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Abstract

This research investigates the predictive capacity of option-implied skewness variability on the

cross section of stock returns. By reviewing existing literature and employing various empirical

methodologies—such as portfolio sorts, regression analysis, risk premia assessment, examination

of Stochastic Discount Factor (SDF) coefficients, and model misspecification tests—the study

explores the relationship between option-implied skewness and stock returns. Portfolio sorts and

regression analysis indicate significant turnover within decile portfolios due to fluctuations in

skewness variability, suggesting its potential predictability in the cross section of stock returns.

Risk premia assessment highlights that incorporating skewness variability alongside traditional

skewness measures significantly enhances return prediction models. While acknowledging model

misspecification and non-significant SDF loadings, the study reveals an intriguing interaction

between the market risk factor and skewness variability, suggesting the need for further invest-

igation. Overall, the findings indicate that including skewness variability in standard pricing

models improves the accuracy of return predictions and supports more informed investment de-

cisions. This research contributes to the literature by underscoring the importance of considering

variation in option-implied skewness when predicting the cross section of stock returns.
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1 Introduction

Understanding the factors that influence the returns of stocks is paramount in both academic

research and practical investment decision-making. The identification of reliable predictors not

only enhances our ability to forecast stock performance but also provides valuable insights into

market dynamics and investor behavior. Moreover, uncovering these factors contributes to the

ongoing debate surrounding market efficiency and the efficacy of traditional asset pricing models.

The ongoing debate surrounding market efficiency and the efficacy of traditional asset pricing

models has been a central theme in financial economics literature for decades. Market efficiency,

as proposed by Eugene Fama in his seminal work (Fama & MacBeth, 1973), suggests that asset

prices fully reflect all available information, leaving no room for investors to consistently out-

perform the market. However, empirical evidence has challenged the notion of perfect market

efficiency, leading to various schools of thought and research streams aimed at understanding

market anomalies and identifying factors that can explain stock returns beyond what is pre-

dicted by traditional asset pricing models.

One of the most influential contributions to this debate is the Capital Asset Pricing Model

(CAPM), which posits that the expected return on an asset is determined solely by its beta, a

measure of its systematic risk relative to the market. However, empirical studies have uncovered

anomalies, such as the size effect and value effect, which suggest that small-cap stocks and value

stocks tend to outperform what would be expected based on their beta alone. These findings

have led to the development of alternative models, such as the Fama-French three-factor model,

which incorporates additional factors—namely, size and value—to better explain stock returns.

Furthermore, the exploration of other factors, such as momentum, liquidity, profitability, and in-

vestment, has expanded our understanding of the drivers of stock returns. Research by Jegadeesh

and Titman (1993) on momentum, for example, demonstrated the persistence of stock price

trends over intermediate-term horizons, contradicting the efficient market hypothesis. Similarly,

studies by Amihud and Mendelson (1986) on liquidity risk highlighted the impact of transaction

costs on asset prices and returns, challenging the assumption of frictionless markets.

Moreover, the identification of these factors and their integration into investment strategies

has practical implications for investors and portfolio managers. By incorporating factors such

as value, momentum, and quality into their investment decisions, practitioners can enhance port-

folio performance and manage risk more effectively. The proliferation of factor-based investing

and smart beta strategies in recent years underscores the growing recognition of the importance

of factor-based models in portfolio construction and asset allocation.

The exploration of factors influencing stock returns not only advances academic research in

finance but also has practical implications for investors and market participants. By continually

refining our understanding of these factors and their impact on asset prices, I contribute to the

ongoing dialogue on market efficiency and the evolution of asset pricing models in finance.
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2 Problem Description

Understanding the factors influencing stock returns is critical for both academic research and

practical investment decisions. Factors such as firm-specific characteristics, broader market con-

ditions, and investor sentiment all contribute to the complexity of stock returns (Fama & French,

1993; Jegadeesh & Titman, 1993).

One factor that plays a significant role in financial analysis is option implied skewness (Bali

& Murray, 2013). Skewneess is a statistical measure that quantifies the asymmetry of the prob-

ability distribution of a random variable. Thus, option implied skewness, i.e. skewness provides

insights into the distribution of asset returns, with positive skewness indicating a higher likeli-

hood of extreme positive returns and negative skewness indicating a higher likelihood of extreme

negative returns. Option implied skewness, derived from option pricing in financial markets, re-

flects investors’ expectations regarding extreme events or tail risks in the underlying asset’s

returns. It serves as a gauge of market sentiment and risk perception, with lower implied skew-

ness suggesting a heightened perceived risk of negative returns.

The risk-neutral measure, denoted as Q, adjusts real-world probabilities to account for investors’

risk preferences in financial markets. Skewness under the risk-neutral measure captures market

expectations of future skewness, which may differ from historical skewness due to investors’ risk

aversion and hedging against tail risks.

Analyzing the risk-neutral skewness of securities based on option implied skewness provides

valuable insights into market participants’ risk perceptions. Understanding how skewness under

the risk-neutral measure differs from historical skewness aids investors and analysts in better as-

sessing the pricing and risk characteristics of financial assets, especially derivative securities such

as options. Existing literature underscores the predictive power of low option-implied skewness

in predicting stock returns (Bali & Murray, 2013; Jurczenko, Maillet & Negrea, 2002; Schneider,

Wagner & Zechner, 2020).

However, while the existing literature has established the predictive power of option-implied

skewness, the focus has primarily been on its low values and their association with stock returns.

An exploration into the dynamics and variations of skewness, encompassing both positive and

negative values, could provide a more nuanced understanding of its impact on the cross-section

of stock returns. Park (2013) demonstrates that the volatility of volatility, measured by the

VVIX index derived from a cross-section of VIX options, predicts tail risk hedge returns. They

also show that the VIX has a direct relationship with the option implied skewness. Additionally,

DeLisle, Diavatopoulos, Fodor and Kassa (2021) contribute to this body of knowledge by demon-

strating the predictive capacity of implied volatility spread variations in relation to stock returns.

One possible theoretical reason for a shift in option implied skewness is the overvaluation or

undervaluation of stocks due to behavioral biases or short-sale constraints. According to Bressan

and Weissensteiner (2023), stocks with high (positive) option implied skewness are overvalued
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because investors are attracted to their lottery-like features, such as high volatility and positive

skewness of historical returns. These stocks tend to have low downside risk and high returns.

On the other hand, stocks with low (negative) option implied skewness are undervalued because

investors are averse to their negative skewness of historical returns. These stocks tend to have

high downside risk and low returns. Therefore, a shift in option implied skewness can reflect a

correction of mispricing or a change in investor preferences and market expectations.

Another possible theoretical reason for a shift in option implied skewness is the anticipation

of future events that can affect the stock price (Kenton, 2023). These events, such as earnings

announcements, mergers and acquisitions, product launches, or regulatory decisions, can create

uncertainty and volatility in the market, influencing the demand and supply of options. For

example, if investors expect a positive event that can boost the stock price, they may buy more

call options than put options, increasing the option implied skewness. Conversely, if investors

expect a negative event that can lower the stock price, they may buy more put options than call

options, decreasing the option implied skewness.

Lastly, negative implied skewness signals an undervalued stock. When this stock has low variab-

ility in the skewness and the value of the skewness is negative, the stock is undervalued and will

remain undervalued for an extended period, with its price never converging to the fundamental

value. Conversely, high variability in the option implied skewness suggests that an undervalued

stock would return, within a short time-window, to its fundamental value (Rehman & Vilkov,

2012). The variability in skewness is also linked to arbitrage risk, where high arbitrage risk

implies that a misspricing in the stock persists for a longer period (Wurgler & Zhuravskaya,

2002).

In summary, this extended problem description explores the potential role of variability in

option-implied skewness as a comprehensive and dynamic predictor of stock returns. By ex-

amining how variability in option implied skewness. Explains variations in the cross-section

of stock returns. This research seeks to contribute to a more holistic understanding of the

predictive power embedded in option-derived information and the underlying dynamics.

3 Methodology

This section first introduces the widely used Bakshi, Kapadia and Madan (2003) method (BKM)

for estimating risk-neutral skewness, followed by a definition of a method for measuring vari-

ability in risk-neutral skewness. Thereafter, I introduce a framework for testing the influence

of the variability in risk-neutral skewness, which is based upon the Fama and MacBeth (1973)

factor framework, with extensions.

3.1 Bakshi, Kapadia and Madan Estimators

The BKM is a model-free methodology for estimating risk-neutral moments of an asset return.

I derive a risk neutral skewness estimator based on the BKM approach. In practice a version of
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this approach is adopted by the CBOE, there a shifted version of this estimate is implemented

as SKEW = 100−10×SKEWBKM . In this paper the standard BKM will be used as described

below.

To enhance the discussion on stock return characteristics and option price structures, let the

τ -period return be given by the log return: R ≡ ln[S(t + τ)] − ln[S(t)]. I define the volatility

contract, the cubic contract, and the quartic contracts to have the payoffs as follows:

R2 : volatility contract (V)

R3 : cubic contract (W)

R4 : quartic contract (X).

