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Abstract

This research extends the existing sample selection and treatment effects (SSTE) model of Voss-

meyer (2016) to estimate Heterogeneous Treatment Effects (HTEs), using Bayesian Additive

Regression Trees (BART). In contrast to the existing SSTE model, selection is indicated by a

binary variable instead of nonzero values of a censored continuous variable, resulting in a model

new to the existing literature. Therefore, a novel estimation procedure is constructed, based on

a Random-Walk Metropolis-Hasting algorithm, which addresses the identification issues in com-

bination with binary variables. The resulting SSTE-BART model is also extended to include

soft trees and sparse splitting rules. The model is evaluated using an extensive simulation study,

along with an application to the National Supported Work (NSW) Demonstration dataset. Both

analyses reveal that implementation of soft trees and sparse splitting rules increase performance

of the SSTE-BART model, and can accurately estimate the covariance matrix. Moreover, the

simulation study confirmed the ability of the model to estimate HTEs accurately.
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1 Introduction

Bayesian causal inference is becoming an increasingly popular aspect of modern day scientific

research. Even though much research has been done in this area, it still remains a challenging

task. One popular approach for deriving Bayesian causal inference is through the potential

outcomes framework. In short, within this framework a pre-specified treatment is used to

estimate the potential outcomes of getting the treatment or not. However, only one of those

outcomes can be observed at the same time, the other is called the counterfactual.

Previous research has shown that Bayesian estimation of treatment effects is able to provide

useful insights for causal inference (Heckman et al. 2014; F. Li et al. 2023). However, estimation

of these effects can be biased if there is additional sample selection present (Vossmeyer 2016).

If sample selection is ignored, it can lead to biased results as the sample is not representative

of the population of interest. Therefore, Vossmeyer (2016) proposes a Bayesian model capa-

ble of handling sample selection while still estimating treatment effects. The resulting sample

selection and treatment effects (SSTE) model consists of a system of five equations: one sam-

ple selection function, one treatment selection function, and three response outcomes for the

different potential outcomes (nonselected, selected untreated, selected treated).

Even though the SSTE model is able to estimate treatment effects, the effect of treatment

is assumed to be homogeneous across the entire treated sample. In some cases this could be

true, but in general this assumption is restrictive, as the effect of treatment can significantly

differ between different samples. For that reason, this research will extend the already existing

SSTE model to enable estimation of heterogeneous treatment effects. Furthermore, another

adjustment to the original SSTE model is made for the assumption that the sample and treat-

ment selection variables are continuous. In practice, it is more common to have binary selection

variables, so this will be implemented to develop a more generally applicable model.

To achieve a model structure capable of estimating heterogeneous treatment effects, a well-

established approach for Bayesian causal inference is adopted, called Bayesian Additive Regres-

sion Trees (BART) (Chipman et al. 2010). BART is an ensemble method that uses a summation

of multiple unique regression trees to obtain a flexible model. Regularization is performed on

each tree to ensure that individual effects of a single tree are not overwhelmingly influential

on the model fit. However, standard BART was developed for univariate models, such that an

adjustment is required for a system-of-equations like the SSTE model. This multivariate version

of BART was developed by Chakraborty (2016), and is based on the concept of Seemingly Un-

related Regression (SUR) (Zellner 1962). The resulting model is therefore called SUR-BART,

and will be the foundation of the adjusted SSTE model.
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The specification of binary selection variables adds another level of complexity to the model.

In any model with potential outcomes, there is the problem of a not fully identified covariance

matrix of the model. This follows from the fact that not all equations are observed simulta-

neously, as only one of the potential outcomes is observed at the same time. As a result, the

corresponding covariances are not identified. Approaches to correctly handle these unidentified

elements have been developed (Chib 2007; Chib et al. 2009), and have even been proposed for

the original SSTE model (Vossmeyer 2016). However, it has been stated that these approaches

fail to work for binary selection variables (Chib et al. 2009), but no concrete solutions yet exist.

Therefore, following suggestions from Chib et al. (2009) and P. Li (2011), a novel approach

to sample the covariance matrix is constructed using an adjusted Random-Walk Metropolis-

Hasting algorithm as mentioned in Chib and Greenberg (1998).

Following from this, the aim of this research can be summarized into the following research

question: “Can heterogeneous treatment effects be captured in the sample selection and treatment

effects model, using Bayesian Additive Regression Trees?”

The performance of the constructed model, which is referred to as the SSTE-BART model,

will be evaluated in comparison to other existing models. In addition, some improvements to

the SSTE-BART model will be tested, following the approach to a BART-based selection model

by O’Neill (2024). Specifically, the SSTE-BART model will be tested for the addition of soft

decision trees, as well as sparse splitting rules on the splitting probabilities of the decision rules,

as first introduced by Linero and Yang (2018).

The resulting SSTE-BART model has some advantages over other BART models, as there

is correlation between treatment selection and the potential outcomes, and even between sam-

ple selection and treatment selection. This is not apparent in most other BART treatment

effect estimation methods, where there are often no unobservables that can impact both sample

selection and treatment selection.

For evaluation of the models an extensive simulation study is conducted, following a similar

set-up as executed in Chakraborty (2016). Then the performance of SSTE-BART is also tested

on a real-life dataset, namely the National Supported Work (NSW) Demonstration dataset.

Results from the simulation study reveals the addition of sparse splitting rules significantly

improves performance of the SSTE-BART model. In addition, the SSTE-BART model has

better predictive performance when the underlying data generating process (DGP) is relatively

simple compared to a more complex DGP. Furthermore, the implementation of soft trees in

the SSTE-BART model, referred to as the SSTE-SoftBART model, outperforms the regular

SSTE-BART model. Achieving an average decrease in Mean Squared Error (MSE) across all
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outcome predictions, of approximately 22.4% for the complex DGP, and approximately 6.9%

for the simple DGP. Moreover, runs of the standard versions of BART and SoftBART obtain

predictive results comparable to their SSTE counterparts, indicating there is much room for

improvement in the SSTE-BART models. Subsequently, the SSTE-SoftBART model is able to

estimate the elements of the covariance matrix fairly accurately and with reasonable convergence

properties. Calculations of the treatment effects provide evidence that the SSTE-BART models

are indeed able to accurately estimate heterogeneous treatment effects.

The application of the SSTE-BART model to the NSW dataset provides more evidence that

the SSTE-SoftBART variation has better predictive performance than the standard SSTE-

BART model. However, the models are not able to achieve reasonable MCMC convergence,

making it difficult to extract useful insights.

The remainder of this paper is structured as follows: Section 2 contains an overview of the

literature surrounding this research. This is followed by a detailed discussion of the required

methodology in Section 3. After this, Section 4 introduces the SSTE-BART model, along

with the developed estimation procedure. The setting and results of the simulation study are

provided in Section 5. Afterwards, Section 6 displays the results of the application to the NSW

dataset. Finally, a comprehensive discussion and conclusion of the entire research is provided

in Sections 7 and 8.

2 Literature Review

The following section will provide an overview of the existing literature surrounding the topics

of sample selection and treatment effects models, Bayesian causal inference, Bayesian Additive

Regression Trees, and Markov Chain Monte Carlo (MCMC) sampling algorithms.

At the foundation of a majority of existing research into causal inference, the framework

of potential outcomes can be found. The potential outcomes framework was first proposed

by Neyman (1923), however only in the context of randomized experiments. This was later

extended into the current general framework, widely known as the Rubin Causal Model (RCM)

(Rubin 1974), which can be used for both observational and experimental studies. Under this

framework, causal effects can be defined as “comparisons of potential outcomes under different

treatments on a common set of units” (Rubin 2005).

Using the potential outcomes framework as a basis, models focused on estimating the effect of

treatment were developed. An early adaptation is the classic Roy model (Roy 1951), which has

been the foundation for other developments in the area of treatment effect estimation (Heckman

and Honore 1990; Heckman and Vytlacil 2007). A discussion of the relationship between the
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Roy model and other potential outcomes models can be found in Heckman (2008). Another

novel application of the potential outcomes framework was introduced by Angrist et al. (1996),

where instrumental variables are added to the RCM to identify causal effects.

The majority of these developed methods can be attributed to the Frequentist paradigm,

which have established themselves among the most popular approaches in scientific research.

This is mostly because the alternative, Bayesian methods, were quite difficult to apply in prac-

tice, and require a completely different way of thinking. The disparity between the use of

Frequentist and Bayesian methods was noticed by Heckman et al. (2014), who introduce an ac-

cessible Bayesian approach for calculating treatment parameters. M. Li and Tobias (2014) also

contributed to the growing literature of Bayesian techniques by discussing treatment parameter

estimation through the popular Markov Chain Monte Carlo (MCMC) methods.

One of the major advantages of Bayesian approaches for causal inference is the ability to

incorporate prior knowledge and/or beliefs into the analysis. This can lead to improved accuracy

and efficiency, and results in a better way of handling missing values, as prior information can

be leveraged to impute values. In addition, modeling uncertainty in parameters also becomes

possible when taking a Bayesian approach (Beck and Katafygiotis 1998).

As a result, research into Bayesian inference for treatment effect estimation has greatly risen

in popularity. Vijverberg (1993) was motivated by the fact that in treatment effect models, the

counterfactual is never observed. A model was proposed based on the joint distribution of the

potential outcomes, where the counterfactuals are actually sampled from a posterior distribu-

tion. Conversely, Chib (2007) presented a Bayesian framework without the joint distribution of

the potential outcomes. This approach does not require simulating the counterfactuals, which

leads to less complex computations and easier prior specifications.

While classic estimation methods of sample selection were already established in the Frequen-

tist literature (Gronau 1974; Heckman 1976), Bayesian frameworks were still underrepresented.

However, since then more and more Bayesian methods for sample selection have been developed

and empirically tested (Omori 2007; Chib et al. 2009; Van Hasselt 2011).

A consensus was reached in the literature that the sample selection and treatment effect

estimation problems share a close affinity (Manning et al. 1987; Leung and Yu 1996). Winship

and Mare (1992) was an early adopter of this notion and proposed an approach capable of joining

the two methods. Following this, Lee (2012) introduces a nonparametric method for sample

selection and treatment effect analysis, hosting several advantages over the usual matching

methods. Alternatively, Huber (2014) presents a parametric estimation method, capable of

identifying treatment effects under sample selection, calling it a double selection problem.
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Within the Bayesian paradigm, a recent paper introducing a model for this double selection

problem was Vossmeyer (2016). Even though the model was initially made for a specific applica-

tion in the financial sector, it is stated that it is not limited to such settings. Vossmeyer (2016)

extends the techniques on sample selection proposed by Chib (2007) and Chib et al. (2009),

and goes into great depth to design a computationally efficient estimation algorithm, capable of

jointly estimating sample selection and treatment effects. This results in the Sample Selection

and Treatment Effects (SSTE) model. One shortcoming of the SSTE model, is that it assumes

homogeneous treatment effects for every observation in the treated sample. This is potentially

restrictive, as the treatment effects might be heterogeneous across the treated sample.

Heterogeneity in treatment effects has been studied before, for example in Hill (2011) where

a Bayesian nonparametric modeling procedure is developed, or in Green and Kern (2012) where

heterogeneous treatment effects in survey experiments are modeled. More recently, the Causal

Forest algorithm was introduced, which is also capable of estimating heterogeneous treatment

effects (Wager and Athey 2018). However, in current literature there exists very few research

into heterogeneous treatment effects in combination with sample selection. This makes any

research into this subject very relevant, and is the reason why it is the focus of this paper.

To try and achieve useful insights for this topic, this research will extend and try to improve

the framework proposed by Vossmeyer (2016) to capture heterogeneous treatment effects. This

is done by replacing the linear structure of the original model specification with Bayesian Ad-

ditive Regression Trees (BART) (Chipman et al. 2010). BART is an ensemble method using

regression trees and is able to provide robust estimates of complex structures in data. Since

its introduction, BART has established itself as one of the most effective and reliable methods

in the field of causal inference (Hill et al. 2020). Notably, BART is also applied in the context

of heterogeneity of treatment effects (Hill 2011; Green and Kern 2012). Replacing the linear

structure of a model with BART has been proven to be successful before, like for instrumental

variable models (McCulloch et al. 2021; Spanbauer and Pan 2022). Furthermore, the sample

and treatment selection variables are binary instead of censored continuous. Additionally, the

response variables for the potential outcomes are assumed to be continuous and unbounded,

instead of censored like in Vossmeyer (2016). These statements make a convincing argument to

try and improve the original model while also estimating heterogeneous treatment effects.

An issue that arises with the use of BART, is that it is originally made for univariate

models, and the sample selection and treatment effects model consists of a system of equations.

Therefore, a BART-based approach specifically made for multivariate systems of equations will

be used, called Seemingly Unrelated Regression BART (SUR-BART) (Chakraborty 2016). SUR-
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BART uses the concept of Seemingly Unrelated Regression by Zellner (1962), which is based

on the assumption that because different responses are extracted from the same individual,

they have a high chance of being related through an underlying process. Hence, this research

incorporates SUR-BART to ensure the correlation in responses is modeled appropriately.

Due to the size of the parameter space resulting from this model, it is common practice to

estimate the model using MCMC methods (Vossmeyer 2016; Chakraborty 2016). Conversely, as

a result of the added assumption of binary selection variables to the SSTE model, the developed

estimation procedure for the covariance matrix by Vossmeyer (2016) can not be used. For fully

identified covariance matrices, estimation approaches exist that can deal with such element-wise

restrictions (Chan and Jeliazkov 2009). There are even some papers that construct methods

which are able to estimate covariances for two selection mechanisms (P. Li 2011; Ding 2014).

However, the combination of unidentified elements and binary response variables results in

complications. This is further confirmed in Chib et al. (2009), where it is suggested that

for this combination, a Metropolis-Hasting algorithm like Chib and Greenberg (1998) should be

used. Hence, an adjusted version of the Metropolis-Hasting algorithm from Chib and Greenberg

(1998) will be incorporated in the MCMC estimation procedure. Another option could have

been the Parameter-Expanded Metropolis-Hasting (PX-MH) algorithm, developed by Zhang

et al. (2015). This algorithm is able to estimate the covariance matrix for a mix of binary and

continuous variables, while also being able to handle missing values. However, implementation

of the PX-MH algorithm for this model brings additional complications, therefore it is not used

in this research. The implemented tree sampler for the BART-based algorithms is not required

to change much, such that a similar estimation procedure as in Chakraborty (2016) can be used.

Summarizing, this research adds to the already existing literature in multiple aspects.

Firstly, the already existing SSTE model is adjusted by replacing the linear structure of the

model with BART. This alteration brings more insights in, and stresses the importance of, the

joint estimation of sample selection and treatment effects. Alongside of this, the possibility to

now estimate heterogeneous treatment effects is a relevant contribution to the area of sample

selection. Furthermore, the additional restriction of binary response variables results in the

construction of a novel approach for the covariance matrix sampling procedure. Since there

is no concrete existing method for this scenario, this research provides information towards a

better understanding of such sampling procedures. Lastly, any research into making Bayesian

causal inference more accessible is relevant, as it has proven itself to be more effective in certain

scenarios. Ultimately, this research will hopefully add to the understanding of Bayesian causal

inference in the area of sample selection and treatment effects.
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3 Methodology

This section will contain a detailed discussion of the methodological aspects of this research.

