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Abstract

The crew planning problem is a challenging problem for railway operators across the globe. In

recent times, there has been an increasing emphasis on equitably distributing attractive and

unattractive tasks among employees in the research on this problem. We contribute to the

literature on this subject by formulating a new solution approach which sequentially solves

the crew scheduling and crew rostering problem with tailored column generation algorithms.

We integrate fairness conditions into the latter of these algorithms and define attractiveness

based on the Sharing Sweet & Sour attributes of NS. We test our methods on an instance

based on a part of the railway network in the Netherlands. We test a model that accounts for

both fairness as well as efficiency against a benchmark model that only considers efficiency

as the objective. The results of the bi-objective model show a substantial improvement in

fairness with only a minor reduction in efficiency compared to the benchmark model.
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1 Introduction

Railway operators face a number of challenging problems in their operations. One such problem

is that of crew planning, which consist of allocating the work on the trains to the companies’

drivers and guards. Especially for large operators, such as Netherlands Railways (NS), this is

a complex puzzle to solve. Therefore, these companies rely on Operations Research techniques

that help in creating the rosters for their crews. The crew planning process can be broken down

into two smaller problems. The first of these is the crew scheduling problem, where single pieces

of work, i.e. trips from one station to another are combined into duties, which represent a shift

for a crew member. In the second step duties are combined into rosters. A roster consists of

duties an employee needs to cover for a given period. This second problem is called the crew

rostering problem.

One obvious way to measure the quality of the resulting rosters is by its efficiency, which

can be measured by the number of employees needed to cover all rosters or, alternatively, by the

costs of the rosters. However, in recent research on the crew planning problem, there has been

more focus on taking fairness into account. A fair solution of the crew planning problem is one in

which relatively favourable and relatively unfavourable work is divided evenly over the employees.

Creating fair rosters means we ensure better working conditions for the employees. This has

multiple benefits. First of all, better working conditions makes the railway operator a more

attractive employer, which is crucial in today’s competitive labor market. Secondly, improved

working conditions can improve the overall happiness and productivity of the employees. Finally,

it decreases the risks of strikes. Strikes are not uncommon in the railway industry. For instance,

in 2001, a conflict about the rosters at NS led to nationwide strikes. To resolve the conflict,

the ‘Sharing Sweet & Sour’ rules were introduced. These rules indicate what elements make

work desirable and undesirable for the drivers and guards (Abbink, Fischetti, Kroon, Timmer,

& Vromans, 2005). These rules were incorporated in the crew planning operations of NS by

distributing the sweet and sour work evenly over the different crew bases.

Another element of the current crew planning process which helps in achieving some level of

fairness is the idea of cyclic rosters. A roster consists of multiple weeks of work. A group of crew

members, called a roster group, cycles through the weeks of such a roster. This ensures that

every crew member in a roster group gets the exact same amount of desirable and undesirable

work. Unfortunately, these two modifications cannot ensure that the rosters are fair at an

individual level. The ‘Sharing Sweet & Sour’ rules try to achieve a fair allocation over the crew

bases and the cyclicity of the rosters guarantee fairness within a roster group. Unfortunately

this means that considerable differences in fairness can still exist between roster groups.

In an attempt to better incorporate fairness, new methods have been introduced recently,

such as those presented by van Rossum, Dollevoet, and Huisman (2022) and Breugem, Dollevoet,

and Huisman (2022). In this thesis, we aim to contribute to the existing literature with a new

approach to crew planning that accounts for fairness at the individual level. To this end we

create personal rosters, that differ for each individual crew member, rather than cyclic rosters.

Furthermore, we do not determine a capacity planning beforehand. A capacity planning includes

general rosters for each crew member specifying the days they are supposed to be working,

without any exact duties specified yet. We construct the actual rosters containing the exact
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duties directly, combining the tactical and operational planning phase into one. Thus, our

research presents a novel way to tackle the crew planning problem with fairness considerations.

We use two column generation algorithms, one for the crew scheduling step and another for the

rostering step. The pricing problems of these column generation algorithms can be modeled as

(resource constrained) shortest path problems, for which we design tailored solution methods.

In the rostering step, we incorporate the idea of fairness by ensuring a minimum attractiveness

level for all rosters. We apply these methods on a practical instance based on the timetable of

NS and compare our method to a similar algorithm that does not account for fairness. This

algorithm is our benchmark model. As such, we can see and discuss the difference in both

efficiency and fairness between them.

We test our models on an instance based on a part of the timetable of NS. Our results show

that the efficiency of a solution decreases if we incorporate fairness into the algorithm. However,

we also observe an increase in fairness compared to the benchmark model. The percentage

increase in fairness exceeds the percentage decrease in efficiency in most of our experiments. We

also perform a sensitivity analysis on our methods and find that the conclusion above is true for

varying parameter values.

While our research is mainly focused on the application of crew planning at NS, our methods

can be extended to solve other types of crew planning problems. These include railway crew

planning in other countries, but also airline crew planning. While the exact definition and

quantification of attractiveness and rules on feasibility of duties and rosters may differ from

ours, the general framework of our methods allow for such changes to be incorporated quite

easily.

In Section 2, we describe the crew planning problem with fairness considerations in more

detail. Section 3 provides an overview of the literature on related topics. Section 4 describes the

methods and solution approaches we use in our research. We test our methods with some com-

putational experiments. Section 5 contains the data and results of these experiments. Finally,

in Section 6, we conclude this thesis.
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2 Problem description

In this section we explain the crew planning problem with fairness considerations for railway

operators in more detail. We assume we have a number of tasks, which represent a trip from one

station to another. These tasks result form the timetable of the railway operator. The tasks have

a start time, at which the train leaves, and an end time, at which the train arrives. They also

have an origin, the location from which the train departs and a destination, the location where

the train arrives. Furthermore, we have a number of attractiveness attributes that apply to

these tasks. These attributes determine how favourable a task is for the employees. We assume

that we know the tasks and their attributes for the entirety of the planning period beforehand.

In practice, the tasks on a particular day may differ from the predetermined schedule due

to maintenance work or other disruptions. This problem, which is solved using re-scheduling

techniques, is beyond the scope of this thesis.

The goal of our problem is to create rosters. A single roster contains all the tasks an employee

needs to carry out during the planning period. We need to create a number of rosters, such that

these rosters cover all tasks in the planning period. As a first objective, we want to minimize the

number of employees we need to hire to carry out the tasks. As each roster corresponds to one

crew member, the objective is to minimize the number of rosters in the solution. Additionally,

we want a fair allocation of the attractive and unattractive work. We thus aim to quantify the

attractiveness of the rosters and minimize the difference in attractiveness between them. Our

problem is therefore a bi-objective optimization problem.

The first part of our problem is the scheduling of the crew, where we aim to combine tasks

into duties. In this process every single task must be contained in at least one duty. Allocating a

task to multiple duties is inherently inefficient, but might be necessary sometimes to reposition

a crew member. In practice, this means that one of the crew members on the task is not actively

working, i.e. ‘deadheading’. A duty must adhere to a number of rules that make it a feasible

day of work for an employee. We consider the following requirements:

1. A duty starts at a crew base and ends at the same crew base.

2. For any two subsequent tasks in a duty, it holds that the end location of the first task is

the same as the start location of the second task.

3. For any two subsequent tasks in a duty, it holds that the end time of the first is at least T

minutes before the start time of the second. This allows drivers and guards enough time

to transfer to their next train.

4. A duty has a maximum duration of M hours.

5. A duty should contain a lunch break of at least T ′ minutes. The lunch break should

be roughly in the middle of the duty, meaning we also set a maximum duration for a

‘half-duty’. We denote this maximum by H.

The second part requires us to create individual rosters from our duties. Rosters are schedules

of duties for each individual employee, for the full planning period. For a roster to be deemed

feasible, there are multiple rules that it must satisfy:
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1. Each duty in a roster should start and end at the same crew base. This should be the base

where the corresponding crew member resides. Note that we do not determine how many

crew members we have at each base beforehand. The resulting roster tells us how many

crew members we need at each base.

2. The minimum time between each subsequent pair of duties in a roster is R hours.

3. The working time in one week should add up to no more than W hours.

4. The average working time per week over the entire period should be no more than T hours

for every crew member.

In the requirements for the duties and rosters we introduce a number of parameters. The exact

values we use for these parameters in our computational experiments are discussed in Section

5. The roster rules, except for the first one, follow from labor agreements made by the unions

with NS (Hartog, Huisman, Abbink, & Kroon, 2009). The complete set of labor rules is more

extensive and incorporating these is beyond the scope of this thesis.

Attractiveness depends on both task-dependent characteristics and duty-dependent charac-

teristics. In the case of railway crew planning for NS, the Sharing Sweet & Sour attributes

include a number of task-dependent characteristics that play a part in the attractiveness. Each

task can have one or multiple of the following three Sharing Sweet & Sour attributes:

1. Type-A work, which corresponds to performing a task on an intercity train. These trains

stop less often on their routes, which is a desirable trait.

2. Aggression work, i.e. working on a train that has a higher risk of aggression from

passengers towards crew members. Obviously, this is an undesirable attribute.

3. Double-decker work, which is also an undesirable trait, due to the fact that guards have

to climb many stairs on double-decker trains.