(1)

Let V ≡ EQ[e
−rτR2], W ≡ EQ[e

−rτR3], and X ≡ EQ[e
−rτR4] represent the fair value of the

respective payoff. Here, EQ[·] represents expectation under the risk-neutral probability. The

risk-neutral measure, denoted as Q, adjusts real-world probabilities to account for investors’

risk preferences in financial markets. Skewness under the risk-neutral measure captures market

expectations of future skewness. Then based on these contracts V, W and X, BKM find the

following estimator of SKEW :

SkewBKM ≡
EQ(R

3)− 3EQ(R)EQ(R
2) + 2E3

Q(R)

(EQ(R2)− E2
Q(R))3/2

=
erτW − 3erτµV + 2µ3

(erτV − µ2)3/2
, (2)

where r represent the continuously compounded risk-free rate for the τ -period. The risk-neutral

expactation of the squared contract (V), the cubed contract (W), the quartic contract (X), and

µ can be calculated as:

V =

∫ ∞

S∗

2(1− ln(K/S∗))

K2
C(K)dK +

∫ S∗

0

2(1 + ln(S∗/K))

K2
P (K)dK, (3)

W =

∫ ∞

S∗

3 ln
(
K
S∗
) (

1− 2 ln
(
K
S∗

))
K2

C(K)dK −
∫ S∗

0

3 ln
(
S∗

K

)
(1 + 2 ln

(
S∗
K

)
)

K2
P (K)dK, (4)

X =

∫ ∞

S∗

4 ln2
(
K
S∗

)
(3− ln

(
K
S∗

)
)

K2
C(K)dK −

∫ S∗

0

4 ln2
(
S∗

K

)
(3 + ln

(
S∗

K

)
)

K2
P (K)dK, (5)

µ = E0 ln

(
S(τ)

S0

)
≈ erτ

(
1− e−rT − V

2
− W

6
− X

24

)
, (6)

where S∗ is an arbitrary stike price that sets the OTM boundary, this is where the delta of a

call (put) option closest to 0.5 (-0.5). Further, C(K) and P(K) represents the price of the OTM

call and put option with strike price K. In the original model derivation in BKM, each contract

(V , W or X) requires the existence of a continuum of options with strike spanning from 0 to

infinity. To approximate the integrals in eqs. (3) to (5), it is common to implement a trapezoidal

approach to discretize and truncate with available strikes (e.g. see Bali and Murray (2013)):
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V ≈
∑
i

2∆Ki

K2
i

(
1− ln

(
Ki

F0

))
Q(Ki), (7)

W ≈
∑ 3∆Ki

K2
i

(
2 ln

(
Ki

F0

)
− ln2

(
Ki

F0

))
Q(Ki), (8)

X ≈
∑
i

4∆Ki

K2
i

(
3 ln2

(
Ki

F0

)
− ln3

(
Ki

F0

))
Q(Ki), (9)

where ∆K1 = K2−K1, ∆Kn = Kn−Kn− 1 and ∆Ki = (Ki+1−Ki−1)/2 for i in {2, ..., N−1},
and the strike price is ordered from low to high. Q(Ki) is the price of an OTM put (call) option

if Ki is smaller (larger) than the forward level F0. That is, S
∗ is chosen to be the forward level

F0 = S0e
(r−q)τ with an estimated dividend yield q. Based on the results of the study done by

Liu and van der Heijden (2016), for the BKM estimate of SKEW it would be sufficient to use

the raw data and not use any interpolation method for estimating the SKEW moment.

3.2 Variability in SKEW

Based on the the option implied skewness measure, I need to define an appropriate measure

for the variability in the skewness. In DeLisle et al. (2021), the variability in implied volatility

spread is measured by the standard deviation of the last 20 days. I expand research into the

behavior and performance of variability in option-implied factors in predicting stock returns. I

believe it is thus appropriate to adopt a similar methodology to that employed by DeLisle et

al. (2021) for standardizing the measurement of variability in option-implied metrics. Thus, as

variability measure I use SKEW STD which is the standard deviation of the SKEW over the

last 20 days.

3.3 Dynamic investigation of SKEW STD

In order to assess the usefulness of considering the variability in option implied skewness for

asset pricing tasks, I employ multiple methods: (i) Fama-French portfolio sorts,(ii) Turnover

analyses and (iii) Fama-French Regression.

Fama-French portfolio sorts

First, I use the Fama-French approach of sorting portfolios. After having obtained the variable

for SKEW STD, a Fama French testing framework will be adapted, where the portfolios will be

sorted into deciles that are double sorted on SKEW and SKEW STD so that I can investigate

the variability. Here the SKEW and SKEW STD will be ranked into 10 deciles or 5 quantile

portfolios, which are sorted from low to high in SKEW or SKEW STD. Then an equally-

weigted portfolio in each (double-)sorted decile (quantile) portfolio will be constructed. Analyses

of these portfolio’s will provide a first view into the relation of SKEW and SKEW STD on

the cross section of returns, it will need to confirm a negative relation between SKEW and

returns, and potentially some directional relation with SKEW STD.
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Turnover

The variability of SKEW , measured by the standard deviation of skew (SKEW STD), serves

as a crucial indicator of the inherent risk structure in assets. The option implied SKEW of an

asset reflects its risk profile, with higher variability suggesting a less stable risk environment.

In theory, as I use option implied metrics, assets with unstable risk profiles are inherently less

predictable, leading to increased risk. In efficient markets, this elevated risk should ideally be

compensated by higher returns to entice investors to hold such assets.

When studying the influence of SKEW variability on asset returns, it is essential to consider

the turnover of stocks within SKEW deciles. Turnover, in this context, refers to the frequency

at which stocks migrate or change skew decile based on their SKEW STD. As I want to

examine if different levels of variability in SKEW leads to different levels of returns, I need

to first examine the turnover based on SKEW STD, since it might be that stocks with high

SKEW STD exhibit more instability in their skew values and are thus prone to more frequent

changes within SKEW deciles. Conversely, an alternative posits that while skew values may

vary significantly around a stable mean, they may exhibit a consistent mean skew over time.

In such a scenario, assets with high SKEW STD may demonstrate stability in their average

skew values but experience significant fluctuations around this mean. Consequently, these assets

may exhibit high SKEW STD despite having relatively stable and predictable mean SKEW

values. Examining turnover within SKEW deciles provides insights into the dynamics of skew

variability and its implications for asset risk and returns.

Fama-French regressions

After having obtained the SKEW and SKEW STD variables for each of the stocks, I perform

a factor regression analysis using the methodology from Fama and MacBeth (1973) and Fama

and French (1992), where I test the significance of the SKEW and SKEW STD variables

combined with other benchmark factors. In order to test these variables, factor-mimicking

portfolio’s are constructed for the SKEW and SKEW STD variable. The SKEW factor-

mimicking portfolio will be constructed by taking a long position in the lowest SKEW stocks

and a short in the highest SKEW stocks (Bali & Murray, 2013). As the hypothesis that is

being tested by this research states that a stock exhibiting high turnover within SKEW deciles

based on the high value of SKEW STD leads to higher returns and quicker realisation of the

undervaluation based on low SKEW values. I construct the SKEW STD factor-mimicking

portfolio by taking a long position in the upper decile SKEW STD and a short position in

the lower SKEW STD decile, this factor-mimicking portfolio is referred to as Model 1. Based

on the results of the turnover section, an extra factor mimicking portfolio is constructed, this

SKEW STD factor-mimicking portfolio is constructed by taking a long position in the high

and low SKEW STD decile portfolios and a short position in the middle decile portfolio, this

factor is referred to as Model 2. The regression then looks like:

Ri −Rf = αi + βi,Mkt(RMkt −Rf ) + βi,SMBSMB+ βi,HMLHML

+ βi,SKEWSKEW+ βi,SKEW STDSKEW STD+ εi.
(10)
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here standard regressional tests are used to see if the Bi,θ carry significance for

θ ∈ {MKT,SMB,HML,SKEW,SKEW STD}.

To validate the earlier findings of a negative slope in the alpha on SKEW sorted decile portfolios

(Bali & Murray, 2013) and to get a preliminary understanding of the dynamics of SKEW STD,

I will also regress the factors on equally weighted decile and quantile portfolios, sorted on SKEW

and SKEW STD as:

Rquantileportfolio −Rf = ai + βi,Mkt(RMkt −Rf ) + βi,SMBSMB+ βi,HMLHML. (11)

Here Rquantileportfolio refers to the sorted portfolio returns.

Testing Model Specification

In the assessment of specification of asset pricing models, the Hansen-Jagannathan Distance

(HJD) plays a pivotal role. It quantifies the dissimilarity between theoretical and market return

distributions, offering insights into model alignment and potential discrepancies. The HJD

is computed as the square root of the Jensen-Shannon divergence between risk-neutral and

actual return distributions (Hansen & Jagannathan, 1997; Kan & Robotti, 2008; Barillas, Kan,

Robotti & Shanken, 2020). This divergence metric serves to quantify the discrepancy between

the market’s observed returns and the theoretical expectations under the absence of arbitrage

(Hansen & Jagannathan, 1997; Kan & Robotti, 2008; Barillas et al., 2020). Mathematically, it

is represented as:

δ =

[
min
γ

(E[Re
t ]− Cov[Rt, Ft]γ)

′V [Rt]
−1(E[Re

t ]− Cov[Rt, Ft]γ)

]1/2
, (12)

where E[Re
t ] denotes the excess returns, E[Re

t ]− Cov[Rt, Ft]γ denotes pricing errors of a linear

SDF as described in eq. (13) , V [Rt] = E[ReRe′] is the variance matrix of returns, and γ are

the model parameters. The optimal γ minimize the pricing errors, yielding the minimum HJD.

Additionally, it is crucial to conduct a specification test to assess whether the HJD is signi-

ficantly different from zero, indicating potential model misspecification. The specification test

evaluates the null hypothesis H0 : δ = 0, suggesting that the model is correctly specified. The

test statistic is typically scaled by the square root of sample size T , denoted as Tδ, and its

asymptotic distribution under the null hypothesis is well understood. For linear factor models,

under the null hypothesis, the asymptotic distribution of Tδ follows a chi-squared distribution.

This distribution provides easy methodology for calculating p-values and assessment of the sig-

nificance of the HJD. I use robust and consistent estimations of variances to ensure accurate

inference, especially in the presence of model misspecification. These procedures help mitigate

potential biases and provide reliable insights into the adequacy of the asset pricing model.

In assessing equality between HJDs of two models, nested or non-nested, statistical tests are

conducted. I will test the difference in distance between the CAPM, the Fama-French 3 factor
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model and the Fama-French with inclusion of the SKEW and SKEW STD. Thus the last

model nests the Fama-French 3 factor model. For nested models, testing H0 : δ21 = δ22 involves

verifying if parameters corresponding to the additional factors in the second model are zero.

Robust estimators and consistent estimations of variances are imperative for accurate inference,

especially in the presence of model misspecification (Kan & Robotti, 2008).

