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Abstract

This thesis explores the use of intraday alpha signals to enhance the execution of intraday equity

trades, focusing on the cross-section of stock returns and employing ordinal classification models.

Utilizing high-frequency Limit Order Book data from the MSCI US Index, we evaluate various

alpha signals, to predict intraday stock returns. Our analysis introduces a regularized non-

parallel ordinal probit model, comparing its performance against a standard VWAP-execution

strategy. Results show that while the regularized model improves prediction accuracy and

enhances trade execution during the closing session, its effectiveness varies across morning and

afternoon sessions. These findings suggest that while intraday alpha signals hold potential for

improving trade execution, further research into shorter trading horizons is necessary for optimal

performance.

The content of this thesis is the sole responsibility of the author and does not reflect the view of

the supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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List of Abbreviations

ADV Average Daily Traded Volume

BPPM Basis Points Per Minute

BPS Basis Points

ETF Exchange-Traded Fund

GICS Global Industry Classification Standard

LASSO Least Absolute Shrinkage and Selection Operator

MMS Market Micro-Structure

NYSE New York Stock Exchange

PIR Previous Intraday Return

VWAP Volume-Weighted Average Price
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Definitions of Variables

Listed in order of occurrence:

T1, T2 Timestamps to determine time intervals for predictor variables

t Timestamp of the occurrence of a trade or change in the order book of a stock

T Timestamp

∆ Change in time

Pricet Stock price of a trade taking place at time t

Vt, V
lit
t , V dark

t Size of an arbitrary/lit pool/dark pool trade taking place at time t

σ(t) Volatility of the instantaneous log-returns process

W (t) Standard Wiener process

σ2IV Integrated variance

m Sampling frequency for the volatility estimator

ShrOutt Shares outstanding at time t

qt,b, qt,a Top-level bid/ask quote at time t

ρt Order book imbalance at time t

pt,b, pt,a Top-level bid/ask price at time t

xi,t Predictor variable of stock i at time t

St,j Set of stocks in portfolio j at time t

wi,t Weights for stock i at time t to form a portfolio

xi,t Vector of P predictor variables for stock i at time t

rt,∆ Vector of N returns over a forward looking interval Int(t, t+∆)

β Vector of true exposures

T Number of trading days in the sample

N Number of stocks in the cross-section

P Number of predictor variables

Xt (P + 1)×N matrix of predictor variables including a column of ones

β̂FM Vector of Fama-MacBeth estimates

ξk Knot k in a regression spline

bk(x) Truncated power basis function

C Number of classes

ψc Threshold to distinguish between return class c and c+ 1

αc Unknown cut point in latent variable model between class c and c+ 1
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Φ CDF of the standard normal distribution

ϕ PDF of the standard normal distribution

β∗, β∗1 , β
∗
2 Exposure to predictor variables in ordinal probit models

λ Tuning parameter for the L1-regularization

ℓi,t Log-likelihood function

υt,m, υt,a, υt,c Initial traded volume fraction for morning/afternoon/closing session on day t

υ∗t,m, υ
∗
t,a, υ

∗
t,c Adjusted traded volume fraction for morning/afternoon/closing on day t

φf , φb Front/Back-loading factor for order execution
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1 Introduction

Long-term investors such as hedge funds, pension funds and insurance companies play a critical

role in navigating uncertainties and optimizing portfolio performance. These investors execute

orders either manually through traders or via execution algorithms. When these orders comprise

considerable amounts of the daily traded volume they are not executed simultaneously, but rather

executed gradually throughout the day to limit market impact (Said, 2022). The execution of these

trades offer a wide range of opportunities for asset managers to benefit from market dynamics

and generate additional alpha. Quantitative hedge funds have demonstrated success in this area,

revealed by their substantial growth in recent decades. However, much of their research remains

outside the scope of academic finance literature. These firms operate faster than traditional hedge

funds, which focus on monthly horizons or longer, but slower than high-frequency traders focusing

on horizons below seconds (Goldstein, Spatt, & Ye, 2021). Bridging this gap in the financial

literature is a promising avenue.

Recent advancements in technology have made vast amounts of data from equity markets widely

accessible. From limit order book (LOB) data at higher frequencies to alternative data sources such

as news and social media analytics. Deciphering this vast amount of data to find crucial predictors

for future price movements is highly challenging. Intraday price information typically exhibits a low

signal-to-noise ratio, making it challenging to extract predictive information accurately. However,

the development of machine learning algorithms has shown promise in leveraging feature informa-

tion to predict future price behavior. One downside of these algorithms is their black box nature,

which prevents the understanding of the true underlying dynamics between historical information

and future price movements.

This paper builds upon the current research and addresses the following main question: How can

intraday alpha signals be used to improve the execution of intraday equity trades? To explore this

question, we investigate three subquestions. First, we evaluate the cross-section of stock returns

using portfolio sorts and Fama-MacBeth regressions to identify intraday alpha signals. We assess

multiple signals from existing research and combine them with new signals to evaluate their pre-

dictive power. In doing so, we answer the question: Can cross-sectional analysis of stock returns

yield reliable intraday alpha signals? Next, we introduce a novel technique that, to our knowledge,

has not been explored in existing literature. We categorize stock returns into three ordinal return

classes and employ ordinal classification models to predict cross-sectional stock returns. This ap-

proach allows for the prediction of a group of observations instead of exact point predictions where
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we try to minimize the error between predicted returns and true returns. To enhance interpretabil-

ity, we keep our analysis to interpretable models instead of shifting to black-box modelling. We

compare a standard ordinal probit model to one extended with an L1-penalty term and a non-

parallel form, and evaluate both models’ performance using quantitative and qualitative evaluation

techniques. This analysis addresses our second subquestion: Can classification methods effectively

categorize intraday stock returns in the cross-section, and does the regularized non-parallel model

outperform the standard ordinal probit model? Finally, we assess the economic relevance of the

models and perform a trade execution simulation. Comparing the models’ performance against

a standard execution strategy based on the volume weighted average price (VWAP) allows us to

answer our last subquestion: To what extent can ordinal probit models enhance the effectiveness

of VWAP-execution strategies in intraday equity trading? It’s important to note that transaction

costs are not factored into this simulation since improvements in intraday alpha are expected to

enhance trade execution regardless.

Our analysis utilizes a high-frequency dataset of LOB-data sampled at a 5-minute frequency across

constituents of the MSCI US Index from September 1, 2020, to September 1, 2023. While many

studies focus on predicting mid-price returns, this research employs the VWAP, often considered a

more accurate measure of the true market price. Furthermore, the dataset is segmented into four

sessions: overnight, morning, afternoon, and closing. Our focus is on predicting returns for the last

three sessions: morning, afternoon, and closing.

This paper identifies several signals in the cross-section of stock returns that are useful for predicting

future stock returns on an intraday basis. Historical returns and order-flow imbalance (OFI) partic-

ularly demonstrate predictive power within this timeframe. Additionally, we find that enriching the

dataset using regression splines leads to poor performance of the ordinal probit model in recognizing

each return class. However, the regularized non-parallel ordinal probit model shows significant im-

provement in classifying return classes in-sample. Furthermore, the regularized non-parallel ordinal

probit model demonstrates an improvement over a three-year timespan when compared to a stan-

dard VWAP-execution, particularly during the closing session. However, its performance is worse

during the morning and afternoon sessions. Therefore, we conclude that while the non-parallel

ordinal probit model is a viable option for intraday return prediction, its signals for intraday alpha

should be applied to a higher frequency and smaller prediction horizon.

The remainder of this paper is structured as follows: Section 2 reviews related literature on short-

term signals, the intraday cross-section of stock returns, and the predictability of intraday returns.

Section 3 provides an overview of the data. The methodology, including feature creation and
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evaluation, the model overview, and the simulation setup, is discussed in Section 4. Section 5

presents the empirical results of our methodology on our dataset. Finally, Section 6 concludes the

research and presents a discussion of the results.

2 Literature Review

This section starts by defining the gap in finance literature between long-term and extreme short-

term equity price modelling, it then describes the pre-existing literature on existing short-term

alpha signals and ends with model selection for intraday stock return prediction.

2.1 Modeling stock returns

In the financial literature, two strands of literature exist for modeling equity prices. In the first

place there is the conventional asset pricing literature using a factor-like structure to explain the

cross-section of stock returns. This strand of literature, initiated by the introduction of the CAPM

(Sharpe, 1964), seeks to understand differences in stock returns by adapting the thought of exposure

to certain systematic factors. It turned out that there is a whole zoo of factors to explain differences

among stock returns (J. H. Cochrane, 2011). Since these factors often consist of variables that were

only published on a monthly basis, this field of research focuses on the monthly horizon or above to

explain the cross-section. In the second place, there is a strand of literature that is focused on the

extreme short-term behavior of equity returns and tries to explain market microstructures (MMS).

Here the analysed time horizon can go down to seconds or microseconds.

In the years after Goldstein et al. (2021) defined the gap between these two strands of literature,

research has slowly moved towards investigating the shorter time horizon. This shift was driven by

factors such as greater availability and quality of data, as well as the transformation of alpha into

beta (Jones & Mo, 2020). Additionally, the increased difficulty to identify alpha over longer periods

(McLean & Pontiff, 2016) has played a role in driving the development in this field. One strand of

literature tries to better explain risk premia of well-established factors. Lou et al. (2019) show that

abnormal returns of momentum and short-term reversal strategies occur overnight, while abnormal

returns on other strategies occur intraday. They also show that this pattern is not driven by news.

Aleti (2022) goes even further and explains differences in the cross-section of Fama and French

(2015) factor returns in a high-frequency setting. Another strand of literature finds new anomalies

and factors within the dynamics of higher sampling frequencies. One example is that of Blitz et

al. (2023), who obtain significant ’short-term alpha’ by combining multiple short-term signals on

a daily basis that are often discarded due to high turnover. We adopt a similar methodology, but
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move even one step further and shift our focus towards intraday alpha.

2.2 Short-term alpha signals

Extracting short-term alpha signals from the cross-section has recently gained more attention. An

illustrative example of research extracting high-frequency signals in the cross-section is provided by

Huddleston et al. (2023). They employ a 5-minute sampling frequency for a large cross-section of

stock returns to predict the market index. In the same fashion Aleti et al. (2023) use a 15-minute

sampling frequency for a large set of well-established asset pricing factors to predict the market

index. In this research we take a different approach and extract signals from the cross-section within

the overnight, morning, afternoon and closing session instead of a constant sampling frequency.

Most of the research on short-term alpha signals makes use of historical returns to define momentum

or reversal patterns. Heston et al. (2010) find that the relative performance of a stock during any

half-hour of the trading day persists during the same half-hour on subsequent days. The effect

lasts for at least 40 trading days and volume, order imbalance, volatility and bid-ask spreads show

similar patterns but do not explain the return patterns. Murphy and Thirumalai (2017) further

investigate this ’micro-momentum’ effect and reveal that institutional net order submissions have

a strong predictive power for returns in the same half-hour on future days. They argue that this

is the result of institutions using a VWAP-strategy, generating predictable price pressure over the

day.

Gao et al. (2018) are the first to find an intraday time-series momentum effect in the S&P 500 ETF

where the first half-hour return as measured from the previous day’s market close predicts the last

half-hour return. Similarly, Zhang et al. (2019) identify a significant intraday momentum effect on

the Chinese stock market where the first and/or second-to-last half-hour returns can significantly

predict the last half-hour return. Also, Elaut et al. (2018) establish the presence of intraday

time-series momentum in the RUB/USD currency pair as a positive relationship between the first

half-hour return and the last-half hour return. Baltussen et al. (2021) find time-series momentum

in the market index of equity futures, bonds, commodities and currencies sampled between 1974

and 2020. The return during the last 30 minutes before the market close is positively predicted by

the return from the previous market close to the last 30 minutes.

However, Chu et al. (2019) find a reversal effect in the cross-section of the Chinese A-share market

and attribute this contradiction to the difference between cross-sectional and time-series analysis.

They use the first half-hour returns to negatively predict the rest of the day’s returns in the cross-

section. They also relate changes in large order imbalances to this reversal effect. To investigate
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intraday momentum and reversal patterns we also investigate lagged returns as predictor variables

in our dataset.

