
Deep Reinforcement Learning Approach for

Portfolio Management Applications with

a Multivariate Reward Function

Master Thesis Econometrics and Management Science - Quantitative

Finance

Emile Eijgenraam (484250)

Supervisor: Prof. Dr. Dick van Dijk

Second Assessor: Dr. Rasmus Lönn

April 26, 2024

Abstract

In this research, we propose various deep reinforcement learning (DRL) models that can be used for

investment strategies with multiple objectives, namely portfolio returns, volatility and ESG perfor-

mance. We find that the model that is used for an investment strategy with multiple objectives,

which is an ensemble of individual DRL models that each focus on a single objective, performs best

overall in terms of reward during the test period. One of these individual DRL models that can be

used for an investment strategy to minimise portfolio volatility performs significantly better than the

majority of DRL models in minimising portfolio volatility. This is because of the transformation of

the input data for the neural network from historical daily returns to EWMA-based volatility esti-

mates per asset. This results in a more intuitive relationship between model input and output, which

is a solution to a problem faced in literature. However, the GMV portfolio still yields a significantly

lower portfolio volatility during the test period. Finally, we use a hedging strategy to complement

the DRL models to significantly reduce the portfolio volatility of most of the models.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University.

Contents

1 Introduction 1

2 Data 4

3 Methodology 7

3.1 DRL Model . 7

3.1.1 Model setup . 7

3.1.2 Reward function . 8

3.1.3 Reward function extension: volatility . 9

3.1.4 Policy function specifications . 10

3.1.5 Gradient ascent algorithm . 15

3.1.6 Model alternatives . 15

3.1.7 Exploration and exploitation . 18

3.1.8 Priority weights and reward function evaluation . 18

3.1.9 Bayesian hyperparameter optimisation . 20

3.1.10 Training procedure and parallel training . 21

3.2 Extreme downside market risk hedging . 22

3.2.1 Copula selection . 23

3.2.2 Hedging procedure . 24

3.3 Practical issues . 26

3.4 Performance evaluation . 26

3.4.1 Benchmark models . 26

3.4.2 Performance measures . 26

4 Results 27

4.1 Bayesian hyperparameter optimisation procedure . 27

4.2 Analysis of model performances . 29

4.3 Volatility optimisation analysis . 33

4.4 Analysis of model performances using adjusted training set 35

4.5 Analysis of hedging perfomances . 37

5 Conclusion and discussion 41

6 Appendix 46

6.1 Data . 46

6.2 Bayesian hyperparameter optimisation procedure . 46

6.3 Hyperparameters . 48

6.3.1 MC model without EIIE . 48

6.3.2 MS1 model without EIIE . 48

6.3.3 MC model with EIIE . 49

2

6.3.4 MS1 model with EIIE . 49

6.3.5 MS2 volatility models . 50

1 Introduction

Over the last few years, numerous events had a major impact on financial markets. The COVID-19

pandemic, the Ukraine war and highly increasing inflation rates were some of the largest drivers of

volatility in the stock and bond markets. Next to the challenge of maintaining steady returns during

recent times of high volatility, there is increasing pressure from society and governments to decrease the

investments made in companies that do not have high sustainability ambitions. Together, it becomes

increasingly challenging for institutional investors like pension funds to perform simultaneously well in

terms of portfolio returns, risk and sustainability.

In this paper, we formulate several models that can be used for investment strategies with multiple

objectives, namely portfolio returns, risk and (exposure to) ESG factors. For the models we formulate,

an investor can state her priorities concerning each portfolio performance metric by explicitly assigning

weights to each metric. Subsequently, the models aim to incorporate the weights in the training process

by assigning the highest priority to the metrics with the highest weight. As such, our models have the

potential to be integrated into the investment strategies of institutional investors. They can address

challenges in defining strategies that yield high portfolio returns and low risk while improving ESG

performance, in line with the global trend of reducing investments in sectors like oil and gas. Therefore

our research is relevant for institutional investors who can use this paper as a foundation to be used for

investment strategies with multiple objectives.

For one of the portfolio performance metrics, namely portfolio volatility, the Global Minimum Variance

(GMV) portfolio can be used to form a portfolio of stocks that aims to minimise the portfolio volatility,

as shown by Merton (1972). For another portfolio performance metric, namely portfolio returns, several

models can be used for an investment strategy that aims to maximise portfolio returns. In recent research,

the success of machine learning-based models is shown when it is used for investment strategies that aim

to maximise portfolio returns, as shown by for instance Jiang et al. (2017) and Liang et al. (2018).

Jiang et al. (2017) and Liang et al. (2018) show promising results in terms of portfolio returns by using

a deep reinforcement learning (DRL) model for an investment strategy that aims to maximise portfolio

returns, where an agent (which can be seen as an investor) is rewarded if her actions (selection of portfolio

weights) yield high returns. In their research, a neural network (the ‘deep’ component of DRL) is trained

to obtain the output (portfolio weights) that yields the highest portfolio returns based on the input

(historical returns data). Instead of solely focusing on returns, we formulate several DRL models that

are used for investment strategies with multiple objectives, namely portfolio returns, volatility and ESG

performance. Since this has never been done in any previous research, our paper is also relevant from an

academic perspective to investigate if DRL models are also suitable to be used for investment strategies,

with multiple objectives and objectives that are not related to portfolio returns.

In this research, we formulate DRL models with a multi-dimensional reward function. That is, we

combine portfolio return, volatility and ESG performance into one reward function. Each metric is given

a weight indicating the priority an investor assigns to each. We combine daily returns of S&P 500-

listed companies with daily bond returns to form ten ETFs to form a balanced portfolio. To translate

1

the environment (historical daily stock returns of the portfolio) to an action (portfolio weights assigned

to each asset) we use a neural network. We formulate three different models, where the first DRL

model calculates the gradient during training over the entire reward function. The second DRL model

calculates the gradient of the reward function during training with respect to one of the three metrics per

training iteration with probability in line with the weight assigned by the agent, leaving out the gradient

components of the other two metrics for a specific training iteration. The third model is an ensemble

of individual DRL models where each model can be used for an investment strategy with a singular

objective, namely portfolio returns, volatility and ESG performance. Based on the weights assigned by

the agent, the output of the three DRL models is combined into a single output.

Filos (2019) describes how research in portfolio management has shifted from traditional methods, such

as the Markowitz (1991) model for mean-variance portfolios, to more machine learning-based approaches

such as DRL models that can be used for investment strategies that aim to maximise portfolio returns.

Using a DRL model that is used for an investment strategy that aims to maximise portfolio returns,

they outperform the Markowitz (1991) mean-variance portfolio benchmark in terms of Sharpe ratio

and returns. Jiang et al. (2017) propose a DRL model to form a successful investment strategy in a

high-frequency trading environment that aims to maximise portfolio returns. Using this approach, they

outperform a range of machine learning-based models in terms of portfolio returns that are used for an

investment strategy that aims to maximise portfolio returns.

We build further on this research by following the steps taken to form the DRL model and in terms

of notation, but with a different (multivariate) reward function. Jiang et al. (2017) propose a so-called

‘ensemble of identical independent estimators’ (EIIE) neural network structure in their DRL model. This

means that the historical data (input of the neural network) of each asset flows independently through

the neural network. Next to this approach, we evaluate a different approach that allows for interaction

between the assets in the neural network, by combining the historical data of the considered assets in a

matrix instead of a vector as input to the neural network. This intuition is based on the GMV portfolio,

through the off-diagonal elements in the inverse covariance matrix, meaning that the dependence between

assets can be relevant to minimise the portfolio volatility.

Liang et al. (2018) also propose a range of DRL models that can be used for an investment strategy

aiming to maximise portfolio returns. Instead of using high-frequency data, they use daily returns from the

Chinese stock market. While they mainly focus on portfolio returns, they also mention a reward function

that includes both the portfolio return and volatility. However, they conclude that their approach does

not work for multivariate reward functions. Volatility is added as a penalty term to the reward function,

and only the DRL model with a very small penalty term shows some form of improvement in terms of

portfolio returns, when it is used for an investment strategy aiming to maximise portfolio returns.

Liang et al. (2018) conclude that the addition of the volatility term makes the gradient of the reward

function too complex to yield high portfolio returns during the test period and reduce portfolio volatility.

We believe this is not the main reason, but rather that finding the relationship between the input of the

neural network (historical daily returns) and the output (the portfolio weights) that aim to minimise (or

in the case of Liang et al. (2018) reduce) the portfolio volatility is too complex, in the case it is used

2

for an investment strategy that aims to maximise returns. To handle this issue, we formulate one model

that is an ensemble of individual DRL models, where one of the individual DRL models is used for an

investment strategy aiming to minimise the portfolio volatility, but where the neural network input is

historical EWMA-based volatilities for all assets, instead of historical daily returns. We mainly build

further on the neural network architecture of Liang et al. (2018), which contains a few features that aim

to solve the vanishing gradient problem during the neural network training procedure.

For a variety of weight combinations assigned by the agent to portfolio returns, volatility, and ESG

performance, we analyse the performance of each of the three DRL models that are used for investment

strategies with both singular and multiple objectives. We conclude that the model that is used for an

investment strategy with multiple objectives, which is an ensemble of individual DRL models performs

best in general in terms of average reward during the test period. We conclude that this is mainly due to

the high performance in the corresponding portfolio performance metric of each of the individual DRL

models which are used for investment strategies with a single objective.

In particular, the DRL model which is part of the model that is an ensemble of DRL models, which can

be used for an investment strategy aiming to minimise portfolio volatility performs better compared to

other DRL models in minimising the portfolio volatility. We believe this is due to the transformation that

we apply to the input of the neural network, which originally is a matrix of historical daily returns, but

which we transform to historical EWMA-based volatility estimates for all assets for this model. This leads

to a less complex task for the neural network to find a relationship between the input to the neural network

and the portfolio weights (the output of the neural network) that aim to minimise portfolio volatility.

However, in terms of minimising portfolio volatility, the GMV portfolio still significantly outperforms the

DRL models that are used for investment strategies that aim to minimise portfolio volatility. Despite

the improvement following the transformation of the input data, directly optimising through the GMV

portfolio on a daily basis seems still more effective than finding the patterns in the data to assign the

highest portfolio weights to the least volatile assets based on historical EWMA volatilities data.

We use a Bayesian hyperparameter optimisation procedure, instead of a traditional grid search to

find the optimal set of hyperparameter values that aim to maximise the reward value for each DRL

model. Using the Bayesian hyperparameter optimisation procedure as shown by Wu et al. (2019), we

can efficiently optimise a wide range of hyperparameters, since a grid search, for example, would require

evaluating all possible combinations of hyperparameter values we consider. Since our model contains

seven hyperparameters, this is computationally not feasible. We make use of SURF Research Cloud1 to

make use of parallel training with a budget of 15,000 SBU (computing hours) to perform the Bayesian

hyperparameter optimisation and the training procedure for all the considered DRL models.

Aiming to limit our lower tail risk during extreme downside market circumstances and to circumvent

the challenge of training DRL models for such scenarios with limited available data, we propose a hedging

strategy during extreme downside market circumstances. Further elaboration on this strategy is provided

later in this research. We use copulas to estimate the lower tail dependencies of all the pairs of ETFs we

use in our portfolio to form a hedging strategy. By complementing our DRL models, which are used for
1Available through SURF Research Cloud

3

https://www.surf.nl/en/services/surf-research-cloud

investment strategies with singular and multiple objectives, with a hedging strategy, we significantly re-

duce the portfolio volatility for most weight combinations for the DRL models. However, this is relatively

expensive in the sense that the portfolio returns and ESG performance suffer significantly to realise this

reduction.

Our research contributes to the current literature by forming a multi-dimensional reward function

for the proposed DRL models, instead of a ‘singular’ returns-driven reward function, by adding portfolio

volatility and ESG performance as extra reward function components. Using our approach, an agent can

explicitly assign weights to each of the three portfolio performance metrics that represent her preferences.

The weights are used during the training process to train a DRL model that can be used for an invest-

ment strategy with singular or multiple objectives, that aim to reflect the agent’s priorities in terms of

performance for the corresponding metrics.

In addition, we use a hedging strategy to complement our DRL models that aim to limit the lower tail

risk during extreme downside market circumstances. This approach significantly reduces the portfolio

volatility during the testing period for most models that are used for investment strategies with singular

and multiple objectives. Finally, we propose a solution to one of the issues faced by Liang et al. (2018)

that is related to the complexity of the gradient when a volatility component is added to the reward

function. To do so, we transform the input data of the neural network from historical daily returns to

historical EWMA-based volatilities for all assets. This leads to a more stable training process due to

the less complex relation that the neural network aims to find between the input data and the output

of portfolio weights that aim to minimise the portfolio volatility, when the DRL model is used for an

investment strategy that aims to minimise portfolio volatility.

This research is structured as follows: in Section 2 we discuss the data that is used for this research and

in Section 3 we discuss the methods we use and the details of each of the proposed DRL models. In Section

4 we discuss the results of the Bayesian hyperparameter optimisation procedure, analyse the performances

of all models when they are used for investment strategies with both singular and multiple objectives and

show the impact of using a complementary hedging strategy to reduce the portfolio volatility. Finally,

We conclude the research in Section 5.

2 Data

In this section, we discuss the data that is used to train and test our DRL models, which consists of

historical daily stocks and bonds data that are available through Yahoo Finance2. Liang et al. (2018)

show that daily stock returns data is a suitable sampling frequency to use for DRL research in the

context of portfolio management applications, which we extend with the inclusion of daily bond returns.

We choose to not go beyond ten assets in our portfolio, as this would be potentially problematic to

optimise efficiently due to the curse of dimensionality. Still, ten is larger than the paper we use the most

for this research, as Liang et al. (2018) consider only five stocks. Using the stocks and bonds data, we form

ten ETFs, which we explain in more detail in the remainder of this section. Compared to institutional
2Available through Yahoo Finance

4

https://finance.yahoo.com/

investors, a portfolio of ten assets is likely relatively small, but given that we explore a relatively new

research field, further research can be conducted to identify the maximum number of assets for which

the proposed DRL models can be trained and used for an investment strategy with portfolio returns,

volatility and ESG performance as objectives. The data ranges from 01/01/1992 until 31/12/2021, which

includes both crises and stock rallies. The data contains crises such as the dot-com bubble burst in the

late 90s and early 2000s, 9/11, the global financial crisis of 2008 and the COVID-19 crisis.

Regarding the stocks data, we use the historical daily returns of 45 US-listed stocks from the S&P

500 exchange, across a range of industries to form a balanced list of assets that include more and less

volatile stocks. The stocks are selected from nine different industries, where we include five stocks from

each industry, creating a diversified portfolio of stocks. Since the stocks have existed for at least 30 years,

there is some ‘survivorship bias’, which is a disadvantage of using daily returns data to train the DRL

models, since our models require a significant amount of data to train properly, hence the requirement

that a company has been listed for a longer period of time to yield sufficient training data.

We also include a range of US bond yields in our data set that are typically also used by institutional

investors. This approach is similar to Zhang et al. (2020), who form a DRL model that is used for an

investment strategy that aims to maximise returns. Therefore, we include a range of US bonds, namely

the 5, 10 and 30-year Treasury Yield. Using the stocks from the nine industries and the bonds, we form

ten ‘ETFs’ based on the ten equally weighted portfolios for each of the ten groups of stocks and bonds,

which is the portfolio of assets we will consider for this research. Making use of ETFs instead of single

stocks or bonds will reduce some idiosyncratic risk, making the portfolio less volatile from the start of

the training process compared to single stocks and bonds.

In addition, the S&P 500 exchange provides environmental, social and governance (ESG) scores

for each company used for this research3. Using these scores, we can train DRL models that can be

used for investment strategies with multiple objectives, where one of the objectives is to maximise the

portfolio ESG performance. The ESG scores range from 0 (ignoring ESG) to 100 (highest possible ESG

performance) and are available as a single score using the 2023 ESG measurement methodology used

by S&P Global. As the amount of ESG data does not match the stock returns data, we assume that

the ESG scores for each company have been constant between 01/01/1992 and 31/12/2021. Since the

portfolio returns and volatility components are time-varying in our reward function and the ESG scores

are constant, we expect the ESG performance component of the reward function to be potentially quite

dominant in the training procedure. This is due to the ESG component of the gradient that aims to

push the neural network weights in the same direction every training iteration to assign higher weights

(output of the neural network) to the assets with the highest ESG scores.

To match the dimensions, we assume that bonds have an ESG score of 50, making them ‘average

performers’ in terms of ESG. This is quite a strong assumption, but due to the lack of ESG bond data,

we assume average ESG performance for bonds. In case the actual ESG score for bonds is lower than 50,

we overestimate the overall actual ESG score of the portfolio and vice versa. In case more ESG bond data

becomes available, this assumption can be assessed and changed to actual data in future research. Then,
3Available through S&P 500 ESG scores 2023

5

https://www.spglobal.com/esg/scores/

we form ‘ESG ETFs’ by taking the equally weighted sum over the ESG scores for all nine industries and

bonds. We form the ETFs (for the stocks, bonds and ESG scores) ourselves, as the more common indices

and portfolios that are available through for example Kenneth French do not report ESG scores. For all

the ESG ETFs, we standardise the data by subtracting the mean and dividing by the standard deviation,

which makes the scale of the ESG data more useful to apply in machine learning models due to its scale.

