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Time Varying Bayesian Additive Regression Trees

Daniëlle Lama

Abstract

Driven by the widespread evidence of parameter instability in macroeconomic forecasting

models, numerous time-varying parameter models have been proposed. This paper proposes an

extension to Bayesian additive regression trees by specifying a time-varying parameter (TVP-

BART) in every terminal node of the tree ensemble. The TVP-BART attempts to capture

potential changes in the economy’s underlying structure in a flexible way. To address the poten-

tial absence of time observations in terminal nodes, SoftBART is similarly extended to contain

time-varying terminal node parameters. Simulation exercises demonstrate that the addition of

time variation is especially beneficial when time variation includes both a random walk and

structural break. Additionally, employing US macroeconomic data to forecast inflation serves

as an empirical application of the proposed methodology.
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1 INTRODUCTION

1 Introduction

Ensembles of decision trees are a powerful tool for getting flexible estimates of regression functions.

Methods like gradient-boosted decision trees, random forests, and Bayesian regression trees exemplify

this approach. In particular, Bayesian tree-based models, such as the Bayesian additive regression trees

(BART) model (Chipman et al. 2010), are of special interest due to their computational efficiency, scal-

ability to large datasets, minimal tuning requirements, and natural uncertainty quantification. Each

terminal node of a regression tree in BART produces a scalar parameter and the scalars from all trees

are summed to create a model forecast. However, there has been a growing awareness of the empirical

need to allow for parameter change. This study extends BART to incorporate time-varying parameters in

terminal nodes (TVP-BART), employing the efficient method proposed by Hauzenberger et al. (2022b).

Additionally, to avoid estimation problems in the terminal node parameters due to the deterministic allo-

cation used in BART, SoftBART is similarly extended to include time-varying terminal node parameters

(TVP-SoftBART). In SoftBART all observations are included in each terminal node albeit with weights

that are specific to both the observations and nodes (Linero & Yang 2018).

In macroeconomics and finance, models commonly used for forecasting are fully parametric, of which

the vector autoregressive (VAR) model is one of the most prominent examples (Sims 1980). In such

traditional econometric models one generally assumes that the first and second moments of the target

variables are stable representing the assumption of model stability. However, macroeconomic relations

seldom satisfy model stability, and models that allow these moments to vary over time have been shown

to improve macroeconomic forecasting. This relaxation does not only result in more accurate point

forecasts but also improves density forecasts (Pettenuzzo & Timmermann 2017). Although numerous

studies suggest parameters change over time, the optimal method to integrate this instability into model

specifications is difficult to find. The evolution of parameters can take many forms. For example one

assumes that they vary with the behaviour of observable economic variables, or the way it changes is

assumed to be unobservable. In addition, the development can either be discrete and abrupt or continuous

and smooth. Examples of model specifications that allow parameters to vary include Markov switching

models, threshold and smooth transition models. Since Primiceri (2005) introduced time variation and

stochastic volatility into the VAR model, various extensions have appeared, improving both univariate

and multivariate models in the way they capture time-varying dynamics (Groen et al. 2013, Koop &

Korobilis 2013, Belmonte et al. 2014, Huber et al. 2021). In this literature, parameters are assumed to

develop according to a random walk.

Another stream of literature proposes Bayesian non-parametric time series models to relax the as-

sumption of linearity. During normal periods, when macroeconomic relations remain stable, linearity

may adequately fit the data. However, during turbulent periods, important changes often occur in key

relations, making models that assume linearity too rigid. Non-parametric models, such as BART, allow

for greater flexibility by making minimal assumptions about the functional form. A main advantage is

that uncertainty about the functional form and the parameters is included in the posterior predictive

distribution. Recently, non-parametric VARs have been proposed where the parameters are modelled us-

ing BART, the BAVART model (Huber & Rossini 2022, Huber et al. 2023). Additionally, Hauzenberger

et al. (2022a) propose a non-parametric time-varying parameter VAR (TVP-VAR) model where BART

is utilised to model the coefficients. This approach accommodates time-varying parameters, although not

within the regression tree functions.

Furthermore, incorporating time-varying parameters into a model specification can worsen the prob-

lem of overparametrization. This change to the model specification drastically increases the number of

parameters that need to be estimated. This can lead to the issue of overfitting, where the model captures

noise in the data rather than the exact relation between the inputs and the target. In this case, the

model performs well on training data but poorly on new testing data caused by their excessive flexibil-
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1 INTRODUCTION

ity. To mitigate this problem in a TVP-VAR, D’Agostino et al. (2013) for example uses only a limited

information set. Another solution is the use of Bayesian methods since prior information can be essential

to prevent the curse of dimensionality. Although computationally intensive, one often utilizes Markov

Chain Monte Carlo (MCMC) techniques, such as a Gibbs sampler. For instance, Hauzenberger et al.

(2022b) introduces a fast and flexible framework to estimate time-varying parameter (TVP) regressions.

This framework allows for a flexible patterns of time variation in the parameters rather than restrict-

ing their evolution only to a random walk or autoregressive process. In this approach, it is essential to

write a regression model with time-varying parameters and exogenous variables as a high-dimensional

static regression problem. Additionally, to speed up the computation a singular-value decomposition is

used and in combination with a conditionally conjugate priors, this results in a fast and scalable algo-

rithm. Furthermore, unlike most computationally efficient algorithms for TVP regressions, this approach

distinguishes itself by avoiding any approximations.

Most studies studying the inclusion of time-varying parameters into a model specification focus on

the empirical application of forecasting US inflation. While traditionally linear and parametric models

are used, a recent study by Clark et al. (2023) displays the ability of non-parametric BART-based

VARs to more accurately forecast various quarterly US macroeconomic indicators, including inflation.

Instead of evaluating only point forecasts, the uncertainty surrounding these forecasts is also included

in the evaluation by comparing density and tail-risk forecasts. This is mainly motivated by two recent

events, the financial crisis and the COVID-19 pandemic. Based on tail forecasts, they find that flexible

models improve upon VAR models with stochastic volatility. In addition, they show that when the

mean is modelled using BART, including a heteroskedastic error specification only leads to a marginal

improvement in forecasting accuracy. Additionally, Clark et al. (2024) uses Bayesian techniques and

BART to forecast quarterly US inflation. These non-parametric models excel in both point and density

forecasts, particularly during volatile periods such as the pandemic.

The strong empirical performance of BART for forecasting and inference gives rise to the main

contribution of this paper. This paper aims to bridge the literature on BART with the literature on

TVP models. In particular, a non-parametric BART is proposed that has several key features that are

important in macroeconomic and financial forecasting. First, the existing BART literature is extended

by adjusting the methodology to time series data whereas the current literature focuses on cross-sectional

data. Second, the leaf node parameters are allowed to be time-varying. To avoid under-identification of

the time-varying parameters, SoftBART is similarly extended since it includes all time observations in

each terminal node albeit with weights. The estimation of time-varying parameters in each leaf node is

performed by recasting the time-varying parameter model as a static regression. The TVP-BART and

TVP-SoftBART have some similarities to MOTR-BART introduced by Prado et al. (2021a) where each

leaf node is modelled by a linear part. However, the covariates that are used in the linear regression in

each of the leaf nodes in TVP-BART and TVP-SoftBART are different to MOTR-BART, which uses

only the split variables. Motivated by the increased accuracy of the addition of TVP in VAR models, it is

similarly expected that the new proposed BART methodology generates better forecasting performance

than its time-invariant counterpart.

To illustrate the use of the models, the macroeconomic application of forecasting quarterly US inflation

is revisited. In this application, US inflation is forecasted using a restricted set of macroeconomic variables

from the FRED-QD database that have previously been found to be important indicators of inflation.

Quarterly data is frequently used in studying the time-varying behaviour of US inflation, see for example

Groen et al. (2013) and Clark et al. (2024). In addition, using the monthly macroeconomic database

would result in a substantially larger number of observations, making estimation time considerably larger

and hence infeasible. This setup is similar to Clark et al. (2024), and similarly, the forecasts are evaluated

using point, density and tail risk forecasts. In addition, the proposed BART methods are compared during

the COVID-19 pandemic. Results show that the BART-based models that allow for time variation in the
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2 BACKGROUND

conditional mean result in accurate inflation point and density forecasts for the medium-term horizon,

namely four-quarters-ahead. In particular, TVP-SoftBART excels in both point forecast as well as in

density forecast accuracy. In addition, the performance of the models is compared using synthetic data.

In this simulation, several DGPs are employed ranging from a simple non-linear model without time

variation towards more complex DGPs with time-varying parameters. The time-varying BART models

perform the best when time variation includes both random walk variation as well as a structural break.

Especially TVP-BART excels in forecasting accuracy. In addition, it obtains the best in-sample fits, in

both the simulation and empirical example, while it fails in some cases to maintain this out-of-sample.

Therefore this model may be prone to overfitting. It should also be noted that adding time variation to

BART is costly in terms of computation time. Therefore it may be questionable whether the additional

accuracy these models offer when time variation is more pronounced weighs up against the considerable

additional computation time.

The remainder of this paper is structured as follows. Section 2 discusses related literature. Section

3 introduces the econometric framework. This Section includes a discussion of BART, MOTR-BART,

TVP-BART, SoftBART, Soft MOTR-BART and TVP-SoftBART, and a forecast evaluation methodology.

Section 4 includes the simulation framework and results. Next, Section 5 contains the description of the

empirical application of forecasting US inflation, as well as a discussion of the results. Section 6 concludes.

2 Background

Ensemble methods are popular and flexible methods part of Machine Learning that combine a set of trees

each in a different way. These include boosting (Friedman 2001), bagging (Breiman 1996), and random

forests (Breiman 2001), with a comprehensive overview available in Masini et al. (2023). Boosting uses

a series of individual trees, by iteratively fitting them such that each catches some part of the variation

that is not captured by the remaining trees. This is in contrast to bagging and random forests. These

techniques generate multiple independent trees and try to reduce the variance by averaging the predictions

across the trees. Bayesian Additive Regression Trees (BART) also employs a sum of trees approach, but

in contrast to boosting a regularization prior is used to keep each tree small. BART has some similarities

to boosting since BART also employs an iterative procedure to fit successive residuals. However, the

variable to be estimated is approximated by summing the response estimate of each single tree. This is

similar to bagging where the trees are averaged to obtain an estimate for the target.

Several extensions of BART exist to address its limitations. For instance, SoftBART, introduced by

Linero & Yang (2018), generates an estimated function that is smoother and can handle sparsity better

than the original BART model. In SoftBART observations are assigned to terminal nodes with a certain

probability instead of deterministically as in BART. Another extension is MOTR-BART, proposed by

Prado et al. (2021a), which uses a linear predictor instead of a scalar to make predictions in each terminal

node. In addition, varying coefficient BART (VC-BART) is introduced by Deshpande et al. (2020) where

the functional form is modelled to be linear but where each coefficient is estimated by BART using a

set of effect modifiers as input variables. Using a linear functional form allows for easy interpretation

and in this way, each variable effect is modelled using a separate BART model. Another work that is

related to VC-BART is a combined semi-parametric BART (Prado et al. 2021b), where the response is

approximated by a linear predictor and a BART model, where the main effect is estimated using the linear

part and any remaining unspecified interactions and non-linearities are captured by BART. This work

forms an extension to the semi-parametric BART proposed by Zeldow et al. (2019) where the covariates

used as inputs for the linear model and BART are mutually exclusive.

Inspired by the forecasting advancements in VAR models reached through the inclusion of time-

varying parameters, several non-parametric models have been adjusted to include time-variation. For

instance, Goulet Coulombe (2020) introduces the Macroeconomic Random Forest (MRF) by modifying
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the Local Linear Forest from Friedberg et al. (2020), which uses a linear predictor instead of a scalar in

its terminal nodes. Drawing inspiration from time-varying parameter (TVP) methods, the covariates are

transformed and weighted according to the time structure. A drawback of the MRF is its use of the same

functional form, a random forest, to estimate the coefficients for all variables. Another example is the

nonparametric TVP-VAR model proposed by Hauzenberger et al. (2022b), where each TVP is modelled

using BART. This work extends the non-parametric VARs and mixed frequency VARS developed by

Huber & Rossini (2022) and Huber et al. (2023), respectively, which also utilize BART and demonstrate

strong forecasting performance. However, the BART model employed does not itself include time-varying

parameters. The linear combination approach in this model is similar to VC-BART by Deshpande et al.

(2020).

Many applications of TVP regressions specifically focus on inflation forecasting. This focus is due to

the well-documented time-varying nature of inflation and the importance of accurate inflation forecasts for

policymakers, economic agents and academic researchers. Traditionally, VARs and factor models have

been considered time-invariant. However, substantial evidence in inflation forecasting indicates time

dependency in both the conditional mean and variance. Although there is little evidence of sudden shifts

in inflation, models that permit gradual changes tend to perform better (Groen et al. 2013, Pettenuzzo &

Timmermann 2017). In these forecasting exercises, the random walk introduced by Atkeson et al. (2001)

is often used as simple benchmark since it is generally recognized to be a difficult benchmark to beat in

out-of-sample forecasting.

3 Methods

In this Section, the BART framework is discussed together with the extensions to allow for time-varying

parameters. BART uses a sum of regression trees where each regression tree is a stepwise function.

When the regression trees are summed together, the piecewise constant functions are summed and a

more complex stepwise function is created which can approximate non-linear functions. The idea of

BART is that many trees together can explain a more complex function by each explaining only a small

part of the response. Therefore, each tree is considered a weak learner. However, this piecewise constant

function that is learned by BART is not smooth; thus, SoftBART was introduced by Linero & Yang

(2018). In addition, each piece of function that is estimated is time-invariant, which in this Section is

extended to include a time-varying function which in a way also allows for a smoother estimated function.

