in the sense of there being two major groups of clusters. Not only is the Americas-Europe cluster

in the centre of the layout space, the overwhelming majority of non-pruned edges, besides those

within clusters, are those from the peripheral clusters to the US sub-cluster. The nodes of

the Americas-Europe cluster and specifically those of the US sub-cluster, also have the highest

eigenvector centrality scores.

Figure 11 displays the networks that are defined by pΦm, Σmq, m “ 1, . . . , 4. To be precise,

these are the networks that are obtained conditional on regime m prevailing indefinitely. Nev-

ertheless, they are indicative of the differences in the parameter estimates over the regimes and

show how the SI of the MS-VAR, absent time-variation through rolling windows, on average

interpolates between these network structures based on the inference about the regime process.

Analogous to the parameter estimates, the network topology of the VAR is most similar to that

of the the first regime, in which the United States banks are central in the network in a cluster

together with the European banks. Possibly due to the more accurate parameter estimates,

the DBSCAN algorithm now also assigns the Singaporean and Malaysian banks to their own

respective clusters. The network topology of the second regime is also similar, with the major

difference that the United States banks have much lower eigenvector centrality scores in the

network, although the ForceAtlas2 algorithm still positions these banks at the centre of the

layout space and there are still many non-pruned links. This could be the reason that the

Canadian banks are now identified as their own cluster. It can also be seen as a specific effect

of the more general tendency of banks in the Americas-Europe cluster to be more distant from

are used for spectral clustering, as t-SNE and the ForceAtlas2 algorithm approximate the spatial position of the
nodes in the layout.
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each other. In this regard, a connection can be made with the parameter estimates of the second

regime, which entail a sparser structure of the autoregressive parameter matrix.

In Table 3, which contains statistics that describe the networks, the value of the SI, the modu-

larity and the number of non-pruned edges for the first and second regime are most similar to

those of the network of the VAR. This can be expected, as these are the regimes that prevail

most frequently. These values respectively being lower, higher and lower for the second regime

is in accordance with the above observations.

As with the estimated parameters, it holds that the starkest differences are observed in the

third and fourth regimes. The obtained clusters of the first two regimes break down in these

regimes, where now the networks are not like hub-and-spoke networks, but consist of a centre

with a closely connected periphery which manifests itself visually as a spherical layout. For these

regimes, a larger distance parameter was also used as to prevent the DBSCAN algorithm from

assigning all banks to the noise class. For the third regime, there is still a clearly discernible

Americas-Europe cluster, as well as Japanese and Chinese clusters. In the fourth regime, these

clusters break down too and only one cluster remains, which lacks a country- or region-specific

interpretation but mostly contains points that are at the centre of the layout space. These differ-

ences between the third and the fourth regime are similar to those of the parameter estimates, in

the sense that although both regimes display a higher degree of interdependence between banks,

it is the fourth regime for which this tendency is most apparent.

These results are supported by the values of the SI, the modularity and the number of non-pruned

edges for these regimes. Namely, these statistics are respectively higher, lower and higher for

regimes three and four. Moreover, the manifestly lower value of the modularity for regime four

compared to regime three is in accordance with their observed cluster assignments. The higher

degree of interdependence as apparent from the parameter estimates thus seems to translate to

a more connected network of banks in which there is a lower degree to which banks tend to form

clusters.

These results also have implications for the dynamic SI of the MS-VAR. Namely, they support

the previously mentioned observation that the the time-variation in the parameters of the MS-

VAR is not of the same degree as is induced by the use of a rolling window. Although the

third and fourth regimes have the highest SI, for the periods in which the SI is highest overall

the inference about the regime process entails that it is the first regime that prevails in these

periods.

Table 3: Summary statistics of the networks.

VAR Regime 1 Regime 2 Regime 3 Regime 4

S 69.28 74.80 60.31 80.16 87.89

Q 0.37 0.32 0.34 0.23 0.13

|δ| 2,077 2,266 1,732 2,910 2,855

Notes: S is the spillover index, Q is the modularity of the K-means cluster assignments and δ is

the set of elements of ∆ that exceed 0.01, excluding the diagonal elements.
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Figure 10: Bank network layout for the VAR. Colours correspond to DBSCAN cluster assign-
ments. The two-letter acronyms are ISO 3166-1 alpha-2 country codes.

Regime 1 Regime 2

Figure 11: (1/2). Bank network layouts for the MS-VAR. Colours correspond to DBSCAN
cluster assignments.
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Regime 3 Regime 4

Figure 11: (2/2). Bank network layouts for the MS-VAR. Colours correspond to DBSCAN
cluster assignments. Misc. corresponds to a cluster which does not have a clear country- or
region-specific interpretation.

It is clear from the foregoing that the level of aggregation of the country is highly relevant for the

global bank network. Not only are banks of the same countries closely connected in the network,

events that are relevant for spillovers do not infrequently occur at the level of the countries. A

prime example of this are bailouts, which were enacted at the country level in the course and

the aftermath of the great financial crisis.28 This motivates the use of the MSIRF at the level

of the country and the GFEVDM can be obtained by means of equation (3.6) by partitioning

the 96 banks into sets that are simultaneously shocked that correspond to the 29 countries.

The networks thus obtained are displayed in Figure 12 for the VAR and in Figure 13 for the MS-

VAR. Again, for the visualisations clusters are obtained by means of the DBSCAN algorithm.

Here as well, the distance parameters were chosen to balance the number of noise points with

the retention of coherent clusters. To be consistent with the networks of the individual banks,

loops and edges that correspond to δMi,Mj ă 0.01, are removed from the visualisation.

An important result of the country-level GFEVDM, both for the VAR as well as for the four

regimes of the MS-VAR, is that the spillovers are dominated by those from the United States,

with the column means of ∆M for the United Stated being equal to 0.80, 0.77, 0.82, 0.81

and 0.90 respectively, i.e. on average, the United States contributes to around 80% of the total

squared MSIRF of a country. To highlight this feature, the edges corresponding to United States

‘from’ spillovers are coloured in a darker shade of grey. Only for the VAR and for the first two

regimes of the MS-VAR are there two countries, Japan and China, of which the corresponding

diagonal element of ∆M is largest. The dominance of the United States in the spillovers also

28 See for example for United States banks: Bailout Recipients. (2022, 18th August). ProPublica. Retrieved
from https://projects.propublica.org/bailout/list/index

41

https://projects.propublica.org/bailout/list/index


has repercussions for the eigenvector centrality ranks, with the loading of the United States on

the eigenvector being 50-100 times larger than the loading of the second-most central country.

