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Abstract

Real-world stock data can contain outliers which do not follow the pattern of the majority of the
data. These outliers can cause dispersion in the estimation of the portfolio weights. This paper looks
at identifying these outliers and using robust estimation methods to stabilize the portfolio weights
over time. This paper makes the distinction between casewise and cellwise robust methods. The
analysis is done for the low-dimensional case as well as for the high-dimensional case. Furthermore,
the weight estimation is based on the allocation of the Global Minimum Variance portfolio (GMV)
and the Tangency Portfolio. The data used in this paper is daily returns from the S&P 500. The
dataset spans from February 2013 until February 2018. This paper found for the low-dimensional
case, the robust methods based on the Mahalanobis distances did not improve portfolio performance
and weight stability compared to the traditional estimations techniques for the GMV portfolio and the
Tangency portfolio. However, this paper found the low-dimensional robust estimation methods based
on pairwise covariances improved the performance of the GMV portfolio. Furthermore, this paper
also shows that for the high-dimensional portfolios, both the performance and the weight stability
of the GMV portfolio and the Tangency portfolio did improve when the robust methods based on
pairwise covariances were used.
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1 Introduction

Trading has always been around but lately it seems to be a hot topic, from regular stocks to call options
or even cryptocurrencies, it seems that everyone is trading at the moment. But in a world where data is
getting more and more important, how does an investor use data to know which assets to choose? This is
a difficult question to answer, especially when real-world data do not always follow a certain pattern and
so datasets can contain outliers. The outliers can have a significant impact on the estimation procedure
and so they can distort the estimation. On the other hand, the outliers can contain valuable information
for the investor such as high returns after above-expectation performance of a company or low returns
when a dip in the market occurs. Identifying these outliers is therefore crucial for the portfolio perfor-
mance. This paper investigates which optimal ways there are to identify these outliers and uses robust
estimation methods to minimize the impact of these outliers on the estimations to stabilize portfolio
weights over time.

The robust methods are used to estimate the mean and covariance matrix which play a big part in
the weight distribution. This paper does this for the low-dimensional and high-dimensional case. The
robust estimators that are being considered for the low-dimensional case are the Minimum Covariance
Determinant (Hubert and Debruyne, 2010) and the Minimum Volume Ellipsoid, which are robust against
casewise outliers from the paper (Rousseeuw, 1985). These methods are later reviewed by (Hubert and
Debruyne, 2010) and (Van Aelst and Rousseeuw, 2009). Furthermore, this paper looks at robust esti-
mation techniques against cellwise outliers. For this purpose, the methods cellwise Minimum Covariance
Determinant (Raymaekers and Rousseeuw, 2023) and the Detection Imputation method (Raymaekers
and Rousseeuw, 2019) are considered. Lastly, this paper investigates the Two-Step Generalized method
(Agostinelli et al., 2015). This method is robust against both casewise and cellwise outliers. For the
high-dimensional case, the robust methods considered are the Orthogonalized Gnanadesikan-Kettenring
method (Gnanadesikan and Kettenring, 1972) which is robust against casewise outliers and the Spearman
correlation method (Öllerer and Croux, 2015) which is robust against cellwise outliers. The estimation of
the mean and the covariance matrix is used in the Global Minimum Variance and the Tangency portfolio.
The performance of these portfolios is measured based on return, turnover and value of wealth at the end
of the trades and then compared to the benchmark. Which is the sample method. Combining all of this
gives us the research question: How do portfolio allocations perform using robust estimations methods for
both casewise and cellwise outliers compared to traditional methods?

This paper separates this research question into three different sub-questions. First of all, it looks at
the robust estimations, why could they work, how they work and most importantly how they compare
to the sampling method and each other. The second part this paper investigates is the estimation of
the precision matrix. For most of the portfolio allocations, the inverse of the covariance is needed. For
low-dimensional cases, this could be as straightforward as taking the inverse but also other methods
have been popular to estimate the precision matrix. However, for high-dimensional data this gets more
complicated because estimating the inverse normally is not feasible anymore. This paper explores the
use of the estimated robust covariance matrix in the Graphical Lasso to overcome this problem.

The last part of this paper investigates the performance of different portfolio allocations. For this, it
looks at the Global Minimum Variance portfolio and the Tangency Portfolio. This is done for the uncon-
strained portfolio but also when short selling is not allowed. The robust portfolio allocations from the
paper (DeMiguel and Nogales, 2006) based on the M-estimator and the S-estimator are not considered
because here covariance matrix does not need to be estimated and therefore it is outside the scope and
purpose of this paper. For the portfolio allocations the main focus is on the stability of the weights.
The performance of the weights is measured by the turnover. Low turnover is important for an investor
because when a moving time window is used for the estimation the constant changing of the weights can
cause extra transaction costs which in turn lowers the value of the portfolio.

This paper has found for the low-dimensional case that most of the robust methods did not improve
the performance of the Global Minimum Variance portfolio in terms of weight stability and value of
wealth. For the Tangency portfolio the casewise robust method did improve the portfolio based on
weight stability and value of wealth compared to the sample method. For the cellwise robust methods

3



this was not the case. Furthermore, the use of constraints did help stabilize the weights as the constraints
promote shrinkage also considered in the paper (Jagannathan and Ma, 2003) bringing the turnover down.
This resulted in a higher value of wealth for the investor. The use of constraints was particularly helpful
for the tangency portfolio where the unconstrained portfolio showed to be too aggressive to be profitable
for the investor. For the high-dimensional portfolio the weights were estimated by the OGK method and
the Spearman’s correlation method. These robust methods are based on pairwise covariances instead of
Mahalanobis distances. Both these robust methods were also used for the low-dimensional case and did
show improvement. Here the OGK method was the best-performing method. This shows that the robust
methods based on the Mahalanobis are not fit to be used when it comes to portfolio allocation and weight
distribution for time series data. Lastly in both the low-dimensional case and the high-dimensional case,
the casewise robust methods did perform better than the cellwise robust methods. This was independent
of whether the methods were based on Mahalanobis or pairwise covariances.

2 Relevance and Motivation

Portfolio strategies are very important in the financial world. Hedge funds, insurance companies but also
individual investors all have different ideas about how to invest their money. However, they all have the
same goal, making a profit. Using estimations of means and covariance matrices of the returns helps
these investors obtain more insight into which stocks are best to invest in. This paper looks at these
estimations and tries to investigate whether it is useful to make the estimators more robust.

The first aspect of this paper is the robustness of the location and scatter estimations. An advantage of
robust estimations is they are less likely to be driven by shocks in the market. First of all the Minimum
Covariance Determinant (MCD) already has a lot of applications for medicine, but also for finance. In
the paper (Zaman et al., 2001) they found that the use of the MCD estimator in regression analysis
improved the fit and the significance levels of the regressors. The other casewise robust method that this
paper looks at is the Minimum Volume Ellipsoid which also has already some interesting applications.
One of the applications was done in the paper of (Rousseeuw and Van Zomeren, 1990) where the MVE
method was used to detect leverage points which also led to better regression results. This paper however
looks at the mean and covariance matrix estimates and so would add another layer to the literature.

The cellwise robust methods are more recently published. For example, one of the methods this paper
uses is the cellwise minimum covariance determinant from the paper (Raymaekers and Rousseeuw, 2023)
which has only come out last year but offers so many possibilities in terms of dealing with outliers without
impacting other data points. The other method that is used in this paper is the Detection Imputation
algorithm which also has good possibilities for applications such as they did in the paper Raymaekers and
Rousseeuw, 2019 where organic compounds of children were analyzed with estimation of the covariance
matrix. These organic compounds are volatile so the DI Method helped with identifying outliers. Lastly,
this paper looks at the Two-Step Generalized S-estimator which is a method that is both robust against
casewise and cellwise contamination. This estimation method could improve the existing method which
the paper (Agostinelli et al., 2015) pointed out that using methods where the focus is on one part of the
contamination could lead to poor results and the 2SGS method would overcome this problem. The paper
also suggests that the 2SGS has a lot of applications in principal component analysis and linear regression.

Both the casewise and the cellwise robust methods have good applications in the low-dimensional case.
However, most papers use robust methods in regressions in combination with very static data. This
paper however looks for a robust way of estimating the means and covariance matrix. The data are
the daily returns of assets which creates a time series. The added value of this paper is to investigate
what happens with these robust methods when they deal with time series data. The hypothesis is that
these methods can create robustness in the portfolios which leads to more stability in the weights of the
portfolio allocations. This would be beneficial for investors because it creates less risk for them as the
magnitude of change in weights would be reduced. Furthermore, this could be helpful for the Global
Minimum Variance portfolio but most certainly for the Tangency portfolio as the paper (Kirby and Ost-
diek, 2012) found that this portfolio due to its scaling can be very aggressive in terms of weights and can
create high turnover.
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Secondly, this paper also looks at high-dimensional data. The use of high-dimensional data is very
beneficial because of all the information that can be incorporated and the easy access to large amounts of
data. However, it does make the estimations more difficult. Big hedge funds can afford to analyze these
big data sets, however, for simple investors, this is more unlikely. There is also a lot of literature on high-
dimensional robust methods. Some methods are extensions of low dimensional data such as is done for the
Minimum Covariance Determinant in the paper (Boudt et al., 2020) where they found that with the new
interpretation, the robustness was preserved. For the casewise robust methods this paper however focuses
on the Orthogonalized Gnanadesikan-Kettenring method. This method is based on pairwise covariance
instead of Mahalanobis distances as is the case for the extended Minimum Covariance Determinant. This
method seems to be doing better than the one from the (Boudt et al., 2020) and it is also faster. An-
other approach for high-dimensional casewise robust estimation is the Stahel-Donoho estimator from the
paper (Maronna and Yohai, 1995). The method has similar results to the OGK method according to
the paper (Van Aelst et al., 2012) but the paper also points out that the Stahel-Donoho estimator can
have difficulties in identifying the outlyingness of the contaminated observations when the majority of the
observations are contaminated in at least one of the variables. Because of this, the OGK was favored for
the casewise robust estimation. For high-dimensional cellwise robust estimators were also fewer papers
because it only recently got some attention. For this paper, we look at a robust estimation method based
on Spearman’s correlation. This is, similar to the Orthogonalized Gnanadesikan-Kettenring method,
based on pairwise estimation. The reason for using pairwise estimation for the high-dimensional case is
because of a suggestion in the paper (Pacreau and Lounici, 2024) that methods based on the Mahalanobis
distance, which the methods are in the low-dimensional case, have shown to be unstable in the results.
They also found that this could also be the case for low dimensions. So one of the goals of this paper is
to confirm or deny this claim for the low-dimensional case as the paper from Karim Lounici and Gregoire
Pacreau has only been published this year.

Lastly, this paper looks at different portfolio asset selections and robust portfolio allocation. As men-
tioned in the introduction this does not consider the work done in the paper (DeMiguel and Nogales, 2006)
where the portfolios are based on a M-estimator or a S-estimator. They do not estimate the covariance
matrix and the means robustly but see the portfolio as one minimization problem and work this problem
out in a robust way. So the lack of the estimation of means and covariance is the reason that their work
is not discussed in the rest of the paper. The asset selection this paper uses is based on characteristics of
the stock such as high means or low variance. In the paper (Van der Hart et al., 2003) they found that
stocks with high value for earnings-to-price ratio or the book-to-market ratio perform better than stocks
where the value is low. Another paper suggests that investors only look at the characteristics such as
returns and volatility of the returns.

To summarize, this paper has both qualitative and quantitative analysis that looks for answers on which
financial portfolio strategies to use but also why they work. These findings can also be helpful in other
fields where the estimation of the location and scatter points is needed for time series data.
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3 Data

The data I have gathered is daily stock data from the S&P 500. The data consists of the date, the open
value, the high value, the close value and the volume of the trades from individual stocks between 8
February 2013 and 7 February 2018. In this paper, I am only interested in the daily returns of these
stocks. To calculate the daily returns the open value is subtracted from the close value and divided by
the open value. This creates daily returns based on percentages. For most of the individual stocks there
are 1259 entries because trades are only happening on weekdays. There are however some stocks where
the number of entries is lower than 1259 and thus have missing values. In total there are 505 stocks
in the dataset where 470 stocks include the full time range of data, that is all the 1259 entries. For 35
stocks there are less than 1259 entries. These stocks were removed from the data set because this paper
only wants to focus on the performance of the robust methods when outliers are present without the
interference of missing values. Furthermore assigning zero returns to missing values is not a viable solu-
tion because this would also interfere with the covariance matrix and it thus would alter the conclusions
drawn from this paper.

The S&P500 represents the 500 biggest American firms measured on their market capitalization. I
have chosen the stocks of the S&P 500 index because they, as a collective, give a broad overview of the
American stock market. Because the stocks are of large companies, the returns are generally less volatile
compared to stocks of smaller companies or cryptocurrencies such as Bitcoin or Ethereum. The lower
volatility leads to the out-of-sample results being more representative because with high-volatility stocks
the performance of a method on a portfolio could be considered more random.

The mean is for 406 out of the 470 stocks positive. This is 86.38%. This however does not give a
representative view for an investor because returns can be used cumulatively. Therefore the cumulative
return of each of the stocks is more interesting to look at. The results of this are denoted in Figure
1. The number of stocks that have a positive return then is 385 out of the 470 which is 81.91%. The
best-performing stock over these 5 years is BBY with a return of 307.25%. This is the stock for Best
Buy, a retailer of electronic devices. The worst-performing stock is CHK which stands for Chesapeake.
This stock had a return of -96.52 and eventually got delisted. However an investor never chooses just one
stock but builds a portfolio, so lastly what would be the return if an investor had an equally weighted
portfolio from 8 February 2013 until 7 February 2018 and did not touch the stocks? It turns out that the
portfolio would have a return of 54.49%.

Figure 1: Cumulative returns of the 470 stocks
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4 Methodology

This section goes over the methodology used in this paper. This section begins by discussing what
robustness entails and which versions of robustness there are such as the casewise and cellwise robustness.
Next, it covers the low-dimensional case where the estimation setup as well as the robust methods are
discussed. This is also done for the high-dimensional case. Furthermore, the portfolio allocations and
strategies used to create the portfolios are discussed. This part of the methodology also outlines the
portfolio measurements used for method comparison. Lastly, this section dives deeper into the weight
stability of the portfolios with the help of constraints.

4.1 What is robustness?

4.1.1 Casewise vs Cellwise outliers

One of the aspects this paper looks at is the difference between casewise outliers and cellwise outliers.
It does this by looking at different estimators for location and scale. Before delving deeper into these
estimators, we first explore the difference between casewise and cellwise outliers. Casewise outliers are
often characterized by data generated from a clean distribution F with a probability of (1 - ε), combined
with a contaminating distribution H with the probability of ε. So for the observed dataset X we get
X = (1 - ε)Y + εZ. Where Y ∼ F and Z ∼ H. This representation is also known as the Tukey-Huber
contamination model. The goal of this model is to estimate the characteristics of the distribution F while
not assuming anything about H. Under this model, it is assumed that a case or row is coming from a
perfect draw of the distribution of F or that the case is coming from an arbitrary distribution of H. As
a result, the methods and estimators under this model often treat all entries in an individual case as
contaminated. This could cause problems when there are situations where some of the entries in a case
are contaminated and where other entries are not. In such a case regarding all entries as contaminated
could lead to discarding valuable information from uncontaminated entries. This phenomenon has led to
the consideration of cellwise outliers. The model for cellwise outliers assumes that the observed random
variable X follows X = (1-B)Y + BZ, where B is a diagonal matrix with diagonal entries that can be
either 0 or 1. This allows for some of the entries in the vector X to be contaminated while others are not.

Figure 2: Casewise (left) vs Cellwise (right) outliers

Cellwise outliers are thus a different type of thinking about outliers. The most influential change was the
fact that a small percentage of contaminated cells can contaminate a large fraction of cases or rows. The
probability that at least one of the d entries within a case is contaminated is equal to

P [row is contaminated] = 1− (1− ε)d. (1)
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This grows quickly with the dimension d. If d = 20 and the percentage of having an outlier (ε) is 5 percent
then more than 64% of the cases would be contaminated. This leads to the Tukey-Huber contamination
model no longer being reliable. In Figure 2 we can see the difference between casewise and cellwise
outliers. The black squares indicate an outlier. The casewise outliers are all on the same row while the
cellwise outliers are spread out over the matrix. If the casewise outlier method was used on the right
figure then almost all rows would have been considered as contaminated. In this paper, we investigate
with the help of portfolio allocations the different versions of these models and outliers.

4.1.2 Sensitivity Curve and Influence Function

The sensitivity curve measures the effect of changing one observation in a given dataset. The sensitivity
curve is characterized by the following equation.

SCn(x, T ) =
T (X1, X2, ..., Xn−1, x)− T (X1, X2, ..., Xn−1)

1/n
(2)

An influence function measures the small changes in the assumed distribution on the value of the esti-
mator. The standard equation for the influence function is

IF(z;T, F ) = lim
ε→0

T (Fε,z)− T (F )

ε
=

∂

∂ε
T (Fε,z)|ε=0. (3)

Where the distribution Fε,z = (1− ε)F + ε∆(z) and ∆(z) is the probability for an outlier. One can also
see the influence function as a measure of dependency on the value of any of the points in the sample.

To achieve robustness the influence function should often be bounded.

4.1.3 Breakdown point

The breakdown point of a certain method is a measure of robustness. The definition of the breakdown
point is the smallest fraction of contaminated values in the sample before the method breaks down. A
simple example is the mean of a sample. Let’s say that we have 8 entries in the sample, (5,6,3,4,1,5,3 and
1). The mean of this sample is 3.5. However, if the 4 becomes a contaminated value and has a value of
120 then the sample mean increases to 18. This example shows that one contaminated observation can
cause the mean to increase drastically. In theory, the mean of the sample including the contaminated
value can be any arbitrarily high number. This is the breakdown of the sample mean. In this example,
the breakdown occurs when one observation is changed. Thus the finite sample breakdown value is 1/8.

The formal definition of the breakdown value is that the finite sample breakdown of an estimator Tn at Xn

is the smallest fraction of contaminated values m
n for which the distance between Tn(Xn) and Tn(Xn,m)

might become arbitrarily large. The distance is measured by an appropriate choice of a distance equation
D. Or in more mathematical terms:

εn(Tn;Xn) =
1

n
min {m ∈ {1, ..., n} : supmD(Tn(Xn), Tn(Xn,m)) = +∞} . (4)

If we want a method to be robust then a high breakdown point is preferred. From Equation 3 we can easily
see that the maximum breakdown point is 1. However, such an estimator would not make a lot of sense.
When we look at the maximum breakdown point of only sensible estimators then we have to look at them
in another way. A breakdown point is often associated with a certain equivalence structure. When we
have a univariate location, the requirement that the estimators should satisfy is Tn(Xn+a) = Tn(Xn)+a
for all a ∈ R. This requirement is natural because of the desire that when the data is shifted then the
shifted estimator of the center of the original dataset should be the estimator of the center of the shifted
dataset. In the paper of (Hubert and Debruyne, 2009), it is proven that any location equivalent has a
breakdown value of 0.5. Or more in mathematical terms:

εn(Tn;Xn) ≤
1

n

⌊
n+ 1

2

⌋
. (5)
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For the scale parameter, another requirement is used. This requirement states that Tn(aXn) = |a|Tn(Xn)
for all a ∈ R. It is also proven that with this requirement the maximum breakdown value is

εn(Tn;Xn) ≤
1

n

⌊
n

2

⌋
. (6)

This robustness measurement is used as one of the tools to see whether these methods are robust.

4.2 Low-dimensional case

Firstly this paper focuses on the low-dimensional case. This means that only a small percentage of the
470 stocks available are used to build a portfolio. The low-dimensional case has its advantages. Firstly
the estimation of the covariance matrix is easier and computationally feasible due to the relatively low
amount of parameters. Furthermore, another advantage of the low-dimensional case is that the inverse of
this covariance matrix is also easy to estimate. However, the estimation of the inverse covariance matrix
can be quite difficult in higher dimensions. Keeping the dimensions low is also more appealing for the
average investor. The low amount of stocks results in a more clear picture of their investment compared
to if they would have invested in a high number of different stocks. Keeping the number of stocks low also
comes with its disadvantages. The main disadvantage is the lower level of diversification in the portfolio.
Less diversification of the portfolio could lead to larger variance in the portfolio returns which could lead
to bigger losses. This consequence is investigated in the Results section.

This section first goes over the estimation setup that is used to get the results and then goes over
the different methods that are used for the location and scatter estimates.

4.2.1 The Estimation Setup

The estimation setup for the low-dimensional case has a couple of different components. As mentioned
in the data section, there are 470 different stocks with 1259 entries each. This paper uses daily returns
for each stock where the daily returns are calculated as seen in Equation 7.

rit =
CloseValueit −OpenValueit

OpenValueit
· 100. (7)

Here rit represents the return of stock i at time point t. These are percentage returns. I have chosen to
multiply with 100 because it creates fewer values close to zero. This prevents the estimations from being
inaccurate and it prevents also numerical problems which can happen if in a matrix a lot of values are
close to zero.

The first component of the estimation is choosing the amount of stocks in the portfolio. For the low-
dimensional case, I have chosen to include 15 stocks in the portfolio. A portfolio of 15 stocks is not too big
so it is still considered a low-dimensional portfolio while also having the benefit of some diversification.
Secondly, this paper uses partitioning of the data into subsets to create a window to estimate from. In
this case, I have chosen to partition the 1259 data entries into 14 subsets of 90 entries each, where the
14th partition consists of 89 entries. This choice is made for two reasons, first of all, the number of
entries in a subset should be large enough for the estimations to be accurate. This is especially true for
the robust methods. On the other hand, too many entries in a subset leads to a smaller number of subsets
and so the analysis there would be fewer points to analyze the portfolio weights. Furthermore, it is in a
lot of papers such as (Hubert and Debruyne, 2010) suggested that the number of entries should be more
than 5 times the number of parameters for the robust low-dimensional methods to work. Using 90 entries
and 15 assets follows this suggestion while also having enough subsets to do the weight analysis. For the
estimation, the out-of-sample results are used. Out-of-sample means that the weights are estimated at
time t and used at time t+1. Then weights are estimated at time t+1 and used at time t+2. Lastly,
while the location and scatter estimates are done on the whole subset the return of the portfolio is done
by using Equation 7 at the beginning and end of the subset. So this essentially calculates the 90-day
return of each asset instead of daily.
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4.2.2 Heteroskedasticity of the returns

Before we dive deeper into the estimating procedures of the means and covariance matrix, this paper
first discusses the heteroskedasticity of the returns and the relation it has with robustness. Returns often
possess the characteristic of heteroskedasticity, meaning that the variances of the returns are not constant
over time. The paper of (French et al., 1987) found that the daily returns of the S&P500 confirm this
characteristic of heteroskedasticity and so the variance of the returns is time-varying. Heteroskedasticity
often is caused by outliers or missing values in the dataset. The heteroskedasticity in the returns causes a
lot of problems in the estimation of the parameters. This is especially apparent in the regression estimation
because the Ordinary Least Squares (OLS) estimator is with the existence of heteroskedasticity, not a
minimum variance estimator anymore. To overcome this problem other methods such as the Weighted
Least Squares (WLS) are created. Another way to help this problem is to transform the data. For
example, taking the natural logarithm can help with heteroskedasticity. Furthermore, a model can be
used that takes the time-varying variance into account such as a GARCH model. This paper focuses on
the robust estimations method which can also help against heteroskedasticity due to it being able to spot
these outliers and minimize their effect. The use of the robust method therefore causes the estimated
returns to become closer resulting in less heteroskedasticity.

4.2.3 Estimating the means and the covariance matrix

One of the most important aspects of choosing a portfolio allocation is the estimation of the means and
the covariance matrix. This is because the mean and the inverse of the covariance matrix are often used
in the portfolio allocation as can be seen in Section 4.4. Estimating these components can be done in
multiple ways, and this paper shows different approaches and compares them. This section only focuses
on the low-dimensional case. The high-dimensional case is later introduced. For the low-dimensional
case, we investigate two casewise estimation methods, two cellwise estimation methods and one method
that is suited for both. The performance of these methods is compared to the sample method in the
results section.

