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Abstract

In high-stakes decision-making scenarios, accurately predicting pedestrian behavior is crucial for the

safety and reliability of autonomous vehicles in urban environments. However, traditional machine

learning models often provide deterministic predictions, lacking the ability to quantify uncertainties in-

herent in dynamic and complex environments. This paper investigates three methodologies—evidential

neural networks, Bayesian neural networks, and deep ensembles—to extend neural networks’ capabilities

by predicting uncertainty as a confidence interval. In addition, we suggest an alternative regulariza-

tion term for the evidential neural network. We evaluate these methods on a regression dataset with

heteroskedasticity and on the UCY and ETH pedestrian forecasting datasets. The results show that

the evidential neural network excels in predicting pedestrian movement uncertainties, outperforming the

other methods. Furthermore, we observe that evidential networks have significant computational benefits

during prediction.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

In high-stakes decision-making processes, the ability to not only make accurate predictions but also quantify

the associated uncertainties is of great importance, particularly in scenarios involving dynamic and complex

environments where deterministic point forecasts may fall short. One such context is pedestrian behavior

forecasting, a critical aspect of ensuring the safety and reliability of autonomous vehicles navigating urban

environments.

Traditional machine learning models often provide point predictions lacking the nuance required for

handling the unpredictability and diversity of pedestrian behaviors. Moreover, the advent of deep learn-

ing, including neural networks and their variants such as recurrent neural networks, convolutional neural

networks, and encoder-decoder architectures, has further worsened these issues due to increased model com-

plexity. These models tend to yield deterministic predictions, failing to account for the multiple potential

outcomes that pedestrians’ actions might exhibit, especially in scenarios where split-second decisions can

have significant implications. The limitations of point predictions become clear when applied to self-driving

vehicles’ interactions with pedestrians, where a singular prediction is insufficient to make safe driving choices.

For instance, a sudden choice of a pedestrian to either cautiously wait at a crosswalk or quickly cross the

road demands a system capable of incorporating uncertainty into decision-making. Solving these issues is

thus necessary to advance the capabilities of autonomous vehicles.

In this paper, we research the possibilities of extending the capabilities of neural networks and their

variants to encompass not only point predictions but also the consideration of uncertainty. Here, we want

to estimate the uncertainty as a confidence interval, a bound that includes the actual value with some

confidence p. We utilize three distinct methodologies to achieve this: evidential neural networks, Bayesian

neural networks, and deep ensembles. These approaches are implemented and evaluated to incorporate

uncertainty into predictive models effectively. We test these methods using a regression and a pedestrian

forecast dataset, assessing each method’s performance and robustness in handling uncertainty in real-world

forecasting tasks. As such, we aim to reduce the problem of point forecasting of neural networks and thus

improve autonomous decision-making.

The three methodologies mentioned above are founded on distinct principles. Evidential models modify

neural network outputs by changing single-point predictions to predict parameters within a predetermined

distribution. Consequently, the network’s output estimates a complete distribution in a single forward

pass, allowing uncertainty to be determined. In the case of Bayesian neural networks, we implement the

Monte Carlo (MC) dropout approximation, introducing uncertainty through the randomized removal of

neural network elements during training. Lastly, the ensemble method capitalizes on the variability inherent

in neural network architectures, leveraging the likelihood of different local optima. Robust uncertainty

estimates can be achieved by averaging these estimations and accounting for their errors across various data

areas.

In comparing these methodologies, we have two main criteria for evaluation. Firstly, we seek models
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with comparable or better accuracy than current methods. Given the intended application of these mod-

els in safety-critical and high-stakes scenarios, a less accurate model will not be implemented in practice.

Additionally, we aim to ensure the correct uncertainty prediction. We want the confidence intervals based

on the uncertainty estimate to encompass the actual values and avoid excessive width. In practical terms,

achieving this balance ensures that the models provide reliable uncertainty estimates, which is crucial for

informed decision-making in various contexts.

Recently, Nayak et al. (2022) tried to estimate the uncertainty for pedestrian movement paths. Although

their research showed promising results in model accuracy, they showed opportunities for further research in

uncertainty prediction, which we address in this research. In addition, we want to implement and test the

recently introduced evidential neural network on a real-world use case, as it has shown promising results on

for example 3D object detection (Paat et al., 2023).

These considerations lead us to the central research question we aim to address in this thesis:

Which of the three considered methodologies is optimal for estimating the uncertainty of predictions generated

by a neural network?

Here, the concept of “optimal” is a combination of the two criteria outlined in the previous paragraph. More

specifically, this question encompasses three subquestions: What uncertainty estimation method obtains

the most accurate predictions?, What uncertainty estimation method obtains the most reliable uncertainty

estimates?, and How do the results of the accuracy and uncertainty estimate change between datasets and use-

cases? By addressing these questions, we provide insights that improve the understanding and application

of uncertainty estimation with neural networks.

Based on these research questions, the study is structured as follows: First, we explore the methodology

of evidential neural networks and suggest a new regularization term. Then, to address the previous ques-

tions, we conduct numerical experiments. Initially, we estimate a regression problem with heteroscedastic

errors. Afterward, we carry out experiments using two pedestrian datasets, specifically focusing on the ETH

(collected by the ETH Zurich) (Pellegrini et al., 2009) and UCY (collected by the University of Cypress)

(Lerner et al., 2007) datasets. These datasets contain various scenarios where pedestrian movements have

been tracked, allowing us to answer our research questions effectively.

This research is part of a domain characterized by numerous recent developments, and accordingly, this

thesis can contribute to this field of research. Specifically, we expect the following contributions:

1. Introduction of a new regularization term for the evidential network based on the definition of a

confidence interval.

2. Application of evidential networks to estimate predictive uncertainty.

3. Improved predictions of the confidence interval of pedestrian movement compared to previous literature.

4. A comparison of three different methods to estimate uncertainty on a real-world dataset.
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5. Proposal of a metric to evaluate the confidence intervals based on a distribution-free assumption.

The scientific relevance of this thesis can be described based on these contributions. In particular, we

believe that the first and second contributions add new insights to the discussion on evidential neural networks

(Amini et al., 2020; Bengs et al., 2023; Malinin et al., 2020; Meinert & Lavin, 2021; Meinert et al., 2023; Oh

& Shin, 2022). Furthermore, the third contribution has incorporated the conclusion and suggestions of Nayak

et al. (2022). Specifically, we have adopted their recommendation to utilize other uncertainty estimation

techniques and to improve the quality of the uncertainty forecast. Lastly, fourth and fifth contributions have

been proposed by the survey of Gawlikowski et al. (2023) as the main avenues for further research in the

area of uncertainty estimation.

The societal relevance of this research is evident, especially given the significance of uncertainty estimation

in high-stakes scenarios. The findings of this study could serve as a tool to update the algorithms in scenarios

such as self-driving cars, where the accurate prediction of uncertainty is critical for ensuring safety and

reliability. Moreover, improving machine learning algorithms with better uncertainty estimation techniques

can increase their trustworthiness.

The subsequent sections of the thesis are structured as follows: Section 2 delves into the literature

review, including recent advancements in uncertainty estimation methods. In Section 3, we elaborate on

the methodology, providing insights into the theoretical background and offering details on implementation.

Next, in Section 4, we discuss the datasets utilized in our study. Following this, Section 5 presents the

results obtained from our experiments. Lastly, in Section 6, we draw conclusions from our findings and

explore potential avenues for further research.

2 Literature Review

A great introduction to the field of uncertainty forecasting is Gawlikowski et al. (2023). This paper is an

extensive survey of several branches of uncertainty estimation methods. These include the methods used in

this paper but also other uncertainty estimation methods appropriate for classification and reinforcement

learning problems. Moreover, this paper highlights the critical areas for further research. Another paper

that overviews different methods is Jospin et al. (2022). However, whereas Gawlikowski et al. (2023) focus on

theoretical aspects, the main focus of Jospin et al. (2022) is on the practical implementation. In particular,

they provide a clear overview of several approximations for variational inference methods, including the

Monte Carlo dropout method. Thus, their paper was used during the implementation of the methods.

Ulmer et al. (2021) provides an overview focused on evidential neural networks. As such, they do a deep

dive into different methods and highlight the significant difference between uncertainty estimation methods

for regression and categorical problems. Moreover, they provide a good discussion of the differences and

similarities in the literature related to evidential neural networks.

One of the recent developments in uncertainty forecasting is evidential neural networks. These networks,
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initially derived for categorical data, try to model the output as a distribution with unknown parameters

instead of directly (Sensoy et al., 2018). This leads to a network that considers the evidence of training data

during prediction. This evidence corresponds to the observed samples in the training set. As such, it can

show less confidence if the input is significantly different from the training data. The main focus has been

on choosing distribution (Malinin & Gales, 2018) and loss function (Malinin & Gales, 2019) to improve this

methodology. Based on the structure of the distribution, it was also hypothesized that evidential networks

could observe data and model uncertainty. This distinction could lead to out-of-distribution detection

(Malinin & Gales, 2019). Here, data uncertainty is inherent to the data, whereas model uncertainty is related

to the shortcomings of the model, the sum of which is equal to the predictive uncertainty (Gawlikowski et al.,

2023).

The subsequent development was redefining the evidential model for regression data (Malinin et al., 2020).

Here, the main challenge is to redefine the loss function for a regression problem since the loss function for

the categorical distribution is not well defined for regression problems (Amini et al., 2020). Instead, Amini

et al. (2020) propose a loss function that includes a negative likelihood and a regularization parameter.

However, this loss function was insufficient to find the optimal parameter values. This was first shown by

Meinert and Lavin (2021) by noting that the regularization term had a typo. Later, in Meinert et al. (2023)

and Oh and Shin (2022), it was shown that the loss function did not solve to a unique solution. In their

papers, Meinert et al. (2023) and Oh and Shin (2022) provide alternative formulations for the loss function.

In this thesis, we add to this discussion by proposing a new regularization term for the loss function. One

of the other goals of the network was to distinguish data and model uncertainty, similar to the categorical

evidential network. However, Bengs et al. (2023) proved this is impossible to achieve using the class of loss

function originally introduced in Malinin et al. (2020). Therefore, in this thesis, we will not consider data

and model uncertainty. Instead, we focus on the predictive uncertainty, equal to the sum of model and data

uncertainty. Despite the theoretical concerns in Bengs et al. (2023), the evidential network has shown very

promising results (Amini et al., 2020; Malinin et al., 2020; Meinert et al., 2023; Oh & Shin, 2022).

Another class of uncertainty estimation method is Bayesian neural networks (Gawlikowski et al., 2023).

The main idea of these models is to define the weights of neural networks as random variables instead of

as scalar weights. As a consequence, the output of the network will not be a singular prediction but a

posterior distribution. The main issue with this methodology is that exact inference is intractable due to the

high number of parameters and non-linearities. Thus, several approximations have been proposed instead of

estimating a Bayesian network directly.