Within the dataset of 30 years, the amount of trading days of bonds is 26 days less than stocks. To

cope with this mismatch, we define the returns of bonds as 0% during the days in which there is no bond

trading. In this way, every asset has the same number of trading days and makes combining stocks and

bonds in a portfolio possible.

In this research, we transform our returns to log-returns, similar to Jiang et al. (2017) and Liang et al.

(2018). We show summary statistics for the ten ETFs in Table 1. Due to some crises that occur within

our time horizon, some extreme values can be found. Interestingly, the average log-returns of the three

bonds show the highest kurtosis. The bonds in the bond ETF do not tend to show a high correlation

during extreme events between each other, such as on 29/09/2008. During the start of the global financial

crisis of 2008, the 30-year Treasury Yield went up around 34%, whereas the 5-year Treasury Yield went

down around 5%. Similar examples occur throughout the time window. Also, the Energy ETF is not

the worst-performing asset in terms of ESG performance, but the Financial ETF performs the worst.

This might be explained by the fact that ESG stands for environmental, social and governance, meaning

that the companies within the Financial ETF might perform worse in terms of social and governance

aspects or invest heavily in unsustainable companies, related to the public criticism for example that ING

(February 2024) faced.

Table 1: Summary statistics for the log-returns and ESG scores of the formed ETFs. ‘E&T’ stands for Enter-

tainment and Telecom, ‘An. mean (pp)’ stands for annualised mean returns in percentage points and ‘J.B. stat’

stands for the Jarque-Bera test statistic to test normality. The data runs from 01/01/1992 until 31/12/2021

Tech Industrial Financial Energy Health Consumer E&T Materials Retail Bonds

An. mean (pp) 21.9 12.7 12.3 12.5 11.6 9.58 11.6 12.2 16.3 -4.05

Minimum -0.136 -0.165 -0.194 -0.175 -0.102 -0.078 -0.108 -0.140 -0.160 -0.289

Maximum 0.149 0.143 0.176 0.217 0.082 0.087 0.138 0.122 0.128 0.344

ESG score 0.361 -0.214 -1.24 -0.630 1.76 1.42 -1.14 0.170 -0.630 0.137

Std. Dev. 0.019 0.015 0.018 0.016 0.012 0.010 0.013 0.014 0.014 0.022

Skewness 0.007 -0.367 0.131 -0.261 -0.114 0.123 -0.014 -0.191 -0.051 0.122

Kurtosis 4.413 10.614 16.835 20.497 5.092 6.381 7.770 8.105 7.22 28.370

J.B. stat. *629 *18424 *60290 *96486 *1394 *3618 *7165 *8252 *5619 *202677
∗p < 0.01

Due to the high kurtosis of all ETFs, which indicate fat tails in the distributions of the log-returns,

we can reject the Jarque-Bera test for normality at a 1% significance level. Also, we observe that overall

during the considered period, the stocks within the Tech and Retail ETFs outperform the other industries

in terms of average annualised returns as percentage points.

In addition, we show how the ETFs are related through Kendall’s τ and Spearman correlation values

in Table 2. As expected, since bonds are a different asset type and are often chosen to diversify the

6

portfolio to include assets that are not stocks, they are the least related to the other ETFs.

Table 2: Kendall’s τ values (lower-left) and Spearman correlations (upper-right) for the log-returns of the ETFs.

The data runs from 01/01/1992 until 31/12/2021

Tech Industrial Financial Energy Health Consumer E&T Materials Retail Bonds

Tech 1.000 0.532 0.499 0.411 0.419 0.342 0.537 0.460 0.509 0.206

Industrial 0.338 1.000 0.695 0.591 0.532 0.493 0.645 0.662 0.616 0.306

Financial 0.323 0.455 1.000 0.544 0.523 0.465 0.634 0.586 0.600 0.311

Energy 0.248 0.350 0.321 1.000 0.450 0.423 0.534 0.612 0.437 0.248

Health 0.275 0.332 0.355 0.257 1.000 0.560 0.551 0.452 0.582 0.183

Consumer 0.226 0.300 0.314 0.247 0.354 1.000 0.516 0.461 0.494 0.139

E&T 0.338 0.393 0.410 0.298 0.354 0.334 1.000 0.562 0.619 0.231

Materials 0.290 0.408 0.350 0.363 0.267 0.266 0.328 1.000 0.516 0.233

Retail 0.325 0.382 0.400 0.255 0.378 0.317 0.390 0.306 1.000 0.206

Bonds 0.122 0.148 0.151 0.114 0.086 0.046 0.103 0.115 0.106 1.000

As shown in Table 1, each industry showcases a high kurtosis. These fat tails result in extreme values,

that are, generally speaking, hard to predict. We define extreme downside market events as the trading

days that yield the 5% lowest portfolio returns during a specific time horizon, using a DRL model that is

used for an investment strategy with singular or multiple objectives. To limit the downside risk associated

with the extreme downside market events, we define a hedging strategy to complement our DRL models,

which are used for an investment strategy with singular or multiple objectives, which we elaborate further

on in Section 3.2. We train our DRL models without the 5% lowest daily returns data in the case that

we complement the DRL models with a hedging strategy. We will assess both the performances of the

DRL models that are used for investment strategies with singular and multiple objectives that use the

entire training data set, as well as the ones that are trained without the 5% lowest returns and that are

complemented by the hedging strategy.

3 Methodology

3.1 DRL Model

3.1.1 Model setup

In a DRL model, an agent is rewarded after her actions following a given state (environment). In this

setting, the agent can be seen as a portfolio manager who invests in ETFs over a period of time. After each

action (finding a set of portfolio weights), the agent is rewarded following a reward function with multiple

metrics, which we elaborate on in the next section. Similar to Jiang et al. (2017), the environment (state)

our agent operates in is driven by the returns of the ten assets, comprising our defined ETFs. In addition,

we add the (constant) ESG scores of each asset to our environment, denoted by E.

Since our dataset of returns is vast and returns before a certain threshold are likely to contain little

insights for today’s actions of the agent, we follow Jiang et al. (2017) in defining a ‘price tensor’ that

limits the number of trading days included in our model, through the input of the neural network. Our

7

price tensor is a rolling window of the past NH historical trading days for all assets. We denote our

price tensor as Vt, which includes all returns for each asset from t−NH until t− 1. For each time t, our

agent’s environment is given through the state St = (Vt, E), where Vt is the input to the DRL model at

time t and E is used to train and evaluate the ESG component of the reward function. Given the state,

the agent chooses an action at at time t that aims to maximise the reward function during a certain test

period, based on the output of the DRL model. In our case, the output of the DRL model is the output of

the neural network at time t, which is equal to at, which are the portfolio weights that the agent chooses

at time t.

Due to our neural network architecture, which we discuss further in Section 3.1.4, we do not allow

for short-selling and the sum of the portfolio weights at at time t is equal to one (the entire budget is

always used). To reduce the transaction costs that the agent faces due to the daily rebalancing, additional

restrictions could be incorporated to add a restriction between the difference between at−1 and at. For

example, there could be a maximum on the absolute or relative difference between the portfolio weights

in at compared to at−1 for all assets. Since transaction costs are not part of the main goal of this research,

we do not explore such restrictions, but could be analysed in future research.

3.1.2 Reward function

The reward function measures the average reward throughout the test period, from t = TPbegin until

t = TPend, where the total number of test days is denoted as TTP , a similar intuition as used by Jiang

et al. (2017). Since we aim to incorporate multiple portfolio metrics in our reward function, we define our

reward function as multivariate. First, the portfolio’s return rt at time t should be as high as possible

and is calculated by wtRt, where Rt denotes the vector of returns for each asset at time t. Second,

our portfolio volatility should be as low as possible, meaning we subtract the estimated volatility V̂ olt

as input in our reward function. In Section 3.1.3, we define how V̂ olt is derived. Last, we include the

weighted ESG score Et of our portfolio at time t, calculated by wtE, which should be as high as possible.

During training, we standardise the input for each of the three gradients (the Rt, V̂ olt and E components)

by subtracting the mean and dividing by the standard deviation in each training iteration, as it is not

desired that one gives a disproportional high contribution to the training procedure of the DRL model,

only because of a different measurement unit.

Since we are combining the three portfolio performance metrics, we assign weights to each metric by

defining 0 < wR < 1 as the relative importance of high portfolio returns, 0 < wV < 1 as the relative

importance of low portfolio volatility and finally 0 < wE < 1 as the relative importance of a high portfolio

ESG performance. In addition, we set the constraint of wR + wV + wE = 1. In this way, an agent can

adjust the model to be completely designed to her preferences. In Section 3.1.8 we show the set of weights

assigned per metric that we evaluate and how we evaluate the reward function for each combination of

weights. Together, the reward over a given test period from t = TPbegin until t = TPend is given by the

reward function:

8

R =
1

TTP

 TPend∑
t=TPbegin

(wRrt − wV V̂ olt + wEEt)

 (1)

In the remainder of this paper, if we refer to a certain ‘DRL model’, it refers to a DRL model that is

used for an investment strategy with multiple or singular objectives corresponding to the weights that

are assigned by the agent through the reward function. The output of the DRL model is a vector of

portfolio weights that are invested in the corresponding ten ETFs to form a portfolio. In addition, if the

agent sets for example wV > 0, the objective of the agent is to minimise the portfolio volatility during the

test period if the DRL model is used for an investment strategy that aims to minimise portfolio volatility

(and potentially maximise portfolio returns and ESG performance). We denote this as "the agent aims to

minimise portfolio volatility" or "the DRL model aims to minimise portfolio volatility" for convenience.

3.1.3 Reward function extension: volatility

One of the components of our reward function revolves around portfolio volatility. A possible way to

derive this is to compute the sample covariance matrix and use this to calculate the portfolio volatility.

However, this method assumes recent returns to be as equally important as more dated returns, which

may not be realistic given the fact that the agent rebalances the portfolio daily.

To address this limitation, we incorporate the Exponentially Weighted Moving Average (EWMA) in

our volatility model, similar to Bollen (2015). By assigning higher weights to recent data points, EWMA

accounts more for recent changes in market conditions, making it a good fit for real-time volatility

assessment.

Bollen (2015) show that the EWMA model can be written as follows, where NH denotes the amount

of past daily returns of stock j that are used to estimate the volatility, which is available in the price

tensor as input to the model. The importance of each past daily return included decays by factor λ. We

denote the squared returns of asset j at time t− i as R2
j,t−i. We set the value of λ to 0.94, the RiskMetrics

decay factor as described by Mina et al. (2001), who show that this yields favourable results in terms of

root mean squared error (RMSE) and mean absolute error (MAE). Since we do not take the sum until

infinity, we acknowledge that this approach is slightly biased, but since NH ranges between 45 and 55

(explained in Section 3.1.9) this bias is limited. Together, the volatility estimator of asset j for time t is:

σ2
j,t = (1− λ)

NH∑
i=1

λiR2
j,t−i (2)

This procedure is done for all ten assets in our portfolio. In addition, we calculate the sample covariances

of all pairs of assets within our portfolio using the NH past daily returns of each asset. Together with

the estimated variances of all assets, we form the estimated covariance matrix at time t as Σ̂t. Since the

outcome of our proposed DRL model will be the new portfolio weights wt, the estimated volatility of our

portfolio at time t becomes:

V̂ olt =

√
w′

tΣ̂twt (3)

9

Using the proposed volatility model, we can add volatility to our reward function, described in Section

3.1.2. regarding our reward function setup.

3.1.4 Policy function specifications

To move from state to action, we form a policy function πΘ, which includes model parameters Θ (Jiang

et al. (2017)). In the case of a DRL model, Θ consists of the neural network parameters. The policy

function generates the action of the agent:

at = πΘ(St) (4)

We aim to design a policy function that maximises the expected reward of the agent during the testing

period, which is equivalent to:

π∗
Θ = argmax

πΘ

E[R|πΘ] (5)

In our research, we form a neural network to form our policy function, hence the distinction between RL

and DRL. Instead of a neural network, there are numerous other options to define a policy function. For

example, a very simple policy function would be to assign a portfolio weight at time t of one to the asset

that yielded the highest return at time t−1. As described in the previous section, the input of our model

is the price tensor Vt, the output should be a vector of positive weights summing up to unity. After

training our neural network over the training data, we test the performance of our DRL model during

the test period. By using a neural network in our DRL model, we can estimate the relationship between

the price tensor and the portfolio weights that yield the highest reward.

A significant difference between our proposed neural network architecture and the architecture used

by Jiang et al. (2017) and Liang et al. (2018) is that we take the entire price tensor Vt at day t as input

to our neural network. For the sake of training efficiency, Jiang et al. (2017) and Liang et al. (2018)

consider a so-called ‘ensemble of identical independent estimators’ (EIIE). This means that the historical

data of each asset is passed independently of all other assets through a neural network, where all assets

share the same model parameters.

For a DRL model using EIIE neural network structure, Jiang et al. (2017) show that a single neural

network is trained, that has an output of a single ‘voting score’ (the higher the voting score, the higher the

portfolio weight the agent should assign to a certain asset) based on the price tensor of a single asset. The

price tensors of all assets are passed independently through the neural network, collecting all the voting

scores for all assets. Then, all the voting scores are combined in a softmax output function to create

an output that is a vector of weights that sum to unity, which the agent can use to form an investment

strategy to maximise returns. To propose a DRL model that aims to maximise portfolio returns or ESG

performance or both, we believe the EIIE approach is quite intuitive, based on the idea that the voting

score of a single asset does not necessarily need the price tensors of other assets to optimise these two

metrics in a DRL model.

If the data of all assets is passed through the neural network independently for each asset, we believe

it might be difficult to find cross relations that can be used in case the agent aims to minimise the

10

portfolio volatility. In the GMV portfolio, the covariance matrix Σt at time t, which includes the off-

diagonal covariance values, is crucial to derive portfolio weights that aim to minimise portfolio volatility.

If we translate this intuition to our neural network architecture, we believe the neural network should be

able to find relations between assets as well and use this to train a DRL model that aims to minimise

portfolio volatility. Since we consider a portfolio of ten assets, we believe that this approach is feasible,

however, if for example twenty assets are considered, the number of neural network parameters is likely

to increase exponentially which can make the training of the neural network too complex. Jiang et al.

(2017) conclude that the scalability of a DRL model with an EIIE neural network is another advantage,

since all assets share the same neural network, meaning that it can be used by an agent that considers a

much larger number of assets similar to the scale of investments of an institutional investor. Due to this

reasoning, we consider both our proposed and the EIIE neural network approach.

Jiang et al. (2017) consider three different types of hidden layers for their neural network models within

their policy functions: the convolutional neural network (CNN), the recurrent neural network (RNN) and

the long short-term memory (LSTM). They conclude that CNN and RNN outperform LSTM, possibly

because LSTM is less capable of recognising repetitive patterns. Instead of choosing one type of layer,

we construct a neural network consisting of several different layers to capture as many patterns from the

financial data as possible. We make use of both CNN and RNN layers in our neural network architecture,

which we elaborate further on in the remainder of this section.

In the context of stock price prediction, Selvin et al. (2017) conclude that RNN, unlike CNN, has

an internal memory feature that is suitable for capturing sequential patterns in the input data, which is

historical stock prices in their case. In terms of similarities, Selvin et al. (2017) describe that both CNN

and RNN are capable of finding patterns in time series data, like historical stock returns, but that CNN

and RNN use different approaches to extract these patterns from the data. In CNN, a kernel is defined

and used to slide over the input of the CNN layer, which in most literature is either of size 3x3, 5x5 or

7x7. The kernel slides through the input data to extract features for all the subgroups of data equal to

the kernel size. If we use a kernel size of 3x3 for example, CNN analyses all possible 3x3 submatrices

within the input data to extract features. In the case of the EIIE approach, a kernel of size 3 will not

analyse all submatrices of size 3x3, but all subvectors of size 3 of the input data, since the input data is

a vector instead of a matrix for this approach.

Both Jiang et al. (2017) and Liang et al. (2018) conclude that a DRL model that uses a neural network

containing CNN layers outperforms DRL models using a neural network containing RNN or LSTM layers,

in terms of maximising the returns during the test period, but they both do not explain explicitly why

CNN performs better. Selvin et al. (2017) conclude that CNN outperforms RNN and LSTM in terms

of predicting stock prices, due to the capability of CNN to capture patterns in stock data that do not

necessarily follow consistent patterns, due to the noisy nature of stock data. Therefore, we first add a

CNN-based component in our neural network architecture designed to find the most obvious patterns in

the data for each asset, which are not necessarily (temporarily) visible. After that, we add a RNN-based

component, to capture sequential (short-term) patterns in the data. Since a DRL model that uses an

LSTM layer is outperformed by similar DRL models using RNN and CNN layers in terms of portfolio

11

returns during the test period, as shown by Jiang et al. (2017), we exclude this type of hidden layer in

our neural network architecture.

For extensive neural networks, as described by both Jiang et al. (2017) and Liang et al. (2018), the

vanishing gradient problem can be problematic for the training procedure of the neural network. That

is, the gradient used for the gradient ascent algorithm converges to zero. When deriving the gradient

using backpropagation, the product of a range of (small) partial derivatives can potentially converge to

zero quickly. After trying a few neural network models without any modifications to solve or prevent the

vanishing gradient problem, we experienced that our gradients converged to zero quickly, which made

the training of the neural network not possible. Hence the reason we focus on the vanishing gradient

problem in the remainder of this section. We propose three possible solutions to tackle the gradient

vanishing problem: finding the activation function that limits the vanishing gradient problem, using

batch normalisation within the neural network and adjusting our neural network to be a residual neural

network. These three solutions are based on the approach by Jiang et al. (2017) and Liang et al. (2018).