Minimum Covariance Determinant (MCD)
The first method this paper uses to obtain robust location and scatter estimations is the minimum covari-
ance determinant (MCD) method. The MCD method is one of the first highly robust estimators. This
estimation method is robust against casewise outliers. The main idea of the MCD method is to detect
these outliers in a data set and disregard them in the estimation procedure. The method uses an eclipse
to encompass all the regular data points. The classical approach to encompass an ellipse is to assign each
point a Mahalanobis distance value. These values are calculated by

MD(x) =
√
(x− x̄)tΣ−1(x− x̄). (8)

The Mahalanobis distance gives us an indication of how far the points are from the center. Here x̄ is the
sample mean and Σ is the sample covariance matrix. This method however tries to include all observations
which leads to a bigger eclipse. The MCD method on the other hand does it slightly differently. This
version is more robust because it ensures that the eclipse is much smaller and captures only the regular
data points. As a result, the equation slightly changes to

RD(x) =

√
(x− µ̂MCD)tΣ̂−1

MCD(x− µ̂MCD). (9)

Here µ̂MCD and Σ̂−1
MCD are the location and scatter estimates of the MCD. The number of outliers

detected in the MCD case usually is greater than when the Mahalanobis distance values are considered.
This phenomenon is called the masking effect and it states that classical estimation methods are highly
affected by outliers such that normal tools as the Mahalonobis distances can not identify them as outliers
anymore. Here is where the robust estimation techniques are crucial.
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To compute the robust MCD location and scatter estimates one looks at the subsets with h observa-
tions and see which has the lowest determinant. The value of h should be between ⌊n+p+1

2 ⌋ and n. Here
n is the number of objects and p is the number of parameters. In this paper, n is the estimation window
and p is the number of assets being considered. The choice of h impacts the robustness and the efficiency
of the estimates. It is easier to see the differences in choices of h when we look at α = limn→∞ h(n)/n.
This results in that α can be a value between 0.5 and 1. The estimates of the MCD are most robust
when h = ⌊n+p+1

2 ⌋. This translates to α = 0.5. However, doing this results in low efficiency. Choosing
α to be for example 0.75 can increase the efficiency but then the estimates are less robust to casewise
outliers. However, to increase efficiency without impacting on the robustness a slightly different version
is presented where the method re-weights the estimates (Lopuhaa, 1999). The estimates then become as
seen below, Here c1 is the consistency factor, di the distance value, and the W is a weight function:

µ̂MCD =

∑n
i=1 W (d2i )xi∑n
i=1 W (d2i )

(10)

Σ̂MCD =c1
1

n

n∑
i=1

W (d2i )(xi − µ̂MCD)(xi − µ̂MCD)′ (11)

The distance value di =

√
(x− µ̂0)′

ˆΣ−1
0 (x− µ̂0) and the weight function is often chosen to be W (d2) =

I(d2 ≤ χ2
p,0.975). This cutoff value is however relatively conservative and so often flags too many observa-

tions as outliers. They argue that the true distribution of the distance values can better be approximated
by an F-distribution. The singularity of the covariance matrix is often not a problem because it requires
h to be greater than p. This is achieved when n ≥ 2p. To avoid the curse of dimensionality it is suggested
to use n > 5p. In our case, which is also discussed in the estimation set-up, n is 90 and p is 15 and thus
adheres to this suggestion.

To exactly estimate the MCD estimates is hard because it requires all the
(
n
h

)
subsets to be evalu-

ated. This is computationally very demanding. Because of this, the choice is often made to look at the
FastMCD algorithm from (EStimator, 1999). This algorithm is efficient and uses the C-step. However,
this paper uses the DetMCD for the estimation from the paper (Hubert et al., 2012). This is because
the FastMCD uses random subsets and so it is not permutation invariant. This caused problems when
getting results while coding because identical portfolios had for each iteration different results. Not only
is the DetMCD permutational invariant, but it is also faster than the FastMCD. The function DetMCD
from the R package DetMCD is used for the coding where the alpha is equal to 0.75.

Minimum Volume Ellipsoid
Another method to get the location and scatter estimates is the Minimum Volume Ellipsoid (MVE).
The MVE method is also a high-breakdown robust estimator similar to the MCD estimator. Where the
MCD estimator minimized the determinant of the covariance matrix, the MVE minimizes, as the name
suggests, the volume of the ellipsoid. In more mathematical terms, the MVE estimates the location
estimator rn and the scatter estimate Cn of the dataset Xn. It does this by minimizing the volume of
the ellipsoid consisting of at least h observations from Xn, where h can be chosen between n

2 + 1 and n.
The algorithm minimizes with respect to the following constraint

[(ri − t)′C−1(ri − t) ≤ c2] ≥ h. (12)

The value of c determines the magnitude of Cn and is a chosen fixed constant. The value is usually

chosen to be
√

χ2
p,α, where α = h

n , because this assumes that Cn is a consistent estimator of the co-

variance matrix for data coming from multivariate normal. The assumption of normality of stock data
comes from the idea that prices follow from an efficient market and investors make rational decisions. In
reality, however, this assumption is questionable because investors are not rational and the market is not
always efficient. Despite this, I assume that it holds Cn. We go over the algorithm, the breakdown value,
and any other properties of this method. This method is from the paper (Van Aelst and Rousseeuw, 2009).

First of all the algorithm for the Minimum Volume Ellipsoid location and scatter estimates is very
similar to the MCD method. The MVE also uses subsets that consist of p+1 observations. For each
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subset the sample mean and sample covariance is estimated.

r̄ =
1

p+ 1

p+1∑
i=1

ri (13)

S =
1

p

p+1∑
i=1

(ri − r̄)(ri − r̄)′ (14)

If and only if the subset is in general position, meaning that none of the observations in the subset lie
on a hyperplane, then the sample covariance matrix is non-singular. However, if this is not the case then
observations are added such that the sample covariance becomes non-singular. The ellipsoid resulting
from the estimation is proportional to

[det((D2
j/c

2)Sj ]
1/2 = (Dj/c)

pdet(Sj)
1/2 (15)

Here c2 = χ2
p,a and Dj = [(ri − r̄j)

′(Sj)
−1(ri − r̄j). The algorithm finds the solution where Equation 15

is the smallest among the (p+1)-subsets. The number of observations in a subset, h, is often chosen to
be n+p+1

2 .

The MVE method has similar properties compared to the MCD method. First of all, they are both
affine equivariant meaning that the estimators behave properly under affine transformation of the data.
Furthermore, the finite breakdown value of the MVE denoted in paper (Donoho and Huber, 1983) can
be seen in Equation 16

ε∗n(tn, Xn) = ε∗n(Cn, Xn) =
min(n− h+ 1, h− p)

n
. (16)

Here we can see that if n goes to infinity then we get that the breakdown value of the MVE estimator
becomes min(α, 1 − α) where α = h

n . This is what we have seen above for the square root of the chi-
squared value.

This paper uses for the code the R package rrcov where the function CovMve is used. Here the pa-
rameters are α = 0.75 and the nsamp is on default 500. The choice of the α is made to line up with the
rest of the models and the number of samples stayed at default because it gives a good robust estimate
while the computation time is still manageable. Having a higher nsamp does ensure more robustness but
this does not always equal better return results.

Cellwise Minimum Covariance Determinant method
The cellwise method of the minimum covariance determinant is a method robust against cellwise outliers.
This method, introduced in the paper (Raymaekers and Rousseeuw, 2023) is very new but works well in
the presence of these cellwise outliers. In the paper, they found that this method has better efficiency
than the Detection-Imputation method with the same robustness as well as having better robustness
than the 2SGS method mentioned below. The drawback is that this method has a significantly higher
computation time than the casewise minimum covariance determinant. The rest of this section goes
broadly over the algorithm and the properties of this method. More details can be found in the paper
(Raymaekers and Rousseeuw, 2023).

Like the minimum covariance determinant for casewise outliers this method minimizes an objective func-
tion. In this case, the objective function to minimize is:

n∑
i=1

L(xi, wi, µ,Σ) =

n∑
i=1

(ln|Σwi |+ dwi ln(2π) +MD2(xi, wi, µ,Σ)). (17)

Here xwi
i is the vector with only the entries where wij = 1. This goes the same for µwi

i . Σwi consists
of only the columns and rows where wij = 1. Lastly dwi is the dimension of xwi

i . The MD denotes the
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Mahalanobis distance equation :

MD(xi, wi, µ,Σ) =
√
(xwi

i − µwi
i )′(Σwi)−1(xwi

i − µwi
i ). (18)

The cellMCD method has similar characteristics as the casewise MCD. Just as the casewise MCD the
cellwise MCD has high breakdown properties. Using the work of (Donoho and Huber, 1983) the finite-
sample cellwise breakdown value of the location estimator is equal to Equation 19

ε∗n(µ,Xn) = min{m
n

: sup(Xm) ||µ(Xm)− µ(X)|| = ∞}. (19)

The paper (Raymaekers and Rousseeuw, 2023) has found that the breakdown value of the cellwise MCD
location estimator is always smaller or equal to the breakdown value of the casewise MCD location
estimator. This means that all the upper bounds of the casewise breakdown values also hold for the
cellwise breakdown value. For the breakdown value of the scatter estimate from the paper (Raymaekers
and Rousseeuw, 2024) sees that if the dataset X is in general position and h ≥ n

2 + 1 then we get that

ε∗n(Σ, Xn) =
n−h+1

n . So cellMCD is also highly robust.

The cellMCD is implemented using the cellwise package in R. The robust location and scatter esti-
mates are estimated using α = 0.75 and a cutoff value of 0.99.

Detection Imputation Algorithm
The Detection Imputation algorithm from paper (Raymaekers and Rousseeuw, 2019) constructs robust
cellwise location and scatter. The method is based on an iterative two-step process. These are the
detecting and the imputation steps. Before these steps can be used, the data is first normalized and
initial estimates of location and scatter are chosen. This paper uses the initial estimates of the DDCW
estimator. This estimator is derived from the DDC algorithm of (Rousseeuw and Bossche, 2018) and can
be found in (Raymaekers and Rousseeuw, 2019) Another option is using the 2SGS method, but this paper
did not look at this as an initial estimate because it already looks at this method separately. Furthermore,
the DDCW estimator is faster in computation.

In the detection step, all rows are gone through to look for outlying cells. It does this by using the
cellHandler method for each of these rows. Doing this with the location and scatter estimates of the pre-
vious step. The cellHandler method ranks each cell in its respective row. If any of the cells are missing
then they get a value of infinity. Problems could arise when more than too many cells in a column are
flagged because then the correlation would be difficult to estimate. Because of this, the DI estimator sets
a number of maximum flagged cells per column. This paper uses the default of 25%. The Imputation
step uses the Expectation Maximisation algorithm where the flagged cells are set as missing. The E-step
of EM does not require extra computation because the flagged cells are one of the sets considered by LAR
in the cellHandler. The next iteration of the location and scatter estimates are computed in the M-step.
The algorithm stops when the difference between two consecutive locations and scatter estimates is small.

Code is used from the R package cellwise where the function DI is used with the default parameters.

2SGS Method
The last method this paper uses for the low dimensional estimation is the 2SGS method. This method
is currently the best robust method to deal with both the casewise and cellwise outliers. This feature
sets it apart from the rest of the methods discussed as they can only deal with one type of outlier. 2SGS
stands for two-step generalized S-estimator. The method is first mentioned in the paper (Agostinelli
et al., 2015). As the name suggests this method consists of two steps. The section goes broadly through
these steps and gives some reasons why the 2SGS could be a good method to use.

The first step of the 2SGS method is identifying the cellwise outliers based on their Mahalanobis distance
and setting them to NA, this is called snipping (Farcomeni, 2014). This step makes sure that there are
no large robust Mahalanobis distance values in the second step. The method flags the cellwise outliers
by using the Gervini-Yohai univariate filter. The filter standardizes a variable based on a distribution.
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In a perfect world, this is the actual distribution of the variable but for stock returns, this is not known
so the assumption is to take the standard normal distribution. When the variable is standardized then
an adaptive cutoff value is introduced to flag the cellwise outliers. In the paper (Agostinelli et al., 2015)
they claim that the filter does not wrongly flag outliers, even when the actual distribution is unknown.
This is however the case when the tail of the reference distribution, in this case the standard normal, is
heavier than the actual distribution. Because stock data is not normal and often has fatter tails this can
cause problems that outliers are wrongly flagged. The second step uses the Generalized S-estimator to
deal with the casewise outliers. The GSE is a method equipped to overcome missing values in datasets.
In this case, the missing values are the outliers set to NA from the first step. The full details of the GSE
can be found in the paper (Agostinelli et al., 2015) but what the GSE essentially does is using an aux-
iliary dataset in combination with the Tukey bisquare loss function ρ(t) to minimize an objective function.

Lastly, why would you use the 2SGS. As said above the two generalized S-estimator is both robust
against cellwise and casewise outliers. In the paper (Agostinelli et al., 2015) they also looked at other
methods and compared them to the 2SGS method. Methods included MCD, MVE but also other meth-
ods that are not used in this paper. What they saw was that the 2SGS method was the best-performing
method when it came to cellwise outliers and had also a good performance for casewise outliers while the
other methods only had good performance in one of the two sorts of outliers. The 2SGS has thus the
advantage that it does not matter what kind of outliers in the dataset are.
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4.3 High-dimensional case

4.3.1 The Estimation Setup

This section covers the estimation set-up this paper uses for the high-dimensional case. All the char-
acteristics of the data are the same as discussed in Section 4.2.1. There are still 470 stocks with each
having 1259 entries of daily returns. This paper’s focus for the high-dimensional case is to look at the
out-sample results, also stated in Section 4.2.1 in more detail. Lastly the calculations of the portfolio
performance statistics, for example, the portfolio turnover, also stay the same.

For the high-dimensional case, the number of stocks in the portfolio goes up, but the rolling window
of 90 entries per stock stays the same. This makes it high-dimensional as now the number of assets in
the portfolio is greater than the number of entries in the rolling window. The number of stocks in the
portfolio this paper analyses is 94, 188, 282, 376 and the full 470 of the data. These are 1/5, 2/5, 3/5, 4/5
and 5/5 of the dataset. This also gives insights into the behavior of the performance from the portfolios
when the number of stocks increases in a high-dimensional portfolio. The assets of the portfolio are again
chosen by the three characteristics that were used for the low-dimensional case. For the low-dimensional
data, only the location and scatter estimates were enough to get the weights of the portfolio allocations.
However, with high-dimensional analysis, some additional estimations have to be done. The estimated
covariance matrix cannot easily be inverted and estimation techniques for the inverted covariance matrix
have to be used. This is covered in Section 4.3.3.

4.3.2 Estimation of the High Dimensional Means and Covariance Matrix

Orthogonalized Gnanadesikan-Kettenring estimation
One of the ways to estimate a covariance matrix with high dimensional data is the Orthogonalized
Gnanadesikan-Kettenring estimation, also known as the OGK estimation. This method, introduced in
the paper (Gnanadesikan and Kettenring, 1972), is a casewise robust estimator. The method uses pairwise
covariances to create a robust covariance matrix. The OGK estimation consists of 5 steps. The first step
is choosing a robust univariate estimator for the location and scale estimate. This paper uses the Qn
estimator for estimating location and scale. The second step involves using yi = D−1ri where D equals
a diagonal matrix with the Qn scale estimator of each r on the diagonal. Here ri are the returns of
individual assets. Step 3 is computing the pairwise covariance matrix from the following equation

Σx,y = (σ̂(x+ y)2 − σ̂(x+ y)2)/4. (20)

Where σ̂ is the Qn scale factor. This pairwise covariance matrix is symmetric however, it does not
guarantee positive definiteness. To guarantee positive definiteness the second to last step computes the
eigenvectors of Equation 20 and then projects them on the data Y. This results in µ̂(Y ) = Em where E is
the matrix of eigenvectors and m equals to a vector of the projections using the location estimate. We also
get the positive definite matrix Σ̂(Y ) = EΛET where Λ is a diagonal matrix where on the diagonal the
scale estimator squared of the projection is displayed. The last step involves defining the OGK estimates:

µ̂OGK =Dµ̂(Y ) (21)

Σ̂OGK =DΣ̂(Y )DT (22)

One of the advantages of the OGK estimator is that it is much faster in high dimensions than other robust
methods such as the Fast MCD and the Stahel–Donoho method. Furthermore the paper (Maronna and
Zamar, 2002) found that the OGK estimator performs significantly better than the FMCD and is at a
similar level of performance compared to the Stahel-Donoho method. This paper uses for the coding the
already built OGK function in the package robustbase in R.

Spearman’s Correlation
The other robust method this paper uses to estimate the covariance matrix makes use of Spearman’s
correlation. This method, from the paper (Spearman, 1961) also employs a pairwise approach, avoiding
the need for assumptions about the clean covariance estimate or the tail distribution of the outliers.
Contrary to the OGK method discussed in the section above, this method is robust against cellwise
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contamination. This makes it a perfect candidate to compare it to the OGK method and the sample
method. The pairwise approach has several advantages. Firstly, the computation complexity is relatively
low and secondly, it has a high breakdown value for the covariance estimate. The covariance is estimated
following Equation 23.

Σij = σ̂iσ̂j ρ̂ij . (23)

The sigma is estimated using the MAD. The MAD is great to use because it also has a high breakdown.
To also make the estimator consistent for normal distribution the MAD is multiplied by the constant
(Φ−1(0.75))

−1. This brings the full estimate of to σ̂i = (Φ−1(0.75))
−1 · m̂i, where m̂i is the MAD of

the respective asset. The ρ̂ij is estimated by the Spearman’s rho correlation. We know from the papers
(Kendall, 1948) and (Kruskal, 1958) that when there is no contamination the following statements holds:
ρij = 2sin(π6 ρ

S
ij). So our robust estimation of the covariance matrix is defined as

Σ̂S
ij = σ̂iσ̂j2sin

(π
6
ρ̂Sij

)
. (24)

The only drawback to this approach is that it does not specify how to achieve a robust estimate of the
location. The paper (Loh and Tan, 2018) suggests using a coordinate-wise approach however this paper
uses the medians of the assets to get a robust location estimate. This assumption is valid because when
the sample size is greater than 25 the median can be used as an estimate for the means (Hozo et al.,
2005). Since the sample size for each asset is 90 the median can be used.

4.3.3 Estimation of the Precision Matrix

For many portfolio weight allocations the inverse of the covariance matrix, also known as the precision
matrix, is required instead of the covariance matrix itself. In the low-dimensional case, taking the inverse
is not a problem because it can be done computationally. However, it becomes a problem in the high-
dimensional case.

One of the ways to solve this problem is by using the graphical lasso. The graphical lasso is a penal-
ized maximum likelihood estimator that promotes shrinkage. This is done by the following minimization
problem:

Σ−1 = Ω = arg minΩ(−log(det(Ω)) + tr(SΩ) + λ||Ω−diag||1 s.t. Ω = ΩT ,Ω ≻ 0). (25)

Here S denotes the sample covariance matrix, Ω ≻ 0 means that we only consider positive definite ma-
trices and λ > 0 is a penalty term that controls the degree of sparsity. This method has been shown
to perform poorly in the presence of outliers because it relies on the sensitive estimation of the sample
covariance matrix. However, in the paper by (Louvet et al., 2023), it was demonstrated, with the help
of the influence function, that the Graphical Lasso can be used when the covariance matrix estimation is
robust. In other words, the influence function of the Graphical Lasso was shown to be bounded when a
robust plug-in estimate for the covariance was used. This means that the sparsity of the solution is not
affected by the contamination and so the covariance matrices of Section 4.3.2 can be used.

The Graphical Lasso does however rely on a penalty term λ which has to be chosen by the researcher. Se-
lecting this λ comes with a trade-off between higher likelihood values for the likelihood and the shrinkage
of the precision matrix. There are different methods to come up with the optimal value of this parameter.
One of the most common ones is the use of the Bayesian Information Criterion (BIC). The BIC for a
precision matrix has been given in Equation 26, where S is a robust covariance matrix. This could be
cellwise or casewise. Furthermore if (Ω̂λ)ij ̸= 0 then êij = 1 and 0 otherwise. This paper computes the
value of the BIC for different values of λ and chooses the λ where the BIC is the lowest.

BIC(λ) = −log det Ω̂λ + tr(Ω̂λS) +
log n

n

∑
i≤j

êij(λ) (26)

This paper uses the built in R package glasso to estimate the Graphical Lasso precision matrices.
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4.4 Portfolio allocations & Strategies

This section discusses various portfolio allocations and strategies. Most of the allocations use the co-
variance or precision matrix estimated by the methods discussed earlier. The portfolio allocations and
strategies discussed in this section are both applied to the low-dimensional and the high-dimensional case.
The casewise outliers are compared to the cellwise outliers based on returns, standard deviation but also
weight stability and turnover. As a benchmark, the sample techniques for the location and scatter esti-
mates are used. This is to examine whether and how the techniques impact returns and turnover.

This paper looks at the Global Minimum Variance portfolio and the Tangency portfolio as the port-
folio allocations. Furthermore, it investigates the use of constraints in the portfolio. In particular the
use of no short selling constraints. The performance of the portfolios is captured by the characteristics
of the returns such as the mean, standard deviation, median as well the 4 quantiles. Additionally, the
performance of the weights is measured by turnover.

4.4.1 Asset Choice Strategy

The first step for any investor is to choose the assets for the portfolio. Investors often consider the mean
and volatility of returns when making this choice, where high returns and low volatility are most desired.
This paper suggests four different ways based on these characteristics to choose the assets in the portfolio.
The first method is the most widely known for assessing the performance of an asset, which is the Sharpe
ratio. The Sharpe ratio, first introduced in the paper (Sharpe, 1966), is the mean of the returns divided
by the standard deviation. The second way of choosing the asset is the Sortino ratio. The Sortino ratio
is similar to the Sharpe ratio but only takes the deviation of the returns below the target return into
account. In this case, the target return is set to zero so this ratio only takes the deviation in the negative
returns into account. The Sortino Ratio has been shown to be a good performance measure of an asset.
They found in the paper (Rollinger and Hoffman, 2013) that this is true especially when the distribution
is positively skewed. In addition to these two ratios, this paper also explores another method for selecting
assets for the portfolio. This method uses high means as a way of selecting assets for the portfolio. This
comes from the fact that momentum plays a role in the asset market. In the paper (Grundy and Martin,
2001) they showed that momentum profits are stable and predictable. The use of assets with the highest
means hopefully can capture this momentum factor to have higher returns. Once the assets have been
chosen, this paper investigates two strategies.

Choose and hold strategy
The first strategy is choosing the assets for the portfolio based on one of the three characteristics in the
first time period and holding these assets until the end. This would mean that only the weights of the
assets would change for each time period instead of the assets themselves. This strategy has some advan-
tages such as that the turnover is likely to be lower because the assets in the portfolio do not change over
time. However, not changing the assets can also impact the performance negatively because the choice
of assets for the entire time period is based only on the first time interval. It is highly unlikely that the
best assets in the first time period are also the best throughout the whole period. This could likely result
in lower returns and so the question would be whether the low turnovers are more beneficial than the the
low returns are harmful.

For the low-dimensional case, the portfolio contains 15 assets. This portfolio is constructed with 15
assets that performed the best out of one of the three characteristics. This creates 1 portfolio. Further-
more, portfolios are created by taking the 8 assets that performed the best and taking every combination
of 7 assets out of the 9th until the 19th best-performing assets. This creates 330 different portfolios. The
performance of these portfolios is also measured. For the high-dimensional case only the five portfolios
where the number of assets is 94, 188, 282, 376 or 470 are investigated.

Choosing each time period stategy
The second strategy this paper is considering is the strategy where the portfolio changes throughout the
time periods. The assets for each time period are ordered based on one of the three characteristics. For
example in t=4 the assets are ordered based on the highest Sharpe ratio and then the portfolio weights
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are estimated which are used in t=5. The advantage of this strategy is that the information on which
the portfolio is based is more recent. Recent information should lead to better returns and thus higher
portfolio performance. However, the constant changing of the assets in the portfolio could also lead to
higher turnovers. If this happens then the performance of wealth can be influenced.