Hence, to keep the visualisation of eigenvector centrality through node size feasible, the node

size is determined by means of adding the standardised logarithms of the eigenvector centrality

scores to the same constant as was used for the bank networks. As a consequence, relative

differences in the node size of the country networks are exponentially larger than for the bank

networks.

Another main result is that the country-structure of the bank networks carries over to the country

networks. Again, there is a clear centre consisting of the Americas and the European countries,

with the Asian countries at the periphery. As a consequence of the clusters of Asian banks being

within-country clusters, all of the Asian countries are classified as noise points. Qualitatively,

the differences in the bank networks over the regimes also carry over to the country networks.

Namely, the network topology of the country network of the VAR is most similar to that of the

first and second regimes. For the third and fourth regimes, more points are classified as noise

points and in the fourth regime, the cluster also lacks a clear regional interpretation.

Figure 12: Country network layout for the VAR. Colours correspond to DBSCAN cluster as-
signments. The two-letter acronyms are ISO 3166-1 alpha-2 country codes.
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Regime 1 Regime 2

Figure 13: (1/2). Country network layouts for the MS-VAR. Colours correspond to DBSCAN
cluster assignments. The two-letter acronyms are ISO 3166-1 alpha-2 country codes.

Regime 3 Regime 4

Figure 13. (2/2). Country network layouts for the MS-VAR. Colours correspond to DBSCAN
cluster assignments. The two-letter acronyms are ISO 3166-1 alpha-2 country codes. Misc.
corresponds to a cluster which does not have a clear region-specific interpretation.

The statistics for the country networks, which are included in Table 4, are in accordance with

these observations, with the SI and the modularity increasing, respectively decreasing over the

regimes. For the number of pairwise spillovers exceeding 0.01, the results of the bank networks

carry over, but only partly, as for the first regime this number is relatively high and for the
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fourth regime this number is relatively low. However, this could also have been the consequence

of the United States having very low and high ‘from’ spillovers in these respective regimes. As

a consequence, a larger (smaller) proportion of the sum of squared MSIRFs was to be divided

among the remaining countries for the first (fourth) regime, which could have been a reason for

these values of |δ|. If the threshold is lowered to 0.001, then again the third and fourth regimes

have the highest values of |δ|.

Table 4: Summary statistics of the networks.

VAR Regime 1 Regime 2 Regime 3 Regime 4

SM 86.09 87.28 90.17 80.16 95.01

Q 0.130 0.102 0.127 0.078 0.014

|δ| 97 140 67 120 93

Notes: SM is the aggregate shock spillover index, Q is the modularity of the K-means cluster

assignments and δ is the set of elements of ∆ that exceed 0.01, excluding the diagonal elements.

Figures 14 and 15 display the average estimated centrality rank for the three regions with 95%

confidence intervals for the eigenvector centrality and the weighted out-degree respectively. The

rank regressions lead to more interpretable results with respect to the position of the regions

in the network of the three regions than when only using the directional spillovers. Namely,

during the financial crisis, the American banks are significantly more central than the other

banks. During the Euro-crisis, the European banks become significantly more central than the

other banks. Moreover, some of the listed events directly affect the centrality of the network.

The increase of the federal funds rate and the unwinding of carry trades on the 10th of May

2006 saw a significant increase, respectively decrease, in the centrality of the European and

American banks. The collapse of the asset-backed commercial paper market was accompanied

by a significant increase in the centrality of the American banks. The accompanying decrease in

the centrality of Asian banks is the consequence of centrality ranks being defined on an ordinal

scale. For the Asian banks, the observation that few events of Asian origin affect the SI and

the low ‘from’ spillovers finds additional support in the estimated ranks, which are consistently

higher and significantly so in the years of 2007-2013, which where marked by the highest SI.

The estimated centrality ranks can also be connected to the network layouts. Namely, the

estimated average ranks of the European and American banks being lowest in relative terms

vis-à-vis that of the Asian banks in the period of 2008-2012 is in accordance with the layout

of the first regime, which prevailed in these years. Furthermore, the regressions reveal that the

Asian banks were more central in the earlier observations. This is in accordance with the layout

of the second regime, which prevailed most frequently for these observations.

A connection can also be made with the directional spillovers. Namely, the ranks of the European

and American banks seem to be inversely related to the ‘from’ spillovers, i.e. if the banks of a

region are more central in a network, the outgoing spillovers from the banks of this region to

a larger extent tend to be received by banks outside of this region. This connection is made

apparent in Table 5, which for the European and American banks shows the positive correlation

between the centrality of the banks of the region and the ‘from’ spillovers. For the Asian banks,
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it shows a converse relationship; if the Asian banks are less central in the network, their ‘to’

spillovers tend to be higher.

Table 5: Rank correlation of regional directional spillovers with centrality ranks.

SRegionÑ‚ SRegionÐ‚

EU AM AS EU AM AS

EC -0.42 -0.32 0.06 -0.13 -0.10 0.52

OD -0.51 -0.30 0.11 -0.21 -0.07 0.57

Notes: EC is the eigenvector centrality, OD is the out-degree, EU is Europe, AM stands for the

Americas and AS is Asia. The rank correlation used is Kendall’s τ .

Figure 14: Estimated average centrality rank per region with 95% confidence intervals for the
eigenvector centrality. A lower rank entails higher centrality.

Figure 15: Estimated average centrality rank per region with 95% confidence intervals for the
weighted out-degree. A lower rank entails higher centrality.
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The modularity of the network over time for the obtained K-means cluster assignments is dis-

played in Figure 16. The degree to which communities are present in the network is inversely

related to the total connectedness. The sample correlation between the modularity and the SI

is -0.65. This entails that for periods in which the total connectedness increases, the intensified

connections transcend the prevailing communities, instead of manifesting themselves within the

existing communities. Put differently, the network itself becomes more global during periods

of increased connectedness. This connection between the modularity and the SI was already

observed for the network structure over the regimes and it supports the more general idea that

for networks that are more connected, the degree to which clusters form tends to be lower.

