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Abstract

The optimization of the scheduling the blending of copper concentrates problem (SBCP) under
supply uncertainty is studied. The SBCP has a multistage nature and seeks optimal blends of
copper concentrates that satisfy the smelter throughput and elemental flow constraints and schedules
them over a scheduling horizon, resulting in an optimal blending schedule. The arrival of copper
concentrates and the continuously feeding of the flash smelting furnace are large-scale processes,
involving strict production constraints. Additionally, there are frequent deviations in the expected mass
of a copper concentrate, mass fraction of elements in a copper concentrate, and arrival time of a
copper concentrate, denoted as supply uncertainty, proving the scheduling and optimization of these
processes to be challenging.

The study aims to analyze how the supply uncertainty influences the feasibility of the SBCP and
to create an optimization model that provides a robust solution, indicating a blending schedule that
remains feasible for the entire scheduling horizon after the uncertainty realization. First, a discrete-time
linear model is created to model the nominal SBCP. Afterward, successfully three optimization models
are designed considering each one type of supply uncertainty. The models are tested across five
generated data instances. A one-stage robust mass model is created which captures the mass
uncertainty with a box uncertainty set, resulting in feasibility ratios of 100.0 evaluated across different
mass uncertainty realizations. The mass fraction uncertainty is captured by a budgeted uncertainty
set for each element having mass fraction uncertainty, denoted as the one-stage robust mass fraction
model. This models results in feasibility ratios ranging from 70.0 to 100.0, decreasing by a larger
scheduling horizon. The SBCP reacts sensitive to mass fraction uncertainty, especially for element
2 and element 7. Then, a one-stage and multistage stochastic model are formulated utilizing both a
reduced scenario tree where for each copper concentrate two possible delays are selected. A reduced
scenario tree is utilized because otherwise, the model becomes computationally too extensive. The
resulting feasibility ratios obtained by the stochastic models which include no delay or the maximum
delay of each copper concentrate vary between 50.0 and 100.0 due to over-conservatism of the
model. Overall, the SBCP reacts very sensitively to arrival time uncertainty. Ultimately, the results
illustrate that using robust blending schedules that consider supply uncertainty directly into the model
improves the feasibility ratios of the solution for the SBCP under supply uncertainty, whereas, for
both mass and mass fraction uncertainty, this can be obtained against a minor profit reduction and
for arrival time uncertainty this proves to be more challenging and results in a significant profit reduction.

For further research, it is recommended to look into which scenarios are included in the stochastic
model and look at how the current optimization methods can be applied and evaluated for instances
with a larger scheduling horizon. Lastly, it is recommended to perform a sensitivity analysis on the
capacity and start inventory present in the instances and validate the current results with actual (raw)
data of a refinery.
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1
Introduction

This chapter introduces the scheduling of the blending of copper concentrates problem (SBCP) under
supply uncertainty. We explain the main concepts of the copper industry, the blending of copper con-
centrates, and the importance of considering supply uncertainty. We then proceed to introduce the
research questions.

1.1. Supply chain uncertainty
Recent events such as the COVID-19 pandemic and the blockage of the Suez Canal have emphasized
the sensitivity of supply chains to disruptions. A supply chain (SC) functions as a network facilitating
the delivery of products and services from suppliers of raw materials to end customers through an inte-
grated flow of information, material, and cash (Cox and Blackstone, 2002). Disruptions, characterized
by being a low likelihood and high impact risk, significantly affect supply chains especially given the
global nature of most supply chains nowadays (Suryawanshi and Dutta, 2022). However, these dis-
ruptions are not the only risks supply chains are exposed to. Supply chains are frequently exposed to
uncertainties, characterized as a low-impact but high-likelihood risk, such as uncertainties in demand,
supply, and lead time (Torabi et al., 2015).

Due to the unavoidable presence of uncertainties in the supply chain, uncertainties are an important
concept to consider in supply chain management. Supply chain management (SCM) involves man-
aging the flow of goods and services to and from a business, including all processes that transform
raw material into final products (investopedia, 2024). Effective SCM is crucial for optimizing profits
for stakeholders in the SC. Mathematical optimization methods can serve as valuable tools for finding
(near) optimal solutions to SCM problems. Lately, the interest has increased in SCM in considering
the uncertainties a SC faces by creating robust supply chains. Robustness provides systems with the
strength to handle likely disturbances (Bundschuh et al., 2003). For finding robust solutions, many
methods have been developed such as robust optimization and stochastic optimization. In academia,
this field is called optimization under uncertainty and studies decision-making in the presence of uncer-
tain parameters. The goal of this research field is to find solutions that perform well across a range of
possible scenarios or real-world conditions.

Nevertheless, at the moment few businesses use optimization methods for their SCM and when they
implement them they still rely much on deterministic nominal optimization methods. These methods
do not consider parameter uncertainty, treating the expected value, also called the nominal value, as
the actual value of a parameter. Therefore, the performance of the nominal solution is often worse
than indicated due to real-world parameter uncertainty. A gap can thus be defined between the the-
oretical development of the optimization under uncertainty methods and the practical implementation
of the optimization under uncertainty methods to real-world problems. It is intriguing to study if the
developed optimization under uncertainty techniques effectively addresses uncertainties, yielding an
optimal solution that ensures a robust supply chain for real-world problems.

1



1.2. Copper industry 2

1.2. Copper industry
This study considers copper production at a given refinery as a case study to analyze the effects of
considering uncertainty directly in the optimization of a real-world problem. The thesis is written in
cooperation with an individual company who could provide advise on the problem and assess whether
the suggested model was realistic. This section provides an introduction to the copper industry. We
introduce the metal copper, explain the main steps of copper production, describe the latest trends in
the copper industry, and introduce the current optimization methods in the copper industry.

The metal copper
Copper is man’s oldest used metal and is still highly used in industry. Around 9000 before common
era the metal copper was discovered1. It was used early in man’s history because copper is one of the
few metals that occurs in nature in a directly usable metallic form. Because copper has properties like
high thermal and electrical conductivity, good corrosion resistance, and malleability the metal is used
to a great extent in industry (Langner, 2011). The main sectors where copper is used are construction,
transport, power generation, energy transport, and electronics2.

Copper production
Deposits of copper ore captured in sand and stone are lo-
cated worldwide. Amap of these deposits is presented in
Figure 1.1; Chile dominates global copper resources and
reserves, followed by the United States and Peru. Cop-
per is produced from sulfide-copper ores or oxide-copper
ores, which are mined from the deposits. Sulfide-copper
ores are processed using pyrometallurgy; the extraction
and purification of metals by processes involving the ap-
plication of heat. Oxide-copper ores are processed using
hydrometallurgy. This process uses aqueous solutions
to extract and purify copper from oxide-copper ores at
ordinary temperatures. In addition to the production of
copper by mining copper ores, it is also possible to recy-
cle copper, by melting old copper scrap. Copper can be
recycled repeatedly without loss of quality2.

Figure 1.1: Map shows copper in sediment-hosted
and porphyry deposits around the world (adapted
from USGS science for a changing world, 2016)

This research studies the production of copper from sulfide-copper ores. The pyrometallurgy produc-
tion process of copper consists of multiple steps, where the main steps are the formulation of copper
concentrate, smelting, and electrolysis. The raw material of this production process is sulfide-copper
ore and the final product is copper cathode. Sulfide-copper ore is mined and generally consists of 1
mass percent of copper element. Then this sulfide-copper ore is crushed and separated from the rock.
The resulting product is called copper concentrate, a material that looks like fine sand and consists
generally of 20 to 30 mass percent copper element combined with a mixture of other elements. Each
copper concentrate has thus a distinct composition of elements. Next, a blend is created by combining
various copper concentrates, which are all fed to the flash smelting furnace. After the copper concen-
trates have been smelted, they are further processed with the use of electrolysis into copper cathode.
Copper cathode consists generally of 99.99 mass percent copper (Langner, 2011). The copper cath-
ode is the final result of the refinery and is also called refined copper. The refined copper can be used
to produce for instance copper wires, copper tubes, copper plates, or chips (Barros et al., 2022).

Trends in copper industry
The total worldwide copper mine production amounted to an estimated 22 million metric tons in 20223.
This makes it fourth in the list of most mined metals. Global copper production has seen steady growth
over the past decade, rising from 16 million metric tons in 20103. To meet the increasing demand,
more copper has to be mined. Lately, in addition to the increase in demand for copper, there has
been a gradual decrease in the grade of mined copper ores. Copper concentrates have become more

1worldatlas.com, 2023
2https://copperalliance.org/, 2023
3Statista.com, 2023
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complex with higher impurity and rock content, and thus a lower concentration of copper. This trend has
had a large effect on smelters as they have to increase throughput to maintain copper metal production
while increasing operating costs due to processing the increased amounts of secondary products, like
slag and acid, and the stabilization of waste streams. Therefore the need for optimization of the current
processes in the copper industry has risen (Flores et al., 2020).

Optimization of copper production
This study focuses on the optimization of the first production step for a refinery; the feeding of the
smelter with copper concentrates. This step is crucial for the production of copper because it deter-
mines the speed of the other sequential processes. In the flash smelting furnace chemical processes
take place. To maintain them it is of high importance that the smelter works continuously. Therefore
at every moment in time, a feasible blend of copper concentrates should be present at the site, which
can be fed into the smelter. When the smelter can not be fed continuously, it leads to downtime, re-
sulting in significant costs for the refinery. This is indicated as an infeasible solution. In addition to this
scheduling problem, the profit of processing the copper concentrates can be maximized, by optimizing
which copper concentrates are put in the blend. The corresponding problem, which optimizes when
and which blend of copper concentrates should be fed to the smelter over a scheduling horizon, is
called the scheduling of the blending of copper concentrates problem (SBCP).

Currently, the refinery uses a linear deterministic nominal optimization model to solve the SBCP over a
three-month time horizon. This model optimizes both the SBCP and subsequent batch processes. Al-
though this model is useful for analyzing copper concentrate trends, extending the scheduling horizon
to capture long-term trends is hindered by computational constraints. At the moment it takes multiple
hours to solve the model for a mid-term horizon. Despite generating an optimal blending schedule,
direct implementation at the site is often impractical due to discrepancies between actual and expected
supply parameters, denoted as supply uncertainty. Historical data reveals that supply uncertainty com-
prises three elements; uncertainty in the mass of a copper concentrate, uncertainty in the mass fraction
of elements in a copper concentrate, and uncertainty in the arrival time of a copper concentrate. To
accommodate this supply uncertainty, an additional linear model schedules blender operations within a
shorter time horizon of a few days. However, even with the utilization of this second model, numerous
adjustments are still required to find a feasible blend for the actual supply parameters. As a result,
current blending operations heavily rely on human experience.

The refinery faces significant capacity and feasibility issues due to challenges in scheduling the blend-
ing of copper concentrates. Without effective long-term scheduling, this leads to the accumulation of
specific copper concentrates on-site and leads to infeasible blending schedules, resulting in substan-
tial costs during smelter downtime. These challenges underscore the limitations of current models in
describing and optimizing the SBCP under supply uncertainty. The refinery desires to know what the
effect of supply uncertainty is on the SBCP. The refinery aims to quantify the impact of supply uncer-
tainty on the SBCP and assess the risk of infeasibility due to this uncertainty. With quantifying the
impact is meant that an indicator is introduced which expresses for which part of uncertainty realiza-
tions the solution remains feasible over the entire scheduling horizon. Ultimately, the refinery aims to
determine how to schedule the blending operations to be robust against supply uncertainty. Here, a
robust blending schedule indicates that it remains feasible after supply uncertainty realization. To find
a robust solution there is a pressing need for an optimization model capable of effectively optimizing
the SBCP while considering supply uncertainty over a mid-term scheduling horizon. The optimization
model must be computationally efficient so that eventually the scheduling horizon can be extended.

1.3. Research Questions
To address the identified research gap and refinery objective, the following main research question has
been formulated. To be able to answer this research question thoroughly, we formulate four additional
sub-questions, indexed further by (a) through (d).

”What is the influence of supply uncertainty on the feasibility of the SBCP and how can we find a robust
solution to the SBCP, indicating a feasible blending schedule for the entire scheduling horizon after the
uncertainty realization, with the use of optimization for a mid-term scheduling horizon?”
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(a) How can the SBCP be modeled as a linear nominal optimization problem?

(b) Which optimization under uncertainty methods can best be applied to consider supply un-
certainty for the SBCP? What are the drawbacks and benefits of the different optimization
methods?
i. Which optimization method is best suited to address uncertainty in the mass of a copper
concentrate?

ii. Which optimization method is best suited to address uncertainty in the mass fraction of
elements in a copper concentrate?

iii. Which optimization method is best suited to address uncertainty in the arrival time of a
copper concentrate?

(c) How does the SBCP react to supply uncertainty? How can we quantify the risks associated
with different uncertainty types and what is the quantified risk of the infeasibility of the nominal
solution due to supply uncertainty for the SBCP?
i. What is the quantified risk of the infeasibility of the nominal solution due to uncertainty
in the mass of a copper concentrate?

ii. What is the quantified risk of the infeasibility of the nominal solution due to uncertainty
in the mass fraction of elements in a copper concentrate?

iii. What is the quantified risk of the infeasibility of the nominal solution due to uncertainty
in the arrival time of a copper concentrate?

(d) We call a solution to SBCP obtained via optimization under uncertainty a robust solution. The
final sub-question is, what is the quantified risk of the infeasibility of the robust solution due to
supply uncertainty for the SBCP? How much has the performance improved in comparison
with the nominal solution?
i. What is the quantified risk of the infeasibility of the robust solution due to uncertainty in
the mass of a copper concentrate?

ii. What is the quantified risk of the infeasibility of the robust solution due to uncertainty in
the mass fraction of elements in a copper concentrate?

iii. What is the quantified risk of the infeasibility of the robust solution due to uncertainty in
the arrival time of a copper concentrate?

Chapter 3 and Chapter 4 address sub-question (a) and sub-question (b). In Chapter 3, we select the
most suitable models to model the nominal SBCP and the SBCP while directly considering the sup-
ply uncertainty based on the reviewed literature. Thereafter, Chapter 4 outlines the implementation
of these models. Subsequently, Chapter 6 and Chapter 7 address sub-question (c) and sub-question
(d), respectively. We test the models on various instances, which are introduced in Chapter 5. Then
in Chapter 6, we discuss the numerical results and draw relevant conclusions. Finally, we formulate
answers to the research questions in Chapter 7 and discuss the limitations of the models and recom-
mendations for further research in Chapter 8.



2
Problem description

To provide more insight into the complexity and comprehensiveness of copper production, Section 2.1
gives an explanation of the pyrometallurgy production of copper from sulfide-copper ores. Thereafter,
Section 2.2 describes the consequent SBCP which is related to the first and second production pro-
cesses of refining copper.

2.1. Pyrometallurgy copper production
The pyrometallurgy production process consists of six main steps. Figure 2.1 shows a schematic
representation of this production process.

Figure 2.1: Schematic representation of copper smelting and refining process (adapted from Pan Pacific Copper, 2024)

As a first step, the sulfide-copper ore is extracted from amine and is formulated into copper concentrate
(Figure 2.1, step 1). At the mine, the extracted sulfide-copper ores are crushed into fine sand and are
then separated from rock through froth flotation. This process adds a mixture of water and chemicals to
the ores. The chemicals bind to the copper particles, which makes them hydrophobic. The tank is then
aerated, causing hydrophobic copper particles to attach to the air bubbles that rise to the tank’s top
which separates the copper particles from the rock. Afterwards, excess water is removed, to thicken
the material which leaves behind copper concentrate.

In the subsequent step, a blend of various copper concentrates and additional raw materials is cre-
ated and is fed to the flash smelting furnace (Figure 2.1, step 2). Within the flash smelting furnace,
the blend undergoes heating up to 1300 °C, transforming into a molten liquid. Following the smelting
process, the residue consists of copper matte and slag. Copper matte is a mixture of copper, sulfur,
and iron, while slag is a dense, glassy substance composed of iron, silica, and other impurities. The
copper matte undergoes further heating in the converter, where sulfur and iron are burned off (Figure

5



2.2. The scheduling of blending copper concentrates problem (SBCP) 6

2.1, step 3). This results in blister copper, which has a yellow color. The slag is a secondary byproduct.

As a next step, the oxygen is burned off the blister copper in the anode furnace (Figure 2.1, step 4),
which results in a product called anode copper. The anode copper is molded in the anode casting
wheel into large sheets (Figure 2.1, step 5), such that it can undergo the final production step involving
electrolysis for refinement (Figure 2.1, step 6). Anode slabs are suspended in a sizable tank containing
an electrolyte solution comprising copper sulfate and sulfuric acid for 14 days. During this period,
copper ions migrate from the anode to the cathode, while other metals and impurities exit the anode,
settling at the tank’s base. These impurities are gathered and can be further refined to recover additional
precious metals such as silver and gold. The ultimate products are sheets of refined copper cathodes
(Pan Pacific Copper, 2024).

2.2. The scheduling of blending copper concentrates problem (SBCP)
This study focuses on the transition from the first to the second step of the pyrometallurgy copper
production process (Figure 2.1): the formulation of copper concentrates and their processing in the
flash smelting furnace. During this transition, a blend of various copper concentrates has to be made
that eventually is fed into the flash smelting furnace. This section provides a detailed description of the
resulting SBCP.

Figure 2.2: Schematic representation of the arrival and blending of copper concentrates (adapted from Song et al., 2018)

Figure 2.2 illustrates the SBCP, which comprises five sub-processes denoted by letters A to E. The
SBCP begins with the arrival of copper concentrates at the site via maritime vessels (Figure 2.2, A).
These concentrates may be transported on multiple vessels, and vice-versa, there may be multiple
concentrates on a single vessel. The refinery purchases these copper concentrates from mines world-
wide. The refinery procures these concentrates from mines worldwide through long-term contracts
with suppliers and traders. These contracts specify expected parameters such as the mass of a cop-
per concentrate, the mass fractions of elements in a copper concentrate, and the arrival time of a
copper concentrate. However, it is common for the actual parameters to deviate from the agreed-upon
expected values, a phenomenon often referred to as supply uncertainty. Notably, we assume that the
actual supply parameters are independent of each other.
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Upon arrival at the site, a copper concentrate is stored in a stockpile (Figure 2.2, B). A capacity limit,
denoted as Q, is imposed on the total inventory of all stockpiles. The initial inventory at the start of the
scheduling horizon, known as the start inventory, contains known values for both its actual mass and
the mass fraction of elements, eliminating uncertainty in these parameters. Moving to the third step of
the SBCP, a pre-blend of various copper concentrates is created periodically (Figure 2.2, C). Selected
copper concentrates are transported to the pre-blender, where they are mixed. Parts of the copper
concentrate inventory in a stockpile can be utilized for this process. Then the pre-blend is transported
to the blender.

In the fourth step, the blend of copper concentrates is mixed with non-copper concentrates in the
blender. Non-copper concentrates, including materials such as sand and recyclable materials, arrive
daily at the site and are stored in raw material stockpiles (Figure 2.2, D). It is essential to ensure that
the total amount of non-copper concentrates does not accumulate over time, with the total amount at
the end of the time horizon being smaller or equal toMD. This combination of concentrates forms the
final blend. Finally, in the fifth step, the final blend is fed into the smelter, where it transforms into a
molten liquid form (Figure 2.2, E). Afterward, it undergoes further processing with the use of various
batch processes as outlined in the pyrometallurgy copper production process (Section 2.1), ultimately
yielding refined copper.

Profit is generated through the smelting of concentrates in the flash smelting furnace. The primary ob-
jective of the refinery is to maximize this total profit by finding an optimal blend of various concentrates.
Each ton of concentrate processed in the smelter is associated with a profit parameter αc depending on
the composition of the copper concentrate. Copper concentrate typically contains high concentrations
of copper, iron, and sulfur, along with lower concentrations of fluor, mercury, nickel, lead, and other
elements (Muthumariappan and David, 2019). However, it is important to note that the composition
of each copper concentrate varies, leading to variations in the related profit parameter αc. For exam-
ple, higher concentrations of precious metals, such as gold and silver, result in higher profit parameters.
Conversely, copper concentrates containing elements that require removal, like pollutants, tend to have
lower profit parameters. Furthermore, recyclable non-copper concentrates generally have lower profit
parameters (Flores et al., 2020).

In addition to maximizing profit, ensuring that blends satisfy all smelter constraints is crucial. The
smelter imposes strict elemental constraints, including upper bound constraints and interdependency
constraints. The upper bound constraints ensure that a specific product quality is maintained and the
interdependency constraints facilitate the correct chemical reactions and ensure that the heat is con-
trolled in the smelter. To be able to meet these elemental constraints, various copper concentrates
are blended to create a feasible blend allowed to enter the smelter. Operational constraints, such as
employee shifts, limit the frequency of blend changes per day.

Ensuring the availability of a feasible blend in every period is crucial for the smelter to operate at its
maximum capacity flow rate F̂ . From the initial start-up period ET the smelter has to work exactly at
the maximum capacity flow rate. The throughput per period can not exceed the maximum capacity
of the smelter, nor can it fall below this capacity, as any decrease indicates downtime for the smelter,
which should be avoided at all costs. After experiencing downtime, it takes multiple days to restart the
chemical processes correctly. Therefore, preventing smelter downtime is essential, with failure costs
amounting to 1,000,000 euros for each day the smelter is down.

To ensure continuous smelter operation, the blending of copper concentrates is scheduled in advance
over a mid-term time horizon. This time horizon allows for potential corrective measures, such as
adjusting the mass of purchased copper concentrates for future orders. Additionally, the optimization
model with themid-term time horizon for the SBCP is re-optimized every week. This enables the refinery
to adapt its scheduling based on evolving knowledge of the supply uncertainty. The SBCP has thus a
multistage nature; knowledge of uncertainties evolves and decisions can be made at multiple points in
time. In summary, the SBCP is both an optimization and scheduling problem with a multistage nature.
It seeks optimal blends of copper concentrates and schedules them over a time horizon, resulting in
an optimal blending schedule that satisfies all smelter constraints.



3
Theoretical Background and

Literature review

This chapter provides a review of the existing literature on the SBCP and a theoretical background for
optimization under uncertainty. First, Section 3.1 reviews the literature on the SBCP. After that, Section
3.2 provides an overview of the main concepts in the field of optimization under uncertainty. From this
theoretical background, we motivate the modeling choices in this study.

3.1. State-of-the-art optimization of the SBCP
This section provides an overview of existing literature on optimizing the SBCP under supply uncer-
tainty. The refining of copper, as discussed in Section 2.1, involves multiple large-scale processes,
each controlled by strict production constraints. Planning and scheduling these processes prove to be
challenging due to factors such as insufficient measurement data, complex logistics, high raw-material
variability, frequent disturbances, and maintenance operations that significantly impact ideal process
cycles (liro Harjunkoski et al., 2006). Consequently, various studies have focused on optimizing pro-
cesses within the copper industry. However, our review reveals a gap in specific research addressing
the SBCP, particularly under supply uncertainty. This emphasizes the need to study the SBCP and
develop optimization models capable of handling supply uncertainty effectively. The discussion begins
with a review of the nominal optimization of the SBCP and then examines optimization models for the
SBCP considering supply uncertainty. Due to the limited literature on the SBCP, this review broadens
to include optimization of other copper industry processes and related business contexts.

