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Abstract

Structural breaks in regressions break one of the key assumptions of the Ordinary Least

Squares estimator, and lead to incorrect assumptions about data if they are not taken into

account. For known or suspected structural breaks, the Wald and Chow Break test are

commonly used to test their significance. These diagnostic test however fail if the data is

contaminated by outliers. To this end, this paper analyses the robustness of the Wald and

Chow Break test and suggests robust versions of the Wald test based on a paper by Heritier

and Ronchetti (1994). A simulation study and real data example are done to verify the

robustness properties, in terms of power and level, of the robust versions of the Wald test.

Here it is found that the level of the tests remain consistent and the robust tests remain

power for varying structural breaks and sample sizes.

Keywords: Structural Break, Chow Break, Wald, Outlier, Robust Test
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1 Introduction

Modern day data analysis relies heavily on the aggregation of data from a variety of sources

in order to obtain significant sample sizes, or in order to make generalizing statements about

sectors of industry. An example of this would be in a paper by Storfjell, Omoike and Ohlson

(2008). In this paper the authors analyse the patient care time versus the cost associated with

the care. In order to do this, they consider 14 medical-surgical nursing units, and combine their

data. In the act of combining data from various sources, an assumption is made, namely that

all parameters are consistent amongst the different medical-surgical units. This assumption is

known as the assumption of no structural breaks, or the assumption of consistent regression

parameters or variance. An example of a paper that studies structural breaks is the paper by

Tabot (2023), which uses the Chow (1960) Break test along with the Wald (1943) test in or-

der to verify whether there are significant variance breaks in stock market returns of varying

markets, where the break would occur at a certain time period. In this paper the data from

varying markets is not aggregated, but these sets of data are studied separately to identify

whether they have a structural break in the dimension of time. The Chow Break and Wald test

rely on a predefined structural breakpoint, and in literature there are two ways by which these

breakpoints are commonly determined. First, a structural breakpoint can be correlated to large

events in world, for example the Great Depression as analysed by Kirkwood (1972), or the more

recent COVID-19 global pandemic. The second and more common method by which structural

breakpoints are determined is through analysis of the data using specific methods and tests. A

method to detect structural breaks is described by Bai and Perron (1998), namely minimizing

the sum of squared residuals for a set amount of structural breaks and another method is the

CUSUM method explained by Koshti (2011). There are three structural break finding methods

related to the Wald test, namely the Mean Wald test and the Exponential Wald test described

by Andrews and Ploberger (1994) and the Supremum Wald test created by Quandt (1960).

These test to find breaks can be used separately or can be combined as done by Bai, Lumsdaine

and Stock (1998) in order to get suspected structural breaks with confidence bounds.

In most papers the presence of outliers is considered to be insignificant, or worse, not considered

at all. The use of the Wald and Chow break test is predicated on a set of rather strict assump-

tions, commonly referred to as the classical assumptions of ordinary least squares which are

described by Heij, Dijk, Kloek and Franses (2004). The presence of outliers in diagnostic tests

results in the assumptions not being met, which effects the accuracy of the diagnostic tests. For

example, the Chow Break test can have a large error in rejection probability when heteroske-

dasticity is not accounted for (Giles & Scott, 1992). Robust analysis for structural breaks has
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been done before, Gagliardini, Trojani and Urga (2005) suggest a robust GMM test for struc-

tural breaks. As a different approach to outliers in a structural break setting, Giordani, Kohn

and van Dijk (2007) suggest that in the perceived presence of a structural break and outliers,

non linearity could be present, and construct a Bayesian framework to estimate models. Chen

and Huang (2018) even created a non-parametric test for smooth structural changes in panel

data, with limited robustness properties. This shows that the research into robust structural

break tests has both practical and scientific relevance.

The core focus of this paper will be to investigate the behavior of the Chow (1960) Break test

and the Wald (1943) test in the presence of outliers, to describe robust alternatives to these

tests, and establish the accuracy, disadvantages and advantages of the robust structural break

diagnostic tests.

The paper will be structured in the following way. First in Section 2 a general introduction to

structural breaks and Chow Break and Wald tests will be provided. Additionally a measure

of robustness, the influence function suggested by Hampel, Stahel, Ronchetti and Rousseeuw

(1986), will be discussed, as this is key to defining what a robust structural break diagnostic

test looks like. After this, in Section 3, a robust structural break test will be constructed using

a framework suggested by Heritier and Ronchetti (1994). With all tests properly defined, in

Section 4 a simulation study will be described which will be used to analyse the robustness

of the Wald, Chow Break, and robust Wald test and compare their best-use scenarios. The

study will analyse the sensitivity, level and power of all the diagnostic tests for a variety of

sample sizes, structural break scenarios, structural breakpoints and outlier types, which will be

presented in Section 5. This will be followed in Section 6 by a real data example, where the

diagnostic tests are used on data from the US labor productivity in the manufacturing/durables

sector from February 1947 to April 2001. Finally, Section 7 will summarize the main findings

of the paper and provide judgement on the strengths and weaknesses of the paper, along with

suggested follow-up research based on the findings or shortcomings of the paper.

2 Structural Break Tests

A structural break occurs when the relation of a dependent variable changes in relation to its

regressors. The relation between dependent and independent variable changes across one of

the dimensions of the data. Two of those dimensions would be time and space. A space-wise

structural break occurs when data passes a threshold in size, for example x > 5, as can be seen

in Figure 2.1a. For all data generated with independent variables beyond this threshold, the

relation with the dependent variable is different. A time-wise structural break occurs when the
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relation between the dependent and independent variable changes after a certain point in time,

an example of which can be seen in Figure 2.1b.

(a) Space-wise structural break (b) Time-wise structural break

Figure 2.1: Image showing 2 types of structural break, the vertical line in 2.1a shows where the
structural break occurs.

It should be immediately apparent from Figure 2.1b, that visually identifying a structural break

is not always possible. Methods to identify the moment of a structural breaks exist, however,

for the scope of this paper, we only focus on data where the suspected structural break occurs

at a known moment in space or time.

In the case that the space or time of a suspected structural break is known, a variety of dia-

gnostic tests exist to test whether a structural break actually occurs and is significant. The two

diagnostic tests that this paper will focus on are the Chow Break and Wald test.

2.1 Chow Break Test

The Chow Break Test introduced by Chow (1960) tests the consistency of coefficients of a linear

regression of a dataset. A dataset, DT consisting of N points is split into two separate datasets

of sizes n1 and n2, D1 and D2 respectively, where n1 + n2 = N . The type of structural break

is defined by how DT is split. Linear regression of DT results in Sum of Squared Errors (SSE)

ST , linear regression of D1 yields SSE S1 and the linear regression of D2 has a SSE of S2.

The following linear regression model is considered

yi = x̄Ti β̄ + ei, for i = 1, ..., N, (1)
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where β̄ =
[
β0 β1 · · · βk

]T
, x̄i =

[
1 xi,1 · · · xi,k

]T
and ei ∼ N (0, σ2). This model can

be written into matrix form as follows

Y = Xβ̄ + ē, (2)

with Y =
[
y1 y2 · · · yN

]T
, X =

[
x̄1 x̄2 · · · x̄N

]T
and ē =

[
e1 e2 · · · eN

]T
.

The linear regression model ofDT takes the exact form of (2), which results in the sum of squared

errors ST . Linear regression of D1 and D2 uses models Y1 = X1β̄1 + ē1 and Y2 = X2β̄2 + ē2,

resulting in the sum of squared errors S1 and S2 respectively. For completeness it is important to

note that Y1 =
[
y1 y2 · · · yn1

]T
, X1 =

[
x̄1 x̄2 · · · x̄n1

]T
and ē1 =

[
e1 e2 · · · en1

]T
,

and Y2, X2 and ē2 are the remaining data in DT . The combination of the two linear regression

can be written as Y1
Y2

 =

X1 0̄

0̄ X2

β̄1
β̄2

+

ē1
ē2

 . (3)

The null hypothesis H0 of the Chow Break test is that of no structural break, meaning that

from (3), β̄1 = β̄2 = β̄, which is equivalent to stating that ST = S1+S2. This means that under

the null (3) takes the form of

Y1
Y2

 =

X1

X2

β +

ē1
ē2

 . (4)

The Chow Break test statistic is defined as

ST − (S1 + S2)/k

(S1 + S2)/(n1 + n2 − 2k)
(5)

This test statistic follows a F distribution with k and n1+n2− 2k degrees of freedom under the

null. The full derivation of the test statistic can be found in the paper by Chow (1960).