Figure 16: Modularity of the K-means cluster assignments over time. The red line is a trend
line obtained using a linear spline with a knot at the date of the global minimum.

To finalise the network analysis, I discuss the results for the graph embeddings. The cluster

assignments for two clusters do not exhibit any discernable pattern. Figure 17 visualises the

embeddings using t-SNE. It can be seen that the embeddings are part of one group. Thus,

no clusters are found. Clustering has also been performed with four clusters and as expected,

this result remains unchanged. The same holds when running the graph2vec algorithm with

a different set of hyperparameters.29 Thus, although it is likely, based on the above results

pertaining to the modularity, that there are marked differences in the network structure over

time, these do not lead to dissimilarities in the embedding space to such an extent that they

can be detected by the clustering algorithm. I do not find it likely that this is the case because

of an insufficient degree of time-variation in the SI. Namely, the difference between the values

of the modularity over time are larger than those across the regimes and it can be seen that the

network structures were markedly different across regimes. Hence, it can be concluded either

that differences in the network structure that strike me as being marked, are not quantitatively

so, or that the graph embeddings are inadequate feature representations of the graphs. In the

following, it will be seen that the former is more likely.

29 Specifically, for this different set of parameters the number of Weisfeiler-Lehman iterations is set to 4, d is
set to k “ 96, the down-sampling parameter is set to 0.0001 and the number of epochs is set to 20.
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Figure 17: Two-dimensional t-SNE of the graph embeddings for each period t.

5.4 Prediction Results

Table 6 displays the results of the SE prediction. From the McFadden R2, it can be seen that

the use of graph embeddings yield a substantial improvement, except for the model estimated

at a lag order of 10. In-sample, the embeddings thus carry more information than the SI. When

estimation is regularised, hereinafter referred to as Gα, the in-sample fit remains similar to that

of the logistic regression with the SI as an independent variable, again with the exception for

the model estimated at a lag order of 10.

Table 6: Systemic event prediction results.

McFadden R2 F-score Weight Threshold

l SI G Gα SI G Gα SI G Gα SI G Gα

1 0.242 0.340 0.239 0.407 0.262 0.427 1 1 4 0.15 0.18 0.34

2 0.226 0.385 0.249 0.406 0.323 0.416 4 2 4 0.60 0.57 0.31

3 0.209 0.340 0.203 0.373 0.277 0.392 8 2 4 0.62 0.43 0.33

4 0.212 0.334 0.218 0.340 0.248 0.375 8 8 2 0.57 0.72 0.18

5 0.217 0.327 0.206 0.353 0.270 0.394 2 4 8 0.35 0.65 0.51

10 0.480 0.351 0.181 0.667 0.296 0.405 1 1 1 0.60 0.63 0.10

22 0.175 0.298 0.169 0.402 0.318 0.383 8 1 8 0.41 0.28 0.42

Notes: l is the lag order. SI, G and Gα respectively correspond to the logistic regression with the SI,

the graph embeddings and the graph embeddings subject to elastic net penalisation as independent

variables. The McFadden R2 is based on the model estimated on the entire sample. The F-score

is obtained on the test set. The models that were used for classifications have had observations

corresponding to SEs weighted in estimation in accordance with columns 8-10 vis-à-vis non-SE

observations. The threshold is the fitted probability below which an observation was classified as

a non-SE. Bold entries denote that the model of the corresponding column is the best for the lag

order of the corresponding row.

Next are the classification results. To prima facie gauge the suitability of a logistic regression

model, a comparison is made with a simple classification rule. Namely, the F-score has been
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determined for the rule that classifies a trading day as a systemic event if at least one of the

previous L days have been a systemic event for L “ 1, 2, . . . , 10. Even though L was selected

based on the entire sample, the F-score obtained was 0.329, indicating that both the SI and Gα

are useful for classification. The F-scores show how Gα are competitive with the SI-based logistic

regression model, outperforming the SI for the lower lag-orders. The weights indicate that it

is useful to assign more importance to SE-observations in estimation and that this can lead

to improved out-of-sample classification performance. The thresholds show that the estimated

probabilities should be subject to a different interpretation when used as a classifier; for the SI,

in general higher probabilities are required to signal an SE.

For l “ 1, the estimated probabilities, thresholds and SE index are visualised in Figure 18. It

can be seen that most of the correctly classified SEs are those in the years of 2008-2012, when

they occur more frequently and when the SI is higher. It can be seen that for Gα, p̂t follows

a much smoother pattern over time. Table 7 shows that the estimated probabilities of the SI

are more closely associated with both the proportion of banks that experience a very low stock

return, as well as with the occurrence of an SI than those of Gα. From this perspective, the

estimated probabilities with the SI can more readily be interpreted as a gauge for the possibility

of systemic distress. Similar figures for the other values of l are included in Appendix G.

Figure 18: Estimated probabilities and classifications of an SE for l “ 1. The background is red
for periods that constitute an SE and green otherwise. The dashed and long-dashed lines are
the thresholds for the SI and Gα respectively. Black and blue dots are estimated probabilities
that correspond to an observation of the training set for the SI and Gα respectively. The pink
and orange dots are estimated probabilities that correspond to an observation of the test set for
the SI and Gα respectively.
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Table 7: Correlation of p̂t with the SE index.

SI Gα

Index SE Index SE

l “ 1 0.54 0.40 0.43 0.31

l “ 2 0.48 0.37 0.41 0.30

l “ 3 0.45 0.33 0.43 0.31

l “ 4 0.46 0.33 0.42 0.30

l “ 5 0.49 0.37 0.40 0.28

l “ 10 0.61 0.69 0.40 0.28

l “ 22 0.42 0.30 0.37 0.25

Notes: SI and Gα respectively correspond to the logistic regression with the SI and the graph em-

beddings subject to elastic net penalisation as independent variables. Index denotes the continuous

valued SE index and SE is the categorical variable obtained by means of thresholding the SE index

at 0.25. For the correlation of p̂t with SE, the point biserial correlation coefficient is used.