Research has been done in multiple fields related to the SBCP. Derpich et al., 2019 optimized mine
production using a linear model. In this context, mine production denotes the mining of copper ore and
processing into copper concentrate. Although, the main restrictions of this problem are also dependent
on the copper concentrate grade, denoting the availability of elements in the ores, the production con-
straints are different. Therefore, this model is not applicable to describe the SBCP. Similarly, Suominen
et al., 2016 explored nonlinear optimization for scheduling the process in the converter. While related
to the SBCP and enduring similar elemental constraints, the model is limited to batch processes, not
able to capture the continuous working of the flash smelting furnace, which is critical for the SBCP.

Furthermore, the zinc industry addresses a blending composition problem, as explored in Savi et al.,
2016. The study proposes a linear model that incorporates technical, environmental, and economic
constraints. The linear model effectively captures the conflicting requirements of the problem and
identifies optimal batches for zinc production that satisfy all these constraints. However, the model
overlooks the scheduling aspect crucial for the SBCP and has different specific elemental constraints.
Nevertheless, this study underscores the potential of linear models in addressing blending composition
problems, offering promising insights for the SBCP.

In recent years, there has been a growing emphasis on concurrently optimizing multiple processes
within the copper industry. Currently, it is common to schedule the processes manually, and a global
overview of the overall production process is usually missing. This results in productivity losses since

8
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the overall process efficiency may be far from optimal as many batches end up unnecessarily waiting for
equipment in the next production stage (liro Harjunkoski et al., 2006). Both Suominen et al., n.d. and liro
Harjunkoski et al., 2006 propose a mixed-integer linear optimization formulation (MILP) to concurrently
optimize the batch process scheduling in the copper industry, aiming to increase the throughput com-
pared to individual process optimization. These formulations have as main decision variables the batch
processing times of the smelter, converter, and anode processes, with computational efficiency being
a key consideration due to the need for frequent re-scheduling in response to uncertainty. However, it
is important to note the limitations of these models in the context of the SBCP. While they demonstrate
effectiveness in improving throughput compared to local optimization approaches, they are primarily
designed for batch processes and do not inherently account for the continuous feeding of the smelter.
Additionally, they assume unlimited material availability, overlooking the dynamic relationship between
copper concentrate arrival and smelter feeding. As such, these linear batch optimization models are
not directly applicable to the SBCP. Nevertheless, the focus on computationally efficient models and
maximizing throughput remains noteworthy. Furthermore, these studies align with the overarching goal
of enhancing the efficiency of copper refinement in response to current industry trends.

The long-term planning of the concentrate ingredient list in the copper industry is the focus of study
in Zhang et al., 2022. This problem involves optimizing the SBCP while also considering the circular
use of byproducts such as slag. To address the limitations of current short-term planning, a long-term
planning model for the concentrate ingredient list is proposed, aiming to stabilize smelter production
and maximize concentrate feeding duration. Given a large number of production constraints and the
non-linear nature of the optimization objective, exact methods for optimizing the large-scale ingredient
planning are challenging (Zhang et al., 2022). The number of stages, denoting the blends that are
made, and the ingredient list itself are variable, leading to variable decision variables and constraints.
A multistage dynamic optimization method is proposed to tackle this, utilizing multi-stage stochastic ob-
ject coding. The model succeeds in finding solutions with longer concentrate feeding duration, which
also have a lower variation in objective values making the solutions more robust. However, the model
requires high computational effort to solve, although currently it does not consider supply uncertainty.
Considering supply uncertainty will make the model more complex and hard to solve. Studying the
effect of supply uncertainty on the SBCP being our main objective, we choose not to apply the above
approach and model the SBCP in a more interpretable way by maximizing the profit generated by the
throughput in the smelter instead of the feeding duration.

Ultimately, Song et al., 2018 proposes a discrete-time formulation to model the nominal SBCP. Com-
pared to continuous-time models, discrete-time models offer advantages in terms of speed, compre-
hension, and operational implementation (Song et al., 2018). The resulting model is a large-scale,
non-convex mixed-integer nonlinear program, incorporating logistic operation constraints. To address
the computational complexity of this model, a two-step MILP-NLP decomposition procedure is intro-
duced. The model provides a tight MILP relaxation so that the optimality gap is close to 0 %. However,
the model’s size is large and requires a large computational effort because there are many variables.
For the industrial example, an additional relax-and-fix rolling horizon with nearby time windows over-
laps is needed to solve the model. In summary, the MILP-NLP captures the SBCP sufficiently and
performs well in finding near-optimal solutions however at the cost of high computational effort. To our
knowledge no other paper proposed a discrete-time model for the SBCP.

Our objective is to develop a straightforward model for the nominal SBCP requiring minimal computa-
tional resources, enabling us to assess the effects of supply uncertainty. From the above-introduced
literature we can conclude that not many formulations have been proposed for the SBCP, but a linear
discrete-time model appears to be suitable for capturing the main concepts of the SBCP while main-
taining computational efficiency. To achieve this, we will utilize the discrete-time model proposed in
Song et al., 2018, with some simplifications to enhance its usability. Specifically, we will remove non-
linearity and omit operational and logistic constraints, focusing solely on the core aspects of the SBCP.
While limited research has focused on optimizing the SBCP, even fewer studies explored the impact
of supply uncertainty on its optimization. This is noteworthy, considering that the SBCP often operates
under conditions of information uncertainty, necessitating frequent adjustments to solutions before im-
plementation. Next, the studies that do analyze the SBCP under supply uncertainty will be discussed.
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In Imanbekova et al., 2015, an intelligent network is proposed to control the blending and melting of cop-
per concentrates in a electric furnace, employing an adapted neuro-fuzzy model. Intelligent systems
offer advantages such as shorter computation times compared to large mathematical models typically
used in the copper industry processes. The study successfully captures the mass fraction uncertainty
with the use of a neuro-fuzzy models and uses it to effectively control the production process. Even
though this is a promising result, this study chooses to not implement any intelligent model, because
ultimately we want to be able to implement the created models on the existing optimization models of
the refinery. In addition, a neural network does not provide easy to interpret insights into the relation
of supply uncertainty and the feasibility of the SBCP. Therefore, the use of a neural network does not
correspond with our research objective and will not be exploited.

Additionally, in Goodfellow and Dimitrakopoulos, 2016, the impact of mass fraction uncertainty on the
production planning of multiple mines is examined. The study formulates a two-stage stochastic global
optimization model, employing three different meta-heuristics as solving approaches. Results indicate
a significant 22.6 percent deviation in objective value compared to conventional deterministic mine plan-
ning software. While these findings are promising, the use of meta-heuristics in solving the model may
not align with our research objectives. However, it shows that considering the mass fraction uncertainty
into the optimization method significantly increased the efficiency of the solution.

Finally, Pengfei Chenga et al., 2020 delves into mass fraction uncertainty specifically within the SBCP
context. A continuous-time formulation is proposed, resulting in a large-scale non-convexmixed-integer
nonlinear model. To tackle the complexity, a two-step MILP-NLP decomposition technique is em-
ployed, resulting in a robust model capable of obtaining optimal solutions while ensuring quality re-
quirements under moderate uncertainty. The study underscores the significant challenge of solving
the SBCP posed by the problem’s complexity and the substantial impact of uncertainty on element con-
straints(Pengfei Chenga et al., 2020). While the paper provides promising formulations for addressing
mass fraction uncertainty in the SBCP, it is important to note its limitations. Specifically, the study only
considers uncertainty in a maximum of three elements simultaneously and neglects uncertainty related
to the mass and arrival time of copper concentrate.

In conclusion, the SBCP has received relative little attention as a research area, despite its importance
in the copper industry. Key challenges in this domain include the need to develop computationally
efficient models that can effectively account for comprehensive production constraints and ensure the
required continuous working of the flash smelting furnace. Notably, an emerging field of research per-
tains to considering supply uncertainty in optimization models for the SBCP, with a focus on mass
fraction uncertainty being the primary area of study thus far. However, there remains a significant
gap in the literature regarding other types of uncertainty, such as mass uncertainty and arrival time
uncertainty, which warrant further exploration. Addressing these uncertainties could provide valuable
insights into optimizing the SBCP process and enhancing its efficiency and reliability in real-world appli-
cations. Overall, while significant progress has been made in understanding and modeling the SBCP,
there is still much to be done to fully realize its potential and address the challenges it presents in the
context of supply uncertainty.

3.2. Framework optimization under uncertainty
This section provides an overview of the main concepts of optimization under uncertainty. Section
3.2.1 and Section 3.2.2 introduce the concepts of feasibility and the objective function under uncertainty
and the formulation of one-stage and multistage models. Thereafter, Section 3.2.3 and Section 3.2.4
introduce the two main approaches in the optimization under uncertainty field; robust optimization and
stochastic optimization. There exists more optimization under uncertainty approaches, however, these
are not considered in this study because the two main approaches provide enough concepts to start
addressing the uncertainty in the SBCP.

3.2.1. Feasibility and objective function under uncertainty
Problems in the field of optimization under uncertainty are characterized by the fact that decisions have
to be made without knowing what their full effect will be (Sahinidis, 2004). This is caused by the fact
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that some parameters are uncertain; only their expected value, called nominal value, is known at the
moment of decision-making, and not their actual value. This is denoted as parameter uncertainty or
data uncertainty. Sometimes the parameters are random or stochastic, but actual data can also be
different due to for instance a measurement error. The field of optimization under uncertainty makes
an effort to consider this uncertainty directly in the optimization method. When the objective function
and/or feasibility set are dependent on the uncertain parameter, this implies that for different realizations
of the uncertainty the objective and/or the feasibility is different (Figure 3.1, Bakker et al., 2020). This
leads to different optimal solutions for different realizations of the uncertainty. If the solution must be
feasible for all possible realizations of the uncertainty, this reduces the feasibility space. This results
in a more conservative solution; for a maximization problem such as the SBCP, this implies a lower
optimal objective.

Figure 3.1: For different realizations of the uncertainty the objective (i) and feasibility set (ii) can be different. This leads to
different optimal solutions. Here, X and f(x) represent the feasible region and objective function under the nominal values of
the uncertain parameter ζ. Further, X (ζ) and f(x, ζ) represent the feasible region and objective function under alternative

realizations of the uncertain parameter ζ (adapted from Bakker et al., 2020).

3.2.2. One-stage and multi-stage models
An important concept in optimization under uncertainty is the definition of stages; the partitioning of the
decision variables in sets. In a multi-period optimization problem, a problem where decisions have to
be made for multiple periods, one can model the problem as either a one-stage or a multistage model.
A problem has a multistage nature when more uncertainty is known over time and at multiple points in
time decisions can be made (Pflug and lois Pichler, 2014). A multistage model uses these characteris-
tics, by dividing the decision variables into different sets, adding flexibility to the model by providing that
certain decisions can be made after some uncertainty is known. In contrast, a one-stage formulation
requires all decisions to be made before uncertainty is known.

The timeline of a multistage problem is shown in equation (3.1). Here, xt denotes a decision at a
decision period t. The parameter ξt denotes the random observed uncertainty after decision period
t, but before decision period t + 1. The uncertainty thus becomes known in the time frame [t, t + 1].
Therefore at decision period xt+1 a decision can be made based on more information than in period t
(Pflug and lois Pichler, 2014).

x0 −→ ξ1 −→ x1 −→ ... −→ xT−1 −→ ξT (3.1)

Decision x0 has to be made before any uncertainty is known, such decisions are called here-and-now
decisions. The decisions that are made after the random events of the previous stage have presented
themselves are called wait-and-see decisions. The objective is to choose the here-and-now variables
in a way that the sum of the here-and-now objective value and the expected value of the uncertain
random wait-and-see objective is optimized (Pflug and lois Pichler, 2014).

The SBCP is a multi-period problem that has a multistage nature. So as outlined in the above literature
the problem can be modeled both as a one-stage and multistage model. Multi-stage models yield the
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potential to lead to better solutions than their one-stage alternative formulations due to more flexibility,
but translating this advantage into an actual improvement remains often a challenge (Bakker et al.,
2020). Multistage models are comprehensive and often computationally hard to solve. Therefore, a
one-stage model is sometimes more suitable to implement. Per optimization approach applied to the
SBCP, it will be decided if it is worth modeling the more complex multistage formulation.

3.2.3. Stochastic optimization
One of the main approaches in optimization under uncertainty is stochastic optimization. In stochastic
optimization, it is assumed that the uncertainty is random or stochastic and the probability distribution
of the uncertainty is known. Consequently, this information is used to optimize the expected objective.
The idea of stochastic optimization is to optimize the problem such that it performs optimally on average,
considering the uncertainty (Birge and Louveaux, 2011). The field of stochastic optimization started in
1950 when the concept of a chance constraint was introduced (Kucukyavyz and Jiang, 2022). A chance
constraint guarantees that a constraint holds with a certain probability α. This is formulated as follows,

P (Ax ≤ b) ≥ α, (3.2)

where both the parameter matrix A and the right-value parameter b can be uncertain following a prob-
ability distribution G. A chance constraint reflects well the idea of stochastic optimization, however,
due to the probability distributions in the formulations chance constraints are often computationally in-
tractable to solve. The feasibility space may become even non-convex (Birge and Louveaux, 2011).
Therefore, this research does not implement chance constraints.

When a discrete parameter is uncertain, a natural approach to describe the uncertainty is as a finite
set of scenarios Z. Each scenario z denotes a possible realization of the uncertain parameters and
occurs with a certain probability pz. The probability pz can be calculated with the use of the probability
distribution G of the uncertain parameter. When we substitute the uncertain parameters for their finite
set of scenarios in themathematical formulation, we formulate a deterministic equivalent problem (Birge
and Louveaux, 2011). Problem (3.3) shows an example of a deterministic equivalent formulation for a
multistage model, where the number of stages is two.

max
x,y

cTx+

Z∑
z=1

pz(q
zT yz) (3.3)

s.t. Ax = b,

T zx+W zyz = hz ∀1, ..., Z
x ≥ 0, yz ≥ 0 ∀1, ..., Z

Here, x denotes the here-and-now decisions and y denotes the wait-and-see decisions. The wait-and-
see decisions y can vary depending on the realization of the uncertainty, and these variables are thus
defined for each scenario z. The parameters T , W , and h are uncertain and the constraints have to
hold for all the scenarios z of these parameters. The objective maximizes the objective value of the
here-and-now variables and the expected objective value of the wait-and-see variables. The latter is
calculated by multiplying the expected objective value of a scenario, which is denoted as qzT yz, with
the probability of that scenario pz and summing this value for all scenarios z ∈ Z. The deterministic
equivalent problem is still a linear model, however, when the number of scenarios increases, these
models can become very large. Especially for multistage models, if the number of stages increases,
even if only a few realizations are allowed in each stage, the model can be extremely large (Birge and
Louveaux, 2011). Therefore methods that solve directly the deterministic equivalent problem are often
computationally intensive.

Research has explored more efficient methods for solving the deterministic equivalent problem. Some
multistage models lend themselves to be modeled as a dynamic programming problem. In dynamic
programming, the problem is broken down into simpler sub-problems in a recursive way (Birge and
Louveaux, 2011). To be able to implement dynamic programming the decisions of the new stage must
be only dependent on the realization of the uncertainty in the previous step. For the SBCP the current
decisions are dependent on the realizations of the uncertainty of all the previous stages, therefore it
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is not convenient to implement dynamic programming. It is also possible to exploit other structures of
the problem, by implementing other decomposition approaches (Birge and Louveaux, 2011). However,
these decomposition approaches are not applied to the SBCP because the extensiveness of these
methods is beyond the scope of this research.

Another way of simplifying the deterministic equivalent program is by excluding some scenarios. By
solving problem (3.3) for a smaller set of scenarios Z ⊂ Z, an approximation of the deterministic equiv-
alent problem is solved. The challenge is to find such a reduced set of scenarios Z so that the solution
of the approximation still provides a well-performing solution. In general, there are two ways to define
the reduced set of scenarios Z. Firstly, one can sample scenarios from the probability distribution G
that describes the uncertain parameter. This method aims to formulate a smaller set of scenarios that
effectively covers a significant portion of the probability space. Alternatively, the reduced set Z can be
strategically designed by selectively including scenarios. For example, it might encompass all worst-
case scenarios or only realizations of the uncertainty with a high probability of occurring.

For the SBCP we will model the arrival time uncertainty with the use of stochastic optimization with a
reduced set of scenarios Z, as described above. The created linear nominal model for the SBCP is
a discrete-time model, as will be explained in Section 4.1.2, making the representation in scenarios
well-suited for capturing the discrete arrival time uncertainty. Stochastic optimization is possible for
the SBCP because the probability distributions of the uncertainties are known. Moreover, optimizing
the expected objective aligns closely with the repetitive nature of the SBCP over time. We will begin
by modeling a one-stage stochastic model, aiming to provide a simplified representation of the SBCP.
However, we anticipate that the SBCP may be very sensitive to arrival time uncertainty. As a result,
the one-stage formulation may produce overly conservative models or even infeasible solutions. To
address this concern, we will also implement a multistage stochastic model specifically for arrival time
uncertainty. For the other two supply uncertainties, namely the mass uncertainty and the mass fraction
uncertainty, we choose to not model them using stochastic optimization. This is because the possible
realizations of these uncertainties are less suitable to describe with a finite number of scenarios.

3.2.4. Robust optimization
The idea of the second approach, robust optimization, is to provide a robust solution that is, a solution
that is immune against the effect of uncertainty in the parameters. The advantage of robust optimiza-
tion is that the uncertainty does not have to be of stochastic nature. The probability distribution of the
uncertainty is not needed, and the constraints will not hold for a certain probability as in the chance con-
straints. Instead, it is guaranteed that the solution is feasible against all realizations of the uncertainty.
Therefore, the solution performs well in the worst-case scenario and consequently is a conservative
solution (Ben-Tal et al., 2009). In robust optimization, the uncertainty is represented by an uncertainty
set U . This is a set that summarizes the available information about the actual realizations of the un-
certain parameters. Equation (3.4) shows the definition of an uncertain Linear Optimization (LOU ). It
is the collection of LP programs with the data (c, A, b) varying in a given uncertainty set U .{

max
x

{cTx : Ax ≤ b}
}
(c,A,b)∈U

(3.4)

The vector of decision variables is defined as x ∈ Rn, c ∈ Rn is the vector in the objective, A is anm×n
constraint matrix, and b ∈ Rm is the right-hand side vector. Equation (3.5) presents the resulting robust
constraint, where the vector x ∈ Rn should satisfy all the realizations from the uncertainty set.

Ax ≤ b ∀(c, A, b) ∈ U (3.5)

From the worst-case perspective, the robust objective ĉ(x) is defined as the smallest value of the true
objective over all realizations of the data from the uncertainty set as formulated in equation (3.6).

ĉ(x) = min
(c,A,b)∈U

[cTx] (3.6)

In robust optimization, the best robust value of the objective among all robust feasible solutions is
searched. This results in problem (3.7) and is called the robust counterpart of the LOU problem.

max
x

{
min

(c,A,b)∈U
[cTx] : Ax ≤ b ∀(c, A, b) ∈ U

}
(3.7)
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The robust counterpart as formulated in equation (3.7) is now formulated in open form, due to the nota-
tion (c, A, b) ∈ U . The uncertainty set U may consist of infinitely many points, resulting in infinitely many
linear constraints. Solving this optimization problem is computationally difficult. For certain uncertainty
sets, it is computationally tractable to obtain a deterministic equivalent formulation of the robust coun-
terpart for linear robust problems. This is called the robust counterpart in closed form and dual theory
is often used to derive this (Ben-Tal et al., 2009). It is important to mention that not all uncertainty sets
can be used in equivalent deterministic formulations, and then approximations or alternative solution
methods have to be used to solve the robust optimization problem.

The choice of uncertainty set in robust optimization is thus important and it influences the performance
of the robust optimization model significantly. However, constructing an uncertainty set is more of a
design process than a precise science, as it involves numerous design choices. The overall goal is to
construct the uncertainty set with a volume as small as possible, to avoid the robust problem (3.7) being
over-conservative, containing an extensive number of uncertainty realizations. On the other hand, an
uncertainty set that is too small may overlook crucial uncertainties, resulting in a non-robust solution
(Ben-Tal et al., 2009). One should keep in mind, that when the probability distribution of the uncertainty
or historical data is known, including α percent of the uncertainties in the set, ensures robustness
against more than α percent of uncertainties, as per the law of total probability (Gorissen et al., 2015).
Therefore, it is typically unnecessary to include all possible uncertainty realizations in the set. When
designing an uncertainty set, it is common practice to generate multiple realizations based on histori-
cal data to observe the distribution they form. Subsequently, a suitable shape for the uncertainty set
is chosen that includes most of the observations. Common types of uncertainty sets include the box
uncertainty set, budgeted uncertainty set, ellipsoidal uncertainty set, polyhedral uncertainty set, cone
uncertainty set, and general convex uncertainty set (Ben-Tal et al., 2009).

A box uncertainty set is a straightforward approach that defines the parameter’s actual value within an
interval around the nominal parameter value and often yields satisfactory results in practical problems.
However, the box uncertainty set assumes that all parameters can reach their worst-case values si-
multaneously, potentially leading to an overly conservative model (Gorissen et al., 2015). To address
this issue while preserving the simplicity of the box uncertainty set, a budgeted uncertainty set can
be implemented. A budgeted uncertainty set operates similarly to a box uncertainty set but imposes
a constraint on the number of parameters allowed to take their worst-case values simultaneously. In
this way, by effectively cutting the corners of the box, the volume of the uncertainty set is reduced,
making it less conservative (Gorissen et al., 2015). Further, an ellipsoidal uncertainty set describes the
uncertainty effectively when the uncertainty follows a normal distribution. It has been proven that when
the uncertainty is normally distributed, it is the smallest set that can ensure that the constraint holds
with at least 95 percent probability (Ben-Tal et al., 2009). The cone uncertainty set, the polyhedral
uncertainty set, and the general convex uncertainty sets are all sets that try to improve the capturing
of the uncertain data in the set, with smaller volumes. However, these more complicated uncertainty
sets make the derivation of the robust counterparts also more comprehensive (Ben-Tal et al., 2009).

For the SBCP, the refinery prioritizes the feasibility highly and both uncertainties can be represented
with the use of a connected uncertainty set. Therefore, robust optimization is a very suitable approach
to consider the supply uncertainty because it aligns well with the guarantee that the problem will be
feasible even in the worst case. We thus model the mass uncertainty and the mass fraction uncertainty
with the use of robust optimization. A budgeted uncertainty set is chosen to describe these two supply
uncertainties. A huge advantage of the budgeted uncertainty set is that it reduces the volume of the
uncertainty set in comparison with the box uncertainty set, but still is a polyhedron, resulting in a robust
linear programming problem. We choose to implement a one-stage robust model initially to address
the two supply uncertainties. This decision is driven by the desire to balance computational efficiency
and model complexity. Given the current stage of the analysis, an immediate implementation of a
comprehensive multistage model may not be needed. We aim to avoid unnecessary computational
effort by utilizing a simpler approach until it becomes necessary to employ a more comprehensive
multistage model. For example, if the one-stage robust optimization model becomes infeasible.