Just as for the first strategy, in the low-dimensional case different portfolios are created. The first
portfolio is the one where each time period the 15 best-performing assets based on the characteristics
are chosen. This gives one portfolio. But also for this strategy, 330 portfolios are created consisting
of the 8 best-performing assets and all combinations of 7 assets out of the 9th to 19th best-performing
ones. For the high-dimensional case, similar to the choose and hold strategy only the five portfolios are
investigated.

4.4.2 Standard Portfolio Allocations

Global Minimum Variance portfolio
The Global Minimum Variance (GMV) portfolio is the portfolio that is formed when we solve the objec-
tive function: min w′Σw with the constraint of w′ι = 1. Using Lagrange to solve this problem, we obtain

the weights of the GMV portfolio, wGMV = Σ−1ι
ι′Σ−1ι = Ωι

ι′Ωι where Ω is the precision matrix. The GMV
portfolio thus minimizes the variance without considering the portfolio return.

The advantage of using the GMV portfolio is that it is resilient during market turbulence due to the
low volatility of the portfolio. However, the downside is that the returns can be low because portfolio
minimization only considers risk. Another advantage of this portfolio allocation is only the use of the in-
verse covariance matrix. Because of this, the estimation is reduced compared to if the mean estimate was
also to be used. A disadvantage is that as mentioned above this allocation only cares about minimizing
the risk without looking at the return. This can cause a portfolio to be sub-optimal for an investor if the
returns are low or even negative whereas if a little bit more variance was allowed could have led to much
better portfolio gains.

To compute the global minimum variance portfolio, the function globalMin.portfolio of R package In-
troCompFinR was used. The arguments are the location and scatter estimate of the method in question
and the last argument is TRUE when shorts are allowed and FALSE if not.

Tangency portfolio
The second portfolio this paper investigates is the Tangency portfolio. This portfolio uses excess returns
and so in this paper, the risk-free rate is set to zero. The weights are computed by the following equation:

wTAN =
Σ−1µ

ι′Σ−1µ
. (27)

The tangency portfolio has shown to be less favorable due to its high turnover. This is also shown in the
paper (Kirby and Ostdiek, 2012). This paper suggests that this is the case because of the scaling with
ι′Σ−1µ. Additionally, incorporating µ in the weights introduces more estimation error. The tangency
portfolio is an efficient portfolio that is fully invested in risky assets. The objective function of the problem
stays the same as does the constraint that the sum of the weights should be equal to one. However the
constraint for the target return changes to w′µ̃ = µ̃p where µ̃ represents the excess returns.

4.4.3 Portfolio Performance

This section discusses the performance characteristics that this paper uses to evaluate portfolios. Firstly
for the lower dimensional case, there are two different portfolio approaches. For the approach where only
the 15 best-performing assets are chosen the characteristics that are looked into are the return of the
portfolio, the turnover of the portfolio and the wealth after using the portfolio. For the approach where
330 portfolios are created, the analysis is much deeper. Here the median, median absolute deviation of
the returns as well as the turnover and the value of wealth are considered. Furthermore, to get a better
understanding of the density of the value of wealth the quantiles are also considered. Additionally, this
paper looks at how many portfolios of a robust method beat the portfolios of the sampling method and
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lastly the number of portfolios where money is made. This paper uses the median as a measurement
because it is robust and more reliable than the mean. The value of the mean can be significantly impacted
by one extreme positive or negative value and this can cause wrong conclusions. Furthermore, it looks
at the wealth of the portfolio, because a strategy with lower returns but also lower turnover could have
better net performance than a strategy where the returns and the turnover as higher. The value of wealth
is calculated using Equation 28, also used in the paper (DeMiguel et al., 2009). Here the start capital
is equal to 100 and then the wealth is updated for each time period where in the end at t=13 the final
wealth is displayed. The percentage of transaction costs is denoted by c. This is set at 1 percent because
of the article of (Downey, 2024) where it is stated that 1% often is the commission of stock trading.
Since S&P500 companies are often traded, 1 percent seems like a good choice. Equation has however a
drawback and that is when the the returns become extremely negative and go below -100% the wealth
equation has a harder time getting accurate results. This occurs due to short selling, where there is no
limit on the maximum loss. For the GMV portfolio, this is probably not a problem because the weights
are generally not that extreme but for the tangency portfolio, this could pose some problems if no short
selling is allowed. In the results section, we see if this is the case. It’s important to note that these issues
affect the performance and value of wealth but do not impact the weights or the turnover. So conclusions
taken from these portfolios based on the turnover are still valid.

Wt,k = Wt−1,k · (1 +Rt,p,k) · (1− c ·
N∑
j=1

(|wk,j,t+1 − wk,j,t|) (28)

The returns are calculated by using the weights obtained in t and using them in the portfolio for t+1.
The returns for each time period are the difference between the close value of the asset from the last
element in a certain time period and the open value from the asset at the beginning of the same time
period. This is also shown in Equation 29 where Rp,k is the return of the portfolio for combination k.

Rp,k =

T−1∑
t=1

wt,krt+1,k (29)

Furthermore, to compare the portfolios for transaction costs this paper uses turnover as a measurement.
Turnover is calculated using the following equation:

1

T −M

T−M∑
t=1

N∑
j=1

(|wk,j,t+1 − wk,j,t|). (30)

The equation measures the weight stability of the portfolio. It is also mentioned in the paper (DeMiguel
et al., 2009). The M

T−M is disregarded in the Results section because it is the same for all the portfolios
and because the differences in methods become less clear when dividing the weight changes by a big
number, which is as T is far greater than M.

4.5 Weight stability

Weight stability refers to the change of weights from time point to time point within a strategy. This
is an important aspect in portfolio strategies because disregarding it could lead to extra transaction
costs which ultimately harms the value of wealth. A strategy could theoretically be optimal based on the
covariance matrix and mean return estimates but could perform terribly when it comes to weight stability.
This section investigates the portfolio weights from different angles to this part of the portfolio strategy.
Furthermore, this section analyzes the sensitivity curve of the portfolio turnover to better understand
the fluctuations of the weights.

4.5.1 Sensitivity Curve

First of all, I investigate the portfolio measure of turnover, denoted in Equation 30. To achieve this, the
sensitivity curve is used. The sensitivity curve measures the effect of changing one data point. For the
turnover, this means that another data interval where weights are derived from is added. The derivation
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of the sensitivity curve of the turnover for one stock can be seen below:

SC =
1
T

∑T
t=1 |ŵk,t+1 − ŵk,t+ | − 1

T−M

∑T−M
t=1 |ŵk,t+1 − ŵk,t+ |

1/T
(31)

=
T−M

T 2−TM

∑T
t=1 |ŵk,t+1 − ŵk,t+ | − T

T 2−TM

∑T−M
t=1 |ŵk,t+1 − ŵk,t+ |

1/T
(32)

=
T

T 2−TM |ŵk,T − ŵk,T+ | − M
T 2−TM

∑T
t=1 |ŵk,t+1 − ŵk,t+ |

1/T
(33)

=
T

T −M
|ŵk,T − ŵk,T+ | − M

T −M

T∑
t=1

|ŵk,t+1 − ŵk,t+ | (34)

=|ŵk,T − ŵk,T+ | − M

T −M

T−M∑
t=1

|ŵk,t+1 − ŵk,t+ | (35)

We conclude that the value of M plays a crucial role in the sensitivity curve. The higher M is, the
lower the sensitivity curve is. However, in many cases, the full time period (T) is significantly longer
than the individual time window (M). If this is the case then the left side is close to the mean of the
turnover up until time T. To see if this performance measure is robust we have to look at what happens
when T → ∞. As mentioned in Section 4.1.2, a bounded sensitivity curve indicates robustness in the
measurement, whereas an unbounded curve signifies a lack of robustness. In theory, if there are no
constraints on the weights then the sensitivity curve could go to infinity as the difference of the weights
could be infinite meaning that the performance measure would not be robust. However, in reality, this
could never be the case as there are a finite number of stocks for a company and so the difference between
the weights from one point to another also always has to be finite. This leads to the sensitivity curve
being bounded when T → ∞, which means that for real-life problems this performance measurement
of turnover is robust.

4.5.2 Portfolio Constraints

One of the ways to make the weights more stable is by imposing constraints. In this section, the impact
of constraints is considered. Constraints are often used to mimic the real world better or to push the
optimization problem in a certain direction. This is often done in logistical problems, however they are
also very useful in the financial world.

One of the most important works in the field of using constraints to make portfolio weights more stable
was done by (Jagannathan and Ma, 2003). They showed that solving the global minimum variance op-
timization with constraints was equivalent to using shrinkage estimation on the covariance matrix. The
constraint of the sum of weights being equal to one is standard, but the additional constraint would
be that all the weights are greater than or equal to zero (no short-selling). The paper of (DeMiguel
et al., 2009) shows that using constraints can not only decrease turnover for more stable weights but also
increase returns.

The no short-selling constraint could benefit investors and the stability of the weights. Short selling
is borrowing shares of a stock from a dealer to be bought back at a later point in time. If, during this
period, the stock value decreases then the investor makes a profit. Short-selling is a risky part of portfolio
strategies and has its drawbacks. One of them is that there is no limit to the amount of losses you can
make on a short stock. This makes it very risky for inexperienced investors. Using the no short-selling
constraint is useful to avoid having allocations where short-selling is necessary. Additionally, the use
of this constraint can also increase returns. This happens because the constraint can limit the impact
the robust methods have on the portfolio weights as the constraint already introduces shrinkage to the
covariance matrix. This is investigated and analyzed in the Results section.
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5 Results

In this section we look at the results from the methodology. The Results section is subdivided into
low-dimensional and high-dimensional subsections with each subsection examining at the two portfolio
allocations. The Global Minimum Variance and the Tangency Portfolio. The last section goes over
concluding remarks and takeaways from the results

5.1 Low dimensional Portfolios

In the low-dimensional case this paper looks at three different characteristics. For each characteristic,
Sharpe Ratio, Sortino Ratio or High Mean, the 15 best assets are selected and investigated and as
mentioned in the Methodology section this paper also looks at the 330 portfolios that use the 8 best
assets with a combination of the 9th until 19th best assets for each characteristic. The portfolios with the
15 best assets are discussed in a broad sense but this paper also dives into some examples and intricacies
that are worth pointing out or could add some explanation. For the 330 portfolios, a broader analysis is
provided and the focus specifically lies on the overall distribution of the portfolios.

5.1.1 Global Minimum Variance Portfolio

First, this paper investigates the Global Minimum Variance portfolio. The benchmark for all the strate-
gies is the sample method. This paper looks at the characteristics individually where both the choose
and hold strategy and choosing each time period strategy are considered.

Sharpe Ratio
In Table 1 the return, turnover and wealth are shown for both strategies using the 15 assets with highest
Sharpe ratio. Here NS means that short selling is not allowed and so is referred to as the constrained
portfolio. Immediately it becomes clear that the sample method is the optimal choice when considering
Sharpe ratios. When we look at the choose and hold strategy we can see that the turnover for both the
constrained and unconstrained portfolio are lower than for the robust methods. For the unconstrained
case the only two robust methods that come close to the sample methods is the MVE and the 2SGS.
The DI method has a higher return than the sample method but because of the turnover the final wealth
is considerably lower. On closer inspection, the high turnover in the DI method is attributed to the
constant fluctuations in asset importance. Where the sample method often chooses for different time
intervals the same 2 or 3 assets to put most of the money in, the DI changes constantly which results in
higher turnover. Additionally, we observe that the determinant of the inverse covariance matrix in the DI
method is notably higher compared to the sample method, resulting in higher weight allocations. How-
ever there is improvement across the board for the constrained case. This is in line with the conclusions
drawn in the study by (Jagannathan and Ma, 2003), where using constraints can help with the returns
as well as the turnover. Interesting to note is that the cellwise methods significantly improve.

For the constrained case both methods that performed the worst when short selling was allowed score
now the best compared to the other robust methods. The DI method is now the best performing method,
earning the most amount of wealth at the end of the time period. This is because of the significantly
decrease in turnover due to the shrinkage introduced in the covariance matrix which led to lower weight
allocation. It is interesting to note that this did not harm the returns and thus the DI method slightly
outperforms the sample method. Furthermore the turnover of the sample method is still the lowest and
so the early indication is that these robust methods based on Mahalanobis distances are in general not
better for stabilizing the weights.
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Table 1: characteristics of 15 highest sharpe ratios

choose and hold Sample MCD MVE cellMCD DI 2SGS

Return GMV 95.99% 58.01% 94.69% 69.57% 97.16% 84.97%
Turnover GMV 20.786 25.809 23.345 36.671 53.339 22.497
Wealth GMV 158.93 121.74 153.81 116.86 114.28 147.40

Return GMV NS 97.38% 74.45% 87.73% 94.79% 106.24% 88.72%
Turnover GMV NS 12.290 14.223 13.323 13.690 14.211 13.222
Wealth GMV NS 174.44 151.20 164.20 169.73 178.77 165.23

choosing each time period Sample MCD MVE cellMCD DI 2SGS

Return GMV 49.38% 43.46% 46.81% 44.51% 2.49% 43.48%
Turnover GMV 38.454 44.357 43.046 52.967 65.131 40.089
Wealth GMV 101.08 91.33 94.73 84.10 52.51 95.47

Return GMV NS 49.15% 42.99% 55.42% 37.63% 28.77% 37.44%
Turnover GMV NS 24.778 24.625 24.691 24.987 25.000 24.855
Wealth GMV NS 116.13 111.51 121.12 106.94 100.04 106.93

The choosing each time period strategy does significantly worse than the choose and hold strategy. None
of the returns or values of wealth are higher. Also as hypothesized in the Methodology section the
turnover is also higher due to changing of the assets and therefore a lot of transactions are need to be
made. There are however similarities between the different strategies. For the unconstrained portfolios
the sample method is still the best performing as well as the only method that makes money. All the
robust methods lose money. What is also interesting is that where the DI method had the highest returns
for the choose and hold strategy, the returns of DI for the choosing each time period strategy are by far
the worst. Where are the reasons for this? First of all when we look into the time periods individually we
see that the DI method compared to the sample method has really extreme returns ranging from -13%
to 10% where the sample method lowest return is only -3%. These extreme results are a consequence of
having more extreme weights in the portfolio. These extreme weights, although not as extreme as those of
the tangency portfolio, are significantly higher compared to those of the sample method. The reason why
the DI method has such extreme weights is because of that the determinant of the covariance is very low.
This is expected as the values of the datasets come closer together as outliers are minimized. However, due
to the low determinant of the data point matrix, the inverse of this matrix has a high determinant. This
results in high values in the inverse, leading to extreme weights as the inverse matrix is used for weight
allocation. Furthermore we also see this for the casewise robust methods but in less extend, this could
be because the outlier detection is row based and so the determinant is than higher in the original matrix.

For the constrained portfolio the wealth value are all above 100. This is mainly due to the fact that
all the turnovers are significantly decreased. The difference in returns on the other hand is mixed. For
some methods the returns have increased when the no short selling constraint is used but for others it
has decreased. Furthermore it is interesting to see that with so little assets in the portfolio and thus
constantly changing the weights does not only increase the turnover but actively decreases the return
compared to the choose and hold strategy. This shows that having recent information does not always
equal higher returns.

Secondly, the 330 portfolios based on the Sharpe ratio are considered. These portfolios give a more
broad view of the effectiveness of this characteristic and how the robust methods compare to the sample
method. The results for the choose and hold strategy are denoted in Table 2. For the unconstrained
portfolio, we see similar results as in Table 1. It does however show that the MCD method and the 2SGS
method perform considerably better in terms of median value of wealth compared to previous results.
The sample method on the other hand has a median which is similar to the one in Table 1. Comparing
the methods we can see that the sample method has one of the highest returns and looking at the MAD
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it is also very stable across the portfolios. Furthermore, this also holds for the turnover. Both these
factors contribute to the sample method being the best method to use. Comparing the robust method
itself we see the combination of casewise robustness and cellwise robustness yields the best results. This
is different from the conclusion of Table 1. The casewise robust methods are better at stabilizing the
weights than the cellwise robust methods are. This high value for turnover is also the reason why the
cellwise robust methods have very low values of wealth. With both of them even losing money on some
portfolios. For the constrained portfolio we see the turnovers as expected significantly decrease due to
the shrinkage created in the covariance matrix. This also results in the returns for most methods to
increase. It also shows in general that the portfolios are more stable as shown by a lower MAD for return
and turnover. However, we still observe the sample method remaining the best-performing method, with
none of the other methods coming close.

Table 2: sharpe ratios GMV portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 94.18% 77.61% 84.97% 79.60% 102.10% 95.54% 103.27% 88.55% 93.68% 93.19% 87.84% 89.54%
MAD Return 0.007 0.149 0.138 0.182 0.255 0.101 0.058 0.080 0.086 0.104 0.085 0.052

Median Turnover 20.617 26.395 24.324 37.571 51.557 22.501 12.514 13.900 13.518 13.856 15.518 13.402
MAD Turnover 1.079 1.420 1.555 2.873 4.628 0.966 0.491 0.897 0.796 0.788 0.964 0.385
Median Wealth 157.95 135.76 145.07 122.91 118.37 155.53 179.29 163.85 169.09 168.03 160.43 165.60
MAD Wealth 5.84 11.69 11.66 13.22 16.25 8.03 5.44 7.15 8.03 10.29 7.87 4.92
1q Wealth 145.34 109.03 118.92 90.40 71.44 138.60 168.11 144.24 148.79 146.27 141.98 155.55
2q Wealth 153.61 128.08 137.29 114.55 108.18 150.72 176.02 158.44 164.07 161.46 155.53 163.15
3q Wealth 161.58 143.69 152.96 132.33 130.23 161.43 183.81 168.29 174.71 175.10 166.03 169.81
4q Wealth 176.74 166.59 176.35 173.43 198.69 177.91 196.11 182.85 191.49 190.61 182.51 177.60

Beat Sample n/a 0.00% 1.21% 1.21% 14.54% 4.24% n/a 0.30% 4.24% 7.27% 1.21% 0.00%

For the choose every time strategy we see different results compared to Table 2. For the unconstrained
portfolios, the sample method is not the best method anymore. Looking at the median value of wealth we
see the 2SGS method having the best median wealth. Additionally, the casewise robust methods perform
considerably better than the sample method, and they also have higher potential earnings. However, the
turnover of the sample method is still the lowest indicating the weights are not more stabilized by using
the robust methods. Although the robust methods performance is more positive the overall results are
as expected worse compared to the choose and hold strategy. The reasoning behind this is mentioned
above and is not portfolio-specific. Finally, the cellwise methods continue to underperform, and at least
for the Sharpe ratio are not the methods to use to get good performance. For the constrained we see the
casewise robust methods having a lower turnover but this difference is so minimal that we conclude that
the weights are not significantly more stabilized. Furthermore, we once again see the casewise robust
methods performing better than the cellwise robust method and having a higher potential in earnings.
But overall the sample method is still the best method to use, due to the shrinkage that the constraint
brings.

Table 3: Sharpe Ratio GMV portfolios (choose every time strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 40.37% 42.49% 42.05% 50.45% 41.37% 50.50% 45.96% 40.72% 44.39% 45.45% 43.51% 39.26%
MAD Return 0.101 0.166 0.121 0.216 0.275 0.104 0.082 0.085 0.092 0.087 0.106 0.081

Median Turnover 48.331 54.623 53.078 67.017 84.343 49.531 30.837 30.622 30.753 31.413 30.919 31.451
MAD Turnover 1.276 1.912 1.993 3.428 3.912 0.882 1.166 1.231 1.218 1.152 1.154 0.968
Median Wealth 85.99 82.04 83.14 76.11 59.52 91.33 106.72 103.00 105.84 105.67 104.67 101.75
MAD Wealth 5.67 10.39 7.54 9.59 10.65 6.05 5.93 6.35 6.87 6.18 7.22 5.60
1q Wealth 73.05 63.21 64.72 50.26 27.97 77.59 93.92 92.79 91.75 91.07 86.27 88.37
2q Wealth 82.27 75.11 78.49 69.46 52.36 87.36 102.81 99.42 101.24 101.75 100.04 97.27
3q Wealth 90.10 89.11 88.48 82.29 66.72 95.56 110.79 108.22 110.52 109.96 110.08 104.90
4q Wealth 104.15 108.48 106.82 98.78 99.68 107.48 123.88 120.79 126.03 120.02 123.19 115.59

Beat Sample n/a 32.73% 32.73% 11.21% 2.42% 82.12% n/a 30.91% 45.45% 18.18% 19.40% 12.73%
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Sortino Ratio
For the second characteristic the portfolios are based on is the Sortino Ratio. This ratio only takes the
deviation of returns below the target return in consideration. The target return in this case is 0. For the
choose and hold strategy the returns are slightly higher for the unconstrained case comparing it to the
portfolios based on the Sharpe ratio. The sample method performs the best, having the highest returns,
lowest turnover and highest wealth compared to the robust methods. When we compare it the the worst
performing method, the DI method, two reasons come up why the sample method works so well. First
of all the turnover is a big factor. This is especially true in the first 6 time periods where the turnover
of the DI method was often more than 3 times the turnover of the sample method. So even though the
returns of the DI method were significantly higher in the first 6 time periods than the sample method
the value of wealth difference was minimal. Secondly in the 8th time period the DI method chose the
wrong asset to go long in due to the negative outlier being disregarded and so the weight on the asset
was too high compared to the sample method who took the negative outlier into account. This was not
only the case for the DI method but also other methods had a negative return in this time period due to
this. Thus this is a disadvantage of using the robust methods.

For the constrained portfolio the same is true. The sample method performance the best in returns
and wealth and the difference between the sample method and the best-performing robust methods re-
mained consistent. The constrained portfolio again reduced the turnover and therefore increased the
wealth even if the returns were lower. For example the return for the MCD in the unconstrained version
was 101.34% and for the constrained portfolio 94.36% but due to the turnover being lower for the con-
strained portfolio the value of wealth was greater than for the unconstrained portfolio. The main reason
why in the constrained case the sample method does so well compared to the other is the fact that the
sample method has no negative return.

Table 4: characteristics 15 highest sortino ratios

One Time Sample MCD MVE cellMCD DI 2SGS
Return GMV 109.76% 101.34% 85.13% 81.56% 77.22% 84.11%
Turnover GMV 18.776 23.547 24.403 30.999 43.961 21.962
Wealth GMV 173.61 158.74 144.68 132.62 113.27 147.53

Return GMV NS 109.72% 94.36% 92.88% 87.51% 63.56% 78.23%
Turnover GMV NS 12.354 13.565 13.964 13.286 15.870 14.479
Wealth GMV NS 185.24 169.58 167.61 164.06 139.41 154.07

Every Time Sample MCD MVE cellMCD DI 2SGS

Return GMV 64.72% 45.68% 69.72% 94.26% 57.04% 83.29%
Turnover GMV 37.169 40.026 39.392 48.555 70.657 39.651
Wealth GMV 112.95 96.99 113.75 118.34 75.88 122.51

Return GMV NS 63.44% 63.34% 67.72% 60.27% 52.89% 64.84%
Turnover GMV NS 24.673 24.648 24.749 25.000 24.863 24.859
Wealth GMV NS 127.39 127.37 130.63 124.51 118.94 128.24
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Looking at the choosing each time period strategy we see again that the returns in general are all
lower. This is true for the unconstrained and the constrained version. Also, just as in Table 1, the
turnovers are higher, which results in lower wealth. We also see that for the unconstrained version three
out the five robust methods outperform the sample method. This is mainly due to the higher returns;
however, the sample method, with the lowest turnover, indicates that in this setting, the Sortino Ratio
is preferable to the standard Sharpe Ratio. The other two robust methods lose money where especially
the performance of the DI method is bad compared to the rest of the methods. This was also the case
for the Sharpe Ratio. Interesting to see is that the casewise robust methods as well as the cellwise robust
methods give different results for different methods. Comparing the MCD with the MVE method we see
that the turnover is almost the same but the returns are not. So the question is, why does the MCD
method not get as high returns as the MVE method. When we compare the returns for each individual
time period we see that the MCD and the MVE method do not differ too much from each other except
from one time period where the MCD method has a negative return of 13% where the MVE had only
a negative return of -3%. This could be luck but if we look closer to the weights in this time period we
do see some differences in two of the stock. First of all the stock AKAM, which we also had seen was
a talking point for the Sharpe Ratio, where the MCD method puts to much weight. This is due to the
fact that the inverse covariance matrix of the MCD method has a higher value at point (4,4) compared
to the MVE estimator. One of the reasons could be that the MCD and the MVE estimator do not
agree on 10% whether a row is contaminated. Furthermore the MVE flags more rows than the MCD
method does. This could also be the reason the methods differ on the second stock which is the TSS
stock. This difference is more significant as the MVE methods takes a long position but the MCD method
takes a short one. The values on the diagonal of the inverse of the MCD method are very high as well as
having a lot of negative covariances with the other stocks which led to the stock having a negative weight.