Kakushadze (2014) proposes a 4-factor model for overnight returns consisting of size, volatility,

momentum and liquidity. These factors show to be relevant predictors for overnight returns and

are suspected to also perform well for intraday returns. We therefore also add size, volatility and

volume to the set of predictor variables.

As Chu et al. (2019) describes, LOB features can drive intraday prices. Chordia et al. (2002)

were the first to define that returns are strongly affected by contemporaneous and lagged order

book imbalance (OBI) and that returns reverse after a high-negative OBI. Cont et al. (2014) define

a dynamic variant of order imbalance: OFI. Their research shows that there is a linear relation

between OFI and price changes. In more recent research, Cont et al. (2023) show how OFI can

be constructed over different sampling frequencies and how the predictive performance of OFI

decreases over longer prediction horizons. In this research, we consider both OBI and OFI as

predictor variables.

2.3 Model selection

This research aims to exploit detected signals to predict short-term stock price movements. Elaut

et al. (2018), Jin et al. (2019), Wen et al. (2022), and Zhang et al. (2019) provide evidence that this

intraday return predictability is present in currency and commodity exchange-traded funds (ETFs).

However, there is less research available on classification methods in stock return prediction. Our

prediction approach is most closely related to the work of Chen and Tsai (2020) and Cohen et al.

(2020), who use Convolutional Neural Networks to classify candlestick images and identify trading

patterns for buy or sell signals.

Within a large set of predictor variables, we aim to select the most important variables while leaving

out irrelevant ones. A common approach in the statistical literature is to use the Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996). Chinco et al. (2019) apply the

LASSO to make rolling one-minute-ahead return forecasts and show that it achieves good out-

of-sample performance by using the entire cross-section of lagged returns as candidate predictors.

Additionally, Feng et al. (2020), Kozak et al. (2020), and Freyberger et al. (2020) demonstrate that

penalized regression has proven effective within the finance literature. Therefore, we incorporate

an L1-penalty term into the model extension of the ordinal probit model.

This research contributes to the existing strand of literature on three points. First, we evaluate
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intraday return predictability throughout sessions of the trading day: the morning, afternoon, and

closing sessions. Second, we investigate the predictive power of a new predictor variable related

to the surprise of traded volume in dark pools. Third, we show that returns can be grouped into

return classes, and an ordinal classification approach can be used to predict stock returns in the

cross-section. We also demonstrate that in this setting, classification metrics are useful tools for

gaining insight into the model’s behavior.

3 Data

This chapter covers the data used in this research. We introduce the MSCI US Index and its

components, explain the distinction between data from dark pools and lit pools, outline how we

predict returns using different parts of a trading day, describe our data preprocessing, and present

descriptive statistics.

3.1 MSCI US Index

In this research, we use a high-frequency dataset consisting of 5-minute price observations from

constituents of the MSCI US Index, and spanning the sample period from September 1, 2020 to

September 1, 2023. This cross-section consists of the largest exchange listed companies in the US,

including Apple, Microsoft and NVIDIA, making them also the most liquid stocks in the world.

The number of constituents in the MSCI US Index can change over time due to rebalancing. Figure

1 shows the resulting graph of the number of constituents over time, resulting in an average number

of 619 constituents.

Figure 1: Count of MSCI US constituents over the sample period for each date (solid line) and the corresponding

average number of MSCI US constituents (dashed line).

3.2 Dark pools vs. lit pools

All constituents of the MSCI US Index are listed on the New York Stock Exchange (NYSE) or the

Nasdaq Stock Market. These public exchanges are commonly referred to as ”lit pools” due to their

transparent nature, serving as traditional trading venues where buyers and sellers come together to
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trade securities. Within lit pools, all trading activity, including bid and ask prices, trade volumes

and order sizes, is visible to market participants. In this way lit pools play a crucial role in price

discovery, as they reflect the supply and demand dynamics of the market in real-time.

Next to lit pools there are also dark pools. Dark pools are private and used by large institutional

investors. These pools are called ”dark” because the trading activity that occurs within them is

not visible to the general market participants until after the trades are executed. Unlike lit pools

where order book information is public, dark pools only reveal matched trades, offering anonymity

to participants. Dark pools are often used for executing block trades, which involve trading a

significant number of shares at once. Since the trades are not immediately visible to the market,

large orders can be executed with less impact on the stock price compared to trading on public

exchanges.

The dataset used in this research consists of dark pool and lit pool data. Order book and price

data is only available for public exchanges, but data on historically traded volume is available for

both the public exchanges and dark pools. Section 4.1 further describes how this information is

used to create predictor variables.

3.3 Sessions of the trading day

In our analysis we focus on 4 different sessions of a trading day. In this way we mimic a setting

where traders execute orders throughout the day and distinguish between sessions that have their

own set of characteristics. Table 1 displays the times corresponding to each of the sessions. The

overnight session starts at 4:05 PM and ends before 9:30 AM on the next day. During this session

the US stock markets are closed and stocks are not traded. The morning session starts at 9:30

AM indicating the opening time of the US stock markets and ends before 12:00 PM. The morning

session distinguishes itself with a higher level of volatility and higher level of volume traded, as a

result of overnight information that is incorporated into the stock price.

The afternoon session starts at 12:00 PM and ends before 3:50 PM. This session typically amounts

to a lower level of trading activity.

The closing session starts at 3:50 PM and ends before 4:05 PM1. During this session the closing

auction takes place. This auction is conducted by the Nasdaq and NYSE for the stocks listed

at these exchanges and consists of two phases: the call phase and the price determination phase.

During the call phase orders are entered, modified or cancelled. During the price determination

1The closing auction typically ends at 4:00 PM, but we use 4:05 PM as a safe measure due to occasional delays

in the dataset.
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phase no more orders can be entered and an order-matching algorithm seeks to maximize the

executable volume (Kandel et al., 2012). The closing session often exhibits the highest level of

trading volume throughout the day. The closing price is especially important to mutual funds and

ETFs. This is because mutual funds and ETFs often create or redeem their shares based on the

closing price of the assets held within the fund. Additionally, the closing auction is an attractive

period to obtain liquidity and thereby limiting the amount of market impact compared to the

continuous trading during the rest of the day (Jegadeesh & Wu, 2022).

Overnight Morning Afternoon Closing

[16:05;09:30) [09:30;12:00) [12:00;15:50) [15:50;16:05)

Table 1: Times corresponding to the different sessions of a trading day.

3.4 Data preprocessing

This research required extensive preprocessing steps, including validating the correctness of order

book data, the alignment of stock data across multiple datasets, incorporation of stock splits

and evaluation of outliers. One issue encountered was the lag in incorporated changes during

rebalancing, leading to sudden spikes in the number of constituents. To overcome these spikes,

constituents that leave the day after new constituents enter, are deleted when new constituents

enter. Also, price observations with less than 500 constituents were deleted to keep the cross-

section informative.

In Chapter 4 we describe two methods to analyze predictor variables for the cross-section of stock

returns: portfolio sorts and Fama-MacBeth regressions. We use unadjusted data for these two

methods, where features are truncated at the 99.5% and 0.05% levels. This ensures a straightfor-

ward interpretation of coefficients.

Additionally, we discuss two models for predicting cross-sectional stock returns: the ordinal probit

regression and the regularized non-parallel ordinal probit regression. For these models we incorpo-

rate an extra data preprocessing step to normalize predictor variables. Given that we are examining

the full cross-section of stock returns over a 3-year time period, stock characteristics may display

significant scale differences and outliers. To address this, our normalization approach focuses on

the relative size of characteristics within the cross-section, rather than solely on their absolute

size. In doing so we we follow Kelly, Pruitt, and Su (2019) and Freyberger et al. (2020). The

normalization is performed for each session on each date separately. Each stock characteristic is

first ranked from low to high and then the ranks are mapped into the [−1, 1] interval. The benefits
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of this transformation are that it does not impose any assumptions due to its monotonicity, is less

sensitive to outliers, and yields better out-of-sample predictions. Also, this transformation directly

relates to portfolio sorting where we are typically not interested in the value of a characteristic on

its own, but rather in the rank of a characteristic within the cross-section.

3.5 Descriptive statistics

The data utilized in this research comprises observations from the overnight, morning, afternoon,

and closing sessions. Table 2 presents descriptive statistics for the returns per session in basis points

(BPS). Analysis of the mean column reveals that the majority of returns are generated overnight,

with a positive mean of 3.55 BPS and a negative skewness indicating that the distribution is skewed

towards positive returns. Moreover, the relatively high kurtosis for overnight returns suggests the

presence of more outliers.

The morning session, on the other hand, exhibits more negative returns on average and a moderate

left skewness, indicating a longer tail on the left side of the distribution, potentially associated with

occasional large losses during this period. In contrast, the afternoon session demonstrates more

positive returns on average and a higher kurtosis, implying a higher frequency of outliers.

The closing session, although also showing negative average returns, exhibits less variation as

indicated by the lower standard deviation. This reduced variability may be attributed to the

session’s smaller time interval. Additionally, both the skewness and kurtosis values for the closing

session are closer to normal values, indicating a distribution that is more symmetric and has less

outliers compared to the other sessions.

N Mean Std. Dev. 25% 50% 75% Skewness Kurtosis

Overnight 496608 3.55 186.51 -44.28 6.91 53.81 -39.89 6229.36

Morning 499154 -1.76 169.85 -84.76 1.07 84.23 -0.27 15.49

Afternoon 499154 0.72 106.08 -51.00 2.50 54.54 -0.13 24.28

Closing 499154 -1.57 30.62 -18.95 -1.51 15.80 0.09 7.74

Table 2: Descriptive statistics for returns during the overnight, morning, afternoon and closing session. Returns are

expressed in BPS. 25%, 50% and 75% correspond to respectively the 25th percentile, 50th percentile (median), and

75th percentile.

4 Methodology

This chapter outlines the quantitative methods used in our research. We define a response variable

and introduce predictor variables to understand and forecast VWAP-returns in Section 4.1. Sections

4.2 and 4.3 discuss portfolio sorts and Fama-MacBeth regressions to identify relationships between
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cross-sectional VWAP-returns and predictor variables. Section 4.4 covers using regression splines

to enhance predictor variables. Section 4.5 explains our approach to transforming return prediction

into a classification problem and the classification models we employ. Lastly, Section 4.7 explains

how simulation assesses economic relevance, while Section 4.8 details out-of-sample predictions.

4.1 Response and predictor variables

The variables that follow are defined for each stock individually and notation is based on the work

of Aı̈t-Sahalia et al. (2022). For this notation we use a calendar interval between two timestamps

T1, T2 ∈ R defined as an half open half closed interval:

Int(T1, T2) = {t ∈ R : T1 < t ≤ T2} . (4.1)

4.1.1 VWAP-returns

In this research, we rely on the Volume-Weighted Average Price (VWAP) as a key metric and

use it to calculate returns. VWAP’s relevance lies in its ability to account for both prices and

volume of actual trades that took place, providing a more accurate representation of the price that

is traded on. The VWAP for a single stock at time T over a forward-looking interval Int(T, T +∆)

is calculated as

VWAP(T,∆) =

∑
t∈Int(T,T+∆) Pricet × Vt∑

t∈Int(T,T+∆) Pricet
. (4.2)

This quantity measures the VWAP over a forward interval ∆ where Pricet is the stock price of

a trade that takes place during the specified interval, and Vt its corresponding volume. When

∆ is fixed for an entire sample we can also interpret it as the sampling frequency. For example,

VWAP(09-01-2022 09:00, 5min) amounts to the VWAP over the interval (09-01-2022 09:00,

09-01-2022 09:05] and ∆ can be interpreted as the sampling frequency if the VWAP calculation is

repeated for each subsequent 5 minutes. In this research we use a 5-minute sampling frequency

and define

PT := VWAP(T, 5min). (4.3)

The VWAP-measure is utilized to calculate VWAP-returns, which serve as the response variable

investigated in this research. For a specific calendar time at timestamp T , the return over a

forward-looking interval Int(T, T +∆) with ∆ > 5 minutes is calculated as

Return(T,∆) = log

(
PT+∆−5min

PT

)
× 10, 000, (4.4)

and returns calculated for a specific stock i are denoted as Return(i, T,∆). For ease of notation

we sometimes refer to Return(i, T,∆) as ri,t leaving out the interval length for each session in case

15



we refer to the return in an arbitrary session. To leverage the statistical properties and address

continuous compounding, we calculate log returns using the natural logarithm. The resulting log

returns are then multiplied by 10,000 to express them in BPS, enhancing the interpretability of

coefficients. Note that in Equation (4.4), we subtracted 5 minutes from the endpoint of the interval,

taking into account that the VWAP is calculated over the last 5-minute bin. Furthermore, this

return can only be calculated over intervals that are multiples of 5 minutes.