The first of these approximation methods is Monte Carlo dropout (Gawlikowski et al., 2023). The Monte

Carlo dropout model adds an uncertainty distribution to the network by randomly setting weights to zero

with a given probability. Historically, this technique was proposed as a method to prevent overfitting.

However, as an uncertainty estimation technique, it can be shown that an arbitrary neural network with

Monte Carlo dropout is equivalent to a Gaussian Bayesian network (Gal & Ghahramani, 2016). For this
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method, the main challenge is finding the correct dropout probability, as analyzed by Gal and Ghahramani

(2015), and Gal et al. (2017). The second challenge is that it can be shown that dropout underestimates

the true uncertainty (Gal & Ghahramani, 2016). This has been addressed in Li and Gal (2017) at the cost

of model complexity. Monte Carlo dropout has gained popularity due to its ease of implementation and

availability of implementation guides. For example, Jospin et al. (2022) and Hron et al. (2018) streamline

the methodology and highlight common pitfalls.

Another approximation of a Bayesian neural network is variational inference. The main idea of this

methodology is to estimate the actual posterior distribution by a variational distribution. Then, during esti-

mation, we want to ensure that this variational distribution is as similar as possible to the true posterior based

on the Kullback-Leibler divergence. This methodology was initially introduced by Hinton and Van Camp

(1993) and Barber and Bishop (1998), where it is shown that the true posterior can be approximated by a

Gaussian distribution with zero (Hinton & Van Camp, 1993) or non-zero (Barber & Bishop, 1998) covariance

elements. Further analysis of this methodology led to the derivation of the Bayes by backdrop algorithm

(Blundell et al., 2015), which leads to a further improvement in computation time. Nevertheless, compared

to the Monte Carlo Dropout approximation, implementing it remains more complex and computationally

intensive. As such, we use the Monte Carlo dropout approximation in this thesis.

Another alternative to the Monte Carlo dropout approximation are sample methods. These are based on

sampling the true posterior using Markov Chain Monte Carlo (MCMC) and do not require assumptions on the

output distribution. This technique was introduced by R. Neal (1992) adapting MCMC using Hamiltonian

dynamics to obtain a Hybrid Monte Carlo method. This technique was further developed in R. M. Neal

et al. (2011), Dubey et al. (2016), and Li and Gal (2017). For this method, the main challenges lie in the

training procedure. In particular, during each iteration, the entire sample must be processed (Gawlikowski

et al., 2023). Therefore, it is impractical to apply to datasets with many data points.

A third family of uncertainty estimation models are ensemble models. Ensemble models are not specific to

neural networks and are applied in a broad range of applications. The ensembling of neural networks, similar

to Monte Carlo dropout, was initially introduced to reduce overfitting and to improve the robustness of the

predictions (Gawlikowski et al., 2023). Nevertheless, it can be adapted to estimate the predictive uncertainty.

The main challenge for this methodology is to ensure enough variety between models (Lakshminarayanan

et al., 2017; Renda et al., 2019). Several techniques have been proposed to achieve this, such as the random

shuffling of data, data augmentation, and random initialization. Additionally, Herron et al. (2020) propose

to induce variety by varying neural network architecture.

Recently, there has also been an increase in research on the application of these uncertainty estimation

techniques for real-world datasets. An example of a use case is self-driving cars. Lütjens et al. (2019)

incorporate uncertainty in the autonomous navigation system. In particular, they applied the ensemble and

Monte Carlo dropout approaches and found that the model could recognize previously unseen scenarios.

Another example is the paper of Nayak et al. (2022). Nayak et al. (2022) focus explicitly on forecasting
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pedestrian movement paths using the Monte Carlo dropout method. Interestingly, they find that in addition

to the uncertainty estimation, the accuracy of the method also improves. A third example is the paper of Paat

et al. (2023), where the evidential neural network approach is applied to model 3D object detection. Another

area where uncertainty estimation is relevant is weather forecasting. Examples of this are Leutbecher and

Palmer (2008), which can forecast air flow variations, and Parker (2013), which uses ensemble to predict the

variance of climate change impact. Lastly, uncertainty estimation methods are increasingly used in medical

analysis, as shown by the survey of Abdullah et al. (2022).

3 Methodology

This section presents the different uncertainty methods, the neural network architecture, and the metrics.

First, we will define the necessary notation. In this thesis, we considered a supervised learning problem with

continuous output parameters; that is, we wish to construct function f that takes an input space X and

generate outputs from an output space Y that is f : X → Y. Since we consider a continuous regression

problem, we have Y ∈ Rdy . Here dy represents the output dimension, where dy = 1 represents a standard

regression problem and dy > 1 represents multiple outputs. We will define the function f as a neural network.

In particular, we will define this function as dependent on a matrix of model weights w. The model weights

w in combination with the model’s architecture can completely describe the network. Furthermore, we define

W as a matrix of random variables of the model weights, which will be used in the Bayesian neural network.

To estimate the model f , we rely on a sample of training data. That is pairs of (xi, yi) for all i = 1 . . . n,

where n is the sample size from dataset. Furthermore, to test the accuracy of the models, we have access to

a set of test observations (xtest
i , ytesti ) for all i = 1 . . . ntest.

The goal of the uncertainty estimation methods is not only to predict a single point prediction ŷ but also

to predict the associated confidence interval. That is, we want to estimate Θ(x) where Θ : X → [R]dy is the

confidence interval estimator, where [R] represents the set of closed and bounded intervals. The confidence

interval represents some range that contains the true value with some confidence level p. The estimator Θ

will be constructed based on the prediction ŷ and the estimated variance s2, the details of which will be

specified for each model.

The remaining part of the methodology is organized as follows. Section 3.1 presents an overview and

comparison of the three different estimation methods. Then, we will explain the details of each of the three

methodologies. After that, we explain the specifics of neural networks relevant to our use case. Lastly, we

will describe and define the metrics to quantify the quality of predictions.

3.1 Overview of uncertainty estimation techniques

In this thesis, we apply several uncertainty estimation methods, as outlined in the literature review. Specif-

ically, this thesis compares three techniques: an evidential neural network, a Bayesian neural network, and
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an ensemble approach. Table 1 provides an overview of these methods.

The first method we use in this thesis is an evidential network, also known as a prior network (Malinin

et al., 2020). The fundamental concept here involves specifying a parameterized distribution over the output

variables. Then, the weights of the neural network are optimized according to the log-likelihood of the data

and parameterized distribution. Thereafter, based on the properties of the distribution, we can estimate the

confidence region using the predicted parameters of the neural network. The main benefit of this method

compared to alternatives is its computing speed. Particularly, the estimated mean and confidence interval

can be predicted using only a single forward pass, yielding significant computing time advantages. However,

the model is reliant on an accurate specification of the distribution.

The second method we implement is a Bayesian neural network, where we specify a distribution over

the network’s parameters. This approach can result in a more intricate model definition and estimation

procedure. However, exact optimization is often computationally infeasible (Gawlikowski et al., 2023),

necessitating the application of approximations. In this thesis, we consider the Monte Carlo dropout ap-

proximation (Gal & Ghahramani, 2016). This technique introduces a probability element to the network

during training and prediction by “dropping” weights during the computation of each observation. The

uncertainty is estimated by performing many forward passes of the network for each sample. Consequently,

this approach enhances the robustness of the model by incorporating uncertainty into its predictions at the

cost of computation time.

The final methodology we use is deep ensembles. This approach involves training multiple independent

models. Then, during prediction, the output of all models is averaged, and the corresponding uncertainty

is estimated. The ensemble often yields better results than any of the individual models. However, a

key assumption is that the individual models are sufficiently different. In this method, we will specifically

focus on constructing an ensemble of neural networks. Compared to the other models, the main drawback

of the ensemble model is that multiple neural networks must be trained, leading to worse computational

performance.
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Table 1: Overview of three different uncertainty estimation techniques

Evidential network Monte Carlo dropout Deep Ensemble

Description

Uncertainty is estimated by

determining the parameters

of some known distribution

Uncertainty is estimated

by using a model where

parameters are (explicitly)

random variables

The uncertainty is estimated

by combining outputs of

several other model, variation

among those is crucial

xi
w⇒ θi ⇒ Θ(xi; θi) xi

W∼G⇒ Θ(xi) xi

w1⇒ ŷ1i
w2⇒ ŷ2i

...
wn⇒ ŷni

⇒ Θ̂(xi)

Number of

networks trained
1 1 Many

Computational cost

of training
Low Medium Very high

Computational cost

of predictions
Low High Medium

Sensitivity to

initialization
High Low Low

3.2 Evidential networks

As discussed in Section 2, there has been a recent increase in research on evidential neural networks, primarily

driven by their computational and theoretical advantages. The original goal of the evidential neural network

was to disentangle data and model uncertainty (Amini et al., 2020; Malinin et al., 2020). In this thesis,

we will only consider predictive uncertainty, where the predictive uncertainty is the sum of data and model

uncertainty (Gawlikowski et al., 2023; Malinin, 2019). We choose to consider predictive uncertainty since

recently it has been shown that it is impossible to separate data and model uncertainty using evidential

neural networks (Bengs et al., 2023; Meinert et al., 2023).

Next, we first present the specification of the distribution of yi. The main goal here is to specify a

distribution with sufficient flexibility, which we use to derive the log-likelihood over the parameters of the

network, then we specify the relation between yi and xi. The results in this section will be derived for yi ∈ Rd

where d = 1. Although multivariate results exist (Malinin et al., 2020; Meinert & Lavin, 2021), we choose to

present and derive univariate results due to ease of notation. In practice, we can model multivariate outputs

by modeling multiple univariate outputs separately. However, even though we model the outputs separately,

due to shared model weights w of the neural network the outputs are related.
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Unlike standard neural networks, the first main idea of evidential neural networks is to parameterize yi

over some probability distribution. Since yi is continuous, we choose the normal distribution (Amini et al.,

2020; Malinin et al., 2020). That is

yi ∼ N (µi, σ
2
i ), (1)

or equivalently

p(yi|µi, σi) =
1√
2πσ2

i

exp

{
− (yi − µi)

2

2σ2
i

}
, (2)

such that yi is normal with mean µi and standard deviation σi. In this and further equations, p denotes the

pdf of a distribution. Usually, an assumption-free approach is used for neural networks. As such, the main

drawback of the evidential neural network is the reliance on a model assumption, with the benefit of being

able to estimate uncertainty.

As shown by Meinert et al. (2023) through numerical experiments, directly estimating µi and σi is

ineffective. Instead, the second key idea, as introduced by Amini et al. (2020) and Malinin et al. (2020), is

to define a distribution over µi and σi to introduce more flexibility. This structure is similar to hierarchical

distributions in hierarchical Bayesian methods. We can visualize this idea using Figure 1. On the right,

we see that different yi are normally distributed based on the parameters of µi and σi. On the left, we see

multiple possible realizations of distributions over µi and σi, where we note that if we have more data, the

variance of µi and σi will be less.