First, the original Sample Selection and Treatment Effects model by Vossmeyer (2016) will be

provided to illustrate the general framework of the model. After this, a brief explanation of the

concept of Bayesian Additive Regression Trees (BART) will be provided, to build the foundation

for the Seemingly Unrelated Regression BART (SUR-BART) algorithm. This also includes the

required prior specifications, as well as a brief mention of the necessary MCMC sampler.

3.1 Original model by Vossmeyer (2016)

The foundation for this research is provided by the framework proposed by Vossmeyer (2016),

so its theoretical background will be discussed next. The main idea of the framework is that, in

the presence of sample selection and treatment selection, potentially on unobservables, both of

these aspects need to be modeled simultaneously. If sample selection is ignored and analysis is

done on only the selected sample, inference will be based on a non-representative sample of the

population of interest, which leads to specification errors (Vossmeyer 2016). Figure 1 displays

a graphical representation of the resulting model. It is important to note, that it is unusual

in sample selection models, that the non-selected sample is observed, which makes the SSTE

model quite unique. Nevertheless, there exists many settings in which the model can be applied,

such as the banking context discussed in Vossmeyer (2016), where the performance of a bank

is evaluated based on an application for financial assistance or not. Moreover, models in which

the non-selected sample is not observed can still be formulated into an SSTE model, through a

combination of the Heckman and Roy selection models.

Figure 1: Multivariate treatment effect model in the presence of sample selection (Vossmeyer 2016)
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The representation shows the two selection mechanisms: one for selection into the sample

(sample selection), and one for the treatment assignment (treatment selection). Three potential

outcomes can be extracted as a result: nonselected, selected untreated, and selected treated.

This graphical structure can be translated into a system of equations, shown below.

Selection mechanism : y∗i1 = x
′
i1β1 + εi1 (1)

Treatment selection : y∗i2 = x
′
i2β2 + εi2 (2)

Selected untreated sample : y∗i3 = (x
′
i3 yi1)β3 + εi3 (3)

Selected treated sample : y∗i4 = (x
′
i4 yi1 yi2)β4 + εi4 (4)

Nonselected sample : y∗i5 = x
′
i5β5 + εi5 (5)

The model contains two definitions for the dependent variable, namely y∗
i = (y∗i1, y

∗
i2, y

∗
i3, y

∗
i4, y

∗
i5)

′

and yi = (yi1, yi2, yi3, yi4, yi5)
′
, corresponding to the latent data and the observed data, respec-

tively. The general framework is able to handle continuous, binary, censored and ordered vari-

ables. The continuous setting is specified as yij = y∗ij and the binary one as yij = 1{y∗ij > 0}.

However, Vossmeyer (2016) specifies a setting which is a combination of continuous and binary,

resulting in a censored outcome (Tobin 1958), defined as yij = y∗ij · 1{y∗ij > 0}. This setting is

not entirely clear, so for the new model an understandable relation will be discussed.

Even though the framework contains five equations, the system of equations is reduced to

two or three equations, depending on the subsample, as a result of the selection mechanisms

and the subsequent unobserved potential outcomes. For example, if yi1 = 0 for some i, then the

observation is in the nonselected sample. This means yi1 and yi5 are observed, but the other

three are not. Additionally, if yi1 > 0 and yi2 = 0, the observation belongs to the selected but

untreated sample. Here, yi1, yi2 and yi3 are observed, and the other two are not.

The framework also includes exogenous covariates, defined as xi = (xi1,xi2,xi3,xi4,xi5).

Here, xij contains the covariates corresponding to equation j, and are thus only required when

equation j is observed. The covariates in xi2 are assumed to contain at least one more variable

than the covariates in other equations. This additional variable serves as the instrumental

variable, used in treatment effect models, that is correlated with the treatment but not with

the errors (Chib 2007). A similar additional variable requirement can be found in the sample

selection equation for many other sample selection models, which is not present in the original

SSTE model. This requirement is often referred to as an exclusion restriction, and it helps to

improve identification and estimation of the model. Hence, for the new model an additional

variable will also be added to the covariates xi1.

Lastly, the errors, defined as εi = (εi1, εi2, εi3, εi4, εi5), are assumed to have a multivariate
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normal distribution N5(0,Ω). This assumption provides the most flexible foundation, as it can

be relaxed by assuming a t-distribution or a mixture of normal distributions.

3.2 Bayesian Additive Regression Trees

The first major change this research makes to the model by Vossmeyer (2016), is the replacement

of the linear structure of the model with Bayesian Additive Regression Trees (Chipman et al.

2010). As mentioned earlier, the original model assumes a homogeneous effect of treatment

across all observations in the treated sample. However, this is quite a restrictive assumption,

as observations can differ greatly in characteristics such that their response to the treatment is

not the same. The implementation of Bayesian Additive Regression Trees, or simply BART,

does allow for the estimation of heterogeneous treatment effects. Traditional BART consists

of two parts that require explanation: a sum-of-trees model, and regularization priors on the

parameters of the model. Before these two parts are discussed, first the concept of regression

trees will be briefly mentioned, to be able to fully understand the sum-of-trees model.

3.2.1 Regression Trees

Regression trees belong to the family of decision trees and exhibit similar characteristics. The

general idea being that the data is partitioned into different subsets based on some splitting

rule. For regression trees, these splitting rules are placed directly at the interior nodes, and

can be defined as binary splits of the covariate space. This is why regression trees are also

referred to as binary regression trees. These rules are of form xi < C or xi ≥ C, where xi is

often a continuous variable. At each interior node, observations are parsed through to the next

node according to the corresponding rule. The final nodes of a tree, known as terminal nodes,

contain a parameter value associated with each of the resulting subsets of the covariate space.

This parameter represents the prediction of the regression tree, and is traditionally set to be

the average of the observations in each subset.

3.2.2 Sum-of-trees model

For the discussion of the following sum-of-trees model, similar notation as in Chipman et al.

(2010) will be used. First, a single tree model, using one binary regression tree as explained

in the previous section, will be established. After this, the sum-of-trees model follows from a

straight-forward summation of many of these single tree models.

Define T as a single binary regression tree, and andM = {µ1, µ2, ..., µb} as the corresponding

set of parameter values associated with the terminal nodes of T. Here, each tree T is defined
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to have b terminal nodes. The splitting rules within the tree are of identical form as mentioned

above. Following from this, each x can be assigned to a single terminal node of T, which contains

the value µi corresponding with that terminal node. In mathematical notation, this process can

be encompassed in a function: for a given T and M, define g(x;T,M) as the function which

assigns a µi ∈M to x.

The single tree model is then defined as:

Y = g(x;T,M) + ε, ε ∼ N (0, σ2) (6)

From Equation 6, the conditional mean of Y given x is defined as: E[Y |x] = µi. The errors are

assumed to follow a Normal distribution with mean 0 and variance σ2. As stated before, the

sum-of-trees model is a straight-forward summation of many single trees. Formally, a sum-of-

trees model with a number of distinct single trees equal to m can be constructed as:

Y =
m∑
j=1

g(x;Tj ,Mj) + ε, ε ∼ N (0, σ2) (7)

In Equation 7, the function g(x;Tj ,Mj) assigns µij ∈ Mj to x, for each binary regression tree

Tj and the corresponding terminal node parameters Mj . The conditional expectation of the

sum-of-trees model is given by E[Y |x] =
∑

j

∑
b µbj1{i ∈ terminal node b}. Here, 1{·} is an

indicator function which ensures that the value associated with a terminal node is only included

in the expectation, if the observation is indeed assigned to that terminal node. Generally, a

significant advantage of this model structure, is that the sum-of-trees model is able to capture

specific variable effects as well as interaction effects (Chipman et al. 2010).

3.3 Seemingly Unrelated Regression BART

One important thing to note, is that the traditional BART approach was developed to fit the

univariate case, and as a result does not fit the multivariate case directly. So, in a system of equa-

tions where the dependent variables are highly correlated with each other, like the SSTE model

(Vossmeyer 2016), standard modeling procedures for BART do not apply anymore. Instead,

an approach capable of jointly modeling the correlation structure among the related dependent

variables is required. Chakraborty (2016) combines the already existing BART structure with

one of the most popular approaches to accurately model systems of equations, called Seemingly

Unrelated Regression, SUR in short (Zellner 1962). The concept of SUR is based on the as-

sumption that, because different responses are extracted from the same individual, they have a

high chance of being related through an underlying process.

The resulting approach is fittingly called SUR-BART, and its structure looks similar to a

five-fold repetition of a traditional BART sum-of-trees model in Equation 7. Specifically, each
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equation J has its own sum-of-trees model, which are all captured together inside a vector

structure as shown in Equation 8.
y1

y2
...

yJ

 =



∑m1
j=1 g(x1;Tj ,Mj)∑m2
j=1 g(x2;Tj ,Mj)

...∑mJ
j=1 g(xJ ;Tj ,Mj)

+


ε1

ε2
...

εJ

 (8)

Here, it is assumed that the errors of the SUR-BART model follow a multivariate normal

distribution: ε = (ε1, ε2, ..., εJ) ∼ NJ(0,Σ).

3.3.1 Regularization Priors

As mentioned before, the second part of a traditional BART approach is setting regularization

priors on the parameters of the model. This is also the case for the SUR-BART approach,

so this will be discussed next. Regularization priors are a crucial and key aspect of BART

approaches, as they are responsible for regularizing the fit of the tree structure, by limiting the

individual effects of each tree. The aim of these priors is to prevent large tree elements from

exerting overwhelming influence on the structure of the tree, which would significantly reduce

the effectiveness of an additive model representation. The prior specifications for this research

follow the distributions and structure used for SUR-BART (Chakraborty 2016). which follow

the original BART specifications by Chipman et al. (2010). Additionally, as is standard practice

for all Bayesian analyses, specification of priors is used to incorporate prior knowledge on the

data into the model to increase the model fit.

Chipman et al. (2010) simplifies the specification of these priors by imposing an independence

restriction on the prior parameters. This restriction leads to independence: between all tree

components (Tj ,Mj), between all (Tj ,Mj) and σ, and between the terminal node parameters

of every tree. As a result, priors only need to be specified on three aspects: Tj , µij |Tj and σ

(Chipman et al. 2010).

The first two aspects are identical for traditional BART as for SUR-BART, but the prior

on σ is necessarily different. Instead of a single variance, σ, there now exists an entire JxJ

covariance matrix, Σ, which requires an inherently different prior distribution. All default prior

distributions will be discussed below, while those for the new model are discussed later.

The prior on the trees Tj , written as p(Tj), is constructed in three parts: (i) the probability

that a node at depth d (d = 0, 1, 2, ...) is nonterminal, (ii) the distribution on the assignments

of splitting variables at each interior node, and (iii) the distribution on the assignments of

splitting rules in each interior node, conditional on the splitting variable. Each aspect has
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a distinct distribution, for which the derivation and additional motivation can be found in

Chipman et al. (1998). Since the derivations themselves have no added value in this research,

they are omitted from this paper and the formula will simply be given. The first aspect, (i) is

given by the following equation:

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞) (9)

The default values for Equation 9 proposed by Chipman et al. (2010), are α = 0.95 and β = 2.

These values strongly favor small trees of size 2 or 3, and have proven to be effective in practice.

The prior on the second aspect, (ii), is given by an uniform distribution on the available variables.

Similarly, the prior on the third aspect, (iii), is given by an uniform distribution on the discrete

set of available splitting values.

The priors over the leaf parameters, p(µij |Tj), are constructed using a conjugate normal

distribution. The idea is to shift and scale the dependent variable Y, such that the new values

are bounded by the interval [−0.5, 0.5]. Then, after centering the prior for µij around zero, the

following distribution can be set:

µij ∼ N (0, σ2µ), where σµ = 0.5/(k
√
m) (10)

The parameter k can be interpreted as the number of prior standard deviations in the range of

[0, 0.5]. For example, in the default specification of k = 2, proposed by Chipman et al. (2010),

a 95% prior probability is assigned that E[Y |x] lies in the range of [−0.5, 0.5] (Hill et al. 2020).

The priors on the elements on the covariance matrix are inherently different for the univariate

and multivariate case. Chipman et al. (2010) apply a data-informed prior on the univariate

variance, using the estimated residual standard deviation from a simple linear regression. It is

also shown that the use of data-informed priors leads to improved performance, if calibrated

correctly. On the other hand, Chakraborty (2016) puts an Inverse Wishart distribution on the

entire covariance matrix, using hyperparameters to produce an uninformative prior structure.

The Inverse Wishart distribution is commonly used when working with covariances, as it is a

conjugate prior for covariance matrix of the multivariate normal distribution. For additional

details on these default settings, the reader is referred to the corresponding papers.

Another important aspect of any additive tree algorithm, is the choice of the number of trees

m it uses. In a BART-based algorithm, each tree is iteratively updated at each step, so more

trees lead to more necessary computations. However, more trees also result in an improved

fit of the model and increases its predictive performance. This leads to a trade-off between

computational efficiency and predictive performance. Chipman et al. (2010) noted that the

predictive performance of the algorithm improves significantly with each increase in m, until
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it levels off at some point and then even decreases for very large values of m. A suggestion

for a default choice of m = 200 is then made, as it provides good results in their experiments.

Even though it should be sufficient in most cases, Chipman et al. (2010) emphasize that cross-

validating the number of trees is another valid approach to choose from. In line with this,

Chakraborty (2016) argue that a flexible specification, where the number of trees is treated

like a parameter, actually increases effectiveness and efficiency. Their SUR-BART algorithm

therefore includes a component which automatically selects an optimal number of trees for the

model. From this it is a logical conclusion that the choice of number of trees is an important

consideration in the model specification, depending on the goal and/or desired result.

3.3.2 Posterior information extraction

The final step towards inference is combining these priors with the likelihood function of the

model to construct the posterior distribution. The posterior distribution of the sum-of-trees

model, which is given by p((T1,M1), ..., (Tm,Mm), σ|y), contains all the unknown parameters

the model, and provides the basis for all inferential techniques. However, as a result of the many

unknown parameters, obtaining the relevant statistics is almost always very computationally

expensive. That is why, for BART models it is standard practice to achieve inference through

Markov Chain Monte Carlo (MCMC) sampling, such as Metropolis-within-Gibbs algorithms

(Hill et al. 2020). Specifically, a Bayesian backfitting algorithm was developed by Chipman

et al. (2010), which was adjusted to fit the multivariate case by Chakraborty (2016). Only the

general framework of this approach will be provided next, as a detailed and updated version

will be extensively discussed when introducing the new model.

The sampling procedure introduced by Chipman et al. (2010) is in essence a Gibbs sampler.