We have one duty-dependent characteristic, which is the duration of a duty. These four at-

tributes fully determine a duty’s attractiveness. The attractiveness of a roster is fully dependent

on the duties contained in the roster. The rest times between duties, and whether they should

be considered desirable or not, are thus not taken into account. In order to quantify the at-

tractiveness, we use the same weights on each attribute as Breugem, Dollevoet, and Huisman

(2022). They calculate the unattractiveness score of a duty as follows:

0.5 ∗Duration+% Double-decker work +% Aggression work −% Type-A work (1)

Here, the duration is in minutes. Each of the three percentages is calculated by summing the

total time of the tasks in the duty that possess the considered attribute, and dividing by the total

duration of the duty. These weights indicate that each of the three task-dependent attributes is

considered equally important. These weights also mean that, for instance, a 20 minute decrease

in the duty length has the same weight as a 10% increase in type-A work or a 10% decrease in

aggression work.
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3 Literature review

The specific topic of our research, namely fairness in railway crew scheduling and rostering, has

been researched by several authors. Four of them have also tested their methods on instances of

NS. Abbink et al. (2005) introduce the first crew scheduling model that incorporates the Sharing-

Sweet-and-Sour rules that were created after the nationwide conflict in 2001. They propose a

column generation algorithm and divide the attractive and unattractive duties equally over the

crew bases. Breugem, Dollevoet, and Huisman (2022) propose a model for crew rostering where

fairness is considered. They analyse the trade-off between the attractiveness of the complete

set of rosters and the fairness of the distribution over the employees. Hartog et al. (2009) also

aim to solve this problems and account for preferences of employees by minimizing undesirable

patterns in the rosters. Furthermore, van Rossum et al. (2022) assume that a capacity planning

is given in the form of a template-based roster for each employee. They propose a column

generation method, that determines the duties and assigns them to employees, partly integrating

the scheduling and rostering step. Their heuristic uses a penalty-based feedback mechanism and

a rolling horizon to achieve fairness over time. Jütte, Müller, and Thonemann (2016) consider

fairness in a crew scheduling problem for a large European freight carrier, using other attributes

that contribute to fairness than the Sharing-Sweet-and-Sour rules. Borndörfer et al. (2015)

propose a heuristic method, namely an improvement method on the Lin-Kernighan heuristic,

for solving the crew rostering problem. They test their algorithm on applications in public

transit, vehicle routing and airline rostering.

The problem in our research most closely resembles that of van Rossum et al. (2022), since

we also aim to solve both the scheduling and rostering steps. However, we solve one single

problem for a given planning period and thus our problem is not dynamic in nature as theirs is.

Also, we combine the tactical and operational phases of the planning process, since we do not

assume we have a capacity planning as input. This fact, combined with the individuality and

non-cyclicity of the rosters, makes the problem we solve unique amongst similar research.

Railway crew planning in general, without fairness considerations, is a broader topic and

has been researched more intensively. Abbink, Huisman, and Kroon (2018) offer a practical

introduction to railway crew management. Caprara, Vigo, Fischetti, and Toth (1998) describe

a method to solve the crew rostering problem, where the main goal is to minimize the number

of crew members needed. This method, unlike many others is not based on a column generation

algorithm. Similarly, Bansal, Anoop, and Rangaraj (2024) propose a different solution method

for the crew scheduling problem using a heuristic containing bin-packing features. The inte-

gration of both steps of the crew planning process has not been researched frequently. Ernst,

Jiang, Krishnamoorthy, Nott, and Sier (2001) introduce an optimization model that integrates

the scheduling and rostering step, instead of carrying out both steps sequentially. Other vari-

ants of railway crew planning includes the research of Gattermann-Itschert, Poreschack, and

Thonemann (2022), who include the preference of planners in the creation of duties in the

crew scheduling problem. Moreover, Breugem, van Rossum, Dollevoet, and Huisman (2022)

investigate the crew re-planning problem, where disturbance cause the need for an alteration of

the schedules. They integrate both steps of the planning process in their model, which is an

extension on the model of Huisman (2007), who only considers the scheduling phase.
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Fairness aspects also exist in other applications of Operations Research. For example,

Bertsimas, Farias, and Trichakis (2013) consider fairness in organ allocation and aim to al-

locate deceased donor organs to patients that need a transplant by means of subjective fairness

constraints. Furthermore, Matl, Hartl, and Vidal (2019) look at fairness in vehicle routing.

They aim to achieve workload equity by incorporating a number of workload resources into

their methods. Finally, Lodi, Olivier, Pesant, et al. (2024) research a resource allocation prob-

lem with an application in healthcare, namely the allocation of ambulances. Next to this variety

of applications, there have also been attempts to generalize resource allocation problems with

fairness aspects. For instance, Bampis, Escoffier, and Mladenovic (2018) introduce a general

model for the dynamic fair resource allocation problem.
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4 Methodology

We solve the crew planning problem with fairness considerations by sequentially solving the crew

scheduling problem and the crew rostering problem. The first is solved with a column generation

heuristic, where the master problem is the LP-relaxation of the set-covering problem with an

extra constraint. The pricing problem in the crew scheduling algorithm consists of finding new

duties with negative reduced costs to add as variables to the restricted master problem. To

solve the pricing problem, we construct a graph and employ a dynamic programming approach.

The solution of the crew scheduling step, namely the set of duties we find, is the input to our

crew rostering algorithm. This algorithm also consists of a column generation heuristic with a

set-covering problem. The pricing problem is split into two stages. In the first stage we combine

duties into roster-weeks and in the second stage we combine these roster-weeks into full-period

rosters. We define resource constrained shortest path problems (RCSPPs) on suitably defined

graphs to tackle both stages of the problem. As solution methods we use a labelling algorithm

and a constructive heuristic, respectively. Fairness considerations are taken into account in the

pricing problem of the crew rostering step.

The details of our methodology can be split up into two parts. Section 4.1 first describes the

column generation algorithm we use for crew scheduling in more detail. Section 4.2 describes

the algorithm used for rostering purposes.

4.1 Crew scheduling algorithm

The crew scheduling problem can be formulated as a set-covering problem with an extra con-

straint. We have a set of tasks i ∈ I and a number of feasible duties d ∈ D. Let the binary

parameters aid specify whether duty d contains task i and let the parameters ld define the length

of a duty, measured in minutes. We also have a maximum average duty length, denoted by L.

Furthermore, we have that a binary decision variable xd equals 1 if we include duty d in our

solution and 0 otherwise. We get the following mathematical formulation of our problem:

min
∑
d∈D

xd (2)

s.t.
∑
d∈D

aidxd ≥ 1 ∀i ∈ I, (3)∑
d∈D

ldxd ≤ L
∑
d∈D

xd, (4)

xd ∈ B ∀d ∈ D. (5)

The objective (2) states that we aim to minimize the number of duties we include in the solution.

Constraints (3) ensure that each task is covered by at least one selected duty. This shows

that this formulation allows that tasks are covered by more than one crew member, as this

provides more flexibility in finding a solution. The objective of minimizing the number of duties

ensures this will not happen very often. In practice, this results in one of the crew members

performing the actual task and the others deadheading. Constraint (4) limits the average duty
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length to a maximum of L. We also have a constraint on the maximum length of a single

duty. This constraint, however, is considered in the pricing problem. While the constraint on

the maximum length of a single duty is a requirement, the constraint on the average length is

optional. Excluding the constraint may result in a solution in which the durations of the duties

are all very close to the maximum. Including the constraint, on the other hand, may increase

the variety of durations in the set of duties in the solution. This can make it easier to adhere

to the maximum number of hours in a week when generating rosters and can thus improve the

solution of the rostering problem. In Section 5 we experiment with including and excluding this

constraint. Finally, constraints (5) indicate the variables xd are binary.

Given that we have the set of all feasible duties in this formulation, the solution would

provide us the optimal duties to select for our instance. However, even for a small number of

tasks, the number of possible duties is extremely large, as it grows exponentially in the number

of tasks. This would result in a computationally intractable problem. To reduce the number of

variables, we use a column generation heuristic. Column generation is a technique to solve linear

programs with many columns (variables). This technique consists of a Master Problem (MP),

a Restricted Master Problem (RMP) and a Pricing Problem (PP). For a general introduction

on column generation, see Desaulniers, Desrosiers, and Solomon (2005). The MP is the linear

program with the large number of columns we aim to solve. In our case, this is the LP-relaxation

of problem (2) - (5), where constraint (5) changes to

xd ≥ 0 ∀d ∈ D. (6)

The RMP is the MP with only a subset of the duties D′ ⊂ D as variables. The PP is the

problem of finding variables with negative reduced costs, which are then added to the RMP.

If we denote λi for the duals of constraints (3) and µ for the dual of (4), we can compute the

reduced cost of a duty with the following formula:

RC(xd) = 1− µ(L− ld)−
∑
i∈I

aidλi. (7)

We can simplify this formula, by letting i ∈ d denote that task i is contained in duty d:

RC(xd) = 1− µ(L− ld)−
∑
i∈d

λi. (8)

We can find duties with negative reduced cost using a shortest-path problem in a directed graph.