For the constrained the turnovers are considerably lower and really close to each other. The highest
turnover is 25, while the lowest is 24.648. The returns are also relatively close to each other which leads
to no to little distinction in the value of wealth across the different methods. Compared to the uncon-
strained version the values for wealth have increased. This is, just as for the choose and hold strategy,
mainly due to the decrease of turnover. However the DI method still shows to be the weaker method
to use, mainly due to the lower returns. When compared to the MVE method some interesting things
come to light. First of all the DI method, as seen before, loses a lot of value in the 7th time period
and in this case it is no different with a -11% return. But this is not the only time the MVE method
had a significant advantages in terms of returns. For the 9th time period for example the MVE method
gets a return of almost 6% where the DI method only gets a 1.8% return. The first thing we notice
is that the weights of the DI method are not diversified with 1 asset holding 67% of the wealth. The
reason for this is that the value on the diagonal of the inverse is very high with low covariances. For
the MVE method the values on the diagonal are much closer to each other leading to more diversification.

Secondly, the performance of the 330 portfolios based on the Sortino ratio are considered. For the
choose and hold strategy the results are denoted in Table 5. We see that the returns are roughly the
same when compared to the performance of the Sharpe ratio. For the unconstrained portfolios we can
see that the returns in Table 4 slightly overestimated the performance. This is especially true for the
MCD method but also the returns of the sample method are lower. When we look at the turnover we
can also see that the sample method has the lowest turnover and that the cellwise robust methods have
again the highest. This shows that this is the case independent of the portfolio used. What is also
interesting is that the 2SGS method, similar to the performance of the Sharpe ratio has a very low MAD,
for turnover. This means that despite using different asset combinations the turnover does not differ that
much, making the case that the choice of assets the methods have low weight allocations. When it comes
to value of wealth we can clearly see in Table 5 and in Figure 3 that the sample method dominates over
the other methods with the highest beat sample percentage is 4.24% for the MVE method. This was also
the case for the Sharpe ratio and it gives the sense that the robust methods in this strategy with the
unconstrained portfolios are unable to outperform the classical sample approach.

For the constrained case the sample method also is better than the robust methods. This can also
be seen in Figure 4 where the density of the sample method is clearly shown to be on the right of the
robust methods. Furthermore, as expected, the use of constraint helps to lower the turnover and reduces
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the difference between the methods. I also conclude that the constraints help reduce the spread of the
turnover because the MAD for all the methods is lower. This was also the case for the Sharpe ratio.
The value of wealth is therefore also higher but as mentioned above none of the robust methods beat
the sample method. This is another indication that these robust methods based on the Mahalanobis
distance do not improve the stability of the weights and so the conclusion when using these ratios for
asset selection is to stick with the sample method for weight estimations. Lastly, it is also evident from
Figure 4 that the casewise robust methods are far better than the cellwise robust methods in terms of
values of wealth.

Table 5: Sortino Ratio GMV 330 portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 96.92% 72.29% 83.77% 87.39% 93.76% 80.57% 104.08% 85.57% 94.66% 92.80% 70.36% 81.64%
MAD Return 0.099 0.181 0.185 0.188 0.332 0.117 0.088 0.131 0.128 0.089 0.096 0.078

Median Turnover 18.445 24.221 22.421 32.527 44.874 21.374 12.042 13.214 12.729 13.423 15.307 13.653
MAD Turnover 0.641 1.254 1.690 2.603 3.232 0.664 0.367 0.772 0.667 0.586 0.830 0.604
Median Wealth 163.49 134.66 146.279 134.35 121.91 145.48 180.91 162.17 171.34 169.09 145.72 158.37
MAD Wealth 8.54 13.90 15.83 14.76 20.03 9.37 8.30 11.47 12.20 8.33 8.76 7.44
1q Wealth 146.20 104.82 110.73 95.10 74.34 124.20 166.04 134.24 140.89 149.30 121.46 144.75
2q Wealth 158.53 125.95 135.67 125.46 109.39 139.61 175.00 154.80 162.70 162.97 140.88 153.76
3q Wealth 169.80 144.37 157.42 144.82 136.90 152.27 186.03 170.70 178.78 174.02 152.29 163.54
4q Wealth 184.82 173.42 186.03 187.49 223.54 176.00 208.01 195.64 210.18 192.49 171.03 174.47

Beat Sample n/a 0.00% 4.24% 1.52% 3.64% 0.61% n/a 0.61% 13.33% 3.64% 0.00% 0.00%

Figure 3: Unc port choose and hold strategy
Figure 4: Con port choose and hold strategy

Looking at the performance of the choosing each time period strategy denoted in Table 6 we see a lot
of interesting things happening similar to the Sharpe ratios. For the unconstrained portfolios, we can see
that the returns, for almost all the robust methods, are higher compared to the sample method. However
with this high return also comes a high MAD for the return with the MAD for the MVE being as high
as 35.8%. This combined with a very high turnover for the MVE method makes it one of the worst
performing methods in this table. Comparing it to the turnover denoted in Table 4 gives an interesting
read as now for some methods the median is more than twice as big. This big difference is also shown
in the MAD for the turnover. Furthermore the cellMCD and the DI method once again stand out as the
methods with the highest turnover. This shows that for both the ratios the cellwise robust method is
not a good method to use when considering a GMV portfolio. The method that is performing well for
the unconstrained portfolios with the choosing each time period is the 2SGS method. It has the second
highest return but also a low MAD which means that the returns are less scattered. Furthermore, it
has the second-best turnover behind the sample method but the difference is not as big as for the other
methods and it has the highest median value of wealth which again is backed with a low MAD. This good
performance is also shown in the fact that is beats the sample method for 90.61% of the portfolios. That
the 2SGS performs well compared to the sample method can also be seen in Figure 5 where the line of
the 2SGS method is clearly to the right of the sample method line.
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For the constrained portfolios we see again that the performance improves compared to the unconstrained
case. This is mainly due to the decrease in turnover because the returns stay the same or even drop. What
we also see is, just like for the Sharpe ratios, the casewise robust methods have a lower turnover than the
sample method. However, for the Sortino ratio, these methods also have higher returns. This translates
to a higher value of wealth. Furthermore, the median of the value of wealth is higher for the casewise
robust methods and also just under 75% of the portfolios outperform the sample method. For the cellwise
robust methods, we see the same results. Both methods do better than the sample method with the DI
method even having a lower turnover than the sample method. This is compared to the unconstrained
portfolio a great improvement. Lastly, the 2SGS method does not do as well compared to the other
robust methods and only barely beats the sample method in terms of the value of wealth. It is however
the only method that makes money on all the 330 portfolio and this is for an investor also very important.

In conclusion, similar to the Sharpe Ratio, when the Sortino ratio is used as the characteristic to choose
the assets for the choose and hold strategy it is better to use the sample method than the robust methods
for unconstrained portfolios as well as the constrained ones. This is because it does better in return,
turnover, and therefore also the value of wealth. For the choose every time strategy this is not true for
the unconstrained portfolios as the 2SGS does considerably better when it comes to value of wealth and
return. Furthermore for the constrained portfolios all the robust methods beat the sample method in
terms of value of wealth more times than not with most of them beating the sample method more than
70% of the time.

Table 6: sortino ratios GMV 330 portfolios (choose every time)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 54.93% 52.83% 65.89% 80.05% 63.38% 68.95% 56.23% 58.98% 58.71% 56.45% 56.10% 55.18%
MAD Return 0.129 0.126 0.358 0.201 0.244 0.133 0.098 0.106 0.101 0.100 0.108 0.092

Median Turnover 46.018 52.190 92.675 64.981 80.755 49.047 31.054 30.906 30.843 31.376 30.482 31.052
MAD Turnover 1.209 1.660 7.202 3.859 4.877 1.153 0.984 1.040 1.061 1.033 1.181 0.733
Median Wealth 97.48 90.32 63.52 92.62 71.87 102.76 114.30 116.60 116.52 114.25 114.59 113.60
MAD Wealth 8.69 8.43 14.04 9.03 11.11 8.16 7.01 8.40 7.99 7.79 8.41 7.17
1q Wealth 78.79 72.67 6.48 61.11 36.34 84.45 98.49 99.75 97.89 97.47 94.50 100.37
2q Wealth 90.98 84.85 54.30 86.36 64.06 97.42 109.19 110.95 111.16 109.29 109.51 108.94
3q Wealth 102.31 96.04 73.72 98.54 78.66 108.44 118.82 122.32 122.00 119.66 120.65 118.60
4q Wealth 116.97 113.24 108.98 121.90 102.40 122.63 131.44 135.14 138.32 135.13 140.70 128.82

Beat Sample n/a 17.58% 23.33% 29.70% 1.21% 90.61% n/a 74.24% 73.64% 70.30% 56.36% 50.30%

Figure 5: A figure
Figure 6: Another figure
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High Mean
The third characteristic is the assets with the highest means. The results are shown in Table ??. Firstly
we look at the choose and hold strategy. The performance of the portfolios is much higher for the high
means than the two characteristics previously discussed. What is also interesting is for the unconstrained
portfolio the returns are greater than for the sample method at 4 out of the 5 robust methods. This is
noteworthy because for the Sharpe ratio and Sortino ratio, the returns for the sample were always one of
the highest. Not only the returns but also the wealth is higher when using the high mean portfolio. All
the methods for the unconstrained portfolio report wealth above 200 and 3 out of the 5 robust methods
outperform the sample method in this regard. However, when looking at the turnover the sample method
still performs the best. The constrained version is less promising. Although the turnover has again de-
creased, none of the returns or wealth have resulted in an increase. Still compared to other characteristics
the constrained portfolio performs the best overall with all the returns above 100% and also all the values
for wealth close to the 200 mark. This however shows the ability to short sell is not beneficial for the
high means characteristic. If we dive deeper into the reasons why this is then we conclude that the assets
with high means that have low covariance with the other assets or even a negative covariance are mostly
shorted and these assets often do not move with the overall market so they are shorted which leads to
higher returns when the market is up.

Table 7: characteristics 15 highest means

One-Time
Sample MCD MVE cellMCD DI 2SGS

Return GMV 155.48% 202.95% 154.54% 199.75% 199.25% 167.39%
Turnover GMV 16.179 18.942 18.120 25.337 37.134 18.970
Wealth GMV 217.09 250.31 212.06 232.02 205.22 220.85

Return GMV NS 122.24% 130.50% 118.50% 121.90% 142.40% 127.84%
Turnover GMV NS 11.793 13.001 12.363 14.854 16.915 13.552
Wealth GMV NS 197.41 202.26 192.97 191.10 204.44 198.81

Every-Time
Sample MCD MVE cellMCD DI 2SGS

Return GMV 78.32% 119.93% 92.46% 89.54% 77.24% 69.23%
Turnover GMV 34.399 38.194 37.309 51.662 64.554 36.365
Wealth GMV 125.81 149.23 131.78 111.79 91.27 117.01

Return GMV NS 62.84% 72.98% 72.12% 71.29% 46.00% 55.29%
Turnover GMV NS 23.924 24.400 24.277 24.862 24.771 24.635
Wealth GMV NS 127.90 135.21 134.70 133.26 113.69 121.09

When we look at the choosing every time strategy we can see, just as with the other characteristics,
a decrease in performance. However, just as for the choose and hold strategy, these performances are
all still the best out of the characteristics. For the unconstrained portfolio the sample method is based
on returns beaten by 3 out of the 5 methods but due to higher turnover only 2 out of these 3 also
beat the sample by value of wealth. These two methods are the casewise outlier methods. Both the
MCD and the MVE method beat the sample in the unconstrained portfolio based on wealth. The only
method that does not make money is the DI method. This is the third time that the DI method is
the worst performing for the choosing every time strategy while also often having the highest turnover.
The problem with the DI method is that the positions in the portfolio are very extreme going long for
high value and also shorting high values. This not only leads to higher turnover as can be seen but
also that the returns are more extreme. However, with such high turnovers even the extremely positive
returns are set back by transaction costs resulting in less increasing values of wealth. So the values of
wealth do not increase that much but when the returns a negative and for DI they could be extremely
negative then the effect counts double with losing value of wealth due to high negative return but also
transaction costs. This is why the DI method does the worst. The MCD on the other hand does a better
job at keeping the turnover low but what the MCD and MVE do well is identifying the good stocks to pick.
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For the constrained portfolio we see the turnover has again decreased and has a value of around 24.
This is similar to that of the other characteristics. Furthermore, the sample method is beaten by both
the casewise methods and the cellMCD method when it comes to returns and wealth but the sample
method still has the highest turnover. It is also interesting to see that the 2SGS method performs better
than the sample method for the choose and hold strategy in the unconstrained as well as the constrained
portfolio but using the choose every time strategy performs worse in both portfolios. We see that the DI
method once again performs the worst. Comparing it to the MVE method and the sample method gives
us good insight into why this is the case. Immediately we see differences in the returns. For example, in
the 5th time period both the sample method and the MVE have a positive return while the DI method
has a negative one. Firstly all three methods had roughly 50% of their wealth in a stock that had a
return of -7.5%. However, the DI method also had a 25% share in a stock that had a return of -15% while
the others did not. How come this? When investigating the inverse of the covariance matrix we see that
the DI method still has very high values on the diagonal compared to the MVE method and the sample
method. Furthermore, the covariances of these high values are low which leads to less diversification.
The DI method flagged a lot of values for the stock where it had a 25% share so it created less covariance
with the other stock which led to a higher stake. The MVE method does not have this problem as it sees
the whole row as contaminated and so the covariances are less hindered.

Table 8: high mean GMV portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 175.13% 161.16% 178.03% 142.96% 170.11% 147.08% 146.74% 132.31% 141.29% 127.40% 141.15% 126.17%
MAD Return 0.246 0.358 0.321 0.337 0.753 0.315 0.194 0.179 0.170 0.118 0.284 0.178

Median Turnover 17.517 22.145 20.131 31.475 40.705 20.958 11.935 13.482 12.629 14.565 16.152 13.610
MAD Turnover 0.725 1.815 1.582 3.956 4.818 1.944 0.422 0.919 0.868 0.984 0.899 0.798
Median Wealth 233.87 209.24 228.39 177.94 177.91 200.64 219.13 203.11 211.43 196.44 205.17 197.36
MAD Wealth 19.90 29.73 23.38 26.40 47.28 25.40 16.60 15.94 14.65 10.10 23.81 16.48
1q Wealth 187.80 140.78 164.39 100.12 82.51 137.62 190.59 169.28 177.29 164.61 142.54 162.49
2q Wealth 219.13 190.25 212.13 157.97 151.74 183.87 208.18 191.45 203.07 190.23 189.67 186.54
3q Wealth 246.35 230.01 243.84 194.20 215.30 218.39 230.56 212.78 222.21 204.30 221.99 208.51
4q Wealth 277.21 309.91 305.22 275.38 388.70 265.76 256.36 254.19 264.42 229.43 262.98 235.48

Beat Sample n/a 21.52% 42.42% 5.45% 17.58% 10.61% n/a 13.64% 28.48% 26.06% 34.85% 6.36%

Now we look at the high mean GMV portfolio for the choose and hold strategy. The results are shown
in Table 8. When we look at this table and compare it to Table 7 we see some similarities and some
differences. Starting with the unconstrained portfolio the similarity is the turnover for the sample method
stayed the lowest of all the methods. We also see the order of highest to lowest turnover for the robust
methods also stayed roughly the same. However, there are big differences when it comes to the returns
and the value of wealth. Firstly when it comes to returns the interesting part is that the MVE and the
DI methods outperform the sample method on returns. The other three methods also have a high return
percentage but not higher than the sample method. When we look at the value of wealth the sample
method stands out when it comes to median wealth and a low MAD. Although the sample method has
the best median wealth, the other robust methods have higher ceilings. All the robust methods except
for 2SGS have a higher maximum than the sample method, where the MVE method and the DI method
even surpass the sample method before the 3rd quantile. In terms of beating the sample portfolios, the
casewise robust methods are the best performing. The MVE even outperforms the sample method for
over 42% of the time. This is interesting as for the Sharpe Ratio and Sortino ratio the robust methods
were performing significantly worse compared to the sample method.

For the constrained version the differences we see a couple of interesting things happen. Firstly when
comparing Table 8 and Table 7 we see for the returns all the median returns in Table 7 are higher than the
returns in Table 8. Furthermore introducing the no short selling constraint usually increases the returns
but in this case, all the returns have decreased. Looking at the value of wealth for the median we see that
the sample method as well as the casewise robust methods and the 2SGS method all have lower median
where the cellwise robust methods have increased median compared to the unconstrained portfolios. This
is because the cellwise robust methods have a high turnover and so the constraints have more impact on
their turnover than for the other methods. This results in the DI method beating the sample method
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in almost 35% of the portfolios. What we also see is just like for the unconstrained portfolios the MVE
method and the DI method have long tails and thus their earning potential is higher than for the sample
method.

Table 9: high mean GMV portfolios (choose every time strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 89.54% 73.03% 74.25% 59.37% 47.53% 59.75% 78.68% 70.10% 71.87% 55.68% 43.72% 54.00%
MAD Return 0.197 0.276 0.248 0.257 0.338 0.165 0.144 0.126 0.140 0.129 0.126 0.097

Median Turnover 46.208 49.123 48.201 63.593 73.827 46.651 32.672 32.221 32.586 32.934 32.388 32.921
MAD Turnover 1.291 2.583 2.204 2.844 3.846 1.499 1.362 1.643 1.463 1.406 1.864 1.494
Median Wealth 118.68 105.71 107.47 83.63 69.80 99.78 128.78 122.62 124.21 111.97 103.99 110.46
MAD Wealth 12.83 17.24 15.05 13.81 16.67 10.21 10.17 9.44 10.20 9.06 9.05 6.94
1q Wealth 87.98 71.92 69.44 44.99 33.17 76.20 108.87 98.07 101.84 94.55 84.62 94.77
2q Wealth 111.29 94.51 97.24 74.35 58.40 93.13 122.99 116.70 117.40 106.72 97.43 106.37
3q Wealth 127.83 118.05 117.61 93.16 80.80 107.47 136.55 129.34 131.11 119.04 109.56 115.64
4q Wealth 148.97 149.23 152.31 154.04 125.03 129.02 155.56 149.17 155.87 147.22 142.47 134.65

Beat Sample n/a 17.27% 15.76% 0.00% 0.61% 0.00% n/a 21.52% 26.06% 42.73% 0.00% 0.00%

In conclusion for the global minimum variance portfolio, the sample method is still the best method to
use if you look at these characteristics. The only characteristic where the sample method did worse than
the robust methods is when the characteristic of high means was used. Also, the turnovers for the sample
method are always lower than those for the robust methods. This indicates that the estimation error of
the inverse covariance matrix is not a big problem for the weight, as the weights of the global minimum
variance portfolio are only based on the inverse of the covariance matrix. The introduction of the estima-
tion error in the means could be the reason why for the characteristic of high mean the robust methods
outperformed the sample methods. Looking at only the robust methods the casewise outlier methods
often performed better than the cellwise outlier methods. This is especially true for the unconstrained
portfolios where the casewise methods performed considerably better than the cellwise outliers in terms
of wealth. This difference could be because the cellwise outliers often had higher turnovers than the
casewise outliers.

5.1.2 Tangency Portfolio

Sharpe Ratio
The first characteristic is again the Sharpe ratio characteristic. The results are denoted in Table 10.
First, we look at the choose and hold strategy and for the unconstrained, we see the worry of Equation
28 which is also mentioned in the Methodology section. The methods affected by this are all the methods
except for the MVE method, so these results are marked with a star. The turnover however is not affected
by this and so we can conclude that the turnovers for the cellwise robust methods, similar to when the
Global Minimum Variance portfolio was used, are extremely high. When comparing the sample method
to the robust casewise methods we see that the turnover is lower for the robust casewise methods and
so here there is more stability to the weights. This does not however help a lot with the value of wealth
because both the sample method and the robust casewise method lose money, due to the aggressiveness
of the tangency portfolio. For example for the MCD method weights could be as high as 29.6 for one
asset and as low as -12.2 for the other asset within the same time period. The extreme positions in assets
combined with the constant changing of the ’important‘ assets leads to high turnover.

For the constrained portfolio the picture looks a lot better. All the methods make money and have
low turnover. Just as for the GMV portfolio, the turnover of the sample method is the lowest, slightly
lower than the MVE method. The turnover of the other method is also not that different from the sample
method. So the turnover is quite equal for the different methods but when we look at the returns and
the value of wealth the MVE method outperforms the rest, followed by the sample method and the DI
method. What makes these methods do so well compared to for example caseMCD method? To answer
this question we look deeper into the values of wealth over time and compare the two highest (MVE
and sample) with the two lowest (MCD and 2SGS). The values of wealth of these methods are in the
beginning very close to each other but the MCD method starts with a negative trend of returns from
the fourth time period where the 2SGS has the highest value of wealth at the 8th time point. The big
difference happens at the 10th time point where the MCD and the 2SGS both have high negative returns
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of -6.06% and -5.45%. This came due to a lack of diversification in combination with choosing both assets
with the lowest return. Meanwhile, the MVE and the sample method have positive returns because they
diversified more, and thus their weights were not as high for the asset with negative returns.

Table 10: performance of 15 highest Sharpe Ratio

Choose and Hold
Sample* MCD* MVE cellMCD* DI* 2SGS*

Return Tan -111.18% -138.70% -50.01% 343.12% 634.25% 4899.33%
Turnover Tan 638.413 451.643 239.551 2018.310 7204.192 2139.211
Wealth Tan -0.03 -1.11 2.52 13625.39 2124319.00 71649.30

Return Tan NS 85.95% 66.53% 95.10% 77.64% 81.90% 73.43%
Turnover Tan NS 21.846 22.384 21.864 22.950 23.057 22.923
Wealth Tan NS 149.17 132.87 156.49 140.92 144.13 137.62

Every Time
Sample MCD MVE cellMCD DI 2SGS

Return Tan 87.62% 59.14% 72.25% 202.79% -19.97% 132.39%
Turnover Tan 49.252 69.107 62.560 109.924 142.066 56.672
Wealth Tan 113.48 78.13 90.60 95.10 17.51 130.06

Return Tan NS 66.91% 59.07% 51.18% 42.38% 61.64% 52.71%
Turnover Tan NS 24.428 24.675 24.595 25.000 24.848 24.961
Wealth Tan NS 130.42 123.98 117.93 110.61 125.77 118.68

For the choose every time strategy we see something interesting that did not happen for the Global Min-
imum variance portfolio when it comes to the unconstrained portfolios. Where for the GMV portfolios
the turnovers increased compared to the choose and hold strategy do they decrease when the tangency
portfolio is used. This indicates that recent information is more important for the unconstrained tangency
portfolio and that it ensures less extreme positions in assets compared to the choose and hold strategy.
Furthermore, none of the methods has the Equation 28 problems that occurred for the choose and hold
strategy. When we compare the turnovers to each other we see that here the sample method is the lowest
of all the methods. Furthermore, the cellwise robust methods have again the highest turnover. For the
value of wealth, the 2SGS outperforms the rest and is the only robust method that makes money on the
portfolio. The sample method is also doing not too bad with also having a value of wealth above 100.
What these methods do well and what is lacking for example with the DI method is first of all keeping
the turnover low by not having such extreme positions. For the GMV the determinant of the matrix was
a good indicator of the extreme positions in the portfolio and this is still the case but for the tangency
portfolios also the mean plays a role in the weight allocation. Comparing the sample method, the 2SGS
method and the DI method for each time period give us more detailed insight into why the 2SGS does so
well and the DI method does so badly. First of all the 2SGS has slightly higher weight allocation than the
sample method does but nothing compared to the weight allocations of the DI method, as we have seen
for GMV and confirmed in Table 10. Furthermore what is also interesting is that in the 7th time period
both the sample method and the DI method made a loss but the 2SGS method made a positive return.
What does the 2SGS method do that the others do not? The difference is in multiple stocks but here
we highlight one of them. The stock we highlight is the AKAM stock where the 2SGS shorts for -0.166
but the sample method and the DI method go long for 0.086 and 0.275. One of the reasons for the 2SGS
shorts is the fact that the stock in the 7th time period has some big returns but overall has a negative
trend. Furthermore, the 2SGS method does a better job in re-estimating the detected outliers compared
to the DI method because the DI method often makes from a high positive return a negative return and
this does not give the desired effect of more stable weights as it harms the estimations of means and the
covariance matrix too much.