The Chow Break test was shown to perform poorly in the presence of heteroskedasticity and

autocorrelation as shown by Giles and Scott (1992). A solution to these particular issues was

suggested by Sun and Wang (2022), but will not be considered in the paper, as the focus is on

the effects of outliers on the diagnostic test and heteroskedasticity and autocorrelation should

not be an issue.
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2.2 Wald Test

The Wald test is used in general to test a hypothesis on a parameter. For a single hypothesis

on a single parameter, the Wald test takes the form of:

Wuni =
(θ̂ − θ0)

2

var(θ̂)
(6)

Here θ̂ is the maximum likelihood estimator of the parameter θ and θ0 is the hypothesis that is

tested on the parameter. When expanding the Wald test to multiple parameters, and possibly

multiple hypotheses, it is possible to write the hypotheses as Rθ̂n − r. In the single parameter

case from (6), R = 1 and r = θ0.

In order to use the Wald test to test for structural breaks, we have to define matrix R and vector

r. Using the Wald test in a structural break scenario means that we equivocate β̄1 and β̄2 from

(3). This means that θ̂n takes the form of
[
ˆ̄β1

ˆ̄β2

]′
, a vector of 2k parameters, resulting in the

following definitions for R and r;

R =
[
Ik −Ik

]
(7)

r =
[
0 0 0 · · · 0 0

]′
(8)

where Ik is a k by k identity matrix. This means that R is a k by 2k matrix, and r is a 1 by k

vector of zeros, where k is the amount of coefficients contained in β̄. The structural break Wald

test takes the form of (Martin, 2013a, p.141):

Wmult = (Rθ̂n − r)′[σ2R(X ′X)−1R′]−1(Rθ̂n − r) (9)

For n → ∞ we can replace σ2R(X ′X)−1 by any consistent estimator for the covariance matrix

V , namely V̂n and then the Wald test takes the form of

Wmult = (Rθ̂n − r)′[R(V̂n/n)R
′]−1(Rθ̂n − r) (10)

The Wald test only uses the unrestricted model, unlike the Chow Break test, where the restricted

model is also determined. A strict downside to the Wald test is that it is not invariant under

reformulation, as changing the scale of one parameter in θ̂n has no effect on R or r, but could

effect the outcome of the test statistic (Parker, 2015).

A key assumption of the noted Wald test in (10) is that V AR(Rθ̂n) = R[V AR(θ̂n)]. This holds

because Rθ̂n results in M equations of the form ˆ̄β1,i − ˆ̄β2,i for i = 1, · · · ,M , where ˆ̄β1,i and
ˆ̄β2,i

are completely independent. Under the null hypothesis the Wald test has a χ2
M distribution,
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with M the number of restrictions being tested. This distribution is based on the relation that

Z1 =
θ̂1 − θ0

se(θ̂)
∼ N (0, 1), (11)

which requires that θ̂ is an unbiased estimator for θ0. If Z is indeed normally distributed, then

(6) follows a χ2
1 distribution. In order to show that (10) follows a χ2

M distribution, an adapted

deravation of Martin (2013b) is used. The equation can be rewritten to

Wmult = (Rθ̂n − r)′(S−1)′S−1(Rθ̂n − r). (12)

In (12), the following Cholesky decomposition is used:

SS′ = R(V̂n/n)R
′. (13)

Using (13), (12) can be rewritten to

Wmult = (Rθ̂n − r)′(S−1)′S−1(Rθ̂n − r) = Z ′Z =

M∑
i=1

Z2
i , (14)

which proves that under the null hypothesisWmult is the sum ofM squared normal distributions,

which is equivalent to a χ2
M distribution.

2.3 Robustness

In order to measure the robustness of the Wald and Chow Break test, we make use of the

influence function first introduced in Hampel (1974). The influence function is defined as

IF ({x,y}, T, F ) = lim
ϵ→0+

T{(1− ϵ)F + ϵ∆x,y} − T{F}
ϵ

. (15)

In the influence function, T{} is a statistical function, F is the distribution from which a

parameter will be estimated, x is a vector of observations and ϵ is the contamination level, which

describes the fraction of observations which are outliers. In (15), the outliers originate from the

point mass contamination ∆x, as this is also used later in the paper, but in more general terms,

the outliers are drawn from a distribution G, with the only restriction being that F ̸= G. The

verification of the robustness of the Wald and Chow Break test does not require the construction

of a unique influence function for each of the diagnostic tests. Rather, the robustness of the

test statistic of the Wald and Chow Break test is inherited from the robustness of the estimator

used according to Heritier and Ronchetti (1994). A regression estimator is considered robust to
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local outliers if its influence function is bounded (Hampel et al., 1986). So, in order to check

the robustness of the two diagnostic test, only the robustness of the Ordinary Least Squares

estimator needs to be checked.

The OLS estimator uses the regression model described in (1). The solution to the OLS estimator

can be written in matrix notation as

β̂ = argmin
β
E[(Y−Xβ)T (Y−Xβ)], (16)

and in the contaminated case

β̂ = argmin
β

(1− ϵ)E[(Y−Xβ)′(Y−Xβ)] + ϵ(yi − xiβ)
′(yi − xiβ), (17)

where (yi,xi) is the contaminated point. This leads to the following influence function according

to Hampel et al. (1986);

IF ({xi,yi}, T, F ) =
(∫

X′XdF

)−1

xT
i (yi − xT

i β). (18)

It is clear that the influence function of OLS is not bounded in either the x or y dimension.

Therefore, OLS is not robust against any outliers. This means that in the presence of outliers

the OLS parameter estimation will be biased, which in turn will make the test statistic for both

the Wald and Chow Break test biased. The effect of outliers will be expanded on in the results

of the simulation study in Section 5.

3 Robust Structural Break Tests

For the creation of a robust structural break test, a robust Wald test is constructed using the

framework from Heritier and Ronchetti (1994). In accordance with Heritier and Ronchetti (1994)

the Wald test will take the form of

W 2
n = (Tn)

t
(2)V (Ψ, Fθ)

−1
(22)(Tn)(2). (19)

For the sake of consistent notation, it is important to note that W 2
n is equivalent to Wmult from

(10), that is to say, they both refer to the Wald test.

In Heritier and Ronchetti (1994) the M-estimators are defined by

n∑
i=1

Ψ(zi,Tn) = 0, (20)
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where zi are a sample of iid random vectors, analogously the independent variable x from the

data generating processes described in Section 4. Tn is the M-estimator for β, and Ψ() is the

score function. In Heritier and Ronchetti (1994) the complete parameter of interest β is defined

by the null hypothesis H0: β = β0, with (β0)(2) = 0 and (β0)(1) unspecified. Linking this to the

Wald test described in Section 2.2, (Tn)
t
(2) is the robust estimator for Rθ̂n − r from (10), and

V (Ψ, Fθ)
−1
(22) is the variance covariance matrix for Rθ̂n− r having used (Tn)

t
(2). As was stated in

2.2, using the independence of parameters in Rθ̂n− r, θ̂n can be robustly estimated using an M-

estimator, and V (Ψ, Fθ)
−1
(22) can be written as R(V̂n/n)R

′ with (V̂n/n) the variance covariance

matrix estimated using the robust θ̂n. The fact that this can be done greatly simplifies the

calculations needed for the M-estimators, which will be described below.

3.1 M-estimator

A regular M-estimator (Tn)
t
(2) takes the form of

n∑
i=1

ψ

(
r(θ̂n)

σ̂

)
xi = 0, (21)

where r(θ̂n) is shorthand for the residuals of (3), σ̂ is the estimated variance of the residuals,

and ψ(· · · ) is the chosen down-weighting function. The most common down-weighting functions

are the Huber and Tukey bisquare function. The Huber down-weighting function has the form

of

ψ(x; c) =


x, if |x| ≤ c,

c sign(x), if |x| > c.

(22)

The Tukey bisquare down-weighting function has the form of

ψ(x; c) =


x
((

x
c

)2 − 1
)2
, if |x| ≤ c,

0, if |x| > c.

(23)

The parameter c in the down-weighting functions is used to determine the asymptotic efficiency

and hence is known as the tuning constant. In order to achieve a 95% efficiency values of

c = 1.345 and c = 4.685 are chosen for the Huber and Tukey bisquare function respectively. A

downside of a pure M-estimator is that the influence function is only bounded for y, not for x,

meaning that when bad leverage outliers are considered, the estimator is not robust (Khan, Ali,

Ahmad, Manzoor & Hussain, 2021).