4
Methodology

In this chapter, we explain the methodology. Section 4.1 introduces the created nominal linear math-
ematical model for the SBCP. Following this, Section 4.2 mathematically describes the supply uncer-
tainty. In Sections 4.3 and 4.4 we describe the implementation of the chosen optimization under un-
certainty method regarding the mass uncertainty and the mass fraction uncertainty, respectively. To
account for these uncertainties, robust optimization has been chosen. In Section 4.5, we describe the
chosen optimization under uncertainty method regarding the arrival time uncertainty of a copper con-
centrate. To account for this uncertainty, stochastic optimization has been chosen. Finally, Sections
5.1 and 6.1 cover the description of data generation and the evaluation method of the models with the
use of simulation, respectively.

4.1. Nominal mathematical model for SBCP
To analyze the SBCP under supply uncertainty, we initially developed a nominal linear model for op-
timizing the SBCP. A nominal model considers no uncertainty in the parameters and instead utilizes
the expected values of the parameters as deterministic inputs. Our model is constructed based on the
mathematical formulation proposed in Song et al., 2018, with additional assumptions made. Firstly, we
take a more generalized approach by excluding operational constraints such as feeding and unloading
constraints of bins. Additionally, we simplify the blending network to exclude nonlinear constraints. By
designing the blending network to eliminate multiple outgoing flows after blending copper concentrates,
we can omit the nonlinear identical composition constraints for flows introduced in Song et al., 2018.
Moreover, we do not directly model the transport of copper concentrates from the stockpiles to the
pre-blender via a transfer ship. Instead, we apply a standard delay to the arrival time of all copper con-
centrates during pre-processing, effectively including the time utilization of the transportation step. In
this section, we introduce the mathematical formulation of the created nominal linear model for optimiz-
ing the SBCP. Section 4.1.1 presents the notation of the mathematical model. Furthermore, Section
4.1.2 explains the mathematical model. Then, Section 4.1.3 describes an extension of the nominal lin-
ear model to better understand the problem’s infeasibility. Finally, Section 4.1.4 outlines the standard
reformulation of a mathematical model to adapt it for implementation of optimization under uncertainty
methods.

4.1.1. Introduction notation
We begin with introducing the notation of the mathematical model. Table 4.1 introduces the indices
and sets used in the mathematical formulation. Table 4.2 presents the defined decision variables,
while Table 4.3 presents the used parameters. Furthermore, we describe the notation according to a
schematic overview of the model.

15
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Table 4.1: Indices and sets of the nominal SBCP model.

Sets
t ∈ T Time periods in days, where t = 1, ..., T .
c ∈ C Set of concentrates, where c = 1, ..., C and C = I + CC +NC.
c ∈ CC ⊂ C Subset of copper concentrates, where c = 1, ..., I, I + 1, ..., CC. Here, I

denotes the number of start-inventory.
c ∈ NC ⊂ C Subset of non-copper concentrates which arrive daily, where c = CC +

1, ..., CC +NC.
k ∈ K Chemical elements, with k = 1, ...,K.
m ∈ M Maritime vessels, where m = 1, ...,M .
j ∈ S Stockpiles of copper concentrates, where j = 1, ..., S.
j ∈ N Stockpiles of non-copper concentrates, where j = 1, ..., N .
v ∈ V Set of vertices in graph G , where j = 1, ..., S, S + 1, ..., N + S, |V| − 1, |V|.

The index |V| − 1 is also denoted as P and the index |V| as B.
e ∈ E Set of edges in graph G.

Table 4.2: Decision variables of the nominal SBCP model.

Decision variables
fe,c,t Flow rate on edge e of concentrate c in period t.
Fe,t Total flow rate on edge e in period t.
xj,c,t Inventory at stockpile j of concentrate c in period t.
Xj,t Total inventory of copper concentrates at stockpile j in period t.
TFt Total flow rate into the smelter in period t.
Ek,t Flow rate of individual element k into the smelter in period t.
ut Binary variable defines the feasibility of the problem in period t (refer to Sec-

tion 4.1.3 Extension).

Table 4.3: Parameters of the nominal SBCP model.

Parameters
gm,j,c,t Actual mass of copper concentrate c that is shipped with maritime vessel m

and unloaded at stockpile j in actual period t, with j ∈ S. Both the value of
the mass and the arrival period are uncertain.

gm,j,c,t′ Nominal mass of copper concentrate c that is shipped with maritime vessel
m and unloaded at stockpile j in nominal period t′, with j ∈ S.

hj,c,t Daily arrival of non-copper concentrate c at stockpile j in period t, with j ∈ N .
Fe,t Upper bound on the total flow rate on edge e in period t.
Fe,t Lower bound on the total flow rate on edge e in period t.
ET Earliest period when the smelter is fully operating.
T Length of the scheduling time horizon.
MD Maximum amount of non-copper concentrate material at the end of the

scheduling horizon.
Q Maximum amount of total copper concentrate at the stockpiles.
αc Profit for processing one ton of concentrate c.
θk,c Actual mass fraction of element k in concentrate c. The mass fraction of an

element is uncertain.
θk,c Nominal mass fraction of element k in concentrate c.
F̂ Full flow capacity of the smelter.
χk Upper bound on the mass fraction of element k in the final blending.
Uk Upper bound parameters for interdependency constraints of element k.
Wk Weight parameters for interdependency constraints of element k.



4.1. Nominal mathematical model for SBCP 17

We model the blending network of the SBCP us-
ing a directed graph G = (V, E), where V rep-
resents the set of vertices and E represents the
set of edges. Figure 4.1 illustrates this graph
schematically. Each vertex is indexed as j ∈ V ,
with |V| indicating the total number of vertices.
The blender is represented by vertex |V|, further
in the report denoted as vertex B, while the pre-
blender is represented by vertex |V|−1, further in
the report denoted as vertex P . The indices of the
vertices which represent the copper concentrate
stockpiles range from 1 to S, and the indices of
the vertices which represent the non-copper con-
centrate stockpiles range from S + 1 to S + N .
Throughout the report, for readability, we denote
these indices as j ∈ S for the copper concentrate
stockpiles and j ∈ N for the non-copper concen-
trate stockpiles. Consequently, each edge con-
nects then vertices j and j′, denoted as e = (j, j′),
where both j, j′ ∈ V .

Figure 4.1: Schematic representation of directed graph
G = (V, E). In this example, indices 1, ..., 3 denote the
subset S ⊂ V and index 4 denotes the subset N ⊂ V .

We define the decision variable fe,c,t on each edge e, denoting the flow rate of concentrate c in period t.
This flow rate determines the throughput of a concentrate between two vertices in a period and is defined
for every c ∈ C. External flows of concentrates are the in- and output of the blending network. Figure
4.2 presents a schematic overview of the full model for the SBCP. The parameter gm,j,c,t represents
copper concentrate c which arrived on maritime vessel m and is unloaded at stockpile j in period t.
Similarly, the parameter hj,c,t signifies the arrival of non-copper concentrate c at stockpile j in period
t, which arrive daily. These parameters serve as inputs to the blending network. The total flow rate
fed into the smelter in period t is denoted as the decision variable TFt, constituting the output of the
blending network.

Figure 4.2: Schematic representation of the full model for the SBCP.
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4.1.2. Nominal mathematical model
Objective Function. The objective is shown in equation (4.2) and maximizes the gross marginal of
processing concentrates in the smelter. The profit which is earned for processing one ton of copper
concentrate c, is denoted by parameter αc. The flow rate that enters the smelter from the blender is
equal to the total flow rate into the blender. To define the flow rate that enters the blender, the subset
E ′ is defined as the set of all the edges that are directed towards the blender, see equation (4.1). Then,
the total incoming flow rate of a concentrate into the blender B is defined as the sum over all edges in
subset E ′ of the flow rate variable fe,c,t.

E ′ = {e ∈ E : e = (j, B), ∀j ∈ {P} ∪ N} (4.1)

The total throughput in the blender over the scheduling horizon is the sum over all concentrates c ∈ C
and the sum over all periods t ∈ T of the total flow rate into the blender. This results in objective (4.2).

max
∑
t∈T

∑
c∈C

∑
e∈E′

αcfe,c,t (4.2)

Total Flow. The constraint for the total flow rate is modeled in constraint (4.3). The total flow rate for
each edge e is defined as the sum over all concentrates c ∈ C of the flow rate variable fe,c,t. Constraints
(4.4) and (4.5) indicate capacity constraints on the total flow rate during the production process.

Fe,t =
∑
c∈C

fe,c,t ∀e ∈ E , ∀t ∈ T (4.3)

Fe,t ≤ Fe,t ∀e ∈ E , ∀t ∈ T (4.4)
Fe,t ≥ Fe,t ∀e ∈ E , ∀t ∈ T (4.5)

Inventory. The total inventory of concentrates at a stockpile j at a period t is defined in constraint (4.6)
and constraint (4.7), for the copper concentrates stockpiles j ∈ S and the non-copper concentrates
stockpiles j ∈ N , respectively. The inventory of a concentrate c at a stockpile j at a period t is thus
denoted as xj,c,t, where xj,c,t with j ∈ S is defined for the copper concentrates and xj,c,t is defined
with j ∈ N for the non-copper concentrates, respectively. The total inventory at a stockpile j is then
defined as the sum over the corresponding concentrates at the stockpile of the inventory xj,c,t.

Xj,t =
∑
c∈CC

xj,c,t ∀j ∈ S, ∀t ∈ T (4.6)

Xj,t =
∑
c∈NC

xj,c,t ∀j ∈ N , ∀t ∈ T (4.7)

The total inventory of each copper concentrate stockpile, Xj,t, where j ∈ S, is limited. The total
inventory of copper concentrates should be equal to or smaller than the capacity Q as constraint (4.8).∑

j∈S
Xj,t ≤ Q ∀t ∈ T (4.8)

The total amount of a non-copper concentrate at the stockpiles j, with j ∈ N , should stay below a
certain upper bound at the end of the scheduling horizon to prevent accumulation as constraint (4.9).∑

j∈N
xj,c,t ≤ MD ∀c ∈ NC, t = T (4.9)

Mass Balances. Constraint (4.10) until constraint (4.12) ensure the right mass balances. Constraint
(4.10) models the mass balance at the copper concentrate stockpiles. When a shipment from maritime
vesselm containing copper concentrate c is unloaded at stockpile j in period t, denoted as gm,j,c,t, it is
assumed that it only can be used in period t+ 1 as a flow in the blending network. This is assumed to
consider time utilization of operational actions like unloading the copper concentrates. The inventory
at the start of the scheduling horizon xj,c,0 = 0 for all c ∈ CC and j ∈ S. Then, the start inventory of
copper concentrates is modeled as shipments gm,j,c,t that arrive in period t = 0.

xj,c,t = xj,c,t−1 +
∑

m∈M
gm,j,c,t−1 − f(j,P ),c,t ∀c ∈ CC, ∀j ∈ S, ∀t ∈ T (4.10)
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The mass balance for the inventory of the non-copper concentrates is defined in constraint (4.11). It is
assumed that the non-copper concentrates hj,c,t, which arrives daily at the site, can be used directly
in the blending process, so in period t. There is no start inventory of the non-copper concentrates, so
xj,c,0 = 0 for all c ∈ NC and j ∈ N .

xj,c,t = xj,c,t−1 + hj,c,t − f(j,B),c,t ∀c ∈ NC, ∀j ∈ N , ∀t ∈ T (4.11)

Constraint (4.12) models the flow-mass balance at the pre-blender indexed by P . The flow balance
implies that for each period at the pre-blender, the incoming flow rate is equal to the outgoing flow rate.∑

e∈E:
e=(j,P ),∀j∈S

fe,c,t = f(P,B),c,t ∀c ∈ CC, ∀t ∈ T (4.12)

Smelter. The smelter is working continuously. The flow rate into the smelter is denoted by the final
blend of the total flow rate of copper concentrates and non-copper concentrates in period t, as defined
in constraint (4.13). From the period, ET , it is ensured that the smelter works at full capacity. This is
formulated in constraint (4.14).∑

e∈E′

Fe,t = TFt ∀t ∈ T (4.13)

TFt = F̂ t ≥ ET (4.14)

Chemical Elements. Each copper concentrate has its own composition of elements. The mass fraction
of element k in concentrate c is indicated by θk,c. The total amount of individual element k which is
processed by the smelter in period t is denoted by Ek,t, as formulated in constraint (4.15).

Ek,t =
∑
c∈C

∑
e∈E′

θk,cfe,c,t ∀k ∈ K, ∀t ∈ T (4.15)

The concentrations of elements in the final flow should stay below an upper bound during the blending
for the right quality of the final produced copper. Additionally, these restrictions must be satisfied to
control the chemical reactions in the smelter. This is modeled in constraint (4.16). The parameter χk

indicates the upper bound on the mass fraction of element k in the final blend.

Ek,t ≤ χkF̂ ∀k ∈ K, ∀t ∈ T (4.16)

Interdependency. There are interdependency constraints for some specific elements. These con-
straints are crucial for controlling the chemical reactions in the smelter. The ratio of the individual
flows of element 2 and element 7 should stay between some specific boundaries. Also, the individual
flows of element 3, element 4, and element 6 have interdependency constraints with each other. These
are denoted with the use of interdependency parametersWk and Uk. The parameterWk indicates the
weighting coefficient for the element k. The parameter Uk denotes the upper bound of the weighted
proportion of an element k.

0.64E2,t ≥ E7,t ∀t ∈ T (4.17)
0.58E2,t ≤ E7,t ∀t ∈ T (4.18)

Uk

∑
k′∈K

(Wk′Ek′,t) ≥ WkEk,t ∀k ∈ K, ∀t ∈ T (4.19)

Non-negativity. The decision variables in this mathematical model are non-negative continuous vari-
ables. This is defined in constraint (4.20) until constraint (4.25).

fe,c,t ≥ 0 ∀e ∈ E , ∀c ∈ C, ∀t ∈ T (4.20)
Fe,t ≥ 0 ∀e ∈ E , ∀t ∈ T (4.21)
xj,c,t ≥ 0 ∀j ∈ S ∪ N , ∀c ∈ C, ∀t ∈ T (4.22)
Xj,t ≥ 0 ∀j ∈ S ∪ N , ∀t ∈ T (4.23)
Ek,t ≥ 0 ∀k ∈ K, ∀t ∈ T (4.24)
TFt ≥ 0 ∀t ∈ T (4.25)
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4.1.3. Extension: introducing infeasibility variable
If the flow rate in the smelter does not match its full capacity throughput F̂ for a period after ET , it
indicates that the smelter experienced downtime during that period. Because restarting the chemical
processes in the smelter takes several days, any downtime during the period is undesirable and renders
the entire schedule infeasible. Currently, this scenario is denoted as infeasible in the model. However,
it is unclear in which period the flow in the smelter dropped below the full capacity throughput. To
precisely identify when the full capacity flow in the smelter cannot be met, the smelter constraint (4.14)
from the original linear nominal model is extended. Constraint (4.14) is replaced by constraint (4.26).
In this constraint, the binary variable ut is introduced and is multiplied to the full capacity flow F̂ . When
ut is set to 1 it ensures a full capacity flow of the smelter in period t. Conversely, when ut is set to 0,
it indicates zero flow in the smelter during period t. This signifies that the original problem becomes
infeasible during period t, given that t ≥ ET .

Ft = utF̂ ∀t ≥ ET (4.26)

When ut is set to zero and the problems becomes thus infeasible, this should imply that the flow in the
smelter remains zero for sequential periods. This relationship is captured in constraint (4.27).

ut ≥ ut+1 ∀t ≥ ET (4.27)

4.1.4. Standard reformulation of the nominal model
To implement optimization under uncertainty methods effectively, we need to reformulate the nominal
linear model in the standard form for such optimization. In this form, the uncertain parameters should
only appear in the constraints and not in the objective. Transforming a mathematical formulation into
this standard formulation involves two steps: i) the reformulation of the objective when the objective
contains an uncertain parameter and additionally for robust optimization ii) eliminating of equality con-
straints which contain an uncertain parameter.

1) Reformulation of objective
In the nominal linear mathematical formulation for the SBCP as introduced in Section 4.1.2 there are
no uncertain parameters in the objective. Therefore we do not have to eliminate uncertainty in the
objective for the proposed mathematical formulation for the SBCP.

2) Eliminating equality constraints
For robust optimization, it is desired that the uncertain parameters only occur in inequality constraints
because when uncertain parameters appear in equality constraints, this results in ambiguity. When
for instance a constraint x = a + b (1) should hold, with the nominal uncertain parameter a, it should
also hold for the realization of a = a + ϵ. Here, parameter a denotes the nominal value of the actual
parameter a, and ϵ denotes the deviation of the parameter, resulting in the constraint x = a + ϵ + b
(2). Constraints (1) and (2) are contradicting. Therefore the equality constraints that contain uncertain
parameters should be omitted. An equality constraint can be reformulated by performing the following
three steps: i) rewrite the equality constraint into an expression of one variable into the other variables,
ii) substitute this expression in all the constraints where the variable appears, iii) omit the first equality
constraint. This process can be repeated until all equality constraints are eliminated.

For the SBCP model, the equality constraint (4.10) contains the uncertain parameter gm,j,c,t, and thus
has to be reformulated. The constraint defines the mass balance constraints for the copper concen-
trates and contains the variable, xj,c,t, which is defined as the inventory of a copper concentrate c at
stockpile j in period t. As a first step, we define the variable xj,c,t as an expression of the other variables.
This can be done by rewriting the expression recursively. It should be ensured that the inventory of the
copper concentrates is always non-negative and thus the new expression should be equal or larger
than zero. This results in constraint (4.28).

t∑
l=1

( ∑
m∈M

gm,j,c,l−1 − f(j,P ),c,l

)
≥ 0 ∀j ∈ S, ∀c ∈ CC, ∀t ∈ T (4.28)
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Subsequently, constraint (4.6) which defines the total inventory at a stockpile contains the variable
xj,c,t and is an equality constraint, so, it should be eliminated. The expression (4.28) is substituted
into constraint (4.6). Next, the total inventory at a stockpile Xj,t is substituted in constraint (4.8) that
describes the capacity limit on the total inventory of copper concentrates. This results in reformulated
constraint (4.29). Following, equality constraint (4.6) can be omitted, and thus all equality constraints
concerning the uncertain parameter gm,j,c,t are eliminated.

t∑
l=1

∑
j∈S

∑
c∈CC

( ∑
m∈M

gm,j,c,l−1 − f(j,P ),c,l

)
≤ Q ∀t ∈ T (4.29)

Additionally to the equality constraints which contain the uncertain parameter gm,j,c,t, equality con-
straints containing the uncertain parameter θk,c, the parameter that denotes the mass fraction of an
element, have to be eliminated. This applies to constraint (4.15) which defines the variable Ek,t as the
total amount of element k which is processed by the smelter in period t. We express Ek,t in the other
variables and ensure it to be non-negative, as formulated in constraint (4.30). Subsequently, equality
constraint (4.15) can be omitted.∑

c∈C

∑
e∈E′

θk,cfe,c,t ≥ 0 ∀k ∈ K, ∀t ∈ T (4.30)

Next, the expression for Ek,t is substituted into the constraints containing this variable. For the upper
bound on the elemental flow as described in constraint (4.16), this results in constraint (4.31).∑

c∈C

∑
e∈E′

θk,cfe,c,t ≤ χkF̂ ∀k ∈ K, ∀t ∈ T (4.31)

For the interdependency constraints for elemental flows as described in constraint (4.17) until constraint
(4.19), this results in reformulated constraint (4.32) until constraint (4.34).

0.64
∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≥
∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T (4.32)

0.58
∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≤
∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T (4.33)

Uk

∑
k′∈K

(Wk′

∑
c∈C

∑
e∈E′

θk′,c)fe,c,t ≥ Wk

∑
c∈C

∑
e∈E′

θk,cfe,c,t ∀k ∈ K, ∀t ∈ T (4.34)

So in conclusion, the nominal model for the SBCP, suitable for the implementation of optimization under
uncertainty methods, is formulated by objective (4.2), constraints (4.3) until (4.5), constraint (4.6) for
j ∈ N , constraint (4.9), constraints (4.11) until (4.14), constraints (4.20) until (4.25) and constraints
(4.28) until (4.34). In the nominal model the expected parameters are treated as the actual parameter.

4.2. Mathematical formulation of supply uncertainty
In the SBCP, supply uncertainty is a significant challenge. We define uncertainty as the variance be-
tween the expected and actual values of a parameter. Agreements with worldwide suppliers specify
expected values for i) the arrival time of a copper concentrate, ii) the mass of a copper concentrate,
and iii) the mass fraction of each element k ∈ K in a copper concentrate. However, in practice, it
is often observed that the actual values of these parameters differ from the expected values, leading
to what we term supply uncertainty. Drawing from historical data and expert opinions, probability dis-
tributions have been derived to mathematically describe these uncertainties. This section provides a
detailed mathematical description of the supply uncertainty.

4.2.1. Uncertainty in the mass
The parameter gm,j,c,t represents the mass of a copper concentrate. To the uncertainty in the mass of
a copper concentrate a normal distribution N (0, 3.32) has been fitted, with mean µ = 0 and standard
deviation σ = 3.3. Figure 4.3 illustrates the probability density function of this normal distribution,
showing the likelihood of the percentage deviation λ in the mass of a copper concentrate.
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The actual mass gm,j,c,t is calculated as
gm,j,c,t = gm,j,c,t(1 + λ), where gm,j,c,t

denotes the nominal value of the mass.
The normal distribution is symmetric and
bell-shaped curved. On average, there
is no deviation in the mass of a copper
concentrate; 99.7 percent of the proba-
bility falls between -9.9 and 9.9 percent
deviation which corresponds to lambda
equal to -0.099 and 0.099, respectively.
The distribution of uncertainty is consistent
across suppliers, and the masses of cop-
per concentrates are independent of each
other.
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N (0, 3.32)

Figure 4.3: Probability density function of N (0, 3.32). This
distribution describes the uncertainty in mass parameter gm,j,c,t.

4.2.2. Uncertainty in the mass fraction of elements
The mass fraction of an element in a copper concentrate is denoted with θk,c, where k ∈ K and the
set K consists of 8 elements. Probability distributions have been fitted for each element based on
historical data to describe the uncertainty. Although the best-fitted probability distributions for each
element vary, the differences between them are small. For simplicity, the elements have been divided
into two categories, each assumed to follow a single probability distribution.

-0.001 -0.0005 0.0 0.0005 0.001

5

10

15

normalized perturbation factor λ

f
(λ
)

Ca(0, 0.0175)

(a) Probability density function of Cauchy(0, 0.0175). Describes the
distribution of the mass fraction uncertainty for elements 2 and 7.
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(b) Probability density function of Cauchy(0, 0.1). Describes the
distribution of the mass fraction uncertainty for k ∈ K \ {2, 7}.

The uncertainty in the mass fraction of element 2 and element 7 is described with a Cauchy distribution
Ca(0, 0.0175). Figure 4.4a illustrates the probability density function of this Cauchy distribution. The lo-
cation parameter is x0 = 0, denoting that the median of the distribution is zero and the scale parameter
is γ = 0.0175. The distribution shows the likelihood of the percentage deviation of the mass fraction
for element 2 and element 7. The actual parameter θk,c is calculated as follows: θk,c = θk,c(1 + λ),
where θk,c denotes the nominal value of the mass fraction of the element. The Cauchy distribution
has a heavy tail, meaning that extreme values are possible with non-negligible probability. However, a
peak in probability is observed in Figure 4.4a between -0.1 percent and +0.1 percent deviation in mass
fraction, indicating relatively small deviations. This corresponds to lambda equal to -0.001 and 0.001.