For the constrained portfolios the turnovers contrary to the unconstrained portfolios have than the choose
and hold strategy meaning that the influence of incorporating recent information is limited due to the
shrinkage that the constraint already introduces in the portfolio. The turnovers across the methods are
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almost equal and so the magnitude of the value of wealth is mainly based on the returns. Here we see
the sample method having the highest returns followed by the DI method. What is also interesting is the
MVE method, which performed the best, loses most of its returns and thus has the lowest value of wealth.
These lower returns and mainly because the MVE method diversifies the portfolio too much which leads
to less return. The sample method on the other hand chooses fewer assets so their return is higher.

Furthermore, we look at the 330 portfolios where the asset choice is explained in Section 4.4. The
results when using the choose and hold strategy are denoted in Table ??. In this table, one row is added
compared to the analysis on the global minimum variance portfolio and that is the percent > 100 row.
This indicates how much percent of the portfolios tested have a value of wealth above 100. So in other
terms how many portfolios are profitable. When we look at the unconstrained portfolios, we immedi-
ately see the aggressiveness of the tangency portfolio which was also mentioned in the paper (Kirby and
Ostdiek, 2012) because the spread in the returns, turnover and the value of wealth is significant. For
the returns, we see that all the methods have high negative returns as well as a very high MAD for the
returns. The magnitude of the MAD is put in perspective when we compare these to the ones for the
global minimum variance portfolios where the MAD for returns was 30 times as small. The turnovers are
also interesting because for the global minimum variance portfolio the turnover of the sample was always
smaller than the robust methods but we see that for the tangency portfolio, this is not the case. All
methods apart from the DI method have a lower median turnover as well as a lower MAD. This means
that the turnovers are not only smaller but also the spread is smaller. The effect of this can be seen in
the results of the value of wealth because the spread between minimum and maximum for the sample
method is the biggest of all the methods. The robust methods perform better than the sample method.
The beat sample row shows that most of the robust methods outperform the sample more times than not
with the percentage for the 2SGS being more than 60%. Furthermore, we can see for the robust methods
the minimum value of wealth is not that bad compared to the sample method and the maximum is on
level or even above the one from the sample method. This is best visible for the MCD and the cellMCD.
Lastly, we look at the percent > 100 row. Here the sample method performs the best with 13.63% of the
portfolios making money. This is good compared to the robust methods and it shows that the right tail
end of the density function is thicker for the sample method.

For the constrained portfolios we see a completely different picture. The returns are positive and some
are even higher than the global minimum variance portfolios. Also, the spread in returns is not as big
anymore. The turnover improved significantly as well. The casewise robust methods have again the
lowest turnover but the sample method outperforms the cellwise robust methods and the 2SGS method
now. The high returns and the low turnover for the sample method translate to a high value of wealth.
The returned sample outperforms the other robust methods. Looking at the beat sample row we see that
the robust method that beats the sample method the most amount of time is the MVE method with
only 5.76%. Lastly, all the portfolios apart from one portfolio in the cellMCD make money. This is a big
improvement compared to the unconstrained portfolio. In conclusion for the choose and hold strategy,
the robust methods perform better than the sample method in the unconstrained case but because of the
aggressiveness of the tangency portfolio, this is not a viable, or at least very risky option to invest in.
For the constrained portfolio the sample method is best to use.
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Table 11: sharpe ratios Tangency portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return -99.99% -82.19% -91.63% -82.06% -97.09% -70.60% 128.08% 71.80% 87.13% 72.81% 79.41% 73.81%
MAD Return 2.146 1.398 1.080 0.524 2.147 1.412 0.154 0.162 0.170 0.236 0.193 0.208

Median Turnover 551.045 414.035 441.744 336.731 599.397 318.243 21.669 21.364 21.337 23.046 23.064 22.759
MAD Turnover 339.267 229.821 286.276 157.083 366.786 160.26 0.677 0.746 0.744 0.666 0.713 0.382
Median Wealth 0.00 0.15 0.03 0.30 0.00 0.41 182.42 138.38 150.62 137.16 142.51 137.91
MAD Wealth 2.57 2.19 2.39 2.04 1.56 6.46 13.35 13.01 14.10 19.60 15.57 17.16
1q Wealth -1.11e+11 -2.34e+4 -6.28e+7 -4.26e+5 -5.42e8 -1.00e+6 141.16 102.35 110.30 94.11 100.85 103.28
2q Wealth -2.96 -0.09 -0.61 -0.07 -0.87 -0.58 174.08 129.65 142.19 122.92 131.97 124.76
3q Wealth 1.35 4.54 2.23 2.88 1.33 8.40 191.59 147.10 161.44 149.10 152.98 147.66
4q Wealth 2.12e+8 1.14e+9 1.32e+6 3.19e+9 2.59e+8 2.00e+7 220.78 184.46 198.06 184.39 190.35 171.76

Beat Sample n/a 57.88% 53.03% 58.48% 49.09% 60.12% n/a 0.91% 5.76% 0.91% 2.42% 0.91%
percent > 100 13.63% 8.79% 7.58% 5.45% 5.45% 8.18% 100.00% 100.00% 100.00% 99.09% 100.00% 100.00%

When using the choose every time strategy for the unconstrained case we see something interesting
happening that we did not see when the global minimum variance portfolio was used. The turnovers
are lower compared to the choose and hold strategy. This indicates the hypothesis of more recent data
working better to select a portfolio than only choosing the first time period looks to be true for the
tangency portfolio. For the returns, we see the cellwise robust methods as well as the 2SGS method
doing well compared to the sample method. However, this good performance cancels out when looking
at the difference in turnovers. The cellwise robust methods have such a high turnover and MAD of the
turnover compared to the other methods that they have the lowest median value of wealth. The 2SGS
method on the other hand has a relatively low turnover and so with the high return this results in the
highest median value of wealth. Even higher than the sample method. This also results in the fact that
for almost 59% the portfolios of the 2SGS method outperform the sample method. The two methods
that perform the worst are the casewise robust methods with barely any portfolios beating the sample
method or making money. Lastly what is interesting to note is that due to the high spread in returns
and turnovers for the DI method, the minimum and maximum are still extreme.

For the constrained portfolios we see a decrease in performance compared to the choose and hold strategy.
The returns are lower and, similar to the global minimum variance portfolio, the turnover is higher. The
difference in value of wealth between the sample method and the robust methods is not as big as it was
before but it is clear that the sample method is probably still the best. The big difference is for the
constrained case the beat sample is significantly higher than for the choose and hold strategy. The two
main robust methods that perform well are the casewise robust method with both beating the sample
method around 20% of the time. This is mainly due to the long tails, which we also saw for the global
minimum variance portfolios. In conclusion when using the Sharpe ratios combined with the choose every
time strategy then for the unconstrained case the robust method 2SGS is the best method to use and for
the constrained case it is the sample method.

Table 12: sharpe ratios Tangency portfolios (choose every time)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 72.79% 66.33% 61.57% 159.96% 92.48% 104.31% 62.81% 56.22% 52.82% 53.26% 51.74% 48.38%
MAD Return 0.179 0.412 0.316 0.867 1.131 0.266 0.038 0.135 0.127 0.106 0.113 0.095

Median Turnover 59.328 87.517 76.582 130.450 176.320 71.551 27.563 29.399 28.815 28.986 29.253 30.276
MAD Turnover 1.254 3.689 4.669 17.933 33.977 1.608 0.729 0.726 0.745 0.822 1.136 0.724
Median Wealth 94.10 67.36 73.33 66.19 27.60 97.94 123.304 116.14 114.04 114.66 112.68 109.34
MAD Wealth 9.69 15.99 16.07 17.46 20.02 13.40 3.10 9.80 9.74 8.19 8.78 7.12
1q Wealth 76.78 41.52 41.26 0.983 -1.19e+4 67.28 113.69 89.39 83.67 92.52 91.60 92.23
2q Wealth 88.23 57.11 62.74 54.30 15.36 89.60 121.24 108.96 108.16 108.97 106.77 104.14
3q Wealth 100.79 79.11 84.68 77.94 42.93 107.40 125.38 122.32 121.17 119.96 118.58 113.79
4q Wealth 122.77 124.63 120.84 662.37 5.47e+6 131.64 130.42 155.85 150.70 135.92 138.13 126.31

Beat Sample n/a 5.76% 5.15% 3.03% 2.73% 58.48% n/a 20.61% 18.48% 13.94% 13.64% 2.42%
percent > 100 29.09% 3.94% 4.85% 3.03% 3.03% 43.64% 100.00% 95.15% 92.42% 98.18% 92.73% 90.00%
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Sortino Ratio
The second characteristic is the Sortino Ratio. The results are denoted in Table 13. For the choose and
hold strategy we see very different results for the unconstrained portfolio compared to the Sharpe Ratio.
This was also observed when the Global Minimum Variance allocation was used but for the Tangency
allocation, this difference was much bigger. The only method that did have accuracy issues was the
MVE method. The big difference is especially apparent for the cellwise robust methods including the
2SGS method. Furthermore, all the robust methods show to have lower turnover indicating more stable
weights. If we compare the sample method with the 2SGS method we see big differences when it comes
to weight distribution and extreme positions. The weights of the sample method are often very extreme
with positions of +11 or -14 not uncommon where as the weights for the 2SGS method are almost never
above 2 which is also rarely seen. This makes a big difference in the value of wealth because the sample
method loses a lot of value with constantly changing extreme positions. Furthermore, these extreme
positions not only lead to high transaction costs but also carry a great risk with them. This is apparent
when the MCD and the DI are compared to the 2SGS. The MCD and the DI are much more susceptible
to big losses when the extreme positions do not pay out as estimated. For example, in the 8th time
period both the MCD and the DI method had multiple positive and negative positions exceeding 2 but
because they picked the wrong assets their returns were -64% and -75% respectively. The 2SGS method
on the other hand chose mostly the same stock to buy or short but did this with less extreme positions
and so only had a return of -23%. These big losses can take a hit on a portfolio value because getting
back up to the original value is even harder.

For the constrained portfolio we see that similar to the Sharpe Ratio the returns and turnover im-
prove. The turnover is also very close to each other with the both casewise robust method and the
cellwise minimum covariance determinant method having a lower turnover than the sample method. In
terms of returns, the casewise robust methods do not perform so well compared to the cellwise robust
methods. Comparing the sample method, the MVE method, the cellMCD method and the 2SGS method
in more detail on why the casewise methods perform poorly. First of all, when it comes to turnover the
differences as also seen in Table 13 are not that big, and the difference in the value of wealth is mainly
due to the returns. The reason why the MVE does not do so well, and this is also the case for the MCD
method, is first that the MVE method did have a big loss in the 8th time period which we also had seen
for the MCD method and the DI method in the unconstrained case. The other robust method such as
the cellMCD and the 2SGS had more conservative losses. Another and I think more important reason is
the fact that the MVE does not have a constant return and thus the returns between periods fluctuate.
Whereas the cellMCD method has more stable returns. Besides that, the cellMCD often also has higher
returns. This constant return is also a reason why the returns for cellMCD are so much higher compared
to the MVE method. For example, a portfolio could have returns 4 times returns of 2% or 1%, 1%, 4%,
2% where the percentage points are the same but the eventual returns are 8.24% and 8.21%. Doing this
for more time periods and higher returns only increases this difference.
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Table 13: characteristics 15 highest sortino ratios

Sample MCD MVE* cellMCD DI 2SGS
Return Tan -11.53% -77.12% -111.10% -61.40% -92.90% -26.48%
Turnover Tan 524.862 367.045 294.533 287.143 623.816 140.611
Wealth Tan -0.01 0.18 -0.23 1.34 0.24 16.02

Return Tan NS 129.91% 78.57% 87.28% 137.49% 88.03% 110.05%
Turnover Tan NS 21.292 21.143 20.318 21.025 22.576 22.799
Wealth Tan NS 185.48 144.28 152.59 192.11 149.72 166.88

Every Time
Sample MCD MVE cellMCD DI 2SGS

Return Tan 95.55% 100.42% 93.46% 206.08% 98.19% 142.22%
Turnover Tan 46.905 85.032 84.147 137.142 155.932 66.665
Wealth Tan 121.20 82.84 80.29 70.95 37.30 122.02

Return Tan NS 73.88% 77.40% 80.56% 70.15% 81.53% 70.90%
Turnover Tan NS 24.423 24.894 24.646 25.000 24.883 24.920
Wealth Tan NS 135.88 137.97 140.78 132.18 141.20 132.88

When the choose every time strategy is used we see, similar to the Sharpe Ratio, that the methods
are not affected by having returns below the 100%. Furthermore, we see the sample method is once
again the method with the lowest turnover and is only barely beaten by the 2SGS method in terms of
the value of wealth. The turnover for the casewise robust methods is also much higher compared to the
Sharpe Ratio causing the value of wealth to be lower. Furthermore, the cellwise robust methods have
once again the highest turnover but also high return, especially the cellMCD method. Comparing the
sample method, cellMCD method and the 2SGS gives us insight into why the turnovers for the cellwise
robust methods are so high and how the 2SGS and cellMCD get such high returns. First of all, looking
at the returns we see in the 3rd time period a good example of why the cellwise robust methods have
such high returns. The first sign is the weight allocations, where the sample method never goes long or
short for more than 25% of the wealth, the robust methods easily go above that. This is especially true
for the cellMCD where there are stocks with weights of 1.38 or -0.70. This is also true for the positive
returns where the stock that increased the most had a portfolio weight of 0.54 for the cellMCD while the
sample method only 0.12 of their wealth in this portfolio. However, due to these extreme positions, a
good positive return can still cause the value of wealth to go down due to transactions costs. Thus the
cellMCD would only be valuable if the rate of transaction would be significantly below 1%

Looking at the 330 portfolios for the Sortino ratio we see the same happening as for the Sharpe ra-
tios. The median returns for the unconstrained portfolios are also negative and close to -100% but here
the MAD of the returns is slightly lower than for the Sharpe ratio. This is especially the case for the
sample method. The only method where the spread in returns has increased is the DI method. We also
see the turnover for the sample method being lower than it was when using the Sharpe Ratio. Further-
more, only two methods have lower turnovers than the sample method in the MCD method and the
2SGS method. The turnover of the 2SGS method is especially low as the MAD is also significantly lower
than the rest. Finally, the value of wealth for the portfolios is as scattered as it was for the Sharpe ratio
but the minimum value of wealth of the robust methods is more extreme. This is the case for all the
robust methods except the 2SGS method. What is also interesting is to see is the same robust method
as for the Sharpe Ratio does not beat the sample method in more than 50% of the portfolio where the
others do. Lastly of all the methods, 2SGS looks to be performing the best with the highest median
return, lowest median turnover and highest median value of wealth but when it comes to portfolios that
make money the 2SGS is the worst-performing method with only 2.12% of the portfolios having a value
of wealth above 100. This is only 7 out of the 330 portfolios.

For the constrained case the picture is also very similar. The sample method has a median return
of over 100% whereas the robust methods are just under the 100%. This was also the case for the Sharpe
Ratio. The turnover for the sample is also the lowest and it has, apart from the 2SGS, the lowest MAD

35



for the turnovers. These high returns and low turnover lead to the best value of wealth in terms of
the median value of wealth but also a low MAD and the highest minimum and maximum. The robust
method with the best results is the MVE. However, it only outperforms the sample method for 7.27% of
the portfolio. So to conclude when using the Sortino Ratio as the characteristic in tangency portfolios
with the choose and hold strategy then for the unconstrained case, it is best to use one of the robust
methods. However, as was the case for the Sharpe Ratio, due to the aggressiveness of the tangency
portfolio the likelihood of earning money with this setup is extremely low. In contrast, the constrained
portfolio is a viable option to invest in with the sample method being the best method to choose.

Table 14: Sortino Tangency portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return -99.80% -89.77% -91.83% -91.03% -94.06% -67.60% 135.68% 80.05% 95.88% 82.52% 83.51% 83.69%
MAD Return 0.807 0.868 0.941 0.446 3.811 1.118 0.211 0.182 0.213 0.253 0.239 0.232

Median Turnover 334.122 312.457 351.477 355.364 620.459 215.15 20.936 21.433 21.043 22.782 22.992 22.717
MAD Turnover 182.744 167.092 212.824 166.380 355.818 69.089 0.500 0.711 0.714 0.808 0.651 0.348
Median Wealth 0.00 0.17 0.09 0.06 0.00 1.67 190.75 144.78 158.26 144.61 145.37 146.45
MAD Wealth 1.22 3.81 3.35 0.68 2.05 8.90 17.57 14.99 18.27 21.46 19.64 18.38
1q Wealth -1.07e+7 -3.09e+9 -2.98e+8 -3.92e+7 -1.80e+9 -5.25e+5 139.60 106.11 111.66 91.16 98.43 108.98
2q Wealth -1.33 -0.55 -0.46 -0.02 -0.60 -0.94 178.00 135.07 146.09 129.35 131.91 133.61
3q Wealth 0.47 5.92 5.98 2.22 2.14 15.96 201.83 155.35 170.80 157.99 158.54 158.48
4q Wealth 7.40e+8 2.97e+6 9.30e+8 5.52e+7 1.87e+9 3.56e+6 231.32 204.17 213.06 207.44 185.82 180.96

Beat Sample n/a 61.21% 58.79% 58.18% 49.09% 63.64% n/a 2.12% 7.27% 3.94% 3.03% 3.03%
percent > 100 7.27% 6.97% 7.58% 4.55% 7.88% 2.12% 100.00% 100.00% 100.00% 99.70% 99.70% 100.00%

When it comes to the unconstrained portfolios for the tangency portfolios the choose every time strat-
egy seems to do much better than the choose and hold strategy. Looking at the characteristic Sortino
ratio denoted in Table 15 we see again that all the returns are positive and just as for the Sharpe Ratio
the cellwise robust methods and the 2SGS method have the highest returns. Although these results
look promising, due to the high turnover of these cellwise robust methods the median value of wealth is
extremely low compared to the other methods. This is especially true when it is compared to the sample
method. Even the 2SGS method, which had the best median value of wealth for the Sharpe ratio is now
beaten by the sample method because the turnover of the 2SGS is too high. Looking at the casewise
robust methods it becomes clear that they are not suitable for a tangency portfolio combined with this
strategy. This is mostly due to the increase in turnover compared to the Sharpe Ratio without the returns
to bring the value of wealth up.

For the constrained portfolios the returns of the methods are very close together and the same holds
for the turnover. Furthermore, the MAD of the returns and the turnover are also very similar to each
other but the sample method performs overall slightly better than the robust methods. For the median
value of wealth, the same story goes. The two best methods are the sample method and the cellMCD
method with both having median value of wealth close to 121. However, all the other methods are also
performing well with a median value of wealth. Lastly, we see the use of constraints reduced the returns
for the methods but also the uncertainty in the returns due to the shrinkage the constraints offer.

Table 15: sortino ratios Tangency portfolios (choose every time)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 73.18% 63.48% 61.57% 146.72% 156.14% 128.62% 60.94% 54.69% 52.68% 64.87% 57.19% 53.75%
MAD Return 0.122 0.422 0.316 1.102 1.838 0.307 0.094 0.171 0.154 0.145 0.162 0.100

Median Turnover 59.565 105.135 76.582 188.422 248.276 90.312 27.568 28.622 28.680 30.037 30.045 30.211
MAD Turnover 1.600 6.471 4.669 25.156 76.381 3.524 0.880 0.985 1.096 1.096 0.976 0.693
Median Wealth 94.35 55.44 73.33 31.13 13.80 90.79 121.91 115.88 114.62 121.65 116.11 113.43
MAD Wealth 7.362 16.46 16.07 17.06 18.04 11.94 7.62 13.34 12.30 11.60 11.75 7.77
1q Wealth 75.86 26.15 41.26 -5.13e+4 -1.87e+4 61.45 102.74 89.25 86.23 91.96 92.73 94.42
2q Wealth 89.25 46.18 62.74 19.96 3.16 83.03 116.29 107.74 106.08 113.80 108.93 108.85
3q Wealth 99.05 69.41 84.68 42.82 27.89 99.15 126.46 125.68 122.78 128.61 124.81 118.88
4q Wealth 121.20 114.58 120.84 7.56e+4 7.53e+4 134.65 137.52 149.67 148.69 146.35 146.49 134.90

Beat Sample n/a 0.91% 13.94% 0.91% 3.33% 36.97% n/a 27.27% 19.39% 47.27% 32.73% 1.21%
percent > 100 21.52% 0.61% 3.94% 0.91% 3.33% 23.33% 100.00% 93.33% 88.18% 98.79% 93.64% 97.58%
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High Mean
The third characteristic is the high mean where the results are denoted in Table ??. For the unconstrained
case we see again three methods that had returns lower than -100% within the time period. These are
marked with a star and these methods would because of the shorting have the investors in debt. This is
especially the case for the 2SGS method. For the methods that had more accurate results the cellMCD
method does really well compared to the other two in terms of value of wealth. This is mainly due to
the lower turnover. This high turnover comes from a lot of extreme positions which is very risky. It can
pay off when the right assets are chosen which in this case there are but it can also backfire and have
the investor lose a large portion of his capital. This is not the case for cellMCD. For example at the
8th time period all the methods had a negative return but because of the extreme postions the sample
method had a negative return of -74% where the cellMCD only lost 5%. Combined with high turnovers
for the sample method meant the this portfolio lost 85% of its value in one trade where the portfolio of
the cellMCD only lost 14%. Furthermore the high turnovers also played a big role in neglecting big wins.
For example in the 7th time period the returns for both the MVE method and the cellMCD method were
respectively 50% and 49% but because the MVE method had to trade a lot with turnover for that time
period being 33.02 and so the portfolio value only went from 201 to 202, an increase of lower than 0.5%.
The cellMCD on the other hand only had a turnover of 4.33 and so the portfolio value went from 107
to 143, an increase 33.6%. This shows once again that turnover is very important and that returns can
vanish if the investor has to trade a lot.

For the constrained portfolios we see the turnover drops and this helps the portfolios in their value
of wealth. The turnovers do not differ too much from each other with the only method with a slightly
higher turnover being the DI method. The high mean characteristic has a much higher value of wealth
compared to both the ratios. This is similar to the GMV portfolio. The returns are also very high with all
the returns apart from the cellMCD method having a returns higher than 100% with the sample method
and the 2SGS method almost touching the 200% mark. Why does the cellMCD perform so much worse
than the other robust methods? When we dive deeper into the results we see that the biggest difference
happens at the 6th time window. Here the cellMCD method has a return of -12.46% where all the other
methods have a positive return close to or even higher than 10%. The weight distribution at this time
point shows that all the methods apart from the cellMCD have 2 assets in common. These were also
the assets with a high return, but the 3 assets that were chosen by the cellMCD did not occur in the
portfolio of any of other methods. The results show comparing it the other cellwise robust method that
the number of cells flagged as outlying is significantly lower for the cellMCD than for the DI method.
This could be one reason that the asset selection was so different. Furthermore the cells that the cellMCD
did flag were mostly of asset that had high returns meaning that these were nullified which led to not
choosing them in the asset allocation.