Since bad leverage outliers are considered, a M-estimator that is robust to these kinds of outliers
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should be considered. A Mallows type M-estimator is robust against bad leverage outliers

(Carroll & Pederson, 1993). The Mallows type M-estimator takes the form of

n∑
i=1

ψ

(
r(θ̂n)

σ̂

)
w(xi)xi = 0, (24)

with w(xi) a chosen weight function, and all other parameters equivalent to those in the M-

estimator described in (21). The weight function is used to reduce the effect of outliers in the

variance covariance matrix of the estimator, creating a robustness against bad leverage outliers.

Though there exist many weight functions, for the purpose of this paper two particular weight

functions are considered, one based on the Hat matrix H and one based on the Mahalonobis

distance d(xi). For the weights based on the Hat matrix, we define H = X(X′X)−1X′, and the

weight function is defined as

w(xi) =
√
1−Hii, (25)

where Hii is the i’th diagonal element of H. For the weights based on the Mahalonobis distances,

the weight function takes the form of

w(xi; c̃) =


xi, if |x| ≤ c̃,

xi
c̃

d(xi)
, if |x| > c̃.

(26)

In (26), d(xi) is the robustly estimated Mahalonobis distance, and c̃ is a tuning constant based

on a chosen tolerance level, for example, if a tolerance level δ = 0.05 is chosen, c̃ is equal to the

0.95 quantile of a χ2 distribution with p degrees of freedom, with p the dimension of xi.

The Mahalonobis distance has the form of d(x, µ,Σ) =
√
(x− µ)′Σ−1(x− µ), where µ and Σ

are the robustly estimated mean and covariance matrix of x. For use in this paper, the mean and

covariance matrix are robustly estimated using the Minimum Covariance Determinant (MCD)

from Rousseeuw (1985).

Similarly to the Wald and Chow Break test, the robustness of the M-estimator follows from its

influence function

IF (z,Ψ, Fθ) =M(Ψ, Fθ)
−1Ψ(z, θ), (27)

where it is clear that so long as Ψ(z, θ) is bounded, the influence function is bounded, and

therefore robust. In case an M-estimator is used, Ψ(z, θ) is only bounded in the dependent

variable dimension, so it is not robust to bad leverage outliers, as previously stated. For the

Mallows type M-estimator, the additional weight function bounds Ψ(z, θ) in the independent

variable dimension, making the estimator robust to both vertical and bad leverage outliers. For

11



this reason the robust structural break test is constructed using a Mallows type M-estimator.

In the simulation study four different robust structural break tests will be considered;

• Mallows type M-estimator of (3) with a Huber down-weighing function and a weight

function based on the Hat matrix H,

• Mallows type M-estimator of (3) with a Huber down-weighing function and a weight

function based on the Mahalonobis distance,

• Mallows type M-estimator of (3) with a Tukey bisquare down-weighing function and a

weight function based on the Hat matrix H,

• Mallows type M-estimator of (3) with a Tukey bisquare down-weighing function and a

weight function based on the Mahalonobis distance.

4 Simulation

In order to check stability of the structural break tests, a sensitivity analysis, power analysis

and level analysis will be performed. Data will be generated according to the following three

data generating processes;

yi = β0 + β1xi + ei for i = 1, ..., N, (28)

yi =


β0 + β1xi + ei for i = 1, ..., n1,

β2 + β3xi + ei for i = n1 + 1, ..., N,

(29)

yi =


β0 + β1xi,1 + ei for i = 1, ..., n1,

β2 + β3xi,2 + ei for i = n1 + 1, ..., N,

(30)

where n1 + n2 = N , β0 = 2, β1 = 2, β2 = 2, β3 = 2.1, ei ∼ N (0, 1), xi ∼ U[−10,10], xi,1 ∼ U[−10,0]

and xi,2 ∼ U[0,10]. Data generated with (28) provides a dataset with no structural break and will

be called Scenario 1. Data generated by (29) and (30) create datasets with a structural break.

Namely, data generated by (29) has a structural break in time and will be called Scenario 2.

Data generated by (30) has a structural break in space, as all points where x ≥ 0 will be subject

to different coefficients than points where x < 0, and will be called Scenario 3.

These scenarios are used as they encompass all possible structural breaks. In order to analyse the

effect of outliers on the structural break diagnostic test in the given structural break scenarios,
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we consider the Tukey-Huber contamination model

Fϵ = (1− ϵ√
N

)F +
ϵ√
N
G (31)

with G a point mass contamination ∆ŷ,x̂ at ŷ and x̂. Three different outliers will be considered.

• Positive vertical outlier: ŷ = 100.

• Negative vertical outlier: ŷ = −100.

• Bad leverage outlier: x̂1 = −10, ŷ = 100.

The bad leverage outlier is changed for Scenario 3, where the outlier has 2 values; x̂1 = −10,

ŷ = 100 for a point where x < 0 and x̂1 = 0, ŷ = 100 for a point where x ≥ 0.

All forms of analysis are performed at varying sample sizes N , and at varying break point n1. In

order to ensure that the breakpoint of the Scenario 3 is consistantly at a certain value, n1 points

will be generated with xi < 0 and n2 points with x2 ≥ 0. This means that for all scenarios the

breakpoint will be considered at n1.

4.1 Outlier effect

Before analysis on the diagnostic tests is performed, first the effect of the three different outliers

on a simple OLS regression is determined. This is done so the effect that the outliers ultimately

have on the diagnostic tests can be more easily explained. In order to check the effect of the

outliers, data will be generated using (28), where, similar to Scenario 1, we define β0 = 2, β1 = 2

and consider three variations of xi, namely xi ∼ U[−10,0] and xi ∼ U[0,10]. In these regression one

point will be replaced with an outlier, and the value of β̂0 and β̂1 will be estimated using OLS.

These values will than be compared to the original β0 and β1 in order to analyse the effect the

outliers have.

4.2 Stability Analysis

For the sensitivity analysis we consider the three data scenarios with sample sizes N = 1000,

N = 200 and structural breakpoints n1 = 1
2N , n1 = 3

4N . In order to test the stability of the

diagnostic test one of the generated points is replaced with a single outlier, and the effect these

outliers have on the p-value of the diagnostic tests is then analyzed.

The stability analysis is only performed on the Wald and Chow Break test, as the effect on the

robust test should be negligible.
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4.3 Power Analysis

The power of a diagnostic test is an indication of how correctly the test rejects the null hypothesis

of no structural breaks. In order to check the power, Scenario 2 and 3 have their β3 redefined

as β3 = λβ1. For all scenarios the null hypothesis of the structural break test only holds for

λ = 1, so in order to test the power λ is varied between 0.75 and 1.25. The power is expected

to be symmetrical around λ = 1, and the approach 1 the further away from that value λ gets.

For every value of λ the scenario is repeated 1000 times in order to get an accurate value for the

power at that value of λ.

4.4 Level Analysis

The level of a diagnostic test indicates how often the test incorrectly rejects a correct null

hypothesis, in other words, how often a statistical type II error occurs. In order to analyse the

level, Scenario 1 is repeated 1500 times, after which the percentage of type II errors is stored.

This process is repeated 500 times in order to create a boxplot of the level of the test.

5 Simulation Results

The results of the simulation study will be analysed starting in the optimal case for each scenario,

with N = 1000 and the structural breakpoint n1 = 1
2N . In order to keep the section clear, all

results for other values of N and n1 will be compared to the ideal case. This means that not

all results will be presented in this section, and only notable differences shall be discussed. All

results for the simulation tests can be found in Appendix A.1 and A.2.

5.1 Outlier effect

The analysis of the outlier effect on OLS will be done for N = 500 points, in order to create an

idea of the effect of outliers. The effect of outliers for different N will be extrapolated from these

results. Figure A.1 shows the effect the outliers have on both β0 and β1 for three distributions

of xi. Since these figures are difficult to interpret, a more easily interpretable analysis will be

provided. It is important to note that all effects described below rely on the distribution of

xi being symmetrical, i.e Uniform or Normally distributed. Should xi not be symmetrical, the

conclusions drawn will not hold in most cases.