The uncertainty in the mass fraction of the other elements is described with a Cauchy distribution
Ca(0, 0.01). Figure 4.4b illustrates the probability density function of this Cauchy distribution. The
location parameter is again x0 = 0 and the scale parameter is γ = 0.01. As before, the distribution
shows the likelihood of the percentage deviation of the mass fraction, now for the remaining elements.
Compared to the previous group, the uncertainty in this parameter is larger, with a peak in probability
between -1 percent and +1 percent deviation in the mass fraction of the element as observed in Figure
4.4b. The observed uncertainty range corresponds to lambda from -0.01 to 0.01.
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4.2.3. Uncertainty in the arrival time
The parameter gm,j,c,t′ reflects the uncertain arrival time, representing the nominal mass of a copper
concentrate indexed by the nominal arrival period t′. The arrival period is a discrete parameter ex-
pressed in days. The actual arrival period t is calculated by adding the realization of the uncertain
delay d of a copper concentrate to the expected t′ as formulated in equation (4.35). The realization of
the delay d lays in the set with a finite number of delays D and is obtained as a randomly generated
variable from the corresponding probability distribution. The associated probability of a realization of
the uncertain delay is denoted as pd and is calculated using the probability distribution that describes
the uncertain delay, as described later in more detail.

t = t′ + d, with probability pd, ∀d ∈ D (4.35)

Ultimately, the relation between the nominal mass of a copper concentrate that arrives at period t′,
gm,j,c,t′ and the mass that arrives actually at period t, denoted as gm,j,c,t can be described as shown
in equation (4.36). Where the delay d is defined as d = t− t′.

gm,j,c,t′ =

{
0, with probability 1− pd

gm,j,c,t with probability pd
(4.36)

The distribution of the uncertain delay of a copper concentrate is dependent on the location of the
supplier and the location of the refinery. Generally, shipments with longer lead times tend to experience
greater delays. For the studied refinery the shipments with the largest lead time originated fromAmerica
and had to go through the Panama Canal to reach the refinery in Europe as illustrated in Figure 4.5a.
We assume that the distribution corresponding to these shipments describes the uncertain delay of all
shipments independent of their origin. This assumption is made to simplify and generalize the study.

(a) Suppliers which ship their copper concentrates through the
Panama Canal
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(b) Probability density function of shifted Gamma(5, 3.3)

Although the delay of a copper concentrate is a discrete parameter in days, only a fitting of continuous
distributions to the historical data was available. The delay uncertainty is represented by a continuous
Gamma distribution Gamma(5, 3.3), with shape parameter k = 5 and scale parameter θ = 3.3, as
illustrated in Figure 4.5b. To make the representation of the uncertainty fit the discrete nature of the
uncertainty, we sample from the continuous distribution and round it to the nearest whole number. This
rounded value represents the uncertain delay. Interestingly, Figure 4.5b illustrates a shift of the gamma
distribution to the left of seven days (denoted as y = 7), indicating the possibility of a copper concen-
trate being delivered earlier than expected. This results in a lower mean of the gamma distribution. The
mean of the gamma distribution is calculated as µ = kθ−y = 16.5−7 = 9.5 days delay, and represents
the expected delay of a copper concentrate. To match the discrete nature of the uncertainty, in this
report the mean value is rounded to whole numbers and represents the expected delay of a copper
concentrate. Additionally, experts have stipulated strict bounds on the range of possible delays for a
shipment. According to experts the arrival time can range from a minimum dmin of one week early
to a maximum dmax of 42 days late. To enforce these bounds, in addition to rounding the sampled
values from the probability distribution, we accumulate the probability from the continuous gamma dis-
tribution that a shipment is 41.5 days late or more and assign it all to a delay of 42 days. Since the
gamma distribution has no tail on the left side, the probability of a shipment arriving earlier than seven
days ahead of schedule is already zero. With the introduction of the bounds, the set D is created which
denotes the finite number of possible delays and ultimately describes the uncertainty in the arrival time.
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The distribution described above is derived from data corresponding to a scheduling horizon of 90 days.
However, we also need to analyze smaller instances of the SBCP. To accommodate shorter scheduling
horizons without infeasibility issues due to shipments arriving frequently outside the scheduling horizon,
we scale the delay distribution accordingly. For the instance with a scheduling horizon of 90 days, the
shipments delay ranges from 7 days early to 42 days late, spanning thus 49 days. The finite set of
possible delays can thus be expressed as a fraction of the scheduling horizon by |D| = 49

90T , where the
set D ranges from dmin to dmax. (We assume that the distribution of the delay of a copper concentrate
for an SBCP instance is represented by the above expression.) For SBCP instances with a scheduling
horizon smaller than 90 days, for simplicity, we set the minimum delay to dmin = y = 0. Next, dmax

is than calculated by 49
90T . Ultimately, the uncertain delay of a copper concentrate is represented by

sampling values from the continuous gamma distribution Gamma(5, θ) and rounding them to whole
numbers, where θ is dependent on the scheduling horizon T . We select the shape parameter θ such
that the distribution corresponds with the scaled range of possible delays D, ranging from dmin to dmax.
The bounds dmin and dmax, where dmin = 0 for instances where a scheduling horizon is smaller than
90 days and dmin = −7 for larger instances, and dmax = 49

90T − dmin.

The probability of a realization of a delay d is thus calculated with the use of above described adapted
gamma distribution. Let x be the random variable following above described continuous gamma distri-
bution Gamma(5, θ). Then, considering that the sampled values for the delay are rounded, the proba-
bility of a realization of the uncertain delay is calculated as formulated in equation (4.37). In addition,
to calculate the probability for the strict bounds of the delay interval the remaining left tail probability
is added to the minimum delay dmin probability and the remaining right tail probability is added to the
maximum delay dmax probability, as presented in equation (4.38) and (4.39), respectively.

pd = P(d− 0.5 < x ≤ d+ 0.5) = P(x ≤ d+ 0.5)− P(x ≤ d− 0.5), d ∈ D (4.37)

pdmin
= P(x ≤ dmin + 0.5) (4.38)

pdmax = 1− P(x ≤ dmax − 0.5) (4.39)

4.3. Robust optimization for mass uncertainty
As formulated in the research questions in Section 1.3 it is intended to find a suitable optimization
under uncertainty method to model each type of supply uncertainty. For the uncertainty in the mass of a
copper concentrate, we chose robust optimization with the use of a one-stage formulation as described
in Section 3.2.4. This section describes how to implement the robust approach to the corresponding
uncertain parameter gm,j,c,t, which denotes the actual mass of a copper concentrate c that is unloaded
at stockpile j in period t.

4.3.1. Building box uncertainty set
As motivated in Section 3.2.4, this study prefers to model the mass fraction uncertainty with the use of
a budgeted uncertainty set. For each period t, a budgeted uncertainty set Gt is created, indicating that
not all copper concentrates arriving in period t can take their worst-case value simultaneously. The
budgeted uncertainty set Gt involves summations over all the maritime vessels m ∈ M, the stockpiles
j ∈ S, and the copper concentrates c ∈ C. However, constraints containing the mass parameter gm,j,c,t

do not include summations over copper concentrates and stockpiles. Given that a copper concentrate
is never transported on more than one vessel in the studied instances, the summation over maritime
vessels becomes also redundant, resulting in the budgeted uncertainty set Gt being redundant as well.
That is, the budgeted set effectively reduces to a box uncertainty set. That is why, to describe the
uncertainty in the mass of a copper concentrate more simply, a box uncertainty set is implemented for
each copper concentrate in this study. The box uncertainty set Gm,j,c,t is formulated in equation (4.40).

Gm,j,c,t =

{
gm,j,c,t ∈ Rmxjxcxt :gm,j,c,t(1− δpm,j,c,t) ≤ gm,j,c,t ≤ gm,j,c,t(1 + δpm,j,c,t),

0 ≤ pm,j,c,t ≤ 1

}
(4.40)
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Here, gm,j,c,t denotes the nominal value of the mass of copper concentrate c which is unloaded from
maritime vessel m at stockpile j in period t. The parameter δ denotes the maximal perturbation of
the nominal parameter and pm,j,c,t normalizes this perturbation. The resulting normalized perturba-
tion factor is denoted as λ = δpm,j,c,t and denotes the maximum perturbation of the nominal parameter
expressed as a percentage. The actual value of the mass of copper concentrate c is denoted as gm,j,c,t.

The choice of the normalized perturbation factor λ significantly impacts the performance of the box
uncertainty set. We select a normalized perturbation factor of λ = 0.1 because it corresponds to the
3-standard deviation interval of the underlying normal distribution, as defined in Section 4.2.1. This
ensures that 97.7 percent of the perturbations fall within the uncertainty set.

4.3.2. Derivation robust counterparts
To implement robust optimization for the mass uncertainty, the robust counterpart has to be derived for
each constraint including the uncertain parameter gm,j,c,t. A box uncertainty set Gm,j,c,t is designed
for this parameter. This section explains how to derive the robust counterpart for a box uncertainty
set. The constraints that contain the uncertain parameter gm,j,c,t are the positive copper concentrate
inventory constraint (4.28) and the capacity inventory constraint (4.29). First the robust counterpart of
constraint (4.28) is derived and afterward the robust counterpart for constraint (4.29) is derived.

Open Form Constraint. The robust version of the positive inventory constraint (4.28) of the copper
concentrates should hold for all values of gm,j,c,t ∈ Gm,j,c,t. Equation (4.41) shows the robust constraint.

t∑
l=1

( ∑
m∈M

gm,j,c,l−1 − f(j,P ),c,l

)
≥ 0 ∀j ∈ S, ∀c ∈ CC, ∀t ∈ T , ∀gm,j,c,t ∈ Gm,j,c,t (4.41)

Because the polyhedron Gm,j,c,t includes infinitely many points, the above formulation equates to an
infinite set of constraints. This represents the open form of a constraint. Achieving a closed-form solu-
tion is preferable for problem-solving. By reformulating the robust constraint into a deterministic robust
counterpart, which is called the robust counterpart, we can express the constraint as a finite set of
linear constraints. Often duality theorem is needed to reformulate the constraints, however, the box
uncertainty set enables us to derive the robust counterparts quite straightforwardly.

Worst-Case Constraint. To begin deriving the closed-form deterministic constraint, we formulate worst-
case constraint (4.42). Because the uncertainty set is a box, the upper or lower bound from the box
uncertainty set can directly be substituted as the worst-case value in the constraints. For constraint
(4.41), the lower bound of the box uncertainty set restricts most of the inequality. By substituting the
worst-case, the robust counterpart as shown in equation (4.43) is directly obtained.

t∑
l=1

min
g∈G

( ∑
m∈M

gm,j,c,l−1

)
≥

t∑
l=1

f(j,P ),c,l ∀j ∈ S, ∀c ∈ CC, ∀t ∈ T (4.42)

≡
t∑

l=1

∑
m∈M

(gm,j,c,l−1 − δpm,j,c,t) ≥
t∑

l=1

f(j,P ),c,l ∀j ∈ S, ∀c ∈ CC, ∀t ∈ T (4.43)

The above steps are also applied to the copper concentrate capacity constraint (4.29). For this con-
straint, the upper bound from the box uncertainty set restricts the inequality the most. So, this bound
can substituted in the worst-case constraint, and immediately the closed-form deterministic, called ro-
bust counterpart, is derived. Equation (4.44) presents the resulting robust counterpart.

t∑
l=1

∑
j∈S

∑
c∈CC

( ∑
m∈M

(gm,j,c,l−1 + δpm,j,c,t)− f(j,P ),c,l

)
≤ Q ∀t ∈ T (4.44)

4.4. Robust optimization for mass fraction uncertainty
As formulated in the research questions in Section 1.3 it is intended to find a suitable optimization under
uncertainty method to model each type of supply uncertainty. For the uncertainty in the mass fraction
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of the elements in a copper concentrate, we chose robust optimization as described in Section 3.2.4
with the use of a one-stage formulation. This section describes the implementation of robust approach
to the uncertain parameter θk,c, which denotes the mass fraction of element k in concentrate c.

4.4.1. Building budgeted uncertainty set
As motivated in Section 3.2.4 in this study it is chosen to model the mass fraction uncertainty with the
use of a budgeted uncertainty set. For the uncertain parameter, θk,c, the budgeted uncertainty set is
formulated as follows.

Θk =

{
θk,c ∈ Rkxc : θk,c(1− δpk,c) ≤ θk,c ≤ θk,c(1 + δpk,c), 0 ≤ pk,c ≤ 1, 0 ≤

∑
c∈C

pk,c ≤ Γ

}
(4.45)

Here, θk,c represents the nominal mass fraction of element k in copper concentrate c. The parameter δ
denotes the maximal perturbation of this parameter, while pk,c normalizes the perturbation factor. The
parameter λ = δpk,c represents the resulting normalized perturbation factor. The actual mass fraction
of element k in copper concentrate c is denoted by θk,c. The budget parameter Γ denotes the total
budget on the normalized perturbations of θk,c. This means that only an amount of Γ expected copper
concentrates can take their worst-case value for an element k simultaneously.

Choosing the parameters δ and Γ significantly influences the performance of the uncertainty set. For
the budgeted uncertainty Θk, we select a normalized perturbation factor λ = 0.001 for elements 2 and
7, and λ = 0.01 for the other elements. These numbers have been chosen based on the observed peak
in the probability distributions of the uncertainty as described in Section 4.2.2. This approach ensures
that the majority of the possible perturbations are included in the uncertainty set, but the volume is not
too large. To analyze the influence of the budget parameter Γ, we perform experiments with a budget
parameter varying from one to the maximum number of expected copper concentrates CC.

4.4.2. Derivation of robust counterpart
To implement robust optimization for the mass fraction uncertainty, the robust counterpart has to be
derived for each constraint including the uncertain parameter θk,c. The designed budgeted uncertainty
set Θk is used for this. This section shows how to derive a robust counterpart for a constraint with
holds for a budgeted uncertainty set using the duality theorem. The derivation of the robust counter-
part for upper bound constraint (4.31) on the elemental final flow is used as an illustration. Appendix
A presents the derivations of the robust counterparts for the other constraints containing parameter θk,c.

Open Form Constraint. The robust version of the upper bound constraint (4.31) on the elemental flow
should hold for all values of θk,c ∈ Θk. The robust constraint is shown in equation (4.46).∑

c∈C

∑
e∈E′

θk,cfe,c,t ≤ χkF̂ ∀k ∈ K, ∀t ∈ T , ∀θk,c ∈ Θk (4.46)

Because the polyhedronΘk includes infinitely many points, the above formulation equates to an infinite
set of constraints. This represents the open form of a constraint. Achieving a closed-form solution is
preferable for problem-solving. By reformulating the robust constraint into a deterministic robust coun-
terpart using the duality theorem, we can express the constraint as a finite set of linear constraints.
Introducing additional dual variables is necessary for this reformulation. This does not form a problem
for smaller problems, it may lead to longer computational times for larger problems.

Worst-Case Constraint. To begin deriving the robust counterpart, the first step involves formulating the
worst-case constraint. The problem’s objective is to maximize the gross margin of the process, which
is a linear function of the variables fe,c,t. Consequently, the worst case occurs when the variables in
the objective function are most constrained by the uncertain parameters, resulting in a lower objective
value. The worst-case of constraint (4.46) can be found by maximizing the terms on the left side of the
inequality. The corresponding worst case constraint is presented in constraint (4.47).

max
θ∈Θk

(
∑
c∈C

∑
e∈E′

θk,cfe,c,t) ≤ χkF̂ ∀k ∈ K, ∀t ∈ T (4.47)
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To make the derivation more tractable, we reformulate the worst-case constraint (4.47) and build an
auxiliary optimization problem (4.48). First, we focus on the left maximization term of θ ∈ Θk of the
worst-case constraint. This term is equivalent to the maximization of the term where the uncertain θk,c
is substituted with the upper bound of the uncertainty set. Because the variables fe,c,t are non-negative
and the upper bounds of the uncertainty set would always be feasible, this upper bound should hold
tightly in the maximum. The resulting reformulation for every individual inequality (k ∈ K, t ∈ T ) is then
given by problem (4.48).

max
θ∈Θk

(∑
c∈C

∑
e∈E′

θk,cfe,c,t

)

≡ max
θ∈Θk

(∑
c∈C

∑
e∈E′

θk,cfe,c,t(1 + δpk,c)

)
Auxiliary Optimization Problem.

⇐⇒ max
p

(∑
c∈C

∑
e∈E′

θk,cfe,c,tpk,c

)
(4.48)

s.t. 0 ≤ pk,c ≤ 1 ∀c ∈ C∑
c∈C

pk,c ≤ Γ

Dual optimization problem. By duality theory for Linear Program (LP) problems, it is known that if the
primal problem is feasible and bounded, strong duality holds. Given that optimization problem (4.48)
is feasible and bounded, it implies that the corresponding dual problem is also feasible and bounded.
Consequently, the optimal values of the two optimization problems coincide. Thus, we can formulate the
dual auxiliary optimization problem. This formulation begins with constructing the Lagrangian relaxation
of the problem, as shown in equation (4.49). Maximizing this function is illustrated in equation (4.50).
We introduce the dual variables sk,c and qk for the first and second constraint of the optimization problem
(4.48), respectively. From these equations the dual problem results.

L(sk,c, qk, θk,c) =
∑
c∈C

∑
e∈E′

θk,cfe,c,tpk,c +
∑
c∈C

sk,c(1− pk,c) + qk

(
Γ−

∑
c∈C

pk,c

)
(4.49)

g(sk,c, qk) = max
pk,c≥0

L(sk,c, qk, θk,c)

=
∑
c∈C

sk,c + qkΓ + max
pk,c≥0

∑
c∈C

∑
e∈E′

θk,cfe,c,tpk,c + pk,c

(∑
c∈C

(−sk,c − qk)

)
(4.50)

Problem (4.51) presents the dual auxiliary optimization problem for each inequality (k ∈ K, t ∈ T ).

min
qk,sk,c

Γqk +
∑
c∈C

sk,c (4.51)

s.t. sk,c + qk ≥
∑
e∈E′

θk,cfe,c,t ∀c ∈ C

sk,c ≥ 0 ∀c ∈ C
qk ≥ 0

By strong duality optimization problem (4.48) is equivalent to optimization problem (4.51), and the
optimal solution of the dual is attained. So, we can substitute the optimal solution of the primal problem
with the optimal solution of the dual problem in the worst-case constraint resulting in equation (4.52).∑

c∈C

∑
e∈E′

θk,cfe,c,t + δ min
qk,sk,c

(Γqk +
∑
c∈C

sk,c) ≤ χkF̂ ∀k ∈ K, ∀t ∈ T (4.52)

Robust Counterpart. Because the primal problem and dual problem are equivalent, constraint (4.52)
will hold for some value of the dual variable. Therefore, it will definitely hold for the optimal value and
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thus the minimum sign can be dropped. This results in the closed form deterministic version of the
constraint, which is denoted as the final robust constraint, as shown in problem (4.53).∑

c∈C

∑
e∈E′

θk,cfe,c,t + δ(Γqk +
∑
c∈C

sk,c) ≤ χkF̂ ∀k ∈ K, ∀t ∈ T (4.53)

s.t. sk,c + qk ≥
∑
e∈E′

θk,cfe,c,t ∀c ∈ C, ∀k ∈ K

sk,c ≥ 0 ∀c ∈ C, ∀k ∈ K
qk ≥ 0 ∀k ∈ K

The derivations of the robust counterparts for the other constraints containing uncertain parameter θk,c
are presented in Appendix A. These derivations follow the same steps as the derivation described
above.

4.5. Stochastic optimization for the uncertainty in arrival time
As formulated in the research questions in Section 1.3 it is intended to find a suitable optimization
under uncertainty method to model each type of supply uncertainty. For the uncertainty in the arrival
time of a copper concentrate, as described in Section 3.2.3, we chose stochastic optimization with the
representation of the discrete uncertainty with a finite set of scenarios. Both a one-stage and multistage
formulation are implemented as motivated in Section 3.2.3. This section describes how to implement
this approach to the corresponding uncertain parameter gm,j,c,t′ , denoting the nominal mass of a copper
concentrate c transported on maritime vessel m unloaded at stockpile j in nominal period t′.

4.5.1. Scenario-based stochastic optimization
In this study, we model the uncertainty in the arrival time of
a copper concentrate as a finite set of realizations. As dis-
cussed in Section 4.2.3, each copper concentrate is subject
to a finite number of potential delays denoted as the set D,
ranging from the minimum delay dmin to the maximum delay
dmax. Then the actual arrival time of a copper concentrate
is determined by the realization of the delay added to the ex-
pected arrival time. For the SBCP we define a scenario as
a schedule detailing the actual arrival times of the expected
copper concentrates within a scheduling horizon. The total
set of possible scenarios is denoted as Z. The total number
of scenarios, denoted as |Z|, are then all possible combina-
tions of the realizations of the delays for the expected copper
concentrates. The number of possible scenarios can be calcu-
lated as the number of possible delays |D| raised to the power
of the number of expected copper concentrates CC, yielding
|Z| = |D|CC . Ideally, we want to include all possible scenar-
ios in the formulations of the stochastic models. However, for
the SBCP it is computationally hard to solve these models be-
cause the number of constraints becomes quickly too large.
Therefore, we implement a reduced set of scenarios Z. For
the one-stage stochastic model, we both explore a sampling
approach and a selecting approach to define the reduced set
of scenariosZ. For the stochastic multistagemodel the select-
ing approach is used to define the reduced set of scenarios Z.

Figure 4.6: Schematic example of a
scenario tree with three arriving copper
concentrates whose corresponding

expected arrival times are t = 4, t = 6, and t =
9. Either the copper concentrate is actually
on time or has the maximum possible delay.

The set of scenarios can be effectively represented using a scenario tree, which captures the possible
outcomes of uncertain parameters over time in a structured manner. Figure 4.6 illustrates an example
of such a scenario tree for the SBCP problem considering arrival time uncertainty. In this example, we
anticipate the arrival of three copper concentrates whose expected arrival times are 4, 6, and 9. In the
example, it is assumed that the copper concentrate is either on time (d1 = 0) or is maximum delayed
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(d2 = dmax), respectively. The scenario tree branches accordingly with each new expected copper
concentrate, capturing the potential delay realizations. Consequently, each path from the initial node
to a terminal node of the scenario tree represents a unique scenario. Thus, the number of terminal
nodes equals the number of scenarios. In this example, the reduced set of scenarios Z consists of
|Z| = |D′|CC = 23 = 8 scenarios. In the formulations, we assume non-anticipativity constraints but do
not model them explicitly for brevity. These constraints ensure that decisions are only dependent on
information from the past and are not dependent on information from the future. In addition, they ensure
that when in different scenarios z the same uncertainties have realized before period t, the decision
variables fz

e,c,t of period t are the same.