For the choose every time strategy we see that for the unconstrained portfolio the turnovers decreas-
ing compared to the choose and hold strategy. The sample method does well even though it does not
have the highest returns, but the value of wealth is the highest due to such low turnover. The cellMCD
method and the 2SGS have extremely high returns but this does not lead to higher values of wealth due
to high turnover. If we compare these three methods we see that the returns for the cellMCD and the
2SGS are mostly extreme returns. For the 2SGS method we see in the first 3 time periods already a
cumulative return of more than 65% but there are also multiple time periods where more than 10% is
lost. These extreme returns are also apparant for the cellMCD method where in three individual time
period returns are recorded of more than 30% where the highest being 49% in one time period. These
extreme returns are of course the result of having extreme positions in the portfolio allocations. This is
also the explanation for the high turnovers. On the other hand the returns for the sample method are
less extreme which leads to lower returns but also lower turnover.

For the constrained portfolios we see that the turnovers have increased which was expected looking
at the rest of the characteristics. Furthermore we see that the differences in turnover are minimal and
so the performance of the value of wealth is mostly based on the returns. The sample method as well as
the casewise robust methods have the best values of wealth and the cellwise robust methods are lacking
behind. When we compare the sample method with the best performing method, the MVE method, and
the worst performing method, the DI method we see a big difference in choice of weights.
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Table 16: characteristics 15 highest means

Sample MCD* MVE cellMCD DI* 2SGS*
Return Tan 2546.90% -270.59% 2383.52% 413.10% -286.19% -5736.61%
Turnover Tan 553.344 402.503 278.419 87.133 265.170 1599.453
Wealth Tan 0.11 -0.69 88.37 206.73 -6.33 -10847.32

Return Tan NS 197.25% 137.04% 127.48% 47.08% 189.76% 197.45%
Turnover Tan NS 19.685 19.915 19.945 20.055 22.386 20.991
Wealth Tan NS 243.76 193.92 186.05 120.15 231.17 240.69

Every Time
Sample MCD MVE cellMCD DI 2SGS

Return Tan 65.24% 86.78% 52.97% 168.98% 58.72% 93.44%
Turnover Tan 40.195 105.705 56.980 95.937 135.120 62.850
Wealth Tan 109.75 59.34 85.30 98.75 35.10 101.23

Return Tan NS 52.68% 51.38% 65.44% 43.31% 13.82% 52.53%
Turnover Tan NS 24.001 24.667 24.150 24.905 24.906 24.701
Wealth Tan NS 119.83 118.00 129.64 111.44 88.51 118.86

Furthermore, we analyze the 330 portfolios of the high mean characteristic. The results of the choose
and hold strategy are displayed in Table 17. For the unconstrained portfolios, we immediately see in
the returns a difference between the sample method and the robust methods. The returns of the robust
methods are, similar to the Sharpe ratio and the Sortino ratio, negative. For the high mean the returns
are even more negative with some even having lower returns than -100%. This is however not the case
for the sample method where the returns are positive. However, the positive returns come with a very
high MAD. This high MAD is also true for the robust methods, but the MAD for the sample is the
highest at 41.390. This is equal to 4139%. Looking at the turnovers of the methods we see that the
robust methods are performing well with casewise methods again having the lowest value, but on the
other hand the cellwise methods and the 2SGS method have higher turnovers than the sample method.
Lastly when considering the value of wealth we see for the median that the sample method performs
the best but only slightly. If we however consider the quantiles we can see that similar to the results of
the Sharpe ratios and Sortino ratios the sample method has the lowest minimum and therefore has the
highest downward potential. The difference in this aspect is significant with an order of 107 compared
it the robust methods. For the maximum, we can see that the cellwise robust methods have the highest
earning potential. Finally, the robust methods and the sample method are close to each other when
looking at the beat sample statistic. Here we see that all the values are close to 50%. Furthermore, the
percent > 100 is also very close to each other with all the values around 20%.

For the constrained case we again see more steady portfolios. For the returns, we see that now all
the methods have a value above 100% instead of just the sample method. Furthermore, the MAD of
the returns is low so the returns are also very stable. The turnovers are performing also very well with
the help of the constraint and are even lower than the ones from the Sharpe ratio and Sortino ratio.
Furthermore also here the MAD is very low. Lastly, when looking at the value of wealth we see that
the 2SGS has the highest minimum so it has the biggest potential loss. This method beat the sample
43% of the time but this happens mostly in the left part of the density function. The two other robust
methods that are interesting are the MVE and DI methods. These methods perform worse than the
sample method at around 75% of the time but they have very high earning potential compared to the
sample method. This also has the downside that their minimum is also significantly lower.

In conclusion, the unconstrained portfolio does again show the aggressiveness of the tangency portfo-
lio. Here the 2SGS method is the best method to choose. For the constrained portfolios the results are
the best up until now with very stable returns and thus stable value of wealth. Here the best method is
choose from for risk-averse investors is the 2SGS method. But in more general terms the sample method
just outperforms the other methods.
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Table 17: High Mean Tangency portfolios (choose and hold strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 5.88% -105.03% -173.94% -96.27% -93.58% -99.86% 193.71% 143.36% 161.33% 129.78% 154.46% 193.59%
MAD Return 41.390 8.570 33.766 31.722 30.644 23.521 0.368 0.326 0.384 0.313 0.489 0.292

Median Turnover 450.361 433.960 389.458 714.403 564.393 482.082 20.022 20.748 20.441 21.775 21.624 21.202
MAD Turnover 256.506 290.761 214.847 468.188 374.325 312.773 0.444 0.599 0.745 0.907 1.044 0.342
Median Wealth 0.11 0.00 -0.32 0.00 0.00 0.00 239.95 197.68 213.18 183.97 204.55 237.07
MAD Wealth 35.69 18.26 62.45 11.67 33.61 44.38 31.00 26.05 31.36 24.77 38.64 23.81
1q Wealth -1.24e+18 -2.43e+9 -1.48e+11 -2.22e+13 -8.32e+10 -2.13e+8 189.34 104.25 130.51 123.40 107.41 193.51
2q Wealth -22.25 -14.05 -43.68 -2.43 -15.70 -28.73 214.20 177.14 193.15 169.56 178.73 217.21
3q Wealth 25.37 9.74 35.10 26.53 28.36 29.28 256.99 213.70 235.81 202.86 230.69 249.82
4q Wealth 7.78e+10 1.06e+10 2.70e+11 2.31e+12 6.22e+14 7.96e+8 295.32 271.70 338.76 259.19 377.03 277.91

Beat Sample n/a 51.52% 47.58% 50.10% 47.88% 47.88% n/a 13.94% 23.03% 2.73% 22.12% 43.03%
percent > 100 17.88% 12.42% 20.00% 19.09% 19.93% 18.48% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

The choose every time strategy for the high mean characteristic also shows some interesting insights.
The results are denoted in Table 18 and here we see for the unconstrained portfolios the first difference
between the Sharpe and Sortino ratio and the high mean. Where for the Sharpe and Sortino ratio the
cellMCD and the 2SGS method had the highest returns, is this not true of the high mean characteristic
where the 2SGS is still the highest but the cellMCD has a median return close to that of the lowest.
Looking at the turnover we do see similarities with both the cellwise robust methods again having the
highest turnover and the sample method with the lowest. This high turnover of the robust methods also
translates to bad performance for the value of wealth where only the sample method has a median value
of wealth that makes money. The only method that comes somewhat close is the 2SGS method with a
median value of wealth of 76.38. That the sample method clearly outperforms the robust methods is also
visible in the quantile and the beat sample statistic. The only time the robust methods have a higher
value of wealth in a quantile is for the maximum of the casewise or cellwise robust methods. But this is
for the rest of the portfolios not true with the highest beat sample statistic of 3.03%. Lastly, the sample
method is also the only viable option when looking at the percentage of portfolios that make money with
76.06% of the sample portfolios above 100.

Table 18: high mean Tangency portfolios (choose every time strategy)

Unconstrained Constrained
Sample MCD MVE cellMCD DI 2SGS Sample MCD MVE cellMCD DI 2SGS

Median Return 77.50% 46.67% 53.75% 3.15% 3.13% 94.51% 63.60% 60.55% 59.89% 43.25% 37.08% 64.70%
MAD Return 0.178 0.797 0.580 0.523 1.234 0.379 0.104 0.175 0.179 0.127 0.145 0.148

Median Turnover 49.695 131.436 89.324 121.84 219.003 88.131 29.902 29.995 30.086 31.380 31.696 30.964
MAD Turnover 1.623 38.449 14.233 16.325 75.761 7.003 1.197 1.812 1.590 1.985 2.464 1.757
Median Wealth 107.02 34.24 58.59 27.23 9.35 76.38 121.39 118.53 117.96 104.57 99.46 120.60
MAD Wealth 10.35 30.52 22.95 18.80 13.63 15.15 7.44 13.52 14.11 10.13 10.25 9.39
1q Wealth 82.74 -3.52e+4 -5.18e+4 -2.69e+5 -7.00e+5 10.45 103.23 80.82 81.90 71.03 72.43 100.71
2q Wealth 100.17 13.79 44.40 15.80 0.87 66.95 116.48 109.04 109.05 97.64 93.03 114.44
3q Wealth 114.30 55.39 77.05 41.07 23.48 88.11 126.67 126.88 127.87 110.72 106.66 127.24
4q Wealth 136.89 1201.53 1.06e+5 98.75 1.30e+6 120.31 140.98 155.46 153.59 135.05 133.95 154.40

Beat Sample n/a 3.03% 2.12% 0.00% 2.73% 0.61% n/a 40.30% 37.27% 3.64% 6.36% 50.91%
percent > 100 76.06% 3.94% 7.58% 0.00% 2.73% 8.48% 100.00% 92.12% 92.73% 68.18% 47.88% 100.00%

For the constrained portfolios we that the returns are not as high as they were for the choose and hold
strategy. But this is also the case for the Sharpe ratio and the Sortino ratio. What is interesting though
is the fact that compared to the returns of choose every time strategies of the other characteristics the
high mean produces the lowest returns. This is noteworthy because for the choose and hold strategy they
were the highest among all the other characteristics. Furthermore, the turnover is also slightly higher,
where the sample method is the lowest. Looking at the value of wealth we see that the 2SGS does very
well and even beats the sample method more times than not. This is especially the case for the high value
of wealth portfolios. Apart from the 2SGS, does the casewise robust method also pretty well and also
outperforms the sample method consistently with a 40.30% and 37.27% beat sample statistic for MCD
and MVE method respectfully. The cellwise robust methods on the other hand are not performing well
with the DI method not even making money on more than half of the portfolios.
In conclusion, when using the high mean characteristic combined with the choose every time strategy for
an unconstrained portfolio the sample method is by far the best method to use which is different from
the other characteristics, and for a constrained portfolio the 2SGS method is best to use.
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5.2 High dimensional Portfolios

5.2.1 Global Minimum Variance Portfolio

Sharpe Ratio
The first characteristic this paper focuses on is the Sharpe Ratio denoted in Table 19. When we look at
the choose and hold strategy we immediately see the difference between the sample method and the robust
methods. For the unconstrained portfolios, the turnover of the robust methods is always lower, indicating
that the weights are more stable. This observation is interesting because the robust methods based on
the Mahalanobis distance did not exhibit this behavior in lower dimensions. Also, the use of more assets
reduces the value of wealth for the robust methods because of the diversification. This is however not true
for the sample method. Furthermore, it is interesting to note that for the sample method the turnover
decreases when the number of assets increases. This is however not true for the robust methods, where
especially for Spearman’s method we can see the turnover increasing. Similar to the lower-dimensional
case, the cellwise robust method, in this instance the Spearman’s method, exhibits a higher turnover
than the casewise robust method. This indicates the trend continuing regardless of the number of assets.
The portfolio where the number of assets (N) equals 188 is interesting because it shows the OGK method
is clearly better than Spearman’s correlation method due to having lower turnover and slightly higher
returns. This difference is shown for example in the 11th time period where all the methods have a very
diversified portfolio but the sample method shorts too much on stocks going up in value. This is mainly
due to one or two negative returns in the previous time period letting the mean estimations, as well as
the covariance estimation, to be skewed toward these data entries making the portfolio short these assets.
The main difference between the robust methods is not in individual time periods but in the changing of
weights throughout. This is mainly because the cellwise robust methods identify single cells and so the
weight distribution per time period is more random which leads to more changing of the weights over time.

For the constrained portfolios the turnover, similar to the low dimensional case, decreases and due to this
the value of wealth increases. The sample method performs significantly better but when N = 94 or N =
188 is still beaten by the robust methods. Moreover, the turnovers of the robust methods remain lower
compared to the sample method, although this difference has significantly reduced. When the number
of assets increases the opposite happens to the value of wealth for the robust methods but this is not
the case for the sample method where the number of assets has a positive effect on return and value of
wealth. Looking at the portfolio where N = 376 we can see the sample method having higher returns.
This is mainly because of less diversification in the weights, leading to slightly higher returns in each
individual time period. And because this happens for 13 time periods, the cumulative return is much
higher for the sample method compared to the robust methods. The biggest difference is between the
sample method and the OGK method. If we look at per time period how many weights in the portfolio
are not equal to zero, or in other words how many assets are used per time period we see over the 13 time
periods the mean number of assets used for the sample method is roughly 27 but for the OGK method
this is 63. Thus the OGK method uses on average more than twice the number of assets than the sample
method. For Spearman’s correlation method the average is 36 meaning this method has also problems of
overdiversification but not as bad as the OGK method. This is also why Spearman’s correlation method
has a better value of wealth for the portfolio where the number of assets exceeds 282.
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Table 19: Sharpe Ratio GMV

(choose and hold) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -13.17% 81.47% 78.11% 72.56% 85.34% 72.55% 74.56% 64.75% 70.04% 59.38% 57.58% 57.34%
Turnover 313.742 21.178 35.926 88.413 25.190 39.318 74.467 25.517 42.866 69.553 23.597 43.638
Wealth 2.29 146.54 123.71 69.02 137.47 115.72 80.99 127.30 109.93 77.94 124.17 100.91

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 57.24% 68.70% 65.05% 62.62% 63.51% 63.89% 70.49% 54.07% 62.14% 73.80% 51.33% 61.18%
Turnover NS 18.841 13.634 17.699 19.410 15.102 18.075 20.931 15.965 19.821 20.860 16.099 19.958
Wealth NS 130.06 147.09 138.11 133.73 140.46 136.62 138.05 131.21 132.78 140.83 128.69 131.81

Beat Sample NS n/a Yes Yes n/a Yes Yes n/a No No n/a No No

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return 102.38% 45.73% 54.10% 36.11% 62.55% 61.71% 27.96% 49.20% 55.22% 51.95% 56.26% 57.82%
Turnover 428.908 43.030 57.576 120.030 40.355 57.413 91.985 34.749 52.645 77.672 27.689 48.519
Wealth 0.82 94.03 85.49 38.53 107.83 89.87 49.23 104.89 90.65 68.18 118.10 96.23

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 60.57% 57.46% 64.14% 60.79% 62.38% 75.09% 53.68% 51.34% 58.22% 58.42% 47.87% 51.75%
Turnover NS 23.023 22.505 23.051 22.184 20.424 21.580 21.677 18.729 20.774 21.468 17.575 20.563
Wealth NS 127.28 125.48 130.07 128.54 132.16 140.84 123.50 125.31 128.32 127.58 123.89 123.34

Beat Sample NS n/a No Yes n/a Yes Yes n/a Yes Yes n/a No No

For the choose every time strategy we see similarities but also differences in the results compared to the
choose and hold strategy. For the unconstrained portfolio, we see the robust methods again outperform-
ing the sample method This holds for all the different sizes of portfolios considered in this analysis. The
turnover is also for the choose every time strategy the cause of this. The turnover has increased compared
to the choose and hold strategy, as was the case for the low-dimensional portfolios, but it decreases when
more assets are added to the portfolio. This is because when more assets are chosen, the chance an asset
is in the portfolio at time t as well as at time t+1 is increased. We also see the returns having decreased
compared to the choose and hold strategy, especially when the number of assets is small. This decrease
in returns and increase in turnover leads to a decrease in the value of wealth. This decrease results also
in the loss of money for the robust methods. None of the portfolios using Spearman’s correlation method
is profitable except for the OGK method when N = 94. Looking at the portfolio with 94 assets, we notice
a similar pattern as observed in the choose and hold strategy. The sample method has more extreme
positions which leads to higher returns in a market that is going up but the robust methods have the
higher value of wealth due to the lower turnover. We also see the determinant of the sample method
inverse covariance matrix is extremely high compared to the robust methods. Furthermore, due to these
high weight allocations, the turnovers are also very high. These high turnovers were even so high that a
return of 40% still led to a decrease in the value of wealth due to transaction costs.

For the constrained portfolios we immediately see that the turnovers are significantly lower. The sample
method has the most advantage using the no short-selling constraint. Furthermore, we see the returns in
most cases also have increased due to the use of the constraint. This is interesting because for the choose
and hold strategy the complete opposite happened. Another difference is the robust methods performing
better up until N = 282. But similar to the choose and hold strategy the differences in value of wealth
are minimal. When analysing the portfolios where the number of assets is 94 we see the returns of all the
individual time periods are almost identical to each other, but the OGK is often the lowest so this explains
the lower return when taken cumulatively. There is however still a big difference in diversification. For
example, on average the sample method has a position in 16 of out 94 assets, for the OGK this is 31 out
of 94 and for Spearman’s correlation this is 21 out of 94. So the OGK is more diversified and this leads
to lower turnover because the chance of having a big weight in an asset that is not in the a choice in the
next period is smaller.

Sortino Ratio
The second characteristic we look at is the Sortino Ratio. In the case of unconstrained portfolios with
N = 94 assets, the performance of the sample method is notably worse compared to the Sharpe Ratio,
evidenced by a high turnover of 333.454. The robust methods on the other hand do perform really well
with high returns and low turnover for the N = 94. This is mainly due to the lack of diversification of
the sample method in combination with high portfolio weights. This combination can lead to low returns
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as it is more dependent on choosing the right assets. When we look at the 2nd time period we see this
is the case. The sample method makes first of all a lot of trades which leads to high transaction costs
and second of all when the sample method picks the wrong assets, which it does frequently, it causes
high negative returns. It is worth noting the determinant of the inverse covariance matrix can indicate
extreme weight allocations. In this case, the determinant of the robust methods is notably lower than
that of the sample method, highlighting the difference in portfolio diversification. However, adding assets
to the portfolio does diversify the portfolio of the sample method which leads to higher returns and lower
turnover. This is not observed in the robust methods, as adding more assets tends to over-diversify the
portfolio, ultimately resulting in lower values of wealth. Lastly, the lower turnover observed in casewise
robust methods compared to cellwise robust methods suggests the casewise robust methods may be more
effective due to their ability to maintain stable weight allocations over time.

For the constrained portfolios we see similar results compared to the Sharpe Ratio characteristic. Ini-
tially, the robust methods outperform the sample method for N = 94 and N = 188. However, the sample
method performs better as the number of assets in the portfolio increases. The robust methods have a
higher return and a lower turnover. Due to the use of constraints, the difference is not as big as when
short selling is allowed. It is also interesting to see the importance of low turnover when you compare the
results of the unconstrained portfolios to the constrained portfolios for N = 188. Although the returns
of for example the OGK method are much higher for the unconstrained portfolio but because of the low
turnover for the constrained portfolio the value of wealth is still higher. When N = 282 or N = 376 we
see the sample method has a higher value of wealth. This is mainly because of the robust diversifying
the portfolio too much. This shows that the robust methods have a more conservative approach and so
get a lower return. The reasoning for this is similar to the Sharpe Ratio.

Table 20: Sortino Ratio GMV

(choose and hold) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -46.81% 77.40% 81.73% 80.57% 79.00% 73.84% 70.45% 63.54% 67.18% 59.38% 57.58% 57.34%
Turnover 333.454 22.686 35.892 86.595 24.604 38.731 74.507 26.344 42.866 69.553 23.597 43.638
Wealth 1.06 141.09 126.26 73.64 139.59 117.29 79.10 125.30 108.08 77.94 124.17 100.92

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 60.22% 61.06% 68.72% 64.67% 66.50% 72.35% 67.55% 51.65% 61.08% 73.80% 51.33% 61.18%
Turnover NS 19.164 14.171 17.360 19.117 15.110 18.112 20.720 16.203 19.806 20.860 16.099 19.958
Wealth NS 132.08 139.67 141.66 135.82 143.02 143.61 135.96 128.83 131.94 140.83 128.69 131.81

Beat Sample NS n/a Yes Yes n/a Yes Yes n/a No No n/a No No

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return 65.36% 42.77% 61.01% 53.97% 64.35% 64.87% 31.01% 52.09% 56.89% 50.35% 56.19% 56.32%
Turnover 420.898 42.834 57.991 118.513 40.090 57.195 92.218 35.386 51.783 77.825 27.860 49.013
Wealth 0.91 92.33 88.93 44.33 109.32 91.83 50.27 106.22 92.46 67.35 117.84 94.83

Beat Sample n/a Yes Yes n/a

Return NS 62.36% 55.98% 61.55% 63.89% 65.75% 74.98% 56.33% 47.48% 58.34% 59.08% 46.95% 52.09%
Turnover NS 23.410 23.011 23.433 22.180 20.341 21.649 21.623 18.814 20.594 21.409 18.358 20.568
Wealth NS 128.20 123.66 127.53 131.03 135.02 140.65 125.70 122.01 128.66 128.19 122.14 123.61

Beat Sample NS n/a No No n/a Yes Yes n/a No Yes n/a No No

When we look at the choose every time strategy we see similar results. The turnover is understandably
higher just as in the low-dimensional case. The returns however did not increase so the value of wealth
decreased. This is especially true for the robust methods because all the robust unconstrained portfolios
in the choose and hold strategy made money but when the choose every time strategy is used only the
OGK method makes a profit. Also interesting to note is that with increasing the number of assets in the
portfolio the turnover decreases. This is true for the sample method but also for the robust methods.
This comes, as mentioned above due to the probability of an asset being in the portfolio for time period t
and in time period t+1. However when an asset is selected in time t but then is left out in time t+1 then
everything the investors hold needs to be sold. Or in the case of a short position, needs to be bought.
This leads to a lot of transactions and so when the number of assets in such a portfolio is high the chance
that an asset stays in the portfolio is higher which leads to lower turnover.
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For the constrained portfolios the sample methods do a lot better. But also the robust methods im-
proved slightly due to having lower turnover. Comparing it to the choose and hold strategy we see that
the returns are lower and the turnover is higher which leads to a lower value of wealth. This difference is
however smaller than for the unconstrained portfolio. The sample method performs so well mainly due to
the high returns compared to the robust methods. Furthermore, we also see here the turnover decreases
when the number of assets increases. This is similar to the Sharpe Ratio. Moreover, the OGK method
once again has a more diversified portfolio which leads to lower turnover. This effect looks to be stronger
when more assets are added to the portfolio. However, due to this the sample method is more profitable
in 3 out of the 4 portfolios.

To conclude, the choose every time strategy is inferior to the choose and hold strategy but when an
investor uses the choose every time strategy and uses the Sortino ratio as his characteristic then for the
unconstrained the casewise robust method OGK is the best to use. For the constrained portfolios the
sample method is slightly better but the difference is not as significant so using the robust methods could
also be a viable choice, especially when the number of assets is not too high.

High Means
The third and last characteristic where the selection of assets is based, is the highest means. The results
are denoted in Table 21. This paper looks first at the choose and hold strategy where we see similar
results for the unconstrained portfolios compared to when the Sharpe ratio and the Sortino ratio were
used as a characteristic. The robust methods perform the best due to having more diversification and
lower wealth allocations. Furthermore, this leads to the robust methods having higher returns and lower
turnover. Interestingly to note is that the turnover of the sample method is also for the high means
characteristic decreasing when the number of assets goes up. This shows the phenomenon is independent
of the characteristics used. The opposite happens to the robust method where in general the turnover
goes up when the number of assets goes up. Note that this is only the case for unconstrained portfolios.
Furthermore, we also see when using an unconstrained portfolio with the choose and hold strategy that
only the robust methods make money, as also mentioned in the sections above. The sample method does
however get more and more value of wealth and the opposite happens for the robust method so it would
be interesting to see what happens when the whole portfolio is used. This is discussed later in this paper.