First, similar to Jiang et al. (2017) and Liang et al. (2018), we use ReLU activation functions. Limited

research is conducted regarding activation functions in DRL context, focusing on solving the gradient

vanishing problem. However, since ReLU is defined as:

ReLU(x) =

x if x > 0

0 else

The derivative is either 1 or 0, which is computationally efficient and will partially prevent vanishing

gradients. In contrast, the sigmoid function has the property that its gradient becomes very small as the

absolute input values become large (σ′(x) approaches zero as |x| increases). This property of the sigmoid

function leads to the vanishing gradient problem, especially in relatively deep networks with many hidden

layers. When gradients become extremely small, the network becomes challenging to train effectively.

Second, we perform batch normalisation within each hidden layer similar to Liang et al. (2018). Batch

normalisation was first proposed by Ioffe and Szegedy (2015) and is used to standardise (by subtracting

the mean and dividing by the standard deviation) the input of each activation function. By using batch

normalisation, Ioffe and Szegedy (2015) show that the distribution of the activations (the input to the

activation function) is stabilised across all layers of the neural network, which subsequently makes the

gradient flow in the neural network more stable and makes it less likely that the gradients will converge

to zero. This will help to partially solve the gradient vanishing problem. Using batch normalisation, we

prevent values from becoming very small or large by rescaling through normalisation before the values

are activated through the activation function, as well as stabilising the distribution of activations across

hidden layers.

Third, we transform our neural network to a deep residual network by using residual blocks and

residual connections to our neural network architecture, which is based on the research by He et al.

(2016). We will elaborate on the details of residual blocks and connections later in this section. Based on

this research, Liang et al. (2018) use a residual network as a solution to the vanishing gradient problem

as they note that "Deep residual network solves this (vanishing gradient) problem by adding a shortcut

12

for layers to jump to the deeper layers directly, which could prevent the network from deteriorating as

the depth adds."

Similar to Liang et al. (2018), we form a neural network that starts with a CNN layer and is followed

by a CNN residual block. A residual block, consisting of two successive CNN layers, helps to partially

solve the gradient vanishing problem by allowing residual (shortcut) connections. The term ‘residual’

refers to the input of the activation function, which is added to the output of the activation function

as an additional (or ‘residual’) term. These shortcuts provide a direct path for gradients to propagate

backwards through the network, thus mitigating the risk of vanishing gradients. The price tensor data

is first processed by our initial CNN layer, which then passes its output through the residual block. The

connections within the residual block offer a direct pathway for the original input data to bypass the

CNN layers and be added directly to the output of the activation function. If we define the activation

function F (x) with input x, the output H(x) within a residual connection can be defined as:

H(x) = F (x) + x (6)

Within the residual block, each of the two CNN layers also includes batch normalisation, before the ReLU

activation function. Similar to Liang et al. (2018), the process of the residual block is repeated five times.

Due to the structure of the residual block, we can create a much deeper neural network opposed to a

‘standard’ neural network, by repeating the residual block multiple times. Without the residual structure,

the gradients would converge to zero if a similar deep neural network was created with the same number

of CNN layers. The residual block hence allows the extraction of more information from the data and to

reduce the risk of a vanishing gradient.

In addition, since our reward function is multivariate and hence more complex than the reward

function described by Liang et al. (2018), we include a residual RNN layer after the CNN blocks, to

capture sequential patterns in the input data. This approach is similar to the CNN residual block and

helps to improve the gradient flow during the process of backpropagation. The difference is that instead

of two hidden layers within a block, the input of the activation function is added to the activation function

of the RNN layer. CNN and RNN layers can not be combined within the same residual block due to the

convolutional nature of CNN and the sequential nature of RNN. Similar to our CNN residual block, we

use batch normalisation before the output function of the layer.

To prevent overfitting, we add a dropout component to our neural network, similar to Liang et al.

(2018). Before the softmax activation function, a random selection of neurons is set to zero, making sure

the model becomes more robust. We set a percentage δ of all neurons equal to zero. In addition, since

our output should be a vector of size ten and our input is a matrix of historical daily returns, we add

a flatten layer to reach the desired output dimension. An activation function for our output layer that

is suitable for our research is softmax, first of all since the output sums to unity (the entire budget of

the agent is used) and second since the output ranges between 0 and 1 which gives interpretable long

positions for each asset in our portfolio. One limitation is that this does not allow the agent to apply

short selling any asset, similar to Jiang et al. (2017) and Liang et al. (2018).

In Figure 1, we show a visualisation of our proposed neural network architecture, starting from the

13

state and ending at the action. The residual CNN block and residual RNN connection are shown through

the flow of the input X, which is added to the output of the residual block or connection F (X) before

flowing through the ReLU activation function. Similar to Liang et al. (2018), the residual block is repeated

five times.

Figure 1: Overview of the proposed neural network architecture, including the residual CNN block and

residual RNN layer

Using a Bayesian hyperparameter optimisation procedure, we aim to find the optimal number of nodes

in each hidden layer NNodes, the value for the kernel used in the CNN layers NKernel and the appropriate

14

dropout rate δ, which is discussed in Section 3.1.9. To code the neural network, we make use of the Keras4

and TensorFlow5 packages within Python.

3.1.5 Gradient ascent algorithm

To train our DRL model, we update the neural network parameters Θ in the direction of maximising

the reward function given the preferences (priority weights) of the agent. First, we initialise the model

parameters randomly, after which we update the parameters using a mini-batch gradient ascent algorithm

with learning rate λ. We make use of Adam to allow the learning rate to be adaptive as formulated by

Kingma and Ba (2014), a method that is widely used in literature and shows successful results due to

its ability to change learning rates per model parameter based on past gradients. Similar to Jiang et al.

(2017), the training data is split into intervals, where one interval equals [ta, tb], where ta and tb can

be adjusted to change the batch size. We denote R[ta,tb] as the reward value within the interval [ta, tb].

Together, the mini-batch gradient ascent algorithm becomes:

Θ → Θ+ λ∇ΘR[ta,tb](πΘ) (7)

To implement a form of randomness in the training procedure, we switch from mini-batch gradient

descent to stochastic mini-batch gradient descent. By selecting batches randomly, we introduce a form

of randomness inside our training procedure which is likely to help prevent the model from overfitting to

the training data quickly.

If we define B = {B1, . . . , Bs} as all s batches that can be formed given our batch size NBatch, we

pick a batch randomly from this set each training iteration following a uniform distribution, which is

used in each step of the training procedure within our stochastic mini-batch gradient ascent algorithm.

This means during each training iteration, we choose a batch b ∈ B ∼ U(B) randomly which we use

to update our neural network parameters. For both the learning rate λ and the batch size NBatch, we

use a Bayesian hyperparameter optimisation procedure described in Section 3.1.9 to obtain the optimal

hyperparameter values.

3.1.6 Model alternatives

To train our DRL model, we calculate the gradient of our reward function with respect to the model

parameters Θ for each training iteration. Essentially, this means that the sum is taken from all individual

gradients of returns, volatility and ESG scores within the reward function. We denote this original model

that takes the ‘combined’ gradient as MC . If successful, the training process results in a DRL model that

performs well in terms of portfolio returns, volatility and ESG performance and the weights assigned to

each metric in the reward function reflect the relative performance of each metric. However, a potential

challenge is that the gradients of returns and volatility have different signs (returns positive and volatility

negative in the reward function), which might cancel the effect of both gradients out if the sum is close to

zero. In addition, the gradient might be quite complex since it is the sum of three gradient components,
4Available through Keras
5Available through TensorFlow

15

https://keras.io/
https://www.tensorflow.org/

which might lead to difficulties during the training of the model. This leads to the choice of either

training the DRL model based on the entire gradient (the sum of the gradients of all three components)

or splitting the reward function into three components corresponding to the three metrics and focusing

on each component separately rather than the combined reward. We present two alternative models that

are based on the latter approach to analyse which method leads to the highest average reward value

during the test period.

Pasunuru et al. (2020) define a method to train a DRL model with a multivariate reward function,

where the gradient of the reward function is calculated with respect to a single component of the reward

function each training iteration. Pasunuru et al. (2020) suggest first defining the priority assigned to

each metric, which is a straightforward procedure in our case since we explicitly assign priority (weights)

through wR, wV and wE to each metric. Then, based on the given importance of each metric, they define

a method that optimises the DRL model based on the metric that is expected to improve the reward

value the most.

Pasunuru et al. (2020) use an approach where the priority is based on the metric that is most under-

performing, where the metric that is most under-performing is selected as the metric that should be

optimised in a given training iteration. Since we have explicitly assigned priorities through the weights

in the reward function, we use a different approach. Despite the context of their research being centred

around language generation, we make use of the intuition to calculate the gradient of the reward function

with respect to a single component of the reward function, rather than considering the entire gradient,

to define our first alternative model. Due to the lack of research conducted on DRL models with a

multivariate reward function that is used for portfolio management applications, we believe that this

intuition might be useful to achieve more favourable results in terms of average reward during the test

period since this would make the gradient less complex for each training iteration.

We define pR = wR, pV = wV and pE = wE as the probabilities that we train the DRL model for a

certain training iteration by calculating the gradient of the reward function with respect to the portfolio

returns, volatility and ESG performance component respectively, in line with the weights assigned by the

agent. This means that the other two metrics are left out of the gradient for a certain training iteration.

We formulate two random variables: BR and BV , which are both boolean variables and defined using a

uniformly drawn value U(x) ∼ U(0, 1). The returns boolean BR is defined as:

BR =

1 if U(x) < wR

0 otherwise
(8)

and the volatility boolean BV is defined as:

BV =

1 if wR < U(x) < wV + wR

0 otherwise
(9)

Now we can define the first model based on separate gradients MS1 as follows, where the gradient

that is used during gradient ascent over a given batch for a certain training iteration is denoted as

16

∇ΘR[ta,tb](πΘ)S1
:

∇ΘR[ta,tb](πΘ)S1
=


∇Θ(wRrt)[ta,tb](πΘ) if BR = 1 and BV = 0

∇Θ(wV V̂ olt)[ta,tb](πΘ) if BR = 0 and BV = 1

∇Θ(wEEt)[ta,tb](πΘ) otherwise

(10)

∇Θ(wRrt)[ta,tb](πΘ), ∇Θ(wV V̂ olt)[ta,tb](πΘ) and ∇Θ(wEEt)[ta,tb](πΘ) denote the separate gradients of

the returns, volatility and ESG scores components respectively. The values of the parameters with a

subscript t range from ta until tb, depending on the batch used for the training iteration.

The second alternative model based on separate gradients is a combination of three DRL models. The

initial MC DRL model has as input the price tensor Vt, consisting of a set of historical daily returns of

the included assets. Based on this specific input, it is intuitively possible to find the assets that perform

well returns-wise and adjust the neural network parameters in such a way that the output of the neural

network yields higher portfolio weights for the best-performing assets in terms of returns. However, for

portfolio volatility, the intuition is a bit more complex. Considering the EWMA formula for volatility,

historical returns (the input for the neural network) need to be transformed to find the volatility per asset.

The neural network is rather deep, which theoretically makes it possible to find this relationship and train

the DRL model to minimise portfolio volatility. However, intuitively this might be too complex for the

model to both use historical returns to improve portfolio returns as well as reduce portfolio volatility,

since they both need to find different relationships from the same input data. Given these challenges, we

develop a third model that is an ensemble of three individual DRL models that aim to optimise a single

objective being the portfolio returns, volatility and ESG performance, which are then combined through

a weighted sum based on wR, wV and wE .

If we define the DRL models to optimise the portfolio returns, volatility and ESG scores as MR, MV

and ME respectively, the second alternative model MS2 is defined as:

MS2 = wRMR + wV MV + wEME (11)

Essentially, this means that the portfolio weights that follow from MS2 are a weighted sum, based on

the weights assigned to returns, volatility and ESG scores, which are multiplied by the output (portfolio

weights) of the three models MR, MV and ME . This makes the MS2 model an ‘ensemble’ of individual

DRL models to optimise portfolio returns, volatility and ESG, in line with the priority weights assigned

by the agent. MR, MV and ME use the same neural network architecture as described in Section 3.1.4

with the difference being the input and the values of each hyperparameter. MR takes the original price

tensor Vt as input consisting of historical returns, whereas MV takes the EWMA volatility estimates as

described in Section 3.1.3 as input. MV has NV ol number of historical EWMA-based volatility estimates

for all assets as input. MV uses the NH figure from MR to calculate the EWMA volatility estimates for

NV ol number of historical days for all assets.

MR is chosen as the best-performing out of the MC and MS1 models where wR = 1 in terms of average

daily returns during the validation period. Similarly, ME is chosen as the best-performing model out of

the MC and MS1 models where wE = 1 in terms of average daily ESG performance during the validation

17

period. MV takes wV = 1 to form a DRL model that focuses solely on minimising portfolio volatility.

3.1.7 Exploration and exploitation

Within reinforcement learning, the agent can either explore (try new actions) or exploit (evaluate existing

actions). To train efficiently, a balance between exploration and exploitation can be beneficial. We follow

Jiang et al. (2017) to form a portfolio vector memory (PVM) to store our actions during the training

process. If we define Ttrain as the number of training days, the PVM is a tensor of size NPVM ∗Ttrain∗10,

because we have 10 assets in our portfolio. We set NPVM equal to ten, given the memory-expensive

storage of the past weights for all the train days that are considered. We initialise the PVM as a matrix

containing only 1/N equally weighted portfolio weights, similar to Jiang et al. (2017) to consider portfolio

weights that are relatively stable at the beginning of the training period in the sense that it assigns equal

weights to all assets.

During each training day, we draw a value from a uniform distribution U(x) ∼ U(0, 1), if it is smaller

than a specified value 0 ≤ ϵ ≤ 1, we use exploitation (use the corresponding weights from the PVM)

and otherwise exploration (use the corresponding price tensor to derive the portfolio weights through the

output of the neural network). If the agent uses exploration at day t, the corresponding column t of the

PVM is updated with the new portfolio weights. After a number of training iterations, the majority of

the 1/N weights will be overwritten by the actual output of the DRL model. Using PVM, we can improve

training efficiency since we make less use of the computationally expensive neural network. In addition,

we improve the stability of the training procedure mainly at the beginning of the training procedure, since

1/N weights are also considered, which is relatively less volatile compared to the output of the (limited

trained) neural network model at the beginning of the training procedure. In Section 3.1.9, we describe

how we aim to find the optimal value of ϵ through a Bayesian hyperparameter optimisation procedure.

3.1.8 Priority weights and reward function evaluation

We make the following selection of weights for wR, wV and wE that each model will consider: {wR, wV , wE}

= {(1/3, 1/3, 1/3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5), (0.7, 0.2, 0.1),

(0.2, 0.7, 0.1), (0.45, 0.45, 0.1)}. Since the ESG data is constant, the last three weight combinations as-

sume that a relatively low wE still makes optimising the ESG performance possible, due to the relatively

straightforward optimisation procedure for this metric. Using the selection of weights, we can evaluate

the ability of each of the models to optimise the portfolio in line with the priority assigned to each metric.

The reward function we defined in Section 3.1.2 is convenient for the training of the DRL models

since the gradient of the reward function can be split up into individual components per portfolio metric.

However, in terms of evaluating the actual reward it is not. All three metrics have different scales,

making the weighted sum of all metrics not informative or sparse. However, if we perform any kind

of standardisation and take the average value or sum for each metric we are not able to observe if the

training will improve the portfolio performance with respect to all metrics. If we take the average of a

standardised variable (with standardisation using subtraction of mean and division of standard deviation)

it will per definition be around zero. Therefore we make use of the reward function of 3.1.2 to train the

18

DRL models through the gradient ascent algorithm and the following reward functions to evaluate which

model for a given combination of weights performs best.

This solution is not very intuitive, but we will focus mainly on the portfolio returns, volatility and ESG

performance metrics in the analyses of the results. We believe that the tradeoff between having a reward

function that is either convenient to use during training or one that is convenient for evaluation might

be the most challenging aspect of a multivariate reward function in the context of portfolio management.

The reward functions we define in the remainder of this section are convenient to use for evaluation, but

due to the division and multiplication of metrics the reward functions are not very convenient for the

training procedure due to the complex gradients.

For the models with weight wR = 1, wV = 1 and wE = 1, the alternative reward function for evaluation

is simply the average daily value during the test period for the corresponding portfolio performance metric.

For the other weight combinations, we use the following reward functions to evaluate which model for a

given weight combination performs best in terms of reward. Similar to the intuition behind the Sharpe

ratio, we incorporate a term that is equal to the portfolio returns divided by the portfolio volatility.