The basic idea behind a Gibbs sampler is that for a set parameter space, instances of each

variable are sampled iteratively from their respective distributions, conditional on the current

values of the other variables. Furthermore, it was shown in Hastie and Tibshirani (2000) that

a Gibbs sampler for additive models with variances fixed, is a stochastic generalization of a

backfitting algorithm (Breiman and Friedman 1985). Hence, the developed sampling procedure

is referred to as a Bayesian backfitting algorithm.

This algorithm can be divided into two main steps, given below. Here, T(j) is defined as the

set of all trees except Tj , with M(j) similarly defined for the sets of terminal node parameters.

As a result, T(j) is a set containing m-1 trees.

1. First, draw (Tj ,Mj) conditionally on (T(j),M(j), σ), successively for j=1,...,m:

(Tj ,Mj)|T(j),M(j), σ, y,

14



2. Then draw σ from the full conditional:

σ|T1, ..., Tm,M1, ...,Mm, y.

The result of the backfitting algorithm is a series of draws of (T1,M1), ..., (Tm,Mm), σ which,

in distribution, should converge to the posterior p((T1,M1), ..., (Tm,Mm), σ|y). Therefore, after

running the algorithm for a sufficient amount of iterations, the series of draws can be regarded

as an approximate sample from the true posterior. A variety of Bayesian inferential metrics can

then be approximated using this sample, which are further elaborated in Chipman et al. (2010).

The sampling procedure for SUR-BART consists of the same general steps as BART, but

the conditional distributions which are sampled from are slightly different. Specifically, the tree

parameters are now sampled, conditional on all additional other sums of trees. Similarly, the

draw of the covariance matrix is one direct draw from the Inverse Wishart distribution, where

the hyperparameters are constructed using all sums of trees.

4 SSTE-BART

This section will introduce the adjusted SSTE model, starting with the model specification itself.

Then, the model will be translated using a SUR structure, specifically SUR-BART, to tackle the

problem of correlated dependent variables in a system of equations. The resulting adjusted SSTE

model will be referred to as SSTE-BART from now on. After this, the necessary regularization

priors will be discussed for the different parameters and aspects of the model. Finally, the entire

MCMC sampling procedure will be discussed extensively, as the adjusted model requires a new

procedure to be constructed to be able to handle the mentioned alterations.

4.1 Model specification

The adjusted model will consist of the same five distinct equations for the selection mechanisms

and the potential outcomes as in Vossmeyer (2016). The system of equations that follows from

the addition of BART terms is given below, for observations i = 1, ..., n. These equations are

different from the original SSTE model in two ways. First, and most obvious, each SSTE-BART

equation now is of sum-of-trees form as in Equation 7. Second, the variables yi1 and yi2 are

assumed to binary in SSTE-BART, instead of continuous in the original SSTE model. As a

result, these variables are not included as endogenous covariates in Equation 14 and 15. This

is done, because now these variables will always have the same value for all observations in

the subset associated with that equation. Hence, inclusion of the variable to these equations is
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redundant, as they are not able to provide any additional information.

Selection mechanism : y∗i1 =

m1∑
h=1

g1(x
′
i1;Th,Mh) + ϕ1 + εi1 (11)

Treatment selection : y∗i2 =

m2∑
h=1

g2(x
′
i2;Th,Mh) + ϕ2 + εi2 (12)

Selected untreated sample : y∗i3 =

m3∑
h=1

g3(x
′
i3;Th,Mh) + εi3 (13)

Selected treated sample : y∗i4 =

m4∑
h=1

g4(x
′
i4;Th,Mh) + εi4 (14)

Nonselected sample : y∗i5 =

m5∑
h=1

g5(x
′
i5;Th,Mh) + εi5. (15)

The relation between the latent data y∗ij and the observed data yij is also specified differently, as

these relations from the original SSTE model are not made entirely clear. Under the assumption

that yi1 and yi2 are binary, the following relations are defined:

yi1 =


1, if y∗i1 > 0

0, if y∗i1 ≤ 0

, yi2 =


1, if yi1 = 1, y∗i2 > 0

0, if yi1 = 1, y∗i2 ≤ 0

NA, if yi1 = 0

, yi3 =


yi3, if yi1 = 1, yi2 = 0

NA, otherwise

,

yi4 =


yi4, if yi1 = 1, yi2 = 1

NA, otherwise

, yi5 =


yi5, if yi1 = 0

NA, otherwise

.

In addition, it is suggested to include an offset, denoted by ϕ, in the equations for these binary

variables (Chipman et al. 2010). These binary offsets help to adjust the estimations of these

binary values, as without an offset, the tree model prior shrinks the latent variable values to

zero instead of the offset value. Specifically, the binary offsets are set to the means of their

respective observed variables.

As mentioned before, this model on its own is not able to be estimated, so it will be translated

into a SUR-BART structure. The resulting model is presented in Equation 16.

y∗i1

y∗i2

y∗i3

y∗i4

y∗i5


=



∑m1
h=1 g1(x

′
i1;Th,Mh) + ϕ1∑m2

h=1 g2(x
′
i2;Th,Mh) + ϕ2∑m3

h=1 g3(x
′
i3;Th,Mh)∑m4

h=1 g4(x
′
i4;Th,Mh)∑m5

h=1 g5(x
′
i5;Th,Mh)


+



εi1

εi2

εi3

εi4

εi5


(16)

The model specification still contains the exogenous covariates xi. To reiterate, the covariates

of the first and second equation both contain an additional variable, the exclusion restriction, to

help improve identification and estimation of the model. Additionally, the model now includes
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the BART parameters, starting with the single binary tree Th and the set of all terminal node

values of a single tree Mh. Here Mh = (µh1, µh2, ..., µhbh) corresponds with the parameters for

the bh leaves of the hth tree. It is important to note that each equation has its personal unique

tree structure, independent of the other equations. So the cardinality of each set of trees can

differ between each equation, and is defined as mj for j = 1, ..., 5. The gj(x
′
ij , Th,Mh) function

assigns the value corresponding to the terminal node of tree h for equation j, for observation i.

Finally, the errors are assumed to follow a multivariate normal distribution, as is both the de-

fault in the original model and in the SUR-BART algorithm. Thus, εi = (εi1, εi2, εi3, εi4, εi5) ∼

N5(0,Ω), where Ω is the covariance matrix of the corresponding system of equations. However,

due to the nature of a model which incorporates sample selection and treatment effects, not

all elements of the covariance matrix are identified. For instance, for each observation only

one potential outcome is observed, so the covariances between these variables do not exist.

Similarly, the dependent variable associated with the non-selected sample is not related to the

treatment selection variable, so the corresponding covariance is also not identified. Additionally,

the binary assumption placed on yi1 and yi2, places a similar restriction on the corresponding

elements of the covariance matrix. Specifically, under this assumption the variances of yi1 and

yi2 are required to be equal to one. This results in the following covariance matrix, where

unidentified elements are shown as a dot:

Ω =



1 Ω12 Ω13 Ω14 Ω15

Ω21 1 Ω23 Ω24 ·

Ω31 Ω32 Ω33 · ·

Ω41 Ω42 · Ω44 ·

Ω51 · · · Ω55


(17)

There are some problems associated with these unidentified elements, which will be discussed

in the next sections, along with their respective solutions.

4.2 Prior specification

The specification of the model can be finalized by specifying priors on the different parameters

of the model. These can be split into two parts: parameters for the sampler of the sum-of-trees

parameters, and the covariance matrix. For the first part, recall that the sampler of the sum-

of-trees parameters uses the same framework as the original BART algorithm. So, initially this

research will follow the recommendation by Chipman et al. (2010), to use their default prior

specifications as they have empirically proven their effectiveness.
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The prior on the covariance matrix requires additional explanation, due to the unidentified

elements in combination with the binary assumption of yi1 and yi2. For the standard SSTE

model, outlined in Equations 1 to 5, an Inverse Wishart prior is placed on fully-identified subsets

of the covariance matrix. However, for the new SSTE-BART model with binary sample and

treatment allocation variables, a different prior specification is required, as two covariance ma-

trix elements are restricted to 1, and no prior is specified, or inference is made, on unidentifiable

covariances. However, under the binary assumption a different prior specification is required.

To achieve this, instead of placing a prior on the entire matrix, or on sub-matrices, this re-

search places independent priors on all unique and identified elements of the covariance matrix.

This ensures that all assumptions and restrictions can hold, and with enough observations and

MCMC iterations, the prior should have little impact on the results.

For the unrestricted diagonal elements of the covariance matrix, which are the variances

of yi3, yi4 and yi5, the same prior used in Chipman et al. (2010) is used. This results in an

Inverse Chi-squared prior distribution, where the hyperparameters are set using a data-informed

approach. Specifically, the residual standard deviation of an ordinary least squares regression

of the corresponding dependent variable on the covariates, σ̂, is used. The hyperparameter λ is

then calculated such that, for given degrees of freedom v, the qth quantile of the prior on the

variance is located at σ̂. For this research, the parameters (v, q) are set at (3, 0.99), following

the aggressive approach by Chipman et al. (2010).

For the unrestricted, and identified, off-diagonal elements of the covariance matrix, diffuse

priors are used. They are set to be centered around zero, and include some dependence on the

size of the prior variances. Reason for this is that for larger possible values of the variance, the

corresponding covariances are also likely to be larger. The diffuse distribution chosen here is a

normal distribution with mean zero and variance set to 10, following the application in Chib

and Greenberg (1998), to induce the diffusion.

Table 1: Overview of prior specifications of the parameters of the SSTE-BART model

Prior Prior specification

p(Th)

(i) α(1 + d)−β, with α = 0.95, β = 2

(ii) uniform prior on available variables

(iii) uniform prior on available splitting values

p(µih|Th) µih ∼ N (0, σ2µ), where σµ = 0.5/(k
√
m), with k = 2

p(Ω)
(i) Ωjj ∼ vλ/X 2

v with (v, q) = (3, 0.99), for j = 3, 4, 5

(ii) Ωij ∼ N (0, 10) for identified off-diagonal elements
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One important aspect which must not be forgotten, is the fact that some restrictions are still

necessary to these ‘unrestricted’ elements. Specifically, a covariance matrix must be positive

definite, which also requires sub-matrices to be positive definite. As a result of this requirement,

there are some restrictions on the possible values for the elements of the covariance matrix. This

will be discussed in more detail in Section 4.4.3.

Table 1 contains an overview of the necessary regularization priors, along with the default

values for the sum-of-trees sampler as mentioned in Section 3.3.1.

4.3 Soft Trees and Sparse Splitting Rules

For this research, two potential improvements to the SSTE-BART model will be tested as an

additional feature. Specifically, the implementation of soft trees and sparse splitting rules,

introduced by Linero and Yang (2018) as an improvement of the general BART framework.

This was further adapted in a selection model context by O’Neill (2024), which provides the

foundation for the implementation here.

Soft trees are obtained by replacing the ‘hard’ decision rules in the tree structure, xi ≤ C,

with soft decision rules. These soft decision rules are obtained by incorporating the cumulative

distribution function of a symmetric random variable x, ψ(x). This results in the following

form for soft decision rules: ψ
(
xj−C

τ

)
. A prediction from a soft tree can be described as a

weighted linear combination of all parameter values in the terminal nodes. The weights are set

as functions of the distances between covariates and splitting points. From this, a prediction

from a single tree function can be rewritten as:

g(xi;Th,Mh) =

Lh∑
ℓ=1

µh,ℓϕℓ(xi, Th, ℓ), (18)

with

ϕℓ(xi, Th, ℓ) =
∏
b∈Aℓ

ψ

(
xjb − Cb

τb

)I{xjb
>Cb}

×
{
1− ψ

(
xjb − Cb

τb

)}I{xjb
≤Cb}

, (19)

where Lh is the number of terminal nodes in the hth tree, µh,ℓ is the ℓ
th terminal node parameter

of the hth tree, and Aℓ is the set of parental nodes of terminal node ℓ. The parameter τ controls

the sharpness of the decisions, with lower values of τ leading to sharper decisions. For the

function ψ(x) the logistic function ψ(x) = (1 + exp(−x))−1 is used in both Linero and Yang

(2018).

Sparse splitting rules are implemented in the SSTE-BART model, as a method to achieve

improved variable selection on datasets with many variables. These sparse splitting rules are

obtained through the use of a Dirichlet prior on the splitting probabilities of the tree sampler.

Specifically, the splitting probabilities for p variables become (s1, s2, ..., sp) ∼ D(ap ,
a
p , ...,

a
p ).
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Here, the parameter a is responsible for the level of sparsity and is assumed to have Beta prior

distribution, Beta(0.5, 1). These splitting probabilities are then iteratively updated in each

MCMC step, using the current tree structure to calculate new splitting probabilities. For this,

the same steps as used in Linero and Yang (2018) are implemented as Linero shows that the

Dirichlet prior is able to adapt to unknown levels of sparsity in the variables, and is able to

improve predictions in high dimensional datasets.

4.4 MCMC sampling procedure

Similar as for the SUR-BART algorithm, constructing the posterior distribution is the next step

towards inference of the SSTE-BART model. As mentioned before, the SSTE-BART model is

a combination of the original SSTE model by Vossmeyer (2016) and the SUR-BART model by

Chakraborty (2016). So the estimation procedure is a combination of different aspects of the two

approaches, along with additional steps required to tackle specific problems that arise. These

problems will be introduced briefly, after which the general steps of the estimation procedure

will be provided in a concise and cohesive algorithm. After this, each unique step will get

discussed in extensive detail to show exactly how the estimation algorithm works.

The first problem that arises, is found within the sampling steps for the sum-of-trees param-

eters. The SUR-BART sampler requires the full conditional covariance matrix for each draw

of each tree parameter. However, since the covariance matrix is not fully identified, sampling

becomes impossible to do in one step. To combat this, a sampling procedure similar to weighted

BART (Sparapani et al. 2021) where the inputs are updated differently, is constructed. Specif-

ically, this is done by deriving multiple full conditional distributions that contain the necessary

identified elements for each sum-of-trees

The second and arguably more problematic issue arises for the sampling steps of the co-

variance matrix. This is the result of the combination between unidentified elements of the

covariance matrix, and the restriction of some of the identified elements to be equal to one.

Both of these problems are stand-alone topics of already existing literature and different so-

lutions exist for them. In line with this, Vossmeyer (2016) constructed a sampler capable of

handling these unidentified elements of the covariance matrix, based on earlier work into mod-

els with selection mechanisms (Chib 2007; Chib et al. 2009). It is further stated in Chib et al.

(2009) that for models where covariances are equal to one, such algorithms do not work prop-

erly and instead refer to the use of a Metropolis-Hasting algorithm, like in Chib and Greenberg

(1998). However, no concrete proof exists that such an algorithm can efficiently achieve con-

vergence, in the presence of the aforementioned problems. Nevertheless, there is also no other
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solution available to this problem, so a Metropolis-Hasting algorithm will serve as the starting

point for an attempt at a solution. Specifically, a Random-Walk Metropolis-Hasting sampler as

describe in Chib and Greenberg (1998) will be implemented, as it is claimed to be effective for

low dimensional covariance matrices.