In the stochastic approach, the expected objective is maximized. As presented in equation (4.2) the
objective of the SBCP maximizes the profit of processing concentrates. Because the arrival times
of each copper concentrate are independent of each other, the probability of a scenario pz can be
calculated by multiplying the probabilities of the individual delays pd of the copper concentrates as
introduced in Section 4.2.3. The objective of a scenario qz is denoted by the profit which is generated
from the flow variables that correspond with this scenario. For a one-stage model, one set of decision
variables is used for all scenarios, so for each scenario, the optimal solution is the same, and since the
objective does not contain uncertain parameters, the same optimal expected objective is obtained. For
a multistage model, there are different variables defined for each stage, so the optimal solution and thus
optimal objective varies for each scenario. The total expected objective is calculated by summing over
all possible scenarios the probability of a scenario multiplied by the objective of that scenario, which
is denoted as the function Oz(f). The total expected objective is linear and is presented in equation
(4.55).

max E

[∑
t∈T

∑
e∈E′

∑
c∈C

αcfe,c,t

]
≡ max

|Z|∑
z=1

pz
∑
t∈T

∑
e∈E′

∑
c∈C

αcf
z
e,c,t (4.54)

≡ max
|Z|∑
z=1

pzO
z(f) (4.55)

4.5.2. One-stage stochastic model
We implement a one-stage model with a reduced set of scenarios Z ⊂ Z to reduce the computation
time as motivated in Section 3.2.3. We implement two ways of reducing the scenario set; including
only scenarios based on some selection rule and by sampling a set from the probability distribution of
the arrival times uncertainty.

First, we define the reduced set Zworst by reducing the number of possible delays. Namely, only the
delays {d1, d2} = {0, dmax} are included. With these possible delays all the corresponding scenarios
for the arrival times of the copper concentrates are constructed. This set is considered because the
number of scenarios is strongly reduced, but still, the worst-case delay is considered, matching the
priority of feasibility of the refinery. The second set of reduced scenarios Zmean is defined by including
the possible delays {d1, d2} = {0, dmean}, where we consider no delay and the mean delay. In this
way, the number of scenarios is reduced, but still, the average delay is considered. The probability of
each scenario is calculated by multiplying the probabilities of the individual delays of the copper con-
centrates. The probability of the two assumed delays is calculated by dividing the probability space in
two. In the first case, when {d1, d2} = {0, dmax}, the probability volume left of the mean of the defined
probability distribution of the uncertainty as described in Section 4.2.3 is assumed for d1 and is denoted
as p1 = 0.56. For the possibility that the copper concentrate has a maximum delay, the probability vol-
ume of the right of the mean of this probability distribution is assumed, which is p2 = 0.44, since those
delays are assumed to be independent. The same probabilities for the delays are assumed for the set
of possible delays {d1, d2} = {0, dmean}.

Then, a sampling approach is used to define the third set of reduced scenarios Zsampled. A sample of
N is randomly generated by drawing a delay for a copper concentrate from the probability distribution
of the uncertainty as defined in Section 4.2.3. The drawn values are rounded to obtain a discrete delay
in days. When the number of samples is large enough, the sample will give a good representation of
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the possible scenarios, while the corresponding model will be less computationally hard to solve. The
probability corresponding to the randomly drawn delay of each copper concentrate is used to calculate
the probability of a scenario. Again, the probability of each scenario is calculated by multiplying the
probabilities of the individual delays of the copper concentrates. To implement the one-stage stochastic
model with the reduced set of scenarios Z the constraints containing the uncertain arrival time should
hold for all the scenarios z ∈ Z. The positive copper concentrate inventory constraint (4.28) and the
capacity constraint (4.29) both contain the uncertain parameter gm,j,c,t′ . In equation (4.56) the resulting
constraints for the one-stage models are shown. These are thus three different models of which the
performance can be compared, each for the defined sets Zworst, Zmean and Zsampled.

t∑
l=1

(
∑

m∈M
gzm,j,c,l−1 − f(j,P ),c,l) ≥ 0 ∀j ∈ S, ∀c ∈ CC, ∀t ∈ T , ∀z ∈ Z,

Z =
(
Zworst ∨ Zmean ∨ Zsampled

)
(4.56)

t∑
l=1

∑
j∈S

∑
c∈CC

(
∑

m∈M
gzm,j,c,l−1 − f(j,P ),c,l) ≤ Q ∀t ∈ T , ∀z ∈ Z,

Z =
(
Zworst ∨ Zmean ∨ Zsampled

)
(4.57)

4.5.3. Multistage stochastic model
To add flexibility to the stochastic model, we apply the multistage
approach next to the one-stage approach. In a multistage model,
at some nodes in the scenario tree, new sets of decision variables
are introduced. Through this, different decisions can be made,
based on what has happened in the past resulting in a more
flexible model. The tree which shows at which nodes new decision
variables are introduced is called the decision tree. Two examples
of a decision tree for a multistage model, corresponding to the
scenario tree as shown in Figure 4.6 are presented. Figure 4.7
shows at the top a decision tree where at every new period,
there is the possibility to make new decisions using the observed
uncertainty realizations. Therefore at every node, a new set of
decision variables is introduced. This results in a very flexible
model. Due to the newly introduced set of decision variables, the
decisions can differ depending on the realization of the uncertainty
in earlier periods. However, it has to be made certain that the
solution is feasible for the actual parameters from the correspond-
ing scenario. In Figure 4.7 at the bottom the decision tree for
the formulated multistage model for the SBCP is shown. At the
refinery, it is common to re-optimize the schedule every seven
days. In alignment a new stage is defined every seven days and
thus after seven days new sets of decision variables are created.
The scenario tree branches after the seven days according to
the number of possible scenarios in the last time frame. When
for example three copper concentrates were expected to arrive
in the last seven days, denoted as CC7 and two possible delays
are considered in the set D, the tree branches |D|CC7 = 23 = 8
times. For the multistage model, we reduce the set of scenarios to
stay within reasonable computational time limits. We implement
the multistage models with the defined reduced set of scenarios
Zworst and Zmean as introduced above, with {d1, d2} = {0, dmax}
and {d1, d2} = {0, dmean}, respectively. The corresponding
probabilities are defined by dividing the probability space under
the gamma distribution by the mean, resulting in p1 = 0.56 and
p2 = 0.44 as described in Section 4.5.2.

Figure 4.7: Decision trees
corresponding to scenario tree
from Figure 4.6 with (top) every

period a new stage and
(bottom) a new stage every

seven periods.



5
Data

This chapter describes the data instances that are used to study the optimization models for the SBCP.
First, Section 5.1 describes how these data instances are obtained and then Section 5.2 presents the
characteristics of these SBCP instances.

5.1. Data generation
Although the thesis is done in cooperation with an actual refinery, as a benchmark for the models’
performance the company preferred to use the artificial instances fromSong et al., 2018. These artificial
instances are used because the real data would be too time-consuming to clean and anonymize. Also,
the interdependency parameters are clearly specified in this paper. Five data instances have been
created. Data instance A aligns with the motivational example of the paper, while instance B mirrors
the industrial example outlined in the paper. The only deviation lies in the scheduling horizon and
smelter capacity used in data instance A, which have been adjusted to suit the characteristics of the
studied refinery. The paper originally employed a scheduling horizon of 13 days and a smelter capacity
of 1500 ton/day, whereas our research adopts a 10-day horizon and a 3000 ton/day smelter capacity.
Data instances C through E are generated randomly, with the distribution based on parameters from the
paper. These parameters represent the nominal values. The mass fraction of an element in a copper
concentrate is randomly generated from the uniform distribution Uk(a, b), where a and b denote the
minimum and maximum bounds of this distribution, respectively. These bounds are determined by the
minimum and maximum observed mass fractions of elements in the data samples from the paper Song
et al., 2018. Through trial and error, adjustments were made to ensure feasibility. Table 5.1 shows the
final bounds.

Table 5.1: Bounds of uniform distribution to generate randomly the mass fraction of an element in a copper concentrate during
data generation for instance C until instance E.

Parameter 1 2 3 4 5 6 7 8
Upper bound b 0.7 0.4 0.002 0.0006 0.000184 0.0015 0.3 0.5680
Lower bound a 0.00219 0.005 0.0000706 0.000000075 0.0 0.0000135 0.0 0.1997

We randomly generate the mass of the copper concentrate from the uniform distribution U(100, 16000),
representing a range between 100 and 16000 tons. Similarly, the mass of the non-copper concentrate
arriving daily is randomly generated from the uniform distribution U(30, 40). The profit for the copper
concentrate is also randomly generated from the uniform distribution U(0, 1500), while the profit for all
non-copper concentrates is assumed to be zero. We ensure that within the set of non-copper con-
centrates, there is always a concentrate present consisting solely of element 7, namely sand, as it is
indispensable for blending. For the generated instances, we assume that approximately five copper
concentrates are expected to arrive every fifteen days. We randomly generate the arrival period of
each copper concentrate following a uniform distribution. However, to guarantee the arrival of copper
concentrates over the entire scheduling horizon, we divide the scheduling horizon and the set of copper
concentrates into three parts. Each third of the expected copper concentrates is uniformly distributed
over one-third of the scheduling horizon.
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5.2. SBCP instances
We utilized five data instances to analyze the optimization models. Table 5.2 presents the data charac-
teristics for each instance. The scheduling horizon is measured in days, with each day denoted as a
single period. The parameter ET signifies the earliest period when the total flow rate into the smelter
matches the full capacity rate of the smelter. Furthermore, the table indicates the number of elements
subject to mass fraction constraints in the final blend, the number of copper concentrates that is the
initial start inventory, the number of expected copper concentrates denoted as CC, and the number
of daily arriving non-copper concentrates. In addition, Table 5.3 presents the characteristics of the
blending system, which remain consistent across all instances.

Table 5.2: Data characteristics SBCP instances.
The table presents the earliest time of full capacity

flow rate ET, the number of elements K, the
number of start-inventory I, the number of

expected copper concentrates and the number of
on-copper concentrates that arrive daily NC.

ET T K I CC NC

Instance A 2 10 4 3 2 1
Instance B 5 15 8 6 4 4
Instance C 5 15 8 5 5 4
Instance D 5 30 8 5 10 4
Instance E 5 90 8 10 35 4

Table 5.3: Characteristics blending system.

System parameters
Upper bound total flow rate Fe,t 3000 ton/day
Lower bound total flow rate Fe,t 0 ton/day
Copper concentrates capacity stockpiles Q unlimited
Non-copper concentrates capacity MD unlimited

Table 5.4: Characteristics for the distribution of the uncertainty in
arrival time of the copper concentrates for each instance which is

dependent on the size of the scheduling horizon T .

Scale parameter θ dmin (days) dmax (days) dmean (days)

Instance A 0.4125 0 5 2
Instance B 0.55 0 8 3
Instance C 0.55 0 8 3
Instance D 1.1 0 16 6
Instance E 3.3 -7 42 10

Table 5.5 and Table 5.6 present the parameters concerning constraints on the mass fraction of an
element in the final blend. These tables present the upper bounds on the mass fraction of an element
in the final blend for instances A through E. Additionally, they provide the interdependency parameters
Uk and Wk for instances B through E. In instance A, we omitted the interdependency constraints to
expand the solution space.

Table 5.5: Elemental flow parameters for each element k = 1, . . . , 4 in instance A.

Parameter 1 2 3 4

Upper bound mass fraction of element in final blend χk 0.4 0.285 0.31 1

Table 5.6: Elemental flow parameters for each element k = 1, . . . , 8 in instance B till instance E.

Parameter 1 2 3 4 5 6 7 8

Upper bound mass fraction of element in final blend χk 1 0.285 0.0011 0.00005 1 0.001 1 1
Upper bound interdependency parameter Uk 1 1 0.001 0.0001 1 0.0033 1 1
Weight interdependency parameter Wk 0.8680 0 0.1888 0.9078 0 0.4319 0 0.00016

As described in Section 4.2.3, the distribution of the arrival time uncertainty is dependent on the size of
the scheduling horizon. The probability distribution that describes the uncertainty is a gamma distribu-
tion with shape parameter k = 5, and scale parameter θ, which is dependent on the time horizon. The
scale parameter θ is chosen such that the tail corresponds with the upper bound dmax =

49
90T − y. The

realizations of the uncertain arrival time drawn from the gamma distribution are rounded to correspond
to the discrete nature of the uncertain parameter. Additionally, a minimum delay dmin = 0 is applied
for instances with a scheduling horizon smaller than 90 days and dmin = −7 for larger instances. The
mean values for the delay dmean of the probability distribution are rounded. Table 5.4 displays the
resulting characteristics of the uncertainty in arrival time for the studied instances.



6
Numerical experiments

This chapter presents the numerical results of the optimization models developed for the SBCP. Both
optimization and simulation results are provided for eachmodel. Optimization results include the sum of
modeling and solving time, along with the optimal objective value obtained. Simulation results evaluate
model performance, presenting the feasibility ratio and average objective ratio based onN simulated re-
alizations of the uncertain parameters, along with the total simulation time. First, Section 6.1 describes
the simulation procedure to evaluate model performance. Then, Section 6.2 presents results for the
nominal model, evaluating its performance under different types of supply uncertainty individually and
collectively. Subsequent Sections 6.3 to 6.6 detail results for each optimization method considering
uncertainty separately, assessing performance under the corresponding type of uncertainty. Finally,
Section 6.7 discusses results for combinations of different optimization under uncertainty models and
their performance under supply uncertainty.

6.1. Evaluation simulation
To evaluate the performance of each model, the models are tested in a simulation for different real-
izations of the supply uncertainty. Each optimization under uncertainty model is tested for the type of
uncertainty for which it is designed. Additionally, the nominal model has been tested for all three types
of supply uncertainty individually. During the evaluation, the performance of the solution of a model is
tested on N randomly drawn realizations of the corresponding uncertainty. This means that we gener-
ate random values by drawing from the probability distributions as described in Section 4.2, for either
the mass of the copper concentrates, the mass fraction of the elements in the copper concentrates or
the arrival times of the copper concentrates for all copper concentrates in the scheduling horizon or a
combination of above uncertainties. When the simulation is repeated, the same randomly generated
realizations will be drawn from the probability distribution.

At the end of the simulation, two performance measures, namely the feasibility ratio and the average
objective, are calculated. Equations (6.1) and (6.2) present the calculation of these performance mea-
sures. In the simulation, a solution is defined as feasible when the solution remains feasible for the
realization of the uncertain parameters over the entire scheduling horizon. The feasibility ratio denotes
for what part of the realizations the solution of the model remained feasible.

Feasibility ratio =
total number of feasible solutions with realized parameters

N
(6.1)

The average objective denotes the objective value which on average is earned over the number of
feasible solutions with the optimal solution from the model.

Average objective =
sum of objectives of all feasible solutions

total number of feasible solutions
(6.2)

During the evaluation, we implement a rolling horizon principle. A rolling horizon means that a time-
dependent model is solved repeatedly, and the planning interval is moved forward in time during each
solution step. In our case, we can solve the model for the entire scheduling horizon, so, we do not

33



6.2. Nominal model 34

need to move the planning interval forward, however, we fix decisions for some periods and remove
corresponding uncertainty, and re-solve the problem. Figure 6.1 illustrates the working of the rolling
horizon for the simulation used to evaluate the SBCP. For the simulation a re-optimization period of
seven days is used, corresponding to the re-optimization period of the refinery. Initially, we solve the
instance for the entire scheduling horizon using expected parameters and evaluate the studied model
(Figure 6.1, a). Subsequently, we insert the realized uncertain parameters for the first seven days,
denoted by A in the plot, and assess the feasibility of the solution using the resulting model (Figure 6.1,
b). If the solution proves feasible with the actual parameters, we save it for the initial seven days and
fix the decision variables, which is marked by F in the plot (Figure 6.1, c). We then re-optimize the in-
stance using the evaluated model, incorporating the fixed variables for the first seven days. Introducing
the parameter tstart enables us to model the evaluated model from this period onward while utilizing
the nominal model for earlier periods. In this way, we avoid being over-conservative during evaluation.
This process continues until reaching the end of the scheduling horizon, ensuring that for each rolling-
horizon window, we find a feasible solution accommodating the realized uncertain parameters (Figure
6.1, d until f).

Essentially, when we thus denote the solution infeasible during simulation, this can be caused by two
reasons. Either with the model only an infeasible solution could be found for the next seven days
denoted as a double star (**), or the found solution of seven days by the model is not feasible with the
realized parameters denoted as a triple star(***). These notations will be used in the following tables
presenting the simulation results. In the optimization results a star (*) indicates that the solution is
infeasible for the entire scheduling horizon. Important to note is that such a solution sometimes leads
to a feasible solution during simulation, due to the re-optimization of the model every seven days.

Figure 6.1: Rolling horizon principle for simulation evaluation of SBCP. A re-optimization period of seven days is applied. A
denotes the use of actual parameters. E denotes the use of expected parameters. F denotes that the decision variables are

fixed. The parameter tstart denotes the period from which the evaluated model is applied.

When the simulation is applied to evaluate the model’s performance on arrival time uncertainty, during
re-optimization it is important to consider that the realizations of the actual parameters can lay outside
the current optimized time frame because deviations between the actual and expected arrival period
are applied. In this study, when a copper concentrate was expected during a time frame, but in the
realization it becomes apparent that the copper concentrate has not arrived yet, we assume amaximum
delay for the copper concentrate and this new assumed arrival time is included as deterministic input
during the re-optimization of the stochastic model, so no new scenarios are generated for the newly
assumed arrival period of the copper concentrate.

6.2. Nominal model
This section presents the results for the nominal model, which does not directly consider parameter
uncertainty. Section 6.2.1 presents the optimization results of the model and Section 6.2.2 presents
the performance of the model across different simulations.
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6.2.1. Optimization results
Table 6.1 presents the optimization results of the nominal model for all five instances. These results
include the computation time, which comprises both the construction and solving phases of the CPLEX
model, measured in seconds, as well as the objective value representing the profit generated by the
optimal solution, expressed in millions of euros.

Table 6.1: Optimization results of the nominal model.

Objective value (million euros) Computation time (s)
Instance A 9.5 0.33
Instance B 17.5 0.30
Instance C 36.9 0.25
Instance D 63.2 0.38
Instance E 199.0 16.18

All five instances are feasible for the nominal model within remarkably short computation times, with
almost every instance solvable in under one second. Even instance E, representative of the refinery
case study, is quickly modeled and solved in a couple of seconds. This efficiency stands in contrast to
the current linear optimization model employed for the SBCP of the refinery, which involves additional
complexities such as optimizing sequential batch processes alongside the smelter’s feeding schedule,
resulting in significantly longer computation times. An important advantage of the created nominal
model for the SBCP is thus the ability to gain quick insights into the feasibility of the blending schedule
considering the current procurement agreements of copper concentrates.

6.2.2. Performance of nominal model
We evaluate the performance of the nominal model using four different simulations. Each simulation
assesses the optimal solution found by the model across N randomly generated realizations of un-
certainty. The first three simulations generate random realizations for one type of supply uncertainty,
specifically a) mass uncertainty, b) mass fraction uncertainty, and c) arrival time uncertainty. Finally,
simulation d) generates random realizations for all three types of supply uncertainty together. Table
6.2 presents the results of these simulations for the nominal model (NM) across all instances. The
number of simulations is varied between N = {10, 100, 1000}. For instance E the simulation results
with N = {100, 1000} are excluded due to extended computation times. The performance measures,
namely the feasibility ratio and the average objective ratio, are presented. In addition, the simulation
time is presented, denoting the entire running time of the simulation encompassing the solving of the
models and the re-optimization over the time horizon.

In the simulation, the rolling horizon principle, as described in Section 6.1, is applied with a re-optimization
period of seven days. This approach allows for the adaptation of forthcoming decision variables to the
realization of revealed uncertain parameters after each re-optimization period. Consequently, the ob-
jective value of the solution found with re-optimization may exceed the optimal nominal objective value
obtained without re-optimization. This scenario is indicated by an average objective ratio greater than
100 percent.

Simulation a) evaluates the performance of the nominal model concerning uncertainty in the mass of
a copper concentrate. For the first four instances, the nominal solution for the SBCP remains feasible
for the majority of the realizations, with feasibility ratios ranging from 70 (Instance C) to 100 (Instance
B). This can be explained due to the nature of the SBCP and the nature of the mass uncertainty. The
uncertainty in the mass of copper concentrates follows a normal distribution with a mean of µ = 0.0 and
a standard deviation of σ = 3.3. This indicates potential deviations of the actual mass of a copper con-
centrate with the nominal value in both directions, however, these variations do not always directly lead
to an infeasible solution. While an excess delivery of copper concentrates could theoretically exceed
capacity constraints, we observed that the capacity constraint in the SBCP is typically not quickly bind-
ing and this is particularly true for the instances with unlimited capacity. Conversely, instances where
the actual mass of a copper concentrate is lower than expected may compromise solution feasibility.
Feasibility in this context necessitates the smelter operating continuously at full capacity, supported by
an appropriate blend of copper concentrates to satisfy throughput and element constraints. If there is
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Table 6.2: Performance of the nominal model for simulated uncertainty in a) the mass of a copper concentrate, b) the mass
fraction of elements in a copper concentrate, c) the arrival time of a copper concentrate, and d) general supply uncertainty. The
re-optimization period of the rolling horizon is seven days. (***) denotes that the average objective ratio is undefined because
the solution does not remain feasible for the realizations of the uncertainty. (**) denotes that the model could only find an

infeasible solution during re-optimization.