Let us first define a graph G(V,E). The nodes V in this graph correspond to tasks, except for

an artificial source node s and a sink node t. Every task i has four attributes, namely a starting

time si, a finish time fi, a start location/origin oi and an end location/destination di. Our set of

nodes V = {s, 1, ..., n, t} is naturally ordered by the starting times of the tasks, i.e. we have that

sj ≥ si if j > i. For every pair of tasks, there exists a directed arc from node i to node j if and

only if two conditions are satisfied. Namely, the origin of task j is the same as the destination

of node i (oj = di), and the starting time of task j is at least T minutes after the finish time
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of task i, where T is a constant number of minutes needed to transfer from one task to another

(sj ≥ fi+T ). This requirement ensures that no cycles exist in the graph, since obviously fi > si

for every task. The source node represents the start of a duty and, similarly, the sink node

represents the end of a duty. Thus it holds that an arc (s, i) exists for every i ̸= t and an arc

(i, t) exists for every i ̸= s. Figure 1 shows an example of a graph that fits our description,

where the transfer time T is 5.

s t

1

32

4

s1=2   f1=11

s3=15  f3=26s2=3  f2=9

s4=21  f4=30

5

o4=B  d4=C o5=C  d5=A

o3=B  d3=A

 o1=A   d1=B

o2=A  d2=B

s5=35  f5=60

Figure 1: An example graph of tasks, with T = 5.

We can break down the reduced cost of a duty along the arcs of its associated path in the graph,

such that the length of the path equals the reduced cost. To this purpose, we define the weights

on the arcs wij as follows:

wij =


0 if j = t,

1− µL+ µ(fj − sj)− λj if i = s,

µ(fj − fi)− λj otherwise.

(9)

This graph structure is the basis of the method we use to find feasible duties with negative

reduced cost. A path from the source to the sink node represents a duty containing the tasks

linked to the nodes on the path. Note that there is a possibility that this underlying duty is

infeasible, since the duration of this duty might exceed the allowed maximum and there might

be no time for a meal break between any pair of tasks.

To account for the restrictions of meal breaks, we first find ‘half-duties’ using our graph

structure. We use a Dynamic Programming (DP) approach in the form of the Floyd-Warshall

algorithm to find the shortest path between all pairs of vertices in our graph, except for the

source and sink nodes. Let us define the DP variables dk(i, j) as the shortest path from i to j,

using only the first k nodes. We can initialize our DP variables with the weights on the graph.
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d0(i, j) =


0 if i = j,

wij if (i, j) ∈ E,

∞ otherwise.

(10)

In the recurrence relation we check whether we can decrease the length of the path by adding

node k to the path from i to j:

dk(i, j) = min(dk−1(i, j), dk−1(i, k) + dk−1(k, j)). (11)

The shortest distance from i to j is then given by dn(i, j). The paths corresponding to these

distances represent half-duties of which the first task is i and the last is j. A half-duty has a

maximum duration H. Let us define the final half-duty distances HD(i, j) that account for this

constraint.

HD(i, j) =

dn(i, j) if fj − si ≤ H,

∞ otherwise.
(12)

To include the restriction of a meal break, we observe that a meal break can be seen as an

extended transfer time. We can use this observation to create a similar graph with different arcs

G′(V,E′), where tasks are connected if they can be done sequentially with a break in between

the tasks. This graph is constructed in the same manner as before, only with a new, longer

transfer time T ′. Using this graph, let us define the ‘break distances’ bij .

bij =


0 if i = j,

wij if (i, j) ∈ E′,

∞ otherwise.

(13)

Using the break distances bij and the half-duty distances HD(i, j), we can compute the shortest

paths for duties that start with task i and end with task j that have a break immediately after

the first task. These values are computed with

B(i, j) = mink(bik +HD(k, j)). (14)

The equation shows that the values for B(i, j) are found by finding the task k directly after the

break that results in the minimum distance for this path.

The next and final step in obtaining the shortest paths for every combination of two nodes

is finding a full duty containing a break using the variables we have computed so far. We define
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T (i, j) = mink(HD(i, k) +B(k, j)) (15)

as the total minimal distance for the path from node i to node j. Note that in this equation,

we look for the optimal task k to be the last task before the break. To obtain the final reduced

cost of the underlying duty, we must still add the weight on the arc from the source to the first

task. Thus, wsi + T (i, j) is the reduced cost we obtain.

We can reconstruct the path corresponding to T (i, j) by keeping track of the nodes that

formed the half-duties in equation (11) and by the nodes that were picked around the break in

(14) and (15). Not all the minimum-cost paths are feasible duties with negative reduced cost.

We only add the duties corresponding to T (i, j) values to the RMP for which the following

conditions hold:

1. The origin of task i is equal to the destination of task j (oi = dj) and this location is a

depot.

2. The duration of the duty is less than or equal to the maximum allowed duration M

(fj − si ≤ M).

3. The negative reduced cost of the duty is negative (wsi + T (i, j) < 0).

Using the RMP and the PP above, we iteratively solve the LP-relaxation of our main problem

with more and more columns. We initialize the RMP with artificial single-task duties that have

an artificial, high penalty in the objective, such that they are never optimal to include in the

solution. We terminate our column generation procedure once we do not find any negative

reduced cost duties in the PP. Then, we use all the columns that we found to solve our original

problem (2) - (5) with the binary decision variables. The solution to this problem is our final

set of duties.

4.2 Crew rostering algorithm

From the solution of the crew scheduling algorithm, we obtain a number of duties for a relatively

small period, such as one single day. These duties are linked to a depot, where the duty begins

and ends. We solve the crew rostering algorithm for a longer period of time, and for a single

depot. Therefore, we select all the duties from the result of the crew scheduling algorithm that

start at one particular depot for multiple consecutive days. This set of duties is the input to

our problem and we denote this set by D. With these duties we can make a set of feasible

rosters R. We can use a set-covering formulation to model the crew rostering problem, similar

to our formulation of the crew scheduling problem in Section 4.1. To this end, we let the binary

parameters bdr specify whether roster r ∈ R contains duty d ∈ D. The binary decision variables

yr equal 1 if we include the roster in our solution and 0 otherwise. We have the following

formulation of our problem:

12



min
∑
r∈R

yr (16)

s.t.
∑
r∈R

bdryr ≥ 1 ∀d ∈ D, (17)

yr ∈ B ∀r ∈ R. (18)

The objective (16) minimizes the number of rosters, and thus the number of crew members we

need during the planning period. Constraints (17) ensure that each duty is included in at least

one of the selected rosters. In the same way as in the crew scheduling formulation for tasks,

we allow that duties are covered by more than one crew member, to provide more flexibility in

finding a solution. Again, the objective of minimizing the number of rosters ensures this will not

happen very often. In practice, there is no need for deadheading a complete duty. Whilst in the

case of tasks this might be necessary to reposition a crew member to the location where they

begin their next task, this is not necessary for duties. Duties always start and end at the same

location. Therefore, when a duty is contained in multiple rosters, we can delete this duty from

all but one roster and still obtain a feasible solution. Finally, constraints (18) show the variables

yr are binary variables. Note that this formulation does not include any fairness considerations.

We solely include fairness in the PP of the column generation heuristic.

Given a complete set of all rosters R, solving this problem to optimality would provide us

a solution containing the optimal rosters we can make with our previously obtained duties D.

However, the number of feasible rosters grows exponentially in the number of duties, resulting

in an immense number of rosters even for a small number of duties. Finding all feasible rosters

is a difficult task in itself, not to mention that the computation time of the problem would be

extremely high. Thus, we rely on a column generation heuristic once more.

We can define a column generation heuristic for this problem in a similar manner as in

Section 4.1. We thus consider the LP-relaxation of the problem as our Master Problem, where

constraints (18) changes to

yr ≥ 0 ∀r ∈ R. (19)

We initialize this RMP with artificial rosters that have a large penalty in the objective. We

create such an artificial rosters for each duty in D, such that the first iteration of the RMP has

a feasible solution.

Whilst the RMP closely resembles that of the crew scheduling problem, the PP is consider-

ably different. With the PP we aim to find new rosters to add to the RMP that have negative

reduced cost. Denoting νd for the duals of constraints (17), we compute the reduced cost of a

roster by
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RC(yr) = 1−
∑
d∈D

bdrνd (20)

= 1−
∑
d∈r

νd. (21)

Here, in equation (21), we simplify our notation by letting d ∈ r denote that duty d is contained

in roster r.

We solve the PP in two stages. In the first stage we combine duties into roster-weeks. In the

second we combine roster-weeks into full-period rosters. These two stages are necessary, since

we have two constraints that are more easily incorporated by splitting the problem. One of them

considers the maximum number of working hours in a single week, while the other considers the

maximum average number of working hours.

In each iteration we find a number of rosters with negative reduced cost using the PP and re-

solve the RMP with the new rosters as added columns. After a number of iterations, we do not

find any negative reduced cost rosters with our PP. We then terminate the column generation

algorithm. As in the crew scheduling step, we use the rosters that were generated by the column

generation algorithm in the set-covering formulation to find an integer solution.

In the following two subsections, we provide a detailed explanation of our solution approach

for both stages of the PP.