3.4 Stochastic Discount Factor (SDF) loadings

If the law of one price holds, then there exists a Stochastic Discount Factor (SDF) M pricing all

excess returns, i.e., E [MtR
e
t ] = 0. In order to test if a factor model including the new factors

prices the excess returns. I test the loadings of the test factors to this SDF. A factor model for

the SDF is represented as:

Mt = 1− γ′ (Ft − E [Ft]) . (13)

Here, the mean is normalized to one since I work with excess returns. The estimators imple-

mented in Fama and MacBeth (1973) propose to find the candidate factor SDF such that:

γ = arg min
g∈RK

E [RtMt]
′E [RtMt] . (14)

The expression for γ is given by:

γ =
(
Cov [Rt, Ft]

′Cov [Rt, Ft]
)−1

Cov [Rt, Ft]
′E [Rt] . (15)

Additionally, the estimators proposed by Gospodinov, Kan, Robotti and Shanken (2014) aim to

find the candidate factor SDF that minimizes the pricing errors, under a weighted L2-distance:

γ = arg min
g∈RK

E [RtMt]
′Var[R]−1E [RtMt] . (16)

Where γ is given by:

γ =
(
Cov [Rt, Ft]

′Var [Rt]
−1Cov [Rt, Ft]

)−1
Cov [Rt, Ft]

′Var [Rt]
−1E [Rt] . (17)

These methodologies are employed to estimate the SDF loadings, providing insights into the risk

structures of assets and their implications for investment strategies and portfolio management.

Moreover, the analyses provides insights in the importance of the newly tested factors.

Double LASSO

Feng, Giglio and Xiu (2020) propose an alternative approach of testing the significance of new

asset pricing factors. They propose a Two-Pass Regression with Double-Selection LASSO. The

first selection searches for factors in a large set of factors (ht) whose covariances with returns

are useful for explaining the cross section of expected returns. Then, a selection step is added

to search for factors in ht potentially missed from the first step but that, if omitted, would

induce a large omitted variable bias. Factors omitted from both stages of the double-selection

procedure must have a small SDF loading and have covariances that correlate only mildly in the
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cross section with the covariance between factors of interest (gt) and the returns, these factors

can thus be excluded with minimal omitted factor bias ex ante when estimating and testing

λg. The second step entails an OLS regression, wherein average returns are regressed against

the covariances between asset returns and the newly introduced factors, alongside the control

factors identified in the initial stage. The model starts with a linear specification for the SDF:

mt = γ−1
0 − γ−1

0 λT
v vt = γ−1

0 (1− λT
g gt − λT

hht), (18)

where γ0 is the zero-beta rate, gt is a d×1 vector of factors to be tested, and ht is a p×1 vector

of potentially confounding factors. Without loss of generality, both gt and ht are de-meaned. λg

and λh are d× 1 and p× 1 vectors of parameters, respectively. Here λg and λh are refered to as

the SDF loadings of the factors gt and ht. In addition, I observe a n× 1 vector rt of test asset

returns. I assume expected returns satisfy:

E (Rt) = ιnγ0 + Cvλv = ιnγ0 + Cgλg + Chλh, (19)

where ιn is a n× 1 vector of 1s, Ca = Cov (rt, at), for a = g, h or v. Furthermore, I assume the

dynamics of Rt follow a standard linear factor model:

Rt = E(Rt) + βggt + βhht + ut, (20)

where βg and βh are n×d and n×p factor-loading matrices, µt is a n×1 vector of idiosyncratic

components with E(µt) = 0 and Cov(µt, vt) = 0.

Based on this model the two-pass estimation proceeds as follows:

(1) Two-Pass Variable Selection

(1.a) Run a cross-sectional LASSO regression of average returns on sample covariances between

factors in ht and returns:

min
γ,λ

{
n−1

∥∥∥r̄ − ιnγ − Ĉhλ
∥∥∥2 + τ0n

−1∥λ∥1
}
, (21)

where Ĉh = Ĉov (rt, ht) = T−1R̄H̄⊤. This step selects among the factors in ht, those that best

explain the cross section of expected returns. Denote
{
Î1

}
as the set of indices corresponding

to the selected factors in this step.

(1.b) For each factor j in gt (with j = 1, · · · , d ), run a cross-sectional LASSO regression of

Ĉg,,j (the covariance between returns and the j th factor of gt ) on Ĉh (the covariance between

returns and all factors ht) :

min
ξj ,χj,·

{
n−1

∥∥∥(Ĉg,·,j − ιnξj − Ĉhχ
⊤
j,·

)∥∥∥2 + τjn
−1
∥∥∥χ⊤

j,·

∥∥∥
1

}
. (22)

This step identifies factors whose exposures are highly correlated to the exposures to gt in the

cross-section. This is the crucial second step in the double-selection algorithm, that searches
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for factors that may be missed by the first step but that may still induce large omitted variable

bias in the estimation of λg if omitted, due to their covariance properties. Denote
{
Î2,j

}
as the

set of indices corresponding to the selected factors in the j th regression, and Î2 =
⋃d

j=1 Î2,j .

(2) Post-selection Estimation Run an OLS cross-sectional regression using covariances between

the selected factors from both steps and returns:(
γ̂0, λ̂g, λ̂h

)
= arg min

γ0,λg ,λh

{∥∥∥r̄ − ιnγ0 − Ĉgλg − Ĉhλh

∥∥∥2 : λh,j = 0, ∀j /∈ Î = Î1
⋃

Î2

}
.

(23)

The LASSO estimator, like other dimension-reduction methods, relies on a tuning parameter,

the penalty parameter τ0. This parameter is chosen to balance the trade-off between model

fit and model sparsity. The robustness of the LASSO selection, in terms of which factors are

chosen, is evaluated by exploring how it depends on τ0.

A key question in this evaluation is determining a reasonable range of values for τ0 to consider.

To address this, a procedure is proposed where the tuning parameter is selected through 5-

fold cross-validation (CV). Since these simulations are non-deterministic, the tuning-parameter-

selection procedure is run multiple times to explore robustness across different sets of simulations.

The approach gives a more robust estimate of the SDF loadings of the tested factors, by bal-

ancing sparsity and accuracy. In the case of a well specified model, these estimates of the SDF

loading should then present the pricing dynamics of the factor model.

3.5 Risk Premium Estimation

To understand the compensations for risk factor exposures, I also test for K factors the factor

risk premia λ ∈ RK . They are obtained by the second stage regression of the expected asset

returns on regression coefficients as:

E[Rt] = βλ+ ϵ, (24)

where ϵ ∈ RN is the vector of pricing errors for N test assets. Risk premia estimation is

performed using the methodology proposed by Kan, Robotti, and Shanken (Kan, Robotti &

Shanken, 2013), which accounts for potential model misspecification. The factor risk premia

estimates obtained through this approach are given by:

λFRP =
(
β′Wβ

)−1
β′WE [Rt] , (25)

where W is a symmetric and positive definite weighting matrix. The tradeable risk premia are

calculated as the negative covariance of factors F with the stochastic discount factor (SDF)

projection on asset returns, i.e., the minimum variance SDF. The formula used for computing

the tradable factor risk premia is:

λTFRP = Cov[F,R] ∗Var[R]−1 ∗ E[R]. (26)
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The heteroskedasticity and autocorrelation robust standard errors are computed using the Newey

and West (1994) plug-in procedure to select the number of relevant lags. This methodology

ensures robust estimation of tradeable risk premia while considering potential model misspe-

cification and accounting for heteroskedasticity and autocorrelation in the data.

Tradeable risk premia of risk factors represent compensation investors receive for bearing spe-

cific risks through tradable financial instruments, while risk premia of risk factors encapsulate

the underlying sources of risk driving asset returns, informing portfolio construction and risk

management decisions. Understanding the distinction is crucial for designing efficient portfolios,

managing risks effectively, and developing investment strategies aimed at capturing long-term

sources of return.

Oracle Estimator

This section discusses the Oracle tradable risk premium estimators proposed by Quaini, Trojani

and Yuan (2023). This estimator is designed to create a testing framework for introducing a

new factor into a pricing model.

First, let Rt := (R1t, ..., RNt)
′ and Ft := (F1t, ..., FKt)

′ be a vector of excess returns and a

vector of candidate asset pricing factors, where K < N , observed at times t = 1, ..., T . The joint

vector Yt := (R′
t, F

′
t) has moments partitioned as:

E[Yi] =

(
µR

µF

)
, Cov[Yi, Yj ] =

[
VR VRF

VFR VF

]
. (27)

Given the assumption of a positive definite VR, the tradable risk premium of vector Ft is defined

by:

λi := −Cov[Ft,M
i
t ] = VFRV

−1
R µR, (28)

where M i
t is the SDF projection on asset returns as the minimum variance SDF. This can be

estimated as:

λ̂i = V̂FRV̂
−1
R µ̂R. (29)

The sample mean and sample covariance matrix estimators are given by:

µ̂ := (µ̂R
′, µ̂F

′)′ :=
1

T

T∑
t=1

Yt, (30)

and

V̂ :=

[
V̂R

ˆVRF

ˆVFR V̂F

]
:=

1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)T . (31)

Quaini et al. (2023) show that, unlike other risk premia estimators, the Oracle estimator is

consistent and has standard asymptotic normal behavior even in the presence of useless factors.

Borrowing the terminology from high dimensional statistics (see, e.g., Quaini et al. (2023)),
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I define an Oracle tradable risk premium estimator as an estimator satisfying two key proper-

ties. First, it consistently selects in finite samples factors that are not weak or useless. Second,

it implies an efficient asymptotic distribution for the estimated risk premia of the selected factors.

Thanks to the convenient asymptotic properties of sample tradable risk premia, Oracle tradable

risk premium estimators can be built with a simple approach. Denote by

ρ̂ := [ρ̂1, . . . , ρ̂K ] := Ĉor
[
Rt,F

′
t

]
, (32)

the N × K matrix of sample correlations between returns and factors. I propose an Oracle

tradable risk premium estimator built by means of a convenient minimum distance correction

of sample tradable risk premia, in which estimated risk premia of factors having small sample

correlations with all asset returns are shrank using a suitable data-driven penalty.