This Section also discusses how estimating time-varying parameters in each terminal node of a tree can

be seen as a static linear regression of a large dimension. This Section concludes with a discussion of the

forecast evaluation methodology.

3.1 BART

Bayesian Additive Regression Trees (BART) introduced by Chipman et al. (2010) is a non-parametric

Bayesian algorithm that produces a group of trees by selecting the covariates and split points at random.

Each tree can be changed using four moves: growing, pruning, changing or swapping, and is compared

to the previous version via a Metropolis-Hastings step on the part of the response variable that is not

explained by the remaining trees.

BART considers a univariate response variable that is approximated by a sum of predicted values

from a set of trees as
yt = f(xt) + εt, εt ∼ N (0, σ2)

f(xt) =

m∑
j=1

g(xt; Tj ,Mj),
(1)

where yt denotes the response variable, xt = (xt1, ..., xtk) represents the t-th row of the design matrix X
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with k covariates, m the number of trees, and Tj contains the set of splitting rules that defines tree j and

Mj = {µj1, . . . µjbj} the set of predicted values with bj denoting the number of terminal nodes of tree j.

Each prediction is given by

g(xt; Tj ,Mj) =

bj∑
ℓ=1

1{xt ∈ Pjℓ}µjℓ,

where the splitting rules that define the terminal nodes for tree j result in partitions of the observations,

such that Pjℓ denotes the partition of observations that reach terminal node ℓ of tree j.

To obtain posterior draws of the trees, associated terminal node parameters and error variance, a prior

distribution needs to be specified. The joint prior distribution of these quantities, P (T1,M1, . . . , Tm,Mm, σ),

can easily be split into smaller parts using the fact that {T1,M1, . . . , Tm,Mm} and σ2 are independent

and that T1,M1, . . . , Tm,Mm are independent of each other. The joint prior specification can be written

as

P (T1,M1, . . . , Tm,Mm, σ) = P (T1,M1, . . . , Tm,Mm)P (σ)

=

 m∏
j=1

P (Tj ,Mj)

P (σ)
=

 m∏
j=1

P (Mj |Tj)P (Tj)

P (σ)
=

 m∏
j=1


bj∏
ℓ=1

P (µjℓ|Tj)

P (Tj)

P (σ).

Therefore, the prior of the BART model consists of three components (1) the tree structure itself (P (Tj))
(2) the terminal node parameters given the tree structure (P (µjℓ|Tj)) and (3) the error variance σ2 which

is independent of the tree structure and the terminal node parameters.

To manage the depth of each tree, the prior on the tree is given by

p(Tj) =
∏
ℓ∈L1

[α(1 + djℓ)
−β ]×

∏
ℓ∈Lj

[1− α(1 + djℓ)
−β ]

where L1 and Lj represent the sets of indices in the internal and terminal nodes respectively, djℓ is the

depth of node ℓ in tree j, α ∈ (0, 1) and β ≥ 0. α and β are the prior parameters on the tree structure,

such that α(1 + djℓ)
−β is the probability of node ℓ being at internal depth djℓ. Chipman et al. (2010)

recommend α = 0.95 and β = 2. The uniform distribution is the default distribution to select the

covariate to split upon in an internal node. Once the covariate is selected, the split value is selected using

again the uniform distribution.

Given a tree with a set of terminal nodes, each terminal node has a parameter representing the

estimate of the response in this partition of the predictor space. This parameter is the fitted value

assigned to any observation in this node. The prior on each of the leaf parameters µjℓ is given by

µjℓ|Tj ∼ N (0, σ2
µ),

σ2
µ is the prior variance of the leaf node parameters, where Chipman et al. (2010) recommend σµ =

0.5/k
√
m with k = 2 after scaling y. However, instead of estimating only a scalar in each terminal node,

the parameters in the terminal nodes are changed to be time-dependent which is discussed in Section 3.3.
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The final prior is on the error variance σ2 and is chosen to be

σ2 ∼ IG(ν/2, νλ/2)

where IG(α, β) is the inverse gamma distribution with shape parameter α and rate parameter β.

Posterior Simulation

A Gibbs sampler is employed to generate draws from the posterior distribution of

p((T1,M1), ..., (Tm,Mm), σ2|y, X).

The Gibbs sampler employed in BART uses a form of Bayesian backfitting. Each tree is fit iteratively

while holding all other trees constant and fitting only the part of the response that is not explained by

the remaining trees. Denote the set of all trees except the j-th tree by T(j) and similarly let M(j) denote

the set of terminal node parameters of all tree except the j-th tree. Then, T(j) will be a set of m−1 trees.

The Gibbs sampler consists of m successive draws of (Tj ,Mj) conditionally on (T(j),M(j), σ,y, X). The

conditional distribution p(Tj ,Mj |T(j),M(j), σ,y, X) depends on (T(j),M(j), σ,y, X) through the partial

residuals

r(j) ≡ y −
∑
k ̸=j

g(X; Tk,Mk)

Thus them draws of (Tj ,Mj) given (T(j),M(j), σ,y, X) are equivalent tom draws from (Tj ,Mj |r(j), σ2, X).

This is equivalent to the posterior of a single tree model r
(j)
t = g(xt; Tj ,Mj) + εt, where the residual re-

sponse forms the target. Next, the Gibbs sampler uses a Metropolis-Hastings (MH) step to either accept

or reject a proposed change to the first tree’s structure. If the proposed tree is accepted, the terminal

node parameters are updated and the Gibbs sampler moves on to the next tree. A tree can be changed

by small modifications to its structure: growing a terminal node by adding two child nodes (Grow),

pruning two child nodes (Prune), or changing a split rule (Change).1 Below is the MH ratio where the

parameter sampled is the tree, and the data is the responses unexplained by the remaining trees, r(j).

The new, proposed tree is denoted with an asterisk and the original tree is without the asterisk. For

further elaboration see Kapelner & Bleich (2013).

α(Tj , T ∗
j ) = min

{
1,
p(r(j)|T ∗

j , σ
2)p(T ∗

j )p(T ∗
j → Tj)

p(r(j)|Tj , σ2)p(Tj)p(Tj → T ∗
j )

}
, (2)

where
p(r(j)|T ∗

j ,σ2)

p(r(j)|Tj ,σ2)
denote the likelihood ratio where the tree structure of the original tree and proposed

tree determine which responses fall into which of the terminal nodes such that the associated response

in each of the node can be calculated. Note that the terminal nodes solely determine the likelihoods.
p(T ∗

j →Tj)

p(Tj→T ∗
j ) is the transition ratio and

p(T ∗
j )

p(Tj)
is ratio of the tree structures. The newly proposed tree is

accepted if a draw from the standard uniform distribution is less than or equal to the value of α(Tj , T ∗
j ),

otherwise the original tree Tj is kept.

After drawing a new tree, Tj , the associated terminal parameters need to be drawn which are stored

in Mj . These terminal node parameters are necessary for the subsequent residual r(j+1). Within a given

terminal node, since both the prior and the likelihood are normally distributed, the posterior of each

of the leaf parameters is conjugate normal with the mean being a weighted combination. The posterior

1Chipman et al. (2010) also considered the perturbation Swap in the original BART formulation. Kapelner &
Bleich (2013) excludes this modification to the tree structure due to the complexity of this change.
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distribution of the time-invariant terminal node parameters is given by

µjℓ|Tj , r(j), σ2 ∼ N

σ−2
∑

t∈Pjℓ
r
(j)
t

Tjℓ/σ2 + σ−2
µ

,
1

Tjℓ/σ2 + σ−2
µ

 ,

with r
(j)
t the t-th partial residual of tree j and Tjℓ the number of observations in leaf node ℓ of tree j.

When all m trees and terminal node parameters are generated, the posterior variance can be drawn

from the following full conditional distribution

σ2|T1,M1, ..., Tm,Mm, X,y ∼ IG

(
T + ν

2
,
S + νλ

2

)
, S =

T∑
t=1

(yt − ŷt)
2,

where T denotes the total number of observations, and ŷt the fitted response, with ŷt =
∑m

j=1 g(Xt; Tj ,Mj).

3.2 MOTR-BART

The first BART extension discussed is Model Trees Bayesian Additive Regression Trees (MOTR-BART)

introduced by Prado et al. (2021a). The main difference compared to BART is that in each terminal

node, a linear regression is estimated instead of only estimating a scalar. The covariates in the linear

predictor are the variables that are used as splitting variables in creating the tree. This approach forms

the basis for TVP-BART and therefore is discussed first.

The MOTR-BART specification is given by

yt =

m∑
j=1

g(xt; Tj ,Bj) + εt, εt ∼ N (0, σ2)

g(xt; Tj ,Bj) =

bj∑
ℓ=1

1{xt ∈ Pjℓ}xtjℓβjℓ,

(3)

where Bj is the set of parameters of all linear predictors of tree j and xtjℓ is a vector of splitting variables

observed at time t that lead to terminal node ℓ of tree j. The prior on the tree and error variance is the

same as for BART, only the prior for βjℓ is different. The prior is given by

βjℓ|Tj ∼ Nqjℓ(0, σ
2V ), V = σ2

βIqjℓ

where Iqjℓ denotes the identity matrix of dimension qjℓ, which represents the number of regressor variables

of terminal node ℓ of tree j plus one for the intercept. Similarly to what Prado et al. (2021a) suggests,

the intercept and slopes have a different prior distribution. The conjugate priors are σ2
β0

∼ IG(a0, b0)

and σ2
β ∼ IG(a1, b1) respectively.

Posterior Simulation

Similar to BART, a Gibbs sampler generates draws from the posterior distributions. The conditional

distribution of tree j depends on the other m− 1 trees through the partial residuals

r
(j)
t = yt −

∑
k ̸=j

g(xt; Tk,Bk) (4)

=

bj∑
ℓ=1

1{xt ∈ Pjℓ}xtjℓβjℓ + εt. (5)
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These partial residuals are necessary to calculate the acceptance probability in the MH step to accept

or reject a newly proposed tree, see Equation (2). It should be noted that in the MOTR-BART spec-

ification of Prado et al. (2021a) tree transition probabilities (
p(T ∗

j →Tj)

p(Tj→T ∗
j ) in Equation (2)) were originally

not included in the MH-step of the trees. However, the MOTR-BART specification used in this paper

includes transition probabilities of each tree in the MH-step similar to BART and therefore is slightly

different than the original specification as in Prado et al. (2021a). Finally, the marginal likelihood of the

partial residuals, which is necessary to calculate the acceptance probability in the MH step, is given by

p(r(j)|X,σ2, Tj) = (σ2)−(T/2)

bj∏
ℓ=1

[
|V |−1/2|Λjℓ|1/2exp

(
− 1

2σ2
[−β̃

′

jℓΛ
−1
jℓ β̃jℓ + r

(j)′

ℓ r
(j)
ℓ ]

)]
,

where β̃jℓ = Λjℓ(X
′

jℓr
(j)
ℓ ), Xjℓ is the node-specific regressor matrix of tree j and Λjℓ = (X

′

jℓXjℓ+V
−1)−1.

After drawing a new tree, the terminal node parameters are drawn from the posterior distribution

given by

βjℓ|r(j), Xjℓ, σ
2, σ2

β0
, σ2

β , Tj ∼ Nqjℓ(β̃jℓ, σ
2Λjℓ).

When all m trees and terminal node parameters are drawn, the posterior variance can be drawn,

using the same posterior distribution as for BART and therefore is given by

σ2|T1,B1, ..., Tm,Bm, X,y ∼ IG

(
T + ν

2
,
S + νλ

2

)
, S =

T∑
t=1

(yt − ŷt)
2,

where T denotes the total number of observations, and ŷt the fitted response, with ŷt =
∑m

j=1 g(xt; Tj ,Bj).

The only difference is because of the fitted response, which now includes a linear predictor.

The variance of the terminal node parameters, σ2
β0

and σ2
β are simulated from the following posterior

distributions

σ2
β0
|− ∼ IG

(
a0 +

∑m
j=1 bj

2
, b0 +

β
′

0β0

2σ2

)

σ2
β |− ∼ IG

(
a1 +

∑m
j=1

∑bj
ℓ=1 pjℓ

2
, b1 +

β
′
β

2σ2

)

where β0 is a vector consisting of the intercepts from all terminal nodes of all trees, and β is a vector

with the slopes from all linear predictors of all trees. In addition, pjℓ denotes the number of covariates

in the linear predictor of terminal node ℓ of tree j, and is thus equivalent to qjℓ − 1.

3.3 TVP-BART

In both BART and MOTR-BART, the terminal node parameters, given by µjℓ and βjℓ respectively, are

time-invariant. To allow for time variation in the terminal node of each tree, the conditional mean is

modelled by time-varying parameters, rather than a time-invariant scalar or a linear predictor. Therefore,

BART is changed into

yt =

m∑
j=1

gj,t(xt; Tj ,Bj) + εt, εt ∼ N (0, σ2), (6)

where Bj = {βjℓ}
bj
ℓ=1 with βjℓ = (βjℓ1, βjℓ2, . . . , βjℓT )

′
being a vector containing the time-varying param-

eters for tree j and leaf node ℓ. Similar to BART, the relation of the current tree j with the other m− 1

9



3 METHODS

trees is via the partial residual which in this model is defined by

r
(j)
t = yt −

m∑
s̸=j

gs,t(xt; Ts,Bs)

= gj,t(xt; Tj ,Bj) + εt,

(7)

such that the response variable that is fitted in j-th tree is the unexplained part of the target yt.

