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Abstract

This paper examines the bias and variance of the endogenous coefficient from robust

estimators in an Instrumental Variable model under cellwise contamination. Instead of ro-

bustifying the normal equations of the instrumental variable model, this paper robustifies

the solutions to these equations following the approach in Freue et al. (2013). The result-

ing estimator uses cellwise robust scatter matrices as building blocks. The scatter matrices

used are the Two-Step General S-estimator (TSGS), Cellwise MCD estimator and the Stahel-

Donoho estimator with cellwise weights, along with their casewise counterparts. The cellwise

robust estimators outperform the casewise robust estimators in terms of bias and variance,

but not in terms of efficiency. When outliers are marginal the Cellwise MCD performs best,

while the TSGS estimator performs best when outliers are extreme. For small dimensions,

the TSGS provides reliable results when 83% of observations are expected to contain an ex-

treme cellwise outliers. The TSGS estimator yields reliable results when applied to a real-life

dataset to assess the relationship between inflation and trade openness. The matrix with

flagged cells or weights is an insightful, convenient byproduct of the cellwise estimators.
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1 Introduction

In recent years attention in robust statistics shifted from casewise outliers to cellwise outliers

(Raymaekers and Rousseeuw, 2024). The difference is that for casewise contamination the

whole observation is treated as an outlier, while for cellwise contamination only some of the

components of an observation are treated as outliers. Alqallaf et al. (2009) were the first to

introduce this formally and since then many alternatives to detect cellwise outliers were proposed

(Gervini and Yohai, 2002; Leung et al., 2017; Saraceno and Agostinelli, 2021; Rousseeuw and

Van Den Bossche, 2018). Additionally, new estimators of location and scale specifically catered

to cellwise contamination were investigated (Danilov et al., 2012; Raymaekers and Rousseeuw,

2023; Van Aelst et al., 2011). Cellwise robust alternative estimators for linear regression soon

followed (Öllerer et al., 2016; Bottmer et al., 2022; Leung et al., 2017; Filzmoser et al., 2020).

For time series, Raymaekers and Rousseeuw (2024) show that the method in Leung et al. (2016)

performs well for an AR(3) model and lastly, factor analysis under cellwise contamination has

been studied by Hubert et al. (2019) amongst others.

One of the classical econometric methods that has not been studied under cellwise contamin-

ation is the Instrumental Variable (IV) regression. IV regression solves the issue of endogenous

independent variables in an Ordinary Least Squares (OLS) regression, where the endogeneity

leads to inconsistent estimates and renders conventional diagnostic tests invalid (Heij et al.,

2004). Instrumental Variables are also a common tool used to determine the causal or treat-

ment effects in economics and political science, since randomized experiments are often infeasible

(Angrist and Krueger, 2001). In such a case, instrumental variables can provide a source of exo-

genous variation in an endogenous variable. Outliers in endogenous and other variables often

negatively influence the estimation results. Young (2022) and Lal et al. (2023) show that results

of IV regressions in economics and political science literature, respectively, can be misleading

due to outliers in the data. These misleading results can be costly when they are used, for ex-

ample, to determine a national policy and hence Instrumental Variable estimators benefit from

robust methods.

An attempt of robustifying the IV estimator under casewise contamination is given in Freue

et al. (2013), who propose the Robust Instrumental Variable (RIV) estimator that uses the

highly robust S-estimator as its building block. Their idea is based on the regression estim-

ator from Croux et al. (2003). Instead of robustifying the first order conditions of the OLS

estimator, they robustify the solution to these equations. Freue et al. (2013) show that their

estimator is consistent under weak distributional assumptions and asymptotically normal under

mild regularity conditions. Additionally, the estimator has a high breakdown point and bounded
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influence function. Lastly, Freue et al. (2013) present an iterative algorithm called L1−RIV that

allows exogenous dummy variables to be included in the model while simultaneously using only

continuous variables as the inputs for the robust scatter estimator. Highly robust and efficient

methods such as the Minimum Covariance Determinant (MCD) from Rousseeuw (1985) often

fail in the presence of dummy variables, however, the L1−RIV allows them to be used alongside

dummy variables. These favourable characteristics of the RIV estimator are the motivation to

explore the performance of the method under cellwise contamination.

This paper investigates estimation in an Instrumental Variable model under cellwise con-

tamination. Specifically, it investigates the performance of the natural robustification proposed

by Freue et al. (2013) under cellwise contamination. It aims to answer the following research

question: Can robustifying the solution equations of the IV estimator provide robust

estimates under cellwise contamination? As the natural robustification is based on robust

covariance estimation, this paper compares the performance of different casewise robust cov-

ariance estimators and explores cellwise robust alternatives. Since the L1-RIV algorithm from

Freue et al. (2013) does not limit potential estimators to be able to handle dummy variables, I

chose estimators that use conceptually distinct approaches and have a cellwise counterpart. The

estimators that fulfil these conditions are the S-estimator from Rousseeuw and Yohai (1984), the

Minimum Covariance Determinant (MCD) from Rousseeuw (1985) and the Stahel-Donoho (SD)

estimator from Stahel (1981) and Donoho (1982). Their cellwise robust alternatives are the

Two-Step Generalized S-estimator (TSGS) from Leung et al. (2017), the Cellwise MCD from

Raymaekers and Rousseeuw (2023) and the SD estimator with cellwise weights from Van Aelst

et al. (2011). The focus of the paper lies on the accuracy of estimation of the endogenous

coefficient, since that is often the variable of interest in an IV setting.

The performances of these estimators are investigated for three model specifications. The first

model contains one endogenous, control and instrumental variable, the second model contains

one endogenous and instrumental variable and five control variables and the third model contains

one endogenous variable, three instruments and three control variables. These three scenarios

respectively represent a practical scenario with a small dataset, a scenario with a larger dataset to

assess the curse of dimensionality for cellwise robust estimators and the scenario where highly

correlated lagged values are used as instruments. The data sets will be contaminated with

marginal outliers, i.e. outliers that in the tail of the target distribution (± 3 standard deviations),

and extreme outliers (± 10 standard deviations). The performance of the estimators will be

measured in terms of bias, variance and Mean Squared Error (MSE) of the coefficients for the

endogenous variable and I briefly examine the efficiencies of the estimators.
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My findings indicate that the model specifications are less relevant than the contamination

magnitude. For marginal outliers, the Cellwise MCD performs best, but breaks down when the

contamination rate is higher than 10%. All other estimators are already biased or inaccurate

when contamination levels are higher than 5%. When the outliers are extreme and hence easy

to flag as outliers, the TSGS performs best and only becomes inaccurate and biased if the

contamination rate is higher than 25%. Note that this corresponds to a case where 83% of

observations contain an outlying cell. The Cellwise MCD also performs well when the outliers are

extreme. The SD estimator with cellwise weights performs poorly across all model specifications

and types of outliers. The additional cellwise robustness comes at the cost of efficiency, although

the loss in efficiency is not large. The TSGS performs well in an applied setting and the matrices

with weights from the filtering step in the TSGS and the subset selection of the Cellwise MCD

estimator prove to be insightful byproducts of the proposed estimator.

The main contribution to literature is applying cellwise robust covariance matrices in an IV

setting. The cellwise robust covariance matrices have already been applied to regression (Leung

et al., 2016), PCA (Hubert et al., 2019), discriminant analysis (Aerts and Wilms, 2017), hence

the, yet unexplored, application to other econometric models is a logical addition to existing

literature. This paper could also be interpreted as an assessment of the performance of the

methods proposed in Freue et al. (2013) under a new contamination model.

The paper is structured as follows: Section 2 elaborates on cellwise contamination and the

need for cellwise robust alternatives and Section 2.1 discusses current literature on scatter estim-

ators for cellwise contamination. Section 3 formalizes the Instrumental Variable model, Section

3.2 investigates the effect of outliers in the IV model and Section 3.3 describes the robustification

of Freue et al. (2013). Section 4 proposes the Cellwise Robust Instrumental Variable (CRIV)

estimator and elaborates on the robust covariance matrices used as building blocks. Section

5 describes the simulation setup and analyzes the results of the cellwise estimators compared

to their casewise counterparts in different scenarios. Section 6 applies the new estimator to a

real-life dataset. Section 7 gives a summary and suggestions for future research.

2 Cellwise Contamination

This section first discusses the source of cellwise contamination, formalizes the definitions of

cellwise contamination and argues why casewise robust estimators might not yield reliable results

under cellwise contamination. Concrete examples are given to support the last statement. Then

Section 2.1 briefly examines the current literature concerning cellwise robust location and scatter

matrices and the main ideas of the available estimators.
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Suppose a researcher is collecting data on households and part A of the data is collected

from a statistics bureau and part B is collected through a survey. Both parts are measured

separately and may contain outliers in variables where the other part does not. The result

is that observations will contain outliers in either part A or B, in both or in none, such that

downweighting the whole observation will also downweight the uncontaminated data cells.

As is common in robust statistics literature, the basis of analysis is the Tukey-Huber Con-

tamination Model (THCM) F ϵ = (1− ϵ)F + ϵG, where F denotes the target distribution and G

denotes an unknown distribution that is not of interest to the researcher (Tukey, 1962; Huber,

1964). Hence the observed random variable F ϵ is a mixture of the target distribution and an-

other distribution. Here ϵ determines the extent to which the mixture leans towards the target

distribution and it can be interpreted as the probability that the observed variable is contamin-

ated. Note that it would typically make sense to analyse a data set if (1− ϵ) ≥ 0.5 as otherwise

F is not the dominant model anymore. If F ϵ is a multivariate random variable of dimension k

then the model becomes F ϵ = (I − B)F + BG, where B is a diagonal matrix with elements

b1, b2, .., bk. In line with the literature, F , G and B are assumed to be independent in this paper

(Alqallaf et al., 2009).