The general steps of one iteration of the resulting MCMC sampling procedure are summa-

rized below in Algorithm 1.

Algorithm 1 General steps of one iteration of the MCMC estimation algorithm for SSTE-

BART

1: Sample y∗i1 from the full conditional distributions of each possible sample and treatment

selection scenario: (yi1 = 0), (yi1 = 1, yi2 = 0), and (yi1 = 1, yi2 = 1)

2: Sample y∗i2 from the full conditional distributions of each possible sample and treatment

selection scenario: (yi1 = 1, yi2 = 0), and (yi1 = 1, yi2 = 1). (Note here, that yi1 = 0 is not

observed for yi2 so it is omitted);

3: Define the ‘full’ residuals R1i, R2i, R3i, R4i, R5i for the sums of trees for each sample and

treatment selection scenario, using the previously derived distributions;

4: Using these residuals, the sum-of-trees of each equation can be sampled, to obtain the full

conditional samples of the sums of trees, alongside the subsequent tree parameters;

5: Sample Ω using an adjusted Random-Walk Metropolis-Hasting algorithm.

From the general steps shown in Algorithm 1, a couple additional observations can be made.

First of all, due to the unidentified covariances, it is necessary to split the conditional distri-

butions into all possible sample and treatment selection scenarios. This ensures that for each

conditional distribution, all related covariances are identified and subsequent draws can be ob-

tained. Since these covariances are a crucial part of estimating the sums of trees, this is a

necessary first step.

After this, note that y∗i3, y
∗
i4 and y∗i5 are not sampled at all. This is done, because sampling

these is only necessary if there is some form of censoring on the potential outcomes. For the

SSTE-BART model it is assumed that the potential outcomes do not contain any form of

censoring, and are observed if in the selected sample. As a result, the corresponding sampling

step can be omitted here.

The third step is a helpful intermediate step, which makes the calculation of the residuals

in the fourth step a lot easier. Using the derivation of the residuals in the third step, the sums

of trees can now be sampled following similar steps as the SUR-BART algorithm.
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4.4.1 Deriving full conditional distributions

The first steps of the sampling algorithm entails the derivation of multiple full conditional

distributions. The derivations of each distribution will not be shown here, as these follow

from standard results for conditional distributions of multivariate normally distributed variables

(Holt and Nguyen 2023). Starting with the derived full conditional distributions for y∗i1, under

all possible sample and treatment selection scenarios, where conditioning on some irrelevant

variables is removed. Note that gj refers to the function gj(x
′
ij ;Th,Mh):

• y∗i1 for nonselected observations, i.e. yi1 = 0:

y∗i1|yi1 = 0, y∗i5, g1, g5,Ω ∼

T N (−∞,0)

(
g1(x1i) + ϕ1 +Ω15Ω

−1
55 (y

∗
i5 − g5(xi)), (1− Ω2

15Ω
−1
11 Ω

−1
55 )Ω11

)
• y∗i1 for selected untreated observations, i.e. yi1 = 1, yi2 = 0:

y∗i1|yi1 = 1, yi2 = 0, y∗i2, y
∗
i3, g1, g2, g3,Ω ∼

T N (0,∞)

g1(x1i) + ϕ1 +
[
Ω12 Ω13

]Ω22 Ω23

Ω32 Ω33

−1 y∗
i2 − g2(xi)− ϕ2

y∗
i3 − g3(xi)

 ,Ω11 −
[
Ω12 Ω13

]Ω22 Ω23

Ω32 Ω33

−1 Ω21

Ω31


• y∗i1 for selected treated observations, i.e. yi1 = 1, yi2 = 1:

y∗i1|yi1 = 1, yi2 = 1, y∗i2, y
∗
i4, g1, g2, g4,Ω ∼

T N (0,∞)

g1(x1i) + ϕ1 +
[
Ω12 Ω14

]Ω22 Ω24

Ω42 Ω44

−1 y∗
i2 − g2(xi)− ϕ2

y∗
i4 − g4(xi)

 ,Ω11 −
[
Ω12 Ω14

]Ω22 Ω24

Ω42 Ω44

−1 Ω21

Ω41


Then the same derivations can be obtained for the full conditional distributions of y∗i2. Here,

there are only two distributions, as for y∗i2 observations for y∗i1 = 0 do not exist, because to be

eligible for treatment, the observation first needs to be selected in the sample. Hence, the full

conditional distributions for the remaining two scenarios are defined as follows:

• y∗i2 for selected untreated observations, i.e. yi1 = 1, yi2 = 0 :

y∗i2|yi1 = 1, yi2 = 0, yi1∗, yi3∗, g1, g2, g3,Ω ∼

T N (−∞,0)

g2(x2i) + ϕ2 +
[
Ω21 Ω23

]Ω11 Ω13

Ω31 Ω33

−1 y∗
i1 − g1(xi)− ϕ1

y∗
i3 − g3(xi)

 ,Ω22 −
[
Ω21 Ω23

]Ω11 Ω13

Ω31 Ω33

−1 Ω12

Ω32


• y∗i2 for selected treated observations, i.e. yi1 = 1, yi2 = 1:

y∗i2|yi1 = 1, yi2 = 1, yi1∗, y∗i4, g1, g2, g4,Ω ∼

T N (0,∞)

g2(x2i) + ϕ2 +
[
Ω21 Ω24

]Ω11 Ω14

Ω41 Ω44

−1 y∗
i1 − g1(xi)− ϕ1

y∗
i4 − g4(xi)

 ,Ω22 −
[
Ω21 Ω24

]Ω11 Ω14

Ω41 Ω44

−1 Ω12

Ω42
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The following distributions for yi3, yi4 and yi5 are not directly necessary for the sampling pro-

cedure, but they another helpful intermediate step towards the calculations of the full residuals

in the next step. These full conditional distributions are based on only one specific sample and

treatment selection scenario, so only one distribution is required:

• For selected untreated observations, i.e. yi1 = 1, yi2 = 0:

yi3|y∗i1, y
,
i2g1, g2,Ω ∼

N

g3(x3i) +
[
Ω31 Ω32

]Ω11 Ω12

Ω21 Ω22

−1 y∗
i1 − g1(x1i)− ϕ1

y∗
i2 − g2(x2i)− ϕ2

 ,Ω33 −
[
Ω31 Ω32

]Ω11 Ω12

Ω21 Ω22

−1 Ω13

Ω23


• For selected treated observations, i.e. yi1 = 1, yi2 = 1:

yi4|y∗i1, y
,
i2g1, g2,Ω ∼

N

g4(x4i) +
[
Ω41 Ω42

]Ω11 Ω12

Ω21 Ω22

−1 y∗
i1 − g1(x1i)− ϕ1

y∗
i2 − g2(x2i)− ϕ2

 ,Ω44 −
[
Ω41 Ω42

]Ω11 Ω12

Ω21 Ω22

−1 Ω14

Ω24


• For nonselected observations, i.e. yi1 = 0:

y∗i5|yi1 = 0, yi1∗, g1, g5,Ω ∼

N
(
g5(x5i) + Ω15Ω

−1
11 (y

∗
i1 − g1(x1i)− ϕ1), (1− Ω2

15Ω
−1
11 Ω

−1
55 )Ω55

)
4.4.2 Sampling of the sum-of-trees parameters

The full conditional distributions as described above, can be used as the foundation to derive the

conditional distributions of the residuals, which are a necessary building block for the derivation

of the tree sampler (Chipman et al. 2010; Chakraborty 2016).

Let Rij be the full residual of the gj equation. Chipman et al. (2010) concluded that the

tree parameters Th and Mh can be drawn in a two-step procedure, using these residuals, which

Chakraborty (2016) adjusted into:

1. Draw Th from Th|Rij , (T,M)(h),Ω

2. Draw Mh from Mh|Th, Rij , (T,M)(h),Ω

For the SSTE-BART model, the same steps can be used, if the residuals of an equation

are calculated conditionally on only the corresponding identified parts of that equation . The

proposed draw of Th is done based on one of four moves: growing a terminal node (GROW),

pruning a pair of terminal nodes (PRUNE), changing a nonterminal rule (CHANGE), and

swapping a rule between a parent and child node (SWAP) (Chipman et al. 2010). Each of

these moves has its own probability, which are by default set at 0.25, 0.25, 0.40 and 0.10,
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respectively. However, recent literature has suggested that the SWAP move has little impact

on performance, but increases the computational burden of the algorithm significantly (Maia

et al. 2024; Kapelner and Bleich 2013). So for the SSTE-BART model, the probability for

SWAP will be set to 0, with the other probabilities scaled accordingly. Then, similar as for

the derivation of the conditional distributions described previously, the residuals for a specific

equation are defined separately for each different sample and treatment selection scenario. Such

that only the latent variables that are identified for each equation are included in the formulas

for the residuals. All unique specifications for the residuals and for the related variances of each

function gj are given below.

• For g1, use all the observations:

(a) If yi1 = 0, then set

R1i = y∗i1 − ϕ1 − Ω15Ω
−1
55 (y

∗
i5 − f5(xi))

and set the variance to (1− Ω2
15Ω

−1
11 Ω

−1
55 )Ω11.

(b) If yi1 = 1 and yi2 = 0 , then set

R1i = y∗i1 − ϕ1 −
[
Ω12 Ω13

]Ω22 Ω23

Ω32 Ω33

−1 y∗i2 − g2(xi)− ϕ2

y∗i3 − g3(xi)


and set the variance to

Ω11 −
[
Ω12 Ω13

]Ω22 Ω23

Ω32 Ω33

−1 Ω21

Ω31


.

(c) If yi1 = 1 and yi2 = 1 , set

R1i = y∗i1 − ϕ1 −
[
Ω12 Ω14

]Ω22 Ω24

Ω42 Ω44

−1 y∗i2 − g2(xi)− ϕ2

y∗i4 − g4(xi)


and set the variance to

Ω11 −
[
Ω12 Ω14

]Ω22 Ω24

Ω42 Ω44

−1 Ω21

Ω41


• For g2 , do not make use of nonselected observations:

(a) If yi1 = 1 and yi2 = 0 , then set

R2i = y∗i2 − ϕ2 −
[
Ω21 Ω23

]Ω11 Ω13

Ω31 Ω33

−1 y∗i1 − g1(xi)− ϕ1

y∗i3 − g3(xi)
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and set the variance to

Ω22 −
[
Ω21 Ω23

]Ω11 Ω13

Ω31 Ω33

−1 Ω12

Ω32


.

(b) If yi1 = 1 and yi2 = 1 , then set

R2i = y∗i2 − ϕ2 −
[
Ω21 Ω24

]Ω11 Ω14

Ω41 Ω44

−1 y∗i1 − g1(xi)− ϕ1

y∗i4 − g4(xi)


and set the variance to

Ω22 −
[
Ω21 Ω24

]Ω11 Ω14

Ω41 Ω44

−1 Ω12

Ω42


• For g3, only make use of selected untreated observations, i.e. observations for which yi1 = 1

and yi2 = 0 and set

R3i = yi3 −
[
Ω31 Ω32

]Ω11 Ω12

Ω21 Ω22

−1 y∗i1 − g1(x1i)− ϕ1

y∗i2 − g2(x2i)− ϕ2


and set the variance to

Ω33 −
[
Ω31 Ω32

]Ω11 Ω12

Ω21 Ω22

−1 Ω13

Ω23


• For g4 only make use of selected treated observations, i.e. observations for which yi1 = 1

and yi2 = 1 and set

R4i = yi4 −
[
Ω41 Ω42

]Ω11 Ω12

Ω21 Ω22

−1 y∗i1 − g1(x1i)− ϕ1

y∗i2 − g2(x2i)− ϕ2


and set the variance to

Ω44 −
[
Ω41 Ω42

]Ω11 Ω12

Ω21 Ω22

−1 Ω14

Ω24


• For g5, only use the nonselected observations, i.e. observations for which yi1 = 0. Set

R5i = yi5 − Ω15Ω
−1
11 (y

∗
i1 − ϕ1 − g1(x1i))

and set the variance to (1− Ω2
15Ω

−1
11 Ω

−1
55 )Ω

2
55.

With these residual definitions, it becomes possible to implement a BART tree sampler to obtain

the sum-of-trees parameters for each equation. The implementation of a tree sampler is similar

to the one in the SUR-BART algorithm, which simply comes down to running a singular BART

function for each equation, conditioning on all other components previously mentioned. 1

1The implementation of these BART functions is done using the dbarts package in R (Dorie et al. 2020).
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4.4.3 Sampling the covariance matrix

For the sampling step of the covariance matrix Ω, a Random-Walk Metropolis-Hasting algorithm

(Chib and Greenberg 1998) will be implemented, to tackle the problems associated with the

covariance matrix of this model. Any Metropolis-Hasting algorithm is based on the following

concept: a new sampled value is proposed based on the current sample, and is either accepted

or rejected depending on a calculated acceptance probability. This can be summarized in the

following general algorithm, with notation following Chib and Greenberg (1998), which will

provide the foundation for the remainder of this sampler:

Algorithm 2 General steps of one iteration of a Metropolis-Hasting algorithm.

1: Sample proposal values Ω
′
ij given the current values Ωij , for all elements of Ω, from the

densities q(Ω
′ |Ω, Z, β);

2: Accept the proposals Ω
′
with probability

α(Ω,Ω
′
) = min

{
π(Ω

′
)f(Z|β,Ω′

)I(Ω
′ ∈ C)

π(Ω)f(Z|β,Ω)I(Ω ∈ C)

q(Ω|Ω′
, Z, β)

q(Ω′ |Ω, Z, β)
, 1

}
,

and reject the proposals and stay with the current values with probability 1− α(Ω,Ω
′
)

In Algorithm 2, Ω and Ω
′
are the vectors containing the elements of the covariance matrix

that are sampled. Here, π(Ω) is the prior probability, defined as the probability the value of

Ω has within the prior distribution, with similar interpretation for Ω
′
. The function f(Z|β,Ω)

is defined as the full data likelihood, evaluated at Ω, and similarly for Ω
′
. The indicator

function ensures that the proposed and current values fit in the region associated with the prior

distribution, and is rejected directly otherwise. And lastly, the function q(Ω
′ |Ω, Z, β) is called

the proposal probability, which is the probability that the proposed value is inside the proposal

distribution conditional on the current value. The reverse proposal probability, q(Ω|Ω′
, Z, β),

can then be defined as the probability that the current value, is inside the proposal distribution,

after substituting the proposed value inside the distribution instead of the current value.

This becomes the Random-Walk Metropolis-Hasting (RW-MH) algorithm through the choice

of proposal density q(·). The general objective behind the choice of q(·) is to traverse the

parameter space and be able to generate samples that mix well (Chib and Greenberg 1998).

One of the simplest ways to achieve this is to generate proposals through a random-walk chain:

Ω
′
= Ω+ h, where the proposed and current value are defined as before, and h is a zero-mean

increment vector. Chib and Greenberg (1998) suggest that for suitable proposals, the variance

of the chosen distribution for h can be set to a multiple of 1/n. Here, n is the number of

observations corresponding to the sample of the proposed element of the covariance matrix

(e.g. for Ω31 this becomes the size of the untreated sample). So, using this proposal generation
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approach in combination with Algorithm 2, this becomes the RW-MH algorithm.