Let the terminal node variables be denoted by zt. In the case of BART, the terminal node prediction

is given by the mean of the response of the observations that fall into that leaf. Therefore, the terminal

node variables only include a constant, meaning that zt = 1 for t = 1, . . . , T . Following the approach

of Hauzenberger et al. (2022b), estimating the time-varying coefficients can also be viewed as a node-

specific static linear regression with terminal node covariates z1, . . . zT , and response r(j). Since only

scalars are estimated in the terminal nodes, the covariates z1, z2,..., zT are all of length one and equal

to one. In addition, to impose random walk regularization, the design matrix L is a lower triangular

matrix. Similarly, each βjℓt is of dimension one and it should be noted that the time-varying parameter

at time s is given by
∑s

t=1 βjℓt. This results in the following model to estimate the part of the response

observations that fall into terminal node l that is explained by tree j
r
(j)
1

r
(j)
2

...

r
(j)
T


︸ ︷︷ ︸

r(j)

=


1 0 . . . 0

1 1 . . . 0
...

...
. . .

...

1 1 . . . 1


︸ ︷︷ ︸

L


βjℓ1

βjℓ2
...

βjℓT


︸ ︷︷ ︸

βjℓ

+σ


η1

η2
...

ηT


︸ ︷︷ ︸

η

, (8)

where ηt ∼ N (0, 1) for t = 1, . . . , T .

However, it should be noted that not all time observations may be present in a terminal node (i.e.

1{xt ∈ Pjℓ} = 0 if observation t is not included in terminal node ℓ of the tree j). Note that when an

observation is not present in terminal node ℓ, the corresponding row of the covariate matrix is removed.

However, the relevant column is not removed. The terminal node prediction in the TVP-BART model

is therefore given by L[Pjℓ,.]βjℓ, where L[Pjℓ,.] denotes the matrix L but with the rows restricted to the

time observations that are contained in terminal node ℓ. Therefore, Equation (6) can be rewritten as

yt =

m∑
j=1

bj∑
ℓ=1

1{xt ∈ Pjℓ}L[t,.]βjℓ + εt (9)

and similarly, Equation (7) can now also be written as

r
(j)
t = yt −

m∑
s̸=j

bs∑
ℓ=1

1{xt ∈ Psℓ}L[t,.]βsℓ (10)

=

bj∑
ℓ=1

1{xt ∈ Pjℓ}L[t,.]βjℓ + εt (11)

Or in vector notation

r(j) = y −
m∑
s ̸=j

bs∑
ℓ=1

L[Psℓ,.]βsℓ

=

bj∑
ℓ=1

L[Pjℓ,.]βjℓ + ε

10
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Comparing this vector notation to the partial residuals of MOTR-BART in Equation (5), it can be noted

that TVP-BART is equivalent to MOTR-BART with fixed terminal node variable matrix Xjℓ = L[Pjℓ,.].

Therefore, sampling proceeds as in standard MOTR-BART, where Xjℓ is replaced by L[Pjℓ,.]. Because

some time observations are missing from a particular terminal node ℓ, it might be difficult to identify βjℓ.

In addition, TVP-BART does not contain an intercept in contrast to MOTR-BART and therefore the

variance of the terminal node parameters σ2
β is simulated using all estimated parameters. The posterior

variance of the terminal node parameters is simulated from

σ2
β |− ∼ IG

(
a0 +

T
∑m

j=1 bj

2
, b0 +

∑m
j=1

∑bj
ℓ=1 β

′

jℓβjℓ

2σ2

)
.

3.4 SoftBART

Soft Bayesian Additive Regression Trees (SoftBART) by Linero & Yang (2018) is an extension of BART

that allows for a smoother estimated function instead of the piece-wise constant function that BART

learns. The previous Section discussed that the terminal nodes of a tree in BART may not include all

observations. However, SoftBART includes all observations in the terminal nodes, albeit with weights

specific to the terminal node and the time observation. This leads to the following expression

yt =

m∑
j=1

g(xt; Tj ,Mj) + εt, εt ∼ N (0, σ2)

g(xt; Tj ,Mj) =

bj∑
ℓ=1

ϕjtℓµjℓ = ϕ
′

jtµj ,

(12)

where ϕjt = (ϕjt1, ϕjt2, . . . , ϕjtbj )
′
and µj = (µj1, µj2, . . . , µjbj ). Rather than xt following a deterministic

path down the tree, xt instead follows a probabilistic path, with xt going left at branch b with probability

ψ(xt; Tj , ℓ) = ψ(
xti − Cb

τb
),

where τb is a bandwidth parameter associated with branch b which manages how sharp a decision is that

is made (with a sharp decision model when τb → 0) and ψ(.) is the logistic function. Given the tree

structure, each branch node b is given a decision rule of the form [xti ≤ Cb], where xt is going left down

the tree if the condition is met and right down the tree if otherwise. Averaging over all potential courses,

the probability of observation t going to leaf ℓ of tree j is

ϕjtℓ = ϕ(xt; Tj , ℓ) =
∏

b∈A(ℓ)

ψ(xt; Tj , b)1−Rb{1− ψ(xt; Tj , b)Rb},

where A(ℓ) is the set of ancestor nodes of leaf ℓ and Rb = 1 if the path to ℓ goes right at b.

In SoftBART, each regression tree is developed through an MCMC backfitting algorithm and the

Metropolis-Hastings step defines whether a tree structure is changed by either growing, pruning, changing

or swapping. In general, this procedure is similar to BART. The following priors are frequently assumed

µjℓ|Tj ∼ N (0, σ2
µ/m), σ2 ∼ IG(ν/2, νλ/2).

Posterior Simulation

Similar to BART, a Gibbs sampler is used to generate draws from the posterior distribution of

p((T1,M1), ..., (Tm,Mm), τ, σ2|y, X).

11
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Note that in this case also the bandwidth parameter τ is contained in the joint posterior distribution.

Similar to the description of BART, the conditional distribution of the j-th tree depends on the other

m− 1 trees through the partial residuals

r(j) ≡ y −
∑
k ̸=j

g(X; Tk,Mk)

The Gibbs sampler starts by proposing a change to the first tree’s structure which is then accepted

or rejected via an MH step with the following probability

α(Tj , T ∗
j ) = min

{
1,
p(r(j)|T ∗

j , τ, σ
2)p(T ∗

j )p(T ∗
j → Tj)

p(r(j)|Tj , τ, σ2)p(Tj)p(Tj → T ∗
j )

}

Using the MH algorithm, the posterior distribution of the bandwidth is generated using a random walk

sample, where the proposed bandwidth τ∗ is generated from log(τ∗j ) = log(τj) + uj , with uj ∼ U(−1, 1)

(Linero & Yang 2018). The transition density is given by p(τ∗ → τ) = 0.5τ−1 such that the bandwidths

are accepted with probability

α(τj , τ
∗
j ) = min

{
1,
p(r(j)|τ∗j , Tj , σ2)p(τ∗j )p(τ

∗
j → τj)

p(r(j)|τj , Tj , σ2)p(τj)p(τj → τ∗j )

}

= min

{
1,
p(r(j)|τ∗j , Tj , σ2)p(τ∗j )τ

∗
j

p(r(j)|τj , Tj , σ2)p(τj)τj

}

The conditional distribution of the partial residuals, which is necessary to calculate the acceptance prob-

ability in the MH steps, is given by

p(r(j)|τj , Tj , σ2) =
|2πΩ|1/2

(2πσ2)T/2|2πσ2
µI|1/2

exp

(
−1

2

[
−µ̂

′
Ω−1µ̂+

r(j)
′
r(j)

σ2

])

where the vertical lines represent the determinant and

Ω = (Φ +
σ2
µ

m
Ibj )

−1, Φ =

T∑
t=1

ϕjtϕ
′

jt/σ
2, µ̂ = Ω

T∑
t=1

r
(j)
t ϕjt/σ

2

and ϕjt = (ϕjt1, .., ϕjtbj )
′
. In addition, the full conditional of the terminal node parameters of tree j

contained in Mj is N (µ̂,Ω).

3.5 SMOTR-BART

Soft Model Trees Bayesian Additive Regression Trees (SMOTR-BART) is an extension of MOTR-BART

that combines SoftBART with the linear terminal-node model of MOTR-BART, proposed in a Master’s

Thesis by El Yaakoubi (2022). This methodology forms the foundation for TVP-SoftBART which is

introduced in Section 3.6. Similar to SoftBART, each terminal node contains all time observation albeit

with weights specific to the terminal node and time observation. The SMOTR-BART specification is

given by

yt =

m∑
j=1

g(xt; Tj ,Bj) + εt, εt ∼ N (0, σ2)

g(xt; Tj ,Bj) =

bj∑
ℓ=1

ϕjtℓxtjℓβjℓ = x̃tjβj ,

(13)
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where x̃tj = (ϕjt1xtj1, . . . , ϕjtbjxtjbj ) represents the weighted covariates and βj = (β
′

j1, . . . ,β
′

jbj
)
′
is a

large vector that is stacked with vectors each containing the parameters of a linear predictor in a single

terminal node of tree j. This can also be written in vector notation as

y =

m∑
j=1

X̃jβj + ε, (14)

where

X̃j =


ϕj11x1j1 ϕj12x1j2 . . . ϕj1bjx1jbj

ϕj21x2j1 ϕj22x2j2 . . . ϕj2bjx2jbj

...
...

. . .
...

ϕjT1xTj1 ϕjT2xTj2 . . . ϕjTbjxTjbj


The prior on the terminal node parameters is given by

βjℓ|Tj ∼ Nqjℓ(0, σ
2V ), V =

σ2
β

m
Iqjℓ

where Iqjℓ denotes the identity matrix with qjℓ as the number of covariates in the linear predictor of

terminal node ℓ of tree j including a constant regressor for the intercept. This prior is similar to SoftBART

and MOTR-BART. The first because of the division by the number of trees (m), and the second because

of prior variance structure σ2V . The prior in terms of the larger vector βj is

βj |Tj ∼ Nq̃j (0, σ
2Vj), Vj =

σ2
β

m
Iq̃j

where q̃j =
∑bj

ℓ=1 qjℓ. Similarly to what Prado et al. (2021a) suggests, the intercept and slopes are

penalized differently. The conjugate priors are σ2
β0

∼ IG(a0, b0) and σ
2
β ∼ IG(a1, b1) respectively.

Posterior Simulation

Given that the SMOTR-BART specification given in Equation (14) is equivalent to a reweighted MOTR-

BART specification, posterior simulation is straightforward. The marginal likelihood of the partial resid-

uals is given by

p(r(j)|X̃j , σ
2, Tj) = (σ2)−(T/2)

[
|Vj |−1/2|Λj |1/2exp

(
− 1

2σ2
[−β̃

′

jΛ
−1
j β̃j + r(j)

′
r(j)]

)]
,

where β̃j = Λj(X̃
′

jr
(j)) and Λj = (X̃

′

jX̃j + V −1
j )−1. The posterior distribution of the terminal node

parameters is

βj |r(j), X̃j , σ
2, σ2

β0
, σ2

β , Tj ∼ Nq̃j (β̃j , σ
2Λj).

Given the prior on σ2
β0

∼ IG(a0, b0) and σ2
β ∼ IG(a1, b1), the full conditional posterior distribution

is given by

σ2
β0
|− ∼ IG

(
a0 +

∑m
j=1 bj

2
, b0 +

m

2σ2
β

′

0β0

)

σ2
β |− ∼ IG

(
a1 +

∑m
j=1

∑bj
ℓ=1 pjℓ

2
, b1 +

m

2σ2
β

′
β

)
,

which is very similar to the posterior distribution of the terminal node variance of MOTR-BART, only
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the number of trees, m, enter the distribution due to the different prior specification of βjℓ.

3.6 TVP-SoftBART

Similarly to TVP-BART, SoftBART is changed to allow for time-varying parameters in the leaf nodes of

the trees used in SoftBART. Therefore, TVP-SoftBART is similarly given by

yt =

m∑
j=1

gj,t(xt; Tj ,Bj) + εt, εt ∼ N (0, σ2) (15)

In TVP-SoftBART, however, the terminal node model is changed to include the probability ϕjtℓ that

observation t ends in terminal node ℓ of tree j. In this way, all time observations are included in each

terminal node, but with weights specific to the terminal node and observation. The TVP-SoftBART

specification is given by

yt =

m∑
j=1

gj,t(xt; Tj ,Bj) + εt

gj,t(xt; Tj ,Bj) =

bj∑
ℓ=1

ϕjtℓL[t,.]βjℓ

(16)

This can also be written in vector notation as

y =

m∑
j=1

L̃jβj + ε,

where

L̃j =


ϕj11L1,· ϕj12L1,· . . . ϕj1bjL1,·

ϕj21L2,· ϕj22L2,· . . . ϕj2bjL2,·
...

...
. . .

...

ϕjT1LT,· ϕjT2LT,· . . . ϕjTbjLT,·

 =
[
Diag(ϕj,1:T,1)L Diag(ϕj,1:T,2)L . . . Diag(ϕj,1:T,bj )L

]

and

βj =


βj1

...

βjbj


with ϕj,1:T,ℓ = (ϕj1ℓ, ϕj2ℓ, . . . , ϕjTℓ)

′
, βjℓ = (βjℓ1, βjℓ2, . . . , βjℓT )

′
for ℓ = 1, . . . , bj and L being a lower

triangular matrix as in Equation (8). In this way, βj includes all time-varying node parameters of tree j.

Similarly to the previous BART algorithms, each regression tree is generated through an MCMC

backfitting algorithm and a Metropolis-Hastings step to determine whether a tree is modified. In general,

this follows the BART principle in the sense that the posterior results depend on regularization priors

such that each tree is a weak learner. It should be noted that in TVP-SoftBART each prediction in

the leaf node is constructed by a linear regression using a fixed covariate matrix L̃j . This is similar to

MOTR-BART, introduced by Prado et al. (2021a), where the prediction in each leaf node is created

by using only the variables that were used as splitting conditions as regressor variables. However, this

methodology does not allow for soft splitting but was later also introduced by El Yaakoubi (2022), called

SMOTR-BART, which is necessary in this case to construct L̃j .