This term is then multiplied by the ESG performance to result in ‘ESG and risk-adjusted returns’. The

intuition behind the ‘(1-wV)’ part is that the reward increases when the denominator decreases, meaning

that if we assign a high value to wV the reward should increase relatively more when the portfolio volatility

at time t decreases compared to a lower wV value. The intuition behind the ‘(1+Et)’ part is that since we

standardised the ESG data, this prevents the reward from becoming instantly negative when Et < 0 (now

only when Et <1). This can be interpreted as a factor that either increases or decreases the risk-adjusted

returns. Despite not being consistent, an increase in performance for each of the three metrics in the

reward function as explained in Section 3.1.2 also leads to an increase in the reward functions stated

below. For the different weights, the average daily reward functions are defined as:

R =
1

TTP

 TPend∑
t=TPbegin

wRrt

(1− wV)V̂ olt
wE(1 + Et)

 if wR > 0, wV > 0, wE > 0 (12)

R =
1

TTP

 TPend∑
t=TPbegin

wRrt

(1− wV)V̂ olt

 if wR > 0, wV > 0, wE = 0 (13)

R =
1

TTP

 TPend∑
t=TPbegin

(wRrt)wE(1 + Et)

 if wR > 0, wV = 0, wE > 0 (14)

R =
1

TTP

 TPend∑
t=TPbegin

1

(1− wV)V̂ olt
wE(1 + Et)

 if wR = 0, wV > 0, wE > 0 (15)

For the above reward functions, we have also tried to use them in the training process, but the complexity

of the division and multiplication, as well as the fact that the gradient is not a sum, made the gradients

too complex to effectively train the DRL models to optimise the returns, volatility and ESG performance.

Hence the distinction between the reward function used for training and the reward functions used for

evaluation. In future research, a possible solution to this complex issue might be interesting to find.

19

3.1.9 Bayesian hyperparameter optimisation

To derive the hyperparameters that yield the highest reward values during the validation period for a

certain DRL model, we perform a hyperparameter optimisation procedure on the hyperparameters of the

model. There are several hyperparameters we can tune to optimise the reward that the policy function

yields. The parameters that we aim to optimise are the learning rate λ, the exploration/exploitation

distribution ϵ, the dropout rate ρ, the batch size NBatch, the number of nodes per hidden layer NNodes,

the kernel size NKernel for the CNN layers and the number of historical daily returns data included in

the price tensor NH .

A traditional grid search would be very computationally intensive and time-consuming since this would

require considering a significant amount of different combinations of hyperparameters. For example, if

we consider three values per hyperparameter for a single DRL model this would already lead to 37

= 2,187 different models to evaluate, which is not computationally feasible given the (already quite

complex) training procedure. A different approach is Bayesian hyperparameter optimisation, designed to

efficiently evaluate different hyperparameter values. We follow Wu et al. (2019) to define the Bayesian

hyperparameter optimisation. First, we define the outcome space X, containing the ranges of each

of our hyperparameters in which the optimisation procedure aims to find the optimal value for each

hyperparameter:

X =



λ

ϵ

ρ

NBatch

NNodes

NKernel

NH


∈



[0.00001, 0.01]

[0, 1]

[0, 0.5]

[25, 75]

[5, 20]

[3, 7]

[45, 55]


(16)

Some hyperparameters have a relatively wider range compared to others, which allows the Bayesian

hyperparameter optimisation procedure to find the optimal values, without the need for significant prior

belief on each parameter. Some hyperparameters, namely λ, ϵ, ρ, NKernel and NH are defined using

some prior knowledge. Liang et al. (2018) set λ = 10−3 and ϵ is per definition between 0 and 1, as we

can either use full exploitation or exploration and anything in between. Also, ρ is per definition between

0 and 1, but we do not think it is realistic to drop more than 50% of all neurons in the neural network.

NBatch and NNodes have a broader range than NKernel and NH as we have less intuition for these

values. NKernel is usually given an odd number of either 3, 5 or 7 which are also the three values we

consider (we round any value between 3 and 7 to the nearest option of either 3, 5 or 7). Jiang et al. (2017)

set NH = 50, which we use to set a relatively narrow range of NH between 45 and 55. For the MS2

models where wV = 1, we set a range of NV ol to be between 5 and 15, as we believe that the volatility

of a certain asset changes relatively less from day to day compared to daily returns, making it redundant

to have a high dimensional input of past EWMA-based volatility estimates.

20

As described by Wu et al. (2019), we choose an acquisition function to assess whether a new set of

hyperparameters is expected to improve the performance of the DRL model. There are several acquisition

functions, with probability of improvement (PI) and expected improvement (EI) being the most well-

known. According to Wu et al. (2019), EI is more suitable for a balance of exploration and exploitation,

whereas PI only considers exploration. In addition, they claim that EI is less prone to get stuck in a

local optimum. Therefore, we choose EI as our acquisition function. The remainder of the Bayesian

hyperparameter optimisation procedure, including more details regarding the acquisition function, is

available in the Appendix.

3.1.10 Training procedure and parallel training

After finding the optimal set of hyperparameters for each DRL model, we train the model to find the

optimal neural network weights that yield the highest reward during the test period. To train our DRL

models, we set the maximum number of training iterations N train equal to 200, since our model is quite

complex and needs to find multiple patterns to optimise a range of metrics. In practice, we observed

that after around 150 training iterations there was not much training improvement in terms of average

daily reward during the validation period. For each day within a randomly drawn batch b, we either use

exploitation or exploration. Then, for a given batch we update our model parameters Θ through gradient

ascent. Since we train a substantial number of models, we stop the training procedure if the reward value

of the considered model has not increased for five training iterations when it is tested on the validation

set consecutively (based on the reward functions discussed in the previous section). This prevents the

model from continuing learning when this does not yield any additional gains in terms of training and

saves computational resources.

The training procedure of all DRL models uses a training set, which is a subset of our total data set.

We define a train, validate and test ratio of 70% train data, 10% validation data and 20% test data. To

prevent overfitting to some extent, we split the train and validate data into 8 folds, meaning that the

total of 80% train and validate data is split into 8 different combinations of train and validate data. After

completing the training of each of the 8 folds, we take the average of the model parameters Θ that result

from each fold, also known as k-fold cross-validation. Together, the training procedure is defined as:

21

Algorithm 1 DRL training procedure
1: Randomly initialise Θ

2: for training iteration = 1, . . . , Ttrain do

3: Choose randomly batch b ∼ U(B)

4: for t = ta, . . . , tb ∈ b do

5: if u(x) ≤ ϵ then

6: Exploit: select weights PVMt

7: else

8: Explore: calculate weights wt = πΘ(St)

9: Update PVMt as wt

10: Update model weights through gradient ascent Θ → Θ+ λ∇ΘR[ta,tb](πΘ)

11: Stop if: 5 training iterations consecutively no increase in reward during validation period

The decision regarding which part of the data belongs to the training/validation set and which part

to the test set is arbitrary. In our research, we will analyse how the model performs on the last 20% of

the data, which includes the COVID-19 crisis as well as a significant rally of stocks.

Since our research requires considering a range of computationally expensive models and different

combinations (different weights for each metric and using all train data or not for the hedging strategy),

we make use of SURF Research Cloud6. The software allows parallel training by making use of multiple

GPUs at the same time, with a maximum of 16. The total budget which can be used is 15,000 SBU which

means that 16 GPUs can be used for a total of 15,000/16 hours. The wallet and license are obtained

through the EDSC Erasmus University Rotterdam Data team. Using the wallet of 15,000 SBU, we can

conduct our computationally expensive Bayesian hyperparameter optimisation procedure as well as the

training of the DRL models.

3.2 Extreme downside market risk hedging

Given the train, validate and test split, the train data set contains both crises and stock/bond rallies

with extreme events. The volatility term in the reward function already aims to minimise the portfolio

volatility for a given DRL model, but can still be quite prone to extreme market conditions, as they

remain hard to predict. Per definition, the number of days within our training set that can be considered

as extreme downside market events is limited, hence the reason why it can be potentially hard to train our

DRL model to optimise portfolio returns, volatility and ESG performance during such events. Therefore,

we also train the DRL models on the train data set where the days with the 5% lowest daily returns are

excluded and complement these models with a hedging strategy to reduce the portfolio volatility. For all

the pairs of assets, we fit copulas to derive the matrix of lower tail dependencies which we use to limit

the lower tail risk during days we expect to classify as extreme downside market events.

In Section 2, we define extreme downside market events as the trading days that result in the 5%

lowest daily returns during a certain period of time. In advance for a certain day t, the agent does not
6Available through SURF Research Cloud

22

https://www.surf.nl/en/services/surf-research-cloud

know for certain whether or not the trading day can be classified as an extreme downside market event.

Therefore we refer to trading days which the agent expects to be extreme downside market events as

‘extreme downside market circumstances’. Consequently, we use a different threshold at day t − 1 to

trigger our hedging strategy that starts at day t. Taking the average of all ten assets over the entire train

data set, the 10% percentile threshold value of the lowest daily returns is -0.01. We use this threshold as

the trigger to switch to the hedging strategy the next trading day during the testing period. This means

that we switch to the hedging strategy when we observe that our portfolio obtains a daily return that is

below -0.01.

During our train data set, negative returns on average are observed during two consecutive days,

which we use to formulate our hedging strategy, using the assumption that if we observe a daily portfolio

return that is below -0.01 at day t − 1, we expect that the return at day t is more negative and might

be considered an extreme downside market event (extreme downside market circumstances). If this

assumption is correct, the switch to a hedging strategy might prevent the exposure to a portfolio return

that we would classify as an extreme downside market event otherwise. As switching to a hedging strategy

frequently can be expensive due to transaction costs in a real-world application, we switch to a hedging

strategy for five days, after which we switch back to the DRL model.

In Section 3.2.1 we elaborate on our choice of copula to estimate the lower tail dependencies and in

Section 3.2.2 we describe our hedging strategy.

3.2.1 Copula selection

To model the dependencies of all assets, we make use of copulas. We follow Sklar (1973) to model the

joint distribution of two random variables Xi and Xj for i ̸= j, through a copula containing the marginal

distributions:

F (xi, xj) = C(Fi(xi), Fj(xj)) (17)

Here, F (xi, xj) denotes the CDF of the joint distribution and C(Fi(xi), Fj(xj)) denotes the copula with

marginal distributions Fi(xi) and Fj(xj). A crucial factor of copulas is that the marginal distributions

are uniformly distributed. We follow Ko and Hjort (2019), to take the derivate on both sides to find an

expression for the joint PDF f(xi, xj) containing the marginal PDFs fi(xi) and fj(xj):

f(xi, xj) =
∂2

∂xi∂xj
[C(Fi(xi), Fj(xj))]

= c(Fi(xi), Fj(xj)) ·
∂2

∂xi∂xj
[Fi(xi)] ·

∂2

∂xi∂xj
[Fj(xj)]

= c(Fi(xi), Fj(xj)) · fi(xi) · fj(xj) (18)

23

Where c(Fi(xi), Fj(xj) is the derivative of C(Fi(xi), Fj(xj) with respect to xi and xj . Using this expres-

sion of f(xi, xj), we can derive the log-likelhood of a time sequence of t = 1 until T as follows:

logL =

T∑
t=1

[log (c(Fit(xit), Fjt(xjt))) + log (fit(xit)) + log (fjt(xjt))]

=

T∑
t=1

log [c(Fit(xit), Fjt(xjt))] +

T∑
t=1

log [fit(xit)] +

T∑
t=1

log [fjt(xjt)] (19)

Using this expression, Ko and Hjort (2019) show that two-stage estimation can be used to find an

expression for the joint distribution by first estimating the marginal distributions fi(xi) and fj(xj). The

marginal distributions are then used to estimate the copula parameters using maximum likelihood. Before

estimating the copula parameters for asset combinations, we need to choose a copula type to estimate

the lower tail dependencies of the assets. Kole et al. (2005) show that the Student’s t copula outperforms

the Gumbel and Gaussian copulas in capturing the joint downside risk of a balanced portfolio containing

stocks and bonds (and real estate in their research).

In addition, Lourme and Maurer (2017) show that the Student’s t copula outperforms a range of other

copulas (Frank, Joe, Clayton, and Gumbel) in terms of the BIC model comparison metric. Given that

the Student’s t copula is symmetric, it does not make a distinction between the left tail and the right tail

of the joint distribution of returns. However, empirically, the dependence in the left tail is stronger than

the right tail, as shown by Longin and Solnik (2001) for example. Consequently, the estimated lower tail

dependence of the Student’s t copula for a given pair of assets is possibly lower than the actual lower tail

dependence. However, Kole et al. (2005) conclude that the Student’s t copula performs relatively well in

capturing the empirical tail behaviour for the considered copulas in their research.

The Student’s t copula is a copula family used to model the joint distribution of random variables. It

is characterised by two parameters, namely the correlation value denoted as ρ and the degrees of freedom

denoted as ν, which controls the tail behaviour. We follow Ko and Hjort (2019) to denote the Student’s

t copula of two random variables as:

CStudent−t(ui, uj ; ρ, ν) = Ψ2(Ψ
−1(ui; ν),Ψ

−1(uj ; ν); Ω, ν)

Where Ω is the correlation matrix, Ψ2 denotes the CDF of a bivariate Student’s t distribution with

correlation value ρ and degrees of freedom ν. In addition, Ψ−1 is the inverse of a univariate CDF of the

Student’s t distribution with ν degrees of freedom, mean zero and degrees of freedom of one. Also, ui

and uj denote two uniformly distributed random variables.

3.2.2 Hedging procedure

We assume that the marginal distribution of each of the stocks and bonds follows a Student’s t distribution,

which we fit over the train data using maximum likelihood. For each pair of assets i and j for i ̸= j, we

start by estimating the marginal Student’s t distribution ti and tj . Using the marginal t distributions,

we estimate the bivariate t distribution for all asset pairs. Using this distribution, we simulate 10,000

pairs of data for each asset pair. Then, we transform the values we observe for each of the two assets

into uniformly distributed values using the inverse CDF of ti and tj . Finally, after finding the pseudo

24

samples of uniformly distributed values, we estimate the copula parameters of copula Cij using maximum

likelihood. To do so, we make use of the ‘Copula’ package in MATLAB by Kopocinski (2024).

Since our goal is to limit our lower tail risk during extreme downside market circumstances, we derive

the lower tail dependencies for all combinations of assets i and j. The lower tail dependence aims to

measure the comovement of the two assets during extreme negative movements. The lower tail dependence

is defined as:

λL(ij) = limq→0
Cij(q, q)

q
(20)

Where λL(ij) is the lower tail dependence of assets i and j. Caillault and Guegan (2005) show that the

lower tail dependence of the Student’s t copula can be written as:

λL(ij) = 2tν+1

(√
(ν + 1)(1− ρij)

1 + ρij

)
(21)

Where tν+1 is a Student’s t distribution with ν+1 degrees of freedom and ρij is the correlation parameter

of the copula Cij . After estimating the copula parameters of all possible copulas Cij of assets i and j,

we estimate all lower tail dependencies for all pairs of the ten assets. Also, since we use the train data to

derive the lower tail dependencies, we assume that these values remain constant during the test period.

We define L as the matrix containing all lower tail dependencies of our selected assets within the

portfolio, where the diagonal consists of ones. Using the portfolio weights wt at time t, we calculate the

lower tail exposures of all assets as the vector wtL. We perform this multiplication to derive the sum

of lower tail exposure per asset. After this, we rank the assets from low to high in terms of lower tail

exposure. Then, the agent moves to a hedging strategy that is defined as going long in the five assets

with the lowest lower tail exposure and going short in the five assets with the highest lower tail exposure.

Both the long and short part of the portfolio has equal weights, meaning the weights are set at 0.2. If

our agent encounters a daily return that is lower than -0.01, we trigger our hedging strategy for five days,

starting the following day. Otherwise, the portfolio weights that follow from the DRL model are used.

Together, the hedging strategy is:

1. Estimate all lower tail dependencies of the stocks and bonds in the portfolio and form the lower

tail dependencies matrix L using the train data.

2. If at day t− 1 the portfolio return rt−1 < −0.01, the hedging strategy is triggered at day t for five

days. Otherwise, the DRL model weights are used.

3. In case the hedging strategy is triggered, we first calculate wtL and rank the assets from low to high

in terms of lower tail exposure. Then, we invest long in the five assets with the lowest lower tail

exposure and short in the five assets with the highest lower tail exposure with all assets assigned

a weight of 0.2. During five days, the hedging strategy is used, after which we switch back to the

DRL model.

In this way, we aim to deal with extreme market downside circumstances, without deciding to temporarily

let the agent stop trading at all. Since the hedging strategy is focused on reducing the portfolio volatility

by reducing the lower tail risk during extreme market downside circumstances, the portfolio return and

25

ESG performance objectives of the agent are temporarily neglected when she switches to the hedging

strategy, which may have significant negative effects on the portfolio returns and ESG performance.

3.3 Practical issues

In portfolio management research, problems can arise when considering issues such as transaction costs

and slippage (the difference in expected and realised price of a trade). For simplicity, we assume no

transaction costs and zero slippage. Jiang et al. (2017) propose a solution for the transaction costs issue

by incorporating a constant ‘transaction costs factor’ that extends the DRL models. However, since this

is out of the scope of our research goal, we assume zero transaction costs. We can assume zero slippage

in this research since we are not designing a model for a high-frequency trading environment, but rather

one that is rebalanced daily. Therefore, it is likely that there is no significant difference between the

expected and realised trading price when we execute a trade.

3.4 Performance evaluation

3.4.1 Benchmark models

To compare the performance of our proposed models, we compare the performance of the DRL models

during the test period with a group of benchmark models. The benchmark models are both traditional

portfolio management benchmarks, as well as machine learning-based models.