6 Conclusions

This thesis inquired into the use of an MS-VAR subject to adaptive elastic net penalisation

to estimate the SI and the spillover network of the high-dimensional global bank stock return

volatility dataset of Demirer et al. (2018). In addition, extensions were considered that consisted

of the use of multiple Markov chains that together govern the regime process. For the volatility

dataset, evidence of regime switching is found through markedly lower values of the MSC for

the MS-VAR than for a VAR subject to adaptive elastic net penalisation which was employed

as a benchmark model. This led to the selection of an MS(4)-VAR(1) model. Moreover, for a

lag order of two, an improvement in the MSC can be obtained by letting the constant terms

and autoregressive parameters that respectively correspond to European, American and Asian

banks be governed by their respective Markov chains. For future research, such extensions could

be further explored. Another possibility is to inquire into the use of Bayesian methods. For

example, Sugita (2022) used the stochastic search variable selection prior in the estimation of

an MS-VAR.

The dynamic SI is conventionally obtained by means of a rolling window VAR. The SI of the

rolling window VAR displays time-variation that can be linked to overall trends of increasing and

decreasing connectedness over the course of the great financial crisis, the great recession and the

Euro-crisis, and also captures important financial and economic events that have ramifications for

the connectedness of bank stock return volatility. The MS-VAR is less suited for the construction

of a dynamic SI, as its time-variation is predominantly driven by (the possibility of) regime

switching. The comparison with the SI of the rolling window VAR shows that the time-variation

induced by regime switching is not of the same nature as that induced by the rolling window.

Therefore, for future research I recommend the combination of an MS-VAR with a rolling window

for the construction of a dynamic SI, which could improve the SI by using the time-variation

in the forecast error variance of the MS-VAR. The main limitation of this approach is the

computational burden involved. However, it should be feasible if more computational resources
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are available, as well as with a more efficient implementation of the EM-algorithm and of the

GIRF.

In a full-sample analysis of the global bank spillover network, the MS-VAR reveals the difference

in the network structure over the regimes. The regimes with rich autoregressive structures

translate to networks that are more connected and for which the community structure, consisting

of country- and region-specific clusters, breaks down. This analysis was extended by constructing

networks at the level of the country by means of the MSIRF and similar results were obtained. It

was found that the United States is pivotal in the country network. The full-sample analysis also

shows the viability of spectral clustering in combination with K-means clustering and DBSCAN,

of node embeddings for the purposes of community detection. Moreover, this enables a data-

driven initialisation of layout-generating algorithms such as ForceAtlas2. Thus, I recommend

the use of this procedure for community detection in networks and their visualisation.

For the SI of the rolling window VAR, a bootstrap method was applied to obtain confidence

intervals. It has thereby been shown that significant differences exist in the the ‘from’ spillovers,

which are highest for the Americas and Europe, indicating that these banks transmit volatility

shocks to other regions to a larger extent than Asian banks. This idea is supported by means of

rank regressions on the centrality ranks of regions in the network as measured by the eigenvector

centrality and the out-degree. The European and American banks throughout the sample are

significantly more central than Asian banks, with the American banks being most central before

the great financial crisis and the the European banks being most central during the Euro-crisis.

Finally, by means of the modularity it has been shown how the degree to which banks in the

network from clusters evolves over time and that the modularity is inversely correlated with the

SI.

A graph embedding algorithm has been applied to obtain feature representations of the networks.

The application of spectral clustering to these embeddings indicates the absence of clusters of

networks over time. Plotting the t-SNE reveals the absence of clusters in the networks in

general, conditional on the embeddings. The graph embeddings were also used as features in a

logistic regression to model the probability of the occurrence of an SE and a comparison was

made with a logistic regression model that contained the SI as a feature. Both with respect to

the McFadden R2, as well as with respect to classification performance, the graph embeddings

are competitive with the SI. Therefore, graph embeddings can fruitfully function as features in

downstream learning or modelling tasks. For future research it would be interesting consider

node embeddings as features in supervised learning or modelling tasks as well.
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A Pathwise Coordinate Descent

The following is based on Friedman et al. (2010). The PCD algorithm, which is a cyclical

coordinate descent algorithm, exploits the fact that for the univariate case, the elastic net has a

closed form solution. Because in general, the predictors are not uncorrelated, one can iteratively

apply such closed form solutions to regressions of the partial residuals on the predictor currently

considered. Consider a regression of a univariate dependent variable yt on a k-dimensional vector

of independent variables xt, t “ 1, , . . . , T . Let β0 be a constant and β be the slope coefficients

corresponding to xt. These are estimated by means of the adaptive elastic net as follows:

pβ̂0, β̂q “ argmin
pβ0, βq

1

2T

T
ÿ

t“1

pyt ´ β0 ´ x1
tβq2 ` λ

k
ÿ

j“1

p
1 ´ α

2
β2j ` wjα|βj |q (A.1)

where wj is the adaptive weight corresponding to βj . The additional fractions in the sum of

squared residuals and in the Ridge penalty are without loss of generality and are included for

purposes of the derivation. Given a set of estimates for the constant and for all slope coefficients

except for variable j, plug these into equation (A.1). Now, I focus on the terms containing βj ,

which, when opening the brackets, gives

β̂j “ argmin
βj

1

2T

T
ÿ

t“1

´2ytβjxj,t ` 2β0βjxj,t ` βjxj,t
ÿ

i‰j

βixi,t ` β2j x
2
j,t (A.2)

` λp
1 ´ α

2
β2j ` wjα|βj |

Denoting the objective function by O and taking the derivative with respect to βj yields

dO

dβj
“

1

T

T
ÿ

t“1

´ytxj,t ` β0xj,t ` xj,t
ÿ

i‰j

βixi,t ` βjx
2
j,t (A.3)

` λp1 ´ αqβj ` wjα
d

dβj
|βj |q

Define ỹ
pjq

t “ β̃0 `
ř

i‰j xt,j β̃i, the fitted value of yt for the given estimates of the other para-

meters. Because βj is non-differentiable at the origin, the three cases of the subderivative of O

are as follows (Bourette Sicotte, 2018):

dO

dβj
“

$

’