However, a single step of such an RW-MH algorithm is not sufficient in the case of unidenti-

fied elements of the covariance matrix, because the likelihoods can not be calculated. To combat

this, an aspect of the approach by Vossmeyer (2016) is borrowed. Specifically, Vossmeyer (2016)

defines three subsets of the sample which have fully identified covariance matrices, correspond-

ing to the three different sample and treatment selection scenarios. This results in the following

three subsets, where the variances corresponding to the binary variables, Ω11 and Ω22, are set

equal to 1:

y∗
iC = (y∗i1, y

∗
i5)

′,y∗
iD = (y∗i1, y

∗
i2, y

∗
i3)

′,y∗
iA = (y∗i1, y

∗
i2, y

∗
i4)

′ (20)

ΩC =

 1 Ω15

Ω51 Ω55

 ,ΩD =


1 Ω12 Ω13

Ω21 1 Ω23

Ω31 Ω32 Ω33

 ,ΩA =


1 Ω12 Ω14

Ω21 1 Ω24

Ω41 Ω42 Ω44

 . (21)

Using these subsets, the following complete-data likelihood can be constructed, where it is used

that the errors are multivariate normally distributed. Then, define the likelihood of subset J as

f(y∗
iJ |θ), with θ the subset of all parameters. Additionally, define N1 = {i : yi1 = 0} as the set

of nonselected observations. Similarly, let N2 = {i : yi1 = 1,yi2 = 0} be the selected untreated

observations, and N3 = {i : yi1 = 1,yi2 = 1} as the selected treated observations:

f(y,y∗|θ) =

 ∏
i∈N1

f(y∗
iC |θ)

×

 ∏
i∈N2

f(y∗
iD|θ)

×

 ∏
i∈N3

f(y∗
iA|θ)


∝ |ΩC |−N1/2exp

−1

2

∑
i∈N1

η∗′
iCΩ

−1
C η∗

iC


× |ΩD|−N2/2exp

−1

2

∑
i∈N2

η∗′
iDΩ

−1
D η∗

iD


× |ΩA|−N3/2exp

−1

2

∑
i∈N3

η∗′
iAΩ

−1
A η∗

iA

 (22)

Equation 22 uses the following definition for η∗
iJ , which is the vector of errors of the sum-of-trees

models for the multiple elements in subset J: η∗
iJ = y∗

iJ − ϕj −
∑
gJ(x

′
iJ ;Th,Mh). This formu-

lation of the complete-data likelihood makes it now possible to calculate the likelihood required

in the accept-reject step in the RW-MH algorithm. Another advantage of this formulation is the

ability to perform three distinct accept-reject steps of the RW-MH algorithm, based on these

three subsets of the covariance matrix. This is advantageous, because a smaller set of proposed

elements leads to an increased chance of a higher acceptance probability, which ultimately leads

to better mixing properties of the algorithm. However, it should be noted that in general, it is

preferred to sample as many parameters as possible in each block of such a Gibbs sampler.
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These three distinct steps are summarized in Algorithm 3, which contains the general steps

of one iteration of the covariance matrix sampler, where the formulas presented in Algorithm 2

can be inserted accordingly for each corresponding step.

Algorithm 3 General steps of one iteration of the adjusted Random-Walk Metropolis-Hasting

algorithm for sampling the covariance matrix

1: Sample proposal values for Ω
′
D = {Ω33,Ω32,Ω31,Ω21}, given their current values ΩD, from

their proposal densities;

2: Accept the proposal values with probability α(ΩD,Ω
′
D)

3: Sample proposal values for Ω
′
A = {Ω44,Ω42,Ω41}, given their current values ΩA, from their

proposal densities;

4: Accept the proposal values with probability α(ΩA,Ω
′
A)

5: Sample proposal values for Ω
′
C = {Ω55,Ω51}, given their current values ΩC , from their

proposal densities;

6: Accept the proposal values with probability α(ΩC ,Ω
′
C)

It is important to note, that the value for Ω21 is only proposed once, even though it appears

twice in the complete-data likelihood. Sampling a value twice brings additional complications

along with it, so the choice is made to only propose the value once along with the other values

for ΩD. This means that, as a result of the sequential nature of the accept-reject steps, the value

that is used in the calculations of the acceptance probability for ΩA is the updated value from

the previous step. This becomes important in the upcoming discussion of positive definiteness.

The last crucial aspect of this covariance sampler, is concerned with the positive definiteness

restriction of any covariance matrix. This means that each set of proposed values for a specific

sub-matrix must result in a positive definite matrix. A sufficient condition for positive definite-

ness of a matrix, is that its determinant must be strictly greater than zero. With this in mind,

a solution for adhering to this problem can be found in the choice of proposal distribution for

the increment vector h. Specifically, if all but one element of a matrix are fixed, the positive

definiteness condition can be achieved through solving the quadratic equation det(ΩJ) > 0, for

any sub-matrix J . The bounds that result from this quadratic equation can be set as the bounds

for a proposal draw from a Truncated Normal distribution, ensuring positive definiteness of the

resulting sub-matrix.

It would be theoretically sufficient to place these bounds on one element in each of the

sub-matrices in Equation 21. However, this could result in disproportional restrictions on one

element compared to the others, leading to poor mixing properties. So, to alleviate some of

the restrictiveness on a single element, and to possibly increase the mixing properties of the

28



algorithm, these bounds are placed on all off-diagonal elements.

For all but one of these elements, these bounds are calculated based on the 2x2 sub-matrix

corresponding to its covariances (e.g. Ω31 bounds positive definiteness of the sub-matrix of

variables 3 and 1). For one element, these bounds are calculated to ensure positive definiteness

of the entire sub-matrix as in Equation 21. This is Ω21 in Step 1 of Algorithm 3, and Ω41 for

Step 3 of Algorithm 3. For Ω21, an additional bound is necessary, because it appears twice

in the complete-data likelihood of Equation 22. When proposing a value for Ω21 in Step 1 of

Algorithm 3, a change occurs in ΩD as well as ΩA. So for the calculations of the likelihood in

the acceptance probability function, both matrices are required to be positive definite, leading

to an extra bound. The bounds and corresponding calculations can be found in Appendix A.

The final part to complete the covariance sampler is then the choice of the distribution for

the increment vector h. From the definition of the random-walk chain proposal, Ω
′
= Ω + h,

it follows that the distribution of the proposal Ω
′
is the distribution of h, centered around the

current value Ω. This fact will be used for providing the proposal distributions of the elements

of the covariance matrix. For the unrestricted diagonal elements, which are the variances of

yi3, yi4 and yi5, the distribution must ensure that the variances are strictly positive. To this

end, a Log-Normal distribution is chosen, centered around the current value. Following the

suggestion of Chib and Greenberg (1998), the variances of the distributions of yi3, yi4 and yi5,

will be set to a multiple of 1
N2
, 1
N3
, 1
N1

, respectively. These multiplication factors will be set to

increase the possible speed of convergence during testing of the algorithm.

As mentioned before, for all off-diagonal elements the distribution will be a Truncated-

Normal distribution, centered around the current value. In addition, the previously mentioned

bounds to ensure positive definiteness will be placed on each element. Similar as for the vari-

ances, the variances of these proposal distributions will be set to the reciprocal of the sample

size of the corresponding subset.

5 Simulation Study

In this section an extensive simulation study is conducted to assess the performance of the SSTE-

BART model and the corresponding MCMC sampling algorithm. Data is simulated using two

data generating processes (DGPs) to evaluate the performance of the model in different settings.

In addition, a comparison will be made against several other already established models, as well

as some variations of the SSTE-BART model. First, an overview of the different settings of the

DGPs will be discussed, along with other specifications for the simulation study.
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5.1 Simulation settings

The first simulation setting is based on one of the settings also used in Chakraborty (2016)

The setting is an adaption of the Friedman’s five-dimensional test function (Friedman et al.

1983; Friedman 1991), which is one of the most common benchmarks for simulation studies

in existing literature. The setting in Chakraborty (2016) only contains four equations, so in

addition to adopting those, an additional fifth equation is constructed to fit the SSTE-BART

model. Furthermore, similar as in Vossmeyer (2016), the covariates in the treatment selection

equation are assumed to have one more covariate than the other equations. This is the variable

x5, which is regarded as the instrumental variable correlated with the treatment but not with

the errors. Additionally, the first equation also contains an additional variable, x6, to simulate

the exclusion restriction which can improve identification and estimation of the model (Heckman

1976). The resulting functions are given below:

y1 = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x6 + ϵ1

y2 = 5sin(πx1x2) + 10(x3 − 0.5)4 + 8x4 + 3x5 + ϵ2

y3 = 20sin(πx1x2) + 15(x3 − 0.5)2 + 30x24 + ϵ3

y4 = 15sin(πx21x2) + 10(x3 − 0.5)2 + 5x4 + ϵ4

y5 = 10sin(π
√
x1x2) + 20(x3 − 0.5)2 + 12x4 + ϵ5, (23)

where the covariates x1, x2, x3, x4, x5, x6 are independently and identically distributed on a

standard Uniform distribution, iid U (0,1). The errors ϵ = (ϵ1, ϵ2, ϵ3, ϵ4, ϵ5) are assumed to

have a multivariate Normal distribution, N5(0,V ). The covariance matrix V is tested for two

different specifications, where one contains higher values than the other. The first one is taken

from Chakraborty (2016) and results in vij = 0.8|i−j|, i, j = 1, ..., 5 for the identified elements

of V , which automatically follows the binary variance restriction. The second one is copied

from Vossmeyer (2016), where the diagonal elements are set equal to 0.25, and the identified

off-diagonal elements all to 0.1. For this setting, the variances for the first two variables are

manually set to 1, to comply with the binary variance restriction.

The second simulation setting is chosen as a counterpart to the highly nonlinear structure

of the first setting. Specifically, a very simple DGP where the covariates are different for

each function, will be implemented to further assess the ability of the model to estimate the

underlying functions. Similar as for the first setting, the first and second equation contain an

extra covariate to help identification and estimation of the model. The functions for the simple
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DGP that follow are displayed below:

y1 = 10x1 + 5x3 + 15x4 + ϵ1

y2 = 12x1 + 5x2 + 8x5 + ϵ2

y3 = 8x1 + 17x2 + ϵ3

y4 = 15x2 + 10x3 + ϵ4

y5 = 10x1 + 5x3 + ϵ5, (24)

where the distributions for the covariates and errors are assumed to be the same as for the

first simulation setting. Furthermore, the two specifications for the covariance matrix V are

similarly tested for the simple DGP.

In addition, for both simulation settings five ‘noise’ variables are added to the covariate

space. These variables, noted as x7, x8, x9, x10, x11, are also assumed to follow a standard

Uniform distribution. Since these variables to not enter the underlying functions of the DGPs,

they have no effect on the response variables. This enables this research to check if the model

correctly excludes these variables from the estimated model, or if the model is unable to handle

noise appropriately.

For both simulation settings, the distribution of observations into the sub-samples associ-

ated with the potential outcomes is assumed to be even. This is done to fairly evaluate the

performance of the model, whereas a skewed distribution might produce biased results in favor

of a larger subset.

5.2 Results of simulation study

To fit the SSTE-BARTmodels, some initial values need to be specified, namely for the covariance

matrix Ω, for the sum-of-tree functions gj(xij , Th,Mh) and for the latent y∗i1 and y∗i2. First, for

Ω the initial values are set according to:

1 0 0 0 0

0 1 0 0 ·

0 0 σ23,ols · ·

0 0 · σ24,ols ·

0 · · · σ25,ols


,

where σj,ols is the standard deviation of the same linear regression as in the prior specification of

the corresponding elements. These values should provide a good starting point for the MCMC

algorithm, to try and estimate any possible covariance matrix. It can be stated that all trees
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should start out as stumps, and because the data is centered, all functions gj(xij , Th,Mh) can be

initialized to the value 0. The latent outcomes are initialized as a random draw from a normal

distribution, truncated to ranges equal to those set in the full conditional draws in Section 4.4.1.

The mean is set to the corresponding binary offsets, with standard deviation equal to 1.

For each of the models, it is important to choose a sufficient number of MCMC iterations

to enable the algorithm to achieve convergence. In general, more iterations result in a higher

chance of convergence, with the downside of increased computational times. Initially, 11,000

MCMC iterations with 1,000 iterations as the burn-in sample provided reasonable convergence,

while also providing moderate computational times. However, doubling this to 22,000 MCMC

iterations with 2,000 burn-in iterations did improve the predictive results by a margin. The

computational time of these models also doubled, making the runtime for some of these models,

especially in the model comparison, undesirable. In addition, the predictive results for the model

comparison did not improve significantly with the doubling of MCMC iterations. Therefore, the

decision is made to run the regular SSTE-BART models with 22,000 MCMC iterations, while

performing the model comparisons based on 11,000 MCMC iterations.

In addition, each of the above mentioned DGPs will be simulated for 4,000 observations,

where the first half is used as the training set, and the second half for testing. In a simulation

study, enough observations are necessary in the training sample to ensure the model is trained

properly. Simultaneously, more observations in the testing set lead to a more accurate perfor-

mance review of the trained model. However, too many observations can lead to deteriorating

mixing properties of the MCMC sampler (Hill et al. 2020), so it becomes a trade-off between

accuracy, but also computational burden. As a result, 4,000 observations with a 50/50 split

provides a sufficient sample size for both sets, while still having a moderate runtime.

For each of the regular BART-based models, SSTE-BART included, the number of trees is

kept fixed at m = 100. Initial testing revealed that increasing the number of trees to m = 200,

as suggested by Chipman et al. (2010), did not significantly improve results while doubling

the runtime. Contrarily, a lower number of trees did negatively impact results in a significant

manner, so for the remaining analyses, the number of trees is kept fixed at m = 100. For

the SoftBART-based models, the default recommendation is m = 25, but initial testing found

m = 50 to provide significantly better results. Even though the runtime of SoftBART-based

model doubles, the results were convincing, so here the number of trees is fixed at m = 50.

Lastly, the multiplication factors for the variances of the proposal distributions are also

set after some testing. The factors for covariance elements containing a 2, 3, 4, and 5 are

respectively, 16, 8, 6, and 6. These values are identical for both the simple DGP and the more
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complex Friedman specification, as they provided appropriate convergence rates for all elements.

To evaluate the performance of the models and the different simulation settings, different

evaluation metrics are used. For predictive performance, the Mean Squared Error (MSE) is used

as the measure for the continuous response variables, y3, y4, y5. However, for the remaining

binary response variables, y1, y2, it is not advisable to use the standard MSE as a measure.

Instead the Brier Score is most commonly used to assess predictive performance of a binary

variable. The Brier Score (BS) is calculated using the formula: BS = 1
N

∑N
i=1(fi − oi)

2, where

fi is the probability of the predicted value for observation i, and oi is the observed outcome

for observation i. This looks similar to the formula for the standard MSE, but is inherently

different with the use of probabilities, making it valid for binary response variables.