First, the most used benchmark model in portfolio management research is the equally weighted or

1/N portfolio. Since there is no input in this model - and therefore no prediction errors - it tends to be

hard to outperform this seemingly simple model as Plyakha et al. (2012) show for example.

Second, we use the GMV portfolio as a benchmark, as shown by Merton (1972) to minimise the

portfolio volatility. Since the size of NH ranges between 45 and 55, as stated in Section 3.1.9, we take the

average value of 50 as the number of past historical returns data used to estimate the covariance matrix,

using the same approach as described in Section 3.1.3. For the GMV portfolio, we set the constraint

that the portfolio weights should be positive, to be consistent with the DRL models that have the same

constraint.

Also, we define a machine learning-based benchmark model. Our proposed neural network architecture

is made in such a way that the entire price tensor is the input. However as mentioned, both Jiang et al.

(2017) and Liang et al. (2018) consider the EIIE neural network architecture, where the price tensor

is split per asset and passed independently through the neural network. To test if our DRL models

outperform this approach, we also include the EIIE-based counterpart models for all DRL models as

benchmarks.

3.4.2 Performance measures

Due to the inconsistent reward functions that are used for training and evaluation, we mainly focus our

analysis of the results on the individual portfolio performance metrics included in the reward functions,

namely the average daily returns, volatility and ESG performance. Next to these metrics, we analyse the

26

performance in terms of turnover and maximum drawdown. We include these metrics in case the agent

has any interest in identifying the DRL model that yields the lowest transaction costs, but we will focus

the majority of our analysis on the average daily returns, volatility and ESG performance. Turnover is

defined as the sum of the differences between the portfolio weights during rebalancing, which we sum over

the test period. Maximum drawdown (MDD) is defined as the largest drop in portfolio value expressed as

a percentage over a given period. de Melo Mendes and Lavrado (2017) show that the formula for MDD

is given as:

MDD = max
1≤k<j≤T

Pk − Pj

Pk
(22)

Where Pk and Pj are the portfolio values at time k and j within the test period that runs until t = 1

until t = T .

4 Results

4.1 Bayesian hyperparameter optimisation procedure

For all the DRL models (both using the EIIE and proposed neural network architecture) and all weight

combinations of wR, wV and wE , we perform the Bayesian hyperparameter optimisation procedure to

derive the hyperparameters that yield the highest reward during the validation period. We consider 50

sets of hyperparameters X that have an expected improvement E{I(X)} ≥ 0 for each DRL model during

the optimisation procedure.

In Figure 2, we illustrate the Bayesian hyperparameter optimisation procedure by showing the progress

in average daily returns during the validation period for the MC and MS1 models using the proposed

and EIIE neural network structure, where we make use of all training data and set wR = 1. We observe

that the majority of the increase in daily average return is realised in the first number of iterations where

E{I(X)} ≥ 0 for a set of randomly chosen hyperparameters X. Especially for the MS1 models, the

progress flattens after around 25 iterations, due to the difficulty of finding a new set of hyperparameters

X that outperform any previous set. For the MC model, some improvement is realised after 30 iterations

for the model with an EIIE neural network structure and the model with the proposed neural network

structure even improves after 45 iterations.

27

(a) MC models using the proposed and EIIE neural

network structure for wR = 1

(b) MS1 models using the proposed and EIIE neural

network structure for wR = 1

Figure 2: Progression of average daily returns during the validation period resulting from the Bayesian

hyperparameter optimisation procedure for the MC and MS1 models where wR = 1. For each iteration,

for both the MC and the MS1 models, we show the progression of average daily returns during the

validation period after training the models for 50 training iterations using the entire train data set

Similar to ‘standard’ machine learning training, the rate of improvement for each iteration of the

Bayesian hyperparameter optimisation procedure converges after a certain number of iterations. For

our DRL models, this likely happens when the gradient converges to zero after getting stuck in a local

optimum. For the Bayesian hyperparameter procedure, the expected improvement value decreases after

each iteration where the average reward during the validation period for a certain set of hyperparameters

X increases. Despite realising a reasonable amount of improvement for both the MC and MS1 models

using the proposed and EIIE neural network structure, the procedure of finding a relationship between

the input (the set of hyperparameters X) and output (the average reward during the validation period)

remains quite complex, potentially leading to sub-optimal results.

Since the reward function has no closed form of all the hyperparameters, we need to essentially model

the average reward value during the validation period, given a certain set of hyperparameters X. One

possible way to improve this would be to increase the number of randomly selected sets of hyperparameters

that are used to form the initial Gaussian process or test several different kernel functions k(X,X ′),

however, this was not within the scope of our research, also due to the limit on our SURF Research

Cloud budget for computational resources.

Compared to random search or grid search, the Bayesian hyperparameter optimisation procedure

needs to consider fewer sets of hyperparameters since the only sets that are considered are the ones

where E{I(X)} ≥ 0. This makes it possible to consider more sets of X without the need to find the

computationally expensive outcome. At some point, however, the Bayesian hyperparameter optimisation

procedure seems to converge to a random search procedure, as E{I(X)} → 0, which is visible in Figure

2 through the progress for instance for the MS1 models after around 25 iterations.

28

4.2 Analysis of model performances

After training all the DLR models using the hyperparameters that follow from the Bayesian hyperpa-

rameter optimisation procedure, we test the performance of the DRL models for both the proposed and

EIIE neural network structure model during the test period. In Table 3 we show the performance of all

DRL models for all ten weight combinations of wR, wV and wE for the MC , MS1 and MS2 models. Using

a paired t test, we test the difference between the performance of the DRL models using the proposed

and the EIIE neural network structure. Finally, we show the performance of the 1/N equally weighted

portfolio and the GMV portfolio. We observe that in terms of average daily reward value, the MS2

outperforms the other DRL models.

Regarding the average daily returns, the MS1 model performs best for wR = 1, which we expected

at first to be equal to the MC model, given that wR = 1, making the models equivalent to each other.

However, due to the random nature of the training of the neural network, the models do not result in the

same average daily return during the test period. The MS1 model found a solution of investing almost all

the budget in one asset, after which it got stuck in a local optimum and has not improved since. The MC

- EIIE and MS1 - EIIE models show similar performance in terms of average daily returns for wR = 1,

without getting stuck in a local optimum of investing the majority of the agents budget in one asset.

Despite showing quite some differences in terms of average daily return values between the DRL models

using the proposed and EIIE neural network, the differences are not significant based on the paired t test

at a 5% significance level.

In terms of average daily portfolio volatility, the GMV portfolio performs best during the test period.

For the other models, the MS2 model performs best for wV = 1 using the proposed neural network

architecture. We believe that this is due to the way that the historical returns data are transformed

in the MS2 model for wV = 1, where historical daily returns are used to derive the EWMA volatility

estimates per asset for a number of historical days, which are then used as input to the neural network.

The difference between this model and the GMV portfolio in terms of average daily volatility is significant

using the paired t test at 5% significance.

A possible explanation of the outperformance of GMV compared to the MS2 model in terms of average

daily volatility might be that the direct optimisation of portfolio weights is more effective than the MS2

model. The latter aims to find the patterns in historical EWMA volatilities for all assets and assign the

highest portfolio weights to the least volatile assets. For the other models, the difference between the

DRL models using the proposed and EIIE neural network structure regarding average daily volatility is

often significant, but not consistently in favour of one of the two. In general, when wR and wE increase,

the portfolio volatility increases for most of the models, especially when wR = 1 and wE = 1.

Regarding the average daily ESG scores, the DRL models using the proposed neural network structure

generally perform significantly better than the DRL models using the EIIE neural network structure,

except for some instances. Since the ESG values have been standardised, the 1/N model has an average

daily ESG score of around zero. A possible explanation for the difference between the ESG performance

of the DRL models using the proposed and EIIE neural network structure is the sensitivity of the gradient

for the constant ESG data during training. More specifically, the proposed neural network contains a

29

relatively higher number of parameters compared to the EIIE neural network, because the output of the

EIIE model is a single value and for the proposed models it is ten and because the input of the proposed

neural network is a matrix of historical returns data and the input for the EIIE neural network is a vector.

Since the ESG data is constant, the gradient of the ESG component in the reward function aims to push

the output of the neural network constantly towards the assets with the highest ESG score. Hence, the

gradient of the ESG component is generally less complex compared to the returns and volatility gradient

component.

For the EIIE counterpart, the lower number of values in the gradient, due to the fewer number of neu-

ral network parameters, makes the ESG component likely less dominant within the total gradient. The

returns and volatility gradient component likely contains more values that are relatively more informa-

tive compared to the proposed neural network structure since it contains fewer parameters. Therefore,

the ESG component is likely to be less dominant in the DRL models with the EIIE neural network

architecture.

The turnover value is mainly important for the transaction costs that are related to rebalancing the

portfolio daily. Despite our assumption of zero transaction costs, in a real-world application, turnover

might be relevant to the agent given the existence of transaction costs. Some models show a very small

turnover value, such as the MS2 - EIIE model when wV = 1, because the training procedure got stuck

at a local optimum, making it not very representative to a real-world application. Intuitively, the higher

the number of metrics that the agent aims to optimise (have a weight larger than zero in the reward

function) the higher the turnover, since the model constantly aims to rebalance the portfolio each day to

optimise the different metrics given the environment.

Finally, we show the maximum drawdown (MDD) for each model, which is a metric used for risk

management purposes. Despite resulting in lower volatility, the MS2 model for wV = 1 has a higher

MDD value than the 1/N portfolio, which illustrates that there is no clear relationship between the

average daily portfolio volatility and the corresponding MDD value.

Table 3: Overview of the performance of all DRL models using both the proposed and EIIE neural network

structure as well as the 1/N and GMV portfolio. Using the entire training dataset, we show the average daily

reward value, returns, volatility, ESG scores and the total turnover value. MDD stands for maximum drawdown

and per weight combination the highest reward value is made bold, whereas for the other metrics, the bold figures

represent the highest or lowest value across all weight combinations and models. Finally, the ‘∗’ indicates that

p<0.05 for the paired t test between the DRL model using the proposed neural network structure and its EIIE

counterpart

Metrics
Model Reward Returns Volatility ESG Turnover MDD

Weight Combination: wR = 1/3, wV = 1/3, wE = 1/3

MC 0.000149 0.000621 0.676* 0.0101* 867* 0.315
MS1 0.000117 0.000513 0.675* 0.0181 879* 0.364
MS2 0.000261 0.000598 0.699* 0.729* 17* 0.359

MC-EIIE 0.000117 0.000464 0.693 0.00604 189 0.402
MS1-EIIE 8.51e-05 0.000409 0.698 0.00802 800 0.360
MS2-EIIE 0.000218 0.000583 0.679 0.623 850 0.432

30

Table 3 – continued from previous page
Model Reward Returns Volatility ESG Turnover MDD

Weight Combination: wR = 1, wV = 0, wE = 0

MC 0.00102 0.00102 0.783* -0.235* 881* 0.439
MS1 0.00115 0.00115 0.971* 0.333* 8.61e-06* 0.291
MS2 0.00115 0.00115 0.971* 0.333* 8.61e-06* 0.291

MC-EIIE 0.00103 0.00103 0.739 0.0469 1281 0.501
MS1-EIIE 0.00104 0.00104 0.796 0.129 2544 0.567
MS2-EIIE 0.00104 0.00104 0.796 0.129 2544 0.567

Weight Combination: wR = 0, wV = 1, wE = 0

MC 0.710* 0.000578 0.710* -0.1975* 446* 0.368
MS1 0.713* 0.000473 0.713* -0.215* 791* 0.407
MS2 0.632* 0.000261 0.632* 0.0878* 43* 0.574

MC-EIIE 0.689 0.000487 0.689 0.00045 290 0.381
MS1-EIIE 0.687 0.000480 0.687 -0.000242 31 0.405
MS2-EIIE 0.647 0.000376 0.647 -0.0369 2.31e-06 0.491

Weight Combination: wR = 0, wV = 0, wE = 1

MC 1.75 0.000364 0.966 1.75 11 0.307
MS1 1.71 0.000360 0.949 1.71 77* 0.300
MS2 1.75 0.000364 0.966 1.75 11 0.307

MC-EIIE 1.75 0.000365 0.965 1.75 12 0.304
MS1-EIIE 1.70 0.000358 0.947 1.70 54 0.299
MS2-EIIE 1.75 0.000365 0.965 1.75 12 0.304

Weight Combination: wR = 0.5, wV = 0.5, wE = 0

MC 0.000927 0.000708 0.731* 0.180* 1135* 0.317
MS1 0.000621 0.000457 0.718* 0.144* 714* 0.408
MS2 0.00106 0.000706 0.702* 0.201* 22* 0.399

MC-EIIE 0.000770 0.000574 0.693 0.00312 256 0.394
MS1-EIIE 0.000670 0.000474 0.697 0.00354 176 0.376
MS2-EIIE 0.00101 0.000709 0.670 0.0428 1272 0.507

Weight Combination: wR = 0.5, wV = 0, wE = 0.5

MC 0.000223 0.000371 0.853* 1.38* 554* 0.310
MS1 0.000183 0.000584 0.690 0.320* 826* 0.345
MS2 0.000396 0.000766 0.664* 1.04 6* 0.280

MC-EIIE 9.38e-05 0.000521 0.893 0.116 1580 0.442
MS1-EIIE 0.000112 0.000442 0.685 0.000132 109 0.442
MS2-EIIE 0.000314 0.000686 0.633 0.940 1275 0.415

Weight Combination: wR = 0, wV = 0.5, wE = 0.5

MC 1.90* 0.000233 0.892* 0.663* 297* 0.306
MS1 1.84* 0.000575 0.689* 0.236* 808* 0.524
MS2 2.84 0.000321 0.699* 0.936* 26 0.413

MC-EIIE 1.54 0.000164 0.718 0.067 398 0.688
MS1-EIIE 1.50 0.000476 0.685 0.000364 107 0.401
MS2-EIIE 2.72 0.000354 0.706 0.874 6 0.389

Weight Combination: wR = 0.7, wV = 0.2, wE = 0.1

MC 0.000103 0.000917 0.765* 0.123 1048* 0.303
MS1 0.000123 0.000957 0.940* 0.315* 226* 0.298
MS2 0.000142 0.000896 0.786* 0.417* 9* 0.330

MC-EIIE 7.61e-05 0.000716 0.847 0.125 802 0.326
MS1-EIIE 5.72e-05 0.000451 0.693 0.0048 291 0.461
MS2-EIIE 0.000112 0.000836 0.701 0.257 1781 0.509

Weight Combination: wR = 0.2, wV = 0.7, wE = 0.1

MC 3.21e-05 0.000431 0.675* 0.275* 722* 0.348
MS1 7.15e-05 0.000551 0.780* 0.392* 893* 0.485
MS2 7.30e-05 0.000451 0.639 0.303* 31 0.450

31

Table 3 – continued from previous page
Model Reward Returns Volatility ESG Turnover MDD
MC-EIIE 4.33e-05 0.000450 0.707 0.0311 545 0.362
MS1-EIIE 4.41e-05 0.000470 0.711 0.0595 508 0.662
MS2-EIIE 5.92e-05 0.000504 0.644 0.177 509 0.465

Weight Combination: wR = 0.45, wV = 0.45, wE = 0.1

MC 9.65e-05 0.000571 0.710* 0.284* 539* 0.374
MS1 7.43e-05 0.000638 0.742* 0.0268* 860* 0.460
MS2 0.000115 0.000674 0.694 0.360* 20* 0.387

MC-EIIE 7.69e-05 0.000706 0.734 0.0566 399 0.320
MS1-EIIE 6.01e-05 0.000510 0.682 0.00638 204 0.367
MS2-EIIE 9.04e-05 0.000670 0.664 0.217 1145 0.485

1/N portfolio
1/N - 0.000439 0.684 6.66e-16* 11 0.410

GMV portfolio
GMV - 0.000288 0.570 0.299 584 0.491

Next to all performance metrics, an important part of this research is centred around whether a

relatively high weight assignment to a certain metric in the multivariate reward function results in a

relatively good performance for the given metric during the test period. In Table 3 we observe that for

the DRL models, the highest or lowest values for average daily returns, volatility and ESG scores result

from the models where wR = 1, wV = 1 and wE = 1 respectively. For all models in between, we observe

that for several models there is a positive relationship between the weight assigned to a metric and its

performance, except for some models. The DRL models using the EIIE neural network architecture,

however, can generally not translate a higher weight assignment wE in a higher daily average portfolio

ESG performance as observed by for instance the wV = 0.5 and wE = 0.5 model and the wR = 0.7, wV

= 0.2 and wE = 0.1 model, except for the MS2 model.

The relationship between the weights assignment in the reward function and the relative performance

for each portfolio performance metric is not completely linear, as the training process remains quite

complex given the difference in complexity to optimise the various metrics. For example, the training of

the MC model using the proposed neural network structure for wR = 0.5 and wE = 0.5 is dominated

by the ESG gradient component, resulting in a lower average daily return than the MC model for wR =

0.2, wV = 0.7 and wE = 0.1 using the proposed neural network structure. Ideally, metrics have similar

complexity in terms of gradients such that the relationship between the assigned weight by the agent in

the reward function and the performance during the test period becomes more linear, hence the reason

why we included three models where wE = 0.1, since at least for the DRL models using the proposed

neural network, this metric is quite dominant in the training procedure.