’

’

&

’

’

’

%

T´1
řT

t“1 xj,tpỹ
pjq

t ´ ytq ` βj
`

λp1 ´ αq `
řT

t“1 x
2
j,t

˘

´ wjλα, if βj ă 0
“

T´1
řT

t“1 xj,tpỹ
pjq

t ´ ytq ´ wjλα, T
´1

řT
t“1 xj,tpỹ

pjq

t ´ ytq ` wjλα
‰

, if βj ă 0

T´1
řT

t“1 xj,tpỹ
pjq

t ´ ytq ` βj
`

λp1 ´ αq `
řT

t“1 x
2
j,t

˘

` wjλα, if βj ą 0

(A.4)

Equating the subderivative to zero and solving for βj provides the following update

β̃j Ð
SpT´1

řT
t“1 xj,tpyt ´ ỹ

pjq

t q, wjλαq
řT

t“1 x
2
t,j ` λp1 ´ αq

(A.5)
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where Spz, γq is the soft-thresholding operator which is defined as follows:

Spz, γq “ signpzqp|z| ´ γq` “

$

’

’

’

&

’

’

’

%

z ´ γ, if z ą 0 and γ ă |z|

z ` γ, if z ă 0 and γ ă |z|

0 if γ ą |z|

Moreover, PCD uses ‘warm starts’, i.e. it starts at a sufficiently high value of λ for which β “ 0

and decreases λ until the PCD has converged to a non-zero vector solution. For the subsequent

λ, this solution is used to initialise the algorithm for that value of λ which drastically speeds up

the computations (Hastie, Tibshirani & Friedman, 2009).
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B Graphical Least Absolute Shrinkage and Selection Operator

Below, the objective function of the GLASSO is repeated for convenience

argmax
Ω

log |Ω| ´ trpSΩq ´ ρ}Ω ´ diagpΩq}1 (B.1)

where S is the Gaussian ML estimate of the error term covariance matrix, which is calculated

by means of previously obtained parameter estimates and can be treated as given. Notation for

the regimes is suppressed for convenience. The following exposition of the GLASSO is based on

Friedman et al. (2008). First, let V be the current estimate of Σ. The GLASSO corresponds to

a LASSO-penalised regression over each column of V . To derive the algorithm, first note that

V Ω “ Ik, where Ω is the current estimate of the precision matrix, which can be expanded as

˜

V1,1 v1,2

v1
1,2 v2,2

¸˜

Ω1,1 ω1,2

ω1
1,2 ω2,2

¸

“

˜

Ik´1 0

01 1

¸

(B.2)

Setting the subgradient of (B.1) equal to zero yields

V ´ S ´ ρΓ “ O (B.3)

where V “ d
dΩ log |Ω|, S “ d

dΩ trpSΩq and pΓqi,j “ signpωi,jq if ωi,j ‰ 0 and pΓqi,j “ 0 if ωi,j “ 0

The upper-right block of equation (B.3) is equivalent to

v1,2 ´ s1,2 ´ ργ1,2 “ 0 (B.4)

where 0 is of dimension k´1. Banerjee, El Ghaoui and d’Aspremont (2008) show for the solution

of v1,2 that it satisfies the following problem

v1,2 “ argmin
u

u1V ´1
1,1 u : }u´ s1,2}8 ď ρ (B.5)

Then, they show that solving this problem is equivalent to solving the following problem, which

is the dual problem of (B.5)

min
β

1

2
}V

1
2
1,1pβ ´ s1,2q}22 ` ρ}β}1 (B.6)

This dual problem corresponds to a LASSO-penalised regression and this observation forms the

basis of the GLASSO algorithm, which is as follows:

1. Initialise W “ S ` ρI

2. Loop over each column j and permute V such that column (row) j is placed at the position

of v1,2 (v
1
1,2) in the decomposition of V in equation (B.2) and set v2,2 to pV qj,j respectively.

3. Solve problem (B.6) for j “ 1, . . . , k using PCD. Set v1,2 “ V1,1β̂

4. Repeat steps 2 and 3 until convergence.
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C Hamilton Filter and Kim Smoother

Denote by ξ̂t|q “ pPrst “ 1|Iqs, . . . , Prst “ M |Iqsq the estimated probabilities of being in the

respective regimes, conditional on the information set I at time q, q “ 0, . . . , T , t “ 1, . . . , T .

Then, the filter of Hamilton (1989) provides, given initial values ξ̂0|0 the following expressions

that can be used to recursively estimate in a forwards manner the probabilities of being in the

respective regimes for t “ 1, . . . , T :

ξ̂t|t´1 “ Pξ̂t´1|t´1 (C.1)

ξ̂t|t “
ξ̂t|t´1 d ηt

ι1pξ̂t|t´1 d ηtq
(C.2)

In equation (C.2), pιqm “ 1, m “ 1, . . . , M and ηt “ rfpyt|st “ 1, It´1; θq, . . . , fpyt|st “

M, It´1; θqs, a vector containing conditional densities of yt for the different regimes. Sub-

sequently, given ξ̂T |T it is possible using the smoother of Kim (1994) to recursively estimate in

a backwards manner the probabilities of being in the respective regimes for t “ p`1, . . . , T ´1

conditional on IT :
ξ̂t|T “ ξ̂t|t d

”

P1pξ̂t`1|T m ξ̂t`1|tq

ı

(C.3)

where m denotes the Hadamard division. The notation of equations (C.1)-(C.3) is based on

that of Hamilton (1994) and their derivations can be found ibidem. Finally, define P̃t to be an

pM ˆMq-dimensional matrix such that pP̃tqi,j “ Prst “ i, st´1 “ j|IT s. It then holds that

P̃t “ P d pξ̂t|T ξ̂
1
t´1|t´1q m pξ̂t|t´1ι

1q, t “ 1, . . . , T (C.4)

The following derivation of P̃t corresponds to that of E. Vladimirov (personal communication,

November 16, 2023).