Definition 2. Oracle Estimator Given a penalty parameter τT > 0, consider the penal-

ized estimator defined by:

λ̃
i
:=
(
λ̃i
1, . . . , λ̄

i
K

)′
:= argmin

λ∈RK

{
1

2

∥∥∥λ̂i − λ
∥∥∥2
2
+ τT

K∑
k=1

|λk|
∥ρ̂k∥

2
2

}
. (33)

Oracle Estimator is defined by a penalized minimum Euclidean distance correction of sample

tradable risk premia and belongs to the class of proximal estimators studied. The optimization

problem in equation (33) is solvable in closed-form and gives rise to the soft-thresholding formula:

λ̃i
k = sign

(
λ̂i
k

)
max

{∣∣∣λ̂i
k

∣∣∣− τT

∥ρ̂k∥22
, 0

}
; k = 1, . . .K. (34)

Therefore, estimator λ̃
i
implies a zero estimated risk premium for all factors associated with a

sample tradable risk premium λ̂i
k that is smaller in absolute value than scaled penalty parameter

τT / ∥ρ̂k∥
2
2.

I next show that an appropriate choice of tuning parameter τT in equation (33) implies the

Oracle property. To see this, let

S := {k ∈ {1, . . . ,K} : V RFk
̸= 0} , (35)

be the active set indexing components of factor vector F t = (F1t, . . . , FKt)
′ that are neither

useless nor weak. Accordingly, for any vector x ∈ RK I denote by xS the subvector consisting

only of components of x with index in S. Finally, the estimated active set implied by estimator

λ
i
is denoted by

Š :=
{
k ∈ {1, . . . ,K} : λ̌i

k ̸= 0
}
. (36)

Using this notation, I characterize in the asymptotic distribution of estimator (33) and its Oracle

property.
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Under general assumptions on the DGP of returns and factors, the Oracle tradable risk premia

estimator is consistent, achieves oracle factor selection (i.e., the probability that the set of

nonzero Oracle estimates coincides with the true set of strong factors tends to 1 as the sample

size grows) and on the set of strong factors it has a standard Gaussian behavior even in the

presence of useless and weak factors. Weak factors are modeled as having a vanishing correlation

with asset returns.

Thus I observe that the proximal tradable risk premium estimator possesses the characteristics

of an Oracle estimator. The set of factors identified as neither useless nor weak is accurately

selected with a probability tending to one as the sample size increases. Moreover, the asymptotic

distribution of the estimated risk premia for these selected factors coincides with that of an Or-

acle sample tradable risk premium estimator, which possesses a priori knowledge of the useless

or weak factors. This property enables the Oracle estimator to provide valid inferences for the

tradable risk premia of factors demonstrating minimal correlation with returns. Alternatively, it

facilitates a consistent initial screening of factors weakly correlated with returns, paving the way

for the subsequent application of standard cross-sectional inference methodologies to determine

the risk premia of all other factors within an asset pricing model.

Remarkably, while the shrinkage of sample tradable risk premia dictated by the soft-thresholding

formula (34) becomes asymptotically negligible for factors identified as neither useless nor weak,

there exists the potential for finite-sample bias. This bias can be mitigated by computing

sample risk premia exclusively for factors selected within finite samples by our proximal es-

timator. Notably, under the assumptions outlined, the resulting ”relaxed” proximal estimator

aligns asymptotically with the original proximal estimator.

3.6 Arbitrage Risk

Finding in Rehman and Vilkov (2012) of more variability into SKEW if the risk of arbitrage

is higher, this suggest research into the relation between option implied skewness variability,

measured as SKEW STD and arbitrage risk. Given a relation, arbitrage risk of a security

might subsume the results of SKEW STD, which would explain the nature of a relationship

between SKEW STD and the cross-section of returns.

Here I need to use the methodology for Arbitrage Risk as Wurgler and Zhuravskaya (2002)

describe it. For each stock in our sample, I select, for each month, the three closest substitute

stocks matched on industry, size and market-to-book ratio Wurgler and Zhuravskaya (2002), I

choose the industry classification suggested by Fama and French (1993). To select the closest

stocks in terms of size and market-to-book ratios, I compute the sum of the absolute percentage

difference of size and market-to-book ratio of each firm with respect to each of the other firms

that lie in the same industry. The three firms for which the percentage difference is the smallest

are then selected as substitute firms. In order to measure Arbitrage Risk every month, I take
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monthly returns for the five preceding years and estimate the following regression for stock i.

Rit −Rft = β1i(RSUB1it −Rft) + β2i(RSUB2it −Rft) + β3i(RSUB3it −Rft) (37)

where RSUB1it, RSUB2it and RSUB3it denote the returns on three industry, size and market-

to-book matched substitute stocks, while Rft denotes the risk-free rate. Arbitrage Risk for

stock i is then the variance of the residuals from this regression. The higher the variance, the

poorer are the substitutes in explaining the returns of stock i and the higher the risk of arbitrage.

Then the relation between SKEW STD andArbitrage Risk is measured by regressing SKEW STD

and arbitrage onto each other. This is important in understanding SKEW variability, and it

could imply that the higher the Arbitrage Risk the higher the speed with which prices in

securities are corrected based on under or overpricing based on the SKEW level.

3.7 Mean-reverting SKEW

In the preceding findings I demonstrate that SKEW STD enhances the predictability of returns

based on SKEW. It is conceivable that options displaying a significant autoregressive component

in SKEW may also exhibit a sizable SKEW STD. For instance, an option with a implied SKEW

possessing a highly negative AR(1) coefficient is likely to display pronounced reversal charac-

teristics, potentially resulting in a large standard deviation as SKEW fluctuates frequently. To

investigate the hypothesis that the autoregressive nature of SKEW influences our earlier find-

ings, I initially estimate the AR(1) coefficient for each securities SKEW on a monthly basis

using daily data. Subsequently, akin to the portfolio analyses conducted in the portfolio sorts

section, I categorize securities into portfolios based on their SKEW AR(1) coefficient and SKEW

level. The sorting process is performed both sequentially and independently. For each portfolio,

I conduct regressions of daily portfolio returns on the Fama-French 3-factor model and estimate

the alphas. A lack of any discernible pattern in the long-short portfolio alphas can than suggests

that the SKEW AR(1) Coefficient is not a driving factor behind the robust outcomes observed

in the SKEW STD analyses.

3.8 Model Identification

To ensure the robustness and validity of our model estimation, I conduct a thorough examina-

tion of the identification of model parameters. This step is crucial to confirm that there is no

ambiguity in the estimation process, thereby enhancing the reliability of our results. For this

purpose, I adopt the Beta Rank Test proposed by Chen and Fang (2019).

The Beta Rank Test is a statistical procedure designed to assess the identification of model

parameters in econometric models. It evaluates whether the model parameters can be uniquely

determined based on the available data, thereby ensuring the absence of multicollinearity or

other issues that may lead to ambiguous parameter estimates.
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4 Data

4.1 Screening

In order to accurately estimate BKM estimates I need data of options on securities with a wide

range of strike prices. Therefore, I seek a group of stocks that are widely traded. I use the op-

tions with underlying securities traded in the S&P 500 and the index itself, the list of securities

is based on the securities within the S&P 500 on the 11th of March 2024.

Option Data on S&P 500 stocks will be coming from OptionMetrics. Not all securities have

traded Options in the OptionMetrics database. I use 496 out of the 504 traded securities that

are traded within the S&P 500, for which data is available on OptionMetrics. The data will

span from 01-01-2001 to 28-02-2023, and will have a daily frequency.

There are three primary rationales behind our utilization of daily data to derive weekly es-

timates for our variables (Bakshi et al., 2003). Firstly, employing daily data helps mitigate the

influence of outliers, as it permits the calculation of moments on a daily basis, subsequently

allowing for the averaging of these moments over the course of the calendar week. Secondly,

the accurate estimation of the slope of the weekly smile for individual equity options necessit-

ates daily data throughout the week to ensure an adequate number of observations for smile

estimation. Thirdly, it has been established that daily risk-neutral index skews demonstrate a

seasonal pattern, particularly on Mondays, as documented by Harvey and Siddique (1999), thus

averaging over a week is a necessity.

In line with the recommendations from Bakshi et al. (2003) to maintain consistency with existing

literature, a rigorous data screening process was implemented, incorporating both qualitative

and quantitative criteria. This involved the elimination of bid-ask option pairs with missing

quotes or zero bids, alongside the removal of option prices that violated arbitrage restrictions.

These restrictions are defined by conditions

CA ≥ max[0, S −K,S − PV (K)− PV (D)],

CE ≥ max[0, S − PV (K)− PV (D)],

PA ≥ max[0,K − S, PV (K) + PV (D)− S],

PE ≥ max[0, PV (K) + PV (D)− S],

(38)

where K is the strike price, S denotes the current stock price, and PVD[D] and PVD[K] rep-

resent the present value functions for dividends and strike price, respectively and the lower case

A or E denotes American or European options respectively.

Furthermore, to account for potential fluctuations in market activity, options with less than

9 days and more than 60 days to expiration were excluded from consideration. Finally, in ac-

cordance with Theorem 1 of Bakshi et al. (2003), only out-of-the-money (OTM) calls and puts

were retained. As some stocks might pay dividends, the out-of-the-money (OTM) condition for
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Call options is having a ∆ > 0.5, and for Put options, it is having a ∆ < −0.5.

Based on the results of Aschakulporn and Zhang (2022), I will only use stocks with at least

4 options, and a maximum ∆K = 50. In their simulation study this leads to maximum absolute

errors of the BKM skewness estimator of approximately 0.065. This difference should not in-

terfere with the strategy proposed by this research, and it makes sure that there is still enough

data on a wide variety of stocks available.

Although each series for skewness and kurtosis pertain to a constant τ , in practice, it is not

possible to strictly observe these, as options are seldom issued daily with a constant maturity.

Therefore, in our empirical exercises, if an OTM option has remaining days to expiration of

9 to 60 days, it is grouped and deemed to have the same time to maturity. Thus only one

classifications of smiles and option portfolios are investigated.

In order to estimate the F0 contract in the BKM estimators, the risk-free rate and dividend

yield are to be obtained. The dividend yield will be estimated based on Dividend rates provided

by OptionMetrics. The Fama-French 5 factors, the Moment Factor and the risk-free rate will

obtained from the Keneth-French database.

4.2 De-listed securities

To address the inclusion of de-listed or newly listed securities within the database, a decision

is made to retain their existing status. This reflects the inherent characteristics of financial

markets. When the frequency of the rebalancing strategy exceeds a daily cadence, securities

lacking available data between the current and subsequent rebalancing dates are excluded from

the portfolio. This proactive measure ensures that securities without pertinent data are not

retained within the portfolio, aligning with the objective of maintaining data integrity and

reliability in the analysis.