The prior on the time-varying terminal node parameters that is used is

βjℓ|Tj ∼ NT (0, σ
2V ), V =

σ2
β

m
IT

14
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where IT denotes the identity matrix. The prior in terms of the larger vector βj is then given by

βj |Tj ∼ Nbj×T (0, σ
2Vj), Vj =

σ2
β

m
Ibj×T ,

where Ibj×T denotes the identity matrix of dimension (bj × T )× (bj × T ). In addition, an optional prior

proposed in Prado et al. (2021a) is used where σ2
β ∼ IG(a0, b0). Similar to before, the prior on σ2 is

IG(ν/2, νλ/2).

Posterior Simulation

To determine the posterior distribution of the trees, leaf node parameters, bandwidth and variance given

the data the Gibbs sampler is employed. To draw the structure of the trees a Metropolis-Hastings step

is used, similar to before. The posterior only depends on the other trees via the partial residual. The

partial residuals are given by

r
(j)
t = yt −

∑
s̸=j

bs∑
ℓ=1

ϕstℓL[t,.]βsℓ (17)

=

bj∑
j=1

ϕjtℓL[t,.]βjℓ + εt (18)

which can also be represented in the vector notation in the following way

r(j) = L̃jβj + ε

The Gibbs sampler starts by proposing a new tree structure in each step which is accepted or rejected

using an MH step, with the following probabilities

α(Tj , T ∗
j ) = min

{
1,
p(r(j)|T ∗

j , τ, σ
2)p(T ∗

j )p(T ∗
j → Tj)

p(r(j)|Tj , τ, σ2)p(Tj)p(Tj → T ∗
j )

}

α(τj , τ
∗
j ) = min

{
1,
p(r(j)|τ∗j , Tj , σ2)p(τ∗j )τ

∗
j

p(r(j)|τj , Tj , σ2)p(τj)τj

}
.

While most of the ratios are the same as before, the marginal likelihood of r(j) does change. The full

conditional of r(j) is given by

p(r(j)|L̃j , σ
2, Tj) = (σ2)−T/2

[
|Vj |−1/2|Λj |1/2 × exp

(
− 1

2σ2
[−β̃

′

jΛ
−1
j β̃j + r(j)

′
r(j)]

)]
(19)

where β̃j = Λj(L̃
′

jr
(j)) and Λj = (L̃

′

jL̃j + V −1
j )−1.

The posterior distribution of the leaf node parameter vector βj using the MOTR-BART specification

is given by

βj |r(j), L̃j , σ
2, σ2

β , Tj ∼ Nbj×T (β̃j , σ
2Λj).

It should be noted however that this may be computationally expensive, due to the inversion necessary

to calculate the matrix Λj which is of dimension [(bj × T )× (bj × T )].

To decrease the computational burden, a singular value decomposition (SVD) of the design matrix

L̃j is used following Hauzenberger et al. (2022b). The SVD of the matrix L̃j is

L̃j︸︷︷︸
T×(T×bj)

= U︸︷︷︸
T×T

Λ︸︷︷︸
T×T

W
′︸︷︷︸

T×(T×bj)

, (20)
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where U and W are orthogonal matrices such that W
′
W = IT and Λ denotes a diagonal matrix with

singular values, denoted by λ, of L̃j as diagonal elements. It should be noted that rank(L̃j) = min{T, (T×
bj)} = T . Therefore, the approach of Hauzenberger et al. (2022b) of using the SVD results in an exact low-

rank structure implying no loss of information through the use of the SVD. This is in contrast to Trippe

et al. (2019) which introduces the SVD approach in a Bayesian context to identify a lower-dimensional

subspace such that posterior computation can be performed at a lower computational expense.

The reason to use the SVD instead of L̃j is that several convenient properties of the SVD speed up

computation. For instance, using a Gaussian prior leads to a computationally convenient expression of

the posterior distribution of β which avoids complex matrix manipulations such as inversion and Cholesky

decomposition of high-dimensional matrices. Section 4.2 contains a discussion on how much the SVD

speeds up computation in comparison to a Cholesky decomposition of the matrix Λ−1
j .

With this SVD, the posterior of βj takes the following form

βj |r(j), L̃j , σ
2, σ2

β , Tj ∼ N (µβ , σ
2ΛSV D

j )

µβ = ΛSV D
j (L̃

′

jr
(j))

=

[
Wdiag

(
λ

m
σ2
β
ιT + λ2

)]
U

′
r(j)

ΛSV D
j = (Wdiag(λ⊙ λ)W

′
+ V −1

j )−1

= Vj − VjW (diag(λ⊙ λ)−1 +W
′
VjW )−1W

′
Vj

(21)

where ⊙ denotes the dot product. The computational burden is now given by the matrix Ξ = (diag(λ⊙
λ)−1 +W

′
VjW )−1. However, given the prior variance that is used for βj consists of a scalar times the

identity matrix, also known as a ridge prior, the matrix Ξ reduces to a diagonal matrix.

Given the prior on σ2
β ∼ IG(a0, b0), the full conditional posterior distribution can be derived in the

following way.

p(σ2
β |.) ∝

(
1

σ
σβ√
m

√
2π

)T
∑m

j=1 bj

exp

− m

2σ2σ2
β

m∑
j=1

β
′

jβj

× (σ2
β)

−(a0+1)exp

{
− b0
σ2
β

}

∝ (σ2
β)

−(a0+
T

∑m
j=1 bj

2 +1)exp

− 1

σ2
β

 m

2σ2

m∑
j=1

β
′

jβj + b0


Therefore the conditional posterior density of σ2

β is IG(a0 +
T

∑m
j=1 bj

2 , b0 +
m
2σ2

∑m
j=1 β

′

jβj).

3.7 Posterior Predictive Density

To generate predictions within a Bayesian framework, it is common to use the posterior predictive density.

This is essentially a density forecast that not only reflects the uncertainty in the model parameters but

also the noise estimate at each Gibbs sampler. Posterior draws of this density can be used to obtain point

forecasts, by either taking the mean or median. In addition, this density allows us to easily obtain other

quantities, for example, predictions of certain quantiles.

Given the past data y and X up to time T , the posterior predictive density of yT+1 at time T + 1 is

given by

p(yT+1|y, X,xT+1) =

∫
p(yT+1|xT+1,θ)p(θ|y, X)dθ, (22)

where xT+1 = (x1,T+1, . . . , xk,T+1)
′
is a k-dimensional vector containing the covariates at time T + 1,

and where θ is generic notation that refers to all parameters and latent states, such as the time-varying
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parameters, in the model.

More specifically in the BART framework, the posterior predictive distribution is given by

yT+1|y, X,xT+1 ∼ N (f̂(xT+1), σ̂
2)

where f̂(xT+1) is the posterior conditional mean estimate and σ̂2 is the posterior estimate of the noise

variance.

In each Gibbs step, samples of yT+1 are generated using the model as DGP, where the parameters

and latent states are replaced by drawing from the posterior distributions. For the time-invariant models,

these posterior draws follow naturally from the Gibbs sampler. For TVP-BART and TVP-SoftBART

simulating from the posterior predictive distribution is slightly more involved. Because of the time-

variation a new parameter βjℓ,T+1 needs to be simulated from the prior distribution since there exists no

posterior distribution. This is in contrast to the time-varying parameters up to time T which are drawn

from their posterior distributions. The posterior conditional mean estimate of TVP-BART is given by

f̂(xT+1) =

m∑
j=1

bj∑
ℓ=1

1{xT+1 ∈ Pjℓ}L[T,.]βjℓ + βjℓ,T+1

=

m∑
j=1

 bj∑
ℓ=1

1{xT+1 ∈ Pjℓ}L[T,.]βjℓ

+ βj,T+1,

where the last equation follows from the fact that observation T+1 can only end up in one of the terminal

nodes of tree j and it does not matter in which of the terminal nodes, since βjℓ,T+1 is drawn from the

prior model which is the same for each terminal node. The prior model from which βj,T+1 is drawn is

given by

βj,T+1 ∼ N (0, σ2VT+1), VT+1 = σ2
β .

It is important to note that βjℓ, σ
2 and σ2

β are posterior draws from a single Gibbs iteration. These steps

need to be repeated for each Gibbs iteration such that each Gibbs iteration results in a new posterior

conditional mean estimate and posterior variance. In addition,
∑m

j=1 βj,T+1 can be simulated from

N (0,mσ2σ2
β) instead of simulating each βj,T+1 separately.

Similarly, the posterior conditional mean estimate of TVP-SoftBART is given by

f̂(xT+1) =

m∑
j=1

bj∑
ℓ=1

ϕj,T+1,ℓ

[
L[T,.]βjℓ + βjℓ,T+1

]

=

m∑
j=1

 bj∑
ℓ=1

ϕj,T+1,ℓL[T,.]βjℓ

+ βj,T+1

where the last equation follows from
∑bj

ℓ=1 ϕj,T+1,ℓ = 1 for all j and the fact that the prior distribution

of βjℓ,T+1 is the same for each terminal node ℓ of tree j. The prior distribution of βj,T+1 given by

βj,T+1 ∼ N (0, σ2VT+1), VT+1 =
σ2
β

m
.

Lastly, it can be noted that
∑m

j=1 βj,T+1 can be sampled from N (0, σ2σ2
β) instead of sampling each future

parameter βj,T+1 for each tree separately. Since βj,T+1 for each terminal node is simulated from its prior

distribution in both TVP-BART and TVP-SoftBART, it has zero mean. Therefore it will only affect the

confidence interval.

For each Gibbs sample, normal samples per gibbs sample number of samples are taken from the pre-

dictive distribution estimate. Often, only one sample is taken, but more can be taken to better approxi-

17



3 METHODS

mate the posterior predictive density distribution. This results in a total of a normal samples per gibbs sample

times the number of post-burn-in iterations. After repeating these steps for each Gibbs sampler, the mean

can be used as a point forecast. For each iteration in the MCMC sampler, the following steps are repeated

to obtain posterior draws from the predictive distribution.

1) Draw βjℓ for each tree j, σ2 and σ2
β using the Gibbs sampling algorithm as described earlier.

2) Draw yT+1 normal samples per gibbs sample times from

N (
∑m

j=1

∑bj
ℓ=1 1{xT+1 ∈ Pjℓ}L[T,.]βjℓ, σ

2(1 +mσ2
β)) for TVP-BART

N (
∑m

j=1

∑bj
ℓ=1 ϕj,T+1,ℓ

∑T
t=1 βjℓt, σ

2(1 + σ2
β)) for TVP-SoftBART

3.8 Posterior Sampling Procedure

Algorithm 1 gives a full structure of the TVP-SoftBART algorithm.2 The trees, hyper-parameters, partial

residuals, the number of MCMC iterations and the number of samples from the posterior predictive distri-

bution have to be initialised. Within each MCMC iteration, candidate trees T ∗
j are generated which may

be accepted or rejected as the current tree with probability α(Tj , T ∗
j ). Similarly a new bandwidth τ∗j is

proposed and either accepted or rejected. After this, the terminal node parameters βj are generated. After

drawing the trees and terminal node parameters, the final fits ŷ are generated, as well as the error variance

of the terminal node parameters σ2
β and the error variance σ2. Finally, normal samples per gibbs sample

numbers of samples from the posterior predictive distribution are obtained.

TVP-BART would result in a very similar algorithm only some steps are omitted, for example, in

the MH-step for the bandwidth τ , there is no soft splitting and the regressor matrix of the terminal node

model is L[Pjℓ,.]. Therefore, it is omitted for brevity.

For the remainder of this paper, 1000 burn-in and 2500 post burn-in iterations are used, 10 trees are

used (m = 10) and 100 samples are drawn per Gibbs sample from the posterior predictive distribution

(normal samples per gibbs sample = 100).3 This results in a total of 250, 000 draws from the posterior

predictive density. Further, α = 0.5, β = 1, ν = 3, λ = 0.1, a0 = 1 and b0 = 1.

2MOTR-BART, SMOTR-BART, TVP-BART and TVP-SoftBART are available as an R package on https:

//github.com/EoghanONeill.
3As an experiment, the third DGP of the simulation exercise discussed in Section 4 is also run with

normal samples per gibbs sample set to 1 instead of 100. Results are reported in Appendix A and can be com-
pared to Table III. Generally, all models perform worse with this number of samples, however, it does require less
storage.
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Algorithm 1 TVP-SoftBART Algorithm

Input: y (response variable) and X (set of independent variables) which are standardized to
mean zero and unit variance

Output: The posterior distribution of trees and terminal node parameters
Initialization: T = (T1, . . . , Tm) to stumps, βjℓt = 0, R1 = y, number of trees (m), the number
of MCMC iterations (burn-in and post-burn-in)(nIter),normal samples per gibbs sample
Initialize prior hyperparameters: α, β, ν, λ, a0 and b0.
for k in 1 : nIter do

for j in 1 : m do
Update the current partial residual rkj = y −

∑
i ̸=j g(X; Ti,Mi)

Propose a new tree T ∗
j by growing, pruning, changing or swapping

Metropolis-Hastings step
Compute α(Tj , T ∗

j )
Sample u ∼ U(0, 1)

if u ≤ α(Tj , T ∗
j ) then

Tj = T ∗
j

else
Tj = Tj

end if
Follow a similar procedure for τ by computing α(τj , τ

∗
j )

Terminal Node Model
for ℓ = 1 : bj do

Compute ϕjtℓ ∀t = 1, . . . , T to construct L̃j

Compute the SVD of L̃j = UΛW
′

a) Compute µβ using Equation (21)
b) Simulate a ∼ N (0T×bj , Vj) and b ∼ N (0T ,diag(λ⊙ λ)−1)

c) Update βk
j = µβ + σ(a− VjWΞ(W

′
a+ b))

end for
end for
Update ŷkt =

∑m
j=1 gj,t(xt; Tj ,Mj) =

∑m
j=1

∑bj
ℓ=1 ϕjtℓL[t,.]β

k
jℓt ∀t = 1, . . . , T

or ŷk =
∑m

j=1 L̃jβ
k
j

Update (σ2)k by sampling from p(σ2|T1,B1, . . . , Tm,Bm,X,y)
Update (σ2β)

k by sampling from p(σ2β|T1,B1, . . . , Tm,Bm,X,y)

Out-of-Sample Forecasting

Draw normal samples per gibbs sample times fromN (
∑m

j=1

∑bj
ℓ=1 ϕj,T+1,ℓ

∑T
t=1 β

k
jℓt, (σ

2)k(1+

(σ2β)
k))

end for

3.9 Forecast Evaluation Methodology

This Section discusses the error metrics that are used to evaluate the forecasts generated by the mod-

els. Instead of only focusing on point forecasts, density forecasts are also evaluated. In this case, the

uncertainty surrounding the model forecasts is also included in the evaluation. Rather than focusing on

the entire density, two additional density evaluation metrics are also considered. However, given that the

models considered in this paper do not include a heteroskedastic error variance, evaluating the models on

these additional error metrics may not drastically change conclusions that are based on the error metric

which considers the entire density.