Prst “ i, st´1 “ j|IT s “ Prst´1 “ j|st “ i, IT sPrst “ i|IT s

“ Prst´1 “ j|st “ i, It´1sPrst “ i|IT s

“
Prst “ i, st´1 “ j|It´1sPrst “ i|IT s

Prst “ i|It´1s

“
pi,jPrst´1 “ j|It´1sPrst “ i|IT s

Prst “ i|It´1s

“
Pi,j ξ̂t|T,iξ̂t´1|t´1,j

ξ̂t|t´1,i

“
rP d pξ̂t|T ξ̂

1
t´1|t´1qsi,j

ξ̂t|t´1,i

“ rP d pξ̂t|T ξ̂
1
t´1|t´1q m pξ̂t|t´1ι

1qsi,j

where the first and third equalities use the definition of conditional probability, the second

equality uses the Markov property, the fourth equality uses conditional independence and the

definition of the Markov chain and the remaining equalities use the definition of predicted,

updated and smooth probabilities respectively.
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D Generalised Impulse Response Function of the Markov-Switching

Vector Autoregression

The following is reproduced from Kole and Van Dijk (2023, pp. 4-13), but for an MS(M)-

VAR(p). To that end, define the following matrices as in Lütkepohl (2005) to rewrite equation

(2.1) into an MS-VAR(1).

Yt “

¨

˚

˚

˚

˚

˝

yt

yt´1

...

yt´p`1

˛

‹

‹

‹

‹

‚

, cst “

¨

˚

˚

˚

˚

˝

cst

0
...

0

˛

‹

‹

‹

‹

‚

, Θst “

¨

˚

˚

˚

˚

˚

˚

˚

˝

Φ1,st Φ2,st . . . Φp´1,st Φp,st

Ik O . . . O O

O Ik . . . O O
...

...
. . .

...
...

O O . . . Ik O

˛

‹

‹

‹

‹

‹

‹

‹

‚

and Ut “

¨

˚

˚

˚

˚

˝

ut

0
...

0

˛

‹

‹

‹

‹

‚

Yt “ cst ` ΘstYt´1 ` Ut, (D.1)

where ErUtU
1
ts is a pkpˆkpq-dimensional matrix of zeroes, except for the upper left kˆk block,

which consists of Σst . Next, define for matrices of arbitrary dimension B1, B2, . . . , Bm

bdiagmi“1pBiq “

¨

˚

˚

˚

˚

˝

B1 O . . . O

O B2 . . . O
...

...
. . .

...

O O . . . Bm

˛

‹

‹

‹

‹

‚

Now, define Y ˚
t “ ξt b Yt and Ỹt “ pY ˚

t
1, ξ1

tq
1. The Markov chain can be written as a VAR(1)

as ξt “ Pξt´1 ` vt, where vt is a martingale difference sequence. It then holds that

Y ˚
t “ CPξt´1 ` ΘpP b IkqY ˚

t´1 ` ε˚
t (D.2)

ε˚
t “ ΛpP b Ikqpξt´1 b εtq ` Cvt ` Θpvt b Yt´1q ` Λpvt b εtq (D.3)

where C “ bdiagMi“1pciq, Θ “ bdiagMi“1pΘiq and Λ “ bdiagMi“1pΛiq. Furthermore, define Ỹt “

pY ˚
t

1, ξ1
tq

1 and ε̃t “ pε˚
t

1, v1
tq

1. Then:

Ỹt “ Θ̃Ỹt´1 ` ε̃t (D.4)

where

Θ̃ “

˜

ΘpP b Ikpq CP

O P

¸

This allows for the formulation of the GIRF of the MS-VAR in which the shocks νj,t are quantified

in terms of the difference with the conditional expectiation, i.e. νj,t “ yj,t ´ Eryj,t|It´1s. The

GIRF then is defined as

GIỸ ph, νj,t, It´1q “ Θ̃h

˜

Erε˚
t |yj,t, It´1s

Ervt|yj,t, It´1s

¸

(D.5)
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where Erε˚
t |yj,t, It´1s “ CErvt|yj,t, It´1s ` ΘpErvt|yj,t, I|t´1s b Yt´1q ` ΛErξt b εt|yj,t, It´1s,

Ervt|yj,t, It´1s “
f d ξ̂t|t´1

f 1ξ̂t|t´1

´ ξ̂t|t´1 where f P RM : pfqm “ ϕ

ˆ

yj,t; pµt,mqj , σj,j;m

˙

, where

Erξt b εt|yj,t, It´1s “

¨

˚

˚

˝

pξ̂t|tq1Erεt, |yj,t, st “ 1, It´1s

...

pξ̂t|tqMErεt, |yj,t, st “ M, It´1s

˛

‹

‹

‚

Erεt, |yj,t, st “ m, It´1s “ Λ´1
m rσ´1

j,j;m

ˆ

yj,t ´ pµt,mqj

˙

Σmejs. GIỸ ph, νj,t, It´1q is a vector

of dimension kpM ` M . The information that pertains to Yt can be obtained by means of

the matrix G̃Y “ pGY , OkpˆM q, where GY “ ι1
M b Ikp, the subscripts of which denote the

dimensions and, using that Yt “ G̃Y Ỹt, the standardised GIRF is obtained as

ΨYj “ G̃Y GIỸ ph, Varryj,t|It´1s
1
2 , It´1q (D.6)

of which the first k elements are selected. Thus, as for the VAR, the standardised GIRF is the

GIRF evaluated in a shock of the square root of its one-step ahead forecast error variance. For the

MS-VAR, the forecast error variance and the conditional expectation of Yj are time-dependent.