Number of simulations Performance measures NM for a) NM for b) NM for c) NM for d)
Instance A 10 Feasibility ratio 100.0 20.0 0.0 0.0

Average objective ratio 100.3 100.0 *** ***
Simulation time (s) 2.11 2.22 1.42 0.84

100 Feasibility ratio 95.0 26.0 0.0 0.0
Average objective ratio 100.3 100.8 *** ***
Simulation time (s) 16.01 14.53 5.58 5.66

1000 Feasibility ratio 94.7 24.9 0.3 0.2
Average objective ratio 100.3 100.8 100.2 100.0
Simulation time (s) 200.24 52.83 41.94 52.92

Instance B 10 Feasibility ratio 100.0 10.0 0.0 0.0
Average objective ratio 100.0 101.0 *** ***
Simulation time (s) 17.17 1.97 2.13 2.82

100 Feasibility ratio 100.0 9.0 0.0 0.0
Average objective ratio 100.0 100.0 *** ***
Simulation time (s) 154.11 17.28 15.10 15.87

1000 Feasibility ratio 100.0 8.1 0.0 0.0
Average objective ratio 100.0 100.0 * *
Simulation time (s) 1407.56 158.02 127.93 154.75

Instance C 10 Feasibility ratio 70.0 0.0 0.0 0.0
Average objective ratio 100.4 *** *** ***
Simulation time (s) 5.05 1.32 1.36 2.12

100 Feasibility ratio 70.0 0.0 0.0 0.0
Average objective ratio 100.3 *** *** ***
Simulation time (s) 84.68 13.35 13.25 12.83

1000 Feasibility ratio 70.1 0.0 0.0 0.0
Average objective ratio 100.3 *** *** ***
Simulation time (s) 790.77 123.56 127.93 148.85

Instance D 10 Feasibility ratio 80.0 0.0 0.0 0.0
Average objective ratio 100.6 *** *** ***
Simulation time (s) 46.05 3.74 3.58 3.85

100 Feasibility ratio 78.0 0.0 0.0 0.0
Average objective ratio 100.5 *** *** ***
Simulation time (s) 381.98 27.77 28.34 32.60

1000 Feasibility ratio 78.3 0.0 0.0 0.0
Average objective ratio 100.4 *** *** ***
Simulation time (s) 1225.15 257.79 285.88 283.58

Instance E 10 Feasibility ratio 30.0 0.0 ** / 0.0 ** / 0.0
Average objective ratio 99.7 *** ** / *** ** / ***
Simulation time (s) 4520.01 311.10 392.68 306.88

insufficient mass of a copper concentrate available to follow the model’s solution, the feasibility of the
solution is compromised. However, due to re-optimization over the scheduling horizon, the solution
can adjust every seven days based on the realized uncertain mass of the delivered copper concen-
trates. Additionally, the copper concentrate whose actual mass is lower than expected should be used
in the solution. to create an infeasible solution. Therefore, even a lower mass of a copper concentrate
than expected does not always immediately lead to infeasibility of the solution. Instance E has a lower
feasibility ratio of 30.0 (N = 10). This indicates that instance E is more sensitive to mass uncertainty
than the other instances. This can be explained by having more arrivals of copper concentrates in the
scheduling horizon, which all can have a lower mass than expected. Therefore, the total probability
that the actual mass of a copper concentrate is lower than the expected mass and will be used in the
solution in the next seven days is larger. We conclude that the SBCP is moderately sensitive to the
mass uncertainty of a copper concentrate, and the sensitivity increases with the size of the scheduling
horizon and decreases with the number of expected copper concentrates and start inventory.
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Simulation b) evaluates the performance of the nominal model concerning uncertainty in the mass frac-
tion of elements in a copper concentrate. The feasibility ratio for the nominal model is low, varying
from 26.0 (instance A, N = 100) to 0.0 (instance C, D, and E). Based on the low feasibility ratios we
conclude that the SBCP is sensitive to fluctuations in the mass fraction of the elements. The elemental
upper bound constraints ensure that the ratio of an element in the final flow stays below a certain upper
bound. When the nominal solution is used, but the mass fractions (of multiple) copper concentrates
are higher than expected the upper bound may be exceeded, resulting in an infeasible solution. The
low feasibility ratios reflect that this is often the case for the SBCP. Furthermore, interdependency con-
straints are enforced to instance B till instance E. For element 2 and element 7, the interdependency
constraints impose both a lower bound and upper bound on the ratio of these elements in the final flow.
Complementary for element 1, element 3, element 4, and element 6 the interdependency constraints
impose upper bounds on the interdependent ratios of these elements. Both lower and higher actual
mass fractions than expected can thus lead to exceeding the interdependency bounds. The presence
of these additional constraints intensifies the challenge for the solution to remain feasible under mass
fraction uncertainty, which is reflected in low feasibility ratios of 10.0 (instance B) and 0.0 (instances C,
D, and E). To assess the sensitivity of the SBCP to fluctuations in element mass fractions, we varied the
re-optimization period. Despite shorter re-optimization periods providing more flexibility for solutions to
adapt to uncertainty, instances C, D, and E still had zero feasibility ratios even with a re-optimization
period of two periods. This underscores the high sensitivity of the SBCP to fluctuations in element
mass fractions, leading to (near-)zero feasibility ratios. We observe that instance A is less sensitive to
mass fraction uncertainty because for this instance the interdependency constraints are not required
and additionally for a lower number of elements upper bound constraints are required.

Simulation c) evaluates the performance of the nominal model concerning uncertainty in the arrival
time of a copper concentrate. Across all instances, the feasibility ratio is zero, rendering the average
objective ratio undefined. This may be explained by the nature of the arrival time uncertainty. As de-
scribed in Section 4.2.3, the uncertain delay of the arrival of a copper concentrate follows a gamma
distribution. For instance E this distribution describes possible delays varying from seven days early
to forty-two days late for the scheduling horizon of 90 days. For the smaller instances, this range of
possible delays is scaled corresponding to the size of the scheduling horizon. Early arrivals of copper
concentrate do not affect solution feasibility because there is unlimited inventory capacity. On the other
hand, when one copper concentrate arrives later than the period it is used originally in the solution, the
solution becomes infeasible immediately. For all instances, there is a significantly large probability that
a minimum of one copper concentrate arrives late. This results in low feasibility ratios as shown in the
table. We thus conclude that the SBCP is very sensitive to uncertainty in the arrival time of a copper
concentrate. For instance E it is sometimes even not possible to find a feasible solution with the nomi-
nal model during re-optimization denoted as (**).

Simulation d) evaluates the performance of the nominal model under supply uncertainty, considering
uncertainty in the mass, mass fraction of elements, and arrival time of a copper concentrate simulta-
neously. The table reveals feasibility ratios of zero. The results show that the combined uncertainty
results in feasibility ratios that are the same as the lowest feasibility ratio for an individual type of sup-
ply uncertainty or worse. For most instances the feasibility ratio was already zero for the arrival time
uncertainty, resulting in also zero feasibility ratios for the total supply uncertainty. In addition, the fea-
sibility ratios for mass fraction uncertainty for most instances were also already low. We conclude that
SBCP is very sensitive to supply uncertainty primarily due to mass fraction uncertainty and arrival time
uncertainty. Essentially, the nominal model is strictly not able to provide a robust solution that remains
feasible for realizations of supply uncertainty.

Further, the table illustrates how the number of simulation iterations N influences performance mea-
sures. Generally, a larger N leads to more realistic feasibility and average objective ratios since the
solution is tested against a greater number of randomly generated realizations of uncertainty. However,
this comes at the expense of longer simulation times. Interestingly, there is only a small difference in re-
sults between simulations withN = 100 andN = 1000. This suggests that usingN = 100 simulations is
sufficient to evaluate the models effectively. This finding holds promise for evaluating larger instances,
in future research, as it indicates shorter computation times without significant loss in accuracy.
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6.3. Robust mass model
This section presents the results of the robust mass model, which utilizes a box uncertainty set for the
mass of the copper concentrate parameter as introduced in Section 4.3. Section 6.3.1 presents the
optimization results of the model and Section 6.3.2 presents the performance of the model evaluated
by the simulation for uncertainty in the mass of a copper concentrate.

6.3.1. Optimization results
Table 6.3 presents the optimization results of the robust mass model for different normalized perturba-
tion parameters λ. This parameter denotes the maximum deviation of the uncertain mass parameter
as a percentage of the nominal parameter within the box uncertainty set and is varied between 0.0
(equivalent to a deterministic model) and 0.5. The results include the feasibility status of the solution,
computation time in seconds, and objective value in million euros for each instance. The feasibility
status indicates whether the solution is feasible or infeasible. In cases of infeasibility, it specifies the
period at which the smelter throughput constraint could no longer be satisfied. A star in the table (*)
denotes that the solution is infeasible for the entire scheduling horizon leaving the remaining output
irrelevant.

Table 6.3: Optimization results of the robust model for uncertainty in the mass of the copper concentrates with the use of a box
uncertainty set with varying normalized perturbation factor λ for instance A till instance E. A star (*) denotes that the solution is

infeasible for the entire scheduling horizon and thus that the output is irrelevant.

\Output λ = 0.0 (deterministic) λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5
Instance A Feasibility status feasible feasible feasible infeasible at p10 infeasible at p10 infeasible at p8

Computational time (s) 0.30 0.21 0.21 * * *
Objective value (million euros) 9.5 9.4 9.2 * * *

Instance B Feasibility status feasible feasible feasible feasible feasible feasible
Computational time (s) 0.26 0.37 0.47 0.30 0.51 0.29
Objective value (million euros) 17.5 17.5 17.5 17.5 17.5 16.0

Instance C Feasibility status feasible feasible feasible feasible feasible infeasible at p14
Computational time (s) 0.31 0.50 0.40 0.45 0.842 *
Objective value (million euros) 36.9 35.8 34.4 33.0 31.5 *

Instance D Feasibility status feasible feasible feasible infeasible at p29 infeasible at p26 infeasible at p26
Computational time (s) 0.80 0.45 0.53 * * *
Objective value (million euros) 63.2 60.0 56.7 * * *

Instance E Feasibility status feasible feasible infeasible at p89 infeasible at p73 infeasible at p61 infeasible at p47
Computational time (s) 3.88 3.10 * * * *
Objective value (million euros) 199.0 187.0 * * * *

The table illustrates that the robust mass model for the SBCP becomes infeasible for higher values
of the normalized perturbation factor λ. A higher normalized perturbation factor λ, indicates that a
lower amount of copper concentrate can be used in the robust solution. In instances where an infeasi-
ble solution is found, the model is too conservative, indicating that the perturbation factor is too large.
Specifically, the results demonstrate that for this normalized perturbation factor λ, there is insufficient
copper concentrate available to satisfy the smelter throughput and element constraints in the worst
case, resulting in infeasibility. Furthermore, we observe that for larger values of λ, the problem be-
comes earlier in the scheduling horizon infeasible because, at an earlier period, there is not enough
copper concentrate available to meet the smelter constraints in the worst case. For different values of
λ the instances become infeasible, indicating that each instance has its sensitivity to the mass uncer-
tainty. This can be explained by different amounts of start inventory and the total amount of copper
concentrate present in each instance. The objective values of the robust mass model are lower than
the deterministic objective value. Increasing the perturbation factor results in a lower objective value,
denoting a more conservative solution. The computation times of the robust mass model are small, not
varying much from the computation times of the nominal model.

For further analysis of the robust mass model, we choose a normalized perturbation factor λ = 0.1
because for this value the robust solution is feasible across all instances. When the refinery desires a
model that provides a solution that is robust against larger perturbations than 10 percent different than
the nominal value, a multistage model should be defined. A multistage model with for instance two
stages may already provide feasible solutions for a higher perturbation factor during simulation.
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6.3.2. Performance of robust mass model
Table 6.4 presents the simulation results on the performance of the robust mass model, which utilizes a
box uncertainty set for the mass of a copper concentrate with a normalized perturbation factor λ = 0.1.
The model is evaluated for uncertainty in the mass of a copper concentrate. For the rolling horizon
in the simulation re-optimization period of seven days is used. We exclude the simulation results for
instance E with N = {100, 1000} due to extended computation times.

Table 6.4: Performance of robust mass model and nominal model for simulated uncertainty in the mass of a copper
concentrate. The robust model has implemented a box uncertainty set with normalized perturbation parameter λ = 0.1 for the
mass parameter of a copper concentrate. The number of iterations is N and the re-optimization period is seven days. Results

are presented for instance A till instance E.

Number of simulations Performance measures Nominal Model Robust mass model
Instance A 10 Feasibility ratio 100.0 100.0

Average objective ratio 100.3 98.7
Simulation time (s) 2.11 1.35

100 Feasibility ratio 95.0 100.0
Average objective ratio 100.3 98.7
Simulation time (s) 16.01 14.23

1000 Feasibility ratio 94.7 100.0
Average objective ratio 100.3 98.7
Simulation time (s) 200.24 140.22

Instance B 10 Feasibility ratio 100.0 100.0
Average objective ratio 100.0 100.0
Simulation time (s) 17.17 11.34

100 Feasibility ratio 100.0 100.0
Average objective ratio 100.0 100.0
Simulation time (s) 154.11 106.45

1000 Feasibility ratio 100.0 100.0
Average objective ratio 100.0 100.0
Simulation time (s) 1407.56 1738.40

Instance C 10 Feasibility ratio 70.0 100.0
Average objective ratio 100.4 97.5
Simulation time (s) 5.05 16.18

100 Feasibility ratio 70.0 100.0
Average objective ratio 100.3 97.5
Simulation time (s) 84.68 105.3

1000 Feasibility ratio 70.1 100.0
Average objective ratio 100.3 97.5
Simulation time (s) 790.77 1595.69

Instance D 10 Feasibility ratio 80.0 100.0
Average objective ratio 100.6 99.4
Simulation time (s) 46.05 42.83

100 Feasibility ratio 78.0 100.0
Average objective ratio 100.5 99.4
Simulation time (s) 381.98 344.55

1000 Feasibility ratio 78.3 100.0
Average objective ratio 100.4 99.3
Simulation time (s) 1225.15 3468.52

Instance E 10 Feasibility ratio 30.0 100.0
Average objective ratio 99.7 97.4
Simulation time (s) 4520.01 4135.01

The table illustrates that the robust mass model performs very well regarding the feasibility ratio and
it has improved in comparison with the nominal model. The feasibility ratio is for all instances 100
denoting that the robust solution is feasible for all simulated realizations of the uncertain mass param-
eter when a re-optimization period of seven days is applied. Realizations of the mass uncertainty that
have not been captured by the box uncertainty set can thus perfectly be adapted by the rolling-horizon
window of seven days. The average objective ratio is lower than 100, which is explained by the ro-
bust mass model having a lower optimal objective due to the conservative approach. However, the
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decrease in objective value is minor, indicated by an average objective ratio ranging from 97.4 to 100.
Notably, this conservative approach leads thus to perfect robust results in the evaluation. It can be
concluded that the used uncertainty set captures the uncertainty in the mass well and is suitable to
create a robust solution while requiring only minor profit reductions.

6.4. Robust mass fraction model
This section presents the results for the robust mass fraction model, which utilizes a budgeted uncer-
tainty set for each element for the corresponding uncertain mass fraction parameter as described in
Section 4.4. Section 6.4.1 presents the optimization results and Section 6.4.2 presents the performance
of the robust mass fraction model evaluated by the simulation for uncertainty in the mass fraction of
elements in a copper concentrate.

6.4.1. Optimization results
Table 6.5 presents the optimization results of the robust mass fraction model, which incorporates bud-
geted uncertainty sets for the mass fraction parameters of the elements. We tested different settings
for the normalized perturbation factor λk, which denotes the maximum percentage deviation of the nom-
inal mass fraction of an element, in the corresponding budgeted uncertainty set. A summary of these
experiments is presented in Appendix B.1. We conclude that for values from λk = 0.01 applied to all the
budgeted uncertainty sets, the model can not find feasible solutions across all instances. Specifically,
we observe that the SBCP reacts more sensitively to uncertainty in the mass fraction of elements 2 and
7. When we choose λ2 = λ7 = 0.001, for values from λk = 0.03 for the remaining elements the model
finds infeasible solutions for some instances. After multiple experiments, we chose to model the robust
mass fraction model with a normalized perturbation factor λ2 = λ7 = 0.001 for element 2 and element
7, while we applied a normalized perturbation factor of λk = 0.01 to the remaining elements. These
settings are chosen because they provide feasible solutions for the model across all the instances and
correspond with the observed peaks in the probability distributions of the mass fraction uncertainty as
described in Section 4.2.3.

When not stated differently, these parameter settings are used in the rest of the analysis for the robust
mass fraction model. Insights into the impact of the budget parameter Γ for all the budgeted uncer-
tainty sets were obtained by varying its value. Initially, we implemented Γ = 0 for each budgeted
uncertainty set, representing a deterministic model. Subsequently, the values Γ = {1, 1

2CC,CC} were
implemented, where CC signifies the expected number of copper concentrates. For the budget param-
eter Γ = CC, all the expected copper concentrates can take their worst-case value simultaneously,
effectively forming a box uncertainty set.

Table 6.5: Optimization results of the robust model for uncertainty in the mass fraction of elements in a copper concentrate. A
budgeted uncertainty set has been implemented with normalized perturbation factor λ = 0.001 for element 2 and element 7,
and λ = 0.01 for the other elements. The budget parameter Γ has been varied between 0, 1, 1

2
CC and CC. The results are

shown for instance A till instance E.

Output Γ = 0 (deterministic) Γ = 1 Γ = 1/2|CC| Γ = |CC|
Instance A Feasibility status feasible feasible feasible feasible

Computational time (s) 0.23 0.21 0.21 0.36
Objective value (million euros) 9.5 9.4 9.4 9.3

Instance B Feasibility status feasible feasible feasible feasible
Computational time (s) 0.76 0.91 0.95 1.30
Objective value (million euros) 17.5 17.4 17.3 17.2

Instance C Feasibility status feasible feasible feasible feasible
Computational time (s) 0.32 0.70 0.74 0.70
Objective value (million euros) 36.9 36.8 36.7 36.6

Instance D Feasibility status feasible feasible feasible feasible
Computational time (s) 0.53 18.56 5.60 12.85
Objective value (million euros) 63.2 63.2 62.9 62.6

Instance E Feasibility status feasible feasible feasible feasible
Computational time (s) 3.16 264.64 590.05 554.64
Objective value (million euros) 199.0 197.7 189.8 187.9



6.4. Robust mass fraction model 41

We observe that the objective value of the robust models tends to be lower than that of the determinis-
tic model. This trend becomes more pronounced with larger values of the budget parameter, allowing
more mass fractions of an element in the copper concentrates to take their worst-case value simulta-
neously, resulting in more conservative solutions with lower objective values. Computation times for
the robust model are generally higher than those for the deterministic model, particularly for larger in-
stances (e.g., instance E 590.05 seconds or 0.04 seconds). For further analysis, we choose the model
with a budget parameter of Γ = 1

2CC, to consider that it is unlikely that in all copper concentrates the
mass fraction of an element takes the worst-case value simultaneously, but at the same time not be
over conservative.

We further study the sensitivity of the SBCP to mass fraction uncertainty by creating different robust
models, each incorporating a budgeted uncertainty set implemented for an individual element k as
opposed to an uncertainty set applied to all elements simultaneously. The normalized perturbation
factor λk is varied between 0 and 0.1 with steps of 0.01. This allows us to analyze how sensitive the
optimal solution reacts to the size of the uncertainty set for an individual element. For this analysis, the
budget parameter Γ = 1

2CC is used, and the study is performed on instance A till instance C. Figure
6.2 shows these results for element 1, element 2 and element 7, respectively, where the objective value
of each instance is scaled between 0.0 and 1.0. These results illustrate similar trends as observed in
the robust models for the other elements. For completeness, the results for the other elements are
included in Appendix B.2.
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(a) Robust mass fraction model with budgeted
uncertainty set for mass fraction of element 1.
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(b) Robust mass fraction model with budgeted
uncertainty set for mass fraction of element 2.
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(c) Robust mass fraction model with budgeted
uncertainty set for mass fraction of element 5.

Figure 6.2: Robust mass fraction model with budgeted uncertainty set for an individual element. Showing the relation between
λ and the scaled objective value between zero and 1.0, where 1.0 represents the optimal objective value obtained with the
nominal model and 0.0 denotes the infeasibility of the solution. The blue line represents instance A, the red line represents

instance B and the green line represents instance C.

Graph 6.2a illustrates the model with a budgeted uncertainty set for element 1, presenting the general
trend occurring for most elements. It shows that as the normalized perturbation parameter λ increases,
the objective value of the robust solutions decreases. A higher λ implies a greater potential devia-
tion of the actual mass fraction from the expected value, leading to quicker violations of the element
upper bound constraints. It is crucial for a robust solution that, even in the worst-case scenario, the
element upper bound constraints remain feasible. This necessitates incorporating a lower amount of
each copper concentrate in the blend to ensure the upper bound element constraint is met under worst-
case conditions. To compensate for this, additional copper concentrate with a lower profit parameter is
added to the blend to satisfy the throughput constraint of the smelter. Consequently, the robust solution
achieves a lower objective value in comparison with the nominal model.

Graph 6.2c presents the results for the model formulated robust against uncertainty in the mass fraction
of element 5. The graph for element 8 illustrates the same relation. Contradictory, for these elements
we observe no decrease in objective value for a larger value of the normalized perturbation factor δ.
As described in Section 5, the upper bound on the mass fraction of these elements in the final flow
is 1. According to this constraint, the final blend is thus allowed to completely consist of element 5 or
element 8, which is never the case for the SBCP. Therefore these upper bound constraints are never
binding and ensuring that the upper bound element constraints hold for the budgeted uncertainty sets
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does thus not affect the (nominal) solution. Additionally, for element 5 there are no interdependency
constraints because the weight interdependency parameter is W5 = 0. For element 8 the weight inter-
dependency isW8 = 0.00016, but from the graph, it can be concluded that ensuring that the constraints
hold for the budgeted uncertainty set does not influence the objective value. Essentially, the SBCP is
not sensitive to uncertainty in the mass fraction of element 5 and element 8.

Furthermore, Graph 6.2b shows the results for the robust model with a budgeted uncertainty set for
element 2. The graph for element 7 shows the same relation. For these two models, a drop to zero is
observed in the objective value when the normalized perturbation factor λ is increased for instance B
and instance C. In these graphs, a scaled objective value of 0.0 denotes an infeasible solution. The
infeasibility of these solutions can be explained by the interdependency constraints that are required
for these instances. These interdependency constraints define that the ratio of element 2 and element
7 in the final blend should stay between a strict lower and upper bound. However, when in the robust
model the constraints have to hold for all the values of the budgeted uncertainty set, and thus for the
worst case of each constraint, for large values of λ, this becomes contradictory for the upper and lower
bound constraints. We demonstrate this with the use of an example. The mass fraction ratio between
element 7 and element 2 in the final blend is bounded by [0.58, 0.64] as described in equations (4.32)
and (4.33). If the uncertainty set for an element is too large, the worst cases of the defined uncertainty
set will always violate the lower- and upper bound. Let the amount of element 7 be represented by Q′

and the amount of element 2 be represented by Q. Let the ratio be for instance Q′

Q = 0.60. If we look
at the uncertainty for only element 7, a budgeted uncertainty set of 0.10 percent results thus in always
violating the bounds. Therefore the robust model will always be infeasible. It can be concluded that
when in the SBCP the interdependency constraints are required the SBCP is very sensitive to uncer-
tainty in the mass fraction of element 2 and element 7 and there are strict bounds on the uncertainty
set for which the model can be designed robust against.

The robust solution for instance A becomes not infeasible in the graphs for element 2 and element
7. This is because for instance A the interdependency constraints are not required. Further, instance
A becomes infeasible for element 3 for values from λ = 0.3 and higher. This is instance-specific
because there are no copper concentrates available at the beginning of the scheduling horizon with
a low enough nominal mass fraction of element 3, to not exceed the robust upper bound constraint.
Overall, we conclude that for a smaller instance, the feasibility of the solution is more dependent on the
specifics of the present copper concentrates in the instance. because there is limited choice.

6.4.2. Performance of robust mass fraction model
Table 6.6 presents the results of the performance of the robust mass fraction model, in comparison with
the nominal model. In the robust mass fraction model a budgeted uncertainty set with a normalized
perturbation parameter λ2 = λ7 = 0.001 for element 2 and element 7 and a normalized perturbation pa-
rameter λk = 0.01 for the other elements are applied. The budget parameter Γ = 1

2CC is implemented,
denoting half the number of expected copper concentrates in the instance. The model is evaluated
for uncertainty in the mass fraction of elements in a copper concentrate. For the rolling horizon, a re-
optimization period of seven days is applied. We excluded the results for instance D with N = 1000
and instance E with N = {100, 1000} due to extended computation times.
The results show that the robust mass fraction model has a higher feasibility ratio than the nominal
model. The feasibility ratio is high for instance B until instance E, varying from 80.0 (Instance E) to
100.0 (Instance C, N = 10). The feasibility of the robust solution is highly increased in comparison
with the feasibility of the nominal solution, which was infeasible with the actual parameters for (nearly)
all realizations. The average objective ratio is for any instance not lower than 95.5, indicating a minor
profit reduction in comparison with the nominal objective value. We conclude that the defined budgeted
uncertainty set captures the uncertainty sufficient for instance B till instance D and is sufficient to pro-
vide a robust solution that remains feasible for realizations of the mass fraction uncertainty at the cost
of minor profit reductions.