19



3 METHODS

First, the point forecasts are evaluated using the root mean squared error (RMSE). This is one of the

most commonly used error metrics to evaluate point forecasts. The RMSE is given by

RMSE =

√√√√ 1

Toos

TOOS∑
t=1

(ŷt − yt)2, (23)

where Toos is the number of observations over which the forecast is evaluated, for example, the out-of-

sample period. ŷt is the point forecast which is the mean of the posterior predictive distribution resulting

from the Gibbs sampler and yt is the actual realization.

Second, the density forecasts are evaluated using the continuous ranked probability score (CRPS).

Following Groen et al. (2013) this CRPS is used to prevent drawbacks of the usually employed log score

the logarithm of the predictive density evaluated in yt). These include its vulnerability to outliers and

that it may not deem observations that are close but not equal to realizations important, also noted in

Gneiting & Raftery (2007). Therefore, CRPS is used as a baseline evaluation of the overall predictive

density.

The CRPS is given by

CRPSt(yt) =

∫ ∞

−∞
(F (z)− 1(yt ≤ z))2dz

= E|ŷt − yt| − 0.5E|ŷt − ŷ
′

t|,
(24)

where F (.) is the cumulative distribution function belonging to the predictive density, yt is the realization

of the forecasted variable and ŷt and ŷ
′

t are independent random draws from the posterior predictive

density. The lower the value the more accurate the density forecast. The CRPS can be easily computed

using the posterior draws from the MCMC sampler and random resampling. The average across the

out-of-sample period is used and denoted by avCRPS.

Third, two implementations of the quantile-weighted CRPS (qwCRPS) are used to focus on tail

forecasts (Gneiting & Ranjan 2011). The quantile score is computed as

QSτ,t = (yt −Qτ,t)(τ − 1(yt ≤ Qτ,t)),

where Qτ,t is the forecast of quantile τ . The qwCRPS is computed as a weighted sum of quantile scores

at a range of J quantiles

qwCRPSt =
2

J − 1

J−1∑
j=1

ω(τj)QSSτj ,t (25)

with τj = j/J . Similar to Clark et al. (2023), 19 quantiles are used such that τ ∈ {0.05, 0.10, . . . , 0.90, 0.95}
where J = 20 to compute the weighted scores. The first implementation of qwCRPS targets both tails

of the predictive distribution using the weight function ω(τj) = (2τj − 1)2. The second implementation

targets only the left tail, and with this the downside risk, by using the weight function ω(τj) = (1− τj)
2.

To report these scores, the averages across the out-of-sample period are used, where avCRPS-T is used

to refer to the first and avCRPS-L to the second implementation of qwCRPS.
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4 Simulation Study

In this Section, the use of the proposed methodology is illustrated and whether it successfully covers dif-

ferent features of the data-generating processes (DGPs). To assess the performance of new methodologies

in this context, it is common to use synthetic data, see for example Groen et al. (2013) and Hauzenberger

et al. (2024).

The simulation consists of different DGPs moving from a simple non-linear specification to a frame-

work including time-varying parameters and a structural break. This simulation setup is meant to com-

pactly encapsulate the usual nonlinearities and time-variation in parameters often considered in empirical

studies.4 The precise form of the non-linear DGP that includes TVPs is given by

yt+1 = β0 + β1tyt + β2tx1t + β3tx
2
2t + β4tsin(x3tyt) + β5tx1,t−1 + σεt+1, for t = 1, . . . , T − 1 (26)

with εt ∼ N (0, 1), σ = 0.1 and xj,t ∼ N (0, 1) for j = 1, . . . , 5. The regressors x4t and x5t are not included

in the model, such that they have a zero coefficient. They are generated to create some noise around the

choice of covariate for the models. Each time-varying parameter follows a random walk with standard

deviation 0.015 (βjt ∼ N (βj,t−1, (0.015)
2)) for j = 1, . . . , 4, but β5t contains a structural break such that

β5t = −0.4 for t ≤ T/2 and β5t = 0.75 for t > T/2. The initial coefficients are given by β0 = 0.5,

β10 = 0.6, β20 = −0.2, β30 = 0.4, β40 = 0.2, and y1 = 0 and x10 = 0.

In this simulation study, three different specifications are considered. The first DGP is a non-linear

specification without time variation in the parameters. In this case, each parameter is set to its initial

value and is not allowed to change. The structural break parameter β5t is set to 0, so no structural break

is present in this DGP. The second DGP consists of random walk variation in the parameters βjt for

j = 1, . . . , 4. The last DGP allows for both random walk time-variation as well as a structural break.

Given that machine learning based algorithms might overfit, the time-invariant DGP is included as a

natural check. In addition, these DGPs offer the possibility to show the performance of the approaches

and under which circumstances the benefits are especially pronounced. The methods that are investigated

BART, SoftBART, MOTR-BART, SMOTR-BART, TVP-BART and TVP-SoftBART.5 All methods are

estimated using 1000 iterations as the burn-in period and 2500 as the post-burn-in period.

The design of this simulation exercise is recursive using an expanding window of data, where T is set

to 150 and the last 20 observations are considered as the hold-out sample for evaluation. Using only a

single draw may lead to questions about whether the favourable performance is particularly due to the

specific realization of the DGP. Therefore, instead of only simulating one realization, the proposed DGP

is simulated five times. For each out-of-sample time observation, a new model needs to be estimated

which makes the procedure computationally expensive. In this case, each model is re-estimated 20 times

for three different DGPs. To keep the computation feasible, only five different realizations of the DGPs

are considered.6 Figure I illustrates a single realization of each DGP for T = 150. Other realizations

typically look very similar and are thus omitted for brevity.

4Inspired by the Friedman Model in Friedman (1991) but adjusted to a time series context by including also
lags of the target and inputs. In this way, the DGP is constructed to mirror the dynamics properties observed
for actual macroeconomic aggregates.

5BART is estimated using bartMachine and SoftBART using SoftBART in R. The default settings are used,
only the burn-in and post-burn-in iterations are changed.

6Estimating TVP-BART ranges from 3.065 to 3.859 minutes and TVP-SoftBART ranges from 4.687 to 6.148
minutes on an Apple M3. The increase in estimation time is due to the addition of more time observations in the
expanding window. Simulating the 3 DGPs 5 times for 20 out-of-sample observations takes roughly 17.5 hours
for TVP-BART and 27.5 hours for TVP-SoftBART.
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(a) DGP 1 (no time-variation)

(b) DGP 2 (random-walk time-variation)

(c) DGP 3 (random-walk time-variation and structural break)

FIGURE I. Single realization from the DGPs for T = 150. The dashed black line marks the beginning of the
hold-out period.

4.1 Simulation Results

Tables I, II and III present the results for the three different Data Generating Processes (DGPs). Table

I illustrates the (absolute) error metrics for the DGP characterized solely by non-linearity, without any

time variation. Table II introduces time variation in the parameters via a random walk, and Table III

further complicates this with a structural break, adding a more rigorous time variation. Each model’s

performance is represented by the mean values over five simulations, calculated over the in-sample period

(from t=1 to t=129) and the out-of-sample period (from t=130 to t=149), where standard deviations are

represented in parentheses.

In Table I, TVP-BART demonstrates the lowest RMSE, indicating its superior accuracy for in-sample

fits, and is closely followed by BART. However, the average RMSE of the time-invariant BART-based

models closely follow TVP-BART and obtain lower standard deviations. TVP-SoftBART obtains the
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TABLE I. Forecast Evaluation for Simulations - DGP 1 (no time-variation)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

BART 0.097 0.052 0.014 0.018 0.271 0.141 0.033 0.044
(0.035) (0.009) (0.002) (0.003) (0.096) (0.037) (0.009) (0.007)

SoftBART 0.119 0.091 0.027 0.033 0.200 0.118 0.031 0.041
(0.006) (0.002) (0.001) (0.001) (0.079) (0.028) (0.006) (0.007)

MOTR-BART 0.107 0.062 0.014 0.020 0.185 0.095 0.022 0.030
(0.004) (0.002) (0.000) (0.001) (0.056) (0.020) (0.005) (0.005)

SMOTR-BART 0.148 0.084 0.019 0.027 0.180 0.104 0.023 0.033
(0.005) (0.003) (0.001) (0.001) (0.013) (0.009) (0.001) (0.003)

TVP-BART 0.094 0.079 0.024 0.029 0.413 0.231 0.054 0.076
(0.028) (0.015) (0.004) (0.005) (0.109) (0.048) (0.012) (0.017)

TVP-SoftBART 0.202 0.167 0.051 0.060 0.564 0.311 0.076 0.093
(0.053) (0.020) (0.006) (0.007) (0.185) (0.082) (0.022) (0.018)

Note: Simulation results for DGP 1, see Equation (26). For each error metric, the (absolute) means over 5 simulations are shown calculated
over the in-sample period (t = 1, . . . , 129) and out-of-sample period (t = 130, . . . , 149). Bold numbers indicate the best performance (lowest
error metric). The standard deviation is reported in parentheses. See Section 3.9 for error metrics definition.

largest RMSE and standard deviation and therefore generates the worst in-sample fits. Similar conclusions

apply to the density forecasts based on the remaining error metrics. Despite TVP-BART’s strong in-

sample performance, it struggles with out-of-sample forecasts. Conversely, SMOTR-BART achieves the

most accurate point forecasts, and MOTR-BART excels in density forecasts.

Table II displays the estimation results for the DGP including random walk time variation in the

parameters. Again, TVP-BART obtains the lowest average RMSE in-sample but is closely followed by the

time-invariant BART models. In addition, TVP-SoftBART performs the worst, which can be noted from

the highest average RMSE and standard deviation. Also for the density forecasts, similar conclusions as

for the DGP without time-variation apply. However, the error metrics are generally higher indicating

that the models have more difficulty accurately capturing the time-variation.

Table III presents the outcomes of the simulation for the DGP that includes both random walk

time variation and structural break. BART, SoftBART, MOTR-BART and SMOTR-BART struggle

substantially more in capturing this time series compared to the previous DGPs. This is evident from

for example the average RMSE that is almost three times larger than the ones from the second DGP

shown in Table II and approximately four times larger than the ones from the first DGP shown in Table

TABLE II. Forecast Evaluation for Simulations - DGP 2 (random-walk time-variation)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

BART 0.135 0.073 0.019 0.024 0.374 0.199 0.046 0.063
(0.032) (0.010) (0.003) (0.003) (0.125) (0.051) (0.013) (0.019)

SoftBART 0.193 0.129 0.035 0.045 0.330 0.184 0.045 0.056
(0.027) (0.014) (0.003) (0.004) (0.141) (0.039) (0.010) (0.012)

MOTR-BART 0.162 0.093 0.021 0.031 0.331 0.182 0.042 0.056
(0.029) (0.016) (0.004) (0.006) (0.116) (0.052) (0.013) (0.018)

SMOTR-BART 0.206 0.116 0.027 0.038 0.303 0.167 0.038 0.056
(0.033) (0.019) (0.005) (0.006) (0.065) (0.037) (0.009) (0.013)

TVP-BART 0.101 0.085 0.026 0.031 0.423 0.243 0.059 0.082
(0.042) (0.024) (0.007) (0.009) (0.191) (0.077) (0.020) (0.032)

TVP-SoftBART 0.226 0.186 0.056 0.067 0.630 0.347 0.085 0.103
(0.031) (0.024) (0.008) (0.010) (0.268) (0.120) (0.029) (0.031)

Note: Simulation results for DGP 2, see Equation (26). This DGP includes random walk time variation in the parameters. For each error
metric, the (absolute) means over 5 simulations are shown calculated over the in-sample period (t = 1, . . . , 129) and out-of-sample period
(t = 130, . . . , 149). Bold numbers indicate the best performance (lowest error metric). The standard deviation is reported in parentheses.
See Section 3.9 for error metrics definition.
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TABLE III. Forecast Evaluation for Simulations - DGP 3 (random-walk time-variation and structural break)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

BART 0.342 0.197 0.048 0.065 0.896 0.500 0.115 0.165
(0.082) (0.045) (0.009) (0.014) (0.113) (0.075) (0.020) (0.033)

SoftBART 0.542 0.308 0.073 0.103 0.831 0.462 0.103 0.148
(0.083) (0.043) (0.009) (0.012) (0.097) (0.069) (0.014) (0.024)

MOTR-BART 0.356 0.202 0.047 0.067 0.874 0.466 0.112 0.151
(0.060) (0.031) (0.007) (0.010) (0.120) (0.075) (0.019) (0.029)

SMOTR-BART 0.571 0.317 0.072 0.102 0.911 0.512 0.114 0.169
(0.103) (0.061) (0.013) (0.017) (0.067) (0.045) (0.009) (0.019)

TVP-BART 0.118 0.107 0.033 0.039 0.604 0.348 0.083 0.113
(0.042) (0.029) (0.008) (0.010) (0.106) (0.037) (0.008) (0.010)

TVP-SoftBART 0.214 0.228 0.074 0.086 0.775 0.433 0.105 0.137
(0.044) (0.032) (0.011) (0.012) (0.222) (0.112) (0.024) (0.032)

Note: Simulation results for DGP 3, see Equation (26). This DGP includes random walk time variation in the parameters and a structural
break. For each error metric, the (absolute) means over 5 simulations are shown calculated over the in-sample period (t = 1, . . . , 129) and
out-of-sample period (t = 130, . . . , 149). Bold numbers indicate the best performance (lowest error metric). The standard deviation is
reported in parentheses. See Section 3.9 for error metrics definition.