In line with the work of Malinin et al. (2020) and Amini et al. (2020), we choose a normal-inverse gamma

(NIG) distribution as the higher distribution over the mean and standard deviation. The main benefit of this

choice is the ease of computation due to its theoretical properties. Based on this assumption, µi is normally

distributed as

µi ∼ N (γi, σ
2
i ν

−1
i ), (3)

with parameters γi ∈ R and νi > 0 and the variance is distributed according to the inverse gamma distribution

σ2
i ∼ Γ−1(αi, βi), (4)

with parameters αi > 1 and βi > 1. Jointly, they are now distributed according to the normal inverse gamma

distribution

p(µi, σ
2
i |γi, νi, αi, βi) = p(µi|σ2

i , γi, νi)p(σ
2
i |αi, βi). (5)
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Figure 1: Adapted from Amini et al. (2020). On the left, we can see the different realization of the normal

inverse gamma distribution as in Equation (5), in the middle, we see the distribution after estimation, and

on the right, we see the possible distributions of yi with specified mean and standard deviation

Next, we will derive the consequence of our choice that yi is normally distributed and that (µi, σi) is

distributed according to the normal inverse gamma distribution. This proof follows the work of Amini et al.

(2020) but is reformulated and clarified using additional steps.

Theorem 1. Let y be normal distributed with mean and variance µ, σ and let µ be normally distributed with

mean γ, and variance σ2

ν and let σ be inverse gamma distributed with parameters α, β then y given γ, ν, α, β

is distributed according to a univariate t-distribution with 2α degrees of freedom, location parameter γ, and

scale parameter β(1+ν)
να .

Proof. Let us first write out the distributions of µ and σ. That is,

p(µ|σ2, γ, ν) =
1√
2π σ2

ν

exp
{
− ν

2σ2
(µ− γ)2

}
(6)

and

p(σ2|α, β) = βα

Γ(α)

(
1

σ2

)α+1

exp

{
− β

σ2

}
(7)

respectively, where Γ(.) is the gamma function. Now the joint normal inverse gamma distribution using

Equation (5) can be written as

p(µ, σ2|γ, ν, α, β) = βα
√
ν

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + ν(γ − µ)2

2σ2

}
. (8)

To find p(y|γ, ν, α, β) we rewrite p(y|γ, ν, α, β) as

p(y|γ, ν, α, β) =
∫ ∞

0

∫ ∞

−∞
p(y|µ, σ2)p(µ, σ|γ, ν, α, β)dµdσ2, (9)

where we use the law of total probability. Now, using Equation (8) and the definition of a normal distribution,

as well as the grouping of terms, we find

p(y|γ, ν, α, β) =
∫ ∞

0

∫ ∞

−∞

βα
√
ν

2πΓ(α)σ2

(
1

σ2

)α+1

exp

{
− 2β

2σ2
− (y − µ)2

2σ2
− ν(γ − µ)2

2σ2

}
dµdσ2. (10)
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Now completing the square for µ, see Greenberg (2012), and rewriting we find

p(y|γ, ν, α, β) =
∫ ∞

0

βα
√
v√

2πσ2Γ(α)(1 +
√
v)

(
1

σ2

)α+1

exp

{
− 2β

2σ2
− ν(y − γ)2

(1 + ν)2σ2

}
dσ2

∫ ∞

−∞

1√
2π

1√
σ2

1+v

exp

{
(µ− 1

1+ν (νγ + y))2

σ2

(1+ν)

}
dµ. (11)

Next, we recognize the normal distribution in the second integral that is integrated over its whole domain

and thus is equal to 1. Thus,

p(y|γ, ν, α, β) =
∫ ∞

0

βα
√
v√

2πσ2Γ(α)(1 +
√
v)

(
1

σ2

)α+1

exp

{
− 2β

2σ2
− ν(y − γ)2

(1 + ν)2σ2

}
dσ2. (12)

Now similarly rewrite for σ2 and the inverse gamma distribution

p(y|γ, ν, α, β) = Γ(α+ 1/2)

Γ(α)

√
ν

π
(2β(1 + ν))−α(ν(y − γ)2 + 2β(1 + ν))−( 1

2+α)

∫ ∞

−∞

1

Γ(α+ 1/2)
(ν(y − γ)2 + 2β(1 + ν))

1
2+α

(
1

σ2

)α+3/2

exp

{
(ν(y − γ)2 + 2β(1 + ν))

1

2σ2

}
dσ, (13)

and we find that

p(y|γ, ν, α, β) = Γ((2α+ 1)/2)

Γ(2α/2)

√
ν

π
(2β(1 + ν))−α(ν(y − γ)2 + 2β(1 + ν))−( 1

2+α). (14)

Finally in Equation (14) we can recognize a student t-distribution with parameters γ, β(1+ν)
να and 2α

degrees of freedom, or equivalently

y|γ, ν, α, β ∼ T

(
γ,

β(1 + ν)

να
, 2α

)
, (15)

with T defined as a location-scale t-distribution. This concludes our proof.

To summarize, based on the assumption that yi is normal and the distribution over (µi, σi) is normal

inverse gamma, we find that we can estimate yi based on the t-distribution. This result is used in the

next section to determine the loss function, expected value, and variance as a function of the parameters

(γi, νi, αi, βi). Additionally, we see that the degrees of freedom of the student t-distribution can either give

the distribution a so-called “heavy tail” if 2αi is close to one, which means that there is more probability

mass in the extreme values or be similar to a normal distribution if 2αi is increasingly large.

Next, we relate xi to the parameters {γi, νi, αiβi, } through a neural network, and thus the parameters

are a function of xi and w

{γi, νi, αiβi, } = f(xi,w) (16)

where f() represents the neural network, and w are the model weights that we optimize, which are equal for

all observations.
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3.2.1 Details of network optimization

In this section, we use Theorem 1 to define the loss function and the necessary quantities to estimate and

make predictions with the evidential neural network. First, we determine the expectation and variance of yi

as a function of the parameters (γi, νi, αi, βi). Using Equations (1) and (15) and we find

E[yi] = E[µi] = γi, (17)

and using Equation (15) and the properties of the t-distribution we find

Var[yi] =
2αi

2αi − 2

βi(1 + νi)

νiαi
=

βi(1 + νi)

νi(αi − 1)
. (18)

In addition, we also define the heuristic estimate for the variance as defined in Meinert et al. (2023) by

Varheuristic[yi] =
βi(1 + νi)

νiαi
. (19)

The rationale for this heuristic is that the variance of a t-distribution can be approximated by the variance

of a normal distribution if the degrees of freedom, that is, 2αi, is sufficiently large.

Next, we will derive the virtual observations based on the NIG distribution; for further details, see Jordan

(2009). The virtual observations are derived from the Bayesian interpretation of priors. Particularly, this

quantity serves as the number of hypothetical data points to have the same effect as the NIG distribution.

In the case of the normal inverse gamma distribution, we have two sources of virtual observations, namely

for µi and σi. Based on this, we note that µi has νi virtual observation, and σ2
i has 2αi virtual observation.

Thus, now we define total evidence

Φi = νi + 2αi. (20)

Thus, Φi can be interpreted as a measure of the certainty of the model. Alternatively, when considering

Figure 1, increasing Φi has the effect of decreasing the uncertainty of (µi, σ
2
i ) or equivalently going down

on the leftmost part of the figure. Here, we follow the definition of Meinert and Lavin (2021) for Φi that is

corrected from the original definition in Amini et al. (2020).

We need to derive the loss function that maximizes model fit according to our result in Theorem 1. As

is common, given a known distribution with unknown parameters, we use the negative log-likelihood (NLL)

to maximize the model fit. Thus, here using the fact that yi|γi, νi, αi, βi follow as t-distribution and using

the log-likelihood of the t-distribution, we derive

LNLL
i (w) =

1

2
log(

π

νi(w)
)− αi(w) log(Ωi(w)) + (αi(w) +

1

2
) log((yi − γi(w))2νi(w)+

Ωi(w)) + log

(
Γ(αi(w))

Γ(αi(w) + 1/2)

)
, (21)

where w are the weights of the neural network, which we optimize. These model weights determine the

parameters γi, νi, αi, βi for a given xi and Ωi = 2βi(1 + νi). Thus, we have derived the loss function that

determines model fit. However, this loss function is insufficient to find the correct parameters (Meinert &
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Lavin, 2021). The large amount of weights in w means that the estimated network can overfit the data and

predict a variance that is too small, which leads to an incorrect uncertainty prediction. Thus, in the next

subsection, we discuss the regularization term we need to add to the loss function.

3.2.2 Regularization

In this subsection, we will discuss three regularization terms and how they affect estimation. The goal of

these regularization terms is to improve the estimation of predictive uncertainty. In this research, we consider

the regularization term by Amini et al. (2020), by Meinert et al. (2023), and a newly proposed term. As

discussed in the previous section, the log-likelihood loss is insufficient to estimate the parameters. This can

be observed by considering the fact that the loss function fits a t-distribution with three unknown quantities

γi,
βi(1+νi)
νi+αi

, 2αi with four unknown parameters. Particularly, since two different values βi(1+νi)
νi+αi

can have the

same negative log likelihood by scaling βi and νi.

To solve this, Amini et al. (2020) introduced the regularization term

LRwrong

i (w) = |yi − E[yi]|Φi = |yi − γi(w)|(2αi(w) + νi(w)), (22)

which includes the virtual observations Φi. The term here differs from the original in Amini et al. (2020)

since we use the corrected virtual observation term derived in Subsection 3.2.1. This term contains two

parts, the absolute error of the mean and model evidence, and is supposed to contain a trade-off between

them. This means that if we have a good prediction (a small absolute error), the model evidence can be

bigger (uncertainty smaller). However, as shown by Meinert et al. (2023) and Oh and Shin (2022), this term

is insufficient to regularize the parameters, particularly due to a missing restriction on the parameter βi.

To show this, we can take the derivative of the loss function in Equation (21) including the regularization

term, and we find that for all βi(νi) proportional to 1
1+ν−

i 1
the negative log-likelihood can be minimized

irrespective of νi (Meinert et al., 2023).

As such, Meinert et al. (2023) propose to utilize the regularization term

LR
i (w) =

|yi − E[yi]|
σyi

Φi = |(yi − γi(w))|

√
αi(w)νi(w)

βi(w)(1 + νi(w))
(2νi(w) + αi(w)), (23)

which now includes βi by scaling the absolute errors by the scale of the t-distribution of yi. The main reason

for scaling by the absolute errors is that this reduces the effects of large but insignificant errors.

In this thesis, we introduce a new regularization term. The goal of this regularization term is to improve

the estimation of the predictive uncertainty. Notably, the regularization term is derived from the definition

of the confidence interval, see Equation (25). If the models are correctly estimated, this definition should

hold for any sample (yi, xi). However, as we have previously discussed, due to overfitting, this constraint

often does not hold in practice. As such, the proposed regularization term tries to resolve this.
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Definition 1. We define the adapted regularization term LRnew
i as

|yi − E[yi]|
σŷi

= |yi − γi(w)|

√
αi(w)νi(w)

βi(w)(1 + νi(w))
, (24)

which is derived as an approximate bound based on the definition of a confidence interval.