Nevertheless, instance A has a feasibility ratio of 40 percent. Although for this instance the interdepen-
dency constraints are not required, the results show that instance A is more sensitive to deviations in
the mass fractions of the elements in comparison with the other instances. The current budgeted uncer-
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Table 6.6: Performance of robust mass fraction model (RMFM) and nominal model for simulated uncertainty in mass fraction of
the elements in the copper concentrates. The robust model has implemented a budgeted uncertainty set with normalized
budget parameters λ = 0.001 for element 2 and element 7 and λ = 0.01 for the other elements. The budget parameter is

Γ = 1
2
CC and the re-optimization period is seven days.

Number of simulations Performance measures Nominal Model RMFM : Γ = 1
2CC

Instance A 10 Feasibility ratio 20.0 40.0
Average objective ratio 100.0 99.0
Simulation time (s) 2.22 1.69

100 Feasibility ratio 26.0 46.0
Average objective ratio 100.8 99.3
Simulation time (s) 14.53 10.73

1000 Feasibility ratio 24.9 45.4
Average objective ratio 100.8 99.3
Simulation time (s) 52.83 89.18

Instance B 10 Feasibility ratio 10.0 90.0
Average objective ratio 101.0 99.0
Simulation time (s) 1.97 16.40

100 Feasibility ratio 9.0 96.0
Average objective ratio 100.0 98.9
Simulation time (s) 17.28 128.58

1000 Feasibility ratio 8.1 94.7
Average objective ratio 100.0 99.0
Simulation time (s) 158.02 1371.71

Instance C 10 Feasibility ratio 0.0 100.0
Average objective ratio *** 99.5
Simulation time (s) 1.32 11.62

100 Feasibility ratio 0.0 81.0
Average objective ratio *** 99.4
Simulation time (s) 13.35 90.00

1000 Feasibility ratio 0.0 81.5
Average objective ratio *** 99.4
Simulation time (s) 123.56 888.73

Instance D 10 Feasibility ratio 0.0 90.0
Average objective ratio * 99.6
Simulation time (s) 3.74 91.214

100 Feasibility ratio 0.0 86.0
Average objective ratio * 99.5
Simulation time (s) 27.77 898.81

Instance E 10 Feasibility ratio 0.0 80.0
Average objective ratio *** 95.5
Simulation time (s) 311.10 27539.18

tainty set is thus insufficient to provide a robust solution for instance A. Instance A only has four copper
concentrates which are expected in the scheduling horizon. This means that during re-optimization not
many other copper concentrates can be used to adapt the solution. Therefore we may conclude that
instances with a smaller time horizon and lower number of copper concentrates, such as instance A,
are more sensitive to uncertainty in the mass fraction of elements than instances B till E.

To obtain a robust solution for instance A with a higher feasibility ratio we model the robust mass
fraction model again but choose the budget parameter Γ = CC and define the normalized perturbation
parameters λ the same as previously. The performance of this robust mass fraction across all instances
is evaluated with the simulation for uncertainty in the mass fraction of elements of a copper concentrate.
Table 6.7 presents the simulation results of this model. The table illustrates that the feasibility ratio for
all instances stayed the same or increased in comparison with the robust mass fraction with a budget
parameter Γ = 1

2CC, varying between 80 (instance E) to 100 (instance C, N = 100) and specifically
instance A has now also a high feasibility ratio of 96.3 for N = 1000. The robust mass fraction model
which utilizes a box uncertainty set is thus sufficient to capture the uncertainty across all instances. The
average objective ratio of the robust mass fraction model with Γ = CC is lower than that of the robust
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Table 6.7: Performance of robust mass fraction model (RMFM) and nominal model for simulated uncertainty in mass fraction of
the elements in the copper concentrates. The robust model has implemented a budgeted uncertainty set with normalized
budget parameters λ = 0.001 for element 2 and element 7 and λ = 0.01 for the other elements. The budget parameter is

Γ = CC and the re-optimization period is seven days.

Number of simulations Performance measures Nominal Model RMFM: Γ = CC
Instance A 10 Feasibility ratio 20.0 100.0

Average objective ratio 100.0 97.6
Simulation time (s) 2.22 2.11

100 Feasibility ratio 26.0 96.0
Average objective ratio 100.8 97.9
Simulation time (s) 14.53 19.36

1000 Feasibility ratio 24.9 96.3
Average objective ratio 100.8 97.8
Simulation time (s) 52.83 89.96

Instance B 10 Feasibility ratio 10.0 90.0
Average objective ratio 101.0 98.6
Simulation time (s) 1.97 21.3

100 Feasibility ratio 9.0 97.0
Average objective ratio 100.0 98.5
Simulation time (s) 17.28 170.83

1000 Feasibility ratio 8.1 95.40
Average objective ratio 100.0 98.6
Simulation time (s) 158.02 1548.46

Instance C 10 Feasibility ratio 0.0 100.0
Average objective ratio *** 97.9
Simulation time (s) 1.32 15.3

100 Feasibility ratio 0.0 89.0
Average objective ratio *** 97.9
Simulation time (s) 13.35 128.29

1000 Feasibility ratio 0.0 90.6
Average objective ratio *** 97.9
Simulation time (s) 123.56 1147.64

Instance D 10 Feasibility ratio 0.0 90.0
Average objective ratio *** 98.5
Simulation time (s) 3.74 213.08

100 Feasibility ratio 0.0 89.0
Average objective ratio *** 99.0
Simulation time (s) 27.77 1043.55

Instance E 10 Feasibility ratio 0.0 80.0
Average objective ratio *** 94.5
Simulation time (s) 311.10 15422.17

model with Γ = 1
2CC. This is expected because the box uncertainty set provides a more conservative

solution in comparison with the budgeted uncertainty set, however, the profit reduction is still minor,
indicated by a lowest average objective ratio of 94.5. Selecting the value of Γ carefully is thus of high
importance for the refinery. For very small instances a higher value of the budget parameter should
be chosen to find a robust solution with a sufficient feasibility ratio against a small profit reduction. For
the rest of the analysis, we choose to model the robust mass fraction model with a budget parameter
Γ = CC for instance A and with a budget parameter Γ = 1

2CC for instances B till E.

6.5. One-stage stochastic arrival time model
This section presents the results of the one-stage stochastic model created to capture the arrival time
uncertainty of a copper concentrate with the reduced set Z. The results of the one-stage model with
the reduced scenario tree Zmean or Zworst, respectively, are discussed, which are created by selecting
a decreased number of delays for each copper concentrate. Section 6.5.1 presents the optimization
results and Section 6.5.2 presents the performance of the one-stage stochastic model evaluated by the
simulation for arrival time uncertainty. Further, the conclusions drawn from the results of the one-stage
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model using the reduced scenario set Zsampled, generated by random sampling from the probability dis-
tribution representing the uncertain delay, are discussed. These conclusions align closely with those
drawn from the one-stage stochastic model with scenario trees Zmean or Zworst. For completeness,
the optimization results and performance results obtained by this one-stage stochastic model, are pre-
sented in Appendix B.3.

6.5.1. Optimization results
Table 6.8 shows the optimization results for the one-stage stochastic model with the reduced scenario
trees Zmean and Zworst. These trees are constructed by considering two possible delays for each
copper concentrate, denoted as d1 and d2, that form the branches in the scenario tree. For the pair of
delays we chose to implement first the zero delay together with the mean delay, denoted as {d1, d2} =
{0, dmean} and secondly, the zero delay together with the worst case delay, denoted as {d1, d2} =
{0, dmax}, resulting in the reduced scenario trees Zmean and Zworst, respectively. For comparison, the
deterministic results reflecting zero delay are also presented, denoted as Z0, across all instances.

Table 6.8: Optimization results of the one-stage stochastic model where the branches of the reduced scenario tree consist of
two selected delays for each copper concentrate denoted as {d1, d2}. The reduced scenario sets Zmean which is constructed
by {d1, d2} = {0, dmean} and Zworst which is constructed by {d1, d2} = {0, dmax} are implemented. Further, Z0 denotes
the scenario tree where each copper concentrate is considered on time. A star (*) denotes that the solution of the model is

infeasible for the entire scheduling horizon and thus that the output is irrelevant.

Output Z = Z0 (deterministic) Z = Zmean Z = Zworst

Instance A Feasible status feasible infeasible at p9 infeasible at p6
Computational time (s) 0.23 * *
Objective value (million euros) 9.5 * *

Instance B Feasible status feasible feasible infeasible at p15
Computational time (s) 0.21 0.30 *
Objective value (million euros) 17.5 14.2 *

Instance C Feasible status feasible feasible feasible
Computational time (s) 0.39 0.49 0.27
Objective value (million euros) 36.9 32.7 23.6

Instance D Feasible status feasible feasible infeasible at p15
Computational time (s) 0.25 25.34 *
Objective value (million euros) 63.2 55.6 *

Instance E Feasible status feasible feasible infeasible at p21
Computational time (s) 17.10 1.75 *
Objective value (million euros) 199.0 172.8 *

The table above illustrates that the one-stage stochastic model with the reduced scenario set Zmean,
which considers zero delay and average delay for each copper concentrate, successfully identifies fea-
sible solutions for instances B, C, D, and E. This indicates that when the average delay is considered
for each copper concentrate, still a feasible blending schedule can be found for these instances. For
instance A this is not the case, denoted by the infeasibility of the solution. Conversely, the one-stage
stochastic model with the reduced scenario set Zworst, which considers the zero delay and the max-
imum delay for each copper concentrate, finds only a feasible solution for instance C, and infeasible
solutions are obtained for instances A, B, D and E. This indicates that considering a worst-case delay
for each copper concentrate is over-conservative because the model can not find a feasible solution for
the entire scheduling horizon. Especially, when we additionally consider that the probability of a maxi-
mum delay for a copper concentrate is not major based on the distribution as described in Section 4.2.3,
the model which is robust against the scenario that all copper concentrates are maximum delayed may
be over-conservative. The solutions for instances B, D, and E however become infeasible only after
period seven in the scheduling horizon. This offers the possibility to find a feasible blending schedule
for the entire scheduling horizon when applying a re-optimization period of seven days. Overall, the
infeasibilities from the above table denote that the SBCP is very sensitive to arrival time uncertainty,
and not across all instances a feasible solution can be found when considering a maximum or mean
delay of each copper concentrate. Ultimately, the formulated one-stage stochastic models are thus not
sufficient in capturing the arrival time uncertainty and providing a feasible solution.
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Remarkably, we observe in the solutions of the above one-stage stochastic model that from the gen-
erated scenarios, the largest included delay for each copper concentrate is prominent for feasibility.
Essentially, this suggests that instead of employing the predefined scenario sets Zmean and Zworst

for the one-stage stochastic models, we could utilize a single scenario where all copper concentrates
experience either their mean or maximum delay, respectively, and still achieve identical results. This
is noteworthy because it enhances computational efficiency. In addition, the results suggest that the
sensitivity of the SBCP to arrival time uncertainty is instance-specific. Instance A specifically shows
sensitivity to arrival time uncertainty indicated by the infeasibility of the solutions of both stochastic mod-
els. This instance has a lower number of copper concentrates expected over the scheduling horizon
and less start inventory present in comparison with the other instances. We conclude that the sensitivity
of the SBCP to arrival time uncertainty appears to be instance-specific and is influenced by factors such
as the availability of start inventory, the number of expected copper concentrates, and the scheduling
horizon’s length.

The robust solutions of both one-stage models come at the cost of a lower objective value. Because
the robust solution is feasible for the scenario that the copper concentrates are averagely delayed, or
maximum delayed, respectively, the solution considers that copper concentrates are at a later period in
the scheduling horizon available. Therefore, for the robust solutions at the beginning of the scheduling
horizons, there is a reduced selection of (profitable) copper concentrates, leading to a lower objec-
tive value of the solution compared to the nominal solution. Because the one-stage model with the
reduced scenario set Zworst is more conservative than the one-stage model with the reduced scenario
set Zmean the corresponding objective value is lower. Because the one-stage stochastic models have
one set of decision variables, and there is no uncertainty in the objective, the expected objective is the
same for each scenario. The objective values however show a large decrease in objective value. This
indicates that implementing a multistage model may be more suitable.

The optimization and performance results of the one-stage stochasticmodel with a scenario setZsampled

are presented in Appendix B.3. This reduced scenario set is generated by randomly sampling from the
probability distribution representing the uncertain delay. We can draw similar conclusions from these
results as the results drawn from the above one-stage stochastic models. Namely, in the scenario set
the largest delay for an individual copper concentrate is most important, resulting effectively in that the
model protects us from the scenario where each copper concentrate is delayed most, within the delays
occurring in the sample. The model could only be evaluated within computationally tractable times for
rather a small scenario set consisting of N = 10 scenarios. These performance results show that the
SBCP reacts sensitively to arrival time uncertainty and the sensitivity is instance-specific. We conclude
that the one-stage stochastic model with a scenario set Zsampled is insufficient in considering the arrival
time uncertainty sufficiently.

6.5.2. Performance of one-stage stochastic arrival time model
Table 6.9 presents the simulation results for the one-stage stochastic model utilizing the reduced sce-
nario trees Zmean and Zworst, where the scenarios are generated by including a reduced number of
delays. The model is evaluated with the simulation for uncertainty in the arrival time of a copper con-
centrate. In the simulation, a rolling horizon is applied with a re-optimization period of seven days.
The one-stage stochastic model, utilizing the reduced scenario set Zworst, which includes scenarios
reflecting the worst-case delay and no delay of a copper concentrate, could find solutions that remained
feasible across the majority of the realizations of the arrival time uncertainty for instances B, C, and
D, indicated by feasibility ratios ranging from (instance D, N = 100) to 100.0 (instance C). This indi-
cates that the model is sufficient for most instances in providing a solution that remains feasible during
re-optimization and captures the arrival time uncertainty sufficiently. However, it is important to note
that the one-stage stochastic model with scenario tree Zworst was not able to find feasible solutions
for most instances without re-optimization, as presented in Table 6.8 and therefore we suggested that
the model is over-conservative. However, with the use of a re-optimization period of seven days during
simulation, we observe that for instance B, C, and D, it is possible to find a feasible solution for the
majority of the realizations of the arrival time uncertainty.

For instance A the solution is always infeasible, because the one-stage stochastic model finds a so-
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Table 6.9: Performance of one-stage stochastic model and nominal model for simulated uncertainty in arrival time of a copper
concentrate. For the one-stage stochastic model the reduced scenario trees Zmean and Zworst, that are constructed by
{d1, d2} = {0, dmean} and {d1, d2}= {0, dmax}, respectively, are implemented. A re-optimization period of seven days is

applied. A star (*) denotes that the initial solution was infeasible for the first seven days. A double star (**) denotes that during
re-optimization the solution could only find an infeasible solution for the next seven days. A triple star (***) denotes that the

solution did not remain feasible with the realized parameters.

Number of simulations Performance measure Nominal Model OSM: Z = Zmean OSM: Z = Zworst

Instance A 10 Feasibility ratio 0.0 ** / *** *
Average objective ratio *** ** / *** *
Simulation time (s) 1.42 2.59 1.27

100 Feasibility ratio 0.0 5.0 *
Average objective ratio * 96.0 *
Simulation time (s) 5.58 28.85 18.02

Instance B 10 Feasibility ratio 0.0 ** / *** 90.0
Average objective ratio *** ** / *** 65.6
Simulation time (s) 2.13 12.89 21.15

100 Feasibility ratio 0.0 1.0 96.0
Average objective ratio *** 83.0 65.6
Simulation time (s) 15.10 130.35 195.80

Instance C 10 Feasibility ratio 0.0 10.0 100.0
Average objective ratio *** 89.6 64.39
Simulation time (s) 1.36 11.62 16.14

100 Feasibility ratio 0.0 7.0 100.0
Average objective ratio * 89.6 65.73
Simulation time (s) 13.25 18.29 141.91

Instance D 10 Feasibility ratio 0.0 30.0 60.0
Average objective ratio *** 90.7 87.5
Simulation time (s) 3.58 13.36 48.12

100 Feasibility ratio 0.0 26.0 40.0
Average objective ratio * 90.8 87.0
Simulation time (s) 285.88 130.32 446.72

Instance E 10 Feasibility ratio **/ *** ** **
Average objective ratio ** / *** ** **
Simulation time (s) 392.68 946.63 1027.62

lution that becomes infeasible before the re-optimization period. For instance E the feasibility ratio is
also not defined. The one-stage stochastic model finds a solution that becomes infeasible in period
21. We observe that with the use of re-optimization every seven days, the model still finds infeasible
solutions somewhere during the scheduling horizon. In contrary, the one-stage stochastic model found
a feasible solution for the entire scheduling horizon. This results in a feasibility ratio of 100.0 during
simulation. This outcome aligns with expectations, considering that the scenario set Zworst includes
the scenario with the worst-case delay of each copper concentrate and the probability distribution of
the delay has strict bounds. Therefore, it is impossible that a realization of the uncertain arrival time of
a copper concentrate is larger than the defined worst case highlighting the potential of this model.

Nevertheless, for the instances where the model found an infeasible solution, but infeasibility occurs
after the first re-optimization period, this leaves room during re-optimization that the model does find
a feasible solution for the next seven days based on the realization of the arrival time uncertainty,
resulting ultimately in a feasible solution for the entire scheduling horizon. The results show that this is
often the case for instance B (feasibility ratio 90.0 and 96.0) and also frequently the case for instance
D (feasibility ratio of 60.0 and 40.0). For the instances where feasible solutions could be found in
the simulation, the average objective ratio is significantly lower than 100.0 because the solution is
conservative. Ultimately, because the one-stage stochastic model with scenario tree Zworst includes
the worst-case delay of each copper concentrate when a feasible solution is found with the model, it
remains feasible across all realizations of the arrival time uncertainty, resulting in absolute being robust
against a significant profit reduction. However, due to its conservatism, it is also possible that the model
can not find a feasible solution at all.
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6.6. Multistage stochastic arrival time model
This section presents the results for the multistage stochastic model which considers the uncertainty
in the arrival time of a copper concentrate. The reduced scenario trees Zmean and Zworst are applied.
Additionally, the multistage nature of the problem is considered by introducing a new stage every seven
days as described in Section 4.5.3. Section 6.6.1 presents the optimization results and Section 6.6.2
presents the simulation results.

6.6.1. Optimization results
Table 6.10 presents the optimization result of the multistage stochastic model, for which the scenario
tree is constructed with two possible delays for each copper concentrate; d1 = 0, representing zero
delay, and d2 is either the rounded mean of the underlying gamma distribution dmean or the maximum
possible delay of a copper concentrate dmax. These delays are associated with probabilities p1 = 0.56
and p2 = 0.44, respectively, obtained by dividing the probability space into two based on the mean.
The multistage model defines a new stage every seven days, introducing new sets of decisions for
different nodes in the scenario tree. This flexibility allows the model to adapt its decision variables
based on the revealed uncertainty every seven days. We omit the results of instance E, due to mem-
ory constraints. The table illustrates that the one-stage stochastic model with the reduced scenario
tree Zworst performs better than both the nominal model and the one-stage stochastic model with the
reduced scenario tree Zmean. The feasibility ratio for the nominal model is zero across all instances be-
cause the solution becomes immediately infeasible when one copper concentrate arrives later than the
scheduled period for blending, indicating the sensitivity of the SBCP to arrival time uncertainty. While
the one-stage stochastic model with the scenario tree Zmean finds feasible solutions for most instances
in the optimization results, the simulation outcomes reveal its poor performance. The feasibility ratio
never exceeds 30.0, indicating significant difficulty in finding a solution that remains feasible across
realizations of the uncertain arrival time. For instances A and B with N = 10 specifically, the feasibility
ratio does not exist because for half the realizations of the arrival time uncertainty the solution does
not remain feasible (***), and for the other half the model could only find an infeasible solution during
re-optimization (**). Although initially promising, it is evident that the reduced scenario set Zmean is
inadequate for providing a robust solution capable of remaining feasible across various realizations of
the arrival time uncertainty.

Table 6.10: Optimization results of the multistage stochastic model. The reduced scenario trees Zmean which is constructed
by the branches {d1, d2} = {0, dmean} and Zworst which is constructed by the branches {d1, d2} = {0, dmax} are

implemented. Further, Z0 denotes the scenario tree where each copper concentrate is considered on time. A star (*) denotes
that the model is infeasible for the entire scheduling horizon, so the remaining output is irrelevant.

Output Z = Z0 (deterministic) Z = Zmean Z = Zworst

Instance A Feasibility status feasible infeasible at p9 infeasible at p6
Computational time (s) 0.05 * *
Objective value (million euros) 9.5 * *

Instance B Feasibility status feasible feasible infeasible at p15
Computational time (s) 0.16 0.18 *
Objective value (million euros) 17.5 14.2 *

Instance C Feasibility status feasible feasible feasible
Computational time (s) 0.25 0.20 0.38
Objective value (million euros) 36.9 32.7 26.9

Instance D Feasibility status feasible feasible infeasible at p15
Computational time (s) 13.22 239.99 *
Objective value (million euros) 63.2 55.6 *

The table illustrates that the multistage stochastic model that utilizes scenario tree Zmean finds a fea-
sible solution for instances B, C, and D. For the scenario tree Zworst that includes scenarios with the
worst-case delay of a copper concentrate a feasible solution is found for instance C. The solutions for
the other instances become infeasible after multiple periods. These results indicate again the strong
sensitivity of the feasibility of the solution of the SBCP to the delay of copper concentrates. We con-
clude that for most instances a feasible solution can be found when an average delay is considered
for each copper concentrate, however, considering the worst-case delays is too conservative to find a
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feasible solution directly for the entire scheduling horizon.

We observe that the feasibility results of the multistage stochastic model are identical to the optimization
results of the one-stage stochastic models with the same defined scenario trees as presented in Table
6.8. This is because we observe that ultimately in both stochastic models, the solution should be fea-
sible for the same scenario set, including both the same worst-case scenario. Because in the SBCP
it is not possible to purchase extra concentrate during the scheduling horizon, we conclude that the
feasibility of the solution for an instance over the entire scheduling horizon is similar for the one-stage
and multistage model with the same defined scenario tree. However, the objective value generated by
the first seven days from the solution of the one-stage model and the multistage model, corresponding
with the first stage of the multistage model, is different, indicating that the solution of the first seven
days of both models is different. Because the multistage model results in a solution for the first seven
days generating a higher profit, the solution is less conservative in the first seven days compared to
the solution obtained with the one-stage model. This can be explained for example by the multistage
model scheduling more profitable inventory concentrates earlier in the scheduling horizon, than the
one-stage stochastic model.

Notably, the expected objective value of the multistage stochastic is higher in comparison with the
one-stage model. This is an advantage of the multistage model, it provides a more realistic expected
objective because it considers different solutions for each scenario and takes into account the probabil-
ity of each scenario instead of generating one fixed solution for the entire scheduling horizon. However,
the increase in expected objective when considering scenario tree Zworst is not very large in compar-
ison with the one-stage model utilizing the same scenario tree. When even a more realistic expected
objective value is desired to be obtained, more scenarios should be included in the scenario tree, im-
proving the representation of the probability space. The computation times of the multistage stochastic
model are not significantly larger in comparison with the other optimization models, however, they do
increase significantly for the number of scenarios included.

6.6.2. Performance of multistage stochastic model
Table 6.11 presents the results of the performance of the multistage stochastic model in comparison
with the nominal model for simulated uncertainty in the arrival time of a copper concentrate. The mod-
els utilizing the scenario trees Zmean and Zworst are evaluated. A rolling horizon is applied with a
re-optimization period of seven days.