4.3 Missing Values

For option data, missing key values such as strike price, option price, or time to maturity are

deemed critical for research purposes. As such, any option lacking these vital attributes is

removed from the dataset. This decision was made to mitigate potential noise introduced by

imputation methods, ensuring the quality and accuracy of the data analyzed.

However, dividend yield rates within the option data were treated differently. Given that a

missing dividend yield rate typically indicates a lack of dividend data for a particular stock. It

is assumed that stocks with missing dividend yield rates do not pay dividends. Therefore, miss-

ing dividend yield rates were imputed with 0 values. This assumption aligns with the common

practice in financial analysis, where a missing dividend yield rate is interpreted as the absence

of dividend payments for the respective stock.

Prior to 2008, the dataset exhibited significant missing data in the BKM skew column, coupled
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with a relatively small number of securities (Appendix 2). To stabilize the dataset and improve

the robustness of subsequent analyses, all data preceding 2008 was removed. This action res-

ulted in a more consistent number of securities and a proportion of missing values, leading to

greater stability in the construction of factor mimicking portfolios and subsequent analysis.

Following the removal of pre-2008 data, the dataset still contained missing values, albeit at

reduced levels. In particular, the factors contained approximately 0.4% missing values, while

the returns had around 0.049% missing values. Given that regression analysis in matrix notation

does not permit missing values, imputation methods were employed.

For the factors, a 5-Nearest-Neighbors approach was utilized to impute missing values, lever-

aging the similarity of neighboring data points. Conversely, for the returns, a time-average

imputation method was adopted. This approach involved imputing missing return values on

specific dates with the average of observed returns for that date. These imputation strategies

were chosen to maintain the integrity of the dataset and facilitate subsequent analyses while

minimizing potential biases introduced by missing data.

5 Results

5.1 Turnover of SKEW STD within the SKEW decile portfolios

In order to demonstrate that high SKEW STD securities migrate more in SKEW decile port-

folios than low SKEW STD securities, as hypothysized. In Table 1 I show the average turnover

for decile portfolios sorted on SKEW STD, where the turnover is based on migration of SKEW

decile portfolios. It shows that the turnover is higher for High SKEW STD portfolios than

Low SKEW STD portfolios at a significance level of 1%. It further shows that this difference is

even larger when comparing the Low and High SKEW STD decile portfolios with the middle

SKEW STD decile portfolios. These results show high SKEW STD securities migrate across

SKEW deciles more often than low SKEW STD firms and supports the motivation of the

analyses.
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Table 1: Turnover SKEW decile portfolios, sorted on SKEW STD

Decile Average Turnover (%)

Low 53.89%
Decile 2 38.46%
Decile 3 32.31%
Decile 4 29.67%
Decile 5 29.00%
Decile 6 29.46%
Decile 7 31.52%
Decile 8 35.41%
Decile 9 43.18%
High 64.68%

High - Low 10.79%
P-value 0.00

The average percentage of firms that
change SKEW decile portfolios from
one period to the next for “All” firms or
after sorting firms into deciles based on
SKEW STD. Significance level of High
- Low is calculated using a standard
t-test on comparing the mean of two
series.

5.2 Portfolio Regression Analysis

In order to confirm the premium found on low SKEW securities by Bali and Murray (2013),

Jurczenko et al. (2002), Schneider et al. (2020). I show in table 2 the alphas that result from a

three-factor regression on the equally-weighted decile portfolios based on the SKEW level. The

portfolios are rebalanced monthly. The table shows a clear decrease in intercept as the Skew

increases and the Low minus High SKEW portfolio also shows a significant positive alpha,

confirming that alpha is higher on low SKEW security portfolios.
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Table 2: Coefficients of the Three-Factor Model

Alpha Mkt-RF SMB HML

Low 0.000234 *** 0.977 *** 0.136 *** 0.163 ***
Decile 2 0.000101 *** 1.001 *** 0.129 *** 0.203 ***
Decile 3 0.000227 *** 1.017 *** 0.144 *** 0.208 ***
Decile 4 0.000019 *** 1.014 *** 0.152 *** 0.209 ***
Decile 5 0.000142 *** 1.021 *** 0.111 *** 0.191 ***
Decile 6 0.000278 *** 0.998 *** 0.087 *** 0.165 ***
Decile 7 0.000090 *** 1.013 *** 0.140 *** 0.171 ***
Decile 8 0.000162 *** 1.011 *** 0.113 *** 0.162 ***
Decile 9 0.000252 *** 0.997 *** 0.111 *** 0.132 ***
High 0.000036 *** 1.019 *** 0.103 *** 0.204 ***
Low - High 0.000198 *** -0.042 *** 0.033 *** -0.041 ***

Regression coefficients and their statistical significance levels of
the 3-factor model on equally weighted SKEW decile portfolios.
Results are presented for daily stock returns. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 3 shows the five-factor regression coefficients, where the difference between model 1

and model 2 is the construction of the SKEW STD factor mimicking portfolio. Based on the

results in Table 1, I construct the model 1 SKEW STD factor mimicking portfolio by taking a

long position in the high SKEW STD portfolio and a short position in the low SKEW STD

portfolio. In Model 2, I construct the factor mimicking portfolio by a long position in the high

SKEW STD decile and in the low SKEW STD decile and a short position in the middle 2

SKEW STD portfolios, as these appear to have the lowest SKEW migration (Table 1). Here

one can observe that, opposed to earlier research done, the SKEW factor mimicking portfolio

has a significant negative coefficient in both models so adding SKEW STD leads to different

results for the SKEW factor. The regression analysis also shows for both types of factor con-

struction of SKEW STD a significant positive coefficient. Further showcasing that the factor

seems to covary with returns of the assets.

Table 3: Fama-Macbeth Regression

Variable Model 1 Model 2

Intercept 0.0001 *** 0.0001 ***
Mkt-RF 1.0015 *** 0.8565 ***
SMB 0.1281 *** 0.1047 ***
HML 0.1815 *** 0.1442 ***
Skew −0.0201 *** −0.0263 ***
Skew STD 0.0657 *** 0.1531 ***

The coefficients of the intercept and each factor when regressed on daily returns. Skew is a
factor mimicking portfolio constructed by taking a long position in low skew securities and a
short position in high skew securities. SKEW STD is a factor mimicking portfolio that takes
in model 1 a long position in high skew std securities and a short in low skew std securities.
In Model 2, it takes a long position in the high and low skew std securities, and a short
position in the middle skew std securities.
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Table 4 shows alpha, which results from regressing the equally-weighted portfolio returns in

a double sorted quantile on the three-factor model. The high-low SKEW portfolio yields a

three-factor alpha, which is almost in all cases not significantly different from 0. Eventhough

not significant at a 5% level, the table below supports the hypothesis tested in this paper, it shows

that high SKEW STD improves the SKEW low minus high portfolio alpha. Table 4 confirms

the hypothesis that SKEW STD can enhance the predictability of the SKEW factor for returns.

The dependent sort indicates that the alpha is higher for the low-minus-high SKEW portfolio

within the highest SKEW STD quantile compared to the lowest SKEW STD quantile. Se-

quential sorting ensures there is a similar number of stocks in each portfolio, but it could result in

smaller variation of SKEW levels across SKEW quintiles. Therefore, for robustness purposes,

I repeat the previous analyses using independent sorting of SKEW levels and SKEW STD.

The results confirm that the low minus high SKEW portfolio yields a higher alpha within the

highest SKEW STD quantile.

Table 4: Alpha Three-Factor Table with P-Values for Low-High Skew Quantile Differences

SKEW STD

SKEW Low 2 3 4 High

Panel A: Sequential Sorts

Low 0.000134 0.000153* 0.000128 0.000146* 0.000256***
2 0.000313** 0.000034 0.000240*** 0.000046 -0.000004
3 0.000141 0.000329** 0.000117 0.000091 0.000452*
4 0.000216** 0.000066 0.000023 0.000210*** 0.000068

High 0.000249** 0.000212** 0.000180 0.000037 0.000166*

Low-High -0.000115 -0.000059 -0.000051 0.000109 0.000090

Panel B: Independent Sorts

Low 0.000151*** 0.000084 0.000277*** 0.000072 0.000401*
2 0.000235* 0.000158** 0.000055 -0.000005 -0.000050
3 0.000217* 0.000198** 0.000075 0.000280*** 0.000382
4 0.000196 0.000078 0.000116 0.000145** 0.000056

High -0.000018 0.000707** 0.000423** 0.000162** 0.000100*

Low-High 0.000169*** -0.000624*** -0.000147 -0.000090 0.000301

Three-factor alphas of double sorted portfolios, on daily returns. Panel A has double
sorted data where the first sort is SKEW and the second is SKEW STD. Panel
B shows independent sorts on both SKEW and SKEW STD. *, **, *** indicate
significance at 10%, 5%, and 1% level, respectively.
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Risk Premia

In order to argue if the newly obtained factors are significantly priced, I use three approaches

to check if the Risk Premia are significanlty priced.(i) The first one is the standard two-pass

approach as outlined in Fama and MacBeth (1973)(FRP). (ii) Secondly, I adopt the tradeable

factor risk premium approach (TFRP), (iii) and the Oracle Tradeable (Oracle TFRP) approach

as outlined in Quaini et al. (2023).

Figure 1 shows the results for the first three approaches. Note that Model 1 uses the construc-

tion of the SKEW STD factor mimicking portfolio, by taking a long position in the highest

decile SKEW STD portfolio and a short position in the lowest SKEW STD decile portfolio.

In Model 2 the factor mimicking portfolio is constructed by taking a long position in the highest

and lowest SKEW STD portfolio’s and taking a short position in the middle SKEW STD

portfolio.

The Figure shows that the Mkt − RF factor is consistently and significantly priced in every

model, where the HML factor is not significanlty priced in either approach and has a Oracle

TFRP of 0, suggesting that it is a useless or weak factor. The SMB has a significant positive

risk premium in the FRP and TFRP approach, but also yields a 0 Oracle TFRP. With the

inclusion of a SKEW STD factor, the performance of a SKEW factor seems weak in all res-

ults, it yields an FRP and TFRP that is small and not significant at a 5% level and it has a 0

Oracle TFRP in both models. The SKEW STD factor as constructed in Model 1 also yields

a small and insignificant FRP and TFRP, it also has a 0 Oracle TFRP. However, the Model 2

SKEW STD factor yields more promising results, the FRP and teh TFRP are both positive

and significant at a 5% level, the Oracle TFRP is also non-zero and significant, suggesting it is

not a weak or useless factor.