For the constrained portfolios we see the turnover going down and now all the methods make money.
Looking at the returns they are generally lower compared to the unconstrained portfolio. This is espe-
cially true for the OGK method. Similar to the Sharpe and Sortino ratio, when N = 94 or N = 188
the robust methods outperform the sample method but with more assets the sample method performs
better. This is mainly because the returns of the sample method stay high while the robust methods
have lower returns because of over-diversification of the portfolio. The differences for the high mean
characteristic are however smaller compared to the ratio characteristics. Looking at the N = 94 portfolio
the differences between returns are almost none although we do see the returns of the sample method
being a bit more extreme but not compared to the unconstrained portfolios. The robust method, and
then the OGK method especially, are more diversified and also the weights for assets are low which even-
tually leads to lower turnover. The Spearman’s correlation method on the other hand does have more
problems with the return as it finds it more difficult to choose which assets to pick. We have also seen
this for the other characteristic that due to specific dealing with contamination, the weights and thus
the returns are a bit unstable. However, the turnover is still low due to the weights still not being extreme.
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Table 21: High Mean GMV

(choose and hold) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -82.09% 80.26% 65.09% 70.54% 82.22% 73.58% 67.83% 69.60% 68.27% 60.46% 57.56% 56.09%
Turnover 395.120 20.067 31.931 88.201 24.878 38.969 73.773 25.669 41.013 69.288 23.458 42.519
Wealth 0.14 147.24 119.48 68.36 141.72 116.83 78.49 130.85 110.89 78.69 124.34 101.27

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 70.22% 75.33% 64.32% 65.89% 70.90% 75.48% 69.41% 58.77% 65.38% 72.52% 53.69% 60.64%
Turnover NS 18.460 13.172 16.038 20.368 15.601 18.340 20.494 16.012 19.453 20.913 15.999 20.187
Wealth NS 141.34 153.59 139.83 135.10 146.07 145.88 137.79 135.14 135.94 139.72 130.83 131.06

Beat Sample NS n/a Yes No n/a Yes Yes n/a No No n/a No No

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -11.71% 63.19% 64.41% 21.68% 52.47% 54.83% 34.70% 55.70% 61.05% 51.94% 52.20% 57.05%
Turnover 420.545 41.127 53.559 115.939 39.567 56.835 92.569 35.239 53.436 77.711 29.363 48.331
Wealth 0.51 107.43 95.13 36.04 101.99 86.56 51.49 108.90 93.29 68.14 113.07 95.946

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 76.04% 72.35% 71.91% 55.38% 58.91% 73.79% 55.40% 52.51% 60.73% 61.40% 45.19% 53.47%
Turnover NS 24.279 23.954 24.659 22.361 21.561 22.284 21.763 19.356 20.909 21.206 17.707 20.239
Wealth NS 137.77 135.33 134.02 124.00 127.85 138.80 124.77 125.49 130.18 130.32 121.48 125.15

Beat Sample NS n/a No No n/a Yes Yes n/a Yes Yes n/a No No

When we look at the choose every time strategy we see that the performance is much worse. Similar to
the choose and hold strategy the robust methods outperform the sample method for the unconstrained
portfolios but Spearman’s correlation method also loses money. We see the returns are lower compared
to the choose and hold strategy. This is similar to the low-dimensional case. The returns of the sample
method go up when more assets are added to the portfolio. For the robust methods, the returns are quite
stable. Furthermore, the turnover of the robust methods is significantly lower compared to the turnover
of the sample method. Looking into more detail we see why this is the case. Analyzing the portfolio
where the number of assets is 94 we see in the first time period the sample method had a return of -55%
while the robust methods had a positive return. This was because in the first period, there was a lot of
volatility and some assets had negative means due to some high negative returns. This led to extreme
negative positions in a market that was on the up. The robust methods on the other hand negated these
high negative returns and thus did not have so many short selling positions in the portfolio. This is also
what happened in the portfolio with 94 assets when the choose and hold strategy was used. However,
this also happened in the other direction where the returns of the sample method were far higher than
the returns of the robust methods due to the robust methods making the high outliers less important and
thus putting less weight on it. Furthermore, the performance of the robust methods was also hindered
by the turnover due to having to change assets so much.

For the constrained portfolios we see an improvement but the performance is still worse than the choose
and hold strategy. We do however see something interesting that we have also seen in the tables above,
the turnovers of the sample method are not in general the highest of the methods and when they are there
is not a significant difference. This is also true for the returns and so for the value of wealth. Furthermore,
the problems the sample method had, with for example the portfolio of N=94, are with the introduction
of the constraint almost completely gone. The constraint as mentioned before gives a certain shrinkage
to the covariance estimate and thus there are not a lot of extreme positions. Furthermore, the different
sizes of portfolios also give different results when it comes to whether the robust methods are performing
better than the sample method so there are not a lot of conclusions to take from this strategy with the
constrained portfolios.

470 asset portfolio
Lastly, we look at the portfolio where all the 470 assets are used. Here there is no distinction between
the two different strategies. For the unconstrained portfolio, we see the value of wealth of the sample
method did not increase compared to the choose and hold strategy and thus this trend does not continue.
Furthermore, we see that this is also the case for the robust methods. In terms of turnover, the turnover
for the sample method keeps decreasing with adding more assets to the portfolio. The turnover of the
robust methods methods stayed roughly the same. As seen before, the reason why the robust methods
are much better in terms of the value of wealth is because they diversify more equally over the assets
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which leads to lower turnover. So it is interesting to note that the 54.36% is almost equal to the return
the equally weighted portfolio had mentioned in Section 3. For the constrained portfolios, however, we
see a different picture with the sample method having the higher value of wealth. This difference is
mainly because of the higher returns as the robust methods still have lower turnover. This difference is
contributed to the sample method already benefiting from the shrinkage from the constraint and so using
additionally the robust methods creates over-diversification which harm the returns.

Table 22: 470 asset portfolio GMV

N=470
Sample OGK Spearman

Return 50.21% 54.36% 53.12%
Turnover 65.011 21.802 41.291
Wealth 77.06 123.88 100.63

Beat Sample n/a Yes Yes

Return NS 61.59% 47.83% 54.74%
Turnover NS 21.285 15.948 20.119
Wealth NS 130.37 125.91 126.34

Beat Sample NS n/a No No

Concluding remarks high dimensional GMV portfolios
To conclude this section we have seen for the GMV portfolios both the casewise robust method and
the cellwise robust methods often outperform the sample method. This is especially the case for the
unconstrained portfolios where short selling is allowed. This is independent of which strategy is used
but the sample method did perform better for the choose and hold strategy. This is similar to the
low-dimensional case. The reason why the robust methods were so effective in the unconstrained case
is the fact that they were able to keep the weight allocations low and make a well-diversified portfolio,
even with 94 assets. The sample method was not able to do this because the inverse covariance matrix
had extremely high values on the diagonal which led to a high determinant for this matrix as well as
extreme weight positions in the portfolio. This was not the case for the robust methods. The high-value
determinant showed that linear combinations were harder to make so hedging of assets was not easy for
the sample method. This also caused these high-weight allocations. Adding assets to the portfolio helped
this somewhat with the sample method being more able to diversify with lower weight allocation but the
robust methods were still better. With the introduction of the no short-selling constraint, the issue of
the sample method was mostly fixed and so the turnover for the sample method was almost the same
as for the robust methods. The robust methods often performed better in the choose and hold strategy
but this was only where the number of assets was 94 of 188. Adding more assets to the portfolio led to
the robust methods over-diversifying, leading to lower returns which meant that the sample method had
higher values of wealth. For the choose every time strategy there were not any trends to see and so there
was no way to make an informative choice on when to use the sample method or a robust method.

5.2.2 Tangency Portfolios

Sharpe Ratio

The first characteristic is the Sharpe ratio, where the results are denoted in Table 23. For the un-
constrained portfolios where the choose and hold strategy is used, we see very clearly the robust methods
performing better in stabilizing the weights. Furthermore, both the robust methods do not have a prob-
lem with the value of wealth calculation whereas the sample method in all the portfolios does except
for the portfolio with 376 assets. The good performance of the robust methods compared to the sample
method does however not lead to profitable returns confirming again that the choose and hold strategy
does not work for tangency portfolios. Although the robust methods both perform well the OGK method
is considerably better in stabilizing the weights. This is especially evident when the number of assets is
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relatively low. When we compare the performance for the individual time period for the N = 188 portfo-
lios we see why the robust methods particular are so good in keeping the turnover low. For example, in
the 8th time period the weights of the sample method are so extreme compared to the robust methods
and so the sample method has the risk of choosing the wrong assets which happens in this case with
a return of -69% where the robust methods only had a return of -3% and -4%. When we look at the
mean estimates of the methods we see the differences are not that significant but the differences in the
inverse of the covariance matrix are very significant and this is also what leads to the extreme portfolio
positions. Where the diagonal values of the robust methods are all between 0 and 2.5 are the diagonals
of the sample method all between 4000 and 18000. This shows that the robust methods are very good in
minimizing the risk for the investor.

For the constrained portfolios, however, the turnover once again drops significantly. This leads to the
sample method performing better than the robust methods due to shrinkage created in the portfolio
weights. Furthermore, we see when the number of assets increases the bigger this difference between the
sample method and the robust methods becomes. This is mainly because with the increasing number of
assets the sample method is almost forced to diversify which helps with the returns but the OGK and
Spearman’s correlation method almost overdo it on this and so the portfolio becomes overdiversified los-
ing returns in the process. The big difference here is that the sample method better knows which stocks
to pick and the robust methods due to the minimizing of outliers are almost left with no information. We
can see this when the portfolio of N=376 is considered. Similar to the GMV portfolio both the robust
methods suffer from overdiversification compared to the sample method. On average the OGK uses 36
assets per time period and Spearman’s correlation method uses considerably less with an average of 19
assets per time period. This is compared to the GMV portfolio, but the sample method only uses 17
assets per time period. So overdiversification is mostly a problem for the OGK method. This shows in
the 10th time period where the OGK method uses 33 assets in the portfolio and Spearman’s correlation
method, as well as the sample method, uses only 20 assets. Furthermore, both the robust methods have
the weights very equally divided, almost like it behaves as an equally weighted portfolio while the sample
method has assets that hold 15-20% of the wealth. Due to these assets, the returns are also higher and so
in this time period only the sample method manages to get a positive return. This is however mostly the
case because the mean estimation is taken into account for the weight allocation of the tangency portfolio
and so the sample method gets better information which leads the returns to increase. This is not true
for the GMV portfolio where the mean estimations are not taken into account. Furthermore, the fewer
assets there are to choose from the better the robust methods perform compared to the sample method.
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Table 23: Sharpe Ratio Tangency

(choose and hold) N=94 N=188 N=282 N=376
Sample* OGK Spearman Sample* OGK Spearman Sample* OGK Spearman Sample OGK Spearman

Return -104.02% 101.44% -18.84% -621.44% 41.21% 53.69% -83.79% 179.09% 125.76% 196.12% 69.47% 83.79%
Turnover 4443.650 192.358 1069.22 5549.325 298.834 419.780 1963.640 186.233 412.388 971.428 260.797 399.478
Wealth -0.33 19.34 1.42 -8389.38 2.63 0.39 -0.27 34.78 1.02 0.00 4.14 0.83

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes yes

Return NS 87.88% 81.51% 59.45% 72.34% 50.88% 49.82% 112.53% 76.70% 52.04% 75.43% 49.80% 42.66%
Turnover NS 23.497 22.863 24.020 22.849 23.130 23.327 22.865 22.457 23.779 23.451 23.049 24.000
Wealth NS 148.22 144.11 125.12 136.86 119.47 118.39 168.74 140.87 119.60 138.46 118.71 111.97

Beat Sample NS n/a No No n/a No No n/a No No n/a No No

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK* Spearman

Return 560.86% 77.79% 101.87% -9.83% 418.36% 102.01% 101.41% 65.82% 557.13% 221.00% 848.32% 147.31%
Turnover 1526.993 110.760 185.161 497.812 241.47 248.114 396.518 151.920 663.815 480.186 2953.028 956.307
Wealth 0.00 55.62 26.88 -0.12 23.46 11.94 1.25 31.53 100.70 0.48 67986.33 0.22

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes No

Return NS 75.91% 71.19% 46.37% 79.38% 72.11% 46.44% 80.58% 43.62% 45.54% 80.54% 38.55% 42.26%
Turnover NS 24.162 23.667 24.520 24.030 23.654 24.348 23.760 23.236 23.768 23.761 22.989 23.809
Wealth NS 137.83 134.81 114.27 140.74 135.56 114.52 142.07 113.60 114.50 142.03 109.87 111.87

Beat Sample NS n/a No No n/a No No n/a No No n/a No No

For the choose every time strategy in Table 23 we see for the unconstrained portfolios that the value of
wealth is a little bit better but the high turnover still makes all the portfolios lose money. This is different
from the GMV where the robust portfolio was either profitable or close to 100 euro. Furthermore, it is
also different from the Tangency portfolios for the low-dimensional case where the estimations based on
recent information would also mean that the portfolios are close to 100 or profitable. This is especially
true for the sample method. The turnover of the sample method is however lower compared to the choose
and hold strategy but this is not generally the case for the robust methods. Looking at the portfolio
with 94 assets more closely we see why the returns of the sample method are so high. First of all, the
turnover of the sample method suggests the portfolio has extreme positions and this is also the case when
looking at the returns with three time periods having more than 100% return and one even having as
high as 540% return. However, not all returns are positive with four time periods having returns close
to -50%. In the second time period, the sample method had a return of 540% while the robust methods
had 4% and 28% returns. Where is here the difference? As expected the sample method had way more
extreme positions than the robust methods but choosing the assets that were extreme also paid off. The
OGK method was so diversified that all the weights were between 0.08 and -0.05. This is because the
mean estimates for every asset were very close to each other. The Spearman’s correlation method was in
between these methods where some assets had relatively high weights but most of them were just as low
as the OGK method. This choice is for investors of course not sustainable and so the robust methods
seem to be the better choice.
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Sortino Ratio
The second characteristic is the Sortino Ratio, denoted in Table 24. First of all, we look at the choose
and hold strategy. The portfolios are, similar to the Sharpe Ratio, very extreme and so in general are not
a good option for an investor to use. Comparing the methods gives us that the turnover for the robust
methods is significantly lower than for the sample method. This is however in vain because they are
still too high to result in a profitable portfolio for the investor. Here the cellwise robust method is often
higher than the casewise robust method except for the case when the number of assets is 188. Going into
more detail we see the biggest reason for the higher turnover is the big differences in values of the center.
Some assets get big wins in a time period and others big losses. This difference and the fact that the
tangency portfolio uses the mean estimate in the calculation of the weights leads to the weights being
very extreme when no robust method is used. Furthermore, this is aggregated when the order of highest
means and losses is changing all the time which leads to extreme positions going from for example -4 in
one period to +5 in another. This is mainly the case for N = 188 and N = 282. For the constrained
portfolio the turnovers are again back to a normal value and thus the portfolio makes money again. We
see, similar to the Sharpe Ratio, that the sample method does well compared to the robust methods. This
is because the sample method now benefits from the shrinkage that comes with the constraint and the
robust methods under-appreciated the stocks that do very well and over-appreciate stocks that do badly.
In other words, because the mean estimate is used in the portfolio allocation, the robust methods are less
good at selecting the stocks that do very well and make a more diversified portfolio. This diversification
harms the returns and so the robust methods end up with lower values of wealth.

Table 24: Sortino Ratio Tangency

(choose and hold) N=94 N=188 N=282 N=376
Sample* OGK Spearman Sample* OGK* Spearman Sample OGK Spearman Sample OGK Spearman

Return -408.72% 12.92% 37.70% -2431.97% -186.11% 18.16% -43.80% 137.58% 157.62% 196.12% 69.47% 83.79%
Turnover 1691.992 131.537 340.842 6198.072 738.170 562.558 6737.661 430.606 450.338 971.428 260.799 399.476
Wealth -132.35 27.66 1.96 -5.58e+8 -0.19 0.01 -0.81 5.40 0.60 0.00 4.14 0.83

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 89.74% 64.40% 89.83% 82.19% 72.62% 61.25% 112.52% 56.29% 53.28% 75.43% 49.80% 42.66%
Turnover NS 23.507 22.976 23.459 22.874 23.038 23.444 22.865 22.601 23.777 23.451 23.049 24.000
Wealth NS 149.66 130.38 149.81 144.64 136.81 127.27 168.73 124.42 120.57 138.46 118.71 111.97

Beat Sample NS n/a No Yes n/a No No n/a No No n/a

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return 270.38% 33.60% 148.27% -11.32% 203.83% 111.99% 133.88% 77.30% 499.71% 168.91% 41.24% 127.87%
Turnover 1102.604 90.253 183.902 489.657 166.360 245.923 378.826 173.070 595.002 459.035 142.942 1309.211
Wealth 0.00 52.04 33.77 -0.02 47.45 12.91 2.20 25.12 61.83 0.69 30.53 0.04

Beat Sample n/a Yes Yes n/a

Return NS 76.45% 60.42% 46.33% 79.31% 43.12% 46.85% 80.58% 41.96% 45.79% 80.54% 44.79% 41.19%
Turnover NS 24.167 23.676 24.743 24.044 23.261 24.346 23.760 23.270 23.789 23.761 23.231 23.829
Wealth NS 138.25 126.32 113.98 140.67 113.17 114.85 142.07 112.25 114.66 142.03 114.53 111.00

Beat Sample NS n/a No No n/a No No n/a No No n/a No No

For the choose every time strategy we see the same as for the low dimensional case. For the unconstrained
portfolios, we see the turnover decreases and so the value of wealth increases. We also see, similar to
the choose and hold strategy, the turnover difference between the sample and the robust method being
very large for N=94 but this slowly declines over time with the sample turnover even getting lower than
the turnover for the Spearman’s correlation method. When we look at the value of wealth the robust
methods perform the best due to high returns as well as often having the lower turnover. This is however
not enough to make the portfolios profitable with the highest value of wealth being 61.83. This indicates
that this is not a viable strategy to use. For the constrained portfolio we see a better picture with all
the portfolios making money. The performance is however slightly lower in terms of the value of wealth
compared to the choose and hold strategy. This is due to lower returns as well as the turnover being
marginally higher. Furthermore, the difference between the sample method and the robust methods is
low with the sample method even having a lower turnover than Spearman’s correlation method. The
OGK does have a lower turnover compared to the sample method but as mentioned this difference is
minimal. Lastly, when looking at the value of wealth the sample method is superior, beating the robust
methods in all the portfolio allocations. This difference is mainly due to the higher returns the sample
method generates. The sample method can do this because when an asset suddenly has a high return
the sample method can put more weight on this asset. The robust method minimizes this outlier and so
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has a more conservative approach which leads to lower returns.

To conclude, the unconstrained portfolios perform slightly better with the choose every time strategy
but the combination of tangency and unconstrained portfolios is still not a good strategy. For the con-
strained portfolios the choose every timeis a good strategy but the choose and hold strategy is slightly
better but both are profitable.

High Mean

The third characteristic is the high mean where the results are shown in Table 25. Firstly we look
at the choose and hold strategy where the unconstrained portfolios give an interesting read. In general,
the results show that the tangency portfolio, due to its aggressiveness is not a good portfolio to use
when short selling is allowed. When we compare the methods we see the turnover of the robust methods
is significantly lower than the sample method. Looking at the returns we see big differences between
methods but also within the same method, we see big differences. This shows the unpredictability of the
out-of-sample tangency portfolio. This unpredictability can also be seen in the sample method when N
= 282. The value of wealth is the highest of the high-dimensional portfolios we have seen so far and it is
very different from the performance of this portfolio when Sharpe Ratio or Sortino Ratio is used. Lastly
what is also interesting is that this is not only the case for this portfolio but also the other portfolios are
different to both the ratios. For example when N=94 the method that has the highest value of wealth
is the OGK method while for the Sharpe and Sortino Ratio the Spearman’s correlation method. For
the constrained portfolios we see much better performance and even the best performance compared to
the other characteristics. The returns are higher and the turnover is significantly lower compared to the
unconstrained portfolios. Similar to what we have seen before, the turnover of the sample method is not
always higher than the robust methods. This gives an extra indication that due to the shrinkage of the
constraint, the weights are automatically more stable. This is also a reason why the sample method does
so well due to the extra stability you achieve by using the robust methods is small while the trade-off
with the return is high.

Table 25: High Mean Tangency

(choose and hold) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -2.06% -94.52% 325.60% -65.19% 73.89% 173.86% 3929.17% 76.37% -43.79% 129.05% 243.38% 57.78%
Turnover 2049.663 292.187 582.434 1910.982 187.184 513.724 2751.427 290.086 518.365 911.507 388.762 390.001
Wealth -0.02 0.15 49.97 0.03 20.05 0.22 332.77 4.77 0.36 0.00 9.03 0.58

Beat Sample n/a Yes Yes n/a Yes Yes n/a No No n/a Yes Yes

Return NS 111.82% 98.01% 82.58% 85.10% 64.42% 65.59% 122.63% 59.11% 55.95% 75.19% 49.57% 42.20%
Turnover NS 23.175 21.573 22.984 23.057 22.842 23.839 23.160 23.687 23.894 23.449 23.383 23.998
Wealth NS 167.65 159.29 144.78 146.67 130.57 130.18 176.23 125.27 122.53 138.27 118.13 111.60

Beat Sample NS n/a No No n/a No No n/a No No n/a No No

(choose every time) N=94 N=188 N=282 N=376
Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman Sample OGK Spearman

Return -9.03% 76.41% 166.21% -107.52% 104.13% 109.44% -103.49% 84.76% 690.30% 231.25% 118.59% 72.43%
Turnover 1218.070 69.752 129.383 441.931 147.226 236.291 542.101 149.841 1162.678 789.729 190.049 377.218
Wealth 0.00 85.96 67.71 -0.03 39.48 13.75 -0.19 33.06 318.077 1.19 27.16 1.16

Beat Sample n/a Yes Yes n/a Yes Yes n/a Yes Yes n/a Yes Yes

Return NS 78.20% 65.72% 45.34% 78.24% 56.08% 44.15% 80.54% 43.69% 44.50% 80.54% 42.15% 39.96%
Turnover NS 24.328 24.013 24.649 23.990 23.568 24.236 23.761 23.271 23.902 23.761 23.389 23.858
Wealth NS 139.39 130.04 113.32 139.90 123.04 112.86 142.03 113.62 113.52 142.03 112.26 110.01

Beat Sample NS n/a No No n/a No No n/a No No n/a No No

Using the choose every time strategy we see that the turnover decreases for the unconstrained portfolios.
However, the turnovers do not decrease when more assets are used in the portfolio like it does for the
Global Minimum Variance portfolio. What is also interesting to see is the value of wealth for the robust
methods is higher compared to the choose and hold strategy. This is also not the case for the GMV
portfolio, with the extreme value of wealth of 318.08 for Spearman’s correlation method when N = 282,
compared to a value of wealth of -0.19 for the sample method. This is especially interesting because
the portfolio of N = 282 was the best performing for the sample method when choose and hold strategy
was used. If we take the portfolio where the number of assets equals 94 into consideration we see a very

49



interesting fact that explains part of the reason why the robust methods do so much better than the
sample method. The estimations for the means are very different from each other, especially when it
comes to which assets have a negative mean. Of the 12 assets that the sample method estimates with
a negative mean only 5 also have a negative mean for the OGK method. Furthermore, only 4 out of
these 12 have a negative real return so the sample method loses money by going short on these portfolios.
Most of these assets also had a negative mean due to a couple of negative outliers but the medians of
these assets were mostly positive. This once again shows the benefit of using the robust methods. For
the constrained portfolio we see the sample method, similar to the other characteristics, being once again
the best method. The shrinkage the constraint brings to the estimations is enough to help the problems
that the sample method had. Furthermore not being able to short sell helps also with the negative means
that caused the big losses for the unconstrained portfolios.