The effect of outlier can be described as a weight that pulls the regression line towards it. In

the case of our simple regression line yi = β0 + β1xi, the effect of the outlier will be described

in terms of changes on β0 and β1, but it is worth to note that if the regression line contained
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(a) (b)

Figure 5.1: The figure shows a regression line for data generated using the data generating
process y = 2 + 2x with an outlier placed at y = 100 at, (a) x = 0, (b) x = 5. The location of
the outlier is marked by the vertical dashed line.

k independent variables, the effect on β2, · · · , βk is similar to the effect on β1. The effect of a

positive vertical and negative vertical outlier on a regression line is always opposite. A positive

vertical outlier always move the regression line up, which means that in most cases β∗0 , where

the ∗ superscript indicates contamination, will be larger than the original β0. On the other

hand, the effect of a positive vertical outlier on β∗1 depends on the position of the outlier with

respect to the range of the dependent variable. If the outlier is positioned in the center of the

range, the effect on β∗1 will be negligible. If the outlier is located on the left hand side of the

center, a positive vertical outlier will reduce β∗1 , and a negative vertical outlier will increase β1.

Figure 5.1a aims to show this effect, whereas figure 5.1b shows the effect of a single outlier in

the center of the independent variable range, which simply increases β0.

5.2 Results for Wald and Chow Break test

5.2.1 Evaluation of the sensitivity

First the sensitivity of the Chow Break test is analysed. Figure 5.2a shows that for neither the

defined positive or negative outliers the p-value of the test falls below the level α = 0.05. It can

be seen that at n1 the effect of the outlier is greatest in case of the vertical outliers, and had

the outlier been larger, the p-value would have fallen below 0.05. The effect of the bad leverage

outlier is always consistent within a dataset, and in this case, if the bad leverage outlier is part

of second dataset, xn1+1, · · · , xN , the Chow Break test will always reject the null hypothesis.

Figure 5.2b shows that the Wald test is slightly more robust to singular vertical outliers as the

p-value does not even come close to 0.05. Similar to the Chow test, the Wald test does fail when

the bad leverage outlier is in xn1+1, · · · , xN . It should be noted that for Scenario 1, the ordering

of the data creates a very strong effect of the bad leverage outlier. Data from xn1+1, · · · , xN
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ranges from approximately [0, 10], the bad leverage outlier located at (x̂1, ŷ) = (−10, 100) will

have an exacerbated effect on the regression of that data. In other words, the ordering of the

data creates the worst possible results both the Wald and Chow Break test could have in Scen-

ario 1.

For Scenario 2 the sensitivity of the Chow Break and Wald test, in Figures 5.2c and 5.2d respect-

ively, is nearly identical, so only Figure 5.2c will be discussed. Before and after the structural

break at n1 the effect of the positive and negative vertical outlier is mirrored. For the struc-

tural break that occurs, the intercept is left the same, β0 = β2, but the slope of the regression

increases, β1 < β3, which means that if β1 is increased, the p-value increases, and if β3 is de-

creased, the p-value increases, and visa versa. From Figure 5.2c it can be seen that for i < n1/2,

the negative outlier causes a p-value above 0.05, incorrectly accepting the null of no structural

break. This is caused by the negative outlier increasing the value of β1 to be closer to that of β3.

The positive outlier has the same effect for n1/2 < i < n1. This effect is in line with the outlier

effect discussed in 5.1. After n1, the effect the outlier has to have to increase the p-value above

0.05 is opposite that of before. This is why for n1 < i < n1 + n2/2 the positive outlier increases

the p-value of the test above the 0.05 level and for i > n1 + n2/2 the negative outlier has this

effect. For values close to i = n1/2 and i = n1 + n2/2, the p-value is situated below 0.05, since

the values of β1 and β3 are not significantly affected. The bad leverage outlier decreases the

value of β1 for i < n1, and therefore decreases the p-value below the level. For i > n1 the bad

leverage outlier similar decreases the value of β3 to be closer to β1, increasing the p-value above

the level. These effects are in line with what was discussed in 5.1. What is of note is that the

effect the outliers have on β0 and β2 is seemingly insignificant.

In Scenario 3 the effect of outliers is greater, due to the limited range of xi before and after

i = n1. Figures 5.2e and 5.2f show that the outliers more significantly affect the Chow Break test

than Wald test, especially when considering positive vertical outliers. The peaks in the Figures

indicate that a complex interaction between the outlier and its effect on both the intercept and

slope of the regressions. The peaks of the positive vertical outlier occur when they have no

effect on β0 and β2. The peaks of the negative vertical outlier occur at a less clearly defined

moment. Without diving into the specific values of the parameters, the reason positive outliers

have a smaller effect of the p-value is because both β1 and β3 are positive values. Reasoning for

why the bad leverage outliers have the effect that they do on the p-value is equivalent to the

reasoning for their effect in Scenario 2. The main difference between the Chow Break and Wald
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(a) Chow Break Scenario 1 (b) Wald Scenario 1

(c) Chow Break Scenario 2 (d) Wald Scenario 2

(e) Chow Break Scenario 3 (f) Wald Scenario 3

Figure 5.2: Sensitivity analysis of the p-value of the Chow Break test, (a),(c),(e), and the Wald
test, (b),(d),(f), for the three data generating scenarios with N = 1000. The x-axis indicates
the index of the point that is made an outlier. The y-axis gives the average p-value of 100 test
statistics. For Scenario 1, xi is ordered in increasing order so x1 < · · · < xn1 < xn1+1 < · · · < xN .
For Scenario 2, xi is ordered in increasing order so x1 < x2 < · · · < xn1 and xn1+1 < · · · < xN ,
in both cases xi ranges from [−10, 10]. For Scenario 3, xi is ordered in increasing order so
x1 < x2 < · · · < xn1 ranging from [−10, 0] and xn1+1 < · · · < xN ranging from [0, 10]. The
horizontal dotted line indicates the level of the test α = 0.05 and the vertical dotted line indicates
the structural break point n1 = 500. BAD indicates that the outlier used was a bad leverage
outlier. POS indicates that the outlier used was a positive vertical outlier. NEG indicates that
the outlier used was a negative vertical outlier.

test from Figures 5.2e and 5.2f is that the Wald test is less effected by the outliers, and in the

case of positive outliers, is less likely to provide a false positive result.

This difference in effect is caused by the main difference between the Wald and Chow Break
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(a) Chow Break Scenario 1 (b) Wald Scenario 1

(c) Chow Break Scenario 2 (d) Wald Scenario 2

(e) Chow Break Scenario 3 (f) Wald Scenario 3

Figure 5.3: Sensitivity analysis of the p-value of the Chow Break test, (a),(c),(e), and the Wald
test, (b),(d),(f), for the three data generating scenarios with N = 1000. The x-axis indicates
the index of the point that is made an outlier. The y-axis gives the average p-value of 100 test
statistics. For Scenario 1, xi is ordered in increasing order so x1 < · · · < xn1 < xn1+1 < · · · < xN .
For Scenario 2, xi is ordered in increasing order so x1 < x2 < · · · < xn1 and xn1+1 < · · · < xN ,
in both cases xi ranges from [−10, 10]. For Scenario 3, xi is ordered in increasing order so
x1 < x2 < · · · < xn1 ranging from [−10, 0] and xn1+1 < · · · < xN ranging from [0, 10]. The
horizontal dotted line indicates the level of the test α = 0.05 and the vertical dotted line indicates
the structural break point n1 = 750. BAD indicates that the outlier used was a bad leverage
outlier. POS indicates that the outlier used was a positive vertical outlier. NEG indicates that
the outlier used was a negative vertical outlier.

test. In case of the Chow Break test, a singular outlier at i < n1 effects two regressions, the

regression over the segment of data, i.e x1, · · · , xn1 , and the regression over the entire dataset

x1, · · · , xN , the regression on xn1+1, · · · , xN is unaffected. The Wald test simply looks at the

difference between β0 and β2, and β1 and β3, and based on these differences assesses the pres-

ence of a structural break. The Chow Break test on the hand compares the sum of squared
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residuals of the regressions. In situations where the Wald test has a p-value below 0.05, and the

Chow Break test has a value above 0.05, it is found that the SSR is also effected significantly

in regression on the whole dataset. In Figure 5.3 the outlier effect is shown for N = 1000 and

n1 = 3N
4 = 750. When comparing the results from Figure 5.2 with those where the structural

breakpoint is changed to n1 = 3 ∗ N/4 = 750, it is most notable that the effect of the outliers

decrease before the structural breakpoint and increase after, when considering the Chow Break

test. Most conclusions drawn for n1 = N/2 can be drawn for n1 =
3N
4 , but in case of Scenario 3,

the Chow Break test incorrectly accepts the null hypothesis more often if the outlier lies before

the structural breakpoint, as can clearly be seen in Figure 5.3e. For the Wald test the effect of

the outlier is drastically reduced if found before the structural breakpoint, most notably so in

Scenario 2, where the Wald test is seemingly robust against the singular outlier, as can be seen

in Figure 5.3d. This effect is caused by the increase in sample size before the structural break.