4.1.2 Predictor variables

In order to examine how the cross-sectional stock returns in different sessions can be predicted, we

consider a large number of predictors that describe the intraday trading environment for a particular

stock. Similar to the forward-looking interval for the response variable discussed in Section 4.1.1,

we construct look-back intervals to create predictor variables.

Past returns

The first set of predictors are historical returns. Examining past returns provides valuable insights

into the stock’s performance and market behavior. For calendar time at timestamp T and look-back

spans ∆1 and ∆2, for which it holds that ∆1 ≤ ∆2 and ∆2 − ∆1 > 5 minutes, we calculate the

previous intraday return (PIR) over Int(T −∆2, T −∆1) as

PIR(T,∆1,∆2) = log

(
PT−∆1−5min

PT−∆2

)
× 10, 000. (4.5)

Similar to Equation (4.4), we subtract 5 minutes from the right-end point of the interval, and

the PIR can only be calculated over intervals with lengths that are multiples of 5 minutes. Using

returns of preceding parts of the day and comparing them to subsequent returns we can uncover

short-term momentum or reversal patterns. We define an action pattern as follows:momentum if sign PIR(T,∆1,∆2) = sign Return(T,∆)

reversal if sign PIR(T,∆1,∆2) ̸= sign Return(T,∆).
(4.6)

Realized volatility

We acknowledge the potential concern that the predictive strength of returns may be influenced

by the volatility of the stock. Volatility can be described as a measure of the variability of stock

prices over some period of time. When a stock experiences fluctuations in its price over time,

understanding and quantifying this volatility can become informative for predicting future market

movements. For instance, heightened volatility may indicate increased uncertainty or potential

market excitement, influencing the likelihood of more significant price swings. In financial literature,
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it is commonly assumed that the instantaneous logarithmic price of a stock follows a simple diffusion

process (Bachelier, 1900):

d logP (t) = σ(t)dW (t). (4.7)

Here, P (t) represents the unobservable instantaneous continuous time price, σ(t) represents the

volatility of the instantaneous log-returns process and W (t) is the standard Wiener process. The

integrated variance over a time interval Int(T −∆2, T −∆1) is then defined as:

σ2IV (T,∆1,∆2) =

∫ T−∆1

T−∆2

σ2(t)dt. (4.8)

The integrated variance over the interval Int(T − ∆2, T − ∆1) is known to be the actual, but

unobservable variance. However, the so-called realized variance can be used as an alternative

measure for the integrated variance (Andersen & Bollerslev, 1998). Under the assumptions that

(i) the log-prices follow the diffusion process in Equation (4.7) and (ii) there are no microstructure

frictions, it can be shown that the realized variance converges in probability to the integrated

variance when the number of sub-intervals τ tends to infinity:

p lim
τ→∞

RV (T,∆1,∆2,m) = σ2IV (T,∆1,∆2), (4.9)

with the realized variance on the time interval Int(T − ∆2, T − ∆1) partitioned in τ equidistant

points:

RV (T,∆1,∆2,m) =
τ∑
j=1

(logPT−∆2+m(j−1) − logPT−∆2+mj)
2, (4.10)

wherem = (T−∆1)−(T−∆2)
τ−1 = ∆2−∆1

τ−1 is defined as the sampling frequency. This means that accuracy

improves as the sampling frequency increases. However, in practice it turns out that assumption

(ii) of no microstructure frictions is a rather crucial one. When moving to extremely high frequency

or even tick-by-tick data, market friction is a source of additional noise in estimating the volatility.

The sampling frequency is therefore based on a trade-off between accuracy and biases due to this

market microstructure noise.

We make this trade-off using a volatility signature plot (Andersen et al., 2000), representing a

graphical representation of the average realized volatility against the sampling frequency. We

calculate the daily realized volatility per sampling frequency according to (4.10) and take the time

series average to get the average realized volatility per stock. Figure 2 shows the signature plot for

the average daily realized volatility of the cross-section including a 95% confidence interval. To make

the trade-off between accuracy and bias we choose the highest frequency where the average realized

volatility appears to stabilize. This comes down to a sampling frequency of 30 minutes. Hence, the
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square root of the realized variance based on the 30 minute sampling frequency is used as a measure

for the volatility of each stock at timestamp T over a look-back interval Int(T −∆2, T −∆1):

Volatility(T,∆1,∆2) =

√√√√ τ∑
j=1

(logPT−∆2+(j−1)×30min − logPT−∆2+j×30min)2. (4.11)

Figure 2: Volatility signature plot for average daily realized volatility per sampling frequency. For each stock the

time series average of the daily realized volatility is calculated per sampling frequency. The dotted line visualizes the

cross-sectional mean of the average daily realized volatility per sampling frequency, together with a 95% confidence

interval.

Size

To measure the size of a stock we use the natural logarithm of its market capitalization - the current

stock price multiplied by the total value of its outstanding shares:

Size(T,∆1,∆2) = log[PT−∆2 × ShrOutmax(I)], (4.12)

with I = Int(T − ∆1, T − ∆2) and max(I) the last available observation over this time interval.

In this way we can account for the size effect (Fama & French, 1992) and distinguish between

small- and large-cap companies. Generally, large companies are more stable and less volatile, while

smaller companies present higher growth potential but with increased risk.

Volume

To measure the amount of trading interest for a stock, we use traded volume as a feature. The

traded volume is simply defined as the number of shares traded within a specified timeframe:

Volume(T,∆1,∆2) =
∑

t∈Int(T−∆2,T−∆1)

Vt. (4.13)
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Volume surprise

The trading volume throughout the trading day usually exhibits a hockey stick-like pattern. Figure

3 illustrates that the day starts with higher trading volume, attributed to the incorporation of

overnight information. Subsequently, the volume gradually declines to its lowest point around

13:00, before increasing again. The highest trading volume is observed in the last 10 minutes of

the day, primarily during the closing auction, a period dominated by institutional investors.

Figure 3: Percentage of total daily traded volume per 5-minute time bin. For each stock the volume is scaled by

stock size and averaged out per 5-minute time bin over the full cross-section and entire time span from October 6,

2020, to January 9, 2023.

Index-fund managers typically engage in trading near the close to align with the returns of their

benchmark. Similarly, mutual funds often wait to execute trades, ensuring they have a clearer

understanding of how much cash they need to raise or invest (Jegadeesh & Wu, 2022). A large

deviation from the usual volume pattern indicates that their is new information being incorporated

into the stock prices. However, since institutional traders often want to keep their information

advantage over other traders, they start by trading in dark pools (Buti et al., 2022). Within dark

pools the order book is not visible and trades can be placed anonymously. Therefore, we use a

measure that compares a stock’s trading volume during a session to the expected trading volume.

The expected trading volume is calculated using the average trading volume of the same interval

over the previous 25 trading days. To account for the additional information of the volume traded

on the dark pool, we separate between dark pool volume and lit pool volume:

LitVolumeSurprise(T,∆1,∆2) =

∑
t∈Int(T−∆2,T−∆1)

V lit
t

1
25

∑25
d=1

∑
t∈Int(T−∆2−d,T−∆1−d) V

lit
t

(4.14)

DarkVolumeSurprise(T,∆1,∆2) =

∑
t∈Int(T−∆2,T−∆1)

V dark
t

1
25

∑25
d=1

∑
t∈Int(T−∆2−d,T−∆1−d) V

dark
t

(4.15)
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Order book imbalance

Following the literature (Cartea et al., 2015) we determine a measure for the amount of imbalance

between the bid and ask side. The average OBI defined over the look-back interval is defined as:

OBI(T,∆1,∆2) = Average
[
ρt : t ∈ Intback(T,∆1,∆2)

]
,

ρt =
qt,a − qt,b
qt,a + qt,b

, −1 ≤ ρt ≤ 1.
(4.16)

Where qbt and q
a
t are the top-level bid and ask order book quotes, respectively. The key idea of this

metric is to evaluate whether the market for the stock is leaning more towards selling or buying.

Cartea et al. (2018) define a value of ρt between −1 and −1
3 as a sell-heavy signal, between −1

3 and

1
3 as a neutral signal, and between 1

3 and 1 as a buy-heavy signal.

Order flow imbalance

Since OBI looks at the total volume in the top-level order book, it could be that some of the volume

results from older orders that contain less relevant information. Cont et al. (2014) found that over

short intraday time intervals price changes are mainly driven by OFI. We follow the notation used

by Cont et al. (2023)2 and define the bid order flows (OFt,b) and ask order flows (OFt,a) at time t

as:

OFt,b =


qt,b if pt,b > pt−1,b,

qt,b − qt−1,b if pt,b = pt−1,b,

−qt−1,b if pt,b < pt−1,b,

OFt,a =


−qt−1,a if pt,a > pt−1,a,

qt,a − qt−1,a if pt,a = pt−1,a,

qt,a if pt,a < pt−1,a.

(4.17)

The order flows are then used to calculate the accumulative order flow imbalances during a given

time interval:

OFI(T,∆1,∆2) =
1

AvgDepth(T,∆1,∆2)

∑
t∈Intback(T−∆2,T−∆1)

OFt,b −OFt,a, (4.18)

AvgDepth(T,∆1,∆2) =
1

2
×Average

[
qt,b + qt,a : t ∈ Intback(T,∆1,∆2)

]
.

2Cont et al. (2023) made an error in their notation, they incorrectly associated cases where pt,b < pt−1,b and

pt,a > pt−1,a with the negative best bid (−qt,b) and best ask quantity (−qt,a) at time t. However, these cases actually

refer to the negative best bid (−qt−1,b) and best ask quantity (−qt−1,a) at time t− 1, not at time t as stated. This

indicates situations where the entire best bid/ask quantity is traded away, resulting in a negative order flow equivalent

to the size of the previous best bid/ask quantity.
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The net order flow imbalance is scaled by the average order book depth over the same interval to

account for the intraday pattern in limit order depth (Ahn et al., 2001; Harris & Panchapagesan,

2005).

Seasonal variables

Stock returns can display seasonal fluctuations at various intervals. To account for this, we intro-

duce three seasonal categories into the dataset: year, quarter, and day of the week. These categories

are converted into dummy variables using one-hot encoding to assess their impact. One-hot encod-

ing transforms categorical variables into numerical format, crucial for models requiring numerical

inputs. It ensures that for n categories, n− 1 dummy variables are created. Each dummy variable

represents a category, with all dummies being zero indicating the presence of the nth category.

Including all n dummy variables as predictor variables in a model leads to perfect linear depen-

dence, which is now avoided by using one class as a reference. This strategy effectively mitigates

multicollinearity issues.

Sector classification

The dataset used in this research comprises over 600 stocks from the MSCI US Index, categorized

into various industry sectors. Stocks within the same sector typically respond similarly to macroe-

conomic and market conditions, while also encountering comparable industry-specific challenges

and opportunities (Huang & Zhang, 2022). To adjust for variations in stock returns across sectors,

sector dummies are included. The Global Industry Classification Standard (GICS) is utilized for

sector-level grouping. Similar to seasonal dummy variables, sector dummy variables are constructed

as predictor variables using one-hot encoding. Table 3 presents each GICS sector alongside its corre-

sponding GICS reference number and the count of unique stocks within the MSCI US Index during

the sample period3. Notably, the dataset is predominantly composed of stocks from Information

Technology, Financials, and Industrials sectors, each exceeding 100 stocks. Conversely, the Energy,

Utilities, and Materials sectors are less represented, with 35 or fewer stocks each.