As mentioned, we want that the probability that the actual value y is within the confidence interval [γ̂ −

t2α̂(1−p)/2σ̂, γ̂ + t2α̂(1−p)/2σ̂] is equal to p, based on the parameters. This is equivalent to

P(|y − γ̂| ≤ t2α̂(1−p)/2σ̂) ≥ p, (25)

where γ̂ and σ̂ = βi(w)(1+νi(w))
νi(w)αi(w) are the parameters estimated, t2α(1−p)/2 is the (1 − p)/2 critical value of a

Student t distribution with 2αi degrees of freedom and the probability P depends on possible samples (y, x)

Since we can not guarantee Equation (25) for the whole population (x, y), we instead require this con-

straint to hold for our training sample (xi, yi), which leads to the constraint

|yi − γi(w)| ≤ t
2αi(w)
(1−p)/2σi(w). (26)

This is similar to one of the classical approaches to solve problems with chance constraints, see theorem

1 of Calafiore and Campi (2005). Thus, we have replaced the probabilistic constraint with a constraint over

a sample, where the sample is the same as our training sample. The next step is to rewrite Equation 26

using a Lagrangian relaxation as part of the loss function. That is

min
w

∑
i

LNLL
i (w) + λ

|yi − γi(w)|
σi(w)

, (27)

where LNLL
i (w) is the negative log-likelihood, λ represents the regularization parameter, and where we

recognize |yi−γi(w)|
σi(w) as our regularization term LRnew

i . Again, we note that γi and σi are dependent on the

model weights w.

Based on the theorem presented in Calafiore and Campi (2005), we can derive some properties on the

sample approximation used in the derivation. Particularly, if we have a convex problem, we know that if

N ≥ n

pζ
− 1, (28)

where N is the sample size and n is the number of observations, then with probability not smaller than 1− ζ

the optimal solution to the minimization problem of the negative log-likelihood with constraint (25) is a

feasible solution to the minimization problem of the negative log-likelihood with constraint (26) (Calafiore &

Campi, 2005). Thus, for our regularization term to hold, we need a sufficient number of samples, depending

on the number of parameters we optimize. We optimize the weights matrix w which, unfortunately, contains

many parameters. Thus, it is likely that we need a large amount of data in order for this regularizer to work

well.
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3.2.3 Summary

We define two models based on the theory of the previous sections. These are the evidential network and

adapted evidential network. They differ in their loss function; the evidential network uses the regularization

term (Equation (23)) introduced by Meinert et al. (2023), and the adapted evidential uses the regularization

term proposed in this thesis (Equation (24)) . Additionally, they differ in how they estimate the variance

and construction of the confidence interval. Particularly, the evidential network uses the heuristic variance

and critical values of a normal distribution based on the assumption that the estimated degrees of freedom

are sufficiently large, whereas the adapted evidential network uses the variance and critical values of the

t-distribution. Appendix A shows how the confidence interval and critical values of the predictions can

be constructed. Here, we must note that the used critical values are likely not sampled from the correct

distribution. However, it is unclear what alternative distribution could be used.

For both methods, the model weights are estimated based on a neural network architecture, which will

be explained further in Section 3.5. A particularity of an evidential neural network is that we need four

parameters for each output, representing γi, νi, αi, βi. Based on the assumed distribution, we restrict the

parameters of the model as νi ≥ 0, αi ≥ 1, and βi ≥ 0, which is achieved through an activation function.

To summarize, the evidential network uses the loss function∑
i

LNLL
i (w) + λevidentialLR

i (w). (29)

we estimate the predicted value of yi as

ŷi = γ̂i (30)

and based on the heuristic variance in Equation (19) we estimate

s2i,evidential =
β̂i(1 + ν̂i)

ν̂iα̂i
. (31)

Then, we construct the confidence intervals as

Θ(xi)
(1−p)/2
evidential = [ŷi − z(1−p)/2si,evidential, ŷi + z(1−p)/2si,evidential] (32)

where z(1−p)/2 is the two-sided critical value of the normal distribution. We use the critical value of the

normal distribution, assuming that the degrees of freedom are sufficiently large. For multivariate data,

we construct the confidence region as an ellipsoid with zero covariance according to Johnson and Wichern

(2014), but with the critical values of z(1−p)/2.

The adapted evidential network uses the loss function∑
i

LNLL
i (w) + λadptevidentialLRnew

i (w). (33)

we estimate the predicted value of yi as

ŷi = γ̂i (34)
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and based on the variance in Equation (18) we estimate

s2i,adptevidential =
β̂i(1 + ν̂i)

ν̂i(α̂i − 1)
. (35)

Then, we construct the confidence intervals as

Θ(xi)
(1−p)/2
adptedevidential = [ŷi − t2α̂i

(1−p)/2si,adptevidential, ŷi + t2α̂i

(1−p)/2si,adptevidential], (36)

where t2α̂i

(1−p)/2 is the two-sided critical value of the student t distribution with 2α̂i degrees of freedom.

For multivariate data, we construct the confidence region as an ellipsoid with zero covariance according to

Johnson and Wichern (2014), but with the critical values of t2α̂i

(1−p)/2. These models are compared in the

result section.

3.3 Monte Carlo dropout

As mentioned in Section 3.1, the second method to estimate that we will use is Monte Carlo dropout. Monte

Carlo dropout was initially introduced to reduce overfitting, but it has been shown to be an effective way of

estimating uncertainty (Hron et al., 2018). The main idea is that the dropout layers add minor disturbances

in the network that highlight the output of similar but slightly different inputs. Thus, the main requirement

for a Monte Carlo dropout model is that this randomness is sufficient to capture the uncertainty in the

model.

To define an MC-dropout network with Bernoulli dropout, we introduce the variable zl,j ∈ {0, 1} such

that zl,j = 1 if node j in layer l − 1 is active, and zl,j = 0 if the node is dropped out and equivalently

zl,j ∼ Bernoulli(q), (37)

where q is the dropout probability. Furthermore, we define zk as the matrix with parameters zl,j for draw k.

Now, using this definition, we can define the weight matrix of the network Wk as the result of performing the

dropout according to zk on the weights matrix w, where the index k denotes the draw. Further explanation

of nodes, layers, and weights can be found in Section 3.5.

Using this definition, we find that the output of the dropout model is highly multi-modal. This can be

seen due to the bi-modal value of each node in the dropout, based on zk. Thus, due to the dropout, the

output of each node can be zero or its associated value, which leads to many possible outcomes.

Using this model, we can estimate the predictions as

ŷi =
1

K

K∑
k=1

y∗(xi, zk), (38)

where xi are the input variables, y∗ is the output of the network for draw k, zk is the dropout for draw k,

and K represents the number of sample predictions . This is similar to performing K stochastic forward

passes through the network and taking the average as a result. We determine the variance using

s2dropout =
1

K − 1

K∑
k=1

(y∗(xi, zk)− ŷi). (39)
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This is equivalent to calculating the sample variance; here, we use the same draws y∗i (xi, zk) as during the

calculation of ŷi for ease of calculation. One drawback of the MC dropout approach is that due to the

multi-modal nature of the output layer, the predictions of Equations (38) and (39) only approximate the

true values. Furthermore, since zk is random, we have little control over how much variance is introduced.

To calculate the confidence intervals, we use that the different runs are independent. Then, based on the

central limit theorem, we derive

Θ(xi)
1−p
dropout = [ŷi + z(1−p)/2si,dropout, ŷi − z(1−p)/2si,dropout], (40)

where ŷi, sdropout are predicted using Equation (38) and (39), and z(1−p)/2 represents the critical value of

the two-sided confidence interval of a normal distribution. The critical values might not be accurate since

the assumption that different runs are independent is questionable since there is an overlap in dropped-out

weights between runs; nevertheless, it should give a good approximation. For multivariate data, we construct

the confidence region as an ellipsoid with zero covariance according to Johnson and Wichern (2014), but

with the critical values of z(1−p)/2.

When we use dropout as an approximation tool to predict the uncertainty, we need to take care that it

can no longer be interpreted as a regularization tool (Hron et al., 2018). Thus, as recommended by Hron

et al. (2018), we will add an additional l2 weight regularization to each layer. The benefit of this is twofold:

on the one hand, we reduce overfitting, and thus, our results should be more generalizable, and on the other

hand, it leads to good theoretical properties. Specifically, as shown by Gal and Ghahramani (2016), a Monte

Carlo dropout model with l2 regularisation is equivalent to variational inference with a normal prior. Thus,

the loss function can be written as

Ldropout =
1

N

n∑
i

(yi − y∗i )
2 + λ

∑
i,j

w2
i,j , (41)

where 1
N

∑
(yi−y∗i )

2 represents the MSE loss and λ
∑

i,j w
2
i,j represents the l

2 loss function over the network

weights, and λ is defined as in Gal and Ghahramani (2016).

Now, implementing the model is relatively straightforward. We construct a neural network (see Section

3.5) with dropout and l2 regularization on every layer. Next, the training remains unchanged compared to

deterministic neural networks. To calculate the predictions, we will use the following implementation:
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Algorithm 1 Estimate mean and standard deviation based on Monte Carlo dropout

function predictdropout(model, xpred,K) ▷ Where model - the dropout model,xpred - array of x to
be predicted, K - number of draws

means=[]
stds=[]
for xi in xpred do

xrepeated
i = repeat(xi,K)

y∗ = model.predict(xrepeated
i ) ▷ During prediction we also use MC Dropout

means.append( y∗.mean())
stds.append( y∗.std(ddof=1))

end for
end function

Thus, in this pseudocode, we repeat xi, K times, and for each value, we will generate the outputs y∗,

where y∗ is a list of length K. In practice, the K times repetition of xi leads to computational overhead.

Lastly, we determine the mean and standard deviation according to Equation (38) and (39).

3.4 Ensemble

The main idea of determining the uncertainty using an ensemble of neural networks is that different models

will produce different predictions due to varying hyper-parameters and the highly non-linear landscape of

the loss function. It has been shown by Herron et al. (2020) that the ability to predict the uncertainty of an

ensemble is dependent on the variability of the base networks. Thus, ideally, we need to construct different

networks that make errors based on different elements of the input data.

To introduce this uncertainty, we vary several elements in each network. Firstly, as mentioned by Lak-

shminarayanan et al. (2017), we randomize the order of the data for each model; this difference in order

will, in combination with stochastic gradient descent, lead to models converging to different local optima.