As the sample size increases, the effect of the outlier on the data decreases, which is why the

effect after n1 is larger for the Wald test. For the Chow Break test, this effect is not as large,

as the effect of the outlier on the parameters β0 and β1, might decrease, the effect of the outlier

on the SSR does not.

The effect of outliers when decreasing the sample size is simply increased when compared to the

effect visible in Figures 5.2 and 5.3.

5.2.2 Evaluation of the power

Analysis of the power curves of the Chow Break and Wald test is done for N = 1000 in figure 5.4.

The power of the tests indicates how often the test rejects the null hypothesis of no structural

breaks. This means that if the power is 1, the diagnostic test always rejects the null hypothesis

and finds that a structural break is present.

Figures 5.4a and 5.4b show that the power of the Chow Break test is greater when a time-wise

structural break is present, as the power reaches 1 around λβ1 = 1.95 ∨ 2.05 in figure 5.4a and

only at λβ1 = 1.9∨2.1 in figure 5.4b. For Scenario 2 the power of the bad leverage contamination

fails around λβ1 = 2, as it does not approach the level of the test α = 0.05. The scenario with

positive and negative outliers do approach the level at λβ1 = 2, but the power takes a long time

to approach 1, not even reaching it as λβ1 = 1.5 ∨ 2.5. This holds for both the Wald test and

the Chow Break test. In Scenario 3, for both the Wald and Chow Break test, the bad leverage

contamination scenario causes a complete failure of the test statistic, as the null hypothesis of

no structural breaks is always rejected, as can be seen in figures 5.4b and 5.4d. Additionally, the
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(a) Chow Break Scenario 2 (b) Chow Break Scenario 3

(c) Wald Scenario 2 (d) Wald Scenario 3

Figure 5.4: Power analysis of the Chow Break test, (a),(b), and the Wald test, (c),(d), for the two
structural break data generating scenarios with N = 1000 and structural break point n1 = 500.
The x-axis indicates the value of β3 after the break, λβ1. The y-axis gives the average power
of 1000 replications. The horizontal dotted line indicates the level of the test α = 0.05. The
contamination level was set to ϵ = 0.01. BAD indicates that the outliers used were bad leverage
outliers. POS indicates that the outliers used were positive vertical outliers. NEG indicates that
the outliers used were negative vertical outliers. NO indicates the data was uncontaminated.

power of both tests is weaker than it is in Scenario 2. In case of vertical contamination, either

positive or negative, the power barely approaches 0.6 as λβ1 gets to 1.5∨ 2.5. In Scenario 3, the

Wald test is slightly less powerful than the Chow Break test in the case of no contamination.

In either Scenario 2 or 3, the Chow Break and Wald test have similar weaknesses to outlier

contamination. Both completely fail in the presence of bad leverage outliers and have strongly

reduced power in the presence of vertical outliers.

5.2.3 Evaluation of the level

The level of the diagnostic tests analyses the presence of false negative results, meaning that

for a level of 0.05, a diagnostic tests rejects the null hypothesis 5% of the time, even though it

should not. The level of the bad leverage contamination scenario is not shown in Figure 5.5, as

this is always 1 with how the data is ordered. This can be verified by looking at the power of

in Figures 5.4b and5.4d. The level of the test falls below 0.05 for the Chow Break test. This is
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caused by the outliers increasing the SSR of all 3 regressions performed to such an extend that

the consistency of the outliers results in the Chow Break test over accepting the null hypothesis.

The Wald test on the other hand over rejects the null for positive and negative outliers, as the

average level is above 0.05.

(a) Chow Break (b) Wald

Figure 5.5: Level analysis of the Chow Break test, (a), and the Wald test, (b), for the two
structural break data generating scenarios with N = 1000 and structural break point n1 = 500.
The x-axis indicates the type of outlier contamination for which the level is being considered.
The contamination level was set to ϵ = 0.01. For these levels data was ordered along the x-axis,
namely x1 < · · · < xN

Neither test is robust to bad leverage outliers, but they both are relatively robust to vertical

outliers, as their median level sits at approximately 0.047 and 0.055 for the Chow Break and

Wald test respectively. The robustness of the level to vertical outliers however only applies when

every point has an equal chance of being an outlier, and can be expected that if the outliers are

grouped in some manner, the level of the Chow Break and Wald test will fail to be around 0.05.

If the data is ordered randomly when the level is tested, once again we see that both the Chow

Break and Wald test are robust to vertical outliers with their median levels around 0.05. The

level of both tests is still not robust against bad leverage outliers, with the median level close to

0.23 as can be seen in Figure 5.6.

If the suspected breakpoint is changed, the level of the Chow Break and Wald test does not

change significantly. When the sample size is lowered, both the Chow Break and Wald test lose

their apparent robust to vertical outliers. This can be seen in Figure 5.7. The results for the

structural breakpoint n1 =
3N
4 = 150 produces results similar to those seen in Figure 5.7.
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(a) Chow Break (b) Wald

Figure 5.6: Level analysis of the Chow Break test, (a), and the Wald test, (b), for the two
structural break data generating scenarios with N = 1000 and structural break point n1 = 500.
The x-axis indicates the type of outlier contamination for which the level is being considered.
The contamination level was set to ϵ = 0.01. For these levels data was ordered randomly

(a) Chow Break (b) Wald

Figure 5.7: Level analysis of the Chow Break test, (a), and the Wald test, (b), for the two
structural break data generating scenarios with N = 200 and structural break point n1 = 100.
The x-axis indicates the type of outlier contamination for which the level is being considered.
The contamination level was set to ϵ = 0.01. For these levels data was ordered randomly

5.3 Results for Robust Structural Break test

5.3.1 Evaluation of the power

The power of the Robust Structural Break test is analysed using data from Figures 5.8 and

5.9. Since the power of diagnostic tests was previously symmetrical around λβ1 = 2, only

2 ≤ λβ1 ≤ 2.5 is considered.

The power of all four specified robust structural break tests is equivalent in both Scenario 2 and

Scenario 3. The power of the robust tests is equivalent to that of the Wald and Chow Break in

case no data contamination is present. The power of the robust tests is significantly better in

cases of any contamination. Most notably, bad leverage outliers no longer break the diagnostic

tests. The data from Figures 5.8 and 5.9 was generated using a specified range of λβ1, namely
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(a) Huber Hat Scenario 2 (b) Huber Hat Scenario 3

(c) Huber Mah Scenario 2 (d) Huber Mah Scenario 3

Figure 5.8: Power analysis of the robust structural break test using the Huber down-weighing
function for the two structural break scenarios. The sample size of the model used wasN = 1000,
and the breakpoint was at n1 = 500. Hat indicates the Hat matrix based weight function was
used. Mah indicates the Mahalonobis distance based weight function was used. On the x-axis
the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}. In the legend, NO indicates the
no contamination scenario, POS the positive vertical outlier contamination, NEG the negative
vertical outlier contamination, BAD the bad leverage contamination and CB indicates the per-
formance of the Chow Break test in the no contamination scenario. The contamination level
was set to ϵ = 0.01.

λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}, as the behavior of the robust test for values of λβ1 close

to 2 is of most interest. It can be seen in Figures 5.8 and 5.9 that even for smaller values of λ,

the robust estimators remain consistently robust. From the power analysis, no robust structural

break test is clearly preferred for large sample size and centered structural breakpoint, nor is

there a significant loss of power when compared to the Chow Break test in a no contamination

scenario. In order to analyse whether this is truly the case, the power of the robust Wald test

using the Tukey-bisquare down-weighing function and the weights based on the Hat matrix is

plotted for λβ1 ∈ {2, 2.001, 2.002, · · · , 2.1} in Figure 5.10.
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(a) Tukey Hat Scenario 2 (b) Tukey Hat Scenario 3

(c) Tukey Mah Scenario 2 (d) Tukey Mah Scenario 3

Figure 5.9: Power analysis of the robust structural break test using the Tukey bisquare down-
weighing function for the two structural break scenarios. The sample size of the model used was
N = 1000, and the breakpoint was at n1 = 500. Hat indicates the Hat matrix based weight
function was used. Mah indicates the Mahalonobis distance based weight function was used.
On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}. In the legend,
NO indicates the no contamination scenario, POS the positive vertical outlier contamination,
NEG the negative vertical outlier contamination, BAD the bad leverage contamination and
CB indicates the performance of the Chow Break test in the no contamination scenario. The
contamination level was set to ϵ = 0.01.