Within the THCM, casewise contamination can be defined by setting b1 = b2 = · · · = bk ∈

{0, 1} and P (B = I) = ϵ. That is, every component in F ϵ either comes from the unknown

distribution G with probability ϵ or comes from F with probability 1 − ϵ. This is also called

the Fully Dependent Contamination Model (FDCM) and it has the convenient property that

the number of contaminated cases remains equal after affine equivariant transformations, that is

why methods designed to be robust under the FDCM often share that property (Alqallaf et al.,

2009).

Cellwise contamination, also known as Fully Independent Contamination Model (FICM), is

different from the FDCM in the sense that each diagonal element bj is 1 or 0 independently

from each other. The probability that the diagonal entries are 0 or 1 is assumed to be the same

for all elements, such that the only assumption is that P (bj = 1) = ϵ for all j = 1, 2, . . . , k.

An important difference between the two models is that the probability that an observation is

contaminated is much larger in the FICM compared to the FDCM. For the former it holds that

P [case is contaminated] = 1 − (1 − ϵ)k, which increases rapidly in k and ϵ, while for the latter

this probability remains ϵ independent of the dimension.

Table 1 shows the probabilities that a case is contaminated under FICM for different values

of ϵ and k. For example, in a dataset with 15 variables where only 5% of the cells per variable are

contaminated, one should expect 54% of the cases to contain contaminated cells. Downweighting
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k = 2 k = 4 k = 8 k = 10 k = 15 k = 20

ϵ = 0.05 0.10 0.19 0.34 0.40 0.54 0.64
ϵ = 0.1 0.19 0.34 0.57 0.65 0.79 0.88
ϵ = 0.15 0.28 0.48 0.73 0.80 0.91 0.96
ϵ = 0.2 0.36 0.59 0.83 0.89 0.96 0.99
ϵ = 0.25 0.44 0.68 0.90 0.94 0.99 1.00
ϵ = 0.3 0.51 0.76 0.94 0.97 1.00 1.00

Table 1: The probability that a case is contaminated for different cellwise contamination rates
ϵ and number of parameters k

cases containing a contaminated cell, as casewise robust estimator generally do, results in the

loss of information from many uncontaminated cells within those cases. This illustrates the

need for alternative estimators when the data is suspected to be contaminated according to the

FICM.

Another illustration of the need for cellwise robust estimators can be found in Figure 1. In

the left panel three out of fifteen observations are contaminated by outliers, while in the right

panel the cells within a variable have been contaminated with probability of 3/15 such that the

contamination rate is the same. In the left panel only three observations are contaminated, while

in the right panel only two observations are totally clean. It is not a good idea to downweight all

contaminated observations as the estimate will then depend strongly on the few uncontaminated

observations.

Another reason we need estimators specifically constructed for cellwise contamination is

that estimators that are affine equivariant will not necessarily be robust anymore. This is

because linear combinations of the data might change the fraction of contaminated observations.

Formally, as defined by Alqallaf et al. (2009): let F̃ = AF ϵ+b then F̃ = A(I−B)F +ABG+b

does not necessarily follow the same distribution as F . Only when A is diagonal, and hence

AB = BA will the distribution of F̃ be the same as the distribution of F . This implies that

the estimator is only scale equivariant and not affine equivariant.

2.1 Cellwise robust scatter estimators

Various estimators of scatter have been proposed under cellwise contamination but in general

three different approaches are used for estimation. The first approach flags outlying cells and

then treats the flagged cells as missing, the second approach finds a subset of cells that implies

the lowest determinant of the resulting covariance matrix and the third approach uses cellwise

weights based on the outlyingness of the cell. In other words, the value of outlying cells are

changed, outlying cells are either included or excluded or the extent to which the cells are

included depends on how outlying they are.
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The first approach is a two-step approach that uses a filter to flag outliers and then sets the

values of these cells to Not Available (NA). Some examples of filters used in the literature are

the univariate filter from Gervini and Yohai (2002), the bivariate filter of Leung et al. (2017)

and a multivariate filter from Saraceno and Agostinelli (2021). Rousseeuw and Van Den Bossche

(2018) detect deviating cells using correlations to predict values and then flag the cells with large

residuals. These methods can also be combined to flag outliers as is done in Leung et al. (2017),

who then set the outliers to NA and apply the Generalized S-Estimator (GSE) of Danilov et al.

(2012) to the resulting data set with missing values to obtain a robust covariance matrix.

The second approach is proposed in Raymaekers and Rousseeuw (2023), who adjust the

MCD estimator of Rousseeuw (1985) to be robust under cellwise contamination. The method

is called Cellwise MCD and the general idea is the same as its casewise counterpart. Their

algorithm loops through all columns to compute the zero-one weights of each cell while pen-

alising the number of zero weights. Results prove that the algorithm can flag cellwise outliers

well and performs best in simulations when compared to Gaussian and Spearman rank-based

estimators from Öllerer and Croux (2015), the Gnanadesikan-Kettenring estimator from Tarr

et al. (2016), the 2-Step General S-estimator (2SGS) from Agostinelli et al. (2015) and the

Detection-Imputation algorithm from Raymaekers and Rousseeuw (2021). The Cellwise MCD

estimator yielded estimates close to the true covariance matrix when the outliers were marginal

Figure 1: The left panel shows the outlying cells under casewise contamination which are by
definition all in the same row, the right panel shows outlying cells under cellwise contamination.
Note that while the contamination rate is the same, only two rows are unaffected in the cellwise
contaminated scenario.
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and the efficiency of the averaged 90% compared to the Maximum Likelihood estimator.

Lastly, Van Aelst et al. (2011) propose a Stahel-Donoho estimator (SD-Estimator) with

cellwise weights as an extension to the casewise Stahel-Donoho location and scatter estimator

of Stahel (1981) and Donoho (1982). Instead of weighting observations as in the original SD-

estimator, they weigh each component of each observation separately. The cellwise weights for

component j are a weighted average of the original SD weight for the whole observation and

the degree of outlyingness of the observation in the direction of variable j. The SD-estimator

performs well for contamination under the FICM model as the weights assigned to cells that are

not outlying are higher and hence the resulting estimator becomes more efficient.

3 The Instrumental Variable model its robustification

This section describes the idea behind the IV model, formalizes the model, provides a list of

necessary conditions that need to hold and derives the 2-Stage Least Squares (2SLS) estimator.

Section 3.2 examines the behaviour of the non-robust 2SLS estimator when there are outliers

in the data and illustrate the need for robust estimators. Section 3.3 explains the natural

robustification of Freue et al. (2013) and Section 3.3.1 describes the L1-RIV algorithm that

allows for exogenous dummy variables.

3.1 The 2-Stage Least Squares Estimator

Instrumental variables can be used to solve a system of equations or to overcome measurement

errors in the data, but more recently it has become pivotal to disclose causal relationships in

the presence of endogenous regressors (Angrist and Krueger, 2001). One possible source of

endogeneity is the omission of relevant variables, such that a regressor becomes correlated with

the error term. If there are endogenous variables in the model, OLS will yield inconsistent

estimates. To eliminate the endogeneity issue, instruments are used to predict the exogenous

variation in endogenous variables such that these predictions can be used as exogenous regressors.

Suppose that a researcher wants to estimate a regression of y on X1 and some control

variables X2, but he finds that X1 is endogenous, i.e. E[X ′
1ε2] ̸= 0. Consider the instrument Z

that is correlated with X1 but uncorrelated with ε2. In the first stage, he can regress X1 on the

instrument Z and the control variables X2 and obtain the predictions X̂1. These predictions

are the part of X1 that is uncorrelated with ε2. I assume that ε1 is uncorrelated with ε2 and

both follow a normal distribution with mean zero and variance σ1 and σ2 respectively. Formally,

the model described above are summarized in equations (1)

7



X1 = Z ′γ +X ′
2δ + ε1,

y = X ′
1β1 +X ′

2β2 + ε2.
(1)

Here X = (X1,X2) is a n × (p1 + p2) matrix where the i-th row is given by (xi − x̄), Z is a

n × q matrix where the i-th row is given by (zi − z̄) and y′ = (y1 − ȳ, y2 − ȳ, . . . , yn − ȳ). Let

p1, p2 and q be the number of endogenous, control and instrumental variables respectively.

The instrument Z needs to fulfil three conditions if it is to be considered a valid instrument.

First, the instrument needs to be uncorrelated with the error term, that is E [Z′ε2] = 0. The

instrument also needs to be sufficiently correlated with the endogenous regressor, i.e. E [X′Z] =

QXZ , where QXZ is full rank. The third condition is that the instrument is stable in the sense

that E [Z′Z] = QZZ where QZZ is full rank.

To show why the coefficient of the endogenous variable β1 will be inconsistent if OLS is

applied to the second equation, let X = (X1,X2), and β = (β1,β2). Then by definition of an

endogenous variable E[X ′ε2] ̸= 0. Then the expected value of the estimator is not equal to its

true value, which is shown in the bottom equation of (2)

E
[
β̂OLS

]
= E

[(
X ′X

)−1
X ′y

]
,

= E
[(
X ′X

)−1
X ′ (Xβ + ε2)

]
,

= β + E
[(
X ′X

)−1
X ′ε2

]
̸= β.

(2)

The last equation holds because of the endogeneity ofX1 and the assumption of stable regressors,

i.e. E
[
(X ′X)

−1
]
= QXX ̸= 0, where QXX is full rank.