Secondly, as advised by Herron et al. (2020), we rely on networks with different topologies. In particular,

for the architecture of the model, we vary the number of layers in the network, the number of nodes per

layer, and the activation function of each layer. Furthermore, regarding the optimization process, we vary

the batch size and optimizer. Finally, to obtain the prediction and uncertainty, we perform model averaging

and calculate the variance (Renda et al., 2019). This is equivalent to Equation (38) and (39); however, now

the K stochastic forward passes are replaced by the result of the R different models. We implement it as

follows.
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Algorithm 2 Estimate mean and standard deviation based on ensemble

function predictensemble(list(models), xpred,) ▷ Where model - ensemble,xpred - array of x to be
predicted,

predictions=[]
for model in list(models) do

predictioni = model.predict(xpred)
predictions.append(predictioni)

end for
means = predictions.mean(axis=0)
std = predictions.std(axis=0,ddof=1)

end function

Mathematically we calculate

ŷi =
1

R

R∑
r=1

y∗r (xi) (42)

and

s2i,ensemble =
1

R− 1

R∑
r=1

(y∗r (xi)− ŷi)
2, (43)

where R is the number of models used in the ensemble, and y∗r is the output of model r. We determine the

confidence interval based on the central limit theorem, given that we have a sufficient number of models as

Θ(xi)
1−p
ensemble = [ŷi + z(1−p)/2si,ensemble, ŷi − z(1−p)/2si,ensemble], (44)

where ŷi, si,ensemble are predicted using the ensemble, and z(1−p)/2 represents the critical value of the two-

sided confidence interval of a normal distribution. For multivariate data, we construct the confidence region

as an ellipsoid with zero covariance according to Johnson and Wichern (2014), but with the critical values

of z(1−p)/2.

3.5 Neural networks

In this section, we give an overview of neural networks with an explicit interest in the models used for our use

cases. First, we briefly introduce neural networks. Then, we go into detail on two types of time series layers.

Next, we explain many-to-many forecasting, and lastly, we discuss the implemented model architectures.

3.5.1 Introduction of neural networks

A neural network represents a computational model inspired by the biological structure and function of the

human brain. The network consists of interconnected nodes known as neurons, organized into layers. The

typical architecture includes an input layer receiving initial data, hidden layers for processing information

through weighted connections and non-linear activation functions, and an output layer generating final pre-

dictions. During training, the network adjusts connection weights w to minimize some loss function between

predictions and actual outcomes, employing optimization techniques like gradient descent and backpropa-

gation. Neural networks have been applied to various tasks, such as image and speech recognition, natural
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language processing, and pattern recognition, rendering them pivotal in modern machine learning and ar-

tificial intelligence systems. We recommend the book of Goodfellow et al. (2016) for further details about

neural networks.

3.5.2 RNN-layers

In this thesis, we use a one-dimensional convolutional layer. This convolutional layer looks at successive

values and modifies them using a filter with certain weights; see Figure 2. These filters can extract local

patterns and features and return a feature map with a higher dimensionality than the original data. This

feature map is then used in successive layers of the neural network, which enables us to find patterns and

trends in the data.

Figure 2: Representation of a one dimensional

convolutional filter

adapted from Ghosh (2018)

Figure 3: Overview of LSTM module

adapted from Calzone (2022)

In addition to the convolutional layer, we also use a Long Short-Term Memory (LSTM) layer. This

LSTM is a recurrent neural network architecture designed to address the challenges of learning long-range

dependencies in sequential data. Traditional RNNs struggle with capturing information from distant time

steps due to the vanishing gradient problem. LSTMs overcome this limitation by introducing a more so-

phisticated memory cell structure. LSTMs have a set of gates, including an input gate, a forget gate, and

an output gate, which control the flow of information through the cell, see Figure 3. This allows LSTMs

to selectively remember or forget information over long sequences, making them well-suited for time series

tasks. They are particularly suited for forecasting pedestrian paths since they can predict trends.

3.5.3 Many-to-many forecasting

Using neural networks, we are not only able to predict a singular output, but we are also able to create

a many-to-many forecast. Here, many-to-many forecasting refers to a predictive modeling technique that

aims to predict multiple future outcomes simultaneously based on historical data. This contrasts with many-

to-one forecasting, where only a single future value is predicted. Many-to-many forecasting is particularly

interesting here since it has computation benefits.
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In many-to-many forecasting with neural networks, the output layer is adjusted to accommodate the

prediction of multiple future time steps. This adjustment involves setting the output layer to produce

multiple outputs, each corresponding to a specific future time step. For example, if the task is to predict

the following three values in a time series sequence, the output layer of the neural network would have three

output nodes, each representing the predicted value for a particular time step. Therefore, the dimensionality

of the output layer increases to match the number of future time steps to be forecasted.

3.5.4 Architecture

For the model of the regression task, we use a standard dense neural network. Particular to our use-case is

that we only have a single input node. Furthermore, we utilize three hidden layers with 64, 64, and 32 nodes,

respectively. Lastly, the output layers are dependent on the uncertainty estimation model. As previously

discussed, we need four output nodes for the evidential networks, representing the values γ, ν, α, and β, or

a single output node representing y∗ for the Monte Carlo dropout and ensemble methods. Furthermore, we

use the rectified linear unit (relu) activation function in each layer of the network. This activation function

takes the maximum output of a node and zero. We optimize the network using the Adam optimizer with a

batch size of 16.

Figure 4: Network architecture for the regression problem

The neural network architecture for the pedestrian dataset is more sophisticated since we take a time

series as the input and as an output. According to the results of Nayak et al. (2022), we use an encoder-

decoder structure with one-dimensional convolutional layers as the encoder and LSTM layers as the decoder.

The encoder-decoder is practical in the time series application because the encoder can find patterns in the

dataset. Then, the decoder can utilize these patterns to create the output series. For this model, we utilize

two encoding layers and one decoding layer, all with the relu activation function. This is in accordance
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with the results by Nayak et al. (2022). The dimension of the output layer is equal to twelve by two for

the ensemble and dropout models and twelve by eight for the evidential models. The twelve represents the

number of time steps, and the two resembles the x, and y-axis; for the evidential model, we have twelve

times eight output parameters since we have an γ, ν, α and β for both the x as y direction at each time

step. This is visualized in Figure 5.

Figure 5: neural network structure for the pedestrian dataset

3.6 Metrics

This section discusses the metrics we use to compare the models. First, we discuss the metrics we use to

measure the prediction’s accuracy. Then, we discuss how to measure the quality of the uncertainty forecast.

3.6.1 Accuracy metric

Even though one of the goals of the methodology is to forecast the uncertainty of the model, it remains impor-

tant to obtain accurate predictions. Some authors, such as Nayak et al. (2022), have seen that incorporating

uncertainty prediction during the forecast step can improve the accuracy of the prediction. Moreover, from

a practical point of view, a model with good uncertainty estimation but worse accuracy will likely not be

implemented.

For the regression problem, we measure accuracy using the mean squared error (MSE) metric. This can

be calculated using

MSE =
1

Ntest

Ntest∑
i

(ytesti − ŷi)
2, (45)

where we use the observations that we have saved for the test set.

For our pedestrian dataset, we predict a time series as output, and thus, we need to modify the MSE. As

such, we use two different metrics; firstly, we use the average displacement error (ADE), which can be seen

as the average MSE over all timesteps. This metric indicates how well the model follows the true data over
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all timesteps and is calculated using

ADE =
1

NtestT

Ntest∑
i

T∑
t

(ytesti,t − ŷi,t)
2, (46)

where ŷi,t represent the prediction of observation i at time t.

Additionally, to see how well the model predicts in the long term, we calculate the final displacement

error (FDE). This metric indicates how well the model can predict at the end of the forecast horizon and,

as such, how well it can be used to make decisions further in advance. The FDE is as

FDE =
1

Ntest

Ntest∑
i

(ytesti,tf
− ŷi,tf )

2, (47)

where tf is the last timestep and ŷi,tf is the prediction of test observation i at this timestep.

3.6.2 Uncertainty metric

Similar to the article of Dewolf et al. (2023), we want to test the coverage probability of the confidence

interval. That is, we want to test if the p% predicted confidence interval contains p% of actual values of the

test set. Mathematically, we write this as

CIS =
1

Ntest

Ntest∑
i

1(ytesti ∈ Θ(xtest
i )), (48)

where 1 denotes the indicator function. The Confidence Interval Score (CIS) is an approximate measure of

the quality of uncertainty estimation. This approximation counts the number of data points where the true

value ytesti is contained within the Confidence interval [ŷi − ksi, ŷi + ksi] where ŷi is the predicted value, si

is the predicted standard deviation and k is some constant, related to the confidence level of the interval.

For two-dimensional data, we define a point to be inside the confidence interval if it is inside the ellipse

with center ŷi and axes ksi. Mathematically, we can test this using

d1
r1

+
d2
r2

≤ 1, (49)

where dj is the euclidean distance between ŷi and ytesti in dimension j and rj is the confidence length in

dimension j. Now we define the CIS at time t as

CIS(t) =
1

Ntest

Ntest∑
i

1(ytesti,t ∈ Θ(xtest
i,t )), (50)

where 1 denotes the indicator function and on average over all timesteps as

CIS =
1

NtestT

Ntest∑
i

T∑
t

1(ytesti,t ∈ Θ(xtest
i,t )), (51)

where 1 denotes the indicator function. The Confidence Interval Score can not be compared strictly numer-

ically since it needs to be accurate and small enough. Instead, based on the confidence level p, we want the

CIS score to contain approximately the p percentage of observations.
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In addition to the confidence intervals constructed using the critical value, we consider the confidence

interval based on Chebyshev inequality, which is not based on distributional assumptions. In particular, we

can say that the confidence interval k = 4.5, equivalently

Θ(xi) = [ŷi − 4.5si, ŷi + 4.5si], (52)

should contain at least 95% of the observations, irrespective of the output distribution. For multivariate

data, we use the confidence region as an ellipsoid with lengths according to 4.5si.

4 Data

In this research, we test the methods on two use cases. Firstly, we test the uncertainty estimation methods

on a non-linear regression problem with heteroskedastic variance. This data is relatively simple compared

to the pedestrian dataset, and as such, we can use it as a starting point for our analysis. Secondly, we test

the methods on pedestrian forecasting datasets. In these datasets, camera footage of pedestrians’ walks is

transformed into a time series of locations, for which we try to predict what locations they walk towards

next. For this application, we use four different datasets based on three locations to generalize the results

for different scenarios.

4.1 Regression data

The first dataset that we use is a regression dataset. This means we have a continuous input variable xi ∈ R

for which we try to predict a continuous output variable yi ∈ R. This dataset is similar to the experiments

done by Amini et al. (2020) and Malinin et al. (2020).

Figure 6: Regression data

We define the relation between yi and xi using a third-degree polynomial. Then, we construct x as 2000

uniformly distributed points between negative three and four. Based on this, we construct the errors as a
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function of xi where the variance is three with a spike of 36 when xi is close to zero. Mathematically, we

represent this as

yi = x3
i + ϵi,

ϵi ∼ N (0, σ2
i ),

σ2
i = max(3, 36(1− x2

i )).

(53)

The constructed dataset is visualized in Figure 6; the lines represent the mean and the 95% confidence

bound.

4.2 Pedestrian data

The data that we use to test the methods in a real-world application is pedestrian movement forecasting.