4.2.1 Combining duties into roster-weeks

To solve the first stage of the PP, we define another directed, acyclic graph G(V,E). The nodes

V in this graph correspond to the duties in D that are all in the same week of the planning

period, in addition to an artificial source node s and a sink node t. Every node v ∈ V , except for

the artificial nodes, has two relevant attributes, namely a start time sv and a finish time fv. Note

that locations are not relevant in this problem, since we solve the crew rostering algorithm for

each depot seperately. The source and sink nodes represent the start and end of a roster-week,

respectively. Since every duty can theoretically be the first duty in a roster-week, the source

node connects to every other node v with a directed arc (s, v). Similarly, each duty can be the

last in a roster-week and thus there exists an arc (v, t) for every v. Two non-artificial nodes u

and v are connected if the duties underlying the nodes are compatible, which means the start

time of the second duty is at least R time units after the finish time of the first duty, where R is

the minimum resting time between two duties. Mathematically, an arc (u, v) exists if and only

if sv ≥ fu + R. The starting times of the nodes in V are non-decreasing and fv > sv for every

node v, and thus no cycles exist in our graph. Figure 2 presents an example of a graph that fits

the description above, containing 4 tasks. The minimum resting time R in this example is 12.
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Figure 2: An example graph of duties, with R = 12.

Ultimately, we use this graph to find roster-weeks, which we then use to find negative reduced

cost rosters. The reduced cost of a full-period roster can be split up into the sum of the reduced

costs of the roster-weeks it contains. The reduced cost of these roster-weeks can be further

broken down into the contribution of each duty. We can put these contributions on the arcs of

our graph as weights/distances duv. We define these values as follows:

duv =

0 if v = t,

−νv otherwise.
(22)

Note that only the summation in (21) is taken into account with these weights. The constant

cost of 1 is accounted for in the second stage of the PP. The reduced cost contribution of a

roster-week is the length of a path from the source to the sink, given the weights duv on the

arcs.

We model the constraint on the maximum number of working hours in a roster-week as a

resource constraint on paths in our graph. This maximum is equal to the available resource W .

The resource consumption on each arc tuv is the duration of the duty underlying the node at

the end of the arc. Thus,

tuv =

0 if v = t,

fv − sv otherwise.
(23)

In the graph we have defined, solving a resource constrained shortest path problem (RCSPP)

aligns with finding relevant roster-weeks to use in the second stage of the PP. The RCSPP

is an extension of the standard shortest path problem where an additional constraint on a
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resource must be satisfied. In this problem, each arc in the network has an associated weight

and a resource consumption. For a more detailed introduction to the RCSPP, see Beasley and

Christofides (1989).

Our objective is not to find the single shortest path from the source node to the destination

node that respects the resource constraint, as is normally the case for the RCSPP. We, however,

want to find multiple short paths. As in Section 4.1, we consider paths between every pair of

vertices. We aim to find all the ‘dominant’ paths between two vertices. The concept of ‘domi-

nance’ in the RCSPP tackles the challenging combination of finding the shortest possible path,

while also accounting for its resource consumption. Let us denote a path, and with that its

underlying roster-week, by w, which consists of arcs e = (u, v). A path has a certain resource

consumption t(w) =
∑

(u,v)∈w tuv and it also has an associated distance d(w) =
∑

(u,v)∈w duv.

One path w1 dominates another path w2 if its distance is shorter, while also having a lower

resource consumption. It also dominates the other if either the distance or the resource con-

sumption is lower and the other metric is equal for both paths. We thus have that w1 dominates

w2 if

(t(w1) < t(w2) ∧ d(w1) ≤ d(w2)) ∨ (t(w1) ≤ t(w2) ∧ d(w1) < d(w2)). (24)

If we have a set of paths W , we refer to a path as dominant, if it is not dominated by any other

path in this set. Furthermore, a path is considered feasible, if it does not violate the maximum

amount of the available resource T . With this definition, we can formulate the goal of this stage

of the PP. We aim to find the dominant, feasible paths in the set of paths that start at a certain

node and end at a certain node, for every combination of nodes.

To this end, we use a labelling algorithm. With this algorithm we find all dominant paths

from a given non-artificial start node to all other non-artificial nodes in the graph. The weights

and resources on the arcs connected to the artificial nodes are included implicitly. For every

week in the planning period, we construct the graph as in the description above. In this graph,

we consider a non-artificial node v0 as the start node for our paths. The following algorithm

finds the set of feasible, dominant paths to every other node.
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Algorithm 1: Labelling algorithm for generating roster-weeks

Data: The graph G(V,E), where V = {s, 1, ..., n, t} is a set of nodes, ordered by their

start time sd, and E is a set of directed arcs of which E′ are the arcs not

connected to either of the artificial nodes s and t. The distances duv and

resource consumptions tuv, where u ∈ V , v ∈ V and (u, v) ∈ E. Also, we have a

given start node v0 ∈ V . Finally, an upper bound on the resource W .

Result: A set of paths W (v) = {w(v)1, ..., w(v)k} from the start node v0 to every other

node v ∈ V , the corresponding distances of these paths D(v) = {d(v)1, ...d(v)k}
and the associated resource consumptions T (v) = {t(v)1, ..., t(v)k}.

1 We initialize D(v0) = {ds,v0} and D(v) = {∞} for v ̸= v0 and W (v) = {(s, v0)},
T (v) = {ts,v0}, ∀v ∈ V .

2 for u ∈ {v0, ..., n} do

3 for v s.t. (u, v) ∈ E do

4 for w(u)i ∈ W (u) do

5 Create a new path to v denoted by w∗(v) by adding arc (u, v) to w(u)i.

6 The distance of this path is d∗(v) = d(u)i + duv.

7 The resource consumption of this path is t∗(v) = t(u)i + tuv.

8 if w∗(v) is feasible (t∗(v) < W ) and is dominant within the set W (v) then

9 Add w∗(v) to W (v).

10 Add d∗(v) to D(v).

11 Add t∗(v) to T (v).

12 Delete all w(v)i ∈ W (v) that are dominated by w∗(v).

13 Delete all corresponding d(v)i ∈ D(v).

14 Delete all corresponding t(v)i ∈ T (v).

15 return W (v), D(v) and T (v), ∀v ∈ {v0, ..., n}.

Note that the natural ordering of the nodes allows us to only consider potential paths from the

starting node to nodes of which the starting time is higher. We use this observation in line 2

of the algorithm. Furthermore, note that the resource consumption and the distance on the

arc from the source node to the starting node v0 is accounted for in the initialization of the

algorithm.

We solve this algorithm for every week of the planning period and consider every non-artificial

node as the starting node v0. This results in a number of roster-weeks we use as the input to the

second stage of the PP. Note that we have not put any restriction on the reduced cost/length of

the path in the algorithm above, nor have we taken fairness into account in any way. This all

happens in the second stage.

4.2.2 Combining roster-weeks into full-period rosters

From the first stage described in Section 4.2.1, we obtain a set of roster-weeks V . Every roster-

week v ∈ V has a starting time sv, which is the starting time of the first duty contained in the

roster-week. Likewise, it has a finish time fv, which is the finish time of the last duty it contains.

It also has an amount of working time tv, which is the sum of the durations of the duties in the
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roster-week and a distance dv that follows from the path of the first stage. This distance can be

seen as the contribution to the reduced cost of this week. Moreover, it has a week-number nv

that shows to what week of the planning period this roster-week belongs.

Furthermore, it has an attractiveness score. This score is relevant for the fairness consider-

ations in our algorithm. The attractiveness of a roster-week depends on the attractiveness of

the duties in it. As mentioned in Section 2, attractiveness of a duty depends on task-dependent

characteristics and duty-dependent characteristics. An example of a task-dependent character-

istic is whether the task is carried out on an intercity train or on a sprinter. An example of

a duty-dependent characteristic is the duration of the duty. In Section 2, we specify the exact

characteristics that determine the attractiveness in our computational experiments and how we

quantify these characteristics. Our formulation, however, allows for other characteristics to be

included as well and we aim to describe a model that is as general as possible.

The scores we define are unattractiveness scores, rather than attractiveness scores, meaning

that higher values indicate less attractive duties. We have L task-dependent attributes. Let us

denote the attribute score l for task i by ûli. Similarly, we have K duty-dependent attribute

scores. Attribute score k for duty d is denoted by ukd. We can calculate the total unattractiveness

score of a duty ϕd by

ϕd =
K∑
k=1

ukd +
∑
i∈d

L∑
l=1

ûli. (25)

The score for a roster-week ϕv is the sum of the scores of the duties contained in the roster-week∑
d∈v ϕd.

To solve the second stage of the PP, we define yet another directed, acyclic graph. In this

graph G(V,E), the nodes corresponds to the roster-weeks we obtain in the first stage. Paths

through this graph represent full-period rosters and thus the source and sink node represent the

start and end of the roster, respectively. In our construction of full-period rosters, we require

that a roster-week is assigned to each week in the period. In other words, there are no complete

weeks off in our final rosters. This is in line with the reality of rostering crew members, since

employees expect planned work during the weeks in which they have not requested vacation time.

Thus, the source node connects to every roster-week with week-number 1 and every roster-week

in the final week of the schedule is connected to the sink node. For an arc to exist between two

other nodes u and v, we have two conditions. First, the roster-weeks must be in consecutive

weeks. In other words, the week-number of the node v at the end of the arc must be one more

than the week-number of the node at the start u (nv = nu + 1). Secondly, we must remember

that we have a minimum rest time between duties. We also need to account for this rest period

for subsequent roster-weeks. Thus, our second condition is sv ≥ fu + R. Figure 3 provides an

example of a roster-week graph.
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Figure 3: An example graph of roster-weeks, with R = 12.

Since we want to model the problem as another RCSPP, we need to define the weights/distances

δuv on the arcs, such that they add up to the reduced cost of the underlying roster in equation

(21). We define

δuv =


0 if v = t,

1 + dv if u = s,

dv otherwise.