4.2 Portfolio sorts

To explore the cross-sectional relationships between historical returns and session returns, we em-

ploy a well-established method from the cross-sectional literature known as univariate portfolio

sorts (Jegadeesh & Titman, 1993). Univariate portfolio sorts offer two significant advantages:

they are non-parametric and allow for the filtering of returns associated with a specific sorting

3The total number of stocks exceeds the maximum number of constituents in the MSCI US Index because

constituents can enter or leave the index over time.
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GICS number # of stocks GICS number # of stocks

Energy 10 31 Financials 40 108

Materials 15 35 Information Technology 45 137

Industrials 20 109 Communication Services 50 48

Consumer Discretionary 25 74 Utilities 55 34

Consumer Staples 30 41 Real Estate 60 46

Health Care 35 91 Total - 754

Table 3: Number of stocks and GICS reference number per sector.

characteristic through the analysis of high-minus-low portfolios. We define the sorting variable as

PIR(t,∆1,∆2) for stock i at time t across different lookback intervals specified by ∆1 and ∆2.

Additionally, Return(i, t,∆) represents the outcome variable, denoting the VWAP-return of stock

i over a forward looking interval defined by ∆. This outcome variable is evaluated during morning,

afternoon, and closing sessions. At the start of each session t, we iterate through PIRs of preceding

sessions:

1. Rank stocks from losers to winners based on PIR(t,∆1,∆2) of stock i.

2. Make 5 quintile portfolios with St,j the set of stocks in the j’th portfolio at time t.

3. Consider portfolios j = 1 and j = 5, and the high-minus-low portfolio (5-1).

4. Evaluate the portfolio returns for portfolio j at time t using stock specific weights wi,t:

rj,t =

∑
i∈Sj,t

wi,t × Return(i, t,∆)∑
i∈Sj,t

wi,t
. (4.19)

After repeating this procedure at each timestamp t we evaluate the j’th portfolio and the high-

minus-low portfolio as follows:

rj =

∑T
t=1 rj,t
T

, r5-1 =

∑T
t=1 r5,t − r1,t

T
, (4.20)

where T is the number of trading days in the sample that have a morning, afternoon or closing

session. These evaluation metrics are then tested on their mean being significantly different from

zero. We evaluate equally-weighted portfolios (wi,t = 1) such that the portfolio return is the simple

average of the stock returns, and we evaluate the value-weighted portfolios using wi,t as the market

capitalization of stock i. Here we expect to see differences between equally-weighted and value-

weighted portfolio returns when several small cap firms might produce extreme high returns. Since

the MSCI US Index only consists of approximately 620 constituents, we choose to sort stocks in 5

quintile portfolios such that the portfolios represent a significant amount of stocks.
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4.3 Fama-MacBeth regressions

When adding more explanatory variables to sort on in portfolio sorts, the analysis can become

cumbersome. We therefore employ the Fama-MacBeth regression (Fama & MacBeth, 1973) to

investigate possible factors driving intraday returns while correcting for other effects. We do this

in a more standard setup4, as described by (J. Cochrane, 2009) and (Bali et al., 2016):

Return(i, t,∆) = x⊤
i,tβ + εi,t i = 1, ..., N ; t = 1, ..., T − 1. (4.21)

The return over a forward looking interval Return(i, t,∆) on the left hand side is explained by a

vector of true exposures β to a vector of predictors xi,t, and the residual εi,t. Note that the data

in this regression setting has a cross-sectional element as well as a time-series element.

Our goal is to explain future stock returns using signals from the cross-section. The Fama-MacBeth

regression is an alternative approach to finding these signals and can be used in a setting with

multiple explanatory variables to explain cross-sectional returns. This approach can be described

in two steps. First, we run a cross-sectional regression of the explanatory variables on all the stock

returns at each moment in time to get beta estimates:

β̂t = (X⊤
t Xt)

−1X⊤
t rt,∆. (4.22)

Here, rt,∆ is a 1 ×N vector of N stock returns over the forward looking interval Int(t, t +∆), Xt

is a (P + 1) × N matrix consisting of a column of ones and P predictors for N stocks at time t,

and β̂t is a 1× (P + 1) vector of estimated beta’s for each predictor variable at time point t. The

result is a time series of intercepts, slope coefficients and error terms. Second, the Fama-MacBeth

estimates are calculated as the average of the cross-sectional regression estimates:

β̂FM = ET (β̂t). (4.23)

To investigate the explanatory power of each of the explanatory variables we can perform a t-test

on the Fama-MacBeth estimate to check whether it is statistically different from zero. Returns

sampled at a higher frequency are likely to be autocorrelated due to for example market trends and

momentum effects, and the variance of the error terms is highly likely to change over time due to

for example volatility clustering. To account for these issues we perform the t-test by calculating

Newey-West standard errors (Newey & West, 1987). In this way we adjust for autocorrelation and

heteroskedasticity.

4In the original expected return-beta asset pricing model, Fama and MacBeth (1973) utilized factor loadings βi

for xi,t, and the factor risk premium λ as β together with a rolling window to estimate risk premia.
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4.4 Regression splines

The Fama-MacBeth regression setting makes use of a linear relationship between the predictor

variables to explain returns in the cross-section. Often, it is convenient to represent the features by

a linear model since it offers a clear interpretation, and it is able to fit the data without overfitting.

However, within the complexity of financial markets it is extremely unlikely that the true function

f(X) is linear in X. Instead of moving directly to black-box modelling, we employ a non-linear

model that can exhibit local linearity to keep a descent level of interpretability. This model is

referred to as a degree-d regression spline, which is a piecewise degree-d polynomial with continuity

in derivatives up to degree d− 1 at each knot. Hence, for the linear regression spline we can place

knots on several points within the domain of the predictor variable where the function is continuous.

Between these knots the model fits a degree-1 polynomial, representing a linear relationship between

the predictor and response variable. The linear regression spline with knots at ξk for k = 1, ...,K

can be represented as

Return(i, t,∆) = β0 + β1b1(xi,t) + β2b2(xi,t) + · · ·+ βK+1bK+1(xi,t) + εi, (4.24)

for some basis functions b1, b2, ..., bK+1 and predictor variable xi,t. To represent a linear spline we

start with a simple basis function b1(xi,t) = xi,t and add a truncated power basis function per knot,

defined as

bk(xi,t) = (xi,t − ξk)+ =


(xi,t − ξk) if xi,t > ξk

0 otherwise.

(4.25)

For illustrative purposes the left panel of Figure 4 shows a linear spline with a knot at xi,t = 4.

The right panel shows the corresponding basis functions. Adding the points for both lines, would

lead to the linear regression spline in the left panel. A great advantage of the model in Equation

(4.24) is that it can be fit using least squares. By making use of regression splines we can enrich

the set of predictor variables in a situation where we assume the relationship between the response

variable and a predictor variable to be non-linear. The truncated basis functions can be added to

the functional form as new predictor variables on which coefficients are estimated.

4.5 Return classification

4.5.1 Order execution

In this research we take a setting where a trader receives trade orders that have to be executed before

the end of the day. Since the size of these orders comprise considerable amounts of the daily traded

volume, they are not executed simultaneously. These orders are executed gradually throughout the
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Figure 4: The left panel shows an illustration of a linear spline with a single knot and what the line looks like without

the knot, which represents a simple linear model. The right panel shows the corresponding basis functions.

day to limit the impact they have on the market (Said, 2022). When a considerable amount of

stocks is traded simultaneously the market tends to move in the opposite direction, leading to a

loss on the performed trades. Since the trading volume exhibits seasonal patterns throughout the

day, traders take this volume into account when executing their orders. For example, around the

opening and closing of the trading day volume tends to be higher (see Figure 3) meaning a larger

amount of trades can be executed without experiencing too much market impact.

However, there is still a trade-off to be made since the stock price during these periods can be less

advantageous. If traders can receive information on the expected returns for an upcoming time

interval, they can decide on the level of aggressiveness to place trades. For example, when a trader

has a large buy order that needs to be executed throughout the day and he gets a signal that

prices will move up in the afternoon he can start executing trades more aggressively, meaning he

is prepared to accept a less favorable price to ensure faster execution.

To allow for this distinction in trade execution we classify returns in three possible categories: low,

moderate and high. These classes are based on the threshold values ψ1 and ψ2 that split the range

of return values into three classes:

yi,t =


negative if Return(i, t,∆) ≤ ψ1,

moderate if ψ1 ≤ Return(i, t,∆) ≤ ψ2,

positive if Return(i, t,∆) ≤ ψ2.

(4.26)

One could argue that the problem of order execution can also be resolved by predicting numerical

returns. However, by reformulating the prediction of a numerical variable to a classification task

has several advantages. In the first place it allows to focus on predicting a group of observations
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instead of exact point predictions where we try to minimize the error between each of the predicted

return observations and true return observations. In the second place, it allows to evaluate how

well models are able to distinguish between classes. This allows for a direct connection between a

specific class and the way of executing the order.

The next step is to use classification methods to accurately classify the response variables yt =

(y1,t, ..., yN,t) with yi,t ∈ {low,moderate, high} using the set of proposed predictor variables. Since

the response variables have an ordered nature by construction, as reflected by Equation (4.26),

the ordering of the variables contains additional information and our model should reflect this.

Following the growing literature on machine learning techniques for predicting stock returns (e.g.

Gu et al. (2020), Huddleston et al. (2023)) we use several machine learning techniques to classify

the response variables and incorporate their natural ordering.

4.5.2 Ordinal probit regression

We start with the most common regression model for this type of data, the ordinal probit regression

model (McCullagh, 1980), which is also known as the ordered probit model. This model accounts for

both the classification nature and the ordered multi-class response variables. Following Wooldridge

(2010) ordinal data yi,t can be modeled by assuming an underlying latent variable model:

y∗i,t = x⊤
i,tβ

∗ + εi,t, εi,t ∼ N(0, 1), (4.27)

where y∗i,t is continuous but latent data, β∗ is the exposure to the predictor vector xi,t, and this

vector does not contain a constant. When estimating this model each of the unknown C − 1 cut

points αc between two of the C classes is defined as an intercept. The random variable yi,t can

then be viewed as a class variable for the latent variable falling in one of the classes:

yi,t =



0 if y∗i,t ≤ α1,

1 if α1 ≤ y∗i,t ≤ α1,

...

C if y∗i,t ≥ αC−1.

(4.28)

However, in our setting the response variable is created upfront based on the continuous variable

Return(i, t,∆) and we can therefore treat the latent variable as an observed variable (i.e. y∗i,t =

Return(i, t,∆)). The intercepts correspond to the threshold values ψ1 and ψ2 in Equation (4.26),
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and cumulative class probabilities can be derived:

P(yi,t ≤ c | xi,t) = P(y∗i,t ≤ ψc | xi,t)

= P(εi,t ≤ ψc − x⊤
i,tβ

∗ | xi,t)

= Φ(ψc − x⊤
i,tβ

∗).

(4.29)

Now the ordinal probit regression model can be written as:

P(yi,t = negative | xi,t) = P(y∗i,t ≤ ψ1 | xi,t) = Φ(ψ1 − x⊤
i,tβ

∗),

P(yi,t = moderate | xi,t) = P(ψ1 ≤ y∗i,t ≤ ψ2 | xi,t) = Φ(ψ2 − x⊤
i,tβ

∗)− Φ(ψ1 − x⊤
i,tβ

∗),

P(yi,t = positive | xi,t) = P(y∗i,t > ψ2 | xi,t) = 1− Φ(ψ2 − x⊤
i,tβ

∗).

(4.30)

In these equations, xi,t is a P ×NT matrix of predictors, where time series observations and cross-

sectional observations are stacked over the rows, and each column corresponds to a predictor. β∗ is

a 1 × P column vector of unknown coefficients, Φ represents the cumulative distribution function

of the standard normal distribution, and the ’unknown’ parameters ψ1, ψ2 and β∗ are estimated

by maximum likelihood. Additionally, it is important to note that the three probabilities sum to

one. While the thresholds ψ1 and ψ2 are in fact observed, as they were defined upfront to group

returns into classes, these values could be passed to the maximum likelihood estimation as given.