I. Only in this DGP, TVP-BART can maintain its superior performance in-sample to the out-of-sample

period. This is the case for both the point and density forecasts. TVP-SoftBART captures the time

series in-sample better compared to the previous DGPs, shown by the relatively low mean and standard

deviation in all error metrics. This model also performs relatively well in the out-of-sample period since

it obtains average error metrics that closely follow the best-performing model, TVP-BART. However, it

should be noted that the uncertainty surrounding the forecasts is the largest of the models considered.

Given the absence of time variation in the first DGP, it is expected that the time-invariant models

other than TVP-BART and TVP-SoftBART perform better. However, the bad performance of the latter

models shows their susceptibility to overfitting. The second DGP does include some time variation

and therefore it is expected that the time-varying models would perform better than the time-invariant

models. However, this is not the case. In the third DGP, which extends the second DGP by adding a

structural break, the time-varying models obtain the best forecasting accuracy. It is expected that these

models would capture the time series the best, even though they are constructed especially for random

walk variation. The reason why these models still can capture structural break time variation may be

explained by the fact that a structural break parameter can be created from a sum of random walk

parameters.

4.2 Runtime Comparison

To illustrate how the computation time changes with T , Figure II shows the computation as a function

of T which ranges from 50 to 250. The lines refer to the actual time (based on Apple M3) necessary to

simulate from the full conditional of the time-varying parameters in panel (a). Panel (b) displays the

time it takes to estimate TVP-SoftBART once on data simulated using the second DGP of size T . The

used approaches include a Cholesky decomposition of the matrix Λ−1
j and a singular value decomposition

(SVD) of the regressor matrix L̃j discussed in Section 3.6. To speed up the computation time even more,

the parts of the code that require SVD are also programmed in C++ using Rcpp and RcppArmadillo.

This includes drawing the time-varying parameters as well as the computation of the full conditional

distribution of the partial residuals in the Metropolis-Hastings step which requires the posterior mean

and variance of the time-varying parameters.

Figure IIa demonstrates that employing SVD accelerates computation, reducing the computation

time by roughly 75% compared to using the Cholesky decomposition in R. Looking at the estimation of

the time-varying parameters, the difference between the R code and C++ code does not seem that large.
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However, Figure IIb displays the actual time it takes to estimate TVP-SoftBART once, so including

estimating time-varying parameters for each regression tree and each MCMC iteration. It shows that

SVD is again faster than Cholesky decomposition, but when the sample size increases one benefits the

most from using the C++ code. This difference arises because time-varying parameters are estimated

for each tree and every MCMC run, resulting in a small difference being accumulated numerous times.

Additionally, the computation of the conditional likelihood of the partial residuals is also an important

driver of the total time to estimate TVP-SoftBART. This is in particular caused by the computation of

the posterior mean and variance of the time-varying parameters.

(a) Time to estimate time-varying parameters in a single tree

(b) Total Time to estimate TVP-SoftBART

FIGURE II. The top figure shows the average time it takes to estimate the time-varying parameters in
TVP-SoftBART, and the bottom figure shows the time it takes to estimate the whole model using SVD in R,

C++, and using a Cholesky decomposition.

4.3 Robustness Check

In Section 4.1, it is shown that the time-varying BART framework provides the best out-of-sample

forecasting accuracy among the BART models considered when time-variation not only consists of random

walks but also of a structural break. While these models are constructed to work well in case of random

walk time variation, it is not shown by their forecasting accuracy in the second DGP which includes this

type of variation. There are a few potential reasons why this could be the case. First, the variation in

the time-varying parameters may be too small such that a simple constant parameter works better since

it avoids uncertainty in the estimation of the additional time-varying parameters. The structural break

parameter increases the variance of the target and makes the time variation more pronounced. Therefore,

in this Section the second DGP is again studied but with increased variance (σ = 0.4 instead of σ = 0.1)

and parameter variance (0.1 instead of 0.015).
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TABLE IV. Forecast Evaluation for Simulations - DGP 2 (random-walk time-variation + increased variances)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

BART 0.640 0.367 0.089 0.121 1.656 0.902 0.212 0.283
(0.089) (0.052) (0.014) (0.019) (0.236) (0.138) (0.034) (0.053)

SoftBART 0.984 0.536 0.123 0.176 1.535 0.854 0.200 0.272
(0.254) (0.122) (0.031) (0.046) (0.371) (0.217) (0.051) (0.072)

MOTR-BART 0.684 0.391 0.089 0.127 1.562 0.843 0.200 0.266
(0.131) (0.071) (0.015) (0.023) (0.366) (0.207) (0.050) (0.073)

SMOTR-BART 1.165 0.630 0.146 0.201 1.664 0.919 0.213 0.290
(0.187) (0.098) (0.027) (0.040) (0.312) (0.201) (0.042) (0.076)

TVP-BART 0.205 0.182 0.055 0.066 1.593 0.901 0.211 0.280
(0.085) (0.068) (0.020) (0.024) (0.462) (0.226) (0.066) (0.072)

TVP-SoftBART 0.608 0.428 0.122 0.150 1.881 1.032 0.240 0.315
(0.229) (0.131) (0.038) (0.046) (0.210) (0.126) (0.028) (0.037)

Note: Simulation results for DGP 2, see Equation (26), but with increased error variance σ = 0.4 instead of σ = 0.1 and parameter variance
(0.1 instead of 0.015). See Table II for a comparison. This DGP includes random walk time variation in the parameters. For each error
metric, the (absolute) means over 5 simulations are shown calculated over the in-sample period (t = 1, . . . , 129) and out-of-sample period
(t = 130, . . . , 149). Bold numbers indicate the best performance (lowest error metric). The standard deviation is reported in parentheses.
See Section 3.9 for error metrics definition.

Table IV displays the estimation results for the DGP including random walk time variation in the

parameters, but with increased error and parameter variance. The in-sample results show that TVP-

BART produces the most accurate point and density forecasts among the models considered. This is

not the same as in the low variance case shown in Table II. In that case, TVP-BART does not produce

the most accurate density fits in-sample. Additionally, SMOTR-BART obtains the most accurate point

and density forecasts out-of-sample. In this DGP, with higher variance, SoftBART obtains the lowest

RMSE and thus creates the most accurate out-of-sample point forecasts. In terms of density forecasts,

MOTR-BART is the most accurate. In comparison to Table II, TVP-BART is considerably closer to the

best model in terms of error metrics. In the large variance case, TVP-BART obtains an average RMSE

that is only 3.788% higher than the best model among the considered models. To compare, in the low

variance case, TVP-BART obtained an average RMSE that was approximately 40% higher than the best

model. This can also be observed for the remaining error metrics. Similarly for TVP-SoftBART, the

average RMSE is 108% higher than the best model in the low variance case. In the high variance case,

this is only 22.544%. Increasing the variance, and especially the time variation is indeed beneficial for

the time-varying BART models in terms of forecasting accuracy.

Another potential explanation for the fact that the time-varying BART models are not the best

forecasting model in the case of a DGP that includes random walk variation may be the short sample

size. The relatively short sample of 149 observations means that random walk time variation does not

substantially alter the parameters out-of-sample compared to their in-sample means. In addition, the

time-varying models may benefit from a larger sample, since it has more observations to learn the time-

variation. The second DGP is again considered, which includes random walk time variation in the

parameters and is extended to include a larger error and parameter variance as in the previous extension.

In contrast to the previous extension, the sample size is increased from T = 150 to T = 300. However,

increasing the sample size is costly, as shown in Figure II. Therefore, only one of the five simulations in

the previous DGP is considered. This simulation is the one with the largest observed out-of-sample error

metrics for TVP-BART.

Table V displays the (absolute) error metrics of one simulation of the second DGP. The top panel

shows the results of one of the simulations considered in Table IV, and the bottom panel contains the

results when the sample size increased to T = 300. Similar to the average results displayed in Table IV

TVP-BART obtains the lowest in-sample error metrics when considering only this particular simulation

realization as shown in the top panel. TVP-BART maintains the lowest in-sample error metrics when
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TABLE V. Forecast Evaluation for Simulations - DGP 2 (random-walk time-variation + increased variances +
more time observations)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

T = 150
BART 0.514 0.294 0.071 0.097 1.956 1.036 0.250 0.295
SoftBART 0.842 0.451 0.105 0.145 2.070 1.124 0.266 0.333
MOTR-BART 0.540 0.310 0.072 0.102 2.044 1.036 0.254 0.291
SMOTR-BART 1.083 0.548 0.127 0.171 1.997 1.042 0.253 0.284
TVP-BART 0.153 0.139 0.043 0.051 2.413 1.301 0.328 0.407
TVP-SoftBART 0.643 0.358 0.094 0.120 1.938 0.989 0.237 0.287

T = 300
BART 0.814 0.352 0.083 0.120 2.253 1.261 0.311 0.487
SoftBART 0.853 0.479 0.107 0.155 2.190 1.232 0.300 0.466
MOTR-BART 0.776 0.436 0.100 0.141 1.964 1.135 0.265 0.415
SMOTR-BART 1.147 0.593 0.138 0.194 2.195 1.245 0.296 0.461
TVP-BART 0.215 0.171 0.050 0.061 1.476 0.823 0.182 0.263
TVP-SoftBART 0.957 0.478 0.127 0.169 2.283 1.213 0.305 0.393

Note: Simulation results for DGP 2, see Equation (26), but with increased error variance σ = 0.4 instead of σ = 0.1 and parameter
variance (0.1 instead of 0.015) and more time observations (T = 300 instead of T = 150). See Table IV for a comparison. This DGP
includes random walk time variation in the parameters. For each error metric, the (absolute) value is shown which is calculated over the
in-sample period (t = 1, . . . , 279) and out-of-sample period (t = 279, . . . , 299). This simulation is one of the five simulations considered in
Table IV which resulted in the worst out-of-sample performance for TVP-BART. (All simulations would be computationally infeasible).
Bold numbers indicate the best performance (lowest error metric). See Section 3.9 for error metrics definition.

the sample size is increased. The out-of-sample performance is the most interesting in this case. In this

simulation, TVP-BART performed the worst in the small sample case. However, when the sample size

is increased TVP-BART performs by far the best. TVP-SoftBART performed worse when the sample

size was increased relative to the other models. Therefore, it would be interesting to investigate also the

other simulation runs to see whether this holds more generally.

To conclude this Section, if computational resources were less constrained, it would be worthwhile

to explore whether the high standard deviations observed in TVP-SoftBART are specific to these five

simulations or represent a general trend. Additionally, given unlimited computation time, it would be

interesting to examine whether the time-varying models would better capture out-of-sample time variation

with more post-burn-in iterations. In addition, the relatively short sample period means that random

walk time variation does not greatly alter the parameters out-of-sample compared to their in-sample

means, which allows models without time variation to perform particularly well. Increasing the sample

size in one simulation run showed that the performance of TVP-BART improved, while TVP-SoftBART

performed worse. It would be interesting to see if this holds more generally if more simulations are

performed. In addition, increasing the error variance and parameter variance improved the forecasting

performance of the time-varying BART models.

Despite the limitations in the simulation set-up due to computational feasibility, it provides valuable

insights. Specifically, the time-varying models, TVP-BART and TVP-SoftBART, exhibit exceptional

performance when the time-variation is more pronounced, such as in the case of a structural break in

a parameter or larger error variances. Furthermore, while TVP-BART achieves the lowest mean RMSE

across all DGPs in-sample, it does not maintain this performance in the out-of-sample period, indicating

a potential susceptibility to overfitting.
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5 Empirical Application: Forecasting Inflation

In this Section, the proposed BART methodology is applied to forecast US inflation and, by extending

the illustrative simulation example, it is shown how the time-varying BART methodology may improve

upon existing BART-based methods. First, the data is introduced, and then the focus is on evaluating

both the point and density forecasts using the error metrics given in Section 3.9.

5.1 Data

The data is from FRED-QD (McCracken & Ng 2020) from 1969:Q1 to 2022:Q4 (216 observations).7

Similarly to previous work, see for example Giannone et al. (2015), a moderately sized dataset is used

which includes an array of key macro indicators that are commonly viewed as potential predictors of

inflation. In particular, the dataset that is used is the moderately sized dataset that is used in Clark

et al. (2024). Appendix B provides a complete overview of the dataset and associated transformations.

The focus is on forecasting quarterly CPI inflation expressed in an annual rate, commonly measured

as (400/h)ln(Pt+h/Pt) at forecasting horizon h = 1, 4.8 Other studies assume that inflation is an I(1)

process and the first difference of inflation is often taken to make it stationary. However, following Groen

et al. (2013), inflation is not transformed since we want the models to capture any time-variation in

the mean which may disappear when taking the first difference. The time series of CPI inflation are

shown in Figure III, including a dashed line indicating the start of the out-of-sample period at 2017Q1.