Furthermore, three commonly used convergence diagnostics are also calculated to evaluate

the convergence properties of the model. The first two, Geweke’s and Heidelberger & Welch’s

convergence diagnostic can be calculated directly from a single MCMC chain, only requiring one

run of the model. The third one, the Gelman-Rubin convergence diagnostic, traditionally re-

quires multiple MCMC chains with overdispersed starting points. However, Vats and Knudson

(2021) recently developed an improved version of the Gelman-Rubin diagnostic, called Stable

Gelman-Rubin, which requires only one MCMC chain, while increases stability. So, for com-

putational efficiency, the Stable Gelman-Rubin convergence diagnostic will be used, which is

available in the StableGR package in R.

The results for the performance measures are displayed in Table 2 for each different spec-

ification of the simulation setting. Additionally, the posterior means of the elements of the

covariance matrix are also provided for each specification in Table 3.

Table 2: Performance measures of the SSTE-BART model for different specifications of the DGP,

covariance matrix V of the DGP, and the choice for implementation of the Dirichlet prior.

Model: DGP-V-Dirichlet BS y1 BS y2 MSE y3 MSE y4 MSE y5

1: Friedman-Chakraborty-No 0.0608 0.1611 1.5473 1.4427 1.2463

2: Friedman-Chakraborty-Yes 0.0554 0.1602 1.3273 1.2960 1.2554

3: Simple -Chakraborty-No 0.0524 0.1211 1.1468 1.1458 1.0478

4: Simple -Chakraborty-Yes 0.0453 0.1134 1.1352 1.1259 1.0082

5: Friedman-Vossmeyer -No 0.0583 0.1563 0.8476 0.6042 0.4438

6: Friedman-Vossmeyer -Yes 0.0519 0.1557 0.6503 0.4763 0.3957

7: Simple -Vossmeyer -No 0.0456 0.1125 0.3271 0.3024 0.2846

8: Simple -Vossmeyer -Yes 0.0409 0.1058 0.3086 0.2866 0.2819
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From Table 2 a couple of observations can be made. The Brier scores for y1 are all between 0.04

and 0.06, meaning that the SSTE-BART model is very accurate in predicting if an observation

will be selected into the sample. A similar observation can be made for the Brier score of y2,

where the values range from 0.10 to 0.16, indicating slightly worse, but still quite good, predictive

capabilities. The MSE values of specifications where V is set according to Chakraborty (2016)

are significantly higher than for the models based on Vossmeyer (2016). This is to be expected,

as the covariance matrix V of the DGP influences the variability in the response variables,

where a higher variability in the model can lead to model predictions being more inaccurate, as

the relations between the variables can become more obscure. Furthermore, predictions based

on the simple DGP are more accurate in all settings, which is in line with the expectation that a

simpler model is easier to estimate than a more difficult one. Additionally, the use of a Dirichlet

prior on the splitting probabilities of the tree sampler lead to more accurate predictions in all

settings for the SSTE-BART model, further proving the results of Linero and Yang (2018).

Table 3: Posterior means of the covariance matrix of the SSTE-BART model. The top four models are

based on the Chakraborty covariance specification, and the bottom four on the Vossmeyer specification.

Model Ω11 Ω21 Ω22 Ω31 Ω32 Ω33 Ω41 Ω42 Ω44 Ω51 Ω55

Actual 1 0.80 1 0.64 0.80 1 0.51 0.64 1 0.41 1

1 1 0.02 1 0.09 0.19 0.76 0.05 0.39 0.76 -0.03 0.83

2 1 0.02 1 0.29 0.27 0.80 -0.06 0.32 0.90 0.10 0.91

3 1 0.00 1 0.15 0.42 0.83 0.11 0.25 0.77 0.18 0.91

4 1 0.32 1 0.36 0.63 0.93 0.38 0.55 0.88 0.26 1.07

Actual 1 0.10 1 0.10 0.10 0.25 0.10 0.10 0.25 0.10 0.25

5 1 -0.04 1 -0.03 -0.08 0.30 0.07 -0.13 0.23 -0.04 0.21

6 1 -0.19 1 -0.01 -0.17 0.28 0.08 -0.25 0.26 0.05 0.22

7 1 0.04 1 0.01 0.11 0.21 -0.02 0.02 0.20 -0.08 0.24

8 1 0.16 1 0.08 0.05 0.24 0.06 0.10 0.24 0.09 0.26

The posterior means of the covariance matrix elements in Table 3 provide additional insights

in the performance of SSTE-BART. The table is divided in two sections, each corresponding to

one of the specifications for the covariance matrix of the DGP, V . For both specifications of V

it can be seen that the models with the simple DGP, models 3, 4, 7 and 8, are more successful

in approximating the true covariances than the models with Friedman DGPs. Furthermore, the

variance elements, Ω33,Ω44,Ω55, get estimated accurately more frequent than the remaining

covariances. The implementation of a Dirichlet prior improves the estimation accuracy for a
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majority of the elements in models with the Chakraborty covariance matrix specification, but

has no significantly noticeable effect on the other models. The exception being Model 8, where

the estimates are significantly more accurate than for its counterpart Model 7, which does not

have the Dirichlet prior.

Convergence of the algorithm is checked using the previously mentioned diagnostics, which

are performed on the nine sampled elements of the covariance matrix. For all models, Heidel-

berger’s diagnostic returned that stationarity was almost never achieved for any of the nine

elements of the covariance matrix, which seems unreasonable. The Geweke diagnostic is more

optimistic, claiming a number of stationary elements between 6 and 8, indicating reasonable

convergence. Stationarity is almost always achieved for the unrestricted diagonal elements,

while it differs quite randomly for the remaining elements. The interpretation of the Gelman-

Rubin statistic requires a cut-off point for establishing stationarity, similar to a significance level

in statistical testing. In existing literature this value is often chosen arbitrarily to achieve high

convergence outputs, and the authors of the original Gelman-Rubin diagnostic recommend in

a later paper that a cut-off value of 1.1 is sufficient (Gelman et al. 1995). However, this has

been heavily criticized by the developers of the StableGR package (Vats and Knudson 2021),

stating that this leads to much too lenient convergence claims. Instead they suggest a formula

to calculate an appropriate cut-off point, which should be sufficient in most scenarios. The value

resulting from this formula will simply be provided here, for the specific formula the reader is

referred to Section 5 of Vats and Knudson (2021). In the SSTE-BART model, the appropri-

ate cut-off value is 1.0029, which is much lower and stricter than 1.1. The difference between

the cut-off values is drastic, as for a cut-off of 1.0029, only a small portion of the elements is

stationary across all models. On the contrary, a cut-off of 1.1, or even 1.05, indicates that all

elements are stationary across all models.

To further investigate convergence, as these diagnostics are not able to provide conclusive

evidence, the MCMC chains of each of the elements are plotted, to find out if there are some

visual indications of convergence. Figure 2 contains the plots for the MCMC chains of Model

2. From Figure 2 it looks like the variances are fluctuating around a value which approximates

the true values, indicating convergence. The remaining covariances are different from this, as

some similarly fluctuate around a value which is not close to the true value, but what would

still indicate some form of convergence has been achieved. However, it would be presumptuous

to assume convergence for these elements, as they are mostly non-stationary near the end of

the chain, and also in general throughout the entire chain. Plots of other models exhibit similar

patterns, so they are not shown in this paper as similar observations can be made for them.
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Figure 2: Plots of 20,000 MCMC chains (after burn-in) for the sampled elements of the covariance

matrix for Model 2. From left to right, top to bottom: Ω21,Ω31,Ω41; Ω51,Ω32,Ω42; Ω33,Ω44,Ω55

The biggest difference between models is mostly not the rate of convergence, but rather the

point where the chain convergence to. So it seems like different specifications for the model do

not lead to differing convergence rates, but do affect the accuracy of the point of convergence,

which is reflected in the posterior means.

5.2.1 Model Comparison

The performance of the SSTE-BART model is compared against several other related methods,

which are primarily other BART-based methods. First of all, as mentioned in Section 4.3, soft

trees are implemented in the model, resulting in a model which will be called SSTE-SoftBART.

This implementation is achieved using the SoftBart package in R, developed by Linero and

Yang (2018). The second model for comparison is also a version of the SSTE-BART algorithm,

where the covariance sampler as developed in Vossmeyer (2016) is implemented. This sampler is

similar to the one in McCulloch and Rossi (1994), which was criticized by Chib and Greenberg

(1998) whose sampler is adopted in the SSTE-BART model. It should illustrate the difference

in performance of those samplers, and the resulting model will be referred to as VoSSTE-BART.

Additionally, the standard versions of the regular BART and SoftBART algorithms will be

tested as comparisons. Since each of these algorithms can only handle a univariate model, five

separate models will be estimated for each of the five equations in the SSTE-BART model.

Therefore, each model only contains the observations which are observed for the sample asso-

ciated with that equation. For the regular BART algorithm, this results in two probit BART

models and three regular BART models. These models are easily fitted using the same dbarts
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package, and most settings are kept at their default values. The only adjusted settings are 100

trees, 11,000 MCMC iterations and a removed ’SWAP’ probability.

A similar model construction is done for the SoftBART models, where two probit SoftBART

models and three regular SoftBART models are estimated, using the same SoftBART package.

Again, the parameter settings of each model are kept at their default values, with the exception

of 50 trees and 11,000 MCMC iterations.

The final comparison model is the TOBART-2 model, which is not officially released but

provided by dr. O’Neill2. Essentially, TOBART-2 is a sample selection model based on Type-2

Tobit, where the nonselected observations are censored at zero, and there is only one single

outcome equation. In context of the SSTE-BART model, this means no yi2 & yi5, and yi3 &

yi4 are combined into a single outcome variable, along with yi1 as the selection variable. The

parameter settings for the TOBART-2 model are kept at their default, where the number of

trees and MCMC iterations are again set at 100 trees and 11,000 iterations.

For the model comparison, a benchmark specification belonging to one of the tested SSTE-

BART models must be chosen. While the MSE values in Table 2 differ significantly for the choice

of V , it is difficult to conclude if one of the choices can be preferred. So for the comparisons, the

specification with Chakraborty covariances will be used, as it provides the clearest differences

in results for both the predictive performance measures as the posterior means. Additionally,

the implementation of a Dirichlet prior on the splitting probabilities has a positive impact on all

models, so it will be implemented for the SSTE-SoftBART and VoSSTE-BART models. Here, it

is important to note that the SoftBART package automatically implements the desired Dirichlet

Prior, such that no additional code is required. It is also of interest for these comparison models

to be tested on different levels of complexity of an underlying DGP, as results can greatly differ

accordingly. Hence, each comparison model will be tested for both the simple and Friedman

DGPs. Therefore, the two benchmark models for SSTE-BART are Model 2 (Friedman DGP)

and 4 (simple DGP) from Table 2

The results for predictive performance of all comparison models, alongside the benchmark

for SSTE-BART, are presented in Table 4 and 5. For the three variations of the SSTE-BART

model, the same five performance measures, consisting of the Brier scores and MSE values, can

be calculated. As a result of the five separate models for each of the equations in the runs

of regular BART and SoftBART, these performance measures can also be calculated for these

models. However, for the TOBART-2 model, it is only possible to calculate the Brier score for

the sample selection equation, and one MSE value for the single outcome equation. But, by

2https://github.com/EoghanONeill/TobitBART
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changing the treatment status in the test data, it becomes possible to obtain predictions for

both yi3 and yi4.

Table 4: Predictive performance results of all comparison models for the Friedman DGP specification.

Model BS y1 BS y2 MSE y3 MSE y4 MSE y5

SSTE-BART 0.0553 0.1598 1.3917 1.2791 1.2483

SSTE-SoftBART 0.0468 0.1526 0.9662 1.0588 1.0075

VoSSTE-BART 0.0499 0.1590 1.4253 1.2911 1.2448

BART 0.0560 0.1174 1.4537 1.3719 1.2245

SoftBART 0.0436 0.1094 0.9355 1.0540 1.0190

TOBART-2 0.0574 1.7704 1.3789

Table 5: Predictive performance results of all comparison models for the simple DGP specification.

Model BS y1 BS y2 MSE y3 MSE y4 MSE y5

SSTE-BART 0.0458 0.1142 1.1387 1.1107 1.0105

SSTE-SoftBART 0.0405 0.1071 1.0697 1.0082 0.9570

VoSSTE-BART 0.0397 0.1118 1.0968 1.1275 1.0059

BART 0.0396 0.0566 1.1342 1.1413 1.0407

SoftBART 0.0361 0.0523 1.0061 0.9996 0.9540

TOBART-2 0.0329 1.0752 1.1366

From Table 4 it can be seen that the implementation of soft trees (SSTE-SoftBART) results

in significantly more accurate predictions compared to the original SSTE-BART model. On

average this is a 22.4% decrease in MSE values for the Friedman DGP and an average decrease

of 6.9% for the MSE values of the simple DGP. A similar observation can be made from Table

5, where SSTE-SoftBART also outperforms the original SSTE-BART model. The VoSSTE-

BART model obtains comparable predictive results as SSTE-BART, showcasing the predictive

capabilities of the algorithm even with a theoretically invalid covariance matrix sampler. Fur-

thermore, the difference between predictive accuracy between the simple DGP and complex

DGP is greatly reduced in favor of the SSTE-SoftBART model. This indicates that the SSTE-

SoftBART model can handle a complex underlying DGP as good, if not better, than a simple

DGP. The performance of the regular BART and SoftBART models are mostly comparable

to their SSTE counterparts, and even provide a better Brier score for the treatment selection

equation yi2. This difference in Brier scores is especially apparent for the simple DGP, where

the Brier scores are halved. Revealing that the standard models of BART and SoftBART can
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achieve similar performance as more detailed models built around them. This could be an in-

dication that the SSTE-BART and SSTE-SoftBART models are not better than the standard

versions at solely predicting the response variables. However, the standard models are not able

to capture combined effects of variables and are accompanied by other restrictions.

For the three models based on the SSTE-BART algorithm posterior means of the covariance

matrix can be obtained and are displayed in Table 6.

Table 6: Posterior means of the covariance matrix of the comparison models. The top four models are

based on the Friedman DGP specification, and the bottom four on the simple DGP specification.

Model Ω11 Ω21 Ω22 Ω31 Ω32 Ω33 Ω41 Ω42 Ω44 Ω51 Ω55

Actual 1 0.80 1 0.64 0.80 1 0.51 0.64 1 0.41 1

SSTE-BART 1 -0.11 1 0.28 -0.02 0.78 -0.22 0.41 0.92 0.14 0.93

SSTE-SoftBART 1 0.30 1 0.56 0.60 1.02 0.11 0.45 0.98 0.28 1.02

VoSSTE-BART 1 0.26 1 0.64 0.00 0.79 0.21 0.00 0.91 0.11 0.93

SSTE-BART 1 0.35 1 0.39 0.64 0.94 0.44 0.56 0.89 0.28 1.09

SSTE-SoftBART 1 0.39 1 0.39 0.81 1.03 0.35 0.56 0.95 0.43 1.08

VoSSTE-BART 1 38281 1 1.06 2.10 0.93 1.09 3.41 0.89 3.66 1.07

In line with the predictive performances, for the complex Friedman DGP the SSTE-SoftBART

models are able to approximate the true values of the covariance matrix significantly better

than the other two models. However, for the simple DGP differences between SSTE-BART

and SSTE-SoftBART are smaller, but still a slight edge to latter. The model is still slightly

struggling to accurately approximate the off-diagonal elements of the covariance matrix for the

complex DGP, but obtains much better results than the regular SSTE-BART model.