Between the MC and MS1 models using the proposed and EIIE neural network architecture, there

is no clear pattern in the differences in performance for the three performance metrics during the test

period. For most models, the performance is quite similar in terms of average daily reward but due to

different metrics that perform relatively well. For the models with wR = 0.5 and wE = 0.5 using the

proposed neural network architecure for instance, MC has a much higher average daily ESG score, but

MS1 performs better in terms of average daily returns and volatility. Similar cases can be observed for

the EIIE counterpart. Given the fact that the MC and MS1 (when compared for a given neural network

32

structure) essentially use the same type (historical daily returns) and dimension (either a matrix using

the proposed and a vector using the EIIE neural network structure) may clarify why there is no consistent

difference in terms of performance.

The MS1 model was defined with the intuition that the model optimises one metric at a time, making

the gradient less complex. In addition, we had the belief that the gradient was not ‘disturbed’ by the

- sometimes more dominant - gradient of other metrics. Also, we expected that this would potentially

solve the potential issue of the opposite direction of the return and volatility gradient component, which

could potentially cancel out the total gradient. However, it seems that this method does not result in a

significant or consistent difference in performance for certain metrics between the MC model. After all,

for the DRL models using the proposed neural network structure, if the ESG performance is optimised

without the interference of the other two metrics using the MS1 model, the gradient is still considerably

large. This might result in the ESG performance being optimised significantly faster than the other two

metrics and dominate the training of the neural network parameters in that sense.

Regarding the output of the DRL models, which are the portfolio weights, we observe that for the DRL

models with the highest wR, the Technology ETF receives the highest weight on average during the test

period, followed by the Retail ETF. This is in line with the observations in Section 2 regarding the data

characteristics of the considered ETFs. For the MS2 models with wV = 1 as well as the GMV portfolio,

the Bonds ETF receives the highest weight on average. This is quite surprising given the relatively high

standard deviation and kurtosis that can be observed in Section 2. However, generally, bonds are used

in combination with stocks to diversify a portfolio by institutional investors, which may explain the high

average weight during the test period. For the DRL models with a relatively high wE , the Health and

Consumer ETFs receive a relatively high average weight during the test period, which is in line with the

data characteristics as described in Section 2.

For the model where wE = 1, having a separate DRL model is not completely necessary given the

constant data which makes the optimisation procedure relatively straightforward. Due to the limited

data on ESG scores that are available through the S&P 500 exchange, this process was relatively simple.

However, as Gyönyörová et al. (2023) conclude, the ESG data is likely to become more complex in the

coming years, where not only the metrics that are used will be more different across industries but also

the methods used to quantify certain ESG metrics are becoming increasingly complex to conduct and

regulate. Therefore, a separate DRL model to optimise the ESG performance of a portfolio will become

more relevant as the data availability increases.

4.3 Volatility optimisation analysis

An important result from the previous section is the performance of the MS2 models for wV = 1 in

terms of average daily portfolio volatility. For these models, the original environment (the price tensor

containing historical daily returns data) is transformed to the EWMA-based volatility estimates for

several historical days. For the other models, the neural network aims to find a relationship between

the price tensor and the weights that aim to minimise the portfolio volatility. This is quite challenging

given the relatively complex gradient of the volatility component of the reward function and the challenge

33

of finding a relationship between historical returns data and the portfolio weights that aim to minimise

portfolio volatility.

Despite the relatively good performance of the MS2 models for wV = 1 in terms of average daily

portfolio volatility compared to the other DRL models, the GMV portfolio still performs best in terms of

portfolio volatility. Despite this, we believe that the potential of using DRL models to minimise portfolio

volatility can be as high as the usage of DRL models to maximise portfolio returns since this is a relatively

unexplored field of research and because of the smooth training procedure described in the remainder of

this section.

In Figure 3 we show the training process of each of the MS2 models for wV = 1 using both the

proposed and EIIE neural network architecture, based on the entire training data set and the set where

the 5% lowest daily returns are excluded. The progress is shown through the average daily portfolio

volatility during the validation period. We observe that for all models the training process results in a

model that realises relatively low average daily portfolio volatility during the validation period. Due to

the difference in learning rate, the training process either realises more or less reduction in average daily

portfolio volatility in the first number of training iterations. As such, the EIIE MS2 model for wV = 1

that is trained using the training data set where the lowest 5% of returns are excluded trains relatively

at a slow rate compared to the other models. Due to the stopping criteria of our training procedure,

not every model requires the same number of training iterations during the training procedure, which

is highly related to the used learning rate that follows from the Bayesian hyperparameter optimisation

procedure.

Liang et al. (2018) evaluate the performance of several DRL models to maximise portfolio returns

during the testing period. Next to this, they also formulate a model that is designed to maximise the

portfolio return during the test period while also reducing portfolio volatility. In essence, they penalise

investing in assets that increase portfolio volatility, similar to our approach in the reward function. They

conclude that the extra restriction makes the reward function - and subsequently, the gradient - too

complex to realise substantial returns while also reducing the portfolio risk. However, observing our

training procedure in Figure 3, the complex gradient of the volatility component seems to be no issue.

Also, the combination of several metrics in the reward function, as seen through several examples in Table

3, is not an issue per se. In Table 3, the MC and MS1 models for wV = 1 perform significantly less than

the MS2 models in terms of average daily portfolio volatility at a 5% significance level using the paired

t test, even when no returns or ESG gradient component is used during training. The issues seem to be

related to the relation that the DRL model aims to find between the historical daily returns (the input

to the neural network) and the portfolio weights that aim to minimise portfolio volatility.

We believe that machine learning-based models, like our proposed DRL models, require additional

support to improve performance as the objective (reward function) becomes more complex. Especially

when portfolio volatility is included in the reward function, as this metric proves to be relatively chal-

lenging to optimise through a DRL model.

34

(a) MS2 models using the proposed and EIIE neural

network structure for wV = 1 using entire training

set

(b) MS1 models using the proposed and EIIE neural

network structure for wV = 1 using adjusted train

set

Figure 3: Progression of the training of the MS2 models through the average daily portfolio volatility

during the validation set for wV = 1, for the proposed and EIIE neural network architecture both using

the entire training set and the training set where 5% of the lowest daily returns are excluded

4.4 Analysis of model performances using adjusted training set

We formulate a hedging strategy to limit our lower tail risk during extreme downside market circum-

stances. Before analysing the hedging results, we first analyse the performance of our DRL models using

the adjusted train set. Instead of training our models on the entire data set, we remove 5% of the training

days where the daily returns are the lowest. As such, we limit the training of our models during days

of extreme downside market circumstances. In Table 4 we show the performance of the DRL models

using the proposed and EIIE neural network structure during the test period using the adjusted training

set. Compared to Table 3, the MS2 has the best performance in terms of average daily reward for fewer

weight combinations, namely not for the models where wV = 0.5 and wE = 0.5 and finally for wR = 0.45,

wV = 0.45 and wE = 0.1. Generally, the average daily returns are most affected by the adjustment of

the training set, which are generally lower compared to the figures of Table 3.

In terms of volatility, most DRL models yield lower average daily volatility figures compared to

the corresponding values of Table 3. One possible explanation for this, which could also explain the

difference in terms of average daily returns, is that the model is likely to adjust the portfolio weights

more significantly when some historical data in the price tensor can be classified as extreme downside

events when the model is trained on the entire data set. This might be because of the training exposure

to such events and the major rebalancing of the portfolio weights that are required to maximise returns

given the extreme downside market events, which are likely to increase the portfolio volatility. In case

our models are trained using the adjusted training set, the model will be more flexible in the sense that it

does not apply the same sense of urgency to adjust the portfolio weights during extreme downside market

events and maximise portfolio returns, which makes the portfolio less volatility by reducing the portfolio

exposure to major shifts in daily returns because of significant portfolio weights rebalancing.

Against our expectations, the models that are trained without the set of the 5% lowest daily returns

35

days perform better in terms of average daily volatility for the majority of the models. Despite this

observation, we continue to use the hedging strategy complementary to the models in Table 4 aiming

to reduce the average daily portfolio volatility even further, resulting in two types of model groups for

each of the weight combination, where one is more relevant for maximising portfolio returns (the models

from Table 3) and one that is more relevant to minimise the portfolio volatility, which eventually are the

models in Table 6, that is discussed in Section 4.5.

In terms of average daily ESG scores and total turnover, there is no consistent trend visible when

comparing the two tables. Finally, the MDD value for the models is generally lower for the models using

the adjusted training set compared to the models of Table 3, in line with the decrease in average daily

volatility for most of the models.

Table 4: Overview of the performance of all DRL models using the proposed and EIIE neural network architecture

as well as the 1/N and GMV portfolio, using the training dataset where the train days within the 5% lowest daily

returns group are excluded, by showing the average reward value, returns, volatility, ESG scores and the total

turnover value. MDD stands for maximum drawdown and per weight combination the highest reward value is

made bold, whereas for the other metrics, the bold figures represent the highest or lowest value across all weight

combinations and models. Finally, the ‘∗’ indicates that p<0.05 for the paired t test between the proposed model

and its EIIE counterpart

Metrics
Model Reward Returns Volatility ESG Turnover MDD

Weight Combination: wR = 1/3, wV = 1/3, wE = 1/3

MC 0.000116 0.000473 0.671* 0.0803* 427* 0.349
MS1 0.000181 0.000399 0.766* 0.927* 1038* 0.396
MS2 0.000237 0.000591 0.693* 0.612 319* 0.346

MC-EIIE 0.000178 0.00108 0.909 0.144 528 0.354
MS1-EIIE 0.000126 0.000535 0.689 0.00399 322 0.375
MS2-EIIE 0.000235 0.000563 0.675 0.623 805 0.417

Weight Combination: wR = 1, wV = 0, wE = 0

MC 0.000943 0.000943 0.891* 0.342* 937* 0.283
MS1 0.00108 0.00108 0.790* -0.0713* 949* 0.301
MS2 0.00108 0.00108 0.790* -0.0713* 949* 0.301

MC-EIIE 0.00101 0.00101 0.870 0.110 2537 0.485
MS1-EIIE 0.00103 0.00103 0.816 0.111 2409 0.566
MS2-EIIE 0.00103 0.00103 0.816 0.111 2409 0.566

Weight Combination: wR = 0, wV = 1, wE = 0

MC 0.686* 0.000207 0.686* 0.0131 783* 0.622
MS1 0.680 0.000388 0.680 0.0406* 512* 0.443
MS2 0.629 0.000324 0.629 0.131* 44* 0.465

MC-EIIE 0.696 0.000430 0.696 0.0210 604 0.398
MS1-EIIE 0.688 0.000671 0.688 0.0169 326 0.383
MS2-EIIE 0.631 0.000278 0.631 -0.0208 4.56e-06 0.527

Weight Combination: wR = 0, wV = 0, wE = 1

MC 1.75 0.000381 0.963 1.75 19 0.304
MS1 1.71 0.000348 0.946 1.71 73 0.306
MS2 1.75 0.000381 0.963 1.75 19 0.304

MC-EIIE 1.75 0.000371 0.959 1.75 17 0.299
MS1-EIIE 1.70 0.000342 0.909 1.70 66 0.310
MS2-EIIE 1.75 0.000371 0.959 1.75 17 0.299

36

Table 4 – continued from previous page
Model Reward Returns Volatility ESG Turnover MDD

Weight Combination: wR = 0.5, wV = 0.5, wE = 0

MC 0.000789 0.000616 0.723* 0.0450* 538* 0.410
MS1 0.000674 0.000519 0.725* 0.0740* 567 0.378
MS2 0.00106 0.000701 0.667 0.0259* 477* 0.365

MC-EIIE 0.000656 0.000469 0.685 0.00316 103 0.398
MS1-EIIE 0.000598 0.000308 0.692 0.0116 642 0.560
MS2-EIIE 0.000990 0.000654 0.672 0.0421 1205 0.504

Weight Combination: wR = 0.5, wV = 0, wE = 0.5

MC 0.000255 0.000370 0.965* 1.75* 3.07* 0.302
MS1 0.000164 0.000536 0.710* 0.248* 821* 0.377
MS2 0.000343 0.000724 0.663* 0.84* 477* 0.297

MC-EIIE 0.000226 0.000791 0.716 0.0487 658 0.425
MS1-EIIE 0.000178 0.000625 0.692 0.0111 385 0.355
MS2-EIIE 0.000357 0.000706 0.628 0.931 1207 0.408

Weight Combination: wR = 0, wV = 0.5, wE = 0.5

MC 1.92* 0.000217 0.945* 0.774* 66* 0.292
MS1 2.92* 0.000379 0.943* 1.70* 121* 0.328
MS2 2.77 0.000347 0.719* 0.958* 27 0.381

MC-EIIE 1.53 0.000519 0.743 0.110 1231 0.479
MS1-EIIE 1.48 0.000529 0.696 0.00776 339 0.409
MS2-EIIE 2.83 0.00329 0.696 0.882 5.62 0.393

Weight Combination: wR = 0.7, wV = 0.2, wE = 0.1

MC 5.79e-05 0.000664 0.814* -0.130* 1199* 0.423
MS1 5.46e-05 0.000580 0.748* -0.193* 1193* 0.382
MS2 0.000128 0.000857 0.705* 0.149* 665* 0.324

MC-EIIE 5.59e-05 0.000520 0.832 0.0944 2570 0.359
MS1-EIIE 5.94e-05 0.000458 0.688 0.000322 93 0.440
MS2-EIIE 0.000135 0.000815 0.713 0.248 1687 0.511

Weight Combination: wR = 0.2, wV = 0.7, wE = 0.1

MC 3.59e-05 0.000295 0.771* 0.339* 623* 0.408
MS1 3.00e-05 0.000500 0.706* -0.271* 856* 0.375
MS2 6.18e-05 0.000479 0.643 0.254* 199* 0.401

MC-EIIE 5.27e-05 0.000544 0.693 0.00533 242 0.444
MS1-EIIE 5.15e-05 0.000503 0.680 0.0199 288 0.512
MS2-EIIE 5.74e-05 0.000439 0.633 0.185 482 0.465

Weight Combination: wR = 0.45, wV = 0.45, wE = 0.1

MC 0.000117 0.000653 0.760* 0.618* 1118* 0.362
MS1 8.72e-05 0.000564 0.676* 0.173* 546* 0.354
MS2 0.000102 0.000668 0.667 0.202 429* 0.359

MC-EIIE 5.58e-05 0.000478 0.694 0.00388 238 0.393
MS1-EIIE 0.000104 0.00104 0.806 0.133 348 0.317
MS2-EIIE 9.94e-05 0.000627 0.663 0.216 1085 0.479

1/N portfolio
1/N - 0.000439 0.684 6.66e-16* 11 0.410

GMV portfolio
GMV - 0.000288 0.570 0.299 584 0.491

4.5 Analysis of hedging perfomances

In Section 4.4, we observed that training the model on the adjusted training set reduces the average

daily portfolio volatility for the majority of the models. To further reduce the average daily portfolio

37

volatility, we switch to the proposed lower tail dependence-based hedging strategy as soon as the strategy

is triggered. In short, as soon as our proposed model encounters a daily return that is below -0.01, we

switch to our hedging model the following day for a duration of 5 days, as explained in more detail in

Section 3.2.2.

In Table 5 we show the lower tail dependencies of all pairs of the assets we use in our portfolio. The

Financial and Bonds ETFs show the least association between extremely negative movements with the

other ETFs, but do so together, which can possibly be explained by the high dependence on daily returns

with the interest rates. Based on the Student’s t copula, quite some pairs of assets show no lower tail

dependence, which in theory can be used to limit the lower tail risk. A strong decline in returns of one

asset for such a pair during extreme downside market events is generally not associated with a similar

observation for the other asset. Therefore, we believe that temporarily changing to a portfolio where we

go long in the assets that show the least lower tail exposure and short in the assets that show the highest

lower tail exposure will reduce the average portfolio volatility during the test period.

Table 5: Lower tail dependencies of all combinations of all ETFs, based on the 70% train data using Student’s t

copula to model the dependencies. E&T stands for entertainment and telecom

Tech Industrial Financial Energy Health Consumer E&T Materials Retail Bonds
Tech 1.000 - - - - - - - - -
Industrial 0.656 1.000 - - - - - - - -
Financial 0.000 0.000 1.000 - - - - - - -
Energy 0.686 1.30e-05 0.000 1.000 - - - - - -
Health 0.000 0.456 0.000 0.000 1.000 - - - - -
Consumer 0.392 0.321 0.000 0.000 0.633 1.000 - - - -
E&T 0.693 0.726 8.82e-06 0.661 0.548 0.378 1.000 - - -
Materials 0.627 0.000 0.000 0.000 0.668 0.526 0.574 1.000 - -
Retail 0.415 0.733 0.000 0.730 0.543 0.414 9.69e-06 0.000 1.000 -
Bonds 0.186 0.201 0.609 0.074 0.000 0.000 0.000 0.000 0.000 1.000

Using the hedging strategy and the obtained lower tail dependence matrix in Table 5, we show the

performance of the DRL models that are complemented by the hedging strategy in Table 6. For each

model, we show the results similarly as Table 3 and Table 4, but we test whether there is a significant

difference with the corresponding model in Table 3 using the paired t test at a 5% significance level, rather

than testing the difference between the models using the proposed and EIIE neural network architecture.