Due to the transformation, the series for h = 4 is smoother and more persistent than for h = 1. There

is a large literature that documents the time-varying properties of inflation, which are also visible in

Figure III. For example, inflation peaked in 1974-1975 and around 1980 and the high levels of inflation

declined slowly indicating an increased persistence, which disappeared after 1982-19833 (Cogley & Sargent

2005). Additionally, there is widespread evidence that the variability of inflation decreased from the late

1980s and early 1990s onwards as a result of exogenous variance breaks and breaks in the mean and/or

persistence (Sims & Zha 2006). Also, more recent events, like the financial crisis of 2008-2009 and the

COVID-19 pandemic of 2020-2021, resulted in exogenous breaks in the mean and/or persistence.

The methods that are used to forecast inflation for both forecasting horizons are the random walk

model (RW), BART, SoftBART, MOTR-BART, SMOTR-BART, TVP-BART and TVP-SoftBART. The

first among these models is traditionally seen as a hard-to-beat model when it comes to out-of-sample

inflation forecasts (Atkeson et al. 2001). This model is also frequently referred to as a naive model, which

predicts that inflation over the next h quarters is expected to be equal to inflation over the previous h

quarters. Similar to the simulation set-up, an expanding window is used to forecast the period 2017:Q1-

2022:Q4 (24 observations) where each model is trained using ten trees, a burn-in sample of 1000 and

a post-burn-in of 2500. Forecasts are again evaluated using the root mean squared error (RMSE), the

average continuous ranked probability score (avCRPS), and the quantile weighted continuous ranked

probability score, with weights on the tails (avCRPS-T) and on the left tail only (avCRPS-L). Section

3.9 contains a concise overview of these error metrics. Ratios of the RMSE, avCRPS, avCRPS-T and

avCRPS-L measures are reported relative to those of the RW model. A ratio smaller than 1 indicates

that a model generates a more precise point forecast for the RMSE, and more precise forecasts of certain

parts of the (unknown) distribution of future inflation rates for the remaining measures compared to the

RW.

7Similar to a large stream of literature investigating the time-varying properties of inflation, quarterly data is
studied, for example Primiceri (2005), Groen et al. (2013), Clark et al. (2024). In addition, using monthly data
would substantially increase the number of observations. This likely benefits the forecasting performance of the
time-varying BART models, but it would drastically increase the computation time.

8Note that we follow Clark et al. (2024) in modelling annual inflation, yt+4 = (100)ln(Pt+4/Pt) and not
annualized quarter-on-quarter growth rates, yt+4 = (400)ln(Pt+4/Pt+3). Therefore error metrics can be lower for
higher-order forecasts. Usually, this cannot be the case, because it involves more uncertainty.
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(a) 1-quarter-ahead

(b) 4-quarters-ahead

FIGURE III. CPI inflation over the entire sample, where the dotted line indicates the start of the hold-out
period. (a) 1-quarter-ahead inflation and (b) 4-quarters ahead inflation.

A number of the employed models are nested and an expanding window is used which will impact the

distribution of the Diebold-Mariano statistic as in Diebold & Mariano (2002) for both point and density

forecasts. Instead, the Harvey et al. (1997) small sample correction of the Diebold & Mariano (2002)

statistic with standard normal critical values is used, which is shown to result in good sized test of the

null hypothesis of equal finite-sample forecast accuracy for both nested and nonnested models, including

cases with expanded window-based model updating; see, for example Clark & McCracken (2013). A more

elaborate investigation of the size of this test, and a comparison against more advanced tests are beyond

the scope of this thesis, but instead, the existing literature is followed, for example Groen et al. (2013)

and Clark et al. (2024). The null of equal finite-sample forecast precision based on either the RMSE,

avCRPS, avCRPS-T or avCRPS-L measure is tested against the alternative that a model outperforms

the RW benchmark.

5.2 In-Sample Results

Although the main focus of the analysis of the empirical example is on assessing the out-of-sample

forecasting performance of the BART methodology, we first briefly discuss in this subsection the in-

sample properties of the BART-based models when they are estimated on the in-sample period, running

from 1969:Q2 to 2016:Q4 for h = 1 and from 1970:Q1 to 2016:Q4 for h = 4. Table VI reports ratios

of the evaluation measures for the BART-based models relative to measures produced by the RW for

forecasting inflation one quarter and four quarters ahead. The RW error metrics are absolute numbers.

First, we consider the point forecast evaluation for h = 1 displayed in the left panel of Table VI.

It appears that all models outperform the RW and are statistically significant. This is not a surprising

result since the RW is known to perform well out-of-sample and not necessarily in-sample. In contrast to
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the BART-based models, the RW uses lagged inflation as a forecast and cannot adjust the fit. Although

all models perform favourably compared to the RW, there are some differences between the models with

TVP-BART performing the best by obtaining an RMSE that is five times smaller than the RMSE of

the RW, and SMOTR-BART the worst. For the density forecast similar conclusions apply, since all

models significantly outperform the RW specification and TVP-BART performs the best closely followed

by BART and SMOTR-BART does the worst in capturing the density.

The left panel of Table VI shows the relative error metrics for forecasting horizon h = 4. Furthermore,

all models outperform the RW, and TVP-BART generates the most accurate point and density fits in

this in-sample period. However, in this case, TVP-SoftBART closely follows TVP-BART in creating

accurate fits and it performs very similar to BART when focusing on the density forecast evaluation.

Again, all models seem to overfit relative to SMOTR-BART. Based on all error metrics, allowing for time

variation is favourable in modelling inflation both one and four quarters ahead. Although TVP-BART

is the best-performing model in-sample, it takes drastically more computation time than the standard

BART-based methodology.9

TABLE VI. In-sample evaluation for forecasting US inflation

1-quarter-ahead forecast (h=1) 4-quarters-ahead forecast (h=4)

RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

RW 2.250 1.209 0.278 0.384 1.944 1.119 0.251 0.349
BART 0.314*** 0.345*** 0.381*** 0.371*** 0.185*** 0.203*** 0.242*** 0.213***
SoftBART 0.523*** 0.533*** 0.533*** 0.544*** 0.384*** 0.380*** 0.398*** 0.393***
MOTR-BART 0.492*** 0.510*** 0.523*** 0.528*** 0.272*** 0.274*** 0.303*** 0.286***
SMOTR-BART 0.714*** 0.697*** 0.717*** 0.739*** 0.629*** 0.607*** 0.625*** 0.600***
TVP-BART 0.202*** 0.276*** 0.339*** 0.310*** 0.064*** 0.143*** 0.211*** 0.174***
TVP-SoftBART 0.517*** 0.547*** 0.614*** 0.611*** 0.075*** 0.192*** 0.293*** 0.238***

Note: The error metrics are computed after estimating the model once over the sample period 1969:Q2-2016:Q4 for h = 1 and 1970:Q1-
2016:Q4 for h = 4. The numbers are ratios of error metrics relative to the random walk (RW) for which absolute numbers are displayed.
Asterixs that are shown correspond to Diebold & Mariano (2002) test with Harvey et al. (1997) correction for the null hypothesis of equal
finite-sample forecasting accuracy versus the alternative hypothesis that a model outperforms RW for either of these measure, where *,**
and *** indicate rejection of this null at the 10%, 5% and 1% levels, respectively, based on one-sided standard normal critical values.

5.3 Out-of-Sample Results

Table VII contains error metrics relative to the error metrics of the RW computed over the out-of-sample

period, computed both over the entire period from 2017:Q1 to 2022:Q4 as well as over the pandemic

and post-pandemic subperiod (2020:Q1-2022:Q4). The RW error metrics are shown in absolute numbers,

and numbers in bold indicate a better performance than the RW based on the error metric indicated

in the column. The last evaluation samples span the pandemic and post-pandemic period which could

have caused time variation in the dynamics of inflation rates. Panel A displays the estimation results for

forecasting horizon h = 1, and panel B for forecasting horizon h = 4.

First, we consider the point forecasts for 1-quarter-ahead inflation forecasts as displayed in Panel A

of Table VII for the out-of-sample period 2017:Q1-2022:Q4. BART and SoftBART perform relatively

well compared to RW although not significantly better. TVP-BART and TVP-SoftBART follow in

performance but perform slightly worse than the RW over this sample period. Lastly, MOTR-BART and

SMOTR-BART generate the worst point forecast, especially SMOTR-BART which attains almost twice

as high RMSE compared to the RW. This may be because MOTR-BART and SMOTR-BART use a linear

predictor in each terminal node, while inflation may be more accurately described by fewer and possibly

9Estimating TVP-BART only once ranges from 6.599 to 8.080 minutes and TVP-SoftBART takes approxi-
mately 10.388 to 13.395 minutes on an Apple M3. Due to the expanding window of 20 out-of-sample observations,
total computation time is approximately 2.5 hours for TVP-BART and 4 hours for TVP-SoftBART.
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only lagged inflation. In addition, the regressor variables attain unusual values during the pandemic

period, and in combination with coefficients estimated in a more stable time before, this may result in

extreme forecasts. Next, when considering the forecast of the entire density by the avCRPS measure,

the Table shows that only SoftBART can generate a more accurate forecast than the RW but again not

significant. It is closely followed by BART, TVP-BART and TVP-SoftBART which all perform slightly

worse than the RW. MOTR-BART and SMOTR-BART again do the worst job in terms of avCRPS.

Focusing only on the tails of the density forecast leads to similar conclusions. Evaluating only the left

tail forecast, as is done by avCRPS-L, shows that SoftBART is statistically more accurate than the RW,

and TVP-BART generates a lower error metric than the RW although not significant.

The right side of Panel A in Table VII reports the relative error metrics over the sub-sample 2020:Q1-

2022:Q4. In general, the same conclusions apply for this subsample period as for the complete hold-out

period. It should be noted that the error metrics of the RW in this subsample period are generally higher

than in the larger out-of-sample period as reported in the left side of Panel A. Therefore the RW has

generally more difficulty capturing inflation in this subsample period. This is due to the high variability

of inflation in this subsample period, while the random walk uses the inflation realizations of the period

starting before the pandemic period as inflation forecasts.

TABLE VII. Forecast evaluation for forecasting US inflation

2017:Q1-2022:Q4 2020:Q1-2022:Q4

RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

Panel A: 1-quarter-ahead forecast (h=1)

RW 2.590 1.413 0.327 0.422 3.433 1.969 0.461 0.579
BART 0.993 1.022 1.015 1.095 0.997 1.096 1.110 1.154
SoftBART 0.803 0.829 0.829 0.812* 0.778 0.828 0.847 0.782
MOTR-BART 1.355 1.134 1.148 1.265 1.388 1.216 1.254 1.391
SMOTR-BART 2.046 1.234 1.140 1.347 2.148 1.387 1.257 1.518
TVP-BART 1.074 1.010 1.015 0.998 1.088 1.085 1.097 1.029
TVP-SoftBART 1.089 1.051 1.041 1.121 1.094 1.107 1.093 1.165

Panel B: 4-quarters-ahead forecast (h=4)

RW 2.317 1.285 0.311 0.358 3.188 1.948 0.464 0.512
BART 0.656 0.612* 0.616** 0.673 0.638 0.600* 0.630* 0.655
SoftBART 0.749 0.708* 0.688** 0.748 0.696* 0.628** 0.653** 0.632*
MOTR-BART 1.117 0.938 0.905 0.942 1.108 0.943 0.954 0.937
SMOTR-BART 1.066 0.886 0.870 1.092 1.046 0.881 0.877 1.149
TVP-BART 0.647* 0.550** 0.523** 0.615** 0.645 0.581* 0.549* 0.692
TVP-SoftBART 0.465* 0.424** 0.431** 0.485** 0.467 0.431* 0.417* 0.494

Note: The numbers are ratios of error metrics relative to the random walk (RW) for which absolute numbers are displayed. Bold numbers
indicate a better performance than the RW. Asterixs that are shown correspond to Diebold & Mariano (2002) test with Harvey et al. (1997)
correction for the null hypothesis of equal finite-sample forecasting accuracy versus the alternative hypothesis that a model outperforms RW
for either of these measure, where *,** and *** indicate rejection of this null at the 10%, 5% and 1% levels, respectively, based on one-sided
standard normal critical values. 1-quarter ahead forecast in Panel A, and 4-quarters ahead in Panel B. The first four columns of error metrics are
computed over the complete hold-out period (2017Q1-2022Q4), while the last four columns only cover the pandemic and post-pandemic period
(2020Q1-2022Q4).

Next, Panel B contains the relative evaluation metrics for the 4-quarters-ahead inflation forecast.

First, we consider the point forecasts. TVP-SoftBART attains the lowest RMSE and is statistically

different from the RMSE of the RW. It is followed by TVP-BART which also generates an RMSE

statistically lower than the RMSE of the RW. The RMSE of TVP-BART is closely followed by the RMSE

of BART and SoftBART, although lower than the RMSE of the benchmark, not significant. MOTR-

BART and SMOTR-BART perform the worst. However, in contrast to h = 1, MOTR-BART generates

the worst point forecast according to the RMSE and not SMOTR-BART, which performs almost the

same as the RW. In terms of density forecasts, there is evidence based on the avCRPS measure that all

BART-based models are producing more precise density forecasts than the RW model. Especially TVP-
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BART and TVP-SoftBART generate accurate density forecasts shown by their low avCRPS value and

statistical significance. This superior performance is also apparent when considering only the tails of the

density forecast, but also when considering only the left tail. BART and SoftBART also generate accurate

point and density forecasts, but based on the error metrics, they are slightly worse than TVP-BART and

TVP-SoftBART. When focusing only on the left tail of predicted density BART and SoftBART obtain

a low value of avCRPS-L, but in contrast to TVP-BART and TVP-SoftBART they are not able to beat

the RW statistically.