From Table 6 it can also be seen, that the VoSSTE-BART model is not able to accurately

estimate these off-diagonal elements at all. This is to be expected, as the sampler for the

covariance matrix itself is not valid. For the simple DGP, the SSTE-SoftBART estimations are

most accurate, but still not near a range of significantly correct estimation.

5.2.2 Treatment Effects

The last part of the results of the simulation study are concerned with treatment effects, which

is a big aspect of this research. There exist many different approaches to calculate a variety

of treatment effects, so first the choice and definitions of the treatment effects calculated in

this research will be given. After this, the corresponding results for these calculations will be

provided and discussed briefly.
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In a general sample selection and treatment effect model, the effect of a treatment can

be found by comparing the treated sample versus the untreated sample. A commonly used

measure for this is the Average Treatment Effect (ATE), which is defined as the difference

between expected value of the response variable for the treated sample versus the expected

value of the response variable for the untreated sample. Formally, this can be written down

as: ATE = E[Y |X = 1] − E[Y |X = 0]. In the context of this research, this translates into:

ATE = E[y4] − E[y3]. No conditions are necessary to check if an observation belongs to

the corresponding sample, as this is already correct as a result of the model structure. This

measure can easily be calculated for all models included in this simulation study, and the results

are presented in Table 7.

Table 7: Estimated Average Treatment Effects for all comparison models for both DGP specifications.

Model ATE Friedman ATE Simple

Actual -8.43 3.49

SSTE-BART -8.60 3.29

SSTE-SoftBART -8.74 3.19

VoSSTE-BART -8.48 3.45

BART -8.58 3.39

SoftBART -8.47 3.43

TOBART-2 -8.45 3.39

From Table 7 it can be seen that the ATE is similar across all models, and that they are able to

all approximate the average treatment effect of the test set accurately. Surprisingly, the SSTE-

BART and SSTE-SoftBART models estimate the ATE worse than the comparison models for

both the complex Friedman DGP as the simple DGP.

However, the strength of SSTE-BART lies in the fact that the use of Bayesian Additive

Regression Trees allows for Heterogeneous Treatment Effects (HTE). Through BART, each

observation can exhibit a unique effect on the given treatment, which in turn can be extracted

from the model. Recall that for each observation, only one state for treatment is observed,

while the unobserved state is called the counterfactual. However, for simulated data it becomes

possible to estimate this value, because the underlying DGP is known to the researcher. As

a result, the treatment effect for a single observation i, defined as HTEi can be calculated,

following a similar formula as the ATE: HTEi = E[yi4]− E[yi3].

As an example, a histogram of the distribution of Heterogeneous Treatment Effects for

Model 2 of SSTE-BART is displayed in Figure 3.
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Figure 3: Distribution of Heterogeneous Treatment Effects for Model 2 of SSTE-BART

From Figure 3 it can be confirmed that the SSTE-BART model is indeed capable of estimating

heterogeneous treatment effects. Furthermore, following from the setting of the simulation

study, the distribution of these treatment effects should follow a Normal-like distribution. The

distribution in Figure 3 has a shape looking like a Normal distribution, with the exception of

some non-Normal spikes. Other model specifications for the SSTE-BART model show a similar

shape, but are excluded from this paper to not compromise its conciseness.

6 Application

This section will discuss the application of the SSTE-BART model on a real-life dataset that

fits the sample selection and treatment effect model. The dataset is the well-known National

Supported Work (NSW) Demonstration dataset 3, obtained from the experiment performed by

LaLonde (1986). The NSW Demonstration was a voluntary labor training program initiated

to help individuals struggling with basic job skills, operated by the Manpower Demonstration

Research Corporation (MDRC). These individuals could apply to the program, and if chosen

were given a temporary job position in a supportive environment. Here they were provided with

a decent salary and received frequent counseling. As a result, these individuals got a unique

opportunity to develop skills they were lacking in a monitored environment.

6.1 Data preparation

In addition to observations for these treated and untreated individuals, LaLonde (1986) also

included a set of control observations obtained from the Panel Study of Income Dynamics

3The dataset can be easily loaded from the rrp package in R.
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(PSID). The combination of NSW and PSID observations results in an almost perfectly fit for

the structure of an SSTE model. However, one requirement is violated, which is the requirement

of non-randomized selection into treatment. The nature of the NSW Demonstration program

explicitly stated that it would have been unethical if the treatment selection was not random-

ized (MDRC 1980). Nevertheless, the dataset should still be able to provide insights in the

performance of the model for a real-life dataset, so analysis is continued.

The combined dataset contains observations for n = 3212 individuals, where for each indi-

vidual demographics such as age and received education are available. As mentioned before,

the observations can be divided into three categories: applied for the NSW program but not

selected (untreated), applied for the program and selected (treated), and not applied for the

program at all (nonselected). The sizes for the untreated, treated and nonselected samples are

N2 = 425, N3 = 297, and N1 = 2490, respectively.

The variable of interest is denoted as the income of the individual during a specific year.

There are three years available, 1974, 1975 and 1978, where the first two years are before the

NSW Demonstration program, and 1978 corresponds to the post-treatment year.

To analyze the effect of treatment, the response variable for the analyses is constructed as

the difference between income in 1975 (pre-treatment) and 1978 (post-treatment). Additional

cleaning of the dataset is done, as observations for which the income in either 1975 or 1978 is

missing are removed to improve accuracy. This is the reason why the year 1974 is not used

here, as it contained many missing observations, which would lead to a significant portion

of the data being removed. The updated sample sizes for the three potential outcomes are

N2 = 150, N3 = 182, and N1 = 2122, respectively. The difference in size between the selected

and nonselected samples is quite high, as ideally the observations would be equally distributed.

Recall that the nonselected observations all come from the PSID, such that a random subset

of these observations should still provide a representative subset of the nonselected sample.

Therefore, a number of observations similar to the other two categories, namely N1 = 171,

is randomly sampled from the PSID set of observations. Furthermore, because the order of

magnitudes differ greatly between the variables, both the response variable and the covariates

are standardized.

6.2 Results for the NSW dataset

The dataset is run on the same set of comparison models as for the simulation study, to further

analyze the performance of the SSTE-BART model. Similarly, all models are run for a total

of 11,000 MCMC iterations, with 1,000 observations treated as the burn-in sample. Since the
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dataset is not very large, the training set must be of sufficient size in order for the model to

estimate an accurate model, so a train-test split of 80/20 is chosen. The number of trees is also

kept exactly the same as for the simulation study, with m = 100 for the BART-based models,

and m = 50 for the SoftBART-based models. Finally, after initial runs of the SSTE-BART

model, the multiplication factors for the variances of the proposal distributions are fixed at 10,

3, 4, and 6. These correspond to elements of the covariance matrix containing a 2, 3, 4, and 5

respectively.

Additionally, the fit of the SSTE-BART models is completed by specifying initial values

for the covariance matrix Ω, for the sum-of-tree functions gj(x
′
ij , Th,Mh) and for the latent

variables y∗i1 and y∗i2. For this application, the exact same initial values as for the simulation

study are chosen, as reasonable results were obtained there. Moreover, those initial values were

chosen to fit a broad number of different data specifications, so it should be an appropriate

choice. The predictive performance results of each model are presented in a similar form as for

the simulation study, and are displayed in Table 8.

Table 8: Predictive performance results of all comparison models for the standardized NSW dataset.

Model BS y1 BS y2 MSE y3 MSE y4 MSE y5

SSTE-BART 0.1221 0.2457 0.4686 0.4870 0.4193

SSTE-SoftBART 0.1084 0.2502 0.3765 0.2604 0.1676

VoSSTE-BART 0.1224 0.2531 0.3578 0.3885 0.5014

BART 0.0814 0.2558 0.4754 0.3439 0.3550

SoftBART 0.0798 0.2516 0.3851 0.2652 0.1373

TOBART-2 0.0541 0.4525 0.2957

From Table 8, similar observations can be made as for the simulated data in the previous section.

It can be seen that SSTE-SoftBART outperforms the regular SSTE-BART model by some mar-

gin, with MSE values for yi3, yi4, yi5 decreased by 19.7%, 46.5% and 60.0%, respectively. Again,

the standard models of BART and SoftBART achieve similar predictive performance results as

their SSTE counterparts, with standard BART outperforming SSTE-BART just slightly. Both

standard BART as standard SoftBART obtain a lower Brier score for yi1, similar as for yi2

in the simulation study. The TOBART-2 model achieves an even better Brier score for the

prediction of sample selection, while also predicting the outcomes fairly comparable to the rest.

Next, the estimated posterior means of the elements of the covariance matrix V are presented

in Table 9.

These estimates of the covariances can aid in understanding relations between different equations
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Table 9: Posterior means of the covariance matrix of the comparison models for the standardized NSW

datasaet.

Model Ω11 Ω21 Ω22 Ω31 Ω32 Ω33 Ω41 Ω42 Ω44 Ω51 Ω55

SSTE-BART 1 0.39 1 -0.39 -0.15 1.00 0.26 0.43 1.31 0.20 0.75

SSTE-SoftBART 1 0.05 1 -0.33 -0.25 1.11 -0.05 -0.00 1.03 0.14 1.00

VoSSTE-BART 1 -0.10 1 -0.02 0.01 0.93 0.00 0.00 0.89 0.00 0.81

in the model. For instance, the negative values for the estimate of Ω31 indicate a negative relation

between the third and first equation. Which can be translated as, the effect of applying for the

NSW Demonstration program, leads to a lower income after being rejected for the program.

This conclusion is logical, in the sense that an individual who is rejected after application is more

likely to compromise on salary as this individual does not have the basic job skills necessary to

improve their position. In addition, estimates of Ω32 and Ω42 can reveal selection of treatment

on unobservables, if these values are nonzero. For example, the estimates of Ω32 for SSTE-

BART and SSTE-SoftBART are both nonzero, indicating that there could indeed be selection of

treatment on unobservables. In existing literature surrounding the NSWDemonstration dataset,

there has been quite some attention towards assessing the sensitivity to unconfoundedness, which

is the term generally used for selection of treatment on observables (Imbens 2003; Masten et al.

2024). This indicates that there most likely is selection of treatment on unobservables in the

NSW dataset, which is also shown in the estimates for Ω32 and Ω42. However, as the elements

differ significantly between each model and predictive results showed a disability to correctly

estimate the underlying model, concrete conclusions based on these values must be taken with

care. The Average Treatment Effect (ATE) is also calculated for each of these models, and the

results are presented in Table 10.

Table 10: Estimated Average Treatment Effects for all comparison models on the NSW dataset.

Model ATE

SSTE-BART -4049.19

SSTE-SoftBART 1389.30

VoSSTE-BART -352.84

BART 856.31

SoftBART 542.09

TOBART-2 345.88

Table 10 displays an interesting pattern, where there is a wide range of estimated ATEs across
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all models. This could be the result of the relatively small size of the final dataset, or because

the models are simply not able to estimate the underlying model of the data correctly. Existing

research into the dataset has often revealed an ATE ranging between $1, 500−$1, 800 (LaLonde

1986; Dehejia and Wahba 1999). The SSTE-SoftBART model is the only one successful in

approximating this range, but the wide range of ATE estimations still suggests a poor ability

to estimate the underlying model from the NSW dataset.

Heterogeneous Treatment Effects (HTEs) are difficult to calculate for a real-life dataset, as

the counterfactuals are never observed. There exist different machine learning algorithms capa-

ble of calculating HTEs (Künzel et al. 2019; Syrgkanis et al. 2019), but these models are often

not easily accessible and require in-depth knowledge of the machine learning techniques used.

Therefore, as this research has already demonstrated its capabilities to estimate heterogeneous

treatment effects, the calculations for the NSW Demonstration dataset are omitted.

7 Discussion

This section provides a thorough discussion of the obtained results from the simulation study in

Section 5 and the real-life data application in Section 6. Additionally, some potentially limiting

aspects of the SSTE-BART model will be discussed.

Starting with the simulation study, recall that the SSTE-BART model is tested on two

different specification of the underlying DGP of the data. A simple DGP is constructed, as well

as a more complex variant based on the Friedman function. In addition, the implementation of

sparse splitting rules through the use of a Dirichlet prior on the splitting probabilities is tested.

Furthermore, two specifications of the covariance matrix for the DGP, V , are tested, based on

the settings used in Vossmeyer (2016) and Chakraborty (2016).

First of all, there is a clear difference in the MSE values between the different specifications

of V . For the Vossmeyer specification, which consists of smaller covariances, the MSE values

are much lower, indicating that the predictions are more accurate. This is not surprising, as the

response variables contain little variability, making it easier for predictions to approximate the

true values. Furthermore, the complexity of the DGP also strongly impacts predictive perfor-

mance. For all combinations of specifications, models trained on the simple DGP obtain better

accuracy in predicting the response variable than the complex DGP counterparts. This could

mean that the standard SSTE-BART model is not able to estimate the underlying functions

of the model accurately if it is complex. The incorporation of a Dirichlet prior on the splitting

probabilities of the regression trees proves to be an improvement for all model specifications,

which is in line with the conclusions in Linero and Yang (2018). Additionally, only a fixed
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number of trees was considered for each model, while it has been shown in existing literature

that each component in a model can require a different number of trees (Chakraborty 2016).

Hence, it could be of interest to research different settings for the number of trees, to try and

improve performance of the model.

Combining these findings, the model which provides the best performance results for both

specifications of the covariance matrix, is the model with a simple DGP and Dirichlet prior

on the splitting probabilities. The posterior means for the elements of the covariance matrix

provide additional insights in the performance of the model. It is shown that the best predicting

models are able to accurately estimate the elements corresponding to the variances of the

variables y3, y4 and y5. For the other model specification, these variances are sporadically

estimated near their true values, but are more often inaccurate. The same can be said for all

estimates of the covariances, which the SSTE-BART model has trouble estimating accurately.

The best predicting models again perform the best compared to the other models, but still fail

to consistently approximate the true values. This is most likely a result of the implementation

of the Random-Walk Metropolis-Hasting algorithm constructed for the sampler of covariances.

The performance of such a sampler in the scenario with unidentified elements along with binary

response variables, was also questioned by Chib et al. (2009). In addition, this research places

multiple bounds on the proposal values for these elements, to ensure positive definiteness of

the covariance matrix. It is possible that these restrictions impact the ability of the model to

accurately estimate the covariances.