By projecting Z onto X to obtain X̂ = Z(Z ′Z)−1Z ′X = PZX, one is left with predictions

of X that are uncorrelated with ε2, because E
[
X̂ ′ε2

]
= E

[
X ′Z (ZZ ′)

−1
Z ′ε2

]
= 0 due to

the exogeneity of the instrument. In the next step, the exogenous predictions can be used as

regressors in the second equation of (1). This two-step procedure is known as the 2SLS estimator

and yields β2SLS =
(
X̂ ′X̂

)−1
X̂ ′y, which is consistent as shown in equation (3)

E
[
β̂2SLS

]
= E

[(
X̂ ′X̂

)−1
X̂ ′y

]
,

= E

[(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′ (Xβ + ε2)

]
,

= β +
(
Q′

ZXQ−1
ZZQZX

)−1
Q′

ZXQ−1
ZZE

[
Z ′ε2

]
= β.

(3)

Thus the consistent IV estimator is given by

β̂2SLS =
(
X̂ ′X̂

)−1
X̂ ′y =

(
X ′Z

(
Z ′Z

)−1
Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′y. (4)
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3.2 The effect of outliers in the IV model

This subsection investigates what happens to 2SLS coefficients when there are outliers present

in the data. The goal is to show the need for robust estimators in that case. I assume the model

follows (1) and contains one exogenous variable, one endogenous variable and one instrument,

i.e. p1 = p2 = q = 1.

The simulation setup is as follows: I simulate r = 1.000 samples of n = 100 observations

from a normal distribution with mean zero and variance one. The covariance matrix is such

that the exogenous variable and the instrument are not correlated with the error term, while

the endogenous variable has a correlation of 0.9 with the instrument, i.e. the instrument is

a strong instrument, and 0.2 with the error term. The dependent variable is computed as

yi = 1+2xi,End +2xi,Exo + εi. Lastly, in each sample one variable is contaminated by replacing

ϵ% of the data with γ ∈ {3, 5, 7, 10} and then 2SLS is applied to obtain the coefficients. If the

instrument was rendered invalid after contamination, a new set was simulated and contaminated.

Similar to the approach used in Freue et al. (2013), Monte Carlo Median Squared Error

(MedSE) of the coefficient estimates with respect to the true values are computed to assess the

bias of the estimates. Formally, MedSE = median(||β̂1 − β)||, ||β̂2 − β||, . . . , ||β̂r − β)||), where

||.|| denotes the Euclidean norm. The median is used because the estimator is expected to break

down and the mean has a breakdown point of one observation, such that the mean will not be

Figure 2: Median squared bias of the endogenous coefficient in an IV model for different con-
tamination levels γ and for contamination in all variables separately
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able to show the meaningful patterns that the median will presumably show.

Figure 2 depicts the results of contaminating the variables separately and running 2SLS

on the contaminated data sets. Most importantly, we can see that the contamination in the

endogenous variable causes the MedSE to increase the most, while contamination in the exo-

genous variable leads to a relatively low median Squared Error that does not increase much

with the contamination rate. Contamination in the instruments and the dependent variable also

increases the MedSE, albeit less than contamination in the endogenous variable. These results

indicate that effect of contamination varies depending on which variables are contaminated. Fig-

ures 9 and 10 in the Appendix show the same figures for the intercept and exogenous variable

respectively.

3.3 Ordinary IV estimator and its natural robustification

Because the model in equations (1) uses centered variables, the IV estimator solution equation

can be rewritten in terms of the covariance matrix. The covariance matrix Σ of the variables

(X,Z,y) is split into

Σ̂ =


Σ̂XX Σ̂XZ Σ̂Xy

Σ̂ZX Σ̂ZZ Σ̂Zy

Σ̂yX Σ̂yZ Σ̂yy

 . (5)

Then the estimator can be written as in equation (6)

β̂OIV =
[
Σ̂XZΣ̂

−1
ZZΣ̂ZX

]−1 [
Σ̂XZΣ̂

−1
ZZΣ̂Zy

]
. (6)

Rewriting the estimators in this manner reveals a natural way to robustify the estimator, namely

by replacing the sample estimate Σ̂ with robust alternatives. Denote the robust estimators of

location and scatter by S for a sample of (X,Z,y) and split them in the same way as done in

equation (5). Then the Robust Instrumental Variable (RIV) estimator is given in equation (7)

β̂RIV =
[
SXZS

−1
ZZSZX

]−1 [
SXZS

−1
ZZSZy

]
. (7)

Freue et al. (2013) use the robust S-estimator to compute the location and scatter matrix Σ̂

and show that the estimates is consistent as long as SZε = 0, even if the whole S-estimator is

not consistent. Additionally, they derive the Influence Function (IF) of the RIV estimator and

the asymptotic variance, which can be uses to approximate the standard errors. For the details

I refer to the paper of Freue et al. (2013), the important practical note is that the method to

10



compute the asymptotic variances has been implemented in their R package riv and is readily

available.

It is important to note that although the estimator assumes centered variables, in practice

this does not mean that variables should first be centered. If a dataset is contaminated, es-

timating the true location of the data set can be complicated. However, covariance matrices

are generally location invariant, implying that shifting non-centered data will not change the

covariance estimates and hence will not change the estimates of the coefficients, except for the

intercept.

3.3.1 Dummy variables in the Robust IV

This section briefly outlines the L1-RIV algorithm from Freue et al. (2013) to allow for exogenous

dummy variables in the RIV estimator. First the problem of including dummy variables in the

regular RIV estimators are explained and then the algorithm is described.

Suppose the model in equation (1) contains a dummy variable and the bottom equation

becomes

y = X1
′β1 +X2

′β2 +C ′β3 + ε2, (8)

where C is a n × d matrix with dummy variables, for convenience I assume here that d = 1.

Stromberg (1993) show that it is impossible to compute the S-estimator exactly and therefore

need to be approximated. Proposed estimators often use subsampling to speed up the minimiza-

tion of the objective function (Salibian-Barrera and Yohai, 2006). However, Maronna and Yohai

(2000) state that the subsampling algorithms may fail due to collinearity of the dummy variables.

This happens for example when all dummy values are either zero or one in the subsample.

To solve this problem, Maronna and Yohai (2000) propose an algorithm that iteratively

computes the coefficients of the continuous variable with an S-estimator and the coefficients of

the dummy variables with a monotone M-estimator such as the L1 estimator. The idea described

above was also adopted in Freue et al. (2013). At each iteration, the partial residuals from the

regression of y on the dummy variables are used as dependent variables in the RIV procedure to

compute the coefficients of the continuous variables. Then the partial residuals of the regression

of y on the continuous variables are used to compute the coefficients of the dummy variables.

This process is iterated until convergence.

The iterative procedure is formally defined by equation (9)
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β̂
(k)

1,2 = RIV
(
X,Z,y −C ′β̂

(k−1)

3

)
,

β̂
(k)

3 = L1

(
C,y −X1β̂

(k−1)

1 −X2β̂
(k−1)

2

)
,

(9)

where k denotes the k−th iteration, RIV (X,Z,y) denotes the RIV procedure as described above

and L1(X,y) is an M-regression that minimizes the absolute value of the residuals. To initialize

the algorithm, the effect of the dummy variables is removed from all other continuous variables

and then these ”clean” variables are used to estimate the coefficients β̂
(0)

1,2 of the continuous

variables with an S-estimator. The resulting coefficients are then used to compute the residuals,

which are then regressed on the dummy variables to obtain β̂
(0)

3 . For more detailed description

of the iterative algorithm I refer to Maronna and Yohai (2000).

4 Cellwise Robust IV estimator

The Cellwise Robust Instrumental Variable (CRIV) estimators proposed in this thesis will fol-

low the same approach as Freue et al. (2013). Instead of robustifying the model equations, I

robustify the model solutions and estimate the coefficients using robust covariance matrices as

in equation (7). This method allows to compare the performance of the RIV estimator based on

different covariance matrices. The benchmark covariance estimator is the S-estimator as used in

Freue et al. (2013). Additionally, the MCD estimator of Rousseeuw (1985) and the SD estim-

ator of Stahel (1981) and Donoho (1982) are included in the analysis to compare the cellwise

estimators to their casewise counterparts. The contending cellwise estimators are the Two-Step

Generalized S-estimator (TSGS) from Leung et al. (2017), the Cellwise MCD from Raymaekers

and Rousseeuw (2023) and the Stahel-Donoho estimator with cellwise weights from Van Aelst

et al. (2011). The methods are explained in the next sections along with their properties. In

each section, assume that X = {x1,x2, . . . ,xn} is a data set with n observations and each xi is

a vector of dimension p.

4.1 S-Estimator

The S-estimator was originally proposed in a regression setting by Rousseeuw and Yohai (1984),

but is easily translated to compute a covariance matrix. Following the definition in Danilov

et al. (2012), define µ ∈ ℜp and Σ ∈ PDS (p), the set of positive definite symmetric matrices

and define Sn(µ,Σ) as the solution for s to equation (10)

1

N

n∑
i=1

ρ

(
d (xi,µ,Σ)

cps

)
= δ, (10)
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where d (xi,µ,Σ) = (xi − µ)′Σ−1 (xi − µ) is the Mahalanobis Distance (MD), cp is chosen

such that E(ρ
(
||X||
cp

)
) = δ with δ ∈ [0, 1] and X in this case has a multivariate normal density.

The definition of the S-estimator for location and scale (µ,Σ) is then given in equation (11)

(
µ̂n, Σ̂n

)
= arg minµ̂,|Σ̂|=1θn (µ,Σ) ,

ŝn = Sn

(
µ̂n, Σ̃n

)
,

Σ̂n = ŝnΣ̃n.

(11)

Rousseeuw and Yohai (1984) state that the ρ function needs to satisfy the following condi-

tions: ρ(0) = 0, ρ is symmetric, ρ is continuously differentiable and there exists c > 0 such that

ρ is monotonically increasing on [0, c] and constant for values larger than c. The function ρ that

used by Freue et al. (2013) and in this paper is the Tukey bisquare loss function tuned to have

a breakdown point of 50%. Formally, the Tukey bisquare loss function is given in equation (12)

and can be tuned to achieve a breakdown point of 50% by setting c ≃ 1.547

ρ =
x2

2
− x4

sc2
+

x6

6c4
, for |x| ≤ c, and

ρ =
c2

6
, for |x| ≥ c.