Figure 1: Risk premia using FRP, TFRP and the Oracle Estimator, with their 95% confidence
bands.
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Hansen-Jagannathan Distance

In order to check if the addition of the SKEW and SKEW STD to the Fama-French 3-factor

model, causes the model to price the returns. I test the Hansen-Jagannathan (HJ) misspecific-

ation distance (Kan & Robotti, 2008). Where a well specified model would give a distance of 0.

Figure 2 shows the squared HJ distance for Model 1, Model 2 and the Fama-French 3-Factors

and the 95% confidence intervals. It shows that none of the models is well specified as all the

distances are significantly larger than 0. A piecewise comparison of these distances also suggest

that the models have similar specification, as the HJ distance values and 95% confidence bounds

are very similar. The values for Model 2 are somewhat lower, but do not suggest any significant

difference.

Figure 2: The figure displays the HJ misspecification distance along with 95% confidence intervals
for Model 1, Model 2, and Fama-French 3-factors.

Stochastic Discount Factor Coefficients

If the law of one price holds, then there is a Stochastic Discount Factor (SDF) M pricing all

excess returns, i.e., E[MtRt] = 0. A factor model for the SDF is of the form, where the mean is

normalized to one since I work with excess returns. In this research that would mean that the

SDF coefficient of the new factors would have a non-zero coefficients which are signficant at a

5% level. Figure 3 shows the SDF coefficients and their 95% confidence interval. It shows that

in Model 1, the Fama-French 3-factors have significant coefficients that are all non-zero, here

the SKEW parameter has a non-zero coefficient which is nearly significant at a 5% level. The

SKEW STD factor however is not significantly different from 0 in both model 1 and 2.

In Model 2, one can observe that there is a clear interaction between the Mkt − RF and

SKEW STD factor, in this model the Mkt − RF appears to be negative but not significant

and the SKEW STD factor appears to be more positive than in Model 1 but it also has a
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larger standard error. This suggests that the SKEW STD has a strong relationship with the

average market excess returns. Overall, the figure shows, that the SDF loadings of the new

SKEW STD factors are non-zero but not significant at a 5% level. In the Appendix 3, I show

that the SKEW factor is significant at a 10% confidence interval. Using the Feng et al. (2020)

3-step approach, I obtain similar insignificant results as above (Appendix 3).

Figure 3: SDF Loadings of the five factors in Model 1 and Model 2, and there 95% confidence
bands.

Based on these findings, and considering the model’s lack of adequate specification, I conclude

that the factors do not effectively price the assets under consideration. Therefore, further re-

finement and reassessment of the model’s structure and variables may be warranted to improve

its explanatory power and predictive accuracy.
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Model Identification

At last, I perform a check on the identification of the model parameters to confirm that there is

no ambiguity in the estimation of the model parameters. For this purpose, I adopt the Chen and

Fang (2019) Beta Rank Test. This test is particularly insightful as it assesses the presence of

a reduced rank in the matrix of regression loadings for test asset excess returns on risk factors.

Intuitively, a reduced rank in this matrix suggests linear dependencies among the risk factors,

indicating potential multicollinearity issues in the model estimation.

The Beta Rank Test examines the structure of the covariance matrix of the estimated coef-

ficients. When the beta rank is reduced, it directly implies that the covariance matrix of the

estimated coefficients is reduced as well. This reduction in the covariance matrix can render it

non-invertible. This would cause problems as the methodology used in this paper assumes an

invertible covariance matrix.

Table 5 presents the results for Models 1 and 2 obtained from the Chen-Fang (2019) Beta

Rank Test. The statistically significant results with p-values close to zero indicate rejection of

the null hypothesis of a reduced rank, suggesting that the models are well-specified and there

is no ambiguity in the estimation of the model parameters, it also means that the covariance

matrix is of full rank and thus invertible.

Table 5: Chen-Fang (2019) Beta Rank Test Results

Test Model 1 Model 2

Statistic 1457.039 1454.691
p-value 0 0

The Chen-Fang (2019) Beta
Rank Test is used to assess
model identification. It tests
the null hypothesis of reduced
rank in the matrix of regression
loadings for test asset excess re-
turns on risk factors.

5.3 Arbitrage Risk

Based on the methodology outlined in Rehman and Vilkov (2012) and Wurgler and Zhuravskaya

(2002), I aimed to investigate the relationship between option implied skewness variability

(SKEW STD) and Arbitrage Risk in the financial markets. The rationale behind this in-

quiry stemmed from the hypothesis that higher arbitrage risk might lead to increased variability

in skewness, reflecting the dynamic nature of market corrections and pricing inefficiencies.

To operationalizeArbitrage Risk, I adopt the methodology proposed byWurgler and Zhuravskaya

(2002). For each stock in our sample, I identified three substitute stocks every month, matched

on industry, size, and market-to-book ratio. The selection process involved computing the sum
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of absolute percentage differences in size and market-to-book ratio for each stock within the

same industry. The three stocks with the smallest percentage differences are chosen as substi-

tutes. Arbitrage risk is then measured by estimating a regression model for each stock, using

the returns of the selected substitute stocks and the risk-free rate. The variance of the residuals

from this regression represents the level of arbitrage risk, with higher variances indicating poorer

substitutes in explaining the returns of the focal stock, hence higher arbitrage risk.

To stabilize the variance and ensure homoscedasticity in the regression model, a log transform-

ation is applied to the SKEW STD variable. This transformation helps mitigate the effects of

heteroscedasticity, where the variance of the dependent variable changes across different levels

of the independent variable. Additionally, the Box-Cox (Box & Cox, 1964) transformation is

utilized on the Arbitrage Risk variable to normalize its distribution and address potential skew-

ness or non-normality. By transforming the dependent variable, I aim to meet the assumption

of normality in the residuals of the regression model, which is crucial for obtaining reliable para-

meter estimates and valid statistical inference. In appendix 5 I further show that the regression

is not spurious.

Upon conducting the regression analysis, the results, as summarized in Table 6, reveal that the

coefficient of SKEW STD is not statistically significant. The low R-squared and F-statistic val-

ues further suggest that the variability in option implied skewness does not significantly explain

the variation in Arbitrage Risk and vice versa. These findings indicate that, contrary to my

initial hypothesis, there is no discernible relationship between SKEW STD and Arbitrage Risk

based on the selected sample and methodology.

In conclusion, the absence of a significant relationship between SKEW STD andArbitrage Risk

implies that high variability in option implied skewness does not stem from Arbitrage Risk.

Table 6: GLS Regression Results

Variable Coefficient Standard Error P-value

Constant -4.4249 0.010 < 0.001
log SKEW STD -0.0090 0.005 0.082

R-squared 0.002
Adj. R-squared 0.001
F-statistic 3.015
Prob (F-statistic) 0.827

GLS regression of Arbitrage Risk on log SKEW STD with a con-
stant. Standard errors are reported in the second column. The F-
statistic and its associated probability are provided in the last two
rows.
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5.4 Mean Reverting SKEW

I find, as illustrated in Table 7, a weakly significant relationship between the SKEW STD and

AR(1) coefficients. The regression results show that the coefficient for the SKEW STD vari-

able is statistically significant but has a very small coefficient compared to the intercept value.

Additionally, the adjusted R-squared value is very low at 0.021, suggesting that the AR(1) coef-

ficient does not really contribute significantly to explaining the variability in SKEW STD. In

appendix 6 you find the analysis on the assumptions of the regression.

Table 7: OLS Regression Results

Variable Coefficient Standard Error P-value

Constant 0.9415 0.003 0.000
SKEW STD −0.0013 7.5× 10−4 0.000

R-squared 0.021
Adj. R-squared 0.021
F-statistic 5791
Prob (F-statistic) 0.000

Regression results of regressing SKEW STD on AR(1) coefficients.
Standard Errors are shown in scientific notation. R-squared, F-
statistic and Prob (F-statistic) are provided as additional information
from the regression results.

Moreover, the results from Table 8 present the alphas of double sorted portfolios based on

both SKEW and the AR(1) coefficient. The alphas for the portfolios of Low-High SKEW are

similar across all the SKEW AR(1) Coefficient quintiles in both Panels A and B. The absence

of any discernable pattern in the Low-High portfolio alphas indicates that the SKEW AR(1)

Coefficient is not driving the results found in the SKEW STD analyses
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Table 8: Alpha Three-Factor Table with P-Values for Low-High Skew Quantile Differences (AR(1)
coefficients (value x 10−4))

AR(1) Coefficient (value x 10−4)

SKEW Low 2 3 4 High

Panel A: Sequential Sorts

Low -0.07 0.98 2.49*** -0.45 -0.67
2 2.22** 2.49 0.44 0.34 0.91
3 1.78** 0.23 2.60* 2.05** 1.84**
4 2.09*** 1.14 1.59 1.96** 0.96

High 2.09*** 1.87** 3.22*** 1.24 2.52***

Low-High -2.83*** -0.89 -0.73 -1.69 -3.20**

Panel B: Independent Sorts

Low -0.23 1.87** 1.71** 2.77*** 2.03***
2 1.49* 0.17 1.44 1.27 1.78**
3 1.88** 0.68 2.13 0.15 4.64*
4 0.07 -0.18 1.30 2.34** 1.30

High -0.07 0.82 1.77** 1.89** 2.01*

Low-High -0.15 1.05 -0.06 0.87 0.02

Three-factor alphas of double sorted portfolios, on daily returns.
Panel A has double sorted data where the first sort is SKEW
and the second is the AR(1) coefficient. Panel B shows inde-
pendent sorts on both SKEW and the AR(1) coefficient. *, **,
*** indicate significance at 10%, 5%, and 1% level, respectively.
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5.5 Transaction costs

In understanding the implications of our findings, it’s crucial to consider transaction costs, which

can significantly impact the practical implementation of investment strategies. To evaluate this

aspect, an examination of the migrations of firms across deciles based on their SKEW and

SKEW STD values was conducted. Table 9 provides insights into the average percentage of

firms transitioning between SKEW or SKEW STD decile portfolios from one period to the

next, with portfolios rebalanced at monthly frequencies.