470 asset portfolio Tangency
Lastly, we look at the portfolio where all the 470 assets are used. For the unconstrained portfolio, we
immediately see that even we such a large number of assets the tangency portfolio is too aggressive to be
a profitable portfolio. We do however see as expected the robust methods outperform the sample method
where the OGK method performs the best. For the constrained portfolios we see the sample method
being the best due to having high returns. These high returns are a consequence of the sample method
putting a higher proportion of the wealth on some assets where the robust methods are more spread out.
This works for the sample method because as mentioned before the shrinkage that the constraint creates
gives enough to let the tangency portfolio not be so aggressive.

Table 26: 470 asset portfolio Tangency

N=470
Sample OGK Spearman

Return -31.04% 46.28% -26.80%
Turnover 857.208 198.596 444.900
Wealth 0.00 15.63 0.08

Beat Sample n/a Yes Yes

Return NS 80.55% 31.99% 43.45%
Turnover NS 23.760 22.945 23.949
Wealth NS 142.05 104.70 112.64

Beat Sample NS n/a No No

Concluding remarks high dimensional Tangency portfolios
Concluding this section on the tangency portfolio we go over the main findings for both the unconstrained
and the constrained portfolios. For the unconstrained portfolio, the conclusion is the same as it was for
the low-dimensional case. The unconstrained tangency portfolio is not a stable portfolio to make profits
independent of which method is used. Furthermore, this conclusion is also independent of whether the
choose and hold or the choose every time strategy is used. This is different from the low-dimensional
case where all the characteristics could produce stable profitable portfolios with the choose every time
strategy. So although the overall conclusion is that investors should not use the unconstrained tangency
portfolios the robust methods did help with stabilizing the weights. Here the casewise robust methods
were better than the cellwise robust methods. The constrained portfolios were again stable and more
importantly profitable for the investor. For the strategies the choose and hold strategy overall performed
the best. Furthermore due to the shrinkage in the estimates that the constraints brought were the sample
method often the best method to use. This was mainly because the robust methods over-diversified the
portfolio which led to low returns. This was for both strategies the case. This difference between the
sample method and the robust methods also grew when the number of assets grew in the portfolio. The
casewise robust method was for the choose and hold strategy almost always the better robust method
to use having higher returns as well as lower turnover. However, for the choose every time strategy
it depended on the number of assets in the portfolio. The OGK was often the better method for the
portfolios where N = 94 or N = 188 but the Spearman’s correlation method was better when the number
of assets was above that.
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5.3 Takeaways + further analysis

So what can we take away from these results? What is the conclusion? First of all, for the low-dimensional
case, we can conclude the robust methods used were not able to produce the desired results where the
turnovers were lower than the sample method. This was especially the case for the Global Minimum
Variance portfolio but also the results for the Tangency portfolio were not consistent enough to conclude
that the robust methods were an improvement on the sample method. In the high-dimensional case, the
robust methods did help reduce the turnover. This was especially the case for the GMV portfolio when
short selling was allowed. With these portfolios, the investors benefited from using the robust methods to
be more profitable. Is this because the high dimensional portfolios are more suited for the robust methods
or is the reason that the OGK method and Spearman’s correlation method are more equipped to use for
stabilizing the weights? To see which it is, this section does the low-dimensional portfolio estimations
with the OGK and Spearman’s correlation method. It does so by using the Global Minimum Variance
portfolio in the low-dimensional framework of 330 portfolios for each of the three characteristics for the
choose and hold stategy. The reason for only using the choose and hold stategy is because for both the
low and high dimensional case this was the best-performing portfolio. The results are shown below where
for the figure the red line represents the sample method, the blue line the OGK method and the green
line represents the Spearman’s correlation method.

When we do this for the Sharpe ratio characteristic, we see these robust methods get the desired re-
sult. The densities are shown in Figure 7a. First of all, in the right figure, we can see that the turnover of
the robust methods is lower than the sample method. This is especially true for the density of the OGK
method where it has no to little overlap with the density of the sample method. This is different from
other robust methods used in the low-dimensional section. The lower turnover also results in high values
of wealth for the OGK method which can be seen in the left figure. For Spearman’s correlation method,
the values of wealth are similar to the sample method indicating that the returns are lower. So at least
for the Sharpe ratio as characteristic we can conclude that the OGK and Spearman’s correlation method
produce more stable weights. However is this only the case for the Sharpe Ratio or can we replicate the
results for the other characteristics as well?

(a) Value of Wealth (b) Turnover

Figure 7: Sharpe Ratio unconstrained portfolio choose and hold strategy

In Figure 8a and Figure 8b we see the value of wealth and the turnover when the Sortino Ratio is used and
then we do see the results can be replicated with a different characteristic. This gives another indication
that these robust methods are equipped to stabilize the weights. Furthermore, we see the density of the
turnovers for the OGK and Spearman’s correlation are almost identical to the Sharpe Ratio. For the
sample method, the density is more centered between 18 and 19 with a density as high as 0.6 indicating
lower turnovers compared to the Sharpe Ratio. For the value of wealth, the OGK performs the best while
the sample method and Spearman’s correlation have similar values of wealth indicating that the cellwise
robust method struggles to get high returns.
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(a) Value of Wealth (b) Turnover

Figure 8: Sortino Ratio unconstrained portfolio choose and hold strategy

When the high mean is used as a characteristic, denoted in Figure 9a, we see a different picture for the
values of wealth. The densities of the sample method and the OGK method are overlapping so we can
conclude the difference in values of wealth is less significant. However, it is interesting that the turnovers
do differ significantly, and similar to the other characteristics the turnover of the OGK method does
not overlap and thus is for all 330 portfolios lower compared to the sample method. This results in the
conclusion that for the high mean characteristic, the sample method returns are notably different from
the OGK method. Lastly, Spearman’s correlation method is performing considerably worse than the
other two methods, once again confirming the conclusion that the casewise robust method is better at
handling the weight stability than the cellwise robust method is.

(a) Value of Wealth (b) Turnover

Figure 9: High Mean unconstrained portfolio choose and hold strategy

5.3.1 Mahalanobis distance methods vs pairwise covariance methods

This paper thus shows that robust methods based on Mahalanobis distances do not work for this dataset
and for estimating weights over time. The weights are more extreme and volatile than for the sample
method and this also causes higher turnover. This is not the case for the robust methods based on
pairwise covariances. As we have seen in the figures above the weights stabilize more which leads to
lower turnover. This section focuses on the differences between these methods and compares the Min-
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imum Covariance determinant method with the Orthogonalized Gnanadesikan-Kettenring method and
the cellwise Minimum Covariance determinant method with Spearman’s correlation method to see where
the methods based on the Mahalanobis distances go wrong. This is done for the unconstrained GMV
portfolio based on the 15 highest Sortino ratio with the choose and hold strategy as here the differences
are the biggest.

MCD method vs OGK method

First of all, this paper analyses the difference between two casewise robust methods. Comparing the
return, turnover and wealth of both methods we already see big differences with the MCD having a
return of 101.34%, a turnover of 23.547 and the value of wealth of 158.74 where the return of the OGK
method is 137.07%, the turnover 10.526 and the value of wealth is 213.28. This shows the usefulness
of the OGK method because these numbers also outperform the sample method. But now the question
begs, where does the MCD method go wrong?

Looking at the covariance matrices of both methods we see that in terms of determinant, the covari-
ance matrix of the OGK method has a higher value than the covariance matrix of the MCD method.
This leads to the determinant of the inverse of the MCD method being more than 10 times the value of
the inverse of the OGK method. The higher determinant for the inverse also is an indication of higher
weights. This is exactly what we see for the first time period where the weights for the MCD are more
extreme than the OGK method. Analyzing the contamination process gives us in the first time period
that out of the 90 rows, the MCD found 19 to be contaminated whereas the OGK method found 17
rows to be contaminated. Furthermore, both methods agreed on 82 out of the 90 rows whether they
were contaminated or not. So in this sense, the difference is not that large. What we however do notice
is the distance measurements of the OGK method are much larger than the distance measurements of
the caseMCD method. This could also help the OGK better identify the outliers which leads to more
stability in the weights.

cellMCD vs Spearman’s Correlation

The second comparison this paper makes is the difference between the cellwise minimum covariance
determinant method and Spearman’s correlation method. These are both cellwise robust methods and
similar to the other comparison this paper analyses the returns and turnover of these methods. Addition-
ally, as the outliers are identified individually we can better see where the differences between the two
methods are. First of all, looking at the value of wealth the difference is clear. The cellMCD method, as
seen in Section ?? has a value of wealth of 116.86 whereas Spearman’s correlation method has a value
of wealth of 154.98. Furthermore, the turnover of the cellMCD method is also twice as large as the
turnover of Spearman’s correlation method with 36.671 against 16.184. Also, the returns of Spearman’s
correlation method are higher with 82.41% versus 69.57%. Looking at the time period individually we see
why Spearman’s correlation method does so much better than the cellMCD method. First of all, the de-
terminant of the precision matrix of the cellMCD method is significantly higher than that of Spearman’s
correlation method. This is mainly because Spearman’s correlation method creates much more zeros in
the precision matrix. This also translates to a more even distribution of the weights in the portfolio. This
helps certainly when the portfolio chooses the wrong assets to short or go long in.
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6 Discussion

This paper has discussed the use of robust methods to estimate the covariance matrix as well as the means
of portfolios to stabilize the weights of the portfolio. The results indicate for the low-dimensional case that
the robust methods which rely on Mahalanobis distances do not perform better than the sample method.
Here we saw the casewise robust methods slightly outperform the cellwise outlier methods because of
lower turnover and so being better at stabilizing the weights. The robust methods, that are based on
pairwise covariance or correlation, such as the OGK and Spearman’s correlation method, did bring more
stability to the weights which led to better values of wealth for the investors. For the high-dimensional
case, the OGK and Spearman’s correlation method also made a positive impact in stabilizing the weights.
This biggest difference compared to the sample method was when no short-selling was allowed.

One of the limitations of this paper is the fact that for the unconstrained tangency portfolio, the re-
sults are slightly skewed because the wealth equation does not perform well when the wealth drops below
0. Another limitation is the fact that only big companies were used in the data set so the conclusions
taken from this paper can only be used for big companies and further research needs to be done on
whether these conclusions also hold for smaller companies or for example cryptocurrencies where volatil-
ity and outliers are bigger factors.

This paper did mainly focus on the performance of the robust methods and less on the side of ac-
tive trading. For the portfolios, an initial value of 100 was used and there was no additional money put
into the portfolio. For further research, this could also be interesting to look into. Strategies could be
formed where certain indicators could lead to putting more money into the portfolio or retrieving money
from the portfolio. For example, money can be retrieved from the portfolio after a certain time period
where the returns were very high. This is to ensure that not a big part of the winnings is lost when the
portfolio eventually drops in value. The opposite can be done when an asset has a relatively low market
value to have an advantage once it goes back up again. Furthermore, another strategy could be used
that every time period the investor uses 100 euros to invest and retrieves the full return after each time
period. This strategy would not use cumulative returns to gain an advantage but would also allow for
a value of wealth calculator that can deal with returns that are lower than -100%. On the other hand,
strategies could be formed utilizing the cumulative returns by putting each time period more money into
the portfolio. This is in the real world often done for trading indices where the volatility and where the
risk is relatively low.

The last point of interest for further research is to look at varying time windows. This could be in-
teresting because a longer time window means fewer trades are happening which could lead to lower
turnovers. On the other hand, it could harm potential gains when an asset is held too long. The role of
the robust methods and an analysis of the performance compared to different time windows could be an
interesting topic to investigate. For this, the robust methods based on pairwise covariances are the best
to use.

7 Conclusion

This paper analyzed the use of casewise and cellwise robust methods in portfolio allocations. It did this
with daily stock data from the S&P500. The robust methods were used to estimate the means and co-
variance matrices that shaped the weights of the portfolio assets. This was done for the Global Minimum
Variance portfolio and the Tangency Portfolio in a low-dimensional case and also a high-dimensional
case. For the low-dimensional case, we found both the casewise and the cellwise robust methods based
on the Mahalanobis distance were not able to stabilize the weights more than the sample method did for
the Global Minimum Variance portfolios. This conclusion holds regardless of whether short-selling was
allowed or not and also is independent of the strategy used. This conclusion is in line with the work in
the paper (Pacreau and Lounici, 2024). For the robust methods themselves, the casewise robust methods
often did perform better than the cellwise robust methods in terms of stabilizing the weights. This was
often due to high turnovers from the cellwise robust methods due to higher portfolio allocations. The
performance for the returns and the values of wealth was between the robust methods more random. For
the Tangency portfolio, we found that the portfolio often did not make any money when short-selling
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was allowed. This was especially true for the choose and hold strategy where a lot of methods even came
into the negatives. The value estimations had problems when this happened and as mentioned in the
discussion other methods of using the money as an investor could help this. For the choose every time
strategy this was not a problem as estimations were based on more recent information and so led to
weights on the portfolio to be less extreme. Furthermore, the casewise robust methods did stabilize the
weights more than the sample method when no short selling was allowed. However, this was not the case
for the cellwise robust methods. For the portfolios where short selling was allowed the sample method
again performed the best. So the Mahalanobis distance robust methods did certainly not improve the
stabilizing of the portfolio weights. Constrained portfolios for both strategies made the portfolios more
profitable and the turnover dropped dramatically.

For the high-dimensional case, this paper looked at portfolios where the number of assets was 94, 188,
282, 376 and 470. Both the casewise, the OGK method and the cellwise robust method, Spearman’s
correlation method were considered but these methods are based on pairwise covariances instead of being
based on Mahalanobis distances. For the GMV portfolio, both the casewise and the cellwise robust meth-
ods were able to help stabilize the portfolio weights which led to a higher value of wealth. This was for
all the portfolios but the biggest effect was when short selling was allowed. This is because the constraint
introduced shrinkage to the portfolio which already leads to stabilizing the weights. Furthermore, for the
unconstrained GMV portfolio, the weights of the sample method stabilized more when the number of
assets increased. This was true for both strategies used in this paper. This was however not true for the
robust methods.

For the Tangency portfolios, we saw the unconstrained portfolios were not profitable, but both robust
methods made sure that the loss was minimized compared to the sample method. For the constrained
portfolios the sample method was far better due to the shrinkage already given to the estimates by the
constraints. The robust methods did not do so well due to overdiversification which led to lower returns.
Furthermore, the turnover of the casewise robust methods was always lower but this was not the case
for the cellwise robust method. Lastly, the robust methods based on pairwise covariances did so well
for the high-dimensional case that this paper also analyzed how they would do for the low-dimensional
case. This was only done for the unconstrained Global Minimum Variance portfolio where the choose
and hold strategy was used. This paper found that these robust methods based on pairwise covariances
also stabilized the weights more for the low dimensional case compared to the sample method. The OGK
did this better than Spearman’s correlation method giving more reason to think that the casewise robust
methods are better to use than the cellwise robust methods. The biggest gain in the value of wealth was
for both the Sharpe Ratio and the Sortino Ratio. The portfolios where the high mean was the charac-
teristic were on the other hand less successful due to the returns of the sample method being much higher.

In conclusion, in this paper, we saw both the casewise and the cellwise robust methods based on the
Mahalanobis distance for estimating the means and covariances are not capable of stabilizing the weights
of a portfolio based on characteristics and the sample method does a better job in this. The instability
of these methods was also found in the paper (Pacreau and Lounici, 2024). Although these methods did
not work the casewise methods and the cellwise methods based on pairwise covariances did succeed in
stabilizing the weights for both low-dimensional and high-dimensional portfolios, so investors would be
better off estimating their portfolio weights based on means and covariances of these methods instead of
the sample method.
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8 Appendix A

These are all the companies where the assets were used in the database. This includes the 35 stocks that
eventually were discarded.

Assets: AAL, AAPL, AAP, ABBV, ABC, ABT, ACN, ADBE, ADI, ADM, ADP,
ADSK, ADS, AEE, AEP, AES, AET, AFL, AGN, AIG, AIV, AIZ, AJG, AKAM,
ALB, ALGN, ALK, ALLE, ALL, ALXN, AMAT, AMD, AME, AMGN, AMG,
AMP, AMT, AMZN, ANDV, ANSS, ANTM, AON, AOS, APA, APC, APD,
APH, APTV, ARE, ARNC, ATVI, AVB, AVGO, AVY, AWK, AXP, AYI, AZO,
A, BAC, BAX, BA, BBT, BBY, BDX, BEN, BF.B, BHF, BHGE, BIIB, BK,
BLK, BLL, BMY, BRK.B, BSX, BWA, BXP, CAG, CAH, CAT, CA, CBG,
CBOE, CBS, CB, CCI, CCL, CDNS, CELG, CERN, CFG, CF, CHD, CHK,
CHRW, CHTR, CINF, CI, CLX, CL, CMA, CMCSA, CME, CMG, CMI, CMS,
CNC, CNP, COF, COG, COL, COO, COP, COST, COTY, CPB, CRM, CSCO,
CSRA, CSX, CTAS, CTL, CTSH, CTXS, CVS, CVX, CXO, C, DAL, DE,
DFS, DGX, DG, DHI, DHR, DISCA, DISCK, DISH, DIS, DLR, DLTR, DOV,
DPS, DRE, DRI, DTE, DUK, DVA, DVN, DWDP, DXC, D, EA, EBAY, ECL,
ED, EFX, EIX, EL, EMN, EMR, EOG, EQIX, EQR, EQT, ESRX, ESS, ES,
ETFC, ETN, ETR, EVHC, EW, EXC, EXPD, EXPE, EXR, FAST, FBHS, FB,
FCX, FDX, FE, FFIV, FISV, FIS, FITB, FLIR, FLR, FLS, FL, FMC, FOXA,
FOX, FRT, FTI, FTV, F, GD, GE, GGP, GILD, GIS, GLW, GM, GOOGL,
GOOG, GPC, GPN, GPS, GRMN, GS, GT, GWW, HAL, HAS, HBAN, HBI,
HCA, HCN, HCP, HD, HES, HIG, HII, HLT, HOG, HOLX, HON, HPE, HPQ,
HP, HRB, HRL, HRS, HSIC, HST, HSY, HUM, IBM, ICE, IDXX, IFF, ILMN,
INCY, INFO, INTC, INTU, IPG, IP, IQV, IRM, IR, ISRG, ITW, IT, IVZ,
JBHT, JCI, JEC, JNJ, JNPR, JPM, JWN, KEY, KHC, KIM, KLAC, KMB,
KMI, KMX, KORS, KO, KR, KSS, KSU, K, LB, LEG, LEN, LH, LKQ,
LLL, LLY, LMT, LNC, LNT, LOW, LRCX, LUK, LUV, LYB, L, MAA, MAC,
MAR, MAS, MAT, MA, MCD, MCHP, MCK, MCO, MDLZ, MDT, MET, MGM,
MHK, MKC, MLM, MMC, MMM, MNST, MON, MOS, MO, MPC, MRK, MRO,
MSFT, MSI, MS, MTB, MTD, MU, MYL, M, NAVI, NBL, NCLH, NDAQ,
NEE, NEM, NFLX, NFX, NI, NKE, NLSN, NOC, NOV, NRG, NSC, NTAP,
NTRS, NUE, NVDA, NWL, NWSA, NWS, OKE, OMC, ORCL, ORLY, OXY,
O, PAYX, PBCT, PCAR, PCG, PCLN, PDCO, PEG, PEP, PFE, PFG, PGR,
PG, PHM, PH, PKG, PKI, PLD, PM, PNC, PNR, PNW, PPG, PPL, PRGO,
PRU, PSA, PSX, PVH, PWR, PXD, PX, PYPL, QCOM, QRVO, RCL, REGN,
REG, RE, RF, RHI, RHT, RJF, RL, RMD, ROK, ROP, ROST, RRC, RSG,
RTN, SBAC, SBUX, SCG, SCHW, SEE, SHW, SIG, SJM, SLB, SLG, SNA,
SNI, SNPS, SO, SPGI, SPG, SRCL, SRE, STI, STT, STX, STZ, SWKS, SWK,
SYF, SYK, SYMC, SYY, TAP, TDG, TEL, TGT, TIF, TJX, TMK, TMO,
TPR, TRIP, TROW, TRV, TSCO, TSN, TSS, TWX, TXN, TXT, T, UAA,
UAL, UA, UDR, UHS, ULTA, UNH, UNM, UNP, UPS, URI, USB, UTX,
VAR, VFC, VIAB, VLO, VMC, VNO, VRSK, VRSN, VRTX, VTR, VZ, V,
WAT, WBA, WDC, WEC, WFC, WHR, WLTW, WMB, WMT, WM, WRK,
WU, WYNN, WYN, WY, XEC, XEL, XLNX, XL, XOM, XRAY, XRX, XYL,
YUM, ZBH, ZION, ZTS

56



References

Agostinelli, C., Leung, A., Yohai, V. J., & Zamar, R. H. (2015). Robust estimation of multivariate location
and scatter in the presence of cellwise and casewise contamination. Test, 24, 441–461.

Boudt, K., Rousseeuw, P. J., Vanduffel, S., & Verdonck, T. (2020). The minimum regularized covariance
determinant estimator. Statistics and computing, 30 (1), 113–128.

DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal versus naive diversification: How inefficient is
the 1/n portfolio strategy? The review of Financial studies, 22 (5), 1915–1953.

DeMiguel, V., & Nogales, F. J. (2006). Portfolio selection with robust estimates of risk. London Business
School working paper.

Donoho, D. L., & Huber, P. J. (1983). The notion of breakdown point. A festschrift for Erich L. Lehmann,
157184.

Downey, L. (2024). What are transaction costs? definition, how they work, and example. Investopedia.
EStimator, D. (1999). A fast algorithm for the minimum covariance. Technometrics, 41 (3), 212.
Farcomeni, A. (2014). Robust constrained clustering in presence of entry-wise outliers. Technometrics,

56 (1), 102–111.
French, K. R., Schwert, G. W., & Stambaugh, R. F. (1987). Expected stock returns and volatility. Journal

of financial Economics, 19 (1), 3–29.
Gnanadesikan, R., & Kettenring, J. R. (1972). Robust estimates, residuals, and outlier detection with

multiresponse data. Biometrics, 81–124.
Grundy, B. D., & Martin, J. S. M. (2001). Understanding the nature of the risks and the source of the

rewards to momentum investing. The Review of Financial Studies, 14 (1), 29–78.
Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median,

range, and the size of a sample. BMC medical research methodology, 5 (1), 1–10.
Hubert, M., & Debruyne, M. (2009). Breakdown value. Wiley Interdisciplinary Reviews: Computational

Statistics, 1 (3), 296–302.
Hubert, M., & Debruyne, M. (2010). Minimum covariance determinant. Wiley interdisciplinary reviews:

Computational statistics, 2 (1), 36–43.
Hubert, M., Rousseeuw, P. J., & Verdonck, T. (2012). A deterministic algorithm for robust location and

scatter. Journal of Computational and Graphical Statistics, 21 (3), 618–637.
Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints

helps. The journal of finance, 58 (4), 1651–1683.
Kendall, M. G. (1948). Rank correlation methods.
Kirby, C., & Ostdiek, B. (2012). It’s all in the timing: Simple active portfolio strategies that outperform

naive diversification. Journal of financial and quantitative analysis, 47 (2), 437–467.
Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association,

53 (284), 814–861.
Loh, P.-L., & Tan, X. L. (2018). High-dimensional robust precision matrix estimation: Cellwise corruption

under -contamination.
Lopuhaa, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and scatter. Annals

of Statistics, 1638–1665.
Louvet, G., Raymaekers, J., Van Bever, G., & Wilms, I. (2023). The influence function of graphical lasso

estimators. Econometrics and Statistics.
Maronna, R. A., & Yohai, V. J. (1995). The behavior of the stahel-donoho robust multivariate estimator.

Journal of the American Statistical Association, 90 (429), 330–341.
Maronna, R. A., & Zamar, R. H. (2002). Robust estimates of location and dispersion for high-dimensional

datasets. Technometrics, 44 (4), 307–317.
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