For the majority of the models, we realise a significant decrease in average daily portfolio volatility

compared to the models in Table 3 that are trained on the entire training data set.

Similar to the models in Table 3 and Table 4, the MS2 models (either using the proposed or EIIE neural

network architecture) realise the highest daily average rewards, except for the DRL models where wE = 1

as well as for wR = 0.2, wV = 0.7 and wE = 0.1. In terms of average daily returns, the performance

is worse for most models, where the majority of models for wV = 1 and wE = 1 realise negative daily

average returns, making a strategy of doing nothing a more profitable strategy. The hedging strategy

does not take into account the weights that are assigned by the agent per metric, resulting in a major

decrease in average daily portfolio returns in particular for the models with the highest weight assigned

to returns through wR. If we, for example, look at the MS1 model for wR = 1 in Table 3, we observe

a daily average portfolio return of 0.00115 and volatility of 0.971. In Table 6, the corresponding model

38

yields a daily average portfolio return of 0.000251 (around 78% reduction) and volatility of 0.672 (around

31% reduction), making the reduction in average daily portfolio volatility relatively expensive.

Since the hedging strategy is designed to reduce the average daily portfolio volatility by limiting the

lower tail risk, the portfolio returns and ESG score metrics are more or less neglected in the optimisation

decision-making during a switch to the hedging strategy. In terms of average ESG scores, this also leads

to a significant reduction for the majority of models. For some models, the hedging strategy significantly

improves the average ESG scores, which is more a coincidence due to a relatively large position in a

well-performing ESG asset due to a relatively low lower tail exposure, which leads to an unintended

improvement in the average daily portfolio ESG score.

Due to the major rebalancing that is required to switch to the hedging strategy as soon as the model

is triggered, the total turnover is significantly higher for most models. In case this research would be

extended to analyse the impact of transaction costs, this would give an additional negative impact on

the total returns of the agent. In terms of maximum drawdown (MDD), the models of Table 6 do not

strictly outperform the corresponding models of Table 3. In terms of the range where the MDDs fall

within for Table 6 (between 0.175 and 0.543) and Table 3 (between 0.280 and 0.688), the models from

Table 6 fall within a more favourable range. Also, in terms of average MDD values, the models in Table

6 (0.370) outperform the models in Table 3 (0.393), which is however not significant at a 5% significance

level using the paired t test.

Table 6: Overview of the performance of all DRL models using the proposed and EIIE neural network architecture

as well as the 1/N and GMV portfolio, which are complemented using the hedging strategy to switch from the

models that are trained on the adjusted train set to limit the lower tail risk, by showing the average reward value,

returns, volatility, ESG scores and the total turnover value. MDD stands for maximum drawdown and per weight

combination the highest reward value is made bold, whereas for the other metrics, the bold figures represent the

highest or lowest value across all weight combinations and models. Finally, the ‘∗’ indicates that p<0.05 for the

paired t test between the value in this table compared to the equivalent value in Table 3

Metrics
Model Reward Returns Volatility ESG Turnover MDD

Weight Combination: wR = 1/3, wV = 1/3, wE = 1/3

MC 5.20e-05 0.000261 0.602* -0.111* 675* 0.346
MS1 0.000121 0.000244 0.671 0.357* 1165* 0.324
MS2 0.000122 0.000244 0.625* 0.290* 321* 0.341

MC-EIIE -1.47e-05 0.000431 0.747* 0.0935* 607* 0.245
MS1-EIIE 8.44e-05 -3.28e-05 0.622* -0.0312* 570* 0.489
MS2-EIIE 0.000151 0.000358 0.579* 0.203* 1012* 0.259

Weight Combination: wR = 1, wV = 0, wE = 0

MC 0.000251 0.000251 0.737* 0.476* 1170* 0.425
MS1 0.000446 0.000446 0.672* 0.275* 1075* 0.216
MS2 0.000446 0.000446 0.672* 0.275 1075* 0.216

MC-EIIE -6.84e-05 -6.84e-05 0.681* 0.0558* 1930* 0.532
MS1-EIIE 0.000129 0.000129 0.663* 0.0536* 1852* 0.426
MS2-EIIE 0.000129 0.000129 0.663* 0.0536* 1852* 0.426

Weight Combination: wR = 0, wV = 1, wE = 0

MC 0.593* 8.81e-05 0.593* -0.00618* 928* 0.321
MS1 0.606* 1.97e-05 0.606* -0.00867* 660* 0.392

39

Table 6 – continued from previous page
Model Reward Returns Volatility ESG Turnover MDD
MS2 0.542 -3.96e-05 0.542 0.0676* 516* 0.297

MC-EIIE 0.622* -1.39e-05 0.622* -0.0352* 801* 0.362
MS1-EIIE 0.607* -1.48e-05 0.607* -0.0164* 593* 0.422
MS2-EIIE 0.527* -0.000192 0.527* 0.0447* 632* 0.496

Weight Combination: wR = 0, wV = 0, wE = 1

MC 0.781* -0.000262 0.779* 0.781* 618* 0.505
MS1 1.05* -0.000195 0.794* 1.05* 11* 0.531
MS2 0.781* -0.000262 0.779* 0.781* 618* 0.505

MC-EIIE 0.780* -0.000274 0.779* 0.780* 615* 0.504
MS1-EIIE 1.03* -0.000204 0.792* 1.03* 41* 0.526
MS2-EIIE 0.780* -0.000274 0.779* 0.780* 615* 0.504

Weight Combination: wR = 0.5, wV = 0.5, wE = 0

MC -0.000378* -0.000171* 0.633* 0.0423* 743* 0.495
MS1 0.000140 6.63e-05 0.645* 0.0260* 787* 0.321
MS2 0.000499* 0.000421 0.575* 0.0497* 722* 0.202

MC-EIIE 0.000362 0.000242 0.622* 0.00711 390* 0.194
MS1-EIIE 0.000486 6.29e-05 0.610* -0.0554* 761* 0.507
MS2-EIIE 0.000674 0.000358 0.559* 0.0339* 1245 0.282

Weight Combination: wR = 0.5, wV = 0, wE = 0.5

MC 8.07e-05 -1.18e-05 0.781* 1.03* 610* 0.537
MS1 8.22e-05 0.000234 0.642* 0.0144* 946* 0.338
MS2 8.66e-05 9.31e-05 0.629* 0.644* 763* 0.312

MC-EIIE 2.77e-05 3.30e-05 0.616* -0.00522* 888* 0.510
MS1-EIIE 7.76e-05 0.000386 0.630* -0.00916 587* 0.236
MS2-EIIE 0.000175 0.000333 0.597* 0.478* 1282* 0.325

Weight Combination: wR = 0, wV = 0.5, wE = 0.5

MC 1.30* 6.30e-05 0.781* 0.165* 655* 0.281
MS1 1.92 0.000230 0.767* 0.762* 664* 0.234
MS2 2.27* 0.000587 0.630* 0.487* 478* 0.190

MC-EIIE 1.73* 0.000592 0.647* 0.0411* 1210* 0.281
MS1-EIIE 1.71* -6.26e-06 0.628* -0.0171* 569* 0.475
MS2-EIIE 2.24 0.000170 0.608* 0.410* 508* 0.343

Weight Combination: wR = 0.7, wV = 0.2, wE = 0.1

MC 4.77e-05 0.000283 0.697* -0.103* 1267* 0.378
MS1 -2.02e-05 0.000178 0.654* -0.111* 1197* 0.225
MS2 5.79e-05 0.000315 0.624* 0.0279* 833* 0.275

MC-EIIE 2.46e-05 -0.000150 0.719* 0.0486* 226* 0.251
MS1-EIIE -1.69e-05 3.03e-06 0.630* -0.0115* 388* 0.430
MS2-EIIE 4.97e-05 0.000307 0.585* -0.0846* 1489* 0.295

Weight Combination: wR = 0.2, wV = 0.7, wE = 0.1

MC 5.62e-05 0.000201 0.682 0.281* 888* 0.306
MS1 -9.93e-05 0.000250 0.629* -0.0790* 919* 0.300
MS2 4.32e-05* 0.000425 0.578* -0.0540* 557* 0.252

MC-EIIE 1.12e-06 1.44e-05 0.634* 0.000435* 242* 0.336
MS1-EIIE -1.80e-05 -0.000229 0.588* -0.00388* 604* 0.543
MS2-EIIE 2.04e-05 -2.91e-05 0.547* -0.124* 830* 0.344

Weight Combination: wR = 0.45, wV = 0.45, wE = 0.1

MC 4.17e-05 0.000160 0.656* 0.249* 1176* 0.278
MS1 5.44e-05 0.000372 0.609* -0.0571* 732 0.175
MS2 6.01e-05 0.000346 0.599* -0.0369* 679* 0.356

MC-EIIE 5.11e-06 0.000165 0.637* -0.0277* 468* 0.353
MS1-EIIE -8.59e-05 1.60e-05 0.678 -0.0297* 828* 0.439

40

Table 6 – continued from previous page
Model Reward Returns Volatility ESG Turnover MDD

MS2-EIIE 0.000117 0.000447 0.563* -0.0823* 1167 0.284
1/N portfolio

1/N - 0.000205 0.645* -0.0545* 324* 0.405
GMV portfolio

GMV - -0.000106 0.516* 0.0171 726 0.421

In general, the models that show the highest average daily volatility in Table 3 achieve the highest

reduction in average daily portfolio volatility through the hedging strategy. Using the hedging strategy

to complement our models, we realise the lowest average daily volatility across all the discussed models

for the GMV model, followed by the MS2 model using the EIIE neural network architecture.

In conclusion, by making use of a hedging strategy to complement the DRL models that are trained

without the training days that fall within the group of the lowest 5% of returns, we obtain for the majority

of models a significant reduction in average daily portfolio volatility during the test period. However,

due to the focus on reducing portfolio volatility during the switch to the hedging strategy, the other

metrics perform worse since there is no focus on these metrics during the hedging strategy. The ability

to focus on each metric in line with the weight that is assigned to the metric by the agent is therefore less

successful, leading to an overall worse performance if we take into account the other metrics. The agent

should decide what the reduction in average daily portfolio volatility is worth in terms of the reduction

in performance of the other metrics and whether this is worth it or not.

5 Conclusion and discussion

In this research, we analyse the performances of several deep reinforcement learning (DRL) models that

can be used for an investment strategy with multiple objectives, namely portfolio returns, volatility and

ESG performance. The considered assets consist of nine ETFs based on S&P 500 stocks and one bond

ETF. A neural network is trained to derive the portfolio weights (output of neural network) to invest in

the ETFs, that aim to maximise the reward of the agent. Based on the weights that an agent assigns to

each portfolio performance metric through the reward function, the training of the DRL models is more

focused on the metrics with the higher weights.

We formulate three different DRL models, where the first calculates the gradient during the training

process over the entire reward function. The second model trains the model using the gradient of the

reward function with respect to one of the metrics, with a probability per metric in line with the weights

assigned by the agent. The other two metrics are subsequently neglected for the given training iteration.

The third model is an ‘ensemble’ of three different DRL models, where each model can be used for an

investment strategy with a single objective, focusing on optimising either the portfolio returns, volatility

or ESG performance. Given the weights assigned by the agent, the output of the individual DRL models

is combined into a single model. For the individual DRL model of the last model focusing on volatility, we

transform the original input data (a matrix of historical daily returns data) to historical EWMA-based

volatility estimates per asset.

41

In general, we observe that there is a positive relationship between the weight assigned by the agent to

a certain metric and the actual performance for the corresponding metric if the given DRL model is used

for an investment strategy with multiple objectives. Also, we conclude that there is no clear difference

in terms of performance between the first two described DRL models in terms of reward in case they are

used for an investment strategy with multiple objectives.

For each of the three models, we form two types of neural network architectures. The first is the so-

called ‘ensemble of identical independent evaluators’ (EIIE), which lets the historical data of every asset

flow independently of each other through the neural network. For the second neural network architecture,

we considered a new approach that allows interaction between all assets inside the neural network since

the input data is a matrix of historical data of all assets. This idea is based on the GMV portfolio, which

relies on the covariance matrix. Since the covariance matrix includes the relationships among all assets,

we tested if translating this intuition would be beneficial in terms of minimising portfolio volatility. When

applied to an investment strategy with multiple objectives, we conclude that the DRL models using the

proposed neural network architecture do not strictly outperform the EIIE counterparts. This could partly

be explained by the fact that both neural network architectures aim to find the same patterns from the

same data (through a matrix or split up into vectors).

In terms of model performances, the model that uses an ensemble of individual DRL models performs

best in general if it is used for an investment strategy with multiple objectives. We believe that this is

mainly due to two reasons, the first being that it uses the ensemble of DRL models that perform best for

each of the individual metrics if they are used for an investment strategy with a singular objective. The

second reason is that the individual DRL model that can be used for an investment strategy that aims

to minimise portfolio volatility uses a transformation of the input data.

Liang et al. (2018) conclude that the addition of a volatility component makes the gradient of the

reward function too complex, which is the main reason for the suboptimal results if the DRL model is

used for an investment strategy that aims to maximise portfolio returns and reduce portfolio volatility.

After transforming the input data from the environment to EWMA-based historical volatility estimates

for each asset, the DRL model establishes a more intuitive relationship between the input data of the

neural network and the portfolio weights that aim to minimise portfolio volatility. This is beneficial for

the minimisation of portfolio volatility when the DRL model is used for an investment strategy that aims

to minimise portfolio volatility.

The available and relevant literature on this topic is relatively limited, due to the recent innovations

and interest in the field of DRL applications for portfolio management. As such, the majority of previous

research was centred on portfolio returns, rather than also focusing on portfolio volatility and other factors

such as ESG performance. However, the proposed DRL models that are used for investment strategies

with singular or multiple objectives are outperformed by the GMV portfolio in terms of minimising

portfolio volatility.

The DRL model which is used for an investment strategy that aims to minimise portfolio volatility

by transforming the input data of the neural network to EWMA historical volatility estimates, aims to

assign the highest portfolio weights to the assets with the lowest volatility. The GMV portfolio, on the

42

other hand, directly optimises the portfolio weights to minimise portfolio volatility through the inverse

covariance matrix, which includes the relations between assets through the off-diagonal elements. Given

the relatively smooth training process of the DRL model that is used for an investment strategy aiming to

minimise portfolio volatility, that uses a transformation of the input data to historical EWMA estimates,

we believe that future research can be conducted to form DRL models or other machine learning-based

models that are used for an investment strategy aiming to minimise portfolio volatility that outperforms

the GMV portfolio in terms of minimising portfolio volatility.

In addition, we train the DRL models using both the proposed and EIIE neural network architecture

on an adjusted training data set, where the days with the lowest 5% of daily returns are excluded (extreme

market downside events), subsequently removing the exposure that each DRL model has during training

with extreme market downside events. We use a hedging strategy to complement the DRL models to

limit the lower tail risk. Without the use of the hedging strategy, we already observe a decrease in the

average daily portfolio for the majority of the models that are used for an investment strategy with

singular or multiple objectives, in the case we train our model on the adjusted train data set. In case we

complement the DRL models with a hedging strategy, we realise a significant reduction in average daily

portfolio volatility for the majority of DRL models that are used for an investment strategy with singular

or multiple objectives. The highest improvement in portfolio volatility is obtained for the DRL models

that had the highest average daily portfolio volatility without the use of a hedging strategy.

To tackle some limitations of our research and to explore the capabilities of the DRL models further,

there are some topics to conduct future research. First, future research can be conducted to include

transaction costs, as this has a major impact in real-world applications on the profitability of a trading

strategy. Second, in the case more ESG data becomes available, the ESG component of the multivariate

rewarded function becomes more relevant and the bonds ETF might be assigned an actual ESG score.

Third, future research can be conducted to further explore the capabilities of DRL models that can be used

for an investment strategy that aims to minimise portfolio volatility. Supported by the smooth training

procedure of the DRL model that aims to minimise portfolio volatility using the adjusted input data

for the neural network, through the EWMA historical volatility estimates, one can aim to significantly

outperform the GMV portfolio in minimising the portfolio volatility. Finally, future research can be

conducted to find a solution to the complex challenge of having either a multivariate reward function

that is convenient for training the DRL models or for evaluating the DRL models.

43

References

Bollen, B. (2015). What should the value of lambda be in the exponentially weighted moving average

volatility model? Applied Economics, 47(8):853–860.

Caillault, C. and Guegan, D. (2005). Empirical estimation of tail dependence using copulas: application

to asian markets. Quantitative finance, 5(5):489–501.

de Melo Mendes, B. V. and Lavrado, R. C. (2017). Implementing and testing the maximum drawdown

at risk. Finance Research Letters, 22:95–100.

Filos, A. (2019). Reinforcement learning for portfolio management. arXiv preprint arXiv:1909.09571.

Gyönyörová, L., Stachoň, M., and Stašek, D. (2023). Esg ratings: relevant information or misleading clue?

evidence from the s&p global 1200. Journal of Sustainable Finance & Investment, 13(2):1075–1109.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International conference on machine learning, pages 448–456. pmlr.

Jiang, Z., Xu, D., and Liang, J. (2017). A deep reinforcement learning framework for the financial

portfolio management problem. arXiv preprint arXiv:1706.10059.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Ko, V. and Hjort, N. L. (2019). Model robust inference with two-stage maximum likelihood estimation

for copulas. Journal of Multivariate Analysis, 171:362–381.