Next to the differences in the parameters over the regimes, this also induces time-variation in

the GIRF. For convenience of the notation, I now shift t forward one period. The conditional

expectation can be retrieved as the j-th element of G̃Y ErỸt`h|Its, where

ErỸt`h|Its “ Θ̃h

˜

ξ̂t|t b Yt

ξ̂t|t

¸

(D.7)

in which h is set to 1. For the forecast error variance, define Zt “ Yt b Yt, Z
˚
t “ ξt b Zt and

Z̃t “ pZ˚
t

1, Y ˚
t

1, ξ1
tq

1. It then holds, first, that

Zt “ γst ` ωst ` ΨstYt´1 ` ΥstZt´1 ` ζt (D.8)

where γst “ cst b cst , ωst “ vecpΣstq, Ψst “ Θst b cst ` cst b Θst , Υst “ Θst b Θst and

ζt “ pΛst b cst ` cst b Λstqεt ` pΛst b Θstqpεt b Yt´1q ` pΘst b ΛstqpYt´1 b εtq

` pΛst b Λstq

ˆ

εt b εt ´ vecpIkpq

˙

secondly, that

Z˚
t “ pΓ ` ΩqPξt´1 ` ΨpP b IkqY ˚

t´1 ` ΥpP b Ik2qZ˚
t´1 ` ζ˚

t (D.9)
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where Γ “ bdiagMi“1pγiq, Ω “ bdiagMi“1pωiq, Ψ “ bdiagMi“1pΨiq, Υ “ bdiagMi“1pΥiq and

ζ˚
t “ pΓ ` Ωqvt ` Ψpvt b Yt´1q ` Υpvt b Zt´1q ` bdiagMi“1pΛi b ci ` ci b Λiqpξt b εtq

` bdiagMi“1pΛi b Θiqpξt b εt b Yt´1q ` bdiagMi“1pΘi b Λiqpξt b Yt´1 b εtq

` bdiagMi“1pΛi b Λiq

ˆ

ξt b rεt b εt ´ vecpIpkpq2qs

˙

and finally that

Z̃t “ Υ̃Z̃t´1 ` ζ̃t (D.10)

where

Υ̃ “

¨

˚

˝

ΥpP b Ipkpq2q ΨpP b Ikpq pΓ ` ΩqP

O ΘpP b Ikpq CP

O O P

˛

‹

‚

, ζ̃t “

¨

˚

˝

ζ˚
t

ε˚
t

vt

˛

‹

‚

in which the spectral radius of ΥpP b Ipkpq2q is restricted to be less than 1 if the MS-VAR

is to be stable. Next, define H̃Z and H̃Y such that Zt “ H̃ZZ̃t and Yt “ H̃Y Z̃t, i.e. H̃Z “

pHZ , Opkpq2ˆMpkp`1qq, where HZ “ ι1
M bIpkpq2 and H̃Y “ pOkpˆMpkpq2 , G̃Y q. It then holds that

vecpVarrYt`h|Itsq “ H̃ZErZ̃t`h|Its ´ H̃Y ErZ̃t`h|Its b H̃Y ErZ̃t`h|Its (D.11)

where

ErZ̃t`h|Its “ Υ̃

¨

˚

˝

ξ̂t|t b Yt b Yt

ξ̂t|t b Yt

ξ̂t|t

˛

‹

‚

Taking the rpj ´ 1qpkp ` 1q ` 1s-th element of vecpVarrYt`h|Itsq and setting h “ 1 yields

Varryj,t`1|Its, the required one-step ahead forecast error variance.
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E Stock Return Data for the Systemic Event Index

The online data appendix of DDLY contains the Reuters tickers of the included banks. Based

on these tickers, the Yahoo Finance tickers were obtained that correspond to the same listing

and daily returns were downloaded using the R package yfR.30 For 86 of the 96 banks, the data

were available in sufficient quantity. For two of these banks, Banco Bradesco (Brazil) and Woori

Finance Holdings (South Korea), the listing of the New York Stock Exchange was taken instead

of the local one due to data availability. In addition to these 86 banks, the returns for five

banks were downloaded manually from Investing.com. These consist of Credit Suisse Group

(Switzerland), Sberbank Rossii (Russia), SunTrust Banks (United States), Türkiye İş Bankası

(Turkey) and Shizuoka Bank (Japan).

For each trading day, banks for which the returns are available are used in determining the

value of the SE index. A daily return of exactly zero was treated as a missing data point, as this

mostly coincided with opening, closing and high prices staying the same vis-à-vis those of the

previous day or with a trading volume of zero. Although, e.g. the cancellation of a trading day

need not be uninformative for a systemic event, its quantification in this regard is ambiguous at

best and hence not pursued. Missing data points to some extent tend to occur together, which

could indicate some sample selection bias.

The banks for which data were unavailable (or only available in limited quantity) were Bank of

Yokohama (Japan), Pohjola Bank (Finland), Dexia (Belgium), Banco Popular Español (Spain)

and Banco Esṕırito Santo (Portugal), each of which are/were relatively small banks with respect

to total assets. Dexia experienced severe stress during the financial crisis and received state aid

in the end of 2008, which sparked an extensive series of restructurings, further aid and bailouts

that dismantled a major part of the bank.31 As a result, the stock price was reduced to near zero

and trading activity became highly irregular from mid-2012 onwards in the Yahoo Finance data.

Bank of Yokohama was, to my knowledge, not subject to significant events, at least compared

to the other banks, during the sample period. The same holds for Pohjola Bank. Banco Popular

Español got acquired in 2017 by Banco Santander after the bank was unable to deal with the

aftermath of the financial crisis.32 Banco Esṕırito Santo collapsed in August of 2014 after the

unravelling of dubious financial structures of the owners.33 Thus, the five banks that are not

included in the construction of the SE index are not expected to have had their lowest returns

simultaneously, thus somewhat alleviating concerns regarding sample selection bias with respect

to which banks are part of the sample.

30 Perlin, M.S. (2023, 16th February). yfR: Downloads and Organizes Financial Data from Yahoo Finance.
Retrieved on 2024, 5th May from https://rdrr.io/cran/yfR/

31 See Pignal, S. (2011, 10th October). Dexia break-up deal reached. Financial Times. Retrieved from
https://www.ft.com/content/5235cfb9-d12f-38c2-9a5a-372b51ee961c for a timeline.

32 Banco Popular fails and is bought by Santander. (2017, 10th June). Economist, 423 (9044), 73 et seq.
33 See Kowsmann, P., Enrich, D. & Patrick, M. (2014, 12th August). Behind the Collapse of Portugal’s Esṕırito

Santo Empire. Wall Street Journal. Retrieved from https://www.wsj.com/articles/behind-the-collapse-of

-portugals-espirito-santo-empire-1407879423 for a timeline.