(26)

Recall that dv is the sum of all the negatives of the dual variables corresponding to the duties in

the roster-week. This ensures that the length of a path from the source to the sink is precisely

the reduced cost of the underlying roster.

Additionally, we define two resources and associated resource consumptions on the arcs. The

first of these is similar to the constraint in the first stage. For the full planning period, we have

a restriction on the maximum average number of working hours in a week. This number is lower

than the maximum working hours in a single week we addressed in the first stage. Multiplying

this maximum average T by the number of weeks in the planning period, gives us the maximum

number of total working hours T̂ . This number is the maximum available amount of our first

resource. The resource consumptions on the arcs of the graph τuv are determined by the working

hours in the roster-weeks:

τuv =

0 if v = t,

tv otherwise.
(27)

The second resource constraint models the fairness considerations in our problem. Less va-

riety in the attractiveness amongst the final rosters is regarded as a fairer solution. Ideally,
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the attractiveness of all rosters is exactly equal. However, no employee complains about a

roster that is more attractive than the average. Rosters that are significantly less attractive

than the average are the main issue. Thus, we want to limit how unattractive a roster can

be. The (un)attractiveness of a roster fully depends on the (un)attractiveness of the duties

contained in the roster and can be quantified using the task-dependent attribute scores and

the duty-dependent attribute scores. We denote our second maximum resource, the maximum

unattractiveness score, by U . We define the related resource consumptions ϕuv as follows:

ϕuv =

0 if v = t,

ϕv otherwise.
(28)

For our benchmark model, in which fairness is not taken into account, we only use the first

resource constraint. For the model where we do include fairness, we include both the first and

second resource constraints. We can vary U to be either more or less strict in the minimum

attractiveness of a roster.

On the graph we defined, we aim to solve another RCSPP. Our graph consists of ‘layers’, one

for each week-number in the planning period. A path from the source to the sink must contain

exactly one node of every layer. Consequently, the number of non-artificial nodes contained in

the path is equal to the number of weeks in the planning period. With this notion in mind, we

can formulate a constructive heuristic to solve the RCSPP. A constructive heuristic builds a final

solution step-by-step, starting with an empty solution and iteratively adding components to it,

creating intermediate, partial solutions. In our case, it starts at the source node and iteratively

finds a partial path to the next layer.

The selection procedure of (partial) paths depends on the concept of ‘dominance’ again.

Let us denote a (partial) path, consisting of arcs e = (u, v) by p. For the case where we

do not consider the resource consumption on attractiveness, a (partial) path has a certain

resource consumption τ(p) =
∑

e∈p τuv and it also has an associated distance δ(p) =
∑

e∈w δuv.

Dominance of a path is then defined exactly as in Section 4.2.1. In the other case, we define

dominance in a very similar manner. The unattractiveness resource consumption of a path is

ϕ(p) =
∑

e∈p ϕuv. A path p1 dominates a path p2, if it has a lower score for at least one of

δ(p), τ(p) or ϕ(p) and the rest of the scores are equal. Again, in a set of (partial) paths P a

path is dominant if it is not dominated by any other path. A partial path is considered feasible,

if it does not violate the relevant maximum allowed resources T̂ and, in the case we consider

attractiveness, U .

The idea of our constructive heuristic is as follows. For the first week, we select all partial

paths from the source node to a node in the first layer that are dominant among these single-arc

partial paths. Then, we consider two-arc partial paths by adding all existing arcs to all single-arc

dominant partial paths. Among these two-arc partial paths, we again select only the dominant

paths. Note that these partial paths are not necessarily optimal at this stage. In the choice of

selecting the first roster-week, we did not consider the consequence that adding a second week to

it has. We might have selected a roster-week that is incompatible with some other roster-weeks,

due to the resting time constraint. Thus, there is a possibility that we would get a better two-arc
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partial path if we selected a different roster-week in week one. This illustrates the greedy nature

of this heuristic: we select the optimal choice given the information in the current week, which

does not necessarily lead to a globally optimal solution. We repeat this process of adding an arc

to dominant partial paths for every week in the planning period, until we have complete and

feasible paths. Note that (partial) paths that are dominant, but not feasible are not considered

in the next iteration of the restricted master problem. For the final paths, we check whether

the distance is negative, which indicates a negative reduced cost. The rosters underlying these

paths are added to the RMP. The algorithm below provides a more detailed explanation.

Algorithm 2: Constructive heuristic for generating rosters

Data: The graph G(V,E), where V = {s, 1, ..., n, t} is a set of nodes and E is a set of
directed arcs. A number of n subsets Vi ⊂ V , with v ∈ Vi if nv = i. The
distances δuv, time resource consumptions τuv and unattractiveness resource
consumptions ϕuv, with u ∈ V , v ∈ V and (u, v) ∈ E. Finally, upper bounds on
the resources T̂ and U that determine feasibility.

Result: A set of complete paths P from the source node to the sink node. In this
algorithm, for ease of notation, a path is denoted by the nodes visited
sequentially on the path. These paths correspond to negative reduced cost
rosters.

1 Let P i = {pi1, ..., pik} be the set of paths containing i non-artificial nodes. We denote the
last node of a path pij by lij . Furthermore, their corresponding distances, time resource

consumptions and unattractiveness resource consumptions are δij ∈ ∆i, τ ij ∈ Ti and

ϕi
j ∈ Φi.

2 We initialize P 0 = {s} and ∆0 = T0 = Φ0 = {0}.
3 for i ∈ {1, ..., n} do
4 Initialize P i = ∆i = Ti = Φi = ∅.
5 for pi−1

j ∈ P i−1 do

6 for v ∈ Vi s.t. (li−1
j , v) ∈ E do

7 Create a new (partial) path denoted by pi∗ by adding node v to pi−1
j .

8 The distance of this path is δi∗ = δi−1
j + δuv.

9 The time resource consumption of this path is τ i∗ = τ i−1
j + τuv.

10 The unattractiveness resource consumption of this path is ϕi
∗ = ϕi−1

j + ϕuv.

11 if pi∗ is feasible and dominant in the set P i then
12 Add pi∗ to P i.
13 Add δi∗, τ

i
∗ and ϕi

∗ to respectively ∆i, Ti and Φi.
14 Delete all pij ∈ P i that are dominated by pi∗.

15 Delete all corresponding δij , τ
i
j and ϕi

j from ∆i, Ti and Φi respectively.

16 Let the final set of paths be P = ∅.
17 for pnj ∈ Pn do

18 if δnj < 0 then

19 Add pnj to P .

20 return P .

Note that this algorithm can be used for the case of one as well as two resource constraints. The

only difference is the definition of dominance and feasibility. The rosters corresponding to the

paths P are added to the RMP in the next iteration.
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5 Computational experiments

In this section, we test the approach presented in Section 4 by means of some computational

experiments. In Section 5.1, we present the process of creating our synthetic dataset we use as

an instance for our problem and show some of its characteristics. We also set the parameters

introduced in Section 2. The intermediate results of the crew scheduling problem are presented

in Section 5.2, whereas Section 5.3 presents our final results of the crew rostering algorithm.

Section 5.4 contains a sensitivity analysis on some of the parameters we use in our experiments.

5.1 Data

To obtain the set of tasks we need as input to our problem, we create a synthetic dataset based

on a part of the actual timetable of NS. We consider a train network containing tracks between

six large cities in the Netherlands, namely Amsterdam (Ams), Rotterdam (Rtd), Utrecht (Ut),

The Hague (Gvc), Leiden (Lei) and Almere (Alm). Of these cities, the first three are considered

crew bases. The figures below illustrate this network.

Ams

Gvc

Alm

Rtd

Ut

Lei

AlmAms

Lei

UtGvc

Rtd

Day network Night network

= Rush hour track

= Standard track

Figure 4: The railway networks in our experiments.

In Figure 4, the network on the left shows the one we consider during the day, i.e. between 5

AM and 1 AM. During the night, from 1 AM to 5 AM, we use the tracks in the sparser network

on the right. Dotted lines indicate tracks that are only operated on during rush hours. We

construct a set of tasks that represent trips on the tracks of these networks, for both a typical

24-hour working day and a weekend day. On the weekend days, the rush hour tracks are unused.

The number of tasks in the working day schedule is 626, whilst a weekend day schedule consists

of 422 tasks.

Table 1 and Table 2 present some of the relevant statistics of the tasks for both a working

day and a weekend day. For each location, it shows the number of tasks that either start or end

there. It also shows what percentage of tasks possess each of the attributes for each location,

and in total.
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Table 1: Summary statistics of tasks in working day.

Tasks Duration Double-decker Type-A Aggression

Total 626 37.2 29.9% 54.6% 42.2%

Ams 311 36.7 38.9% 76.8% 50.2%

Rtd 231 36.5 65.4% 68.8% 49.8%

Ut 243 40 27.2% 42.4% 29.2%

Lei 160 40.7 0.0% 10.0% 39.4%

Gvc 169 36.4 21.3% 57.4% 42.0%

Alm 138 31.3 0.0% 50.7% 37.7%

Table 2: Summary statistics of tasks in weekend day.