This use-case was previously considered in Nayak et al. (2022) in combination with a Monte Carlo dropout

method to forecast uncertainty. In particular, we have four datasets based on three locations. We have the

ETH and HOTEL scenarios of the ETH dataset, initially presented in Pellegrini et al. (2009), and we have

the ZARA01 and ZARA02 scenarios from the UCY dataset (Lerner et al., 2007). These datasets are the

most commonly used in pedestrian forecasting (Amirian et al., 2020). Furthermore, the data is retrieved

from Amirian et al. (2020).

Figure 7: Image of ETH

scenario

Figure 8: Image of HOTEL

scenario

Figure 9: Image of ZARA01

scenario

Figure 10: Image of ZARA02

scenario
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We thus have four data sets based on two papers. These datasets differ in the location where they were

captured. Particularly, the ETH data was captured on the ETH campus in Zurich. The HOTEL data

was captured from the perspective of a hotel. Lastly, ZARA01 and ZARA02 were captured from a Zara

store’s second floor. This data was originally captured on video, and later, each pedestrian was tracked and

converted to a path of coordinates. Figures 7-10 show a screenshot of each scenario.

In the dataset provided by Amirian et al. (2020), these videos are processed to contain a time series

of different pedestrian movement paths. In particular, they are represented in a file with the columns

pedestrianid, framenumber, posx, posy, representing the pedestrian identifier, timestep and position. Based

on these features, we construct our training set. Specifically, to use them in training, we need every sample

to be the same length. We follow the common choice within pedestrian forecast prediction to forecast twelve

timesteps based on eight timesteps of input (Nayak et al., 2022). Mathematically that is xi ∈ R8,2 and

yi ∈ R12,2.

As such, we need to process the input data further before training. These steps are visualized in Figure

11. In particular, we first filter the data on all IDs with at least 20 timesteps. Then, we create the train

and test split; this ensures that there is no overlap of pedestrians in the test set due to data augmentation.

After that, we augment the data using a moving window, and lastly, we save the data in the correct format.

Figure 11: Data pipeline

We must augment the data to increase the number of samples (Nayak et al., 2022). In particular, from

every sequence longer than 20, we create subsequences of length 20 with one observation difference using a

moving window. For example,

[t1, . . . , t30] ⇒

[t1, . . . , t8], [t9, . . . , t20]
...

[t11, . . . , t18], [t19, . . . , t30].

(54)

Thus, the sample size will be larger since a single pedestrian can be part of multiple data samples. Although

this augmentation leads to many similar samples, it is unlikely to heavily affect the results. Since we first

create a train and test split, different pedestrians will only be part of either the train or test set, and no

overlap is possible.

In Table 2, we show some descriptive statistics of our dataset. We immediately notice that the number

of series increases significantly for all datasets due to the data augmentation. This ensures that we have

sufficient training data. Moreover, we notice that for all datasets, we sometimes observe that some pedestrians

do not travel far. Figure 14 shows an example of this, where a pedestrian is completely standing still. Lastly,
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we notice that even though there are differences in distance traveled within the train and test set, they seem,

in general, to be similar in behavior.

Table 2: Descriptive statistics pedestrian datasets

Dataset
Num. Series

Unprocessed

Avg. number

of timesteps
Num. Series * Avg. distance (m) Min. distance (m)

Train Test Train Test Train Test

ETH 360 24.744 1809 805 9.257 8.310 0.053 0.000

HOTEL 390 16.779 789 408 3.412 2.936 0.000 0.000

ZARA01 148 33.945 1413 821 8.161 5.996 0.600 0.029

ZARA02 204 46.750 3945 1796 4.056 3.866 0.002 0.009

Note: * the number of series increased due to data augmentation.

To further introduce the data in Figures 12 to 14, we show some sample pedestrian walking paths. Here,

the dark blue dots show the input data, and the light blue triangles show the data we need to predict.

Within the dataset, there can be significant differences between time series. Figure 12 shows a relatively

straightforward path where a pedestrian walks from the bottom-left to the top-right at a relatively constant

speed. Figure 13 is already more difficult to predict since the pedestrian walked in a U-shaped pattern. This

is particularly difficult since only the blue dots will be given as input data to the methods, and as such, it will

need to learn that, in some cases, pedestrians might move in a U-shaped pattern. Lastly, Figure 14 shows a

pedestrian standing still during the entire interval. As such, this sample is not interesting from a trajectory

prediction perspective. Nevertheless, from an uncertainty quantification perspective, it is interesting how

the methods might incorporate the possibility that the pedestrian could start walking.

Figure 12: First example of a

pedestrian movement path

Figure 13: Second example of a

pedestrian movement path

Figure 14: Third example of a

pedestrian movement path

27



5 Results

The result section is divided based on the different use cases and datasets. First, we present the results of the

regression data using figures and metrics. Then, we present figures for the uncertainty forecast of the ETH

dataset. Next, we present the metrics for this dataset, and lastly, we present the metrics of the HOTEL,

ZARA01, and ZARA02 datasets.

5.1 Regression data

The results of this section are based on the dataset set as described in Section 4.1. Furthermore, the evidential

model, adapted evidential, and Monte Carlo dropout model have the neural network structure described in

Section 3.5. We use a regularization parameter for the evidential and adapted evidential model equal to

one. The Monte Carlo dropout model uses a dropout rate of 0.2, and we use 100 samples to estimate the

mean and variance of each prediction. The ensemble method is based on ten networks with varying random

architectures.

5.1.1 Figures

The results of the regression are presented in Figures 15 to 18. These figures show the data points in the

test set, where the x-axis shows the scalar input variable and the y-axis shows the scalar target variable.

In addition, each figure shows the predicted mean and upper and lower 95% confidence intervals. The

construction of these intervals is described in the methodology section. The training data with target trend

and confidence interval can be found in Figure 6 of the data section.

Considering the figures, we notice that Figures 15 and 16 look similar and 17 and 18 look similar. Next,

we notice that all networks predict the correct trend line through the data. Notably, the methods can predict

a non-linear function. This is likely due to the neural network architecture, which can model non-linearities.

Now, looking at the prediction of the confidence bounds, we see that the evidential and adapted evidential

models can model the heteroskedasticity of the model. In contrast, the dropout and Monte Carlo dropout

models can not. Based on the literature, we know that they do not give optimal intervals for data sets that

do not follow a normal distribution (Dewolf et al., 2023).
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Figure 15: Result of evidential model with 95%

confidence bound

Figure 16: Result of adapted evidential model

with 95% confidence bound

Figure 17: Result of MC Dropout model with

95% confidence bound

Figure 18: Result of ensemble model with 95%

confidence bound

If we now compare Figures 15 and 16, we see that the confidence bounds of Figure 15 are wider than

16. Although a wider bound will have more data points within the confidence interval, this is not desired

since it is excessively broad. As such, we prefer the uncertainty estimate for the adapted evidential model

for this dataset based on the figures. Looking at Figure 17, we notice that the bound of the confidence

interval is not smooth for x larger than 2.5; we hypothesize that this is due to the high multi-modality of the

output distribution and, thus, our reliance on the sampled data points. We also notice that the predicted

intervals around -3 to -1 and around 2 to 4 are more accurate compared to Figure 18. Figure 18 predicts a

confidence interval that is too thin almost everywhere in the figure. We suspect that the relative simplicity

of the data causes this and that all models in the ensemble converge to the same optimum; thus, potentially,

more variety needs to be introduced in the models of the ensemble for this dataset.
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5.1.2 Metrics

Using the visualization of Figures 15 to 18, we have seen that all models seem to predict the correct trend

but that there are significant differences in predicted uncertainty. In this section, we quantify these insights

in Table 3 using the metrics defined in the methodology section.

First, considering the MSE, we observe that all models are relatively similar, with the ensemble being

slightly more accurate than the other models. Next, we look at the confidence interval score (CIS) for the

50% and 95% confidence interval and the 95% confidence bound based on Chebyshev. First, looking at the

evidential model, we see that for both p is 0.5 and p is 0.95, more points lie inside the confidence interval

than expected; we have previously seen this in the figure where the confidence interval had too much width.

Next, the CIS of the adapted evidential model is still larger than 0.5 and 0.95 but to a lesser extent than

the evidential model. For both the dropout and ensemble, the CIS is significantly too low, likely caused

by the fact that the heteroskedasticity around 0 is not modeled correctly. Even based on the Chebyshev

bound, it is significantly lower than 95%, indicating a misspecification. Thus, for this dataset, we prefer the

adapted evidential model, which potentially works well due to the high number of data points required for

the regularization term.

Table 3: Results of metrics for the regression dataset

Model MSE CIS (p)
Training

time (s)

Prediction

time (s)

0.5* 0.95* >0.95**

Evidential Network 3.256 0.672 1.000 1.000 3.773 0.066

Adapted Evidential Network 3.217 0.575 0.962 1.000 3.731 0.052

MC Dropout 3.420 0.252 0.637 0.755 3.470 9.251

ensemble 3.197 0.207 0.500 0.792 37.520 0.477

Note: * based on the confidence interval, ** based on Chebyshev bound.

Comparing training times, we notice that the evidential, adapted evidential, and MC dropout models are

relatively similar in training time, whereas the ensemble takes about ten times as long. This is logical since

we need to train ten models to use as an ensemble. Comparing prediction times, we see that the evidential

and adapted evidential are the fastest and only take around 0.05 seconds to predict the test data points.

The ensemble method takes around ten times longer at 0.5 seconds to estimate the predictions since we must

perform ten forward passes for each data point. The dropout method creates predictions that are the slowest

at 9.5 seconds or around 185 times slower than the evidential model. This can be partly explained by the

fact that we perform 100 forward passes for each prediction and partly due to the overhead of putting the

data in the correct format when predicting.
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5.2 Pedestrian data

In this section, we present the results for the pedestrian datasets; details on the datasets can be found in

Section 4.2, and the evidential, adapted evidential, and Monte Carlo dropout models have the neural network

structure described in Section 3.5. Again, we use a regularization parameter equal to one for the evidential

and adapted evidential model. The Monte Carlo dropout model uses a dropout rate equal to 0.2, and we

use 100 samples to estimate the mean and variance of each prediction. The ensemble method is based on

ten networks with varying architectures. Next, we look at several examples of the uncertainty predictions

for the ETH dataset, and then we calculate and discuss the metrics for the ETH dataset in detail. Lastly,

we give an overview of the results of the HOTEL, ZARA01, and ZARA02 datasets.

5.2.1 Figures

We show the first examples in Figures 19 to 22. This example shows a relatively simple movement path

where someone walks from the top left to the bottom right at a relatively constant speed. In the figure, the

dark blue dots are given as input, the light blue triangles are the target points, the red pluses represent the

predicted mean, and the red ellipsoids show the uncertainty interval.