However, in practice, it is often not feasible to pass threshold values directly in regression packages

so we leave ψ1 and ψ2 to be estimated. This approach allows the thresholds to be estimated in

such a way that it optimally classifies the return classes. For each observation yi,t the log-likelihood

function is then given by:

ℓi,t(ψ1, ψ2, β
∗) = I[yi,t=negative] log[Φ(ψ1 − x⊤

i,tβ
∗)]

+ I[yi,t=moderate] log[Φ(ψ2 − x⊤
i,tβ

∗)− Φ(ψ1 − x⊤
i,tβ

∗)]

+ I[yi,t=positive] log[1− Φ(ψ2 − x⊤
i,tβ

∗)].

(4.31)

Note that we now use the observed predictors and classes instead of the random variables. The

objective for the ordered probit model is then to estimate the unknown parameters by maximizing

the log-likelihood function for the entire sample of N ×T observations. This is equal to minimizing

the objective function:

argmin
ψ1,ψ2,β∗

{
− 1

N × T

N∑
i=1

T∑
t=1

ℓi,t(ψ1, ψ2, β
∗)

}
, (4.32)

to obtain the estimates ψ̂1, ψ̂2 and β̂∗. Here we follow the common convention to scale the neg-

ative log-likelihood by the number of observations (Friedman et al., 2010) such that the negative
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log-likelihood can be compared across datasets of different sizes. After estimating the model, prob-

abilities for each of the three classes are calculated using Equation 4.30. The predicted class is then

determined by selecting the class with the highest probability.

4.5.3 Regularized non-parallel ordinal probit regression

Given the large number of predictor variables relative to the sample size and the low signal-to-

noise ratio in stock return data, we aim to design a model capable of selecting relevant features.

Additionally, our objective is for the model to extract complex relationships between the data and

the response variable. Lastly, we want to maintain the interpretability of the ordinal probit model.

To achieve this, we add an L1-penalty to the objective function and allow the cumulative class

probabilities to vary across cumulative probabilities.

Non-parallel model form

The model in Section 4.5.2 has a functional form where the predictor variables have the same set

of coefficients across all three categories. Yee (2010) refers to this restriction as the parallelism

assumption. This assumption implies the presence of parallel regression lines for the same given

value across all cumulative probabilities P(y∗i,t ≤ c | xi,t). The intuition behind this is that if the

distribution of the latent variable is shifted for each of the different thresholds, the way it shifts

through each of these thresholds is always the same. This means that the probability of going up

and down for a certain class follows exactly the same pattern for each of the thresholds. The slope

at a given value 0.5 = Φ(ψc − x⊤
i,tβ

∗) with respect to the linear predictors x⊤
i,t is

∂P(y∗i,t ≤ c | xi,t)
∂x⊤

i,tβ
∗ =

∂Φ(ψc − x⊤
i,tβ

∗)

∂x⊤
i,tβ

∗ = −ϕ(ψc − x⊤
i,tβ

∗) = −ϕ(0), (4.33)

where ϕ is the standard normal PDF and we use the fact that ψc − x⊤
i,tβ

∗ = Φ−1(0.5). Equation

(4.33) implies that the slope has a constant value irrespective of the corresponding threshold.

The left pane of Figure 5 shows a visual example of an ordinal probit model with three classes,

resulting in two thresholds for evaluating the cumulative distribution function (CDF). The first CDF

represents the probability of yi,t ≤ 1, indicating the probability of ending up in the negative returns

class, which decreases as the regressor xi,t increases. Similarly, the second CDF, corresponding

to yi,t ≤ 2, indicating the probability of ending up in the negative or moderate return class,

also decreases as xi,t decreases. Notably, the slopes where the curves intersect 50% probability,

indicating an equal probability of ending up above and below a category, remain consistent across

both thresholds.
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Figure 5: Visualization of the parallel ordinal model form. The left pane shows a parallel regression form, and the

right pane shows a non-parallel regression form.

The parallel model form can be relaxed by allowing the beta-coefficients to vary over the cumulative

class probabilities. This relaxation leads to the non-parallel model form. The right pane of Figure 5

shows this model form where the parallelism assumption does not hold. In this case the probability

of being in the negative return class goes down slower than the probability of being in the negative or

moderate return class. Here we have different beta-coefficients for the different thresholds, allowing

for a more flexible model form. Specifically, for higher values of xi,t, the probability of ending up

at most in the moderate return class decreases faster than the probability of ending up at most in

the negative return class.

We now have two different column vectors β∗1 and β∗2 that need to be estimated. In this way, the

cumulative class probabilities are not forced to shift together, resulting in a more flexible model for

ordinal data. The corresponding log-likelihood of the non-parallel model form can be written as:

ℓi,t(ψ1, ψ2, β
∗
1 , β

∗
2) = I[yi,t=negative] log[Φ(ψ1 − x⊤

i,tβ
∗
1)]

+ I[yi,t=moderate] log[Φ(ψ2 − x⊤
i,tβ

∗
2)− Φ(ψ1 − x⊤

i,tβ
∗
1)]

+ I[yi,t=positive] log[1− Φ(ψ2 − x⊤
i,tβ

∗
2)].

(4.34)

L1-regularization

Next to the non-parallel model form we also incorporate the L1-penalty term into the objective

function. In this way sparsity is enforced in the coefficient matrix by effectively shrinking the

coefficients of unimportant features towards zero. The L1-penalty makes the model particularly

useful for evaluating the relevance of predictor variables when dealing with a large set of potential

predictors.

To estimate the regularized ordinal probit regression we need to minimize the scaled negative
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log-likelihood of the sample with respect to the parameters ψ1, ψ2, β
∗
1 and β∗2 :

argmin
ψ1,ψ2,β∗

1 ,β
∗
2

− 1

N × T

N∑
i=1

T∑
t=1

ℓi,t(ψ1, ψ2, β
∗
1 , β

∗
2) + λ

P∑
j=1

(
| β∗1,j | + | β∗2,j |

) , (4.35)

with penalty parameter λ ≥ 0, and β∗1,j and β
∗
2,j the j’th coefficient of the coefficient vectors β∗1 and

β∗2 . When λ is zero the model falls back to the non-parallel ordinal regression model and a higher

value of λ indicates a larger penalty on the beta-coefficients. Since there is no analytical solution

for the coefficients in this model, the model is optimized using a coordinate descent algorithm and

the optimal value for the hyperparameter λ is obtained by cross-validation. In order to implement

the regularized ordinal regression model we use the ordinalNet R-package from Wurm et al. (2021).

The hyperparameter λ is determined by generating a sequence of twenty lambda values where the

one with the largest log-likelihood for the sample data is selected. The sequence is determined by

λmax that is equal to the smallest value that sets every coefficient to zero and λmin = λmax · 0.01.

The sequence runs from λmin to λmax uniformly on the logarithmic scale, meaning that the spacing

between different values of lambda increase exponentially5.

4.6 In-sample evaluation

We start by performing an in-sample evaluation of the three previously mentioned models. We

evaluate the models quantitatively using the confusion matrix, accuracy, precision, recall and F1-

score, and evaluate the models qualitatively using calibration plots and probability histograms for

the return classes.

To calculate the quantitative evaluation metrics we make use of four basic classification metrics:

True Positives, True Negatives, False Positives, and False Negatives. Since the classification setting

described in Section 4.5 makes use of three classes (negative, moderate, positive), the interpretation

of these metrics becomes more nuanced. True Positives (TP): In a multi-class setting, TP refers

to the instances correctly predicted for the specific class of interest. For example, the number of

correctly predicted ’positive’ returns. True Negatives (TN): Number of instances correctly predicted

as not belonging to the class of interest. False Positives (FP): Number of instances incorrectly

predicted as belonging to the class of interest. False Negatives (FN): Number of instances incorrectly

predicted as not belonging to the class of interest in a multi-class scenario. Using these four

classification metrics we can now define accuracy, precision, recall, F1-score and weighted F1-score.

5A logarithmic scale search ensures that the entire hyperparameter space is explored in a more balanced way.

For example, when tuning a hyperparameter on a linear scale search between 0.0001 and 1.0 might unevenly allocate

training resources, spending 90% on the range 0.1 to 1.0 and only 10% on 0.0001 to 0.1. Hence, the logarithmic scale

gives a better sample of the entire range.
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Accuracy is a measure of the overall correctness of the model. It is the ratio of correctly predicted

instances to the total number of instances:

Accuracy =
TP + TN

TP + TN + FP + FN
. (4.36)

Precision is the accuracy of positive predictions. It is the ratio of correctly predicted positive

observations to the total predicted positives:

Precision =
TP

TP + FP
. (4.37)

Recall is a measure of the ability of the model to capture all the relevant instances. It is the ratio

of correctly predicted positive observations to all observations in the actual class:

Recall =
TP

TP + FN
. (4.38)

The F1-score is the harmonic mean of precision and recall. It provides a balanced measure that

considers both false positives and false negatives:

F1-score =
2× Precision× Recall

Precision + Recall
(4.39)

The weighted F1-score calculates the average F1-score, considering the number of samples in each

class. It provides a more representative measure when classes are imbalanced.

Weighted F1-score =

∑N
i=1(F1-scorei × no. of samples in classi)

Total no. of samples

In addition to quantitative evaluation metrics, we also assess the model’s performance qualitatively

using calibration plots and probability histograms. Calibration plots illustrate how well a model’s

predicted probabilities align with actual outcomes. On these plots, the x-axis represents the average

predicted probabilities grouped into bins, while the y-axis indicates the actual proportions in those

bins. A diagonal line on the plot signifies accurate predictions. Probability histograms, on the

other hand, visually compare predicted probabilities for observations within the true class against

those outside the true class. For instance, when observations outside the class have lower predicted

probabilities and those inside the class have higher predicted probabilities, the two histograms are

further further located from each other. This indicates that the model effectively distinguishes

between observations falling inside and outside the class. By examining both calibration plots

and probability histograms for each class, we gain a comprehensive understanding of the model’s

reliability and accuracy in predicting probabilities for the three return classes.
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4.7 Order simulation

To evaluate the economic significance of the predictor variables, we employ an order simulation.

This simulation mimics a trading environment where buy or sell orders for different stocks arrive

before each session and must be executed within one day of trading. For example, an order received

before the morning session needs to be executed across the morning, afternoon, and closing sessions,

while an order received before the afternoon session should span the afternoon, closing, and the

following morning session. Within this simulated trading setting, each session involves executing

a fraction of the total order volume. To minimize market impact, the executed fraction during a

session is relative to the volume traded in the market during that specific session. This session’s

initial volume execution (υ) is expressed as a fraction of the average daily traded volume (ADV),

which we calculate using a 25-day rolling average. Next, we apply the regularized non-parallel

ordinal probit regression model to predict returns in the first session. Based on this prediction

(whether returns are expected to be negative, moderate, or positive), we adjust the initially calcu-

lated volume fraction for that session (υ∗). This adjustment involves back or front loading or no

adjustment at all, resulting in a new volume fraction in that session that is higher, lower or equal

to the initial volume fraction.

Figure 6 visually illustrates this back and front loading process after the model’s prediction. Once

the first part of the trade is executed in the initial session, we gain new information during the first

session that informs the prediction for returns in the next session. Using this updated information,

we adjust the volume fraction for the subsequent session accordingly (υ∗∗). The remaining portion

of the volume fraction is then allocated for the final session.

Figure 6: The graph compares two strategies for an order before the morning session: front loading (upper

row) and back loading (lower row). It shows how the initial volume fractions υm, υa, υc are adjusted to

υ∗m, υ
∗
a, υ

∗
c after predicting the morning session. The x-axis represents trading sessions, and the y-axis

indicates volume fractions. The difference in executed volume is shown in light blue.

Algorithm 1 outlines the pseudocode for setting up the simulation, specifically for buy orders
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arriving before the morning session. During this simulation we must ensure that the executed

volume per session υ∗∗ remains within the range of zero to one. This constraint ensures that we

execute the order efficiently without taking opposing positions or executing more than necessary.