Tasks Duration Double-decker Type-A Aggression

Total 422 35.5 23.7% 44.5% 66.8%

Ams 219 34 31.5% 68.0% 78.1%

Rtd 141 35.2 48.9% 54.6% 75.9%

Ut 139 40.4 22.3% 28.1% 43.9%

Lei 154 40.6 0.0% 10.4% 66.2%

Gvc 95 31.8 32.6% 32.6% 63.2%

Alm 96 27.7 0.0% 66.7% 65.6%

In these tables, we see that the three depots have the most tasks, making them practical locations

to start and end duties. Note that there are no double-decker tasks to and from Leiden and

Almere. Double-deckers are operated on a few standard lines in our network, and most of

them are connected to Rotterdam. Furthermore, note that Utrecht is the city with the least

aggression on the tracks connected to it. When comparing the tasks in a working day with

those in a weekend day, we notice a considerable difference in the percentage of tasks that have

a high likelihood of passenger aggression. The reason aggression occurs more on weekends is the

difference in customers between the workweek and the weekend. Whilst workweek passengers

are mostly commuters, weekend passengers include people who may be more aggressive due to

increased social activities involving alcohol consumption.

In Section 2, we defined a number of parameters. In our main experiments we use the

following parameter values. For the crew scheduling algorithm we set the transfer time in

minutes T = 5, the minimum break time in minutes T ′ = 30, the maximum duration of a

half-duty in hours H = 5.5 and the maximum duration of a full duty in hours M = 10. For the

crew rostering algorithm, we set the minimum rest time between duties R = 12, the maximum

number of working hours in a single week W = 45 and the maximum average number of working

hours in a week T = 40. These last three parameters are all measured in hours.

5.2 Crew scheduling

In this section, we look at the intermediate results of the crew scheduling step. We focus mainly

on the determination of the optimal value of L, the maximum average duty duration. Secondly,
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we focus on how the duties are divided over the crew bases. In Table 3 and 4 we present the

results for the instance of a working day and a weekend day, respectively. The results in the top

rows of these tables correspond to the crew scheduling model without constraint (4), where we

do not restrict the average duration of a duty. The other rows show the results for when this

constraint is included, for three different values for L. These values correspond to a maximum

average duration of 8, 7.5 and 7 hours. In the column next to the values of L, we show the

actual value of the average duration of the duties in the solution. The tables also include the

number of duties in the best solution we find. The integer programming problem (2) - (5) cannot

always be solved to optimality in reasonable time, even with the limited number of duties we get

from the column generation algorithm. Therefore, we limit the computation time of the final

branch-and-bound algorithm to 10 minutes. In case we do not reach optimality in that time, we

use the best feasible solution that was found. In that case, we also report the lower bound (LB)

on the number of duties in the optimal solution and the optimality gap as a percentage of the

best feasible solution. We also show the average unattractiveness scores of the duties. Finally,

we present the number of duties per location and their average unattractiveness scores.

Table 3: Crew scheduling results for a working day.

Total Amsterdam Rotterdam Utrecht

L Duration Duties LB Score Duties Score Duties Score Duties Score

∞ 510 82 76 (7.3%) 268 37 270 16 277 29 268

480 479 86 78 (9.3%) 252 33 247 22 265 31 252

450 448 79 79 (0.0%) 237 34 234 16 265 29 237

420 420 84 83 (1.2%) 223 38 210 19 239 27 223

Table 4: Crew scheduling results for a weekend day.

Total Amsterdam Rotterdam Utrecht

L Duration Duties LB Score Duties Score Duties Score Duties Score

∞ 528 51 50 (2.0%) 296 19 300 13 312 19 296

480 479 51 51 (0.0%) 273 17 293 14 288 20 273

450 448 53 53 (0.0%) 255 22 267 13 250 18 255

420 419 58 56 (3.4%) 241 23 247 13 234 20 241

In both tables we can see a similar pattern. As we decrease the value of our parameter L, the

lower bounds on the number of duties and the average unattractiveness scores go down as well.

A lower value for L means that, on average, we can put less tasks in a duty. This explains

the monotonic increase in the lower bound. The decrease in scores is due to the fact that the

duration of a duty plays a big part in its attractiveness. We see no clear pattern in the gaps

between the lower bounds and the number of duties in the best feasible solution, other than

the fact that the gaps are smaller for the weekend day instance. This instance is smaller, which

may be a reason that the solver gets closer to the optimum in less time. When we look at the

duties per depot, we see that we have significantly less duties that start and end in Rotterdam.
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Rotterdam connects to less tracks in the network in Figure 4, which explains this difference.

Furthermore, we notice that the average score in weekend days is higher than that in working

days and that the average score is the highest for Rotterdam. These observations are a direct

cause of the characteristics of the tasks, shown in Table 1 and 2. In these tables, we see that

weekends contain more aggression work and tasks connected to Rotterdam are more often on

double-decker trains.

The question remains which set of duties we use in the next stage of our solution method,

namely the crew rostering phase. We make this decision based on the total unattractiveness

of the duties. The total unattractiveness score can be computed by multiplying the number of

duties by the average score for a duty. For instance, for the working day instance and L = 480,

this score is 86 ∗ 252 = 21672. In both the case of a working day and a weekend day, we find

that these scores are minimal for L = 450. Thus, these are the sets of duties we use as input to

the crew rostering algorithm.

We zoom in on the results for L = 450. We look at the unattractiveness scores and the

shares of these scores belonging to each attribute in particular. We consider an average week

of duties, consisting of five times the average duty of a working day and twice the average duty

of a weekend day. In Table 5, we show the average score of such a week of duties and the

contribution of each attribute to this score. The table contains these values for the duties of

each of the three depots, as well as for the set of all duties.

Table 5: Crew scheduling results for a week of duties.

Depot Score Duration Double-decker Type-A Aggression

All 1695 1568 149.4 -243 224.2

Ams 1704 1576 169.4 -262.3 225.4

Rtd 1825 1669 176.9 -298.9 276.3

Ut 1613 1511 99.5 -172.5 182.1

First, we see that the duties starting and ending in Utrecht are, on average, the most attractive,

whilst those linked to Rotterdam are the least attractive. One of the reasons for this is that

the duties we generate for Rotterdam are significantly longer than those for the other depots.

The duration of a duty is an important attractiveness characteristic, as it makes up for most

of the score. As for the task-dependent characteristics, we see that Rotterdam has the most

aggression work and double-decker work, further increasing its average unattractiveness score.

On the other hand, type-A work is also most common in duties for which Rotterdam is the

depot. This slightly decreases its average score. In contrast to Rotterdam, the set of duties

for Utrecht contains significantly less type-A, aggression and double-decker work. Finally, for

Amsterdam, these numbers are all in between those of the other two depots.

5.3 Crew rostering

We now evaluate the performance of our solution method for the crew rostering problem. We

test our approach with a number of experiments. The input data for our experiments consists of

the working day and weekend day duties that we obtain in the crew scheduling step, namely the
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duties that we obtain with parameter L = 450. These duties contain all tasks we aim to cover,

including those scheduled both during the day and at night. For our main experiments, the

planning period is five weeks. We can create a set of duties for one single week by concatenating

five working day duty sets and adding two weekend days of duties to that set. Five of these weeks

stringed together makes up our entire planning period. We solve the crew rostering problem for

each depot separately, and thus we divide this set into three distinct sets, one for each depot.

Table 6 shows the results for the model without fairness considerations. This model is the

benchmark against which we compare. We show results for each depot separately and for all

depots combined. The results include the number of duties in the input dataset, the number of

rosters in the solution, the average number of working hours of these rosters and the average,

maximum and standard deviation of the unattractiveness scores of these rosters.

Table 6: Crew rostering results without fairness considerations.

Depot Duties Rosters Hours Avg. Score Max. Score Sd. Score

Ams 1070 60 173 5690 6989 970

Rtd 530 29 174 5762 6893 1047

Ut 905 61 158 5236 6651 1372

All 2505 150 168 5562 6989 1145

The results show that we create 150 rosters, which means we would need to hire 150 employees

to carry out the 2505 duties in our planning period. Of these 150 employees, 60 start their

duties in Amsterdam, 29 in Rotterdam and 61 in Utrecht. Even though we have more duties

to cover in Amsterdam than in Utrecht, the number of rosters in the solution is lower. This

indicates that our algorithm was more efficient for the Amsterdam instance. This is also reflected

in the average number of working hours, where we see that this number is considerably lower

for Utrecht. The overall average of 168 hours equates to roughly a 34-hour workweek, which is

reasonable. Furthermore, we see that the average unattractiveness score is highest in Rotterdam

and lowest in Utrecht, which aligns with the results we see in Section 5.2. The most unattractive

roster starts and ends in Amsterdam and has a score of 6989.

This maximum gives us an indication of what values we should use for the parameter that

determines the maximum unattractiveness score U in the crew rostering method where we

consider fairness. In Table 7, we present results for the crew rostering algorithm for different

values of U . We decrease the value of U by steps of 500, starting at 6500, which is roughly a

500 decrease in maximum score compared to the benchmark model. We present the aggregated

results for the rosters of all depots combined. The detailed results per depot can be found in

Appendix A. The table includes the same metrics as Table 6. It also displays the percentage

change from the benchmark model for all metrics.
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Table 7: Crew rostering results for different values of U .