Figure 5.10 shows that the power of the robust tests is equivalent to that of the standard Chow

Break test, but when the structural breakpoint shifts, the power of the robust versions of the

Wald test greatly decrease when compared to the Chow Break test. In further analysis, a

smaller sample size and different structural breakpoint are considered. Figure 5.11 shows the

results of the power analysis of the robust Wald test using the Tukey bisquare down-weighing

function and the weights based on the Hat matrix. Conclusions drawn from figure 5.11 can also

be drawn for the other robust Wald tests, as their performance is nearly identical, as can be

seen in Appendix A.2. It should be noted that for more in-dept analysis, the negative vertical

outlier contamination was no longer considered, as its effect on the diagnostic test was found to
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(a) Structural Break at N
2 (b) Structural Break at 3N

4

Figure 5.10: Power analysis of the robust structural break test using the Tukey-bisquare down-
weighing function and the weights based on the Hat matrix, with the power determined for
λβ1 ∈ {2, 2.001, 2.002, · · · , 2.1}. Data was generated using Scenario 2. The contamination level
was set to ϵ = 0.01.

be equivalent to that of the positive vertical outlier contamination. From figure 5.11 it can be

seen that shifting the structural breakpoint decreases the power as the difference in sample size

before and after the break increases. The decrease in power does not come from the increased

Figure 5.11: Power analysis of the robust structural break test using the Tukey bisquare down-
weighing function and the weights base on the Hat matrix. The sample size of the model used
is indicated by n1k → N = 1000 and n200 → N = 200, and the breakpoint is indicated by
b12 → n1 = N/2 and b34 → n1 = 3N/4. S2 indicates data was generated using Scenario
2. S3 indicates data was generated using Scenario 3. On the x-axis the points of data were
λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}. For this power analysis no contamination was present.
The contamination level was set to ϵ = 0.01.
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difference between n1 and n2 in the test, but rather the decrease in n2, as is apparent by the

decrease in power between the tests using sample size N = 1000 and N = 200. The decrease

in power is more pronounced for the robust tests performed in the space-wise break scenario,

as their power reaches 1 as λβ1 ≈ 2.15 for N = 1000 and λβ1 ≈ 2.25 for N = 200. For the

time-wise break scenario the power reaches 1 as λβ1 ≈ 2.075 and λβ1 ≈ 2.15 for N = 1000 and

N = 200 respectively. The power of the robust tests when compared with the Chow break or

Wald test is equivalent in both the case that the structural breakpoint is at N
2 or 3∗N

4 , similar to

behavior seen in Figure 5.10. This means that regardless of sample size or structural breakpoint,

the robust versions of the Wald test remain powerful.

5.3.2 Evaluation of the level

The level of the robust structural break tests is anylysed using the boxplots from figures 5.12 and

5.13. These boxplots were constructed of 100 different level values produced by 1000 replications.

The contamination level was set to ϵ = 0.01 and the data was randomly ordered. Positive and

negative vertical contamination was considered, along with bad leverage contamination and a

no contamination case.

(a) Mahalonobis (b) Hat

Figure 5.12: Level analysis of the Robust Structural Break test using the Huber down-weighing
function and the weight function based on the; (a) robust Mahalonobis distance, (b) Hat matrix,
for the two structural break data generating scenarios with N = 1000 and structural break point
n1 = 500. The x-axis indicates the type of outlier contamination for which the level is being
considered. The contamination level was set to ϵ = 0.01.

The level of the robust test using the Huber down-weighing function produces levels close to the

nominal level of α = 0.05. A notable outlier is the bad leverage contamination scenario when

using the robust Hat matrix weights, where the level lies close to 0.06. Additionally, in the no

contamination case, the robust test using the Mahalonobis weights has a level that is above the

nominal level.

For the robust test using the Tukey down-weighing function once again the no contamination
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(a) Mahalonobis (b) Hat

Figure 5.13: Level analysis of the Robust Structural Break test using the Tukey bisquare down-
weighing function and the weight function based on the; (a) robust Mahalonobis distance, (b)
Hat matrix, for the two structural break data generating scenarios with N = 1000 and structural
break point n1 = 500. The x-axis indicates the type of outlier contamination for which the level
is being considered. The contamination level was set to ϵ = 0.01. For these levels data was
ordered randomly

scenario with the Mahalonobis weights has a level closer to 0.06 than the nominal level, as

can be seen in figure 5.13b. From the levels of the tests in figures 5.12 and 5.13, a preference

for the robust test with the Tukey bisquare down-weighing function and Hat matrix weights is

found. This particular robust test has a level around the nomimal α = 0.05 in all contamination

scenarios.

Table 5.1 shows the levels for all considered structural breakpoints and sample sizes, similar

to the in-depth power analysis, the effect of negative vertical outliers is not considered as it

is similar to that of positive vertical outliers. From Table 5.1 it can be seen that the robust

versions of the Wald test maintain good performance at the structural breakpoint n1 =
3N
4 and

at the small sample size N = 200. For the small sample size, the level of the tests is always

above the nominal level of α = 0.05. The level is not significantly above the nominal level, but

this behavior could be an indicator that at smaller sample sizes a small sample correction would

be required. From Table 5.1 we once again draw the conclusion that robust Wald test using the

Tukey bisquare down-weighing function and the weights based on the Hat matrix performs best

when considering the level, but the other robust versions of the Wald test also perform well.
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Table 5.1: The level of the Chow Break (CB) and the four robust versions of the Wald test. H
indicates that the weights based on the Hat matrix were used in the test, and M indicates that
the weights based on the robust Mahalonobis distance were used. The nominal level of the test
was set to α = 0.05, and the noted level is the result of 100.000 replications. For every scenario
of N , n1 and contamination type, the level closest to the nominal level is emboldened.

N Breakpoint n1 Contamination CB H Huber M Huber H Tukey M Tukey

None 0.050 0.050 0.055 0.049 0.06
Positive vertical 0.048 0.050 0.050 0.051 0.053N

2 = 500
Bad leverage 0.217 0.057 0.050 0.052 0.053
None 0.050 0.050 0.052 0.051 0.052
Positive vertical 0.047 0.051 0.051 0.051 0.051

1000

3N
4 = 750

Bad leverage 0.217 0.059 0.058 0.053 0.052

None 0.049 0.052 0.053 0.053 0.057
Positive vertical 0.024 0.053 0.054 0.051 0.058N

2 = 100
Bad leverage 0.202 0.060 0.060 0.053 0.059
None 0.050 0.057 0.058 0.057 0.057
Positive vertical 0.072 0.057 0.057 0.051 0.057

200

3N
4 = 150

Bad leverage 0.149 0.062 0.064 0.058 0.06

6 Real Data Example

In this section we compare the performance of the Chow Break test and the robust versions of

the Wald test described in Section 3 in a real data application. The data is available through

the strucchange package in R (Zeileis, Leisch, Hornik & Kleiber, 2002). The data has previously

been analysed by Hansen (2001) and Zeileis, Leisch, Kleiber and Hornik (2005). In previous

analyses the presence of outliers was not considered. The presence of outliers, or the lack thereof,

will be verified. Once this is done, the data will be contaminated with additional, realistic out-

liers, and the effect on the analysis will be discussed.

The data that used in the papers by Hansen (2001) and Zeileis et al. (2005) concerns the

US labor productivity in the manufacturing/durables sector from February 1947 to April 2001.

This is a monthly time series of the average weekly labor hours in that month. The data is fitted

to simplest dynamic model, namely a first order autoregression of the form:

yt = α+ βyt−1 + et, for t = 1, ..., 650, (32)

with et ∼ N (0, σ2). Since the data contains 651 point, yt will be a vector of 650 points, with

y0 defined as the average weekly labor hours in February 1947. Hansen (2001) states that there

was a suspected break in the year of 1973, but using the Chow Break test found the test statistic

below the required critical value, whereas performing the test with a suspected break at 1975

yields a result above the critical value. The paper then goes on to describe several causes for
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Table 6.1: Tally of types of points in the regression for five structural break scenarios. The
dataset contains 650 points of data and the cut-off points for the standardized errors and robust

Mahalonobis distance are | riσ̂ | = 2.5 and di =
√
χ2
2,0.975 respectively.