It’s noteworthy that higher turnover rates are observed for extremity portfolios, particularly

those associated with high SKEW and SKEW STD values. This implies that if these strategies

were to be employed in practice, the transaction costs incurred during portfolio rebalancing could

be quite substantial. Moreover, the findings of higher alpha in stocks with high SKEW STD

and high SKEW values also comes with the caveat of potentially higher transaction costs as-

sociated with frequent rebalancing of the strategy.

However, it’s essential to acknowledge that the earlier results presented did not incorporate

these transaction costs. Hence, future studies should delve deeper into turnover dynamics and

explore ways to mitigate transaction costs while still capitalizing on the alpha opportunities

presented by SKEW and SKEW STD factors. By optimizing trading strategies and consid-

ering transaction costs in portfolio construction, practitioners can enhance the efficiency and

effectiveness of their investment approaches.

Table 9: Turnover of Decile Portfolios for SKEW and SKEW STD

Decile SKEW Turnover (%) SKEW STD Turnover (%)

Low 46.75% 54.15%
Decile 2 31.72% 37.06%
Decile 3 26.71% 31.51%
Decile 4 24.43% 29.26%
Decile 5 23.58% 28.72%
Decile 6 23.69% 29.27%
Decile 7 24.57% 31.13%
Decile 8 27.13% 34.67%
Decile 9 32.65% 42.52%
High 50.51% 63.79%

Note: The table presents the average percentage of firms that change
SKEW or SKEW STD decile portfolios from one period to the next
for ”All” firms. Portfolios are rebalanced at monthly frequencies.
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6 Conclusion

This study aimed to explore the predictive capacity of option implied skewness variability con-

cerning stock returns. Employing a multifaceted approach involving portfolio sorts, regression

analysis, risk premia assessment, examination of Stochastic Discount Factor (SDF) coefficients,

model misspecification and identification tests, I have gained substantial insights into the inter-

play between option implied skewness and stock returns.

The findings present robust evidence supporting the pivotal role of option-implied skewness

variability, as captured by SKEW STD, in explaining the cross-section of stock returns. While

previous studies have predominantly focused on option implied skewness (SKEW ) in isolation,

my investigation underscores the significance of incorporating skewness variability as an addi-

tional determinant in models explaining the cross-section of returns.

The portfolio sorts analysis revealed notable turnover within decile portfolios corresponding

to fluctuations in SKEW or SKEW STD values, suggesting potential predictability associ-

ated with skewness variability. Additionally, regression analysis showed a discernible increase in

the intercept as skewness variability (SKEW STD) increases, with the low-minus-high SKEW

portfolio displaying a significant positive alpha.

Moreover, my assessment of risk premia through diverse methodologies highlighted the aug-

menting effect of skewness variability on the predictive power of return models. While the

market risk factor (Mkt−RF ) retained consistent and significant pricing, the incorporation of

skewness variability in Model 2 yielded a substantial and positive risk premium, accentuating

its influence on returns. Using the Oracle Estimator, which discards useless and weak factors,

I conclude that the skewness variability factor is neither useless nor weak, implying that the

factor holds significant explanatory power.

As I still work with low dimensional models, I find that the models are all misspecified, meaning

that the model does not price all the assets. These findings are confirmed by the non-significant

SDF loadings, which confirms that indeed using these models the law of one price does not hold

and the factors do not linearly price the assets. However it is interesting to observe a pronounced

interaction between the market risk factor and skewness variability, proposing further research

into the dynamics of the skewness variability.

In summary, the research adds new understanding to the current body of knowledge by high-

lighting the importance of considering variation in option implied skewness when predicting

stock returns. By incorporating SKEW STD alongside the traditional SKEW measure in

models predicting returns, investors may improve the precision of their forecasts and make wiser

investment choices. Future studies could focus on refining existing models and exploring addi-

tional variability factors to boost predictive accuracy in financial markets. It could also focus

on the dynamics between option implied skewness variability and market returns.

29



References

Almeida, C. & Garcia, R. (2017). Economic implications of nonlinear pricing kernels. Manage-

ment Science, 63 (10), 3361–3380.

Amihud, Y. & Mendelson, H. (1986). Asset prices and the bid-ask spread. Journal of financial

economics, 17 (2), 223–249.

Ang, A., Hodrick, R. J., Xing, Y. & Zhang, X. (2009). High idiosyncratic volatility and low

returns: International and further us evidence. Journal of Financial Economics, 91 (1),

1–23.

Aschakulporn, P. & Zhang, J. E. (2022). Bakshi, kapadia, and madan (2003) risk-neutral

moment estimators: A gram–charlier density approach. Review of Derivatives Research,

25 (3), 233–281.

Bakshi, G., Kapadia, N. & Madan, D. (2003). Stock return characteristics, skew laws, and the

differential pricing of individual equity options. The Review of Financial Studies, 16 (1),

101–143.

Bali, T. G., Cakici, N., Chabi-Yo, F. & Murray, S. (2017). The risk-neutral distribution of

option returns. Georgetown McDonough School of Business Research Paper(2902209).

Bali, T. G. & Hovakimian, G. (2011). Maxing out: Stocks as lotteries and the cross-section of

expected returns. Journal of Financial Economics, 99 (2), 427–446.

Bali, T. G. & Murray, S. (2013). Does risk-neutral skewness predict the cross section of equity

option portfolio returns? The Journal of Financial and Quantitative Analysis, 48 (4),

1145–1171. doi: 10.1017/S0022109013000410

Barillas, F., Kan, R., Robotti, C. & Shanken, J. (2020). The cross-section of risks in the covered

interest parity condition. Journal of Financial Economics, 138 (3), 730–759.

Bekaert, G. & Hoerova, M. (2014). Understanding aggregate risk: The capm with countercyclical

idiosyncratic risk. Journal of Political Economy , 122 (5), 1093–1140.

Bintara, R., Wahyudi, S. M. et al. (2019). Analysis of fundamental factors on stock price. Inter-

national Journal of Academic Research in Accounting, Finance and Management Sciences,

9 (4), 169–181.

Box, G. E. & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical

Society: Series B (Methodological), 26 (2), 211–252.

Bressan, S. & Weissensteiner, A. (2023). Option-implied skewness and the value of financial

intermediaries. Journal of Financial Services Research, 64 (2), 207–229.

Britten-Jones, M. & Neuberger, A. (2000). Option prices, implied price processes, and stochastic

volatility. The Journal of Finance, 55 (2), 839–866.

30



Chabi-Yo, F. (2012). Pricing kernels with stochastic skewness and volatility risk. Management

Science, 58 (3), 624–640.

Chen, X. & Fang, X. (2019). An improved bootstrap-based test of asset pricing models. Journal

of Financial Econometrics, 17 (4), 521–549.

Chordia, T., Lin, T.-C. & Xiang, V. (2021). Risk-neutral skewness, informed trading, and

the cross section of stock returns. Journal of Financial and Quantitative Analysis, 56 (5),

1713–1737.

Cremers, M. & Weinbaum, D. (2010a). Active portfolio management and portfolio construction.

Journal of Portfolio Management , 36 (3), 121–130.

Cremers, M. & Weinbaum, D. (2010b). Deviations from put-call parity and stock return predict-

ability. The Journal of Financial and Quantitative Analysis, 45 (2), 335–367. Retrieved

2024-01-24, from http://www.jstor.org/stable/27801488

DeLisle, R. J., Diavatopoulos, D., Fodor, A. & Kassa, H. (2021). Variation in option im-

plied volatility spread and future stock returns. The Quarterly Review of Economics and

Finance, 83 , 152–160. doi: 10.1016/j.qref.2021.12.004

Durbin, J. & Watson, G. M. (1950). Testing for serial correlation in least squares regression. i.

Biometrika, 37 (3/4), 409–428.

Fama, E. F. & French, K. R. (1992). The cross-section of expected stock returns. the Journal

of Finance, 47 (2), 427–465.

Fama, E. F. & French, K. R. (1993). Common risk factors in the returns on stocks and bonds.

Journal of financial economics, 33 (1), 3–56.

Fama, E. F. & MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal

of political economy , 81 (3), 607–636.

Fassas, A. P. & Siriopoulos, C. (2021). Implied volatility and stock returns: A review of the

literature. International Review of Financial Analysis, 74 , 101681.

Feng, L., Giglio, S. & Xiu, D. (2020). Taming the factor zoo: A test of new factors. The Review

of Financial Studies, 33 (5), 2231–2285.

Gibbons, M. R., Ross, S. A. & Shanken, J. (1989). A test of the efficiency of a given portfolio.

Econometrica: Journal of the Econometric Society , 1121–1152.

Gonzalez-Perez, M. T. (2015). Stock return predictability and the implied volatility spread.

Journal of Banking & Finance, 58 , 221–234.

Gospodinov, N., Kan, R., Robotti, C. & Shanken, J. (2014). A new specification test for the

validity of the stochastic discount factor using hansen-jagannathan bounds. The Journal

of Finance, 69 (6), 2737–2784.

Hansen, L. P. & Jagannathan, R. (1997). Assessing specification errors in stochastic discount

factor models. The Journal of Finance, 52 (2), 557–590.

Harvey, C. R. & Siddique, A. (1999). Autoregressive conditional skewness. Journal of financial

and quantitative analysis, 34 (4), 465–487.

Harvey, C. R. & Siddique, A. (2000). Conditional skewness in asset pricing

tests. The Journal of Finance, 55 (3), 1263–1295. Retrieved 2024-01-24, from

http://www.jstor.org/stable/222452

Jegadeesh, N. & Titman, S. (1993). Returns to buying winners and selling losers: Implications

31



for stock market efficiency. The Journal of finance, 48 (1), 65–91.

Jurczenko, E., Maillet, B. & Negrea, B. (2002). Skewness and kurtosis implied by option prices:

a second comment.

Kan, R. & Robotti, C. (2008). Model comparison using the hansen-jagannathan distance.

Journal of Financial Econometrics, 6 (1), 123–170.