(12)

Davies (1987) showed that S-estimators are strongly consistent for the semiparametric elliptical

model. The RIV estimator from Freue et al. (2013) inherits the consistency of the S-estimator

above.

4.2 Two-Step Generalized S-estimator

The predecessor of the TSGS was introduced by Agostinelli et al. (2015), it is called the 2SGS

and it is based on the following idea: first the procedure applies the adaptive univariate filter

from Gervini and Yohai (2002), also called the Gervini-Yohai filter, to detect cellwise outliers

and sets these to NA. In step two, the Generalized S-estimator of Danilov et al. (2012) is applied

to the incomplete data set, i.e. the set with NA values. Leung et al. (2017) extend the first

step of this procedure by combining the Gervini-Yohai filter with a bivariate filter and then

intersect the resulting set of outliers with a set from another outlying detection method called

the DetectingDeviatingCells algorithm (DDC) from Rousseeuw and Van Den Bossche (2018).

The cells that are deemed outliers by both methods are set to NA and then the GSE computes the

scatter matrix. Leung et al. (2017) call this the UBF-DDC GSE estimator, however, here I will

refer to it as the Two-Step Generalized S-estimator (TSGS). Note that the difference between

the 2SGS and TSGS is that the latter combines multiple filters and a detection method, while the
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former only uses a univariate filter. The TSGS is available in the R package GSE. This subsection

will briefly touch upon each filter and the Generalized S-estimator, for detailed treatment I

recommend aforementioned literature.

4.2.1 The Univariate Filter (UF)

The idea for the adaptive Univariate Filter (UF) in Gervini and Yohai (2002) is the following:

standardize the values using a robust location and scatter estimator and compare the stand-

ardized values to a reference distribution. Formally, let zi = (xi − T )/S be standardized values

using the median as location estimator T and the Median Absolute Deviation (MAD) as scatter

estimator S following the choices in Agostinelli et al. (2015) and Leung et al. (2017). Both

papers also took the Normal distribution as reference distribution, i.e. F = Φ, which is done

here too. The proportion of values that will be flagged by the filter is given by equation (13)

dn = sup
t≥η

{F+(t)− F+
n (t)}+. (13)

Here F+ is the reference distribution of |Z|, F+
n = 1

n

∑n
i=1 I(|zi| ≤ t) is the empirical distribution

function of the absolute values of the standardized variable, {g}+ refers to the positive part in

g and η = (F+)−1(α) is the positive quantile of the distribution function of F . In order to

detect only large outliers, α = 0.95 is used. Once dn is known, the filter will flag the ⌊dnn⌋

largest absolute standardized values. The filter is shown to be consistent as long as the tail of

the reference distribution is equal or heavier than the tail of the true distribution.

4.2.2 The Bivariate Filter (BF)

The Bivariate Filter (BF) compares the pairwise Mahalanobis Distances, defined as MDi =

(zi − T )′C−1(zi − T ), to a reference distribution instead of the standardized values. The

location estimator T is the coordinate wise median and the scatter estimator C is the bivariate

Gnanadesikan-Kettenring estimator with MAD scale defined as C0n,jk = 1
4(MAD({zij−zik})2−

MAD({zij − zik})2) for k = 1, . . . , p, where MAD({zi}) denotes the MAD of z1, z2, . . . ,zn.

The empirical distribution of the pairwise Mahalanobis Distance is then given by Gn(t) =

1
n

∑n
i=1 I(MDi ≤ t) and is compared to the reference function G(t) which is taken to be the

chi-squared distribution with two degrees of freedom, i.e. G = χ2
2. Then the proportion of

observations that will be flagged as a bivariate outlier is defined by equation (14)

dn = sup
t≥η

{G(t)−Gn(t)}+. (14)
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Now η = G−1(α) and α = 0.85 because the goal of the bivariate filter is to flag the moderate

outliers, since the univariate filter will flag the large outliers. Again ⌊dnn⌋ observations with the

largest Mahalanobis Distances will be flagged as outliers and set to NA. The filter is shown to

be consistent in Leung et al. (2017).

4.2.3 The Univeriate-Bivariate Filter (UBF)

Leung et al. (2017) combine the univariate and bivariate filter to obtain the Univariate-Bivarite

Filter (UBF) in the following way: first the univariate filter is applied to each variable and

then the bivariate filter is applied to all the cells that have not been flagged by the univariate

filter. If a pair is flagged by the bivariate filter, then it is not yet clear which cell needs to

be flagged as outlier. To find the cells that should be flagged, consider the set J = {(i, j, k) :

MD
(jk)
i is flagged as bivariate outlier} with all flagged pairs from the bivariate filter. For each

cell (i, j) the number of flagged pairs in which it is involved is counted. The cells that have a

large count are probably outliers. The count mij = #{k : (i, j, k) ∈ J} for cell (i, j) in a clean

observation follows a binomial distribution, m ∼ Bin(
∑

k ̸=j Uik, δ), with δ the fraction of cellwise

outliers undetected by the Gervini-Yohai filter. Leung et al. (2017) flag an outlier if mij > cij ,

i.e. the count of flagged pairs exceeds cij , which is the 0.99-quantile of the aforementioned

binomial distribution with the conservative choice of δ = 0.1. This choice of delta yielded good

results in the simulation study and in practice, hence it is used in this paper as well. This

combination of these filters UBF is also consistent.

4.2.4 The DetectDeviatingCells algorithm

As the DetectDeviatingCells algorithm is only a small part of this thesis and the procedure

itself is too comprehensive to deal with in its entirety here, I only outline the core steps of

the method. A step-by-step description can be found in Rousseeuw and Van Den Bossche

(2018). The first step is standardizing each column of the data separately. Following this,

univariate outlier detection is applied to identify extreme values using a predetermined cutoff.

Correlations between variables are computed, and connected variables are identified based on

a specified correlation threshold. Predicted values for each cell are then calculated using a

combination rule applied to the connected variables. To counteract any shrinkage caused by the

prediction process, adjustments are made to the predicted values. Cells are flagged as outliers

based on standardized residuals, and an imputed matrix is generated, replacing flagged cells with

predicted values. Rowwise outliers are identified using a criterion derived from the distribution

of standardized residuals. Finally, the standardization process is reversed to obtain the final
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imputed matrix, along with lists of flagged outliers for further analysis.

4.2.5 Generalized S-estimator

The Generalized S-Estimator (GSE) from Danilov et al. (2012) was originally constructed to

compute a robust scatter matrix for an incomplete data set and a target distribution from an

elliptical family. As the output of step one is a data matrix with NA values, the GSE allows the

estimation of our robust covariance matrix after outlying cells have been flagged.

To define missing or NA values in X, we construct an auxiliary matrix U that has entries

of zero or one, where zero indicates a missing or NA value. The dimension of the observed part

of observation i is then given by pi = p(ui) =
∑p

j=1 uj . For p-dimensional vectors u and m and

a p × p matrix Σ, the subvectors obtained from the one entries in u are denoted by m(u) and

Σ(u). The covariance matrix is normalized such that |Σ∗| = 1 whereΣ∗ = Σ/|Σ|1/p. The partial

square Mahalanobis is then defined as d(x,u,m,Σ) = (x(u) −m(u))T (Σ(u))−1(x(u) −m(u)).

Generalizing the S-estimator to allow for missing values yields a definition similar to equa-

tions (10) and (11). Let Ω̂n be a p× p positive definite initial estimator for Σ0. Also, given the

location m and scatter matrix Σ, we have that S∗
n (m,Σ) is the solution to equation (15)

n∑
i=1

cp(u)ρ

(
d(x

(ui)
i ,m(ui),Σ∗(ui))

s|Ω̂(ui)
n |1/p(ui)cp(ui)

)
=

1

2

n∑
i=1

cp(u), (15)

where cp is chosen as in section 4.1 and p(u) =
∑p

j=1 uj . The multivariate location and scatter

estimators are defined in equation (16)

(m̂n, Σ̃n) = arg minm,ΣS
∗(m,Σ). (16)

Lastly, the GSE estimator of scatter is defined in the upper line of equation (17), where ŝn

satisfies the lower equation (17)

Σ̂n = ŝnΣ̃n,

n∑
i=1

cp(u)ρ

(
d(x

(ui)
i , m̂(ui), Σ̃

∗(ui)
)

cp(ui)ŝn

)
=

1

2

n∑
i=1

cp(u).
(17)

Danilov et al. (2012) show that the estimator is consistent and they also use the Tukey bisquare

rho function tuned to a breakdown point of 50%.
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4.3 Minimum Covariance Determinant estimator

The conceptual idea of the casewise Minimum Covariance Determinant (MCD) estimator from

Rousseeuw (1985) is to find a subset of H ≤ N of observations such that the covariance matrix

of the h observations has the lowest determinant of all possible subsets. The resulting set H∗

with the lowest determinant is calculated iteratively using concentration steps that decrease the

determinant at each iteration. The mean and covariance matrix of H∗ are the MCD estimates

of location and scatter. To increase the efficiency of the estimator, the resulting estimators

of location and scatter are used to compute weights based on statistical distances. Then the

reweighted mean and covariance of all observations are computed and yield an estimator that

uses many more observations and hence is more efficient. The MCD used in this paper is the

reweighted MCD.