In Figure 19, we see the prediction of the evidential model, where we notice that the trend is slightly off,

but the predicted distance traveled is relatively accurate. The predicted confidence interval gets larger over

time, which is exactly what we would hope. Although we notice that not all points are within the confidence

interval, this makes sense since we plot the 50% confidence interval. In Figure 20, we plot the results of the

adapted evidential model. Here, we see a slightly more curved predicted movement path compared to Figure

19, which leads to a surprisingly accurate prediction for the last time steps. The confidence interval of the

adapted evidential model also gets larger over time but is smaller than the predicted interval of the evidential

model. Potentially, this means that the size of the confidence interval is too small, or that the confidence

interval of the evidential is too large. Next, we consider the results of the Monte Carlo dropout model in

Figure 21. The predicted movement path is peculiar, mainly because we notice that the second predicted

timestep and speed of the predicted path are incorrect. Furthermore, we see that the size of the confidence

interval is almost constant over time. Potentially, this is caused by insufficient variance introduced by the

dropout. Figure 22 shows the output of the ensemble model. Here, we notice that the trend is in the right

direction. However, the predicted traveled distance is too low. Unfortunately, similar to the Monte Carlo

dropout model, we do not see an increasing size of the confidence interval over time. We suspect this is due

to insufficient variance in the models.
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Figure 19: Result of Evidential model with 50%

confidence interval

Figure 20: Result of the adapted evidential

model with 50% confidence interval

Figure 21: Result of the MC dropout model

with 50% confidence interval

Figure 22: Result of the ensemble model with

50% confidence interval

Next, in Figures 23 to 26, we see a slightly more complicated situation. Here, the input is a pedestrian

moving from right to left, and then they decide to take a left turn during the prediction horizon. Again, the

evidential network performs well, as shown in Figure 23. Although the predicted trend is slightly off, this is

compensated by a larger confidence interval. A downside is that the confidence interval could be larger than

necessary. The adapted evidential network, shown in Figure 24, predicts a similar network as the evidential

model, only the confidence interval is smaller. This highlights the trade-off between the probability that

a point is inside the confidence interval and the excessive width of the confidence interval. In Figure 29,

we see the result for the MC dropout model. Except for the first predicted step, the predicted trend looks

promising. Again, similar to the previous example, the size of the confidence interval does not seem to

increase sufficiently over time. The results of the ensemble model, see Figure 26 are not as good. Notably,

the trend is not going in the right direction, and the confidence interval is too small. Potentially, in this

example, all neural networks of the ensemble converged to a similar “wrong” path. This example shows the
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benefit of using the evidential family of models, particularly if we consider the unobserved possibility that

the pedestrian would not have made the turn.

Figure 23: Result of Evidential model with 50%

confidence interval

Figure 24: Result of the adapted evidential

model with 50% confidence interval

Figure 25: Result of the MC dropout model

with 50% confidence interval

Figure 26: Result of the ensemble model with

50% confidence interval

In the third example, shown in Figures 27 to 30, we show someone walking from the bottom right to

the top left, who then decides to make a big left turn. Unfortunately, we see that none of the models

can accurately predict the last steps of the output. The evidential model in Figure 27 can predict most

points, except for the second and last time step. Again, the confidence interval gets larger over time. The

adapted evidential model, again, predicts confidence intervals that are too small. In figure 29, we see some

strange behavior; the predicted path is unevenly spaced, and the confidence intervals seem larger than in the

previous examples. We suspect this is caused by conflicting realization of the highly multi-modal output of

the MC dropout model. The ensemble model in Figure 30 shows an incorrect path with an almost constant

confidence interval. Again, the evidential network seems to perform best.
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Figure 27: Result of Evidential model with 50%

confidence interval

Figure 28: Result of the adapted evidential

model with 50% confidence interval

Figure 29: Result of the MC dropout model

with 50% confidence interval

Figure 30: Result of the ensemble model with

50% confidence interval

The last example is in Figures 31 to 34. Here, we see a similar example as Figure 14, where someone

stood still during the input series and started moving during the prediction interval. This example is

interesting from an uncertainty prediction perspective, mainly due to its similarity to someone standing still

at a crosswalk and deciding to start moving. The evidential model, Figure 31, clearly shows the benefit

of an uncertainty prediction model over a standard neural network; although the predicted mean is almost

stationary, the possibility of movement was incorporated in the confidence interval. Critically, this behavior

was not directly caused by our assumptions when constructing the model. Instead, this is likely inferred due

to the RNN layers of our model architecture. The adapted evidential model shows a similar result in Figure

32. The main difference we observe is that the width of the confidence interval changes from larger in the

vertical direction to larger in the horizontal direction. Both the ensemble and MC dropout models, again,

perform worse due to a constant width of the prediction interval over time.
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Figure 31: Result of Evidential model with 95%

confidence interval

Figure 32: Result of the adapted evidential

model with 95% confidence interval

Figure 33: Result of the MC dropout model

with 95% confidence interval

Figure 34: Result of the ensemble model with

95% confidence interval

5.2.2 Metrics

We now quantify the result using the metrics defined in the methodology section. First, we consider accuracy

and computing time. Here, we look at the average displacement error (ADE) and final displacement error

(FDE). Thus, we determine the average error over all time steps and the error for the final time step for the

ADE and FDE, respectively.

Based on the accuracy, the evidential model is the most accurate for all metrics except for minimal FDE.

We also observed that the max FDE is still around 4.4 to 4.6, which is quite large. Thus, in practice, further

improvement of model accuracy is desired. Nevertheless, for uncertainty estimation models, this could be

compensated with wider confidence estimates.

We now look at the training and prediction times. Here, we are primarily interested in the time required

for predictions. Particularly, this thesis aims to eventually improve self-driving car algorithms, where fast

computation times are required. The training and prediction time show behavior similar to that of the
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regression dataset. Particularly, the training time of the evidential and adapted evidential and MC dropout

models are similar, whereas the ensemble takes ten times longer since ten models are trained. The prediction

time is the fastest for the evidential and adapted evidential models, which predict 805 samples in around 0.2

seconds. The ensemble takes about ten times longer, and the dropout model takes around 170 times longer.

This corresponds to the 10 and 100 forward passes required for the ensemble and MC dropout, respectively.

Additionally, the MC dropout has some additional computational overhead to duplicate the data to create

the predictions.

Table 4: Accuracy measures and computing time for ETH dataset

ADE FDE
Training

time (s)

Prediction

time (s)

Mean Min Max Mean Min Max

Evidential Network 0.522 0.057 1.841 0.971 0.021 4.399 79.842 0.215

Adapted Evidential Network 0.628 0.068 1.987 1.120 0.013 4.688 78.908 0.190

MC Dropout 0.673 0.103 3.197 1.111 0.021 4.682 91.396 34.391

Deep ensemble 0.566 0.097 2.555 1.012 0.017 4.648 784.191 2.052

Note: Model with best accuracy measure in bold

Next, we examine the confidence interval score at different time steps in Table 4. First, looking at the

50% confidence interval, p = 0.5, we see that the evidential model is closest to the correct confidence interval.

Nevertheless, we see that at the first time step more data points lie within the confidence interval than in

later time steps. The adapted evidential model predicts a confidence interval that is not large enough. The

MC dropout model performs well on average for p = 0.5, although a big drop-off occurs between the first and

last timestep; we suspect the main reason for this is the almost constant confidence interval over time. For

the ensemble model, we see something similar, which we also suspect is due to an almost constant confidence

interval and not due to inaccurate predictions. For the 95% confidence interval, we see similar results as the

50% interval. Nevertheless, based on the Chebyshev bound, we see that for all models, more than 95% of

the points lie within the interval.
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Table 5: Confidence Interval Score at different time steps for the ETH dataset

p Model Mean Time step

1 2 4 6 7 10 12

0.5*

Evidential Network 0.568 0.753 0.757 0.595 0.530 0.486 0.491 0.487

Adapted Evidential Network 0.278 0.361 0.240 0.255 0.266 0.280 0.292 0.276

MC Dropout 0.463 0.881 0.729 0.605 0.440 0.303 0.270 0.225

Deep ensemble 0.436 0.840 0.794 0.573 0.374 0.282 0.226 0.185

0.95*

Evidential Network 0.957 0.998 0.994 0.988 0.975 0.970 0.902 0.884

Adapted Evidential Network 0.860 0.954 0.929 0.862 0.829 0.827 0.830 0.826

MC Dropout 0.889 1.000 0.964 0.958 0.925 0.892 0.810 0.696

Deep ensemble 0.854 0.990 0.983 0.957 0.916 0.798 0.728 0.678

>0.95**

Evidential Network 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996

Adapted Evidential Network 0.999 1.000 1.000 1.000 1.000 1.000 0.998 0.993

MC Dropout 0.990 1.000 1.000 0.998 0.989 0.985 0.983 0.975

Deep ensemble 0.993 1.000 1.000 1.000 1.000 0.996 0.986 0.970

Note: * based on the confidence interval, ** based on Chebyshev bound.

We now consider the results on the HOTEL, ZARA01, and ZARA02 datasets, which we described in the

data section. The main purpose of these datasets is to see how the results compare to each other. First,

we present the result based on accuracy in Table 6. Now, we see that the evidential model is no longer

best for all metrics. The ensemble model performs best for the HOTEL and ZARA02 datasets, whereas

MC dropout and the adapted evidential method work best for ZARA01. Nevertheless, we see that the

accuracy measures are relatively similar among all models. We suspect this is because all models are based

on the same neural network architecture, which leads to similar predicted movement paths independent of

the uncertainty estimation technique.

Table 6: Overview of accuracy measures for all datasets

ETH HOTEL ZARA01 ZARA02

ADE FDE ADE FDE ADE FDE ADE FDE

Evidential Network 0.522 0.971 0.297 0.437 0.637 1.219 0.339 0.674

Adapted Evidential Network 0.628 1.120 0.363 0.479 0.621 1.215 0.381 0.720

MC Dropout 0.673 1.111 0.340 0.453 0.733 1.190 0.555 0.873

Deep ensemble 0.566 1.012 0.277 0.398 0.870 1.401 0.336 0.658
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We now present the result for the HOTEL dataset in Table 7. For the 50% confidence interval, we see

that the evidential model performs best, but with too many points inside the confidence interval at the first

time step. The adapted evidential is significantly too low and performs even worse than on the ETH dataset.

Interestingly, this dataset also has fewer data points; see Table 2. Since we need sufficient data points for our

regularization term to closely approximate the chance constraint, we suspect this could be the cause of the

issue. The dropout and ensemble models contain too many data points for p=0.5. At p=0.95, the evidential

model, MC dropout model, and ensemble model all seem to work well, whereas adapted evidential, again,

performs the worst.

Table 7: Confidence interval score of the HOTEL dataset

Model p = 0.5* p = 0.95* p > 0.95**

Mean Time step Mean Time step Mean Time step

1 12 1 12 1 12

Evidential Network 0.531 0.627 0.542 0.947 0.961 0.941 0.978 1.000 0.973

Adapted Evidential Network 0.153 0.152 0.167 0.760 0.716 0.779 0.974 0.985 0.968

MC Dropout 0.718 0.814 0.657 0.958 0.998 0.936 0.986 1.000 0.971

Deep ensemble 0.739 0.826 0.657 0.955 0.983 0.926 0.983 1.000 0.968

Note: * based on the confidence interval, ** based on Chebyshev bound.