U Rosters Hours Avg. Score Max. Score Sd. Score

∞ 150 168 5562 6989 1145

6500 152 (+1.3%) 166 (-1.3%) 5489 (-1.3%) 6499 (-7.0%) 1100 (-3.1%)

6000 158 (+5.3%) 159 (-5.1%) 5280 (-5.1%) 5999 (-14.2%) 978 (-14.6%)

5500 169 (+12.7%) 149 (-11.2%) 4937 (-11.2%) 5500 (-21.3%) 875 (-23.6%)

5000 178 (+18.7%) 142 (-15.7%) 4687 (-15.7%) 4999 (-28.5%) 651 (-43.1%)

We see a few patterns emerge in this table. First of all, the numbers of rosters increase as we

decrease the value of U . A lower value of this parameter means a more restrictive problem,

resulting in higher objective values (number of rosters). Note that the constraint that U sets is

restrictive, as the difference between the actual maximum unattractiveness score and the limit

we set by U is negligible in every instance. The number of rosters and the average score have

an inversely proportional relationship, as the total amount of unattractiveness is determined by

the duties. This illustrates the trade-off between efficiency and attractiveness in our problem.

More attractive rosters, with lower scores, mean that we need to hire more personnel. In the

same manner, we also have an inversely proportional relationship between the number of rosters

and the number of working hours. For U = 5000, we see that the average number of working

hours is 142, which equates to 28 working hours per week. Lower values of U would result in

even less working hours, resulting in rosters that are unrealistic. Therefore, we do not consider

values below 5000.

The question remains whether the incorporation of U results in fairer rosters, and at what

cost in efficiency this increase in fairness comes. We can measure the fairness of a solution with

the maximum score, which shows how unattractive the least attractive roster is. We can also

measure it with the standard deviation of the scores, which indicates how much variability there

is in the scores. Table 7 show that both these metrics indicate that our incorporation of fairness

does indeed result in fairer rosters, as both the maximum score and the standard deviation drop

when we incrementally decrease the value of U . For every value of U , the percentage drop in the

maximum and the standard deviation of the scores is significantly higher that the percentage

increase in the number of rosters. In the cases of U = 6500 and U = 6000, the percentage

decreases are even more than twice as high as the percentage increase. This indicates that the

increase in fairness is greater than the decrease in efficiency, which is a very positive result.

We show two more figures that display the trade-off between efficiency and fairness. In

Figure 5, we present a bar chart that shows the number of rosters for every maximum fairness

score U we consider. The bars also show how many of the rosters belong to each depot. Note

that the first bar shows the results for the model without fairness taking into consideration,

where our maximum unattractiveness score is 6989.
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Figure 5: Number of rosters (per depot) for each value of U .

The figure shows that the proportion of rosters for each depot are roughly equal for different

values of U , although the number of rosters for Amsterdam seems to increase more rapidly than

the number of rosters for Utrecht and Rotterdam. Moreover, this figure shows that the increase

in rosters is not monotonic in the decrease in U . While this is the case for the number of rosters

for all depots combined, it is not the case for every single depot. For instance, we see that the

number of rosters for Utrecht is lower in the third bar than in the second bar. This result may

seem illogical, as the model with U = 6000 is more restrictive than the model with U = 6500

and the solution for the former model is thus also feasible for the latter. However, our method

is a heuristic and thus optimality is not guaranteed. That fact is illustrated in this example.

Figure 6 zooms in on the relationship between the standard deviation and the maximum

of the unattractiveness scores. The black line shows this relation for all rosters, while the red,

blue and green lines show the relation for the rosters of Amsterdam, Rotterdam and Utrecht

respectively.
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Figure 6: The standard deviation and maximum of the scores for each depot and in total.

The black line shows a monotonic decrease in the standard deviation as the maximum of the

unattractiveness score drops. For the rosters per location, however, we see that a decrease

in the maximum does not always come with a decrease in the standard deviation, especially

for Amsterdam. The positive correlation between these two metrics is most significant for

Rotterdam and the least significant for Amsterdam. This might be caused by the fact that the

instance for Rotterdam is the smallest and the instance for Amsterdam is the largest, although

these results are not enough evidence to prove this hypothesis.

To conclude this section, we dissect the unattractiveness scores in our results. Recall that

there are four factors that play into the attractiveness, namely the number of working hours,

the amount of double-decker work, the amount of type-A work and the amount of aggression

work. In Table 8, we look at these attributes in detail, for our considered values of U . The table

shows the average and the standard deviation of the unattractiveness score and the number of

working hours. For each attribute, it shows the average percentage of time spent on tasks with

that specific attribute amongst the rosters, as well as the standard deviation of that percentage.

Table 8: Attractiveness attribute scores for different values of U .
Score Hours Double-decker Type-A Aggression

U Avg. Sd. Avg. Sd. Avg. Sd. Avg. Sd. Avg. Sd.

∞ 5562 1145 168 35.2 27.1% 7.4% 50.3% 8.9% 51.4% 7.9%

6500 5489 1100 166 33.2 27.1% 7.6% 50.3% 10.2% 51.4% 8.7%

6000 5280 978 159 30.2 27.1% 8.2% 50.3% 9.1% 51.4% 7.8%

5500 4937 875 149 26.8 27.1% 8.1% 50.3% 9.0% 51.4% 10.2%

5000 4687 651 142 19.9 27.1% 7.3% 50.3% 8.4% 51.4% 7.8%

The average score and the average number of working hours follow an inversely proportional re-

lationship with the number of rosters. The average percentage of each task-dependent attribute,
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however, is equal no matter the value of U . This is true because the percentage of tasks that

have a certain attribute is constant for all solutions and how these tasks are divided over the

rosters does not affect the average. The standard deviations of the scores show a decreasing

pattern, as we established in Table 7 already. In Table 8, we see that this same pattern holds for

the working hours, but not for the task-based attributes. The decrease in the standard deviation

of the working hours can be partly explained by the fact that the average number of working

hours drops as well. It can also be explained by the fact that lower values of U means we select

more rosters with a score closer to the limit. Thus, the standard deviation of the overall score

drops. And, since the number of working hours contributes a lot to this score, the standard

deviation of the number of working hours drops too. The fact that the task-based attribute

standard deviations do not show a decreasing pattern do not prove that they do not contribute

to the drop in the standard deviation of the score. Tasks with certain attributes might be better

combined for lower values of U to create more balanced rosters. For example, a duty containing

a lot of type-A work might be put in the same roster as a duty that contains a lot of aggression

work to balance out the attractiveness. This is not reflected in the standard deviation values in

the table.

5.4 Sensitivity analysis

In this section we look at the effect of changing some key parameters in our algorithm. We per-

form a sensitivity analysis on the number of weeks in the planning period and on the maximum

allowed number of working hours in a single week, as well as the maximum allowed average

number of working hours.

Table 9 shows results for different lengths of the planning period we consider. In Section 5.3,

we only consider a planning period of five weeks. We want to investigate the performance of our

model for both a shorter period of three weeks, as well as a longer period of seven weeks. For

these three lengths, we consider the model without fairness considerations and the model with

fairness considerations with two different values for U . For the planning period of five weeks,

we present the results of U = 6000 and U = 5000 again. The decrease in our parameter is thus

roughly 1000 per step, which equates to 200 per week. For the lengths of three and seven weeks,

we want to have comparable steps. For that reason, we decrease the value of U by 600 for the

three week planning period and by 1400 for the seven week planning period. The results include

the number of rosters in the solution, the average number of working hours and the maximum

and standard deviation of the unattractiveness scores. It also shows percentage changes. Note

that we do not consider the average attractiveness score, as we do in Table 7, since these results

are incomparable for different period lengths and we have established that the relation between

this average and the number of rosters is deterministic. Finally, the table displays the average

computation time of the algorithm. This is the average over the three depots for which the

algorithm is solved.
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Table 9: Crew rostering results for different lengths of the planning period.

Weeks U Rosters Hours Max. Score Sd. Score Comp. time

∞ 140 108 4100 348 244

3 3500 150 (+7.1%) 100 (-7.4%) 3500 (-14.6%) 301 (-13.5%) 276

2900 172 (+22.9%) 88 (-18.5%) 2900 (-29.3%) 292 (-16.1%) 254

∞ 150 168 6989 1145 768

5 6000 158 (+5.3%) 159 (-5.1%) 5999 (-14.2%) 978 (-14.6%) 788

5000 178 (+18.7%) 142 (-15.7%) 4999 (-28.5%) 651 (-43.1%) 764

∞ 166 213 9384 2011 1554

7 8000 178 (+7.2%) 198 (-7.0%) 7998 (-14.8%) 1409 (-29.1%) 1588

6600 190 (+14.5%) 186 (-12.7%) 6595 (-19.1%) 1230 (-38.8%) 1555

The table above shows that the performance of our algorithm that does not consider fairness

is worse for longer planning periods. For shorter periods, we have less rosters and thus a more

efficient solution. This result may be caused by the heuristic nature of the second part of our

solution method for the pricing problem of the crew rostering algorithm. In this constructive

heuristic we select the best roster-week for each week of the planning period, not considering the

consequences this has for further weeks of the planning period. The probability that this results

in sub-optimal rosters is larger for longer planning periods. We also see that the same trade-off

between efficiency and fairness is visible for all lengths of the planning period. The number

of rosters increases as we decrease the value of U , but the maximum score and the standard

deviation of the score decrease more significantly. Our incorporation of fairness in the algorithm

thus works for all planning period lengths. Finally, the results for the computation times show

that they do not depend on the value of U . They do, however, depend on the period length and

the increase in the computation time seems to be more than linear in the number of weeks.