The formal definition of the MCD estimator can be expressed as follows: let X be the

data matrix, X be the set analogous to the matrix and H ⊆ X. Then the sample mean and

covariance matrix of subset H are given by equations (18) and (19) respectively. The final

estimators for location and scatter TMCD and SMCD are the mean and covariance matrix of

the solution HMCD to equation (20). The right side of equations (18) and (19) display the

estimators as a weighted mean and covariance matrix of all observations where the weights wi

are one if observation i ∈ H and zero otherwise

TH =
1

h

∑
i∈H

xi =
1

h

n∑
i=1

wi(xi), (18)

SH =
1

h

∑
i∈H

(xi − TH)(xi − TH) =
1

h

n∑
i=1

wi((xi − TH)(xi − TH)), (19)

HMCD = arg minH:|H|=hdet(SH). (20)

The algorithm used to compute the MCD estimator is called the Fast-MCD algorithm and is

proposed in Rousseeuw and Driessen (1999). 1 The algorithm starts with an initial (random)

subset H1 ⊂ X and uses these observations to compute the mean and covariance matrix. Then

based on these estimates the algorithm computes the distances of all observations and orders

these distances from small to large. The h observations with the smallest distances are used as

the new subset H2. The resulting determinant of the covariance matrix of H2 is at least small

1Faster algorithms have been proposed by Hubert et al. (2012) and De Ketelaere et al. (2020) in which the initial
subsets are not random, but computed with known estimators that can handle different types of contamination.
Although these methods are faster, I stuck with the Fast-MCD algorithm as it did not cause computational issues
and the implementations of the faster algorithms were not readily available in R.
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as the previous determinant. Formally, det(Hm) ≥ det(Hm+1) where equality holds if and only

if Tm = Tm+1 and Sm = Sm+1. The proof can be found in the Appendix of Rousseeuw and

Driessen (1999).

For the regular MCD with data following a normal distribution N(µ,Σ), Butler et al. (1993)

have shown that TMCD is Fisher consistent with the mean µ. The estimator of scale SMCD

is not Fisher consistent with Σ, but it needs a consistency correction cα (Butler et al., 1993).

Additionally, Pison et al. (2002) show that the MCD also needs a small sample correction cnp

with cnp → 1 if n → ∞. The maximum breakdown point of the MCD estimator is attained

when subset size h =
⌊
n+p+1

2

⌋
and the resulting breakdown point for both location and scatter is

1
n

⌊
n−p+1

2

⌋
. The Influence Function of the MCD is shown to be bounded in Croux and Haesbroeck

(1999).

4.4 Cellwise MCD estimator

The objective function in the Cellwise MCD in Raymaekers and Rousseeuw (2023) differs from

the casewise MCD because the former is computed with cellwise weights instead of casewise

weights. The weights are set to zero during the minimization of the objective function if the

positive contribution of that data cell to the objective is too large. To make sure that the

algorithm does not flag too many cells as outliers a penalty term is added that penalizes the

number of flagged cells. The resulting estimators of location and scatter are computed using

data cells that have not been flagged as outliers.

As we have seen in equations (18) and (19), the regular MCD estimators of location and

scatter can be expressed as a weighted mean and covariance matrix, where all observations

in subset HMCD have weight one and all other observations in X \ HMCD have weight zero.

Then minimizing the negative log likelihood is equivalent to minimizing the determinant of the

weighted covariance matrix. When each cell obtains its own weight wij and a term that penalizes

the number of cells with a zero weight is added, the objective function that we minimize is given

in equation (21)

n∑
i=1

(ln |Σ(wi)|+ d(wi) ln 2π +MD2(xi,wi,µ,Σ)) +

d∑
j=1

qj ||1d −W .j ||0,

such that λd(Σ) ≥ a and ||W .j ||0 ≥ h for all j = 1, . . . , n.

(21)

Hhere wi is the vector with weights for observation i, d(wi) is the dimension of the weighted

observation (i.e. the number of cells that have weight one), qj is the hyperparameter defining

18



how strongly each flagged outlier is penalized, the operator ||A||0 counts the number of non-zero

elements in matrix A and MD(xi,wi,µ,Σ) =

√(
x
(wi)
i − µ

(wi)
i

)′ (
Σ(wi)

)−1
(
x
(wi)
i − µ

(wi)
i

)
is

the partial Mahalanobis Distance as defined in Danilov et al. (2012). The first constraint ensures

that the resulting matrix Σ̂ is non-singular and the second constraint ensures at most n−h cells

are flagged as outliers per variable. Note that setting qj = 0 and wij = wi for all j = 1, . . . , k

yields the casewise MCD of Rousseeuw (1985).

The choice for the penalty term qj flows naturally from the set up of the objective function.

To determine whether the weight of a cell is zero or one, the algorithm computes the difference

in objective function when the weights of the cell are set to one and zero and the option yielding

the lowest value is chosen. After rewriting (21) to
∑n

i=1 L̃(xi,wi,µ,Σ, q) with

L̃(xi,wi,µ,Σ, q) = ln |Σ(wi)|+ d(wi) ln 2π +MD2(xi,wi,µ,Σ) +

d∑
j=1

qj |1− wij |, (22)

the resulting difference in the objective function when setting wij = 1 or wij = 0 is

∆ij = lnCij + ln 2π +
(xij − x̂ij)

2

Cij
− qj . (23)

Here x̂ij is the expected value of xij conditional on the cells that have a weight of one and Cij

is the estimate of the conditional variance given all other observations. Since the default weight

is set to one to ensure a higher efficiency, we only set the weight to zero if the cell is an outlier.

That is the case if the standardized residual
(xij−x̂ij)

2

Cij
is beyond a certain threshold. Here the

residual follows a chi-square distribution with one degree of freedom, such that the natural choice

of qj becomes as in equation (24), where the conditional variance Cij is approximated by the

initial estimator Σ̂0 such that Cj is the diagonal element of variable j

qj = χ2
1,0.99 + ln 2π + lnCj . (24)

The properties of the Cellwise MCD are repeated here from Raymaekers and Rousseeuw

(2023). The location estimate of the Cellwise MCD is Fisher consistent, but the scale estimate

is not since the penalty term will always cause some observations to be flagged as outliers. The

upper bounds of the breakdown points of estimators in casewise contaminated samples also hold

under cellwise contamination as the former could be considered a special case of the latter. The

cellwise implosion breakdown point is 1 because the first constraint in equation (21) ensures

that it does not implode. The location and cellwise explosion breakdown point are the same at

n−h+1
n . The influence function of the Cellwise MCD is yet to be investigated.
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4.5 Stahel-Donoho estimator

The Stahel-Donoho (SD) estimator was originally proposed by Stahel (1981) and Donoho (1982)

independently and assigns weights to observations based on their outlyingness. Here I follow

the description of the SD estimator as given in Van Aelst et al. (2011). If µ and σ are shift and

scale equivariant, univariate estimators of location and scatter, then the outlyingness for any

y ∈ ℜp is defined as in equation (25)

r(y,X) = sup
a∈Sp

|a′y − µ(a′X)|
σ(a′X)

, (25)

where the set Sp denotes the set of linear combinations of dimension p normalized to 1. The SD

estimator of location and scale is defined as

T SD =

∑n
i=1wixi∑n
i=1wi

,

SSD =

∑n
i=1wi(xi − T SD)(xi − T SD)∑n

i=1
√
wij

,

(26)

where the weights depend on the outlyingness of the observation. The original SD estimator

computes the weights for each observation based on a Huber-type weight function as advoc-

ated by Maronna and Yohai (1995). The weight function is given in equation (27) with the

outlyingness as input

w(r) = Ir≤c + (
c

r
)2Ir>c, (27)

where c is a threshold beyond which the outlyingness is Huberized and is taken to be c =

min(
√
χ2
p
(0.5), 4). Stahel (1981) proved that as long as the estimators µ and σ in (25) have an

asymptotic breakdown point of 0.5, then the resulting estimator would inherit this breakdown

point. Therefore the estimators for the location and scatter used are often the median and a

Modified Median Absolute Deviation (MMAD) defined in equation (28), with the correction

factor β = Φ−1(12((n + p − 1)/2n + 1) and Φ−1(.) the inverse CDF of the standard normal

distribution

MMAD(a′X) =
|a′X −Median(a′X)|⌈(n+p−1)/2⌉:n + |a′X −Median(a′X)|(⌊(n+p−1)/2⌋+1):n

2β
.

(28)
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4.6 Stahel-Donoho estimator with cellwise weights

The weights for the SD estimator with cellwise weights are computed with the same weight

function w(r) as the classical SD estimator, but the cellwise outlyingness rij becomes a weighted

average of original the outlyingness of the observation ri and the outlyingness of observation i

within variable j denoted as cij . Equation (29) shows the adapted outlyingness and equation

(30) gives the definition of cij .

rij = αijri + (1− αij)cij (29)

cij =
|xij −Median(Xj)|

MAD∗(Xj)
(30)

Since the outlyingness in the direction of the variable j (cij) is a subset of the directions

considered in (25), we have that cij ≤ ri such that rij ≤ ri and hence the cellwise weights are

larger or equal to the casewise weights. Van Aelst et al. (2011) propose two relevant options to

determine the parameters αij :

1. αij = (maxpk=1cik)
−1cij , which implies that aij is large if outlyingness in variable j is

high relative to the outlyingness of other components. The cell receives approximately the

weight of the original estimator. On the other hand, if the component is not an outlier

and hence cij is small, then αij will be close to 1 and the weight of the cell is increased.

The resulting estimator from this option is called the Stahel-Donoho Components (SDC).

2. αij = (maxpk=1|uik|)
−1|uij |, where |uij | is the direction that maximizes ri. This implies

that components that are responsible for the regular outlyingness obtain a lower weight.

This is called the Stahel-Donoho Maximizing (SDM).