We achieve this by front loading using a fraction (φf ) of the initial execution volume of subsequent

session(s):

υ∗t,m = υt,m + φf × (υt,a + υt,c), (4.40)

and back loading using a fraction (φb) of the initial execution volume of the current session:

υ∗t,m = υt,m − φb × υt,m. (4.41)

To evaluate the model’s performance, we compare a standard VWAP-execution, based on a 25-day

rolling average for each session, against VWAP-execution using predictions from the regularized

ordinal probit model. This comparison is based on the cumulative BPS difference between the two

execution strategies. For buy orders aiming for the lowest execution price:

VWAPt −VWAP∗∗
t

VWAPt
× 10, 000, (4.42)

and for sell orders targeting the highest execution price:

VWAP∗∗
t −VWAPt

VWAPt
× 10, 000. (4.43)

This simulation setup is performed for both buy and sell orders and orders arriving before the

morning, afternoon, or closing session.

4.8 Out-of-sample evaluation

Lastly, we perform an out-of-sample evaluation. To perform an out-of-sample prediction the data

must consist of at least one training set to train the model and its parameters on, and one test

set to evaluate the model on. This resembles the real-life situation where the model is trained

on a provided dataset and evaluated on unseen data. The standard approach in machine learning

literature is to perform K-fold cross-validation by K times randomly picking a new train and test

set. However, due to the time series nature of our model it is not possible to randomly choose

samples to assign to a test or training set. This is due to the temporal dependency of time series

observations and applying K-fold cross validation would lead to data leakage. To overcome this,

we need to ensure that the test set always represents a subsequent moment in time compared to

the training set. After the first train/test-split the test observations are included in the train set

and the subsequent data points are predicted. This form of cross-validation is called time-series

cross-validation and is shown in Figure 7.
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Algorithm 1 Order simulation algorithm for buy orders arrived in the morning

1: for t = 1 to T do

2: for each stock s in the set of available stocks St do

3: Calculate 25-day rolling average volume for the morning, afternoon and closing:

V
25
t,m = 1

25

∑t−1
d=t−25 Vd,m, V

25
t,a = 1

25

∑t−1
d=t−25 Vd,a, V

25
t,c = 1

25

∑t−1
d=t−25 Vd,c

4: Calculate the fraction of volume to be executed for the morning, afternoon and closing:

υt,m =
V

25
t,m

V
25
t,m+V

25
t,a+V

25
t,c

, υt,a =
V

25
t,a

V
25
t,m+V

25
t,a+V

25
t,c

, υt,c =
V

25
t,c

V
25
t,m+V

25
t,a+V

25
t,c

5: Classify the return for the morning session: r̂t,m

6: if r̂t,m = positive then

7: Back load the volume: φf = 0, φb = 0.25

8: else if r̂t,m = moderate then

9: Do not alter the volume: φf = 0, φb = 0

10: else if r̂t,m = negative then

11: Front load the volume: φf = 0.25, φb = 0

12: end if

13: Recalculate the volume per session:

14: υ∗
t,m = υt,m + φf × (υt,a + υt,c)− φb × υt,m

15: υ∗
t,a = υt,a − φf × υt,a + φb × υt,a

υt,a+υt,c
× υt,m

16: υ∗
t,c = υt,c − φf × υt,c + φb × υt,c

υt,a+υt,c
× υt,m

17: Classify the return for the afternoon session: r̂t,a

18: if r̂t,a = positive then

19: Back load the volume: φf = 0, φb = 0.25

20: else if r̂t,a = moderate then

21: Do not alter the volume: φf = 0, φb = 0

22: else if r̂t,a = negative then

23: Back load the volume: φf = 0.25, φb = 0

24: end if

25: Recalculate the volume per session:

26: υ∗∗
t,m = υ∗

t,m

27: υ∗∗
t,a = υ∗

t,a + φf × υ∗
t,c − φb × υ∗

t,a

28: υ∗∗
t,c = υ∗

t,c − φf × υ∗
t,c + φb × υ∗

t,a

29: Calculate VWAP for baseline execution: VWAPt = Pt,m × υt,m + Pt,a × υt,a + Pt,c × υt,c

30: Calculate VWAP for model-based execution: VWAP∗∗
t = Pt,m × υ∗∗

t,m + Pt,a × υ∗∗
t,a + Pt,c × υ∗∗

t,c

31: Calculate improvement upon baseline execution in bps:
VWAPt−VWAP∗∗

t
VWAPt

× 10, 000

32: end for

33: end for

34: Evaluate performance over time for all stocks:
∑T

t=1

∑
s∈St

VWAPt−VWAP∗∗
t

VWAPt
× 10, 000
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To evaluate the classification models we perform 5-fold time series cross-validation. The first fold

starts with a 50/10 train/test split, after which the test set is added to the train set resulting in a

60/10 split for the second fold. This process is repeated 5 times such that the full sample data is

used. Within each training set 5-fold cross-validation is used to estimate the hyperparameter λ.

Figure 7: Visual representation of a 5-fold time series cross-validation.

5 Empirical results

In this chapter, we present and discuss the results obtained from the methods explained in the

previous chapter. First, we discuss in Section 5.1 an analysis of the cross-section of stock returns to

extract predictor variables that have explanatory power for intraday returns. The analysis starts

with univariate portfolio sorts, followed by univariate and multivariate Fama-MacBeth regressions.

Second, in Section 5.2 we extend the set of predictor variables as input for ordinal regression models

and compare the models’ predictive accuracy. Third, in Section 5.3 we evaluate the economic

relevance of these predictor variables. We end this chapter with an out-of-sample evaluation of the

best performing model in Section 5.4.

5.1 In-sample predictor analysis

Portfolio sorts

To find potential intraday momentum and reversal signals in the cross-section of stock returns we

begin by performing portfolio sorts. Table 4 shows time-series average returns of 5 quintile portfolios

that are sorted and evaluated on each day. Stocks are sorted on the PIR of the overnight, morning

and afternoon session in respectively panel A, B and C, and grouped into quintile portfolios from

low to high PIR, and the market-neutral high-minus-low portfolio.

In panel A we see a clear reversal pattern between the overnight PIR and the morning returns

for all decile portfolios. We also see that in the equally-weighted portfolios the pattern is mainly

driven by the long leg and in the value-weighted portfolios in the short leg. The overnight PIR

portfolios still show a small reversal effect in the afternoon returns, and a momentum effect in
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PIR rmorning rafternoon rclosing

EW EW t(EW) VW t(VW) EW t(EW) VW t(VW) EW t(EW) VW t(VW)

Panel A: PIRovernight

Low -0.100 0.024 (1.16) 0.030 (1.61) -0.002 (-0.19) 0.003 (0.28) -0.036 (-0.65) -0.035 (-0.57)

2 -0.024 0.010 (0.69) 0.010 (0.70) 0.000 (0.05) 0.002 (0.27) -0.047 (-0.91) -0.018 (-0.32)

3 0.004 -0.000 (-0.01) 0.003 (0.21) -0.002 (-0.24) -0.001 (-0.09) -0.059 (-1.12) -0.031 (-0.54)

4 0.031 -0.008 (-0.57) -0.008 (-0.58) -0.001 (-0.17) -0.001 (-0.14) -0.062 (-1.18) -0.037 (-0.64)

High 0.102 -0.041 (-2.01) -0.011 (-0.58) -0.005 (-0.55) -0.004 (-0.47) -0.030 (-0.56) -0.022 (-0.36)

High-Low 0.202 -0.064 (-3.17) -0.041 (-2.06) -0.003 (-0.36) -0.007 (-0.80) 0.006 (0.24) 0.014 (0.44)

Panel B: PIRmorning

Low -1.156 -0.003 (-0.28) -0.001 (-0.14) -0.022 (-0.39) 0.001 (0.01)

2 -0.362 0.000 (0.04) 0.005 (0.62) -0.040 (-0.75) -0.017 (-0.29)

3 0.004 -0.001 (-0.14) 0.003 (0.43) -0.048 (-0.92) -0.033 (-0.58)

4 0.364 -0.002 (-0.27) -0.002 (-0.22) -0.068 (-1.33) -0.046 (-0.79)

High 1.136 -0.004 (-0.46) -0.002 (-0.23) -0.056 (-1.05) -0.033 (-0.55)

High-Low 2.291 -0.002 (-0.23) -0.001 (-0.11) -0.034 (-1.45) -0.033 (-1.20)

Panel C: PIRafternoon

Low -0.468 0.025 (0.44) 0.004 (0.07)

2 -0.152 -0.043 (-0.80) -0.023 (-0.38)

3 -0.002 -0.065 (-1.22) -0.043 (-0.74)

4 0.148 -0.073 (-1.40) -0.037 (-0.64)

High 0.464 -0.079 (-1.52) -0.037 (-0.69)

High-Low 0.932 -0.104 (-4.15) -0.041 (-1.35)

Table 4: This table presents the time-series average portfolio returns for quintile portfolios obtained by sorting daily

by equal-weighted (EW) PIR. The returns are evaluated for equal-weighted and value-weighted (VW) portfolios

including the high minus low portfolio. Panel A, B, and C correspond to the overnight (16:00-09:30), morning

(09:30-12:00), and afternoon (12:00-15:50) sessions to calculate the PIR. The first column shows PIRs for the quintile

portfolios, followed by columns displaying equally and value-weighted portfolio returns for the morning, afternoon

and closing (15:50-16:00) session. PIRs and portfolio returns are reported as log returns in BPS per minute, with

t-statistics in parentheses based on Newey-West standard errors with 6 lags.

the closing session. This effect is mainly driven by the negative momentum of the short leg and

becomes stronger for the value-weighted high-minus-low portfolios. It is clear that all overnight

PIR portfolios show negative returns in the closing session. However, none of the portfolio returns

are significantly different from zero.

In panel B we see that the portfolios sorted by the morning session have a spread (2.291) of more

than 11 times the overnight PIR spread (0.202). We can conclude that the returns generated

during the morning session are more dispersed. This could be related to overnight news that is

incorporated by traders after the market opening resulting in more differences between returns

during the morning session. We then see that for these portfolios less return is generated during

the afternoon session. The SIR during the closing session show more of a reversal pattern but are

still not significant.

In panel C we see that the spread in portfolio returns sorted on PIR in the afternoon session are

more than 4 times the overnight PIR spread. Also, we see a clear reversal pattern with the closing
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session SIR for the equally-weighted long-minus-short portfolio. This becomes non-significant when

evaluating the value-weighted portfolios. It is worth noting that all of the PIR-sorted portfolios

show negative returns in the closing session, except for the low portfolio showing a clearly positive

return.

From the univariate portfolio sorts we can conclude that we mostly see reversal patterns between

sessions throughout the day, but only the reversal between overnight returns and morning returns

and between afternoon and closing returns (only for equally-weighted portfolios) are significant.

Due to the fact that we use the MSCI US Index which already encompasses the largest stocks in

the US, there is not much of a difference between equally weighted and size weighted portfolios.

Fama-MacBeth regressions

In order to evaluate the effect of several predictor variables simultaneously, we employ the Fama-

MacBeth regression approach to explain returns for the morning, afternoon and closing session

by using PIRs. In doing so we add three control variables: log volatility, log volume and log

size. Log volatility is based on a 15-day Parkinson volatility estimator, log volume on a 15-day

rolling average and log size based on the stock price and market capitalization at the previous day’s

closing. However, Bouchaud et al. (2018) states that the daily traded volume for a typical stock

usually amounts to 0.1%-1% of its total market capitalization. Highly correlated predictors often

lead to multicollinearity issues; making it difficult to isolate individual effects between correlated

predictors and unstable coefficient estimates. We therefore evaluate log size and log volume in

separate regressions.

The first three columns in table 5 show regressions on the morning returns. The univariate regres-

sion in column 1 shows that the overnight PIR is significant and negatively related to the morning

returns, indicating a reversal pattern between the overnight and morning returns. The regression

in column 2 controls for log volatility and log volume, and in column 3 for log volatility and log size.

With these last two models we are able to explain around 13% of the total variance in the morning

returns. We see that a 1% increase in returns during the overnight session is associated with a

0.21% decrease in returns in the morning session when correcting for volatility and volume, and

associated with a 0.22% decrease in returns in the morning session when correcting for volatility

and size.