Kole, E., Koedijk, K., and Verbeek, M. (2005). Testing copulas to model financial dependence. Department

of Financial Management, RSM Erasmus University, Rotterdam, The Netherlands.

Kopocinski (2024). Copula generation and estimation, matlab central. MATLAB Central.

Liang, Z., Chen, H., Zhu, J., Jiang, K., and Li, Y. (2018). Adversarial deep reinforcement learning in

portfolio management. arXiv preprint arXiv:1808.09940.

Longin, F. and Solnik, B. (2001). Extreme correlation of international equity markets. The journal of

finance, 56(2):649–676.

Lourme, A. and Maurer, F. (2017). Testing the gaussian and student’s t copulas in a risk management

framework. Economic Modelling, 67:203–214.

Markowitz, H. M. (1991). Foundations of portfolio theory. The journal of finance, 46(2):469–477.

Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. Journal of financial and

quantitative analysis, 7(4):1851–1872.

Mina, J., Xiao, J. Y., et al. (2001). Return to riskmetrics: the evolution of a standard. RiskMetrics

Group, 1:1–11.

Pasunuru, R., Guo, H., and Bansal, M. (2020). Dorb: Dynamically optimizing multiple rewards with

bandits. arXiv preprint arXiv:2011.07635.

Plyakha, Y., Uppal, R., and Vilkov, G. (2012). Why does an equal-weighted portfolio outperform value-

and price-weighted portfolios? Available at SSRN 2724535.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E., Menon, V. K., and Soman, K. (2017). Stock price

prediction using lstm, rnn and cnn-sliding window model. In 2017 international conference on advances

in computing, communications and informatics (icacci), pages 1643–1647. IEEE.

Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9(6):449–460.

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H., and Deng, S.-H. (2019). Hyperparameter opti-

mization for machine learning models based on bayesian optimization. Journal of Electronic Science

and Technology, 17(1):26–40.

Zhang, Z., Zohren, S., and Roberts, S. (2020). Deep reinforcement learning for trading. The Journal of

Financial Data Science, 2(2):25–40.

6 Appendix

6.1 Data

Full list of stocks used per industry: Tech: Apple, Autodesk, Microsoft, Oracle and Adobe. Heavy

Industry: Boeing, Ford, General Electric, Lockheed Martin, Deere & Company. Financial: JPMorgan,

Wells Fargo, Marsh & McLennan, Globe Life and Bank of America. Energy: Chevron, Baker Hughes,

ConocoPhillips, Williams Companies and NextEra Energy. Health: Abbott, CVS Health, Bristol-Myers

Squibb, Johnson & Johnson and Pfizer. Consumer: Hershey’s, Coca-Cola, Kellogg’s, Molson Coors and

General Mills. Entertainment/Communication: Disney, Verizon, AT&T, Comcast and Hasbro. Materials:

Nucor, Ball Corporation, PPG Industries, International Paper and Newmont. Retail: Home Depot,

Walmart, Lowe’s, Walgreens Boots Alliance and TJX Companies. Bonds: 5 Year Treasury, 10 Year

Treasury and 30 Year Treasury.

6.2 Bayesian hyperparameter optimisation procedure

We define our reward function as the objective function in our optimisation procedure, which we aim

to maximise through the Bayesian optimisation procedure. We denote the reward function as R(X),

where we aim to maximise the reward as a function of our hyperparameters X ∈ X to find the optimal

hyperparameters X∗:

X∗ = arg maxX∈XR(X) (23)

Next, we follow Wu et al. (2019) to define a Gaussian process around our objective function. We have

defined our reward function R, but this is not of a closed form of parameters like λ, ρ and ϵ for example.

Therefore, we aim to approach the relation between X and R using f(X), which follows a Gaussian

process. We denote the Gaussian process as GP and we assume a diffuse prior for the mean m(X). In

addition, we use the exponential square function as covariance function k(X,X ′). Together the Gaussian

process is denoted as:

f(X) ∼ GP(m(X), k(X,X ′)) (24)

m(X) = 0 (25)

k(X,X ′) = exp

(
−1

2
(X −X ′)′(X −X ′)

)
(26)

After defining the Gaussian process, we use a random set of X = [X1, . . . , Xs] to form the initial sample

set of size s as S = [(X1, R(X1), . . . , (Xs, R(Xs)]. The values R(X1), . . . , R(Xs) result from the original

objective function, which is the reward value after 50 training iterations. We assume that the reward

values follow a multivariate normal distribution fs(X) ∼ N(0,K), where K = k(X,X ′). Each of the

randomly selected sets of hyperparameters of X should be within our outcome space X.

We continue to follow Wu et al. (2019), to determine the updated distribution after sampling a new

value s + 1. We set k = [k(Xs+1, X1), . . . , k(Xs+1, Xs)] as the vector of covariances. We define S′ =

[R(X1), . . . , R(Xs)], which is used to update the mean of the distribution. Since we assume that the

objective function follows a Gaussian process, we can update the distribution belief as follows:

µs+1(Xs+1) = k′K−1S (27)

σ2
s+1(Xs+1) = −k′K−1k + k(Xs+1, Xs+1) (28)

The new value s+ 1 follows fs+1(Xs+1) ∼ N(µs+1(Xs+1), σ
2
s+1(Xs+1)) as distribution.

After defining the procedure of finding the posterior distribution after a new considered set of hyper-

parameters, we choose an acquisition function to assess whether a new set of hyperparameters is expected

to improve the performance of the DRL model when it is applied to an investment strategy. There are

several acquisition functions, with probability of improvement (PI) and expected improvement (EI) being

the most well-known. According to Wu et al. (2019), EI is more suitable for a balance of exploration and

exploitation, whereas PI only considers exploration. In addition, they claim that EI is less prone to get

stuck in a local optimum. Therefore, we choose EI as our acquisition function.

We define X∗ = arg max
Xi∈S

R(Xi) as the set of hyperparameters that yields the highest reward from our

initial sampled data in S, where we denote the highest reward as R(X∗). After considering a random

new set of hyperparameters Xs+1 ∈ X, we can aim to improve our hyperparameter distribution. Using

EI, we aim to maximise the degree of improvement I(x), which can be defined as:

X = arg max E(max{0, R(Xs+1)−R(X∗)}) (29)

When considering Xs+1 ∈ X, we are interested if E({0, R(Xs+1)−R(X∗)}) ≥ 0. Wu et al. (2019) show

that this expression is equivalent to:

σs+1(Xs+1)(Zs+1Φ(Zs+1) + ϕ(Zs+1)) ≥ 0 (30)

Where Φ and ϕ are the CDF and PDF of a standard normal distribution respectively. Using the mean

and variance from fs+1(Xs+1), Zs+1 is equal to:

Zs+1 =
µs+1(Xs+1)−R(X∗)

σs+1(Xs+1)
(31)

This effectively means that if we expect the new set of hyperparameters to increase our reward, we

update the distribution using the updating procedure we defined earlier using the Gaussian process in

the direction of the considered hyperparameters. If Xs+1 yields a positive expected improvement, we

calculate the reward value R(Xs+1) after 50 training iterations and add this to our set of hyperparameter

values. We follow this process for NHP times when the expected improvement is larger than zero, which

we set equal to 50 to allow for sufficient exploration. Together, the algorithm is defined as:

Algorithm 2 Bayesian hyperparameter optimisation process
1: Sample s sets of hyperparameters X1,. . . , Xs ∈ X
2: NHP = 50
3: while NHP > 0 do
4: Consider Xs+z ∈ X new set of hyperparameters
5: if Zs+z(Φ(Zs+z) + ϕ(Zs+z)) ≥ 0 then
6: Update distribution: fs+z(Xs+z) ∼ N(µs+z(Xs+z), σ

2
s+z(Xs+z))

7: NHP = NHP - 1
8: else
9: Do not update distribution: fs+z(Xs+z) = fs+z−1(Xs+z)

Using this procedure, we can optimise our hyperparameters without using the inefficient grid search

method, where each combination of hyperparameters would need to be considered. Also, compared to

random search, we can evaluate more sets of hyperparameter values without evaluating all of them, but

rather only considering the sets of hyperparameter values that have an expected improvement that is

larger than zero.

6.3 Hyperparameters
6.3.1 MC model without EIIE

Table 7: Hyperparameters derived using Bayesian hyperparameter procedure for the MC model using the pro-
posed neural network architecture, where 5% of extreme downside returns are left out to test the hedging proce-
dure. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0025 34 0.15 0.24 5 54 5
1, 0, 0 0.0088 64 0.70 0.43 5 47 5
0, 1, 0 0.0022 30 0.45 0.034 9 50 5
0, 0, 1 0.0025 36 0.95 0.11 6 52 3
0.5, 0.5, 0 0.0064 35 0.63 0.29 10 55 7
0.5, 0, 0.5 0.0041 69 0.088 0.24 12 52 7
0, 0.5, 0.5 0.0039 64 0.78 0.49 17 48 5
0.7, 0.2, 0.1 0.0026 34 0.60 0.0027 19 45 3
0.2, 0.7, 0.1 0.0081 34 0.67 0.019 12 51 7
0.45, 0.45, 0.1 0.010 65 0.65 0.38 7 49 3

Table 8: Hyperparameters derived using Bayesian hyperparameter procedure for the MC model using the pro-
posed neural network architecture. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0010 64 0.62 0.48 17 54 5
1, 0, 0 0.0042 30 0.70 0.29 17 52 7
0, 1, 0 0.00092 65 0.23 0.024 7 50 3
0, 0, 1 0.00075 32 0.86 0.0011 7 54 5
0.5, 0.5, 0 0.0093 30 0.89 0.43 6 55 5
0.5, 0, 0.5 0.0037 29 0.80 0.22 18 52 7
0, 0.5, 0.5 0.0055 56 0.75 0.14 16 55 5
0.7, 0.2, 0.1 0.0018 63 0.78 0.24 8 50 3
0.2, 0.7, 0.1 0.0090 44 0.40 0.20 20 51 5
0.45, 0.45, 0.1 0.0080 72 0.47 0.40 7 51 5

6.3.2 MS1 model without EIIE

Table 9: Hyperparameters derived using Bayesian hyperparameter procedure for the MS1 model using the
proposed neural network architecture, where 5% of extreme downside returns are left out to test the hedging
procedure. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0095 29 0.56 0.48 8 49 3
1, 0, 0 0.0094 71 0.65 0.39 7 51 5
0, 1, 0 0.0034 37 0.38 0.15 8 45 5
0, 0, 1 0.0035 43 0.72 0.24 8 45 5
0.5, 0.5, 0 0.0074 45 0.45 0.41 8 46 5
0.5, 0, 0.5 0.0053 56 0.14 0.34 9 48 7
0, 0.5, 0.5 0.00053 55 0.55 0.26 14 49 7
0.7, 0.2, 0.1 0.0041 42 0.44 0.05 15 51 3
0.2, 0.7, 0.1 0.0064 44 0.72 0.073 14 48 7
0.45, 0.45, 0.1 0.0076 52 0.44 0.52 10 53 3

Table 10: Hyperparameters derived using Bayesian hyperparameter procedure for the MS1 model using the
proposed neural network architecture. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.00063 32 0.55 0.32 13 46 5
1, 0, 0 0.00053 47 0.56 0.33 15 55 7
0, 1, 0 0.00076 49 0.32 0.094 9 53 5
0, 0, 1 0.0014 44 0.28 0.064 9 47 5
0.5, 0.5, 0 0.0021 46 0.48 0.66 7 47 5
0.5, 0, 0.5 0.0011 35 0.65 0.092 14 47 7
0, 0.5, 0.5 0.00041 42 0.39 0.073 17 53 5
0.7, 0.2, 0.1 0.0034 54 0.81 0.32 11 48 3
0.2, 0.7, 0.1 0.0055 39 0.56 0.33 14 47 3
0.45, 0.45, 0.1 0.0033 66 0.69 0.27 9 46 5

6.3.3 MC model with EIIE

Table 11: Hyperparameters derived using Bayesian hyperparameter procedure for the MC model using the EIIE
neural network architecture, where 5% of extreme downside returns are left out to test the hedging procedure.
Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0076 40 0.40 0.41 10 49 5
1, 0, 0 0.0051 62 0.86 0.21 9 47 5
0, 1, 0 0.0059 48 0.28 0.35 6 50 5
0, 0, 1 0.0094 67 0.59 0.46 7 49 5
0.5, 0.5, 0 0.0022 72 0.39 0.13 3 46 5
0.5, 0, 0.5 0.0089 54 0.17 0.07 8 51 5
0, 0.5, 0.5 0.0087 48 0.78 0.38 6 49 5
0.7, 0.2, 0.1 0.0091 69 0.45 0.50 6 47 3
0.2, 0.7, 0.1 0.0068 47 0.78 0.22 5 54 5
0.45, 0.45, 0.1 0.0092 44 0.63 0.049 8 52 5

Table 12: Hyperparameters derived using Bayesian hyperparameter procedure for the MC model using the EIIE
neural network architecture. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0072 47 0.13 0.44 4 51 5
1, 0, 0 0.0092 57 0.31 0.075 7 46 5
0, 1, 0 0.0084 69 0.82 0.33 5 46 3
0, 0, 1 0.0058 47 0.90 0.16 8 46 3
0.5, 0.5, 0 0.00060 35 0.16 0.030 4 50 3
0.5, 0, 0.5 0.0096 42 0.94 0.19 5 46 5
0, 0.5, 0.5 0.0061 57 0.143 0.0091 9 53 3
0.7, 0.2, 0.1 0.0086 66 0.96 0.44 7 46 5
0.2, 0.7, 0.1 0.0059 26 0.37 0.35 10 48 3
0.45, 0.45, 0.1 0.0099 42 0.94 0.37 7 46 5

6.3.4 MS1 model with EIIE

Table 13: Hyperparameters derived using Bayesian hyperparameter procedure for the MS1 model using the EIIE
neural network architecture, where 5% of extreme downside returns are left out to test the hedging procedure.
Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0019 39 0.88 0.0086 7 52 5
1, 0, 0 0.0080 51 0.059 0.25 9 52 3
0, 1, 0 0.0082 27 0.27 0.14 8 46 3
0, 0, 1 0.0097 36 0.46 0.070 8 51 3
0.5, 0.5, 0 0.00034 56 0.62 0.38 7 48 3
0.5, 0, 0.5 0.0090 67 0.52 0.14 7 47 5
0, 0.5, 0.5 0.0092 51 0.70 0.24 4 55 5
0.7, 0.2, 0.1 0.0089 61 0.24 0.27 8 51 5
0.2, 0.7, 0.1 0.00019 53 0.98 0.19 7 49 5
0.45, 0.45, 0.1 0.0088 70 0.14 0.45 9 45 5

Table 14: Hyperparameters derived using Bayesian hyperparameter procedure for the first separate model using
the EIIE neural network architecture. Hist. input stands for historical input of the model (NH)

(wR, wV , wE) Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
1/3, 1/3, 1/3 0.0028 39 0.80 0.45 6 47 5
1, 0, 0 0.0090 53 0.35 0.24 3 46 5
0, 1, 0 0.0092 56 0.43 0.18 6 51 3
0, 0, 1 0.0075 37 0.93 0.42 8 55 5
0.5, 0.5, 0 0.0037 59 0.17 0.098 9 46 5
0.5, 0, 0.5 0.0094 45 0.87 0.41 6 48 3
0, 0.5, 0.5 0.0072 57 0.93 0.032 3 47 3
0.7, 0.2, 0.1 0.0029 26 0.32 0.24 9 49 3
0.2, 0.7, 0.1 0.0090 51 0.098 0.49 7 47 5
0.45, 0.45, 0.1 0.0038 49 0.95 0.43 7 47 5

6.3.5 MS2 volatility models

Table 15: Hyperparameters derived using Bayesian hyperparameter procedure for the MS2 model without EIIE,
focusing on volatility. Hist. input stands for historical input of the model

Hedge/ no Hedge Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
Hedge 0.0082 46 0.024 0.45 12 10 5
No hedge 0.0039 55 0.41 0.17 5 6 5

Table 16: Hyperparameters derived using Bayesian hyperparameter procedure for the MS2 model using EIIE,
focusing on volatility. Hist. input stands for historical input of the model

Hedge/ no Hedge Learning rate Batch size Explore/exploit Dropout Nodes/layer Hist. input Kernel
Hedge 0.00034 59 0.64 0.14 6 9 5
No hedge 0.0087 71 0.60 0.29 9 5 3

	Introduction
	Data
	Methodology
	DRL Model
	Model setup
	Reward function
	Reward function extension: volatility
	Policy function specifications
	Gradient ascent algorithm
	Model alternatives
	Exploration and exploitation
	Priority weights and reward function evaluation
	Bayesian hyperparameter optimisation
	Training procedure and parallel training

	Extreme downside market risk hedging
	Copula selection
	Hedging procedure

	Practical issues
	Performance evaluation
	Benchmark models
	Performance measures

	Results
	Bayesian hyperparameter optimisation procedure
	Analysis of model performances
	Volatility optimisation analysis
	Analysis of model performances using adjusted training set
	Analysis of hedging perfomances

	Conclusion and discussion
	Appendix
	Data
	Bayesian hyperparameter optimisation procedure
	Hyperparameters
	M_C model without EIIE
	M_S1 model without EIIE
	M_C model with EIIE
	M_S1 model with EIIE
	M_S2 volatility models