Once the outlyingness and weights have been computed, one can compute the resulting

estimator for location and scatter from equations (31) and (32)

T SD∗,j =

∑n
i=1wijxij∑n
i=1wij

, (31)

SSD∗,jk =

∑n
i=1

√
wij

√
wik(xij − T SD∗,j)(xij − T SD∗,j)∑n

i=1
√
wij

√
wik

. (32)

Note that setting all weights wij = wi = w(ri) for all j = 1, . . . , p results in the classic SD

estimator. The breakdown point is still 0.5 due to the choice of the median and MAD for the

cellwise outlyingness.
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Casewise Estimators: S-estimator MCD Stahel-Donoho

Cellwise Estimators: TSGS Cellwise MCD SD with cellwise weights

Table 2: Overview of the robust covariance estimators that are used as building blocks for the
CRIV estimator in equation (33)

4.7 Overview of the estimators

Before continuing to the simulation experiment I present an overview of the estimators used

in the following sections. Table 2 shows which casewise and cellwise estimators are used in

the simulation exercise and Table 7 in the Appendix shows the detailed specifications of tuning

parameters and used packages. Each method is used to estimate a cellwise robust scatter matrix

Ĉ, which is then used to compute the Cellwise Robust Instrumental Variable (CRIV) estimator

as in equation (33)

β̂CRIV =
[
ĈXZĈ

−1
ZZĈZX

]−1 [
ĈXZĈ

−1
ZZĈZy

]
. (33)

5 Simulation

The simulation setup here is similar to the simulation setup in Section 3.2. The goal of the sim-

ulation exercise is to compare the performance of cellwise robust scatter estimators to casewise

robust scatter estimators. For each scenario, r = 1.000 samples of (X,Z, ε) with size n = 250

are generated from a multivariate normal distribution with mean zero. The covariance matrices

used to simulate the data sets can be found in the Appendix A.2. After the variables have been

simulated, the dependent variable is computed according to y = X ′β+ ε. Lastly, the dataset is

contaminated according to the scheme described below. The focus is laid on the estimation of

the coefficient of the endogenous variable, the true value for the coefficient is two in all scenarios,

i.e. βEnd = 2.

I look at three different scenarios: in the first scenario there is only one endogenous, one

instrumental and one control variable as a baseline. The dimensions are kept small and this is

meant to give an impression of the estimators’ performances when the model is simple. Often

a model is regressed with and without control variables, scenario 1 is supposed to represent the

regression without the control variables. An example of this is given in Table 6 of Alesina and

Zhuravskaya (2011).

In scenario 2 the model contains five control variables to see what happens to the estimators

when the dimension increases. The main reason this model specifications with a higher number of

control variables is investigated is that the curse of dimension affects the datasets heavily under
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Cont. magnitude k Cont. rate ϵ Endogenous Instrumental Control

Scenario 1 k = 3 and k = 10 {0, 0.05, . . . , 0.3} 1 1 1
Scenario 2 k = 3 and k = 10 {0, 0.05, . . . , 0.3} 1 1 5
Scenario 3 k = 3 and k = 10 {0, 0.05, . . . , 0.3} 1 3 3

Table 3: Overview of the simulation scenarios that are adopted in this thesis. Simulation is done
with both magnitudes seperately for all contamination rates. The number of variables for each
type of variable are given in the last three columns.

cellwise contamination. As visible in Table 1, if 10% of the cells in a variable are contaminated,

then 57% of the cases is expected to contain an outlier. Cellwise robust estimators should be

able to deal with this high number of contaminated cases, which is what is investigated in this

scenario.

Scenario 3 considers a dataset of the same size as scenario 2, but now there are three in-

struments that are highly correlated with the endogenous variable. This is supposed to mimic

the situation where lagged variables are used as instruments for endogenous variables, which is

becoming increasingly popular in political science and economics (Bellemare et al., 2017). If the

variable is persistent then the lagged values are highly correlated with the endogenous variable

and are thus strong instruments, given the instruments fulfil the other conditions. In the IV

model without contamination, strong instruments yield more accurate estimates since ΣXZ is

larger. This statement is what I intend to analyze in scenario 3 under cellwise contamination.

One practical implication could be that if estimates become more accurate with additional in-

struments, it can be beneficial to invest into finding for more instruments. Table 3 provides an

overview for the different simulation scenarios investigated in this section.

The data is asymmetrically contaminated by replacing cells xcontij = k with k = 3 and k = 10

to examine the performance of the estimators when the outliers are marginal and extreme

respectively. It can be that an observation is from another distribution, but it is close enough

to tail of the target distribution that it might not be flagged as an outlier. These outliers in

the distributional neighbourhood can influence outcomes, hence they are examined here. Each

variable is contaminated separately with a probability of ϵ, where ϵ will vary from 0 to 0.3 with

0.05 increments. Specifically, for each sample a matrix with the same size as the full data set

W = (X,Z,y) is constructed by individually simulating the columns from a random binomial

distribution with probability ϵ. The entries that are one will be replaced by k. In all repetitions,

the same contaminated data set is used to compute each scatter matrix estimate. Other forms

of contamination such as symmetric contamination are also interesting, but I choose to focus on

the implications of different contamination magnitudes.

The performance measures considered here are the bias, variance and MSE with respect to
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the coefficient for the endogenous variable. The bias is computed as the average distance the

estimate is from the true value, i.e. bias = 1
r

∑r
j=1 β̂CRIV,End − βEnd. The variance measures

the average squared distance from the true value and can be interpreted as the accuracy of the

estimator. Formally, it is computed as variance = 1
r

∑r
j=1(β̂CRIV,End − βEnd)

2. The Mean

Squared Error (MSE) is computed from the bias and variance and acts as a summary of both

measurements defined by MSE = bias2 + variance. Additionally, Section 5.4 will investigate

the efficiency of the proposed estimators.

5.1 Scenario 1: one endogenous, one instrumental and one control variable

The simulation results for scenario 1 are given in Figures 3 and 4. In general, all estimators

perform reasonably well when the contamination rate is 10% or lower, since their bias and

variance are roughly close to its variance under no contamination. This holds for the case of

marginal outliers (k = 3) and extreme outliers (k = 10). The cellwise estimators perform much

better in the latter case when the contamination rate increases. In both figures the downward

trend when the contamination rate increases is caused by the fact that outliers distort the

covariance between variables towards zero, hence the estimates go to zero. The SD estimators

suffer from this already at low contamination rates. Van Aelst et al. (2011) mention in their

paper that the SDM and SDC methods have difficulties in identifying all outlying components

in structural outliers. The consequense is that some outlying cells will receive a large weight,

which will increase the bias of the estimate. This is likely what happens here too. It is important

to note that the SDC estimates were practically similar to the normal SD estimates, hence we

report only on SDM estimates.

Results for the case where the outliers are marginal are shown in Figure 3. The estimators

cannot distinguish properly between outlying values and extreme values of the target distribu-

tion. There is no estimator that remains unbiased when the contamination rate is 10% or higher.

The variances of the estimates for almost all estimators increase sharply with the contamination

rate, except for the SD estimator, however, its estimates are heaviliy biased towards zero. The

TSGS and Cellwise MCD do not necessarily perform better than their casewise counterparts

based on the MSEs, while the SDM estimator performs worse than its casewise counterpart in

all regards.

When outliers are extreme the performance of the cellwise estimators increases strongly with

the TSGS yielding the best results. The biases are generally lower compared to the situation

where outlying cells are marginal outliers. Casewise estimators break down when the contamin-

ation rate increases but the variance of TSGS estimates remains stable with the contamination
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Figure 3: Boxplots with coefficients for the endogenous variable in scenario 1 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true β = 2
and the covariance estimators used are found above each graph.

rate of up to 25% without becoming severely biased. The Cellwise MCD estimates performs

well until 20% contamination but become inaccurate when the rate increases beyond that. The

classic RIV estimates have a larger bias and variance compared to cellwise methods, which is

evidence that the CRIV can be preferable in certain situations.

5.2 Scenario 2: one endogenous, one instrumental and five control variables

The results for scenario two are depicted in Figures 5 and 6. In this scenario the number of

control variables has increased. This implies that the probability that an observation contains

an outlier is increased from 0.34 to 0.57 when the contamination rate is 10% due to the increase

in dimension. As all casewise estimators are tuned to have a breakdown point of 50%, they are

not expected to perform well at a contamination rate than 10%.

The results for the moderate outliers are given in Figure 5. Both MCD estimators remain

relatively unbiased with a low variance at a contamination rate of 10%, while all other estimators

become biased. This may be because the estimates of the variance of the subset of included cells

becomes more accurate when the dimension is larger. Overall the estimators cannot distinguish

marginal outliers from uncontaminated cells and no method performs well at a contamination

rate of 15% and higher.
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Figure 4: Boxplots with coefficients for the endogenous variable in scenario 1 for contamination
rates from 0% to 30%. The contamination magnitude is high and set at k = 10.The true β = 2
and the covariance estimators used are found above each graph.

Figure 6 shows the results for contamination with extreme outliers. The RIV becomes already

slightly biased at 10% while the casewise MCD and SD perform relatively well compared to their

performance with marginal outliers. The main improvement can be seen in the performances

of the TSGS and Cellwise MCD, they remain unbiased until contamination hits 25% and the

variance remains equal to the case when there is no contamination. The bias of the TSGS

is lower than the bias of the Cellwise MCD such that the former performs best in this case.

Nonetheless, these results imply that both methods provide reliable estimates even though 83%

of the observations is expected to be contaminated and shows that when cellwise contamination

is suspected, cellwise robust estimators should be used.

Compared to scenario 1, the variances of the estimates are larger in scenario 2. This indicates

that the curse of dimensionality outweighs the increased efficiency from more variables. For

example, when k = 10 the TSGS estimators’ variance remains stable when the contamination

rate is higher than 20% in scenario 1, while the estimates are less accurate at the same levels

of contamination in scenario 2. For the MCD based estimators this difference in accuracy is

only apparent when the outliers are marginal, i.e. the cellwise MCD suffers less from the curse

of dimensionality when outliers are sure to be flagged. Based on the results in scenarios 1 and

2, the Cellwise MCD performs better when the outliers are only marginal, while the TSGS

outperforms all estimators when outliers are extreme. Both results are in line with the findings
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Figure 5: Boxplots with coefficients for the endogenous variable in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true β = 2
and the covariance estimators used are found above each graph.

in Raymaekers and Rousseeuw (2023).