Structural break scenario Good point Good leverage Bad leverage Vertical outlier

One structural break 505 102 16 27
Two structural breaks 501 101 14 34
Three structural breaks 504 98 15 33
Four structural breaks 501 94 20 35
Five structural breaks 499 96 20 35

this perceived inaccuracy, and describes a method by Bai (1997) to find multiple breaks in a

singular dataset. Using this method Zeileis et al. (2002) describe 5 breakpoint scenarios, namely

scenarios with 1 to 5 structural breakpoints. The breakpoints for each of these scenarios are as

follows:

• December 1981 (t = 418),

• July 1965 and April 1991 (t = 221 and t = 530),

• August 1956, November 1965 and April 1991 (t = 114, t = 225 and t = 530),

• August 1956, July 1965, December 1981 and May 1991 (t = 114, t = 221, t = 418 and

t = 531),

• August 1956, July 1965, September 1973, December 1981 and May 1991 (t = 114, t = 221,

t = 319, t = 418 and t = 531).

For each of these structural breakpoint scenarios, we will analyse the test values for the Chow

(1960) Break test, Wald (1943) test and the four robust versions of the Wald test. Additionally,

for each scenario a robust regression diagnostic plot will be made to determine the presence of

outliers within the original dataset. A robust regression diagnostic plot has to be made for every

scenario as the context of the data changes as the amount of structural breakpoints changes. In

order to create robust regression diagnostic plots we consider the robust Mahalonobis distance

and the standardized residuals from a high-breakdown regression estimator as per Rousseeuw

and van Zomeren (1990). Rousseeuw and van Zomeren (1990) use the least median of squares

estimator as their high-breakdown regression estimator to determine the residuals ri, the Me-

dian Absolute Deviation to determine the robust scale estimate σ̂ and the Minimum Volume

Ellipsoid estimator as their method to robustly estimate the Mahalonobis distance di. In the

robust regression diagnostic plots the procedure of Rousseeuw and van Zomeren (1990) will be

followed, except in order to robustly estimate the Mahalonobis distance, the covariance will be
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Table 6.2: Test statistic for every break of every break scenario for the Chow Break test, Wald
test and the four robust structural break tests. M denotes that the robust Mahanolobis distance
was used to determine the weights, and H denotes that the Hat matrix was used to determine
the weights. Values that are emboldened fall below the critical value, and hence indicate no
structural break. The critical value for the Wald tests is χ2

2,0.95, and for the Chow Break test it
is F (0.95, 2, N − 4), where N differs per break scenario and break considered.

Break Chow Break Wald M Huber M Tukey H Huber H Tukey

First Break 9.186 22.312 24.682 23.826 26.040 27.690

First Break 7.356 14.441 18.008 17.940 28.009 32.106
Second Break 12.178 25.258 33.157 28.138 31.864 27.410

First Break 4.491 9.014 0.445 0.148 1.505 1.795
Second Break 8.627 14.314 15.434 11.894 27.723 32.479
Third Break 12.047 25.037 32.910 27.800 31.636 27.071

First Break 4.487 9.023 0.476 0.098 1.535 1.842
Second Break 5.066 9.394 10.447 7.685 17.194 18.975
Third Break 3.834 8.554 5.307 4.686 6.957 6.327
Fourth Break 7.286 14.772 15.488 13.662 17.824 15.743

First Break 4.487 9.023 0.476 0.098 1.535 1.841
Second Break 4.076 9.163 10.900 8.937 16.146 19.176
Third Break 0.918 1.842 1.920 1.675 2.386 2.345
Fourth Break 5.012 10.104 6.824 5.674 9.249 8.243
Fifth Break 7.285 14.771 15.488 13.662 17.824 15.743

estimated using the Minimum Covariance Determinant.

The robust regression diagnostic plots require cut-off values for the robust Mahalonobis dis-

tance and the standardized residuals in order to identify outliers. The cut-off value for the

robust Mahalonobis distance di is
√
χ2
2,0.975, and the cut-off value for the standardized residuals

is | riσ̂ | < 2.5, similarly to Rousseeuw and van Zomeren (1990).

(a) One Break Scenario (b) Three Break Scenario

Figure 6.1: Robust diagnostic plots for the US labor productivity in the manufacturing/durables
sector from February 1947 to April 2001, the cut-off points for the standardized errors and robust

Mahalonobis distance are | riσ̂ | = 2.5 and di =
√
χ2
2,0.975 respectively.

Figure 6.1 shows the results for the robust diagnostic plot for the scenario with one structural
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Table 6.3: Tally of types of points in the regression for five structural break scenarios. The
dataset contains 650 points of data of which four are artificially contaminated and the cut-off
points for the standardized errors and robust Mahalonobis distance are | riσ̂ | = 2.5 and di =√
χ2
2,0.975 respectively.

Structural break scenario Good point Good leverage Bad leverage Vertical outlier

One structural break 497 104 17 32
Two structural breaks 499 100 17 34
Three structural breaks 498 97 18 37
Four structural breaks 494 96 22 38
Five structural breaks 493 98 22 37

break, and the diagnostic plots for the other scenarios can be found in Appendix A.3. The

results for these robust diagnostic plots are summarized in Table 6.1. In Table 6.1 it can be seen

that for the different breakpoint scenarios the types of points change. Analysis from Zeileis et

al. (2002) indicates that the three structural break scenario is the best fit for the data. From

Table 6.1 a similar conclusion could be drawn, however, the single break scenario would also

be a contender for best scenario as it contains the least outliers. In order to check the validity

of the breaks suggested by Zeileis et al. (2002), we check the test statistics of the Chow (1960)

Break test, Wald (1943) test, and the four robust versions of the Wald test. Table 6.2 shows

that the regular structural break tests find that all breaks all significant except for the break

at September 1973 (t = 319) in the five structural break scenario. The robust structural break

tests however indicate that the suspected break around August 1956 (t = 114) is not signific-

ant in any case, and the break at December 1981 (t = 418) is rejected by some of the robust

tests, indicating that there might be a break around this point in time, but not exactly on this

point in time. The results from Table 6.2 indicate that, had the breakpoints been estimated

robustly, they would have been found at different points in time, as the breakpoint at August

1956 t = 114, is never found significant.

Since the considered model in (32) is an AR(1)-model, when artificially contaminating the data,

we cannot specifically add a bad leverage outliers to the data. In order to artificially contaminate

the data, four points of data are selected, a random point in the ranges [1, 113], [114, 224], [225, 529]

and [530, 650], being 75, 129, 460 and 622 respectively. We chose these ranges in an attempt to

break the ‘ideal’ three structural break scenario provided by Zeileis et al. (2002). In order to

contaminate the data, points y75, y129, y460 and y622 are changed to be twice the maximum of

{y1, · · · , y650}. The diagnostic plots for the artificially contaminated data can be found in Ap-

pendix A.3, their results are summarized in Table 6.3. Table 6.3 shows that there is a decrease in

good points in case the data is artificially contaminated for every structural breakpoint scenario.

For the effect on the perceived significance of the breaks we look at the values in Table 6.4 we see
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Table 6.4: Test statistic for every break of every break scenario for the Chow Break test, Wald
test and the four robust structural break tests. M denotes that the robust Mahanolobis distance
was used to determine the weights, and H denotes that the Hat matrix was used to determine
the weights. The dataset is artifically contaminated at y75, y129, y460 and y622. Values that are
emboldened fall below the critical value, and hence indicate no structural break. The critical
value for the Wald tests is χ2

2,0.95, and for the Chow Break test it is F (0.95, 2, N − 4), where N
differs per break scenario and break considered.