Table 10 shows results for different values of the parameterW , the maximum allowed number

of working hours in a single week of a roster. The standard value we consider for this parameter

in our main result section is 45 hours. We now consider both a lower value of 40 as well as a

higher value of 50. Note that the parameter value for the maximum average number of hours in

a roster-week, T , remains the same as in our main experiments, namely 40. Thus, in the case

where W = 40, the limit on the hours in an average week in a roster is the same as that for a

single week. This makes the constraint set by T redundant. For each value of W , we consider

the model without fairness considerations, and the model with U = 6000 and U = 5000. We

thus decide not to change this parameter value based on the maximum unattractiveness score in

the model without fairness, as we do in Table 9. In this way, we isolate the effects of changing

W and ensure we get a fair comparison for different values of this particular parameter.
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Table 10: Results for different values of W .
W U Rosters Hours Max. Score Sd. Score

∞ 176 143 6520 1401

40 6000 184 (+4.5%) 137 (-4.2%) 5998 (-8.0%) 1232 (-12.1%)

5000 186 (+5.7%) 135 (-5.6%) 5000 (-23.3%) 1004 (-28.3%)

∞ 150 168 6989 1145

45 6000 158 (+5.3%) 159 (-5.1%) 5999 (-14.2%) 978 (-14.6%)

5000 178 (+18.7%) 142 (-15.7%) 4999 (-28.5%) 651 (-43.1%)

∞ 145 173 6755 1077

50 6000 155 (+6.9%) 162 (-6.4%) 6000 (-11.2%) 977(-9.3%)

5000 176 (+21.4%) 143 (-17.3%) 4996 (-26.0%) 743 (-31.0%)

For all values of W , we see similar patterns. Namely, a decrease in the value of U comes

with an increase in the number of rosters. At the same time, the maximum and the standard

deviation of the scores decrease. In percentages, these decreases exceed the increase in number

of rosters. The conclusions we draw are thus the same for each value of W : the increase in

fairness outweighs the decrease in efficiency. When we compare the results for different values of

W to each other, we note that higher values result in less rosters. Higher values of W means we

have more freedom in generating roster-weeks, because they can contain more working hours.

The results show that we can create better full-period rosters with these roster-weeks and this

improves our final solution. We can also see that the variation of scores in the rosters drops as

the value of W increases. This result may seem counter-intuitive at first. Higher values of W

provide more freedom to our algorithm, which could result in more variation in the number of

working hours. However, the maximum average number of working hours in a week remains 45

for all three instances, which restricts this variation. The main effect of increasing W is that

we get better solutions due to the increased number of possible roster-weeks. In general, better

solutions have a lower standard deviation in the scores, since the scores of the rosters are closer

to the maximum score.

To conclude the sensitivity analysis, we investigate the effects of varying the parameter T ,

the maximum average number of weekly working hours in a roster. For the experiments in

Section 5.3, we use T = 40, we now additionally consider T = 35 and T = 45. The value of W

is our standard value of 45 in these experiments. This means that for T = 45, the maximum on

the average hours is equal to the maximum in a single week again. We present the same metrics

as in Table 10, for the same values of U .
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Table 11: Results for different values of T .
T U Rosters Hours Max. Score Sd. Score

∞ 172 146 6304 1277

35 6000 183 (+6.4%) 137 (-6.2%) 5999 (-4.8%) 1222 (-4.3%)

5000 191 (+11.0%) 132 (-9.6%) 5000 (-20.7%) 1083 (-15.2%)

∞ 150 168 6989 1145

40 6000 158 (+5.3%) 159 (-5.1%) 5999 (-14.2%) 978 (-14.6%)

5000 178 (+18.7%) 142 (-15.7%) 4999 (-28.5%) 651 (-43.1%)

∞ 148 170 7608 1432

45 6000 158 (+6.8%) 159 (-6.5%) 5999 (-21.1%) 854(-40.4%)

5000 176 (+18.9%) 143 (-15.9%) 4998 (-34.3%) 779 (-45.6%)

Table 11 shows us that the same patterns we see in the other tables generally hold true for

different values of T . Again, we see an increase in the number of rosters, and a more significant

decrease in the maximum and standard deviations of the scores as we use lower values of U .

Only in the second row in the table we see that the percentage drop in the maximum and the

standard deviation is smaller than the percentage increase in the number of rosters. This is an

exception on the rule we see in all the other results. Furthermore, we see that a lower value

of T results in more rosters. This result is unsurprising, since the value of T determines the

maximum number of working hours in a roster and lowering this value thus means we need more

roster to cover all the duties. Generally speaking, the standard deviation of the scores is lower

for higher values of T . The case of T = 45 and U = ∞ is an exception. In this case, the only

restriction we have is that a single roster-week can be no longer than 45 hours. The absence of

other restrictions on the duration or attractiveness results in a high maximum score and a high

standard deviation.
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6 Conclusion

In this thesis, we consider the railway crew planning problem with fairness considerations. This

problem consists of two sub-problems. The first of these being the crew scheduling problem,

where we generate a number of duties such that these duties cover all tasks. Secondly, the crew

rostering problem, where we combine the duties into full-period rosters. Our aim is to generate a

set of rosters that is both efficient, meaning we aim to minimize the number of rosters, and fair,

meaning we also incorporate the attractiveness of the rosters in our problem. The attractiveness

of a roster is determined by the Sharing Sweet & Sour attributes of its duties and tasks. Thus,

our problem is a bi-objective optimization problem. We create individual, non-cyclic rosters and

do not assume any capacity planning beforehand, combining the tactical and operational stages

of the planning problem.

We solve the sub-problems sequentially, with two column generation algorithms. The pricing

problem of the crew scheduling algorithm is modelled as as shortest path problem and solved

with a dynamic programming approach. This algorithm incorporates the specific requirements

for a duty that follow from regulations, such as a maximum duration and a minimum time for

a meal break. For the crew rostering problem, we split the pricing problem into two steps.

Both problems in these steps are modelled as resource constraint shortest path problems. We

first construct roster-weeks using a labelling algorithm, before combining these week into full-

period rosters with a constructive heuristic. In this constructive heuristic, there is an option

to incorporate fairness by setting a maximum unattractiveness score for the generated rosters.

The model that does not include this option is our benchmark model, against which we compare

models with varying maximum unattractiveness scores.

We test our model on an instance based on a considerable part of the timetable of NS,

spanning a five-week planning period. We measure the fairness of a final solution by means of

the maximum unattractiveness score as well as the standard deviation of the scores. In general,

we see that the efficiency of a solution decreases if we incorporate fairness into the algorithm.

At the same time, we observe an increase in fairness, and this increase exceeds the decrease in

efficiency in relative terms for almost all our experiments. We test the robustness of our solution

method with a sensitivity analysis on a number of parameters and find that, generally, the same

conclusions hold true for a variety of different parameter values. The sensitivity analysis also

shows our model has better performance for shorter planning periods.

We conclude that our method successfully integrates the scheduling and rostering step in the

railway crew planning problem, whilst accounting for fairness in the solution. The algorithm

is able to solve instances of considerable size and thus has potential for railway operators. To

be used in practice, our algorithm still needs some refinements. Not all rules and regulations of

duties and rosters are incorporated into the pricing problems of the algorithms. The algorithms,

however, provide enough flexibility to add new restrictions. The full railway network of the

Netherlands is considerably larger than our network. Our algorithm might not be able to

handle instances for such a network. One modification that might improve the computational

performance is to not consider all roster-weeks in the constructive heuristic in the pricing problem

of the crew rostering stage. Instead, one may only consider roster-weeks with a sufficiently low

reduced cost contribution.
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Other suggestions for further research we give are the incorporation of personal preferences

and that of re-scheduling due to disruptions. Since our rosters are individual, all employees

can carry out any of the rosters in the solution, assuming that all employees have the same

qualifications. We have assumed attractiveness is perceived equally by all employees, which

might not be the case. Some employees might find certain attributes less important than others.

With individualized attractiveness scores we might be able to assign rosters to employees in an

even fairer manner, without hurting the efficiency of the solution. Finally, we have assumed

that we know all tasks for the entire planning period beforehand. Of course, this is not the case

in real-life. Disruptions cause the need for modifications to our rosters. We encourage other

researchers to find a way to alter our solution method to account for this fact.
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Table 12: Crew rostering results for U = 6500.

Depot Duties Rosters Hours Avg. Score Max. Score Sd. Score

Ams 1070 59 180 5858 6495 734

Rot 530 29 174 5724 6499 919

Utr 905 64 145 4804 6404 1281

All 2505 152 166 5462 6499 1050

Table 13: Crew rostering results for U = 6000.

Depot Duties Rosters Hours Avg. Score Max. Score Sd. Score

Ams 1070 65 165 5288 5999 743

Rot 530 30 171 5608 5995 527

Utr 905 63 150 5057 5988 1067

All 2505 158 162 5318 5999 978

Table 14: Crew rostering results for U = 5500.

Depot Duties Rosters Hours Avg. Score Max. Score Sd. Score

Ams 1070 72 152 4959 5499 812

Rot 530 33 162 5210 5499 225

Utr 905 64 145 4744 5500 877

All 2505 169 153 4971 5500 875

Table 15: Crew rostering results for U = 5000.

Depot Duties Rosters Hours Avg. Score Max. Score Sd. Score

Ams 1070 76 139 4674 4999 794

Rot 530 36 145 4764 4997 287

Utr 905 66 142 4565 4996 808

All 2505 178 142 4668 4999 651
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