65

https://www.investing.com/
https://rdrr.io/cran/yfR/
https://www.ft.com/content/5235cfb9-d12f-38c2-9a5a-372b51ee961c
https://www.wsj.com/articles/behind-the-collapse-of-portugals-espirito-santo-empire-1407879423
https://www.wsj.com/articles/behind-the-collapse-of-portugals-espirito-santo-empire-1407879423


F Unit Root Tests of the Logarithms of the Volatility Series

Ng and Perron (2001) show that combining an augmented Dickey-Fuller (ADF) test on data

that are locally detrended using generalised least squares (GLS) estimates of deterministic com-

ponents, introduced by Elliott, Rothenberg and Stock (1996), in combination with a modified

version of the AIC criterion (MAIC) for selecting the lag order of the ADF-GLS test regression

yields a power and size that are desirable compared to other unit-root tests.

The following exposition of the ADF-GLS test is based on Ng and Perron (2001). This test and

the MAIC are derived under Gaussian error terms. Let xt be a univariate time series txtu
T
t“0 and

define pxᾱ1 , x
ᾱ
t q “ px1, p1´ ᾱLqxtq, t “ 1, . . . , T , where ᾱ “ 1` c̄

T´1 and L is the lag operator.

For the ADF-based GLS test, c̄ is set to -13.5 based on the results of Elliott et al. (1996). The

GLS detrended series is defined as ỹt “ yt ´ ψ̂1zt, where ψ̂ minimises pyᾱ ´ ψ1zᾱq1pyᾱ ´ ψ1zᾱq,

where zt is a vector of deterministic components, here a constant term. The ADF-GLS test then

is a t-test on the coefficient ρ with the null-hypothesis that it is equal to zero in the following

regression

∆1ỹt “ `ρỹt´1 `

p
ÿ

i“1

δi∆1ỹt´i ` εt (F.1)

where ∆1 is the first-difference operator. p is chosen to minimise

MAIC “ log
`

σ̂2
˘

`
2pp` σ̂´1ρ̂

řT
t“pmax`1 ỹ

2
t´1q

T ´ pmax
(F.2)

where σ̂2 “ pT ´ pmaxq´1
řT

t“pmax`1 ε̂
2
t and pmax is the highest considered lag order which is set

a priori. pmax is determined according to the formula t12p0.01T q
1
4 s as in Ng and Perron (2001),

which is equal to 27 for the dataset used in this thesis.
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G Supplementary Results

The results in this Appendix are listed by the subsection to which they are supplementary.

Section 5.1

Figure 19 displays the estimated parameters for the MS-VAR in which the three groups of rows

of the autoregressive parameter matrices corresponding to the regions are governed by their own

Markov chains. It can be seen that Φ1 corresponds to the first two autoregressive matrices of

the MS(4)-VAR(1) and that Φ2 corresponds to the latter two. For the error term correlation

matrices, it can be seen that the dispersed structure, also seen for the third and fourth of the

error term correlation matrices of the MS(4)-VAR(1), is accompanied by the American and

Asian banks being in their second, low-volatility regime. For the constant terms, the difference

between regimes is most apparent for the American banks, as can be seen in the third, fifth,

seventh and eighth row of the constant terms. Moreover, the first regime is now not the regime

for which the error term variances are clearly higher. The estimated transition probabilities and

unconditional probabilities are included below as equation (G.1) and the inferred regimes are

displayed in Figure 20, which qualitatively are very similar to those of the MS(4)-VAR(1).

Figure 19: (1/2). Estimated autoregressive parameters (Φ1 top-left and Φ2 top-right) and error
term correlation matrices (R1 middle-left and R2 middle-right).
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Figure 19: (2/2). Estimated error term correlation matrices (R3 top-left, R4 top-right, R5 upper
middle-left, R6 upper middle-right, R7 lower middle-left, R8 lower middle-right), constant terms
(bottom-left) and error term variances (bottom-right).
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P̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.996 0.004 0.000 0.000 0.004 0.038 0.031 0.000

0.003 0.926 0.077 0.000 0.046 0.179 0.031 0.500

0.000 0.001 0.692 0.125 0.012 0.026 0.031 0.000

0.000 0.003 0.000 0.438 0.021 0.013 0.031 0.000

0.000 0.022 0.077 0.250 0.808 0.218 0.031 0.000

0.001 0.030 0.000 0.125 0.042 0.487 0.031 0.250

0.001 0.007 0.115 0.063 0.046 0.026 0.031 0.250

0.000 0.006 0.038 0.000 0.021 0.013 0.031 0.000

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

π̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.628

0.235

0.009

0.081

0.027

0.011

0.004

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(G.1)

Figure 20: Regime by highest smoothed probability of Extension II.
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Section 5.2

Next, I discuss the effects of a different size of the rolling window. It can be seen that qualitat-

ively, the trajectory of the SI remains the same. As expected, the VAR with a rolling window

size of 100 is most responsive and returns to its trend level most swiftly. This can be seen best

after the increase in the federal funds rate of the 10th of May 2006, where the rolling window

with a size of 150 days and 200 days, the SI decreases 50 days and 100 days later respectively

than the 100-day SI. In general, the other SIs are within the 95% confidence intervals, indicative

of the results being quantitatively similar too.

Figure 21: Dynamic SI for multiple sizes of the rolling window (RW) with 95% confidence
intervals for the 150-day RW.
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Section 5.4

For the other values of l, the estimated probabilities, thresholds and SE index are visualised in

the plots of Figure 22.

l “ 2

Figure 22: (1/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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l “ 3

Figure 22: (2/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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l “ 4

Figure 22: (3/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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l “ 5

Figure 22: (4/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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l “ 10

Figure 22: (5/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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l “ 22

Figure 22: (6/6). Estimated probabilities and classifications of an SE where the value of l is
indicated at each plot. The background is red for periods that constitute an SE and green
otherwise. The dashed and long-dashed lines are the thresholds for the SI and Gα respectively.
Black and blue dots are estimated probabilities that correspond to an observation of the training
set for the SI and Gα respectively. The pink and orange dots are estimated probabilities that
correspond to an observation of the test set for the SI and Gα respectively.
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