The four subsequent columns in table 5 show regressions on the afternoon returns. None of the

regressions show significant predictors except for log size. Therefore previous intraday returns

cannot be used to explain afternoon returns.
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Variable
rt,morning rt,afternoon rt,closing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Intercept 0.0017 0.1339 -0.0313 -0.0020 -0.0035 0.0010 -0.0487 -0.0585 -0.0702 -0.6141*** -0.8431*** -0.6466***

(0.12) (1.45) (-0.29) (-0.26) (-0.46) (0.03) (-1.33) (-1.12) (-1.37) (-6.45) (-5.68) (-6.57)

PIRafternoon
t -0.1152*** -0.1395*** -0.1798*** -0.1790*** -0.1733***

(-5.12) (-6.56) (-8.95) (-8.89) (-8.62)

PIRmorning
t 0.0001 -0.0013 -0.0039 -0.0040 -0.0192* -0.0294*** -0.0292*** -0.0268**

(0.05) (-0.52) (-1.93) (-1.95) (-2.18) (-3.39) (-3.36) (-3.06)

PIRovernight
t -0.2581*** -0.2137*** -0.2238*** -0.0065 -0.0077 -0.0091 0.0095 -0.0007 0.0003

(-3.44) (-3.50) (-3.63) (-0.25) (-0.39) (-0.46) (0.12) (-0.01) (0.01)

lnVolatilityt -0.0385 -0.0322 -0.0009 0.0012 0.1289*** 0.1498*** 0.1392***

(-1.38) (-1.13) (-0.09) (0.13) (4.75) (5.33) (4.97)

lnVolumet -0.0007 0.0001 0.0240*** 0.0245***

(-0.22) (0.04) (3.62) (3.69)

lnSizet 0.0082** 0.0025* 0.0166*

(2.91) (2.24) (2.41)

R2 0.0400 0.1386 0.1373 0.0341 0.0611 0.1276 0.1259 0.0140 0.0380 0.0639 0.0647 0.0560

R2
adj 0.0368 0.1329 0.1316 0.0309 0.0564 0.1203 0.1186 0.0107 0.0316 0.0545 0.0553 0.0482

T 808 808 808 808 808 808 808 808 808 808 808 808

Table 5: Regression coefficients from Fama-MacBeth regressions, obtained after regressing the variables from the

first column on the log-returns in BPPM of the morning (09:30-12:00), afternoon (12:00-15:50) and closing session

(15:50-16:00) for all stocks in the MSCI US Index at each day t. The coefficients are computed by averaging over

the entire time span from October 6, 2020, to January 9, 2023. The last column for each session is obtained by

consecutively deleting insignificant predictors based on the lowest t-statistic until only significant predictors are left.

Here we accept a maximum probability of 5% to incorrectly reject a true null hypothesis. The intercept is always

kept in the regression models. T-statistics are presented in parentheses, calculated using Newey-West standard errors

with 6 lags. ***, **, and * denote 0.1%, 1%, and 5% significance level, respectively.

The five last columns show regressions on the closing returns. The univariate regression in column 8

shows that there is a significant reversal pattern present between the afternoon and closing session.

Column 9 shows that returns during the morning session also have explanatory power for the closing

session but returns during the overnight session not. Column 10 and 11 show that in addition log

volatility, log volume, and log size also have significant coefficients. The resulting model is shown

in column 14 consisting of the returns during the morning and afternoon session, log volatility and

log volume. Returns are significantly reverting between the morning and closing and afternoon

and closing. These reversions are smaller than between the overnight and morning session but still

amount to a decrease of 0.17% in returns during the closing session when the afternoon returns

increase by 1%, and a decrease of 0.03% returns during the closing session when the morning

returns increase by 1%. Also, more volatile stocks and stocks with higher trading volume tend to

have higher returns during the closing session.

5.2 In-sample model evaluation

Having studied the intraday dynamics of PIRs on VWAP-returns, we continue to study the in-

sample performance of the classification models proposed in Section 4.5 using a larger set of pre-

dictor variables. We start by showing that the ordinal probit model fails to classify the moderate
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return class and continue by showing that extending the model with an L1-penalty and non-parallel

form helps in solving this issue and results in a good model fit. We then evaluate the effect of the

L1-penalty on the set of predictor variables to see which variables are selected.

Ordinal probit regression

The ordinal probit regression model as described in Equation 4.30 serves as our baseline model,

and the model is estimated using maximum likelihood (eq. 4.31).

Panel A in table 6 shows the evaluation metrics for each of the three sessions. The first notable

thing is that the ordinal probit model fails to classify the moderate return class for each of the

sessions, leaving the precision, recall and F1-score on zero for this class. The accuracy for each

of the sessions is above 33%6 implying that the ordinal probit model still has some explanatory

power. However, since the model does not classify any of the observations in the moderate return

class, the accuracy can give a skewed image of the true model performance. The weighted F1-score

provides a more complete view, taking both precision and recall into account and weight each of

the F1-scores by the number of observations per class. We now see that the weighted F1-score is

highest for the morning session, followed by the closing and afternoon session. With an F1-score

of around 29% we can conclude that the model does a poor job in identifying return classes for the

different sessions.

Morning Afternoon Closing

Negative Moderate Positive Negative Moderate Positive Negative Moderate Positive

Panel A: Ordinal Probit

Precision 37.51 00.00 37.46 35.43 00.00 36.03 37.16 00.00 37.55

Recall 53.12 00.00 58.70 57.00 00.00 49.74 44.85 00.00 66.45

F1-score 43.97 00.00 45.74 43.69 00.00 41.79 40.65 00.00 47.99

Accuracy 37.48 35.71 37.39

Weighted F1 30.06 28.62 29.72

Panel B: Regularized Non-Parallel Ordinal Probit

Precision 39.81 41.07 39.78 37.59 40.17 38.84 40.74 39.85 39.92

Recall 39.91 36.83 43.67 36.09 50.31 30.83 29.49 41.10 49.39

F1-score 39.86 38.83 41.63 36.82 44.68 34.37 34.21 40.47 44.15

Accuracy 40.17 39.00 40.09

Weighted F1 40.12 38.58 39.66

Table 6: Evaluation metrics in percentages for in-sample return classification. Precision, recall, and F1-score are

assessed for each negative, moderate, and positive class. Accuracy and weighted F1-score are evaluated across all

three classes. Panel A displays metrics for the Ordinal Probit Model. Panel B displays metrics for the extended

model with L1-penalty and varying β-coefficients for cumulative class probabilities. The models are assessed for each

trading day session.

6Assuming that the classes are balanced, an accuracy lower than 1
3
implies that the model performs worse than

randomly predicting one of the three classes, meaning that the model has no explanatory power.
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To get more insight into the underlying model dynamics we also evaluate the model qualitatively.

Figure 8 shows the calibration plots and probability histograms for the morning session. From

the upper left and upper right calibration plot we see that the model underclassifies in the higher

probability quantiles but is rather good calibrated for the other quantiles. However, the calibration

plot for the moderate return class is way off the striped calibration line. When looking to the

corresponding probability histogram we see that it is highly skewed around 33% indicating that the

model fails to use the model features to correctly predict the moderate return class. This could be

due to the parallelism assumption that the model imposes. This means that negative and positive

returns can be approximately explained by the same coefficients, but that moderate returns relate

in a different way to the predictors than negative and positive returns do.

Figure 8: Morning session (09:30-12:00) calibration plots (upper row) display the in-sample ordinal probit model’s

calibration for negative, moderate, and positive return classes. Each dot represents the ratio of ordered predicted

probabilities to true probabilities within 25 quantiles (± 6600 observations per quantile). The striped line denotes

perfect calibration. The histograms of predicted probabilities (lower row) for the same classes, show observations

inside and outside each return class.

Regularized non-parallel ordinal probit regression

Having established knowledge on the ordinal probit model, we examine how the L1-regularization

and non-parallel form influence the model outcomes. For this, we use the objective function in

Equation 4.35 to estimate model parameters ψ1, ψ2,β1 and β2, and select the hyperparameter λ

that provides the highest in-sample log-likelihood.

From panel B in table 6 we see that the model extension succeeds in classifying each of the return

classes. The accuracy for the morning and closing session is 40%, and for the afternoon 39%,
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showing that the model has explanatory power. The weighted F1-scores show a similar performance,

but lowers somewhat for the afternoon and closing session due to the differences between precision

and recall. Based on these two metrics we can conclude that the model extension clearly improves

on the baseline model for each of the sessions.

When we zoom in on the precision and recall we see that the model shows some large differences. For

the morning session the model shows an equal performance on precision and recall for the negative

return class of around 40%. The model shows rather good performance in accurately classifying

moderate returns (41% precision), but shows less performance in detecting moderate returns (37%

recall). The model shows also shows a rather good performance in detecting positive returns (44%

recall) and shows descent performance in accurately classifying positive returns (40% precision).

The model for the afternoon shows different performance. The negative and positive return classes

show higher precision (38% and 39% respectively) than recall (36% and 31% respectively), which is

low for the positive class. Hence, the model has some difficulty in detecting positive return classes

in the afternoon. However, the model shows very good performance in detecting moderate return

classes (50% recall) and also a descent performance in accurately classifying moderate return classes

(40% precision). For the final session, we see that the model performs poorly in detecting negative

returns (29% recall), but shows good performance in accurately classifying this class (41%). Hence,

the model does not often predict negative returns in the closing session but when it does, it predicts

them rather accurately. The model shows similar precision and recall score for the moderate returns

(40% and 41% respectively). Finally, we see that the model is very good in detecting positive return

classes (49% recall) and does a descent job in accurately classifying them (40%).

Figure 9: Confusion matrices for each session of the in-sample regularized non-parallel ordinal probit model. Entries

are shown in percentages of the total number of observations.

Next, we evaluate the confusion matrices for each of the sessions. For the morning session the

majority of the classes is predicted in the diagonals, which confirms the model’s informative power.

For the afternoon, the model succeeds in correctly predicting the moderate return classes (17% of
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the observations fall in that class), but shows less performance for the positive (12%) and negative

(10%) return classes. For the closing session, the model succeeds in classifying the moderate (14%)

and positive (17%) return classes, but shows less performance on the negative return class (10%).

Next to the correctly predicted classes, we pay special attention to two critical classes in the

confusion matrix. The observations where the model predicts the negative return class while the

returns were positive (NP), in the lower left corner of the confusion matrix, and the observations

where the model predicts the positive return class but the returns were negative (PN), in the upper

right corner. In order to evaluate the performance we need to evaluate these percentages with their

corresponding diagonals (NN & PP). We see that this is especially an issue for NP and PN in the

morning, NP in the afternoon and PN in the closing. We can conclude that the model performs

less in making a distinction between positive and negative return classes.

Figure 10: Morning session (09:30-12:00) calibration plots (upper row) display the in-sample regularized non-parallel

ordinal probit model’s calibration for negative, moderate, and positive return classes. Each dot represents the ratio

of ordered predicted probabilities to true probabilities within 25 quantiles (± 6600 observations per quantile). The

striped line denotes perfect calibration. The histograms of predicted probabilities (lower row) for the same classes,

show observations inside and outside each return class.

To evaluate the model qualitatively we take a look at the calibration plots and predicted probability

histograms in Figure 10. The three upper calibration plots show that the model extension is really

well calibrated, since the model calibration neatly follows the perfect calibration line. Only the

upper tale of the negative and positive return classes is somewhat overestimated. overall we can say

that in each of the quantiles the ratio between the predicted probabilities and the true probabilities

is correct. However, this does not mean that all the observations are correctly classified. The

lower row of histograms shows that the model has difficulty to distinguish between observations
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that fall into the class and outside the class. It gives many of the observations falling outside

the class the same probabilities as observations falling inside the class. In an ideal situation the

observations falling outside the class should obtain on average lower predicted probabilities and the

ones falling inside the class higher predicted probabilities. Also, we would like to see that there

are less observations predicted around 33%. Predicting observations around 33% would mean less

informative power for those observations.