The right-hand side of Panel B in Table VII reports on the forecast evaluation for 4-quarters-ahead

inflation over the 2020:Q1-2022:Q4. Over this period, the error metrics are generally higher than over the

complete hold-out period. Due to the large variability, the inflation in this period is harder to forecast.

While the RW error metrics are higher, the performance of the BART-based models relative to the RW

is similar to the period before. Again, TVP-BART and TVP-SoftBART outperform the RW in terms of

both point forecast accuracy and density forecast accuracy.

To understand the performance of the models out-of-sample better, Figure IV contains the realization

of inflation and the forecasts by the RW, BART, SoftBART, TVP-BART and TVP-SoftBART for h = 1

in the left figure and h = 4 in the right figure (MOTR-BART and SMOTR-BART are left out due to their

worse performance). First, we consider the left panel of Figure IV which shows that the BART-based

model forecasts roughly follow the RW forecast. It can be noted that the forecasts produced by BART and

SoftBART are more flat, especially apparent in 2020:Q3. In addition, the path that the TVP-SoftBART

follows is very similar to the RW forecast only its level is lower than the RW forecast. TVP-BART, while

similar to TVP-SoftBART, makes a big miss in the middle of 2021. The right panel shows the inflation

realization and forecasts using the forecast horizon h = 4. While TVP-SoftBART seems again smoothed

out, BART is more spiky in this case. The forecast by TVP-SoftBART tracks the inflation realization

closely and appears to be the most accurate of all model forecasts. The TVP-BART forecast seems to be

very similar to the forecast by TVP-SoftBART but makes a big miss in the middle of 2018. This may be

due to the underidentification of the parameter estimates for example. Appendix C contains additional

figures containing the inflation realization, the median, and a prediction interval for BART, SoftBART,

TVP-BART and TVP-SoftBART.

(a) 1-quarter-ahead (b) 4-quarters-ahead

FIGURE IV. Inflation forecasts

In general, the BART-based methodology benefits from time-variation in-sample, but for small fore-

cast horizons, h = 1, fails to maintain this out-of-sample. This may indicate that this model has overfitted

the in-sample period and therefore it may be useful to focus more on tuning this model to obtain a better
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in-sample and out-of-sample balance. However, it should be noted that most of the BART extensions fail

to beat the RW forecast for this forecasting horizon, including the time-varying BART models. When

considering a larger forecasting horizon, h = 4, TVP-BART and TVP-SoftBART succeed in producing

the most accurate point and density forecast and based on various error metrics statistically outperform

the RW. The better forecasting performance of the models for this horizon may be due to the smoother

nature of the variable to be forecasted. This variable is more persistent, more closely related to its

previous value, but has a lower variance than for h = 1. It should be noted that the time-invariant

terminal node models, BART and SoftBART, especially the last one, are very close in terms of error

metrics to the time-varying models. Therefore it may be questionable whether the additional accuracy

of the time-varying models weighs up to the computational burden.

6 Conclusion

In conclusion, this paper addresses the limitations of traditional BART models in the context of macroe-

conomic forecasting by introducing time-varying parameter BART models, namely TVP-BART and

TVP-SoftBART. These models extend the capabilities of existing BART methodologies by incorporating

time variation in the parameters of the terminal nodes, thus improving the model’s ability to capture

dynamic changes in economic relationships over time. In addition, this paper provides an elaborate

overview of BART and its extension tailored to a time series context. BART models the conditional

mean as a constant by fitting multiple trees that explain only a small part of the univariate response.

The extensions include SoftBART, MOTR-BART and a combination of these, SMOTR-BART. These

models form the foundation for the newly proposed models, TVP-BART and TVP-SoftBART. To allow

for time-variation in the terminal node of each tree, the conditional mean is modelled by a time-varying

parameter, rather than a time-invariant parameter as in BART or a linear part as in MOTR-BART. The

proposed methods maintain computational efficiency and scalability by recasting the time-varying param-

eter model as a static regression problem, avoiding the common pitfalls of overparametrization. These

static terminal node regression models resemble MOTR-BART where the conditional mean is fitted using

a linear predictor. In addition, soft splitting is introduced in this model to avoid under-identification of

parameters because some time observations may be missing in a terminal node.

The performance of the BART-based methodology is assessed in the context of synthetic data, which

includes three different nested data-generating processes (DGPs). The three DGPs include parameters

with (i) no time-variation, (ii) random walk time variation and (iii) random walk time variation and a

structural break. Allowing for time variation in the conditional mean of BART is especially beneficial in

terms of forecasting accuracy in the third DGP. When time-variation is non-existent, or parameters change

only gradually, as in the first and second DGP respectively, TVP-BART is susceptible to overfitting the

training data and fails to maintain this accuracy on new testing data. Furthermore, the conditional mean

in the time-varying BART models is modelled using random walk variation. A structural break parameter

can still be captured by these models, since the sum of random walk parameters may adequately model

a structural break parameter. It is, however, expected that these models generate the most accurate

forecasts in the second DGP. Results show that this is not the case and therefore this DGP is further

investigated. This includes increasing the error and parameter variances as well as increasing the sample

size. The time-varying BART models benefit from increasing these variances in terms of out-of-sample

forecasting accuracy. Since increasing the sample size is computationally expensive, only one simulation

realization of the second DGP is investigated. This simulation run shows that TVP-BART performs

better when the sample size is doubled.

In addition, the BART-based methodology is applied to forecasting quarterly US inflation by evalu-

ating again both the point and density forecasts. The results show that for the small forecast horizon,

namely one-quarter ahead forecasts, all BART-based models fail to outperform the random walk bench-
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mark significantly. Only SoftBART attains lower error metrics than the random walk over the complete

out-of-sample period, from 2017:Q1 to 2022:Q4, as well as in the pandemic and post-pandemic period,

2020:Q1-2022:Q4. For the larger forecast horizon, namely the four-quarters-ahead forecasts, BART, Soft-

BART, TVP-BART and TVP-SoftBART outperform the random walk. In particular, TVP-SoftBART

excels in both point and density forecasting accuracy in both sub-samples. Similarly to the simulation

exercise, TVP-BART obtains low error metrics in-sample but fails to maintain this out-of-sample for the

small forecasting horizon. This is again an indication that this model may be susceptible to overfitting.

In general, adding time-variation in BART is beneficial in terms of forecasting accuracy if time-

variation is more pronounced. This is evident from the simulation exercise where the performance of

TVP-BART and TVP-SoftBART was the best when the DGP allowed for random walk time variation

and a structural break in the parameters. For the empirical example, it can be noted that the TVP-BART

and TVP-SoftBART particularly excel on longer forecasting horizons, when the inflation realizations to

be forecasted are more persistent. However, it should be noted that the time-varying BART models are

closely followed by the time-invariant BART and SoftBART in both the simulation and the empirical

exercise in terms of error metrics. However, TVP-BART and TVP-SoftBART take considerably more

computation time than BART and SoftBART and therefore there exists a trade-off between forecasting

accuracy and computation time.

Various attempts have been made in the literature to introduce time-variation in BART. However,

TVP-BART and TVP-SoftBART form the first among them to include time-variation in the terminal

nodes of each tree. Yet, the main limitation is the computation time. The expanding window estimation

that is employed requires estimating each model again when a new observation enters and therefore is a

major driver of the computation time. Therefore, a potential research direction could be in the direction

of Sequential Markov Chains to limit computation time. For example, the sequential tree model of Taddy

et al. (2011) where the model state changes in time with the accumulation of new data may be particularly

useful.

In addition, an interesting research direction would be the influence of the sample size. The time-

varying BART models does not perform the best in the simulation exercise where random walk variation

was introduced in the parameters. Increasing the sample size may however alter this finding. A first

attempt in this direction shows that increasing the sample size benefited TVP-BART in out-of-sample

forecasting accuracy. However, more simulations are necessary to generalize this finding. It may also be

interesting to investigate the effect of the persistence in a time series on the performance of the time-

varying BART models. In addition, changing the prior specifications and investigating the influence

on the forecasting accuracy may be an interesting extension. Another future research direction is the

addition of heteroskedasticity into the time-varying BART models. In the proposed framework, the error

variance is assumed to be time-invariant. However, real-world data do not always follow the simple

constant-variance process modelled by BART. Complementing the proposed BART-based methodology

with stochastic volatility on the errors can prevent the detection of spurious variations in the time-

varying coefficients by capturing some of the variability in the error term. Stochastic volatility processes

have attained considerable popularity, with one of the most commonly used being the state space model

introduced by Kim et al. (1998), which assumes an autoregressive process for log volatility. Despite the

improved forecasting accuracy that the inclusion of stochastic volatility brings to econometric models,

its estimation poses challenges due to the intractability of the likelihood function. Various efforts have

been made to enhance the efficiency of the Markov Chain Monte Carlo (MCMC) sampler. While it may

be expected that the addition of this feature increases the forecasting accuracy, it is also an additional

computationally expensive aspect.
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A Extra Results

TABLE VIII. Forecast Evaluation for Simulations - DGP 3 (normal samples per gibbs sampler set to 1)

In-Sample Performance Out-of-Sample Performance
RMSE avCRPS avCRPS-T avCRPS-L RMSE avCRPS avCRPS-T avCRPS-L

Panel C: DGP 3 (random-walk time-variation and structural break)

BART 0.355 0.193 0.044 0.061 0.906 0.523 0.127 0.182
(0.082) (0.051) (0.011) (0.018) (0.154) (0.114) (0.034) (0.054)

SoftBART 0.561 0.333 0.081 0.117 0.853 0.534 0.134 0.188
(0.082) (0.063) (0.018) (0.023) (0.152) (0.135) (0.040) (0.065)

MOTR-BART 0.367 0.206 0.047 0.069 0.884 0.501 0.126 0.171
(0.061) (0.034) (0.009) (0.013) (0.147) (0.104) (0.029) (0.046)

SMOTR-BART 0.582 0.364 0.093 0.128 0.932 0.606 0.158 0.226
(0.105) (0.091) (0.027) (0.034) (0.119) (0.113) (0.037) (0.061)

TVP-BART 0.141 0.084 0.021 0.023 0.611 0.345 0.080 0.109
(0.048) (0.024) (0.006) (0.007) (0.095) (0.038) (0.006) (0.011)

TVP-SoftBART 0.294 0.169 0.036 0.048 0.786 0.465 0.114 0.154
(0.044) (0.023) (0.005) (0.006) (0.215) (0.139) (0.037) (0.046)

Note: normal samples per gibbs sample is set to 1 instead of 100 which is used throughout the thesis. Simulation results for DGP 3,
see Equation (26). This DGP includes random walk time variation in the parameters and a structural break. For each error metric, the
means over 5 simulations are shown calculated over the in-sample period (t = 1, . . . , 129) and out-of-sample period (t = 130, . . . , 149). Bold
numbers indicate the best performance (lowest error metric). The standard deviation is reported in parentheses. See Section 3.9 for error
metrics definition.
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B Data

TABLE IX. Data Description

FRED-Code Series Trans.

GDPC1 Real Gross Domestic Product ∆ln
PCECC96 Real Personal Consumption Expenditures ∆ln
FPIx Real private fixed investment ∆ln
GCEC1 Real Government Consumption Expenditures and Gross Investment ∆ln
INDPRO IP:Total index Industrial Production Index ∆ln
CUMFNS Capacity Utilization: Manufacturing (SIC) level
PAYEMS Emp:Nonform All Employees: Total nonfarm ∆ln
CE16OV Civilian Employment ∆ln
UNRATE Civilian Unemployment Rate ∆
AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing (Hours) level
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees:Goods-Producing ∆
CLAIMSx Initial Claims ∆ln
GDPCTPI Gross Domestic Product: Chain-type Price Index ∆2ln
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items ∆2ln
PPIACO Producer Price Index for All Commodities ∆2ln
WPSID61 Producer Price Index by Comodity Intermediate Materials: Supplies & Components ∆2ln
WPSID62 Producer Price Index: Crude Materials for Further Processing ∆2ln
COMPRNFB Nonfarm Business Sector: Real Compensation per Hour (Index 2012=100) ∆ln
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2012=100) ∆ln
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees ∆2ln
FEDFUNDS Effective Federal Funds Rate (Percent) ∆
BAA10YM Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on 10-Year Treasury level
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasyrt Bill, secondary market level
CPF3MTB3Mx 3-Month Commercial Paper Minus 3-Month Treasury Bill, secondary market level
M2REAL Real M2 Money Stock ∆ln
BUSLOANSx Real Commercial and Industrial Loans, All Commercial Banks ∆ln
CONSUMERx Real Consumer Loans at All Commercial Banks ∆ln
SP500 S&P’s Common Stock Price Index: Composite ∆ln

Note: ‘FRED-Code’ refers to the code of the series at fred.stlouisfed.org. Transformations (‘Trans.’): ∆ indicates first
differences, ∆2 second differences and ln is the natural logarithm.
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C Extra Figures

(a) SoftBART (b) TVP-SoftBART

(c) BART (d) TVP-BART

FIGURE V. 1-quarter-ahead inflation forecast (h=1). The grey shaded area refers to the 5th and 95th prediction
intervals, the middle solid black line denotes the quarterly inflation and the red line is the posterior median.
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(a) SoftBART (b) TVP-SoftBART

(c) BART (d) TVP-BART

FIGURE VI. 4-quarters-ahead inflation forecast (h=4). The grey shaded area refers to the 5th and 95th
prediction intervals, the middle solid black line denotes the quarterly inflation and the red line is the posterior

median.
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