In Table 8, we show the results for the ZARA01 dataset. Based on the results, we observe that, on average,

none of the models have enough points within the confidence interval for p=0.5 or p=0.95. Nevertheless, for

all except for the adapted evidential model during the first time step, we do observe positive results. This

leads us to believe that the main issue is in later time steps, as observed for the twelfth (and last) time step.

Table 8: Confidence interval score of the ZARA01 dataset

Model p = 0.5* p = 0.95* p > 0.95**

Mean Timestep Mean Timestep Mean Timestep

1 12 1 12 1 12

Evidential Network 0.447 0.674 0.452 0.872 0.990 0.790 0.989 0.999 0.971

Adapted Evidential Network 0.200 0.351 0.168 0.779 0.985 0.675 0.967 0.996 0.926

MC Dropout 0.397 0.566 0.177 0.895 0.984 0.744 0.989 1.000 0.976

Deep ensemble 0.424 0.685 0.235 0.895 1.000 0.739 0.992 1.000 0.978

Note: * based on the confidence interval, ** based on Chebyshev bound.

Lastly, we present the results for the ZARA02 dataset in Table 9. This dataset has the most number of
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observations. Surprisingly, the adapted evidential network works relatively well for this dataset, particularly

for p =0.5. We suspect the large number of data points might have positively affected the results. For

p=0.95, we observe that, on average, the CIS for all models is too low. Interestingly, the MC dropout and

ensemble models at the first step seem to have a CIS of almost one but have a large drop-off at the last step,

potentially again due to a relative constant uncertainty prediction interval.

Table 9: Confidence interval score of the ZARA02 datast

Model p = 0.5* p = 0.95* p > 0.95**

Mean Timestep Mean Timestep Mean Timestep

1 12 1 12 1 12

Evidential Network 0.611 0.756 0.557 0.884 0.986 0.810 0.967 1.000 0.926

Adapted Evidential Network 0.558 0.621 0.535 0.852 0.958 0.801 0.958 0.999 0.928

MC Dropout 0.360 0.644 0.226 0.903 0.997 0.773 0.992 1.000 0.971

Deep ensemble 0.687 0.996 0.493 0.924 1.000 0.805 0.992 1.000 0.973

Note: * based on the confidence interval, ** based on Chebyshev bound.

Generalizing the results of Tables 4 to 9, we see that based on the accuracy, there are no major differences

between models. Additionally, we generally see that the evidential model obtains the best CIS. Next, for the

dropout and ensemble models, we observe a significant drop-off in CIS between the first and last time steps,

potentially caused by a relatively constant width of the confidence interval. Lastly, we observe a relation

between the number of data points and the quality of results in CIS for the adapted evidential model.

6 Conclusion

In this thesis, we have considered four models to create uncertainty estimates based on confidence intervals.

The first model we considered is an evidential neural network. The methodology of evidential neural networks

is based on the assumption that the output can be modeled using a hierarchical distribution. Moreover, we

minimize the negative log-likelihood during the optimization, including a regularization term. To construct

the variance and confidence interval, we use a heuristic approach by assuming that our degrees of freedom

are sufficiently large. The second model is also an evidential neural network where the main difference is

the regularization term. In this thesis, we derive a new regularizer based on the definition of the confidence

interval. Here, we note that for this regularization to hold, we need sufficient data with respect to the number

of weights in the network and desired confidence level. We estimate the variance and confidence interval based

on the t-distribution for this method. In addition, we also implemented the MC dropout model; this model

approximates a Bayesian neural network by applying dropout during training and the predictions. Lastly,

we implement an ensemble model by training ten separate neural networks and combining the predictions
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to construct a confidence interval.

These methods are tested on two types of data. First, we tested them on a regression dataset, where we

needed to predict a non-linear trend with heteroskedastic variance. Then, we tested the methods on several

datasets of time series data related to pedestrian movement path prediction. We use the ETH and UCY

datasets, containing four scenarios, to test the output of the different methodologies.

6.1 Main findings

Summarizing the results of the regression data, we see that all models can model the non-linear trend. This is

likely because of the neural network structure underlying all uncertainty estimation methods. Furthermore,

the evidential and adapted evidential models work best for uncertainty estimation and heteroskedasticity

modeling. The adapted evidential model is preferred for this dataset due to the smaller confidence intervals

compared to the evidential model. The adapted evidential model potentially works well on this data due to

a sufficient number of data points. The MC dropout and ensemble models perform worse, as they do not

model the heteroskedasticity of the variance in the confidence interval.

The results of the pedestrian movement dataset show interesting results. We have seen that the evidential

neural network performs well for almost all datasets. To the author’s knowledge, this is the first time

the evidential model was applied to pedestrian movement forecasting. As such, it seems like a significant

improvement of the results based on the MC dropout model in this thesis and in the previous work of Nayak

et al. (2022). Nevertheless, the evidential model still does not work perfectly for all scenarios. Namely, in

some cases, insufficient data points lie within the confidence interval, whereas the interval seems excessively

wide at other times. The results of the adapted evidential model are less good on three of the five datasets

than the other models. The predicted confidence interval for almost all scenarios is not wide enough. Thus,

this indicates that further research is necessary to improve this method. Interestingly, for this method, we

do see a relation between the size of the dataset and the quality of the uncertainty prediction; this is one

of our main recommendations for further research. The results of the dropout and ensemble models show

similar problems. Notably, they have an almost constant width of the confidence interval over the prediction

horizon. As such, the confidence interval is too wide for early time steps, whereas for later time steps, it is

too narrow. We also find that the evidential and adapted evidential model outperforms the ensemble and

Monte Carlo dropout models on computational time, which is essential in the application of uncertainty

estimation in self-driving cars.

Based on our research, we can answer our research questions. Firstly, to answer the question: “What

uncertainty estimation method obtains the most accurate predictions?”, we find that all models produce rea-

sonably accurate predictions, which is likely due to the characteristics of the neural network and RNN layers.

Then, to answer the question: “What uncertainty estimation method obtains the most reliable uncertainty

estimates?”, we find that for the regression data, the adapted evidential model works best, and for the

pedestrian forecasting, the evidential model works best most of time. Both models can model heteroskedas-
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ticity and learn uncertainty patterns for time series data without explicit modeling. Next, regarding our

third subquestion: “How do the results of the accuracy and uncertainty estimate change between datasets

and use-cases?”, we find that the accuracy and uncertainty results do change between datasets. We observe

that the adapted evidential model works better on datasets with more data points, and we see a difference

in the uncertainty forecast quality between datasets. Finally, to answer our main research question:“Which

of the three considered methodologies is optimal for estimating the uncertainty of predictions generated by a

neural network?” we conclude that for the use-case of pedestrian movement prediction, the evidential model

provides the best uncertainty prediction. This answer is based on the answers to the previous questions and

on the fact that the evidential model leads to significant improvement in the prediction time.

The result of this thesis could have a positive societal impact. Firstly, the methods presented in this

thesis incorporate the benefits of the neural network and improve the trustworthiness due to uncertainty

estimates. Additionally, we observe that the evidential network shows improved results over the previously

used MC dropout model for pedestrian movement prediction. Furthermore, the evidential models show

increased computational speed during predictions. Therefore, we believe that evidential networks can be

effectively applied to self-driving cars.

6.2 Limitations and further research

The results of this thesis rely on the correct construction of the confidence interval. In particular, the dis-

tribution of the critical values for the univariate and multivariate outputs need to be studied further. In

addition, the evidential and adapted evidential network heavily rely on distributional assumptions. Particu-

larly, we need to validate our choice to model the data using multiple univariate outputs with zero covariance.

Furthermore, in this thesis, a constant regularization parameter equal to one was used. It is important to see

how the results change for a different values. For the Monte Carlo dropout model, further analysis is needed

on the value of the dropout parameter, since we only used a single value. For the ensemble model, we used

only ten networks, whereas for the confidence interval are large number of networks is needed. However,

increasing the number of networks could lead to longer training and prediction times.

We see several avenues for further research. Firstly, we recommend to study the evidential methodology

further. In particular, we recommend to derive further insights of the regularization parameter. Specific

to the adapted evidential model, it is interesting to validate our hypothesis that the model performs better

with more datapoints. Additionally, we believe further theoretical results can be derived for the model if we

simplify the neural network to a linear model. Secondly, we recommend to improve the construction of the

confidence intervals, for this we see two approaches. The confidence intervals can be improved either through

further theoretical derivations or based on approximate critical values using validation data. Thirdly, we

recommend further comparisons of the evidential model against other benchmarks. Lastly, we recommend

testing the methods on other applications to see to what extent the results in this research generalize.
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A Derivation of the confidence interval

we want to find a lower bound l and upper bound u such that

P(l < y < u) = p, (55)

for y distributed according to a location scale t distribution with 2α degrees of freedom, location γ and scale

σ2. then we rewerite to find

P(
l − γ

σ
<

y − γ

σ
<

u− γ

σ
) = p, (56)

where y−γ
σ is distributed according to a student t-distribution with 2α degrees of freedom. Using the critical

values of the student t distribution we find

l − γ

σ
= −t2α(1−p)/2 and

u− γ

σ
= t2α(1−p)/2. (57)

thus,

l = γ − σt2α(1−p)/2 and u = γ + σt2α(1−p)/2. (58)

and we find the confidence interval

[γ − σt2α(1−p)/2, γ + σt2α(1−p)/2]. (59)

Unfortunately we don’t know the parameters γ and σ and thus we replace them by the estimated values

[γ̂ − s t2α(1−p)/2, γ̂ + s t2α(1−p)/2]. (60)

However, since we don’t know the distribution of the estimated parameters γ̂, s2, we know that the critical

value are likely no longer appropriate, but it is not clear what critical value we should use instead.

B Overview Code

The code can be found on:

https://github.com/SteinDijkstra/ForecastingPedestrianUncertainty

Structure codebase:

• Code:

– main.py: File which executes the code programmed in the other folders

– /data preparation: Contains the code to generate the regression data and to preprocess the

pedestrian dataset

– /models: Contains the implementation of the evidential, adapted evidential, MC dropout and

ensemble models
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– /experiment: Contains the code that organizes the experiments used in the thesis, also contains

a file that helps analyze the results

– /utility: Utility methods related to the config file

• Archive:

– /data:

– /ETH data: The ETH Data retrieved from Amirian, J., Zhang, B., Castro, F. V., Baldelomar, J.

J., Hayet, J.-B., & Pettre, J. (2020). Opentraj

– /UCY data: The UCY Data retrieved from Amirian, J., Zhang, B., Castro, F. V., Baldelomar,

J. J., Hayet, J.-B., & Pettre, J. (2020). Opentraj

– /Preprocessed: folder with processed regression, ETH and UCY data according to the data section

in the thesis

• /results: folder with different runs with stored results

• /figures: folder with the figures presented in the thesis

• Other:

– notebooks: contains jupyter notebook to create the tables and figures in the thesis

– config: contains the config file that changes the architecture of the network, structure needs to be

specified in utility/config.py

46