The comparison of versions of the SSTE-BART model with other competing models has

not confirmed the claim of ignoring sample selection leading to less accurate results Vossmeyer

(2016). The runs for the standard models of BART and SoftBART are able to equally accurate

predict the response variables, and in most cases are even more accurate in estimating the

selection variables. This indicates that estimating the SSTE structure simultaneously in the

SSTE-BART model, is not able to outperform separate models for each aspect of the SSTE

model. This is surprising, as allowing for combined effects of variables in a model, generally

leads to more accurate estimation of the underlying model.

Furthermore, the implementation of soft trees in the SSTE-BART model, referred to as the

SSTE-SoftBART model, significantly outperforms the other SSTE-BART models. Concretely,

the MSE values for the simple DGP simulated data are on average approximately 6.9% lower for

SSTE-SoftBART than for regular SSTE-BART. While for the complex DGP, this percentages

moves to a 22.4% decrease, further confirming the capabilities of soft trees as stated in Linero

and Yang (2018). Moreover, the predictive performance of SSTE-SoftBART for the complex
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DGP is equal to that for the simple DGP. This indicates that the SSTE-SoftBART model is

able to handle data with a complex underlying DGP as good as a simple DGP. A notable

observation that can be made, is that the predictive performance of the SSTE-BART model

with the wrong covariance sampler, VoSSTE-BART, performs equally to the standard SSTE-

BART model. This shows that a theoretically invalid estimation procedure, can still obtain

results similar to a theoretically valid one.

It should be noted however, that the obtained results for predictive performance are not

nearly as good as those obtained in the papers this research was based upon (Vossmeyer 2016;

Chakraborty 2016). This could be the result of this research requiring the construction of a

novel approach to the estimation procedure for the parameters of the model. Multiple choices

are made which differ from ones made for the models in the original papers, like the choice of

prior distributions, or which variables to sample in the Gibbs sampler.

The results for the posterior means of the covariance matrix can only be calculated for the

SSTE-BART models, and not for the other comparison models. Still, a similar pattern can be

found, where SSTE-SoftBART is estimating the covariances more accurately then its counter-

parts. However, for the simple DGP the estimations are significantly more accurate than for

the complex DGP. The approximation of the true values of the covariances are also closer for

SSTE-SoftBART, with the posterior means of the simple DGP being extremely close. This

indicates that the implementation of soft trees to the SSTE-BART model not only increases

predictive performance, but is consequently also able to more accurately estimate the covariance

matrix. This raises the question if the RW-MH sampler might not be the only cause of bad

estimates, and that the fit of the sum-of-trees models actually plays a significant role. More-

over, the estimates of the VoSSTE-BART models are somewhat good for the complex DGP,

while they are some orders of magnitude off for the simple DGP. This is another indication

that a theoretically invalid sampler for the covariance matrix produces untrustworthy results.

Additionally, the values for Ω32 and Ω42 are set to a nonzero value while simulating the data.

As a result, the data is modeled to have selection of treatment on unobservables, which lead to

biased results from BART-enhanced algorithms as these models can only account for treatment

selection on observables. This can often be improved by including estimates of propensity scores

as splitting variables, or through the use of methods like IV-BART (Spanbauer and Pan 2022).

The calculation of treatment effects showcased the ability of the SSTE-BART models to

correctly estimate the Average Treatment Effect (ATE). However, the other comparison models

achieved equally accurate estimations, and in some cases even more accurate. Specifically, the

standard runs of the BART and SoftBART models approximated the true ATE of the test set
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more accurately than their SSTE counterparts. This further demonstrates the capabilities of

these algorithms in itself. The difference with the more complex SSTE-BART models could be

explained by the fact that the effects of treatment are easily separable, not requiring a very

in-depth model to extract them.

Furthermore, Heterogeneous Treatment Effects (HTEs) are confirmed to be captured in

the SSTE-BART models, and display an expected normal distribution. This is a convincing

argument that the implementation of BART to the original SSTE model has indeed resulted in

the ability to estimate HTEs.

The application of the SSTE-BART model on the NSW dataset provided a set of mixed

results. First of all, the predictive performance results display that SSTE-SoftBART also pre-

dicts more accurately compared to the regular SSTE-BART model. With MSE values lower on

average by approximately 37%. Additionally, all comparison models are able to equally accu-

rate predict the response variable, with MSE values comparable to the SSTE-BART models.

This adds to the argument that the ability of the SSTE-BART to estimate combined variable

effects, does not result in improved predictive performance. Similar as in the simulation study,

the VoSSTE-BART model predicts equal, if not better, than the standard SSTE-BART model.

It is important to note that these predictive results are obtained from standardized variables,

such that it is difficult to judge the relative performance of these models. This becomes also

apparent for the posterior means of the elements of the covariance matrix. This standardization

is done for better interpretation of the results, as the non-standardized results were of an

extremely high order of magnitude, making inference very difficult. This also shows that the

used dataset is perhaps not entirely correct to be used in this setting. Recall that one of the

requirements of the dataset was already violated, where the treatment was randomized instead

of being non-random. Moreover, the final dataset only consists of around 500 observations,

which is quite small to extract meaningful and significant results. Especially after dividing the

dataset into their respective potential outcomes, resulting in an average of 167 observations in

each sample. One other option to evaluate the performance of the model on such a small dataset

more accurately, would be to use k-fold cross-validation on the train-test split of the data.

These less than ideal properties of the dataset could potentially be the cause for the ex-

treme fluctuations in the calculated ATE across the models, as well as the variability in the

posterior means of the covariances. Hence, additional research is required to further assess the

performance of the SSTE-BART model on real-life data.
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8 Conclusion

This research extends the existing SSTE model (Vossmeyer 2016) to capture heterogeneous

treatment effects, by replacing the linear structure of the model with BART terms. In addition,

the model is adjusted further to fit more general applications, by assuming the selection variables

to be binary instead of continuous. Following from this, this research tries to answer the

following research question: “Can heterogeneous treatment effects be captured in the sample

selection and treatment effects model, using Bayesian Additive Regression Trees?”

Moreover, the resulting SSTE-BART model is further tested for improvements by imple-

menting soft trees and imposing sparse splitting rules. To be able to estimate these models, a

novel MCMC estimation procedure, based on the RW-MH algorithm, is developed, capable of

handling identification issues in combination with binary selection variables.

An extensive simulation study revealed that the variant of the SSTE-BART model con-

taining the implementation of both soft trees, SSTE-SoftBART, resulted in significantly better

performance than the standard SSTE-BART model. Consequently, the SSTE-SoftBART model

was able to achieve comparable results to the other competing models, while also providing more

accurate estimations of the covariance matrix. However, standard versions of BART and Soft-

BART provided equally good results, indicating the SSTE-BART models can still be improved

by some margin. Furthermore, it was shown that Heterogeneous Treatment Effects are indeed

correctly captured in the SSTE-BART models, achieving the main goal of this research.

The application of the SSTE-BART models on a real-life dataset further confirmed the

superior performance of the SSTE-SoftBART model. However, no additionally useful insights

were able to be extracted from the dataset, which still raises questions on the performance of

SSTE-BART on real-life data.

To conclude, this research has succeeded in correctly estimating heterogeneous treatment

effects in a sample selection and treatment effects model, through the use of Bayesian Additive

Regression Trees. Additionally, a successful attempt at constructing a novel estimation proce-

dure for a covariance matrix with unidentified elements and binary variables has been provided.

The SSTE-SoftBART model has proven itself to be a good performing model, but it can still

be improved as the results are not yet improved compared to Vossmeyer (2016).

8.1 Future Research

Even though an estimation procedure for a restricted covariance matrix was successfully con-

structed, it has much room for improvement. Approaches similar to Chan and Jeliazkov (2009)

and Zhang et al. (2015) have the potential to provide more accurate samplers, if correctly ad-
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justed to fit the restrictions. Furthermore, as the SSTE-BART model does not outperform

the standard versions of BART and SoftBART, future research into generally improving the

SSTE-BART algorithm is desired. In addition, this research only tested one specification for

the prior and proposal distributions. More research could be done to see if the performance is

influenced by a different choice for these distributions.

This research specifically used Bayesian Additive Regression Trees to try and capture het-

erogeneous treatment effects, but there exist other methods capable of this. Examples consist

of other tree-based methods like Causal Random Forest (Hahn et al. 2020), or other regression-

based methods like Debiased/Double Machine learning (Chernozhukov et al. 2018).

Moreover, combining the SSTE-BART model with other Machine Learning algorithms to

be able to also estimate heterogeneous treatment effects for real-life data, is another interesting

step towards improving the model (Künzel et al. 2019; Syrgkanis et al. 2019).

For the application on a real-life dataset, there were very few datasets available online, so

any future research into finding fitting datasets to tests the performance of SSTE models is very

relevant.
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A Appendix

A.1 Bounds for 2x2 sub-matrices

A.1.1 Bounds for Ω32

To ensure positive definiteness in the sub-matrix

Ω22 Ω23

Ω32 Ω33

, its determinant must be strictly

greater than 0. For a fixed proposal of Ω33 and Ω22 = 1, this results in the following bounds on

Ω32, displayed in Equation 25:

det

 1 Ω23

Ω32 Ω33

 > 0

Ω33 − (Ω32Ω23) > 0

Ω33 > Ω2
32

−
√
Ω33 < Ω32 <

√
Ω33 (25)
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A.1.2 Bounds for Ω31

To ensure positive definiteness in the sub-matrix

 1 Ω13

Ω31 Ω33

, its determinant must be strictly

greater than 0. For a fixed proposal of Ω33 and Ω11 = 1, this results in the following bounds on

Ω31, displayed in Equation 26:

det

 1 Ω13

Ω31 Ω33

 > 0

Ω33 − (Ω31Ω13) > 0

Ω33 > Ω2
31

−
√

Ω33 < Ω31 <
√
Ω33 (26)

A.1.3 Bounds for Ω42

To ensure positive definiteness in the sub-matrix

Ω22 Ω24

Ω42 Ω44

, its determinant must be strictly

greater than 0. For a fixed proposal of Ω44 and Ω22 = 1, this results in the following bounds on

Ω42, displayed in Equation 27:

det

 1 Ω24

Ω42 Ω44

 > 0

Ω44 − (Ω42Ω24) > 0

Ω44 > Ω2
42

−
√
Ω44 < Ω42 <

√
Ω44 (27)

A.1.4 Bounds for Ω51

To ensure positive definiteness in the sub-matrix

 1 Ω15

Ω51 Ω55

, its determinant must be strictly

greater than 0. For a fixed proposal of Ω55 and Ω11 = 1, this results in the following bounds on

Ω51, displayed in Equation 28:

det

 1 Ω15

Ω51 Ω55

 > 0

Ω55 − (Ω51Ω15) > 0

Ω55 > Ω2
51

−
√

Ω55 < Ω51 <
√
Ω55 (28)
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A.2 Bounds for 3x3 sub-matrices

A.2.1 Bounds on Ω21

To ensure positive definiteness in the sub-matrix


Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

, corresponding with the

sub-matrix ΩD, its determinant must be strictly greater than 0. For a fixed proposal of Ω33, and

fixed proposal of Ω31 and Ω32 obtained from the previous bounds, along with Ω11 = Ω22 = 1,

this results in the following bounds on Ω21, displayed in Equation 29:

det


1 Ω12 Ω13

Ω21 1 Ω23

Ω31 Ω32 Ω33

 > 0

1× det

 1 Ω23

Ω32 Ω33

− Ω12 × det

Ω21 Ω23

Ω31 Ω33

+Ω13 × det

Ω21 1

Ω31 Ω32

 > 0

(Ω33 − Ω32Ω23)− Ω12(Ω21Ω33 − Ω23Ω31) + Ω13(Ω21Ω32 − Ω31) > 0

Ω33 − Ω2
32 − Ω2

21Ω33 +Ω21Ω23Ω31 +Ω21Ω13Ω32 − Ω2
31 > 0

−Ω2
21Ω33 + 2Ω21Ω23Ω31 +Ω33 − Ω2

32 − Ω2
31 > 0

This is a quadratic equation of the form: −ax2 +2bx+ c > 0, which has the following solution:

b

a
−
√

(ac+ b2)

a2
< x <

b

a
+

√
(ac+ b2)

a2
, (29)

where x = Ω21, a = Ω33, b = Ω32Ω31 and c = Ω33 − Ω2
32 − Ω2

31. To simplify notation for the last

part, these lower and upper bounds are referred to as: lb21.D < Ω21 < ub21.D.

In addition, as mentioned in Section 4, an extra bound is required to also ensure positive

definiteness of the other 3x3 sub-matrix, corresponding with ΩA:


Ω11 Ω12 Ω14

Ω21 Ω22 Ω24

Ω41 Ω42 Ω44

. Here it is

important to note, that the values of Ω41,Ω42,Ω44 are not the proposal values, but the current

values of those elements at the time of this step. The calculation is exactly the same as above,

only replacing the 3’s with 4’s, leading to the same bounds as in Equation 29, but now with:

x = Ω21, a = Ω44, b = Ω42Ω41 and c = Ω44 − Ω2
42 − Ω2

41. These bounds are referred to as:

lb21.A < Ω21 < ub21.A

Combining these two lower and two upper bounds, such that a proposed value will always

result in positive definiteness of both 3x3 sub-matrices, results in the following lower and upper

bounds for the proposal of Ω21:

max{lb21.D, lb21.A} < Ω21 < min{ub21.D, ub21.A} (30)
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A.2.2 Bounds on Ω41

To ensure positive definiteness in the sub-matrix corresponding with ΩA in the second step of

the adjusted RW-MH algorithm:


Ω11 Ω12 Ω14

Ω21 Ω22 Ω24

Ω41 Ω42 Ω44

, its determinant must be strictly greater

than 0. For a fixed proposal of Ω44, a fixed proposal of Ω42 using the previously calculated

bounds, and the value of Ω21 which was either accepted or rejected in the previous RW-MH

step, along with Ω11 = Ω22 = 1, this results in the following bounds displayed in Equation 31 :

det


1 Ω12 Ω14

Ω21 1 Ω24

Ω41 Ω42 Ω44

 > 0

1× det

 1 Ω24

Ω42 Ω44

− Ω12 × det

Ω21 Ω24

Ω41 Ω44

+Ω14 × det

Ω21 1

Ω41 Ω42

 > 0

(Ω44 − Ω42Ω24)− Ω12(Ω21Ω44 − Ω24Ω41) + Ω14(Ω21Ω42 − Ω41) > 0

Ω44 − Ω2
42 − Ω2

21Ω44 +Ω21Ω24Ω41 +Ω21Ω14Ω42 − Ω2
41 > 0

−Ω2
41 + 2Ω41Ω21Ω24 +Ω44 − Ω2

42 − Ω2
21Ω44 > 0

This is a quadratic equation of the form: −x2 + 2bx+ c > 0, which has the following solution:

b−
√
b2 + c < x < b+

√
b2 + c, (31)

where x = Ω41, b = Ω21Ω24 and c = Ω44 − Ω2
42 − Ω2

21Ω44.
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