For a model to work accurately in executing trade orders, it is important to have higher precision

for the negative and positive returns. If the model does not always detect each positive or negative

return, but when it detects them, it does this more accurately, this works favourably for order

execution. When working with a baseline VWAP-algorithm and differ from this execution when

we have high probabilities for a negative or positive return class can enhance optimal execution.

Predictor analysis

To gain insights into the behavior of the proposed predictor variables, we assess the in-sample co-

efficients of the regularized non-parallel ordinal probit model. Figure 11 presents bar plots showing

the estimated coefficients for the morning, afternoon, and closing sessions. Due to the non-parallel

model form, the model calculates two sets of coefficients for three return classes, assigning one coef-

ficient to each threshold. These coefficient sets can be interpreted as follows: the first set relates to

the probability of having at most negative returns, while the second set relates to the probability of

having at most moderate returns. A positive coefficient indicates that an increase in the predictor

variable is linked to higher probability of moving up the ordinal scale, whereas a negative coefficient

suggests lower probability of such movement. Additionally, the coefficient magnitude directly cor-

responds to the strength of the relationship between the predictor variable and the probability of

transitioning between categories; a larger magnitude implies a stronger impact on the probability.

When looking at Figure 11, we observe significant impacts of dummy variables on return categories

for each session. Analyzing previous returns reveals that positive overnight returns lead to increased

probability of transitioning from negative to moderate returns, as well as from moderate to positive

returns. However, these returns have minimal impact on afternoon and closing session returns.

Positive returns in the morning positively influence the probability of transitioning from negative

to moderate returns and from moderate to positive returns.

Regarding volatility, higher overnight volatility raises the probability of transitioning from negative

to moderate returns but reduces the probability of transitioning from moderate to positive returns.

This suggests a diminishing volatility effect after reaching the moderate return class. A similar
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Figure 11: Coefficient plots for returns in the morning (rt,m), afternoon (rt,a), and closing (rt,c) sessions using the

regularized non-parallel ordinal probit model. This model categorizes intraday returns into three classes, leading to

the estimation of coefficients for two thresholds.

pattern is observed with morning volatility’s effect on afternoon returns. Moreover, increased

morning volatility decreases the probability of transitioning from negative to moderate returns

in the closing session but enhances the probability of transitioning from moderate to positive

returns in the closing session. This could signify that higher price volatility tends to result in more

extreme returns during the closing session, either positive or negative. Notably, afternoon volatility

significantly impacts closing session returns; higher afternoon volatility increases the probability

of transitioning from negative returns to moderate returns while decreasing the probability of

transitioning from moderate returns to positive returns. This implies that after a volatile afternoon

session, prices tend to stabilize during the closing session.

Additionally, a slight impact of dark volume surprise is noted in the afternoon. When there is

a different volume traded in the dark pools than expected based on the last 25 trading days,

this decreases the probability of transitioning from the moderate return class to the positive return

class, whereas higher volume in dark pools in the afternoon increases the probability of transitioning

from moderate returns to positive returns. This suggests that the timing of heightened dark volume
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in the afternoon is important and sudden spikes in this volume create a counterbalancing effect,

decreasing the probability of transitioning from moderate to positive returns. Lastly, a higher

OFI in the morning lowers the probability of transitioning from negative to moderate returns but

increases the probability of transitioning from moderate to positive return classes. This indicates

that afternoon returns tend to lean towards extremes, whether positive or negative. For afternoon

OFI, a small negative effect on transitioning from negative to moderate returns in the closing session

is observed.

5.3 Economic relevance

In this section, we evaluate the in-sample economic relevance of the short-term alpha signals and the

regularized non-parallel ordinal probit model. We utilize the simulation setup described in Section

4.7 and evaluate buy and sell orders for the full cross-section of MSCI US constituents during the

morning, afternoon, and closing sessions. We compare their performance in BPS difference from

a standard VWAP execution strategy. Figure 12 displays the resulting plots of the simulations in

cumulative BPS.

Figure 12: In-sample improvement over time of the regularized non-parallel ordinal regression model compared to

standard VWAP execution (measured in basis points) for buy and sell orders across all stocks in the MSCI US Index.

Simulations are performed for orders arriving before the morning, afternoon, and closing sessions.

We observe that buy and sell orders for each session perform similarly overall, but show occasional

deterioration. The best-performing strategy is for buy and sell orders arrived before the closing

session, improving upon the standard VWAP strategy by around 200,000 BPS. Both strategies

perform similarly but diverge around the 4th quarter of 2020 and 2021.
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Conversely, the worst performance is for buy and sell orders that arrive before the afternoon session.

The strategy for these orders consistently underperform compared to the standard VWAP strategy.

Orders arriving before the morning session show slightly more stability but still execute worse than

standard VWAP, ending around 75,000 BPS lower than this benchmark.

Overall, orders arriving before the shortest session, namely the closing, can be executed more

effectively. This could be attributed to better precision for negative and positive returns compared

to other trading sessions. We can partly explain the poor performance by noting that although the

model achieved high recall and precision for the moderate return classes, it did not fully leverage

opportunities to improve upon VWAP, particularly when correctly classifying negative and positive

returns and act upon these classifications by back or front loading.

5.4 Out-of-sample model evaluation

Having established understanding of the in-sample performance of the regularized non-parallel

ordinal probit model, we now shift our focus to the out-of-sample evaluation. As detailed in Section

4.8, we employ 5-fold time series cross-validation to repeatedly estimate and predict out-of-sample

returns. Table 7 presents the quantitative evaluation metrics for this model.

Morning Afternoon Closing

Negative Moderate Positive Negative Moderate Positive Negative Moderate Positive

Precision 39.03 40.70 40.03 35.95 38.44 37.69 35.58 39.14 38.80

Recall 43.72 36.10 39.55 44.98 37.42 29.33 23.61 18.78 67.86

F1-score 41.24 38.26 39.79 39.96 37.93 32.99 28.39 25.38 49.37

Accuracy 39.84 37.16 38.17

Weighted F1 39.79 36.88 35.06

Table 7: Evaluation metrics in percentages for out-of-sample return classification using the regularized non-parallel

ordinal probit model.

We note that the morning session exhibits the highest accuracy and weighted F1-score, approxi-

mately 40%. This marks a slightly inferior performance compared to the in-sample classification. In

the afternoon session, we observe an accuracy of around 37%. Here, the model struggles to identify

the positive return class, shown by the recall of 29%. Nonetheless, the performance is still better

than randomly assigning one of three return classes. The closing session clearly demonstrates lower

out-of-sample performance than in-sample results. The model clearly has difficulty in recognizing

negative and moderate return classes, as shown by the low recall scores for these categories.

In addition to quantitative metrics, we conduct a simulation exercise similar to that discussed in

Section 5.3, but now using out-of-sample return classifications to adjust order execution. Figure 13

displays the cumulative outperformance in BPS upon the standard VWAP-execution.
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Figure 13: Out-of-sample improvement over time of the regularized non-parallel ordinal regression model compared

to standard VWAP execution (measured in BPS).

We observe that sell orders arriving before the morning session are the only simulation group

that outperforms standard VWAP-execution. A spike around November 2022 largely drives these

differences. During this period, the morning session predictors correctly identified return classes,

whereas the afternoon and closing sessions experienced a large number of misclassifications. Taking

into account these findings along with the earlier in-sample results, it seems likely that the model

is overfitting in the afternoon and closing sessions.
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6 Conclusion

Executing large trades throughout a trading day poses a significant challenge due to market impact.

Therefore, both professional traders and academics have sought intraday alpha signals to make more

informed decisions on trade execution. In this thesis, we contribute to this body of research by

addressing the question: How can intraday alpha signals improve the execution of intraday equity

trades? We demonstrate that this can be achieved using a novel methodology for ordinal return

classes and a large set of predictors, among which historical returns prove to be the most important

ones.

Our methodology involves portfolio sorts and Fama-MacBeth regressions to identify premia related

to historical returns. In doing so we identified significant reversal signals between overnight and

morning returns, as well as between afternoon and closing returns. Specifically, stocks with negative

returns during the overnight period carry a premium over the morning period, and similarly, stocks

with negative returns in the afternoon carry a premium over the closing period. This pattern

remains consistent even when adding size, volatility, and volume as control variables in the Fama-

MacBeth regression setting. Thus, we demonstrate that historical returns can be used for intraday

alpha signals in the cross-section.

In our proposed model setting, we show how predicting returns can be successfully changed in

a classification task using existing ordinal probit models, and how this opens a wide range of

interpretable evaluation metrics. For the proposed models, we found that the ordinal probit model

struggles in identifying the moderate return class. However, incorporating the non-parallel form

and L1-penalty appears to help in correctly identifying each class. Therefore, the flexibility of the

non-parallel model form is crucial, as it appears that the relationships between predictor variables

and return classes cannot be adequately captured by a parallel model form. In-sample we observe

that next to historical returns also newly proposed predictors were selected by this model extension

such as dark volume surprise, OBI and OFI.

We evaluate economic relevance of the regularized non-parallel ordinal probit model by conduct-

ing order simulations for both buy and sell orders and evaluating its profitability compared to a

standard VWAP-strategy. From the order simulation study we may conclude that higher precision

for negative and positive return classes can be associated with better economic performance. For

instance, in the closing session, where the model exhibits higher precision for positive and negative

return classes, the benchmark VWAP-strategy is outperformed. On the other hand, the model’s

high precision and recall for the moderate return class in the afternoon suggest it can better dis-
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tinguish when to use the benchmark VWAP execution during that period. However, we see that

this performance does not give an economical edge, resulting in a significant underperformance of

the VWAP-benchmark.

Finally, we evaluate the out-of-sample performance of this model. Here, we see that the regularized

non-parallel ordinal probit regression model is still able to classify morning returns, but has more

difficulty in correctly classifying afternoon and closing returns. It also has difficulty outperforming

a standard VWAP-benchmark in an order simulation. A possible reason for this could be overfitting

on the set of predictor variables.

In this thesis, we aimed to contribute to the research gap defined by Goldstein et al. (2021) between

long-term and extreme short-term behavior of equity returns. We simultaneously propose a novel

method for return classification and show how this method could be beneficial for traders in practice.

The research has several limitations. Firstly, the analysis is conducted over a relatively short sam-

ple period, using data from September 2020 to September 2023, a period largely influenced by the

COVID-19 pandemic. We would recommend using a longer time span to provide a more com-

prehensive understanding of intraday market movements across various economic cycles, including

periods of volatility, stability, growth, and recession. Secondly, for future research it would be

advisable to assess prediction and execution horizons at a higher and consistent frequency. This

research predicts returns for morning, afternoon, and closing sessions, requiring separate analyses

due to the various lengths of these sessions. Transitioning to a uniform time interval, such as

15 minutes, would facilitate clearly defined feature lags and simplify the evaluation of predictor

variables. Additionally, certain features are likely to exhibit stronger predictive power over shorter

time horizons. For instance, order-flow imbalance demonstrates high predictive power over a one-

minute horizon but this power decreases as the prediction horizon extends, as shown by Cont et

al. (2023). Thirdly, extending the set of predictors would be valuable. Incorporating economical

relevant news events as predictors, as demonstrated by Chinco et al. (2019), could provide valuable

insights. Moreover, analyzing the co-movement among different stocks within a cross-section could

provide more areas to explore. Lastly, a comprehensive study is needed to evaluate the model’s

relevance in actual order execution scenarios. This entails considering buy and sell orders of varying

sizes throughout the day and evaluating performance across diverse market conditions or portfolio

characteristics like market capitalization, trading volume, and volatility.
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A Appendix

Figure 14: Afternoon session (12:00-15:50) calibration plots (upper row) display the in-sample regularized non-parallel

ordinal probit model’s calibration for negative, moderate, and positive return classes. Each dot represents the ratio

of ordered predicted probabilities to true probabilities within 25 quantiles (± 6600 observations per quantile).

Figure 15: Closing session (15:50-16:05) calibration plots (upper row) display the in-sample regularized non-parallel

ordinal probit model’s calibration for negative, moderate, and positive return classes. Each dot represents the ratio

of ordered predicted probabilities to true probabilities within 25 quantiles (± 6600 observations per quantile).
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