5.3 Scenario 3: one endogenous, three instrumental and three control vari-

ables

The results for the last scenario are shown in Figures 7 and 8. The casewise methods still are

not performing well when contamination hits levels above 5%. The difference with scenario 2 is

that there are now three variables that are highly correlated with the endogenous variable, hence

estimates are expected to be more accurate than in scenario 2. The results for all estimators

are in line with aforementioned statement, since in scenario 3 the variance is lower for both the

marginal and extreme outlier case than in scenario 2. Besides that the results are similar to

scenario 2, for marginal outliers the Cellwise MCD performs best and for extreme outliers the

TSGS estimator performs best. However, for marginal outliers the estimators become inaccurate

when the contamination rate is higher than 10%.
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Figure 6: Boxplots with coefficients for the endogenous variable in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is high and set at k = 10.The true β = 2
and the covariance estimators used are found above each graph.

Figure 7: Boxplots with coefficients for the endogenous variable in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true β = 2
and the covariance estimators used are found above each graph.
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Figure 8: Boxplots with coefficients for the endogenous variable in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is high and set at k = 10.The true β = 2
and the covariance estimators used are found above each graph.

5.4 A note on efficiency

Another interesting property is the efficiency of the estimator. As many robust estimators

downweight or exclude observations or in our case data cells, this is paid for with efficiency:

less information is used hence the estimate is less efficient. To investigate the efficiency of the

estimators, the variance of the estimates is compared to the most efficient estimator when the

dataset is clean. Since the datasets in all three scenarios come from a normal distribution, the

most efficient estimator is the Maximum Likelihood Estimator (MLE). The MLE is the regular

covariance matrix and the covariance between two variables are computed as in equation (34)

Cov(Xi, Xj) =
1

N

N∑
i=1

(Xi − µXi)(Xj − µXj ), (34)

where µX is the regular mean of X. The results are given in Table 4. The top row in each

scenario depicts the efficiency of each estimator relative to the MLE, that is, the variance of

the MLE estimator is divided by the variance of the robust estimators. The second row of each

scenario shows the variances. The efficiency increases as the dimension increase from scenario

1 to scenario 2 and 3. For scenario 1 the Cellwise MCD is the most efficient at 57.69% and for

the larger covariance matrices in scenarios 2 and 3 the S-estimator of the RIV yields the highest

efficiency around 88.32%. However, the Cellwise MCD is almost as efficient at 86.62%. The
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MLE RIV MCD SD TSGS CellMCD SDM SDC

Scenario 1:
100.00% 53.49% 32.89% 38.03% 50.79% 57.69% 35.11% 52.43%

(0.0137) (0.0257) (0.0418) (0.0361) (0.0270) (0.0238) (0.0391) (0.0262)

Scenario 2:
100.00% 88.36% 37.30% 46.37% 71.26% 75.86% 45.65% 59.87%

(0.0134) (0.0151) (0.0359) (0.0289) (0.0188) (0.0176) (0.0293) (0.0223)

Scenario 3:
100.00% 88.32% 49.32% 57.34% 79.17% 86.62% 53.65% 54.75%

(0.0134) (0.0152) (0.0272) (0.0234) (0.0170) (0.0155) (0.0250) (0.0245)

Table 4: The efficiencies of the estimators in the different scenarios relative to the MLE. The
variances are given in brackets below the efficiencies.

efficiency of the TSGS estimator is in the top three for scenarios 2 and 3 and is relatively close

to the top three in scenario 1 such that the efficiency loss is not large for the TSGS either.

6 Practical Application

This section applies the proposed estimator to a real world dataset. The goal of this section

is twofold: first to compare the results of the CRIV estimator to the RIV estimator in an

applied setting and second to illustrate how the matrices with flagged cells can enhance the

interpretation of casewise weights.

The application is from Romer (1993) and it investigates the link between trade openness and

inflation using cross-sectional data. The idea of the paper stems from the following reasoning:

in an open economy, a positive monetary shock will cause the exchange rate of a country to

depreciate and this will reduce the incentive to increase output. If a country were to coordinate

a positive monetary shock with another country such that both currencies will not depreciate,

there will be an incentive to increase output in both countries. By coordinating their policies the

two countries de facto function as one larger economy and are hence less open. This suggests

a inverse relationship between trade openness and the inefficiently high inflation caused by

unexpected monetary shocks, for example monetary expansions without precommitment.

The data used to estimate the relationship are the inflation, as measured by the average

annual change in log GDP denominator since 1973, and openness, as measured by the average

share of import in GDP since 1973. The dataset runs until 1992. Since there are some countries

that are outlying, Romer (1993) chose to regress log inflation on openness to reduce the influence

of outliers. The instrument that is used is the logarithm of the land area in square miles.

Graphical representations of the dataset are given in Section A.5 in the Appendix.

The estimation results are given in Table 5. The OIV estimator yields a negative coefficient

for openness which is statistically significant at the 5% level. The RIV also estimates a negative
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OIV RIV MCD SD TSGS CellMCD SDM

Intercept 2.9898 2.7793 2.8533 2.7481 2.8584 2.5141 -0.0094
(0.1610) (0.2160) - - - - -

Openness -1.3158 -1.1171 -1.3388 -1.0682 -1.4673 -0.6068 8.0344
(0.3992) (0.6741) - - - - -

Table 5: Estimation results for regressing the logarithm of inflation on trade openness using
the logarithm of land area as an instrument. Standard errors are given in parenthesis where
available.

coefficient, but it is not significant anymore as the p-value has increased to 0.0995. The TSGS

estimator shows that the coefficient is lower than its casewise alternative. Although the IF

of the TSGS estimator has not been derived yet, we could take the standard errors from the

RIV estimator as proxy for the standard errors of the TSGS estimator. Although the influence

function of the TSGS estimator has to be conditioned on the filtered cells, the main difference

between the TSGS estimator and S-estimator is in the input, not in the procedure of computation

such that it is reasonable to assume the influence functions are similar and hence the asymptotic

variance. Using the standard errors from the S-estimator, the TSGS estimate becomes significant

at the 5% level. This is a reaffirmation of a negative relation between openness and inflation,

something that is later confirmed in other research: Alfaro (2005) investigate the same period

with different techniques and find that in the long run there is a negative relationship and

Bowdler and Malik (2017) find a statistically significant negative effect in a more recent sample.

Another benefit of using cellwise robust methods is that the methods naturally provide

weights for each data cell, while the RIV estimator only provides weights for the full observation.

For the TSGS estimator, one could also run the UBF without estimating the variance, however,

it is convenient that the matrices with flagged cells are a byproduct of the CRIV estimation.

The same goes for the Cellwise MCD matrix of flagged cells. Nonetheless, the major advantage

of these matrices is that they imply which component of the observation is outlying and which

is not, whereas the RIV weights only show which observation is outlying.

To illustrate this, Table 6 shows the weights of the RIV estimator and flagged cells from the

TSGS and CellwiseMCD estimator. The table only depicts the possible outliers, i.e. observa-

tions with the lowest RIV weights. The outliers were chosen by graphical examination, but the

point here is to show the additional insights obtained from the CRIV methods, not to determ-

ine whether the observations are actually outliers. For example, Argentina and Bahrein both

receive a zero weight from the RIV estimator but both cellwise estimators indicate that they

are outlying for different reasons. Bahrein is a small country that depends heavily on imports,

while Argentina has seen soaring inflation rates throughout the sample period. Although this

makes sense theoretically, the outcomes of these flagging procedures provide statistical grounds.
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Another insight that would be harder to obtain from the RIV weights only, is that most countries

in Latin America have been flagged due to their extremely high inflation in the sample period.

This showcases the added value of the CRIV methods.

TSGS: Cellwise MCD:
country RIV Weight Openness Log Land Inflation Openness Log Land Inflation

Argentina 0 0 0 1 0 0 1
Bahrein 0 1 1 0 1 1 0
Barbados 0 0 1 0 1 1 0
Bolivia 0 0 0 1 0 0 1
Brazil 0 0 0 1 0 0 1
Hong Kong 0 1 1 0 1 1 0
Israel 0 0 0 1 0 0 1
Jordan 0 1 0 0 1 0 0
Lesotho 0 1 0 0 1 0 0
Malta 0 1 1 0 1 1 0
Mauritania 0 0 0 0 1 0 0
Singapore 0 1 1 0 1 1 0
Swaziland 0 1 0 0 1 0 0
Guyana 0 0 0 0 1 0 0
Zaire 0.0001 0 0 1 0 0 1
Botswana 0.0002 0 0 0 1 0 0
Luxembourg 0.0006 1 1 0 1 0 0
Chile 0.0014 0 0 1 0 0 1
Mauritius 0.0019 0 1 0 0 0 0
Peru 0.0029 0 0 1 0 0 1
Japan 0.0031 0 0 0 0 0 0
United States 0.0031 0 0 0 0 0 0

Table 6: Table with an overview of RIV weights and TSGS and Cellwise MCD flagged cells for
outlying countries. 1 means flagged as outlier, 0 means regular data cell.