Break Chow Break Wald M Huber M Tukey H Huber H Tukey

First Break 3.833 7.637 22.141 20.857 12.660 11.309

First Break 1.490 2.816 13.893 14.698 12.060 18.879
Second Break 7.711 13.330 31.417 26.085 28.769 26.801

First Break 0.110 0.219 0.016 0.228 0.171 4.425
Second Break 1.029 1.549 8.510 8.145 11.076 33.952
Third Break 7.587 13.184 31.090 25.729 28.590 26.520

First Break 0.111 0.223 0.002 0.182 0.181 4.549
Second Break 2.616 4.122 6.628 5.450 8.220 20.468
Third Break 2.654 4.339 5.823 4.676 4.088 8.254
Fourth Break 1.733 3.458 13.693 11.901 15.254 27.272

First Break 0.111 0.222 0.002 0.182 0.181 4.549
Second Break 1.450 3.514 6.868 6.410 7.904 19.445
Third Break 0.918 1.842 1.920 1.675 2.386 2.345
Fourth Break 2.498 5.129 7.194 5.604 5.976 9.938
Fifth Break 1.733 3.458 13.693 11.901 15.254 27.272

that the standard tests fail for almost every break in every break scenario. The robust structural

break tests show similar results to the uncontaminated case from Table 6.2. In the three break

scenario, the significance of the test values from the robust test remain consistent in the presence

of the artificial contamination. In the scenarios with four or five breaks, certain test values drop

below their critical values, however these values were already close to the critical value in the

uncontaminated case. It should be noted that with the addition of the artificial contamination,

the suggested breakpoints for each of the scenarios is shifted: (Zeileis et al., 2002)

• December 1991 (t = 538),

• June 1959 and December 1981 (t = 148 and t = 418),

• December 1957, January 1966 and December 1982 (t = 130, t = 227 and t = 430),

• December 1957, January 1966, December 1982 and February 1993 (t = 130, t = 221,

t = 430 and t = 552),

• December 1957, January 1966, April 1974, December 1982 and February 1993 (t = 130,

t = 227, t = 326, t = 430 and t = 552).

From this analysis we can conclude that the method from Bai (1997) that is adapted by Zeileis

et al. (2002) is not robust to outliers, and that a slight change in data can completely invalidate
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the conclusions drawn by the non-robust diagnostic tests. The robust structural break tests

draw consistent conclusions in the presence of contamination, with only slight derivations. This

study of a real data example does show the greatest weakness of this paper, namely that the

robust Wald tests are not expanded to a robust supremum Wald test, as this would have proven

to be interesting additional analysis for this dataset.

7 Conclusion

In this paper the robustness properties of structural break tests were investigated. Two standard

structural break tests were analysed; The Wald (1943) test and the Chow (1960) Break test,

and several robust structural break tests were made using a framework provided by Heritier

and Ronchetti (1994) for a robust Wald test. The Wald and Chow Break test were shown to

not be robust to any of the considered outliers in the simulation study, which was theoretically

supported by the OLS estimator having an unbounded influence function. For this reason the

robust structural break tests were considered. The robust tests were constructed with Mallows

type M-estimators in order to ensure that the influence function of the estimator was properly

bounded. The simulation results show that this was indeed the case, as the robust tests were

robust against all forms of contamination. These conclusions held for large sample sizes and a

variety of structural breakpoints. The level of the robust tests is always close to the nominal

level for a considered level of α = 0.05. In terms of level there is a slight preference for the

robust Wald test using the Tukey-bisquare down-weighing function and the weights based on

the Hat matrix, however the other versions of the robust Wald test perform good as well. There

is no notable drop in the power of the robust diagnostic tests for any of the considered sample

sizes or structural breakpoints. The real data example shows that the suggested robust versions

of the Wald test are indeed more robust to outliers than the Chow (1960) Break test and Wald

(1943) test, yet also highlights one of the key shortcomings of this paper, namely the suggested

tests being unable to identify the location of structural breaks.

The scope of this paper is limited mostly by its simulation study. The study focuses on a

simple data generating model with a singular regressor. Though adding more regressors in this

simple model should not alter the found level and powers of the structural break tests, it would

allow more complex structural breaks to be analysed. The paper only covers the nominal level

of α = 0.05 and does not check whether the structural break tests remain size correct for dif-

ferent values of α, such as α = 0.01 or even α = 0.001. Additional research could be done into

the breakdown point of the robust versions of the Wald test, in order to accurately determine
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the best version of this test. Furthermore, a MM-estimator could be considered in place of the

Mallows type M-estimator in the robust Wald test. Research into the use of the robust Wald

test in the Supremum Wald test might also be interesting, as this would create a robust method

to estimate unknown breakpoints.
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A Appendix

A.1 Outlier effect simulation results

(a) β0, xi ∼ U[−10,10] (b) β1, xi ∼ U[−10,10]

(c) β0, xi ∼ U[−10,0] (d) β1, xi ∼ U[−10,0]

(e) β0, xi ∼ U[0,10] (f) β1, xi ∼ U[0,10]

Figure A.1
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A.2 Power Analysis simulation results

(a) Huber Hat Scenario 2 (b) Huber Hat Scenario 3

(c) Huber Mah Scenario 2 (d) Huber Mah Scenario 3

Figure A.2: Power analysis of the robust structural break test using the Huber down-weighing
function for the two structural break scenarios. The sample size of the model used was N = 200,
and the breakpoint was at n1 = 100. Hat indicates the Hat matrix based weight function was
used. Mah indicates the Mahalonobis distance based weight function was used. CB indicates
the power line for the Chow Break test with no contamination. The contamination level was set
to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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(a) Huber Hat Scenario 2 (b) Huber Hat Scenario 3

(c) Huber Mah Scenario 2 (d) Huber Mah Scenario 3

Figure A.3: Power analysis of the robust structural break test using the Huber down-weighing
function for the two structural break scenarios. The sample size of the model used was N = 200,
and the breakpoint was at n1 = 150. Hat indicates the Hat matrix based weight function was
used. Mah indicates the Mahalonobis distance based weight function was used. CB indicates
the power line for the Chow Break test with no contamination. The contamination level was set
to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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(a) Huber Hat Scenario 2 (b) Huber Hat Scenario 3

(c) Huber Mah Scenario 2 (d) Huber Mah Scenario 3

Figure A.4: Power analysis of the robust structural break test using the Huber down-weighing
function for the two structural break scenarios. The sample size of the model used wasN = 1000,
and the breakpoint was at n1 = 750. Hat indicates the Hat matrix based weight function was
used. Mah indicates the Mahalonobis distance based weight function was used. CB indicates
the power line for the Chow Break test with no contamination. The contamination level was set
to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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(a) Tukey Hat Scenario 2 (b) Tukey Hat Scenario 3

(c) Tukey Mah Scenario 2 (d) Tukey Mah Scenario 3

Figure A.5: Power analysis of the robust structural break test using the Tukey bisquare down-
weighing function for the two structural break scenarios. The sample size of the model used
was N = 200, and the breakpoint was at n1 = 100. Hat indicates the Hat matrix based weight
function was used. Mah indicates the Mahalonobis distance based weight function was used. CB
indicates the power line for the Chow Break test with no contamination. The contamination level
was set to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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(a) Tukey Hat Scenario 2 (b) Tukey Hat Scenario 3

(c) Tukey Mah Scenario 2 (d) Tukey Mah Scenario 3

Figure A.6: Power analysis of the robust structural break test using the Tukey bisquare down-
weighing function for the two structural break scenarios. The sample size of the model used
was N = 200, and the breakpoint was at n1 = 150. Hat indicates the Hat matrix based weight
function was used. Mah indicates the Mahalonobis distance based weight function was used. CB
indicates the power line for the Chow Break test with no contamination. The contamination level
was set to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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(a) Tukey Hat Scenario 2 (b) Tukey Hat Scenario 3

(c) Tukey Mah Scenario 2 (d) Tukey Mah Scenario 3

Figure A.7: Power analysis of the robust structural break test using the Tukey bisquare down-
weighing function for the two structural break scenarios. The sample size of the model used was
N = 1000, and the breakpoint was at n1 = 750. Hat indicates the Hat matrix based weight
function was used. Mah indicates the Mahalonobis distance based weight function was used. CB
indicates the power line for the Chow Break test with no contamination. The contamination level
was set to ϵ = 0.01. On the x-axis the points of data were λβ1 ∈ {2, 2.005, · · · , 2.1, 2.15, · · · , 2.5}.
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A.3 Diagnostic plots real data example

(a) Two Break Scenario (b) Four Break Scenario

(c) Five Break Scenario

Figure A.8: Robust diagnostic plots for the US labor productivity in the manufacturing/durables
sector from February 1947 to April 2001, the cut-off points for the standardized errors and robust

Mahalonobis distance are | riσ̂ | = 2.5 and di =
√
χ2
2,0.975 respectively.
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(a) One Break Scenario (b) Two Break Scenario

(c) Three Break Scenario (d) Four Break Scenario

(e) Five Break Scenario

Figure A.9: Robust diagnostic plots for the US labor productivity in the manufacturing/durables
sector from February 1947 to April 2001 with artificial contamination at points y75, y129, y460
and y622, the cut-off points for the standardized errors and robust Mahalonobis distance are

| riσ̂ | = 2.5 and di =
√
χ2
2,0.975 respectively.
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