Kan, R. & Robotti, C. (2010). On the hansen-jagannathan distance with a no-arbitrage con-

straint. Journal of Business & Economic Statistics, 28 (2), 312–328.

Kan, R., Robotti, C. & Shanken, J. (2013). Pricing model performance and the two-pass

cross-sectional regression methodology. The Journal of Finance, 68 (6), 2617–2649.

Kenton, W. (2023). Volatility skew: How it can signal market sentiment.

https://www.investopedia.com/terms/v/volatility-skew.asptoc-why-would-volatility-skew.

(Updated September 06, 2023. Reviewed by Gordon Scott. Fact checked by Kirsten Rohrs

Schmitt.)

Le Courtois, O. & Xu, X. (2023). Efficient portfolios and extreme risks: a pareto–dirichlet

approach. Annals of Operations Research, 1–32.

Liu, Z. F. & van der Heijden, T. (2016). Model-free risk-neutral moments and proxies. Thijs,

Model-Free Risk-Neutral Moments and Proxies (July 4, 2016).

Mittal, S. K. & Srivastava, N. (2021). Mean-variance-skewness portfolio optimization under

uncertain environment using improved genetic algorithm. Artificial Intelligence Review ,

1–22.

Newey, W. K. & West, K. D. (1994). Automatic lag selection in covariance matrix estimation.

Review of Economic Studies, 61 (4), 631–653.

Ni, Z. & Wang, L. (2023). The predictability of skewness risk premium on stock returns:

Evidence from chinese market. International Review of Economics and Finance, 87 , 576–

594. doi: 10.1016/j.iref.2023.05.010

Park, Y.-H. (2013). Volatility of volatility and tail risk premiums. Fin-

ance and Economics Discussion Series, 2013-542 . Retrieved from

https://www.federalreserve.gov/pubs/feds/2013/201354/201354pap.pdf

Quaini, A., Trojani, F. & Yuan, M. (2023). Tradable factor risk premia and oracle tests of asset

pricing models. Swiss Finance Institute Research Paper(23-81).

Rehman, Z. & Vilkov, G. (2012). Risk-neutral skewness: Return predictability and its sources.

Available at SSRN 1301648 .

Schneider, P. & Trojani, F. (2015). Fear trading.

(Retrieved from https://ssrn.com/abstract=1994454)

Schneider, P., Wagner, C. & Zechner, J. (2020). Low-risk anomalies? The Journal of Finance,

75 (5), 2673–2718.

Ulrich, M. & Walther, S. (2020). Option-implied information: What’s the vol surface got to do

with it? Review of Derivatives Research, 23 (3), 323–355.

White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test

for heteroskedasticity. Econometrica: Journal of the Econometric Society , 48 (4), 817–838.

Wurgler, J. & Zhuravskaya, E. (2002). Does arbitrage flatten demand curves for stocks? The

Journal of Business, 75 (4), 583–608.

32



1 Appendix A: missing securities of the S&P 500 in the Option-

Metrics database

The securities below have no available data on traded options in the OptionMetrics database:

NVR, VLTO, KVUE, BRK.B, FI, RVTY, WHR, EG, BF.B, DAY.

2 Appendix B: Data Summary

Table 10 displays for each year the number of recorded days in that year, in order to check

for daycount conventions and irragulaties. It also shows the signficant increase in number of

securities recorded in the data. The second last column shows the proportion of NA values in

the SKEW column of the created dataset. A NA values appears, if there is not sufficient data

available on certain securities in order too accurately calculate the SKEW as descriped in the

paper. As the factor mimicking portfolio’s are based on decile portfolio’s of the securities sorted

on the SKEW factor, I also know the size of the average decile portolio. Which is calculated as

Size = UniqueSecurities ∗ (1−NAProportion/100)/10. (39)

One can observe that the decile size is quickly increasing and becomes somewhat stable after

2008.
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Table 10: Summary of Data Characteristics by Year

Year Trading Days Unique Securities NA Proportion (%) Average decile Size

2000 250 336 17.98 27.56
2001 248 338 18.73 27.47
2002 252 361 20.04 28.87
2003 252 367 21.28 28.89
2004 252 381 21.13 30.05
2005 252 387 18.66 31.48
2006 251 403 16.05 33.83
2007 251 416 13.05 36.17
2008 253 422 1.52 41.56
2009 252 426 1.93 41.78
2010 252 432 3.04 41.89
2011 252 444 5.12 42.13
2012 250 448 7.06 41.64
2013 252 460 0.29 45.87
2014 252 466 0.65 46.30
2015 252 474 2.25 46.33
2016 252 478 3.22 46.26
2017 251 481 3.95 46.20
2018 251 484 0.50 48.16
2019 252 490 0.69 48.66
2020 253 495 1.37 48.82
2021 252 495 0.35 49.33
2022 251 495 0.66 49.17
2023 39 496 0.89 49.16

This table displays the number of trading days, unique securities, NA proportion in the SKEW
column, and average decile size by year in the dataset.
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3 Appendix C: SDF Coefficients

In order to test for weak significance in the SKEW factor I also test the factors SDF coefficient

with a 10% confidence interval. Figure 4 displays the results and shows that the SKEW factor

has become significant in both models.

Figure 4: SDF Loadings of the five factors in Model 1 and Model 2, and there 90% confidence
bands.

By using a factor selection approach as outlined in Feng et al. (2020) where a double lasso

is utilized to select strong factors, the third step is a OLS of average returns on the covariances

between asset returns and the new factors. I show in table 11 the SDF coefficients and there

standard error of the three-step procedure proposed by Feng et al. (2020). It shows that when

using the Fama-French 3-factors (Mkt-Rf, HML and SMB) as control factors, the SKEW and

SKEW STD, in both Model 1 and 2, yield non-zero but non-significant SDF loadings. Sug-

gesting that the factors do not have an SDF loading and thus do not covary with the risk-neutral

density.

Table 11: Feng, Giglio and Xiu SDF factor selection

Factor SKEW SKEW STD Model 1 SKEW STD Model 2

Coefficient -18.819 1.571 1.146
Standard Errors 180.934 17.745 23.898

The SDF coefficients for the FGX model, including standard errors. Using Mkt-
RF, SMB and HML as control factors.
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4 Appendix D: Robustness

To assess the robustness of the risk premia associated with the second derived factor, SKEW STD,

I evaluate its performance within the context of established factor-based pricing models. Spe-

cifically, I examine its behavior within the frameworks of the Fama-French 5-factor model and

the Carhart 4-factor model, both of which represent extensions of the seminal Fama-French

3-factor model.

The Fama-French 5-factor model expands upon the Fama-French 3-factor model by incorpor-

ating two additional factors: profitability (RMW) and investment (CMA). In my analysis, I

augment the Fama-French 5-factor model with the inclusion of the SKEW and SKEW STD

factors. The SKEW STD factor is constructed by taking a long position in the highest and

lowest deciles of SKEW STD and a short position in the middle decile portfolio. Remarkably,

the results obtained align closely with those presented in the earlier sections. Figure 5 illustrates

the risk premia derived within this extended Fama-French 5-factor framework.

Figure 5: Risk Premia for the Fama-French 5-Factor Model

Similarly, I conduct a parallel examination within the Carhart 4-factor model context, which

builds upon the Fama-French 3-factor model by adding a momentum (MOM) factor. Once

more, the analysis reveals consistent results for the risk premia associated with both SKEW

and SKEW STD.

This rigorous evaluation underscores the stability and robustness of the risk premia estimates

across various factor-based pricing frameworks, affirming the reliability of the findings presented

herein.
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Figure 6: Risk Premia for the Carhart 4-Factor Model

5 Appendix E: Arbitrage Risk residuals

The regression analysis conducted to investigate the relationship between option implied skew-

ness variability (SKEW STD) and Arbitrage Risk produced results consistent with the un-

derlying assumptions of linear regression.

Firstly, the Q-Q plot of the residuals (see Figure 7) exhibits a pattern closely aligned with

the diagonal line, indicating that the residuals follow a normal distribution. This suggests that

the assumption of normality of residuals is not violated, providing confidence in the robustness

of the regression analysis.

Figure 7: Q-Q Plot of Residuals

Secondly, the scatter plot of residuals against fitted values (see Figure 8) displays a random
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scatter pattern without any discernible trends or patterns. The spread of the residuals appears

constant across different levels of the independent variable, indicating that the assumption of

homoscedasticity is met. Therefore, the variance of the residuals remains consistent, validating

the reliability of the regression results. These diagnostic plots reassure that the regression model

Figure 8: Scatter Plot of Residuals vs Fitted Values

is not spurious and provides a valid representation of the relationship between SKEW STD

and Arbitrage Risk in the financial markets.

The Durbin-Watson (Durbin & Watson, 1950) in 6 with a test statistic of 1.245 suggests the

absence of significant autocorrelation in the residuals. With a value close to 2, the residuals

exhibit no apparent pattern of autocorrelation, supporting the assumption of independence of

observations.

To ensure for homoscedasticity, I use robust residuals employing the Huber-White (White, 1980)

sandwich estimator. This approach enhances the robustness of the regression analysis, particu-

larly in the presence of non-constant variance in the residuals.

6 Appendix F: Mean reversion regression

The regression analysis conducted to investigate the relationship between option implied skew-

ness variability (SKEW STD) and the AR(1) Coefficient produced results consistent with

the underlying assumptions of linear regression. To manage outliers, I applied Winsorization,

capping extreme values at two standard deviations from the mean.

The Q-Q plot of the residuals (see Figure 9) exhibits a pattern closely aligned with the di-

agonal line, indicating that the residuals follow a normal distribution. This suggests that the

assumption of normality of residuals is not violated, providing confidence in the robustness of

the regression analysis.

The Durbin-Watson test (Durbin & Watson, 1950) in 6 with a test statistic of 1.922 suggests
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Figure 9: Q-Q Plot of Residuals

the absence of significant autocorrelation in the residuals. With a value close to 2, the residuals

exhibit no apparent pattern of autocorrelation, supporting the assumption of independence of

observations.

To ensure for homoscedasticity, I use robust residuals employing the Huber-White (White, 1980)

sandwich estimator. This approach enhances the robustness of the regression analysis, particu-

larly in the presence of non-constant variance in the residuals.
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