7 Conclusion

This paper has investigated whether robustifying the solution equations to the Instrumental

Variable model under cellwise contamination yields robust estimates. In the spirit of Freue

et al. (2013), the IV estimator was rewritten as a function of the covariance matrix of the

endogenous, exogenous, instrumental and dependent variable. Replacing the covariance matrix

with robust estimators of scatter, the IV estimator is robustified in a natural way. The robust

estimators used in this paper are three different kinds of estimators that have a popular casewise

alternative. The first is the Two-Step Generalized S-Estimator which is a cellwise alternative to

the S-estimator, the second is the Cellwise MCD which is based on the popular MCD estimator

and lastly the SD estimator with cellwise weights is used as the cellwise counterpart to the

Stahel-Donoho estimator.
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The performance of the estimators was assessed in an extensive simulation study. The

simulation study involved three different model specifications, two different types of outliers

and seven contamination rates. A model with only one endogenous, instrumental and control

variable was the starting point, then it was extended to have more control variables and finally

some control variables were substituted for instruments. All three models were simulated and

contaminated with marginal outliers close to tail of the target distribution and extreme outliers.

The contamination rate ranged from 0% to 30%. Performance was measured with bias, variance

and summarized in the Mean Squared Error and the efficiency of the estimators was examined.

In general the performance of the estimators depended most heavily on whether the outliers

were marginal or extreme. This makes sense as extreme outliers are easier to flag with cellwise

robust methods. All casewise robust methods were outperformed by their counterparts in all

cases, except for the Stahel-Donoho estimator with cellwise weights. This indicates that it is

worthwhile switch to CRIV when cellwise contamination is suspected to be present in a dataset.

As expected, the general pattern is that the estimates are decreasing towards zero when the

contamination rate increases.

In case of marginal outliers, the estimators could not provide reliable results when the con-

tamination rate was higher than 10%. However, the performance of the casewise and cellwise

MCD estimators was equal to their performance under no contamination until that threshold.

For most scenarios and contamination rates, the TSGS yielded a lower MSE than the regular

S-estimator. Performance also decreased with dimensions as the MSE for all estimators was

lower for the small dataset (scenario 1) as compared to larger datasets (scenarios 2 and 3).

In the presence of extreme outliers, the results were more favourable. Whereas the variance

of the estimates from the casewise estimators exploded at 10% contamination or more, the

cellwise robust estimators yielded good results up until a contamination rate of 20% or higher

sometimes. This indicates that these methods can provide reliable estimates even if 83% of the

observations are expected to contain an outlying cell. The TSGS had the best performance in

all scenarios, with even similar results at a 25% contamination rate to no contamination in the

first scenario. The Cellwise MCD also provided reliable results until a contamination rate of

20% and is hence a robust estimator when outliers are extreme.

The application of the CRIV estimator to estimate the relation between trade openness

and inflation shows that the TSGS estimator yields reliable estimates and could potentially

shift estimates to a higher significance level, assuming the influence function is similar to the S-

estimator. Additional insight is gained from the cellwise weights, which show that some countries

are outliers because of their size or because their inflation extremely high.
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Instead of robustifying the model solutions as done here, there are different approaches

to obtaining robust IV estimates. There is an extensive strand of literature that has been

concerned with these different approaches under casewise contamination, it would be interesting

to see the comparison of these methods to the robustification approach used here. To name

a few, Ronchetti and Trojani (2001) robustify the orthogonality conditions in a Generalized

Method of Moments model, Maronna and Yohai (1997) provide the τ -estimator to estimate

coefficients in a simultaneous equation model and Wagenvoort and Waldmann (2002) consider

the two stage estimator and robustify both stages. For example, the latter could be done using

the Cellwise robust M regression from Filzmoser et al. (2020). The possibility to cater these and

other approaches to cellwise contamination is left for future research.

Another suggestion for future research is to investigate different specifications and tuning

of the cellwise robust estimators. The TSGS can also be applied with the Rocke-type weight

function in the second step instead of the Tukey bisquare function or the bivariate filter could

be extended to the multivariate filter from Saraceno and Agostinelli (2021). Additionally, the

Cellwise MCD can be tuned with a higher or lower penalty term for assigning zero weights to

cells and it may be that the size of the subset h can be optimized for certain scenarios. In that

same spirit, the number of subsamples of the SDM estimator could also be optimized, although

a larger amount of subsamples also implies longer computation times. Lastly, the initial location

and scatter estimators used for all estimators was the default estimator. Choosing specific initial

estimators might lead to increases in estimator performance.

Last remark on potential future research revolves around the properties of the resulting es-

timators. The TSGS, Cellwise MCD and SDM are consistent estimators, however, their (asymp-

totic) distributions are not known. The theoretical influence functions of the aforementioned

estimators also have not been researched either and deriving equations for the estimates of the

standard errors would assist greatly in inference.
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A Appendix

A.1 IV under contamination

Figures 9 and 10 show the Median Squared Error for the intercept and exogenous variables

respectively. The estimates of the intercept are mostly affected by contamination in the en-

dogenous variable and the dependent variable. For the coefficient of the exogenous variable

contamination in the exogenous variable yields the largest increase in median squared error.

A.2 Simulation details

This subsection dives into the details of simulating the data set used in the simulation exercise.

First the endogenous, exogenous and instrumental variables are simulated along with the error

terms. Then these are used to compute the dependent variable y. The first scenario considers one

endogenous variable, one exogenous variable and one instrument. The second scenario considers

multiple exogenous variables while keeping the number of endogenous and instrumental variables

at one. The third and last scenario considers three instruments and three control variables.

The first element of the β vector is the intercept, the second element is the coefficient for the

endogenous variable and the others are for the control variables.

Figure 9: Median squared bias of the intercept in an IV model for different contamination levels
γ and for contamination in all variables separately
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Figure 10: Median squared bias of the exogenous coefficient in an IV model for different con-
tamination levels γ and for contamination in all variables separately
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A.2.2 Scenario 2
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A.2.3 Scenario 3
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A.3 Computation details of robust scatter estimators

Table 7 contains the estimators and their specific specifications in terms of tuning and hyper-

parameters.

A.4 Boxplots for intercept and coefficients of the control variables

The graphs in this sections are the same graphs exhibited in the main text, but then for the

other coefficients and the intercept provided here for completeness.

Name Specifications R Package Source

S-estimator Tukey Bisquare, c = 1.547 RIV Freue et al.
MCD Objective function (20) with h = 0.6n rrcov Rousseeuw
SD c = 1.96 rrcov Stahel; Donoho

TSGS Tukey Bisquare loss function GSE Danilov et al.
CellMCD Objective function (21) with h = 0.6 cellMCD Raymaekers and Rousseeuw

SDC αij = (maxpk=1cik)
−1cij

* Van Aelst et al.

SDM αij = (maxpk=1|uik|)
−1|uij | * Van Aelst et al.

Table 7: Overview with all estimators used in the thesis, * code was obtained directly from
Stephan van Aelst
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Figure 11: Boxplots with intercept in scenario 1 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 3.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 12: Boxplots with coefficients for the control variable (X2) in scenario 1 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.

42



Figure 13: Boxplots with intercept in scenario 1 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 10.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 14: Boxplots with coefficients for the control variable (X2) in scenario 1 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 15: Boxplots with intercept in scenario 2 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 3.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 16: Boxplots with coefficients for control variable 1 (X2,1) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 17: Boxplots with coefficients for control variable 2 (X2,2) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 18: Boxplots with coefficients for control variable 3 (X2,3) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 19: Boxplots with coefficients for control variable 4 (X2,4) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 20: Boxplots with coefficients for control variable 5 (X2,5) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 21: Boxplots with intercept in scenario 2 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 10.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 22: Boxplots with coefficients for control variable 1 (X2,1) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 23: Boxplots with coefficients for control variable 2 (X2,2) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 24: Boxplots with coefficients for control variable 3 (X2,3) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 25: Boxplots with coefficients for control variable 4 (X2,4) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 26: Boxplots with coefficients for control variable 5 (X2,5) in scenario 2 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 27: Boxplots with intercept in scenario 3 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 3.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 28: Boxplots with coefficients for control variable 1 (X2,1) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 29: Boxplots with coefficients for control variable 2 (X2,2) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 30: Boxplots with coefficients for control variable 3 (X2,3) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 3.The true beta can
be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 31: Boxplots with intercept in scenario 3 for contamination rates from 0% to 30%. The
contamination magnitude is low and set at k = 10.The true beta can be found in subsection A.2
and the covariance estimators used are found above each graph.

Figure 32: Boxplots with coefficients for control variable 1 (X2,1) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 33: Boxplots with coefficients for control variable 2 (X2,2) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.

Figure 34: Boxplots with coefficients for control variable 3 (X2,3) in scenario 3 for contamination
rates from 0% to 30%. The contamination magnitude is low and set at k = 10.The true beta
can be found in subsection A.2 and the covariance estimators used are found above each graph.
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Figure 35: Matrix of scatterplots for the raw variables, i.e. the variables before the logarithmic
transformation

A.5 Practical Application

This section contains more information on the dataset that is used in Section 6. The data used

to estimate the relationship are the inflation, as measured by the average annual change in log

GDP denominator since 1973, and openness, as measured by the average share of import in

GDP since 1973. The instrument that is used is the logarithm of the land area in square miles.

Since there are some countries that are outlying, Romer (1993) chose to regress log inflation on

Openness to reduce the influence of outliers.

Figures 35 and 36 show scatterplots of matrices for the raw and logarithmic variables re-

spectively. Figure 37 shows three histograms of the endogenous variable, the instrument and the

dependent variable after the transformation. All three variables contain some outliers and are

skewed towards the direction of these outliers. Finally, Figure ?? shows cellmaps with outlying

components for the first and second half of the sample.
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Figure 36: Matrix of scatterplots for the transformed variables, i.e. the variables after the
logarithmic transformation
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Figure 37: Histogram of the three variables after the logarithmic transformation of Inflation (y)
and Land Area (z).
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(a) First half of the sample. (b) Second half of the sample.

Figure 38: Cellmap with outlying components. Red colour indicates an outlier on the right side
of the distribution (large values), while a blue colour indicates an outlier on the left side of the
distribution (small values).
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