The table illustrates that in comparison with the nominal model, the multistage stochastic model per-
forms better for arrival time uncertainty. The multistage model with scenario tree Zmean for instances B
and C finds for the majority of the realizations a feasible solution, indicated by feasibility ratios between
50.0 (instance B, N = 10) and 64.0 (instance B, N = 100). For the other realizations, the solution
did not remain feasible. This denotes that the reduced scenario tree Zmean does not span the whole
probability space of the arrival time uncertainty, resulting in solutions that do not remain feasible across
all realizations of the uncertain arrival time. In addition, for instance A and D, the feasibility ratio is low,
varying between 0.0 (instance D) and 5.0 (instance A, N = 100). This leads to the conclusion that the
multistage stochastic model with the reduced scenario tree Zmean is not sufficient to capture the arrival
time uncertainty and provide a robust solution that remains feasible for the arrival time uncertainty re-
alizations.

The multistage model with scenario tree Zworst has for instances B, C, and D feasibility ratios varying
from 50.0 (instance B, N = 10) to 100.0 (instance C, N = 100). This indicates that the multistage
model considering the worst-case delay of a copper concentrate can provide a solution that remains
feasible in the majority of the realizations of the arrival time uncertainty. However, the model finds only
infeasible solutions for the next seven days somewhere during re-optimization for the other realizations
of the uncertainty. In addition, the model immediately finds only infeasible solutions for instance A
because the solution became already infeasible before the first re-optimization period. These results
indicate that the solution may be (over-)conservative, however when with the use of re-optimization of
the model for the realized parameters a feasible solution is found, even worst-case delays of a copper
concentrate remain feasible.
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Table 6.11: Performance of the multistage stochastic model and nominal model for simulated arrival time uncertainty. A
re-optimization of 7 days is applied. The model utilizes the reduced scenario tree Zmean or Zworst, that are constructed by

{d1, d2} = {0, dmean} and {d1, d2}= {0, dmax}, respectively. A star (*) denotes here that the initial solution is not feasible for
the first seven days. A double star (**) denotes that during re-optimization the model could only find an infeasible solution for

the next seven days. A triple star (***) denotes that the solution does not remain feasible for the realized parameters.

Number of simulations Performance measures Nominal Model MSM: Z = Zmean MSM: Z = Zworst

Instance A 10 Feasibility ratio 0.0 0.0 *
Average objective ratio *** *** *
Simulation time (s) 1.42 1.07 *

100 Feasibility ratio 0.0 5.0 *
Average objective ratio *** 96.0 *
Simulation time (S) 5.58 10.59 *

Instance B 10 Feasibility ratio 0.0 50.0 50.0
Average objective ratio *** 81.2 65.8
Simulation time (s) 2.13 19.82 20.99

100 Feasibility ratio 0.0 64.0 77.0
Average objective ratio *** 81.3 66.0
Simulation time (s) 15.10 179.98 175.03

Instance C 10 Feasibility ratio 0.0 60.0 100.0
Average objective ratio **** 89.5 67.1
Simulation time (s) 1.36 16.51 17.12

100 Feasibility ratio 0.0 54.0 100.0
Average objective ratio *** 89.4 68.7
Simulation time (s) 13.25 157.11 153.62

Instance D 10 Feasibility ratio 0.0 0.0 80.0
Average objective ratio *** *** 83.9
Simulation time (s) 3.58 3121.03 2535.98

We observe that the expected objective of the multistage solutions is slightly higher than the objective
obtained by the one-stage solutions. However, the feasibility ratios of the multistage stochastic models
are different than the feasibility ratios obtained by the one-stage stochastic models. For the scenario
tree Zworst the feasibility ratio of instance B is lower, being 50.0 (N = 10) and 77.0 (N = 100), instead
of 90.0 (N = 10) and 96.0 (N = 100). For instance D, we see a contrary relation, the multistage
model results in higher feasibility ratio of 80.0 compared to the feasibility ratio of the one-stage model
which is 60.0. We expect that these differences can be explained by the differences in solutions the
models obtained for the first seven days. The one-stage model provided a more conservative result
for these first seven days, denoted by a slightly lower objective value generated by the first seven days
solution, compared to the solution obtained for the first seven days with the multistage model. The
results illustrate that the more conservative solution at the beginning of the scheduling horizon for some
instances leads to a better performance and for instances leads to a lower performance, compared to
the more risky solution obtained by the multistage model.

6.7. Robust supply uncertainty model
The refinery aims to find a blending schedule that is robust against all three types of uncertainty; mass
uncertainty, mass fraction of elements uncertainty, and arrival time uncertainty. The three uncertainties
together are denoted as supply uncertainty. In an attempt to find a solution that is robust against
supply uncertainty the created models for each type of uncertainty are combined. First, the robust
mass model and robust mass fraction model are combined in a model denoted as the double robust
model (DRM) to study how sufficient the model is in capturing both mass uncertainty and mass fraction
uncertainty and provide a robust solution that remains feasible for realizations of mass uncertainty
and mass fraction uncertainty simultaneously. Afterward, the robust mass model, robust mass fraction
model, and multistage stochastic arrival time model are implemented together in a model denoted as
the robust supply model (RSM) in an attempt to create a model that provides a solution that is robust
against supply uncertainty. Table 6.7.1 presents the optimization results of the models and Section
6.7.2 presents the performance of the models under supply uncertainty.
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6.7.1. Optimization results
This section presents the optimization results of the above-defined combinations of optimization mod-
els to consider multiple types of supply uncertainty simultaneously. To analyze these results properly,
Table 6.12 provides an overview of the optimization results of all developed optimization models con-
sidering uncertainty in this study. The table presents the feasibility status, the computation time, and
the objective value across the instances. We excluded the results for instance E due to extended com-
putation times. For the model parameters, we implement the values as motivated in previous sections.
Next, we provide an overview of the presented models with specified model parameters.

First, the table presents the results for the robust mass model (RMM), utilizing a box uncertainty set with
normalized perturbation factor λ = 0.1 for the mass parameter. Then the table shows the results for the
robust mass fraction model (RMFM). The model employs a budgeted uncertainty for all the elements
with the normalized perturbation factor λ2 = λ7 = 0.001 for the budget uncertainty set for elements 2
and 7 and normalized perturbation factor λ = 0.01 for the budgeted uncertainty set applied to the other
elements. The implemented budget parameter Γ is instance specific and is set to Γ = CC for instance
A, and is set to Γ = 1

2CC for instance B till instance E. Next, the table presents the results of the double
robust model (DRM) combining the previously specified robust mass model and robust mass fraction
model. Following, the table presents the results for the multistage stochastic model (MSM), employing
a new defined stage every seven days. The scenario tree Zworst is implemented, which is constructed
as the scenario set with two branches, zero delay and maximum delay, for each copper concentrate
with corresponding probabilities p1 = 0.56 and p2 = 0.44. Afterward, the table presents the results for
the model where the multistage stochastic model is added to the double robust model denotes as the
robust supply model (RSM).

Table 6.12: Optimization results models of the defined optimization models for the SBCP under supply uncertainty. Results are
presented for the robust mass model (RMM), the robust mass fraction model (RMFM), the multistage stochastic arrival time

model (MSM), the double robust model (DRM), and the multistage robust supply model (RSM)

Output RMM RMFM DRM MSM RSM
Instance A Feasibility status feasible feasible feasible infeasible at p6 infeasible at p6

Computational time (s) 0.26 0.16 0.24 * *
Objective value (million euros) 9.4 9.3 9.2 * *

Instance B Feasibility status feasible feasible feasible infeasible at p15 infeasible at p11
Computational time (s) 0.31 1.05 1.24 * *
Objective value (million euros) 17.5 17.4 17.3 * *

Instance C Feasibility status feasible feasible feasible feasible feasible
Computational time (s) 0.29 0.79 0.60 0.38 7.68
Objective value (million euros) 35.8 36.7 35.6 26.9 25.9

Instance D Feasibility status feasible feasible feasible infeasible at p17 infeasible at p5
Computational time (s) 0.25 10.43 5.357 * *
Objective value (million euros) 60.0 62.9 59.5 * *

The optimization results of the robust mass model, robust mass fraction model, and stochastic arrival
time models have been previously discussed in this chapter and will not be discussed in detail here.
However, these results are compared to the optimization results of the defined combinations of the
models. The double robust model (DRM) finds feasible solutions for all four instances. The optimal ob-
jective value of the DRM is slightly lower than the objective value found by the RMM or the RMFM. This
is expected because the model is designed robust against two types of uncertainty instead of one and
therefore is more conservative than the individual models. The robust supply model (RSM) finds only
a feasible solution for instance C. This is expected because it combines the three optimization models
and the MSM also only found feasible solutions for instance C. Notably, the solutions for instance A
and instance D become infeasible before a potential re-optimization period of seven days, indicating
that these solutions will stay infeasible during simulation when re-optimization is applied. Possibly for
instance B a feasible solution can be found for realized parameters when a re-optimization period of
seven days is applied because the solution becomes infeasible after period 7. The objective value of
the RSM is slightly lower than the solution of the MSM and the instances become earlier in the schedul-
ing horizon infeasible. Essentially, the RSM is more conservative than the MSM because besides
considering arrival time uncertainty, it also captures the mass and mass fraction uncertainty.
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6.7.2. Performance of robust supply model
This section describes the performance of the double robust model and robust supply model. Appendix
B.4 presents the simulation results of the double robust model. The model has high feasibility ratios,
varying between 80.0 and 100.0, when evaluated for combined mass and mass fraction uncertainty.
This is as expected, because both defined robust models performed well in providing a robust solution
that remained feasible for realizations of the uncertainty they were designed for. The objective ratio of
the double robust model is slightly lower than the individual models because it is more conservative.
Essentially, the model provides a solution with high feasibility ratios for combined mass and mass
fraction uncertainty, under a small profit reduction, indicated by an average objective ratio of 96.9 or
higher. Next, the performance of the robust supply model is evaluated with a simulation where all
three types of supply uncertainty are simulated simultaneously. Table 6.13 presents these results. To
compare the performance of the nominal model and the performance of the double robust model (DRM)
under supply uncertainty are also presented. The results of instances D and E are excluded due to
extended computation times.

Table 6.13: Performance of robust supply model (RSM), nominal model (NM), multistage stochastic model (MSM), and double
robust model (DRM) for simulated supply uncertainty. The RSM is a combination of the robust mass model, robust mass

fraction model, and multistage stochastic model. The double robust model combines the robust mass model and the robust
mass fraction model. The performance results are presented for instance A till instance C.

Number of simulations Performance measures Nominal Model DRM MSM RSM
Instance A 10 Feasibility ratio 0.0 0.0 * *

Average objective ratio *** *** * *
Simulation time (s) 0.83 1.14 1.15 2.38

100 Feasibility ratio 0.0 ** / *** * *
Average objective ratio *** ** / *** * *
Simulation time (s) 6.02 7.37 18.21 17.18

Instance B 10 Feasibility ratio 0.0 0.0 50.0 50.0
Average objective ratio *** *** 66.2 65.2
Simulation time (s) 2.08 12.89 28.34 339.46

100 Feasibility ratio 0.0 0.0 77.0 77.0
Average objective ratio *** *** 66.1 65.2
Simulation time (s) 14.11 86.90 197.12 3680.05

Instance C 10 Feasibility ratio 0.0 0.0 100.0 100.0
Average objective ratio *** *** 67.2 64.0
Simulation time (s) 1.52 7.80 19.23 125.56

100 Feasibility ratio 0.0 0.0 100.0 98.0
Average objective ratio *** *** 68.8 66.1
Simulation time (s) 11.31 88.16 161.42 1178.41

The above table illustrates that the feasibility ratio of the nominal model under supply uncertainty is
zero across all instances because no solution remains feasible for the realized uncertain parameters.
As earlier stated, this is primarily due to the sensitivity of the SBCP to arrival time uncertainty. The
double robust model (DRM) performs also poorly when evaluated for supply uncertainty indicated by
feasibility ratios of zero. In addition, the performance of the DRM is evaluated for a combination of
mass and mass fraction uncertainty as presented in Appendix B.4. Contrarily, these results illustrate
a high performance of the DRM indicated by feasibility ratios ranging from 80.0 to 100.0 across the
instances combined with a minor profit reduction. We conclude that the DRM captures well the mass
and mass fraction, but performs poorly evaluated for supply uncertainty because the model fails in
capturing the arrival time uncertainty. The solution of the DRM does not result in a robust solution that
remains feasible across realizations of the supply uncertainty.

The table presents the performance of the multistage stochastic model under supply uncertainty. Im-
portant for the MSM was that for most instances the model could not find a feasible solution for the
entire scheduling horizon, however for some realizations with the use of re-optimization still a feasible
blending schedule is obtained at the end of the simulation. We observe that the feasibility ratios are
identical to the feasibility ratios obtained when evaluated for only arrival time uncertainty. The results
show that when the MSM can find a feasible solution with re-optimization every seven days, the model
is also effective against mass and mass fraction uncertainty, because there is no decrease in feasibility
ratio.
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The robust supply model (RSM) illustrates similar results for the feasibility ratios as obtained by the
MSM. The uncertainty in arrival time is leading for the performance of the model. For instance A
only infeasible solutions could be found because the solution becomes infeasible before the first re-
optimization period. This instance is small and has a lower number of expected copper concentrates
and start-inventory present. For instance B and instance C the robust supply model finds feasible so-
lutions. For instance B the model finds for the majority of the realizations a feasible solution in the
simulation indicated by feasibility ratios of 50.0 and 77.0. The model finds an infeasible solution for
the entire scheduling horizon, however, with the use of re-optimization for the majority of the realiza-
tions of supply uncertainty a feasible solution is obtained. For instance C the RSM provides solution
that effectively capture all three components of the supply uncertainty. For instance C the multistage
stochastic model was able to find a feasible solution. Due to its conservatism of the MSM, by including
the maximum delay of each copper concentrate, the RSM is robust against all realizations of the arrival
time uncertainty. The feasibility ratio for (N = 100) is lower than 100, because for some realizations in-
cluding mass and mass fraction uncertainty, the RSM that combines the three previous models was too
conservative and could only find an infeasible solution. We observe that the robust solution is obtained
against a profit decrease, denoted by average objective ratios between 64.0 (instance C, N = 10) and
66.1 (instance C, N = 100).

Ultimately, we conclude that capturing the arrival time uncertainty is the primarily bottleneck to find a
solution that remains feasible across all the supply uncertainty realizations. Notably, with the created
models a large improvement is made in feasibility of the solution against supply uncertainty compared
to the performance of the nominal model under supply uncertainty. The feasibility of the SBCP is very
sensitive to supply uncertainty. With the created models a solution is obtained which is robust against
uncertainties in the mass and mass fraction and has improved a lot for the robustness against arrival
time uncertainty.
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Conclusion

In this research, the SBCP under supply uncertainty has been studied. This section addresses the
formulated sub-questions and consequently formulates an answer to the main research question.

Research question (a)
How can the SBCP be modeled as a linear nominal optimization problem?

The SBCP is a problem that in an industrial context increases quickly in size. It consists of many op-
erational and logistic constraints, resulting in the need to introduce binary variables into mathematical
optimization formulation. Additionally, industrial refineries often have multiple blender units working
simultaneously on the site, imposing the need for nonlinear blending constraints. This is because in
such a large blending network, there are multiple outgoing flows after a blender, and it is essential to
ensure that the composition of each outgoing flow is equal. Optimization models that try to capture the
whole SBCP in detail result in comprehensive nonlinear mixed integer models where approximation
methods are needed to solve the model in reasonable computation time.

As opposed to formulating a comprehensive model that models every part of the SBCP in detail we
made an effort to capture the essence of the SBCPwith a nominal linear optimizationmodel. This model
allows us to study the effects of supply uncertainty on the SBCP, due to reasonable computational
effort and easy interpretation of the model, and additionally can easily be extended by optimization
under uncertainty methods. We base the created model for the SBCP on the discrete-time MILP-NLP
formulation as presented in Song et al., 2018. To be able to describe the SBCP with a linear model, the
following two simplifications have been made. i) It is assumed that there is only one blender and one
pre-blender at the site. There are thus no multiple outgoing flows in the blending network, making it
possible to omit the nonlinear constraints. ii) Operational and logistics constraints are omitted from the
formulation and are addressed through the preprocessing of data to incorporate time delays caused
by operations. Furthermore, the model is formulated with a discrete-time formulation to consider that
not at every moment in time new blends can be made. By following the above-designed blending
network, the SBCP can be modeled linearly. The model includes element constraints, flow (mass-
balance) constraints, inventory constraints, smelter capacity constraints, and the objective function
that maximizes the profit earned by processing concentrates.

Research question (b)
Which optimization under uncertainty methods can best be applied to consider supply uncertainty for
the SBCP? What are the drawbacks and benefits of the different optimization methods?

The supply uncertainty consists of three sources, uncertainty in the mass of a copper concentrate, the
uncertainty in the mass fraction of elements of a copper concentrate, and the uncertainty of the arrival
time of a copper concentrate. The first two sources of uncertainty have a continuous nature and the lat-
ter has a discrete nature. This is an important difference, making other optimization under uncertainty
methods suitable.

54
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The refinery prioritizes the feasibility of the SBCP, indicating that the smelter can work continuously
throughout the entire scheduling horizon. Furthermore, the mass uncertainty and the mass fraction
uncertainty can be described using a connected set. This leads to the conclusion that robust optimiza-
tion is a suitable method to model the mass and mass fraction uncertainty because it is a method that
aligns very well with these characteristics. An advantage of robust optimization is that the probability
distribution of the uncertainty does not need to be known and thus can be applied to any generally dis-
tributed uncertainty. First, a budgeted uncertainty set is implemented for the uncertain mass fraction
parameter of each element. The main reason is that the budgeted uncertainty set reduces the volume
of the uncertainty set in comparison with the box, but still is a polyhedron, resulting in a robust linear
programming problem, which is a main advantage due to computational efficiency. Secondly, following
the same reasoning, a budgeted uncertainty set is chosen to represent the uncertain mass parameter,
however, due to the constraints in which the uncertain mass parameter appears, it becomes apparent
that the budgeted uncertainty set becomes redundant and can be effectively described using a box un-
certainty set for this formulation of the SBCP. So, a box uncertainty set is implemented for the uncertain
mass parameter of each expected copper concentrate.

To represent the arrival time uncertainty robust optimization is a less suitable approach, mainly be-
cause we expect that by only considering the worst-case delay of each copper concentrate, the solu-
tion becomes (over-)conservative. In addition, the arrival time uncertainty can not be described with a
connected set. A natural approach to describe the discrete uncertainty is as a finite set of scenarios
Z where each scenario has a corresponding probability. Therefore a stochastic approach utilizing the
representation with a finite number of scenarios is a very suitable method to consider the arrival time
uncertainty. Stochastic optimization optimizes the expected objective, by considering the probability
of uncertainty realizations. Considering the expected objective aligns well with the fact that for the re-
finery the SBCP is a repetitive problem. In addition, an advantage of stochastic optimization is that it
considers the available probability information of the uncertainty. Therefore, the arrival time uncertainty
is considered by using stochastic optimization.

We implement a one-stage formulation in the robust models considering mass and mass fraction uncer-
tainty. We aim to avoid unnecessary implementation of multi-stage formulations which is accompanied
by more computational effort by utilizing the simpler approach until it becomes necessary to employ
a more comprehensive multistage formulation, for instance when the one-stage formulation becomes
infeasible. For the stochastic model, we implemented both a one-stage and multi-stage formulation.
The models provided different solutions for the first seven days, where the solution by the multistage
model was less conservative.

The above-described approaches are suitable to describe the supply uncertainty as motivated above,
however, the selection of the parameters of the uncertainty sets and the selection of the scenario set
are very important for the performance of the models. The models were evaluated for five instances
named A through E. The most fitting parameters for these instances are now discussed. The opti-
mization results illustrate that for the robust mass model, utilizing the box uncertainty set a normalized
perturbation factor λ = 0.1, which denotes the maximum perturbation of the uncertain parameter de-
scribed as a percentage of the nominal value, results in feasible solutions across all instances. The
performance of the robust mass model indicates that this defined box uncertainty is sufficient to capture
the majority of the mass uncertainty. If the refinery desires to consider larger perturbations in the robust
mass model, a multistage model should be considered.

The optimization results for the robust mass fraction model illustrate that a budgeted uncertainty set
with λ2 = λ7 = 0.001 and λk = 0.01 for the remaining elements results in feasible solutions across all
instances. Notably, the mass fraction parameters for element 2 and element 7 are more sensitive to
mass fraction uncertainty than the other elements, due to upper and lower bound constraints on the
ratio of these two elements. The use of these budgeted uncertainty sets for the elements, results in
a robust mass fraction model that provides robust solutions that remain feasible across realizations of
mass fraction uncertainty for the elements. However, additionally, the choice of the budget parameter
is important and instance-specific. For instance A a box uncertainty set resulted in a model that per-
formed sufficiently. Where for the larger instances the volume of the uncertainty set can be reduced
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by implementing a budgeted uncertainty with a budget parameter of Γ = 1
2CC. This results in a robust

mass fraction model that sufficiently captures the mass fraction uncertainty.

For the stochastic model, we implemented a reduced scenario set. Namely, when for the SBCP all
delays are considered for each copper concentrate, this results quickly in a very large scenario tree,
resulting in a computationally hard model to solve. Therefore, for each copper concentrate only the
zero delay and the mean delay, or the zero delay and the maximum delay, are considered. In this way,
an approximation of the original problem is solved. The optimization results show that considering the
mean delay for each copper concentrate, this results in feasible solutions, however, considering the
worst-case delay for each copper concentrate, this results in finding infeasible solutions for the entire
scheduling horizon for most instances, indicating that the model is over-conservative. Nevertheless,
the simulation results illustrate that including maximum delays of copper concentrates results in higher
feasibility ratios than including the mean delay. Considering the worst-case of a copper concentrate
is thus more sufficient to create a solution that remains feasible for all realizations of the arrival time
uncertainty. The results suggest however that there is still room for improvement in the representation
of the uncertain arrival time in the optimization model for the SBCP. Ultimately, to consider supply
uncertainty for the SBCP in the optimization model, the above three optimization models are combined.
This model is denoted as the robust supply model.

Research question (c)
How does the SBCP react to supply uncertainty? How can we quantify the risks associated with differ-
ent uncertainty types, and what is the quantified risk of the infeasibility of the nominal solution due to
supply uncertainty for the SBCP?

An optimal solution to the SBCP is a feasible schedule that describes which blend should be created
at which period to earn maximum profit over a certain scheduling horizon, also denoted as an optimal
blending schedule. We quantify the risks associated with the different uncertainty types, by simulating
N random generated realizations of the studied uncertainty type. To evaluate if the obtained optimal
solution of the model remains feasible for the realized uncertain parameters a rolling horizon is applied
with a re-optimization period of seven days. Afterward, the feasibility ratio and average objective ra-
tio are calculated as performance measures. The risk of infeasibility of the nominal solution due to
each type of supply uncertainty is presented in Table 6.2 in Chapter 6. The optimal solution of the
nominal model for the SBCP becomes infeasible for simulated mass uncertainty in the minority of the
realizations. The feasibility ratio ranges from 100 (instance B) to 30 (instance E). The feasibility ratio
decreases when the scheduling horizon grows. We conclude that in general, the nominal model can
handle to some extent uncertainty in the mass of copper concentrates because having a larger mass
than expected is not a problem for feasibility when the capacity constraints are not binding, and a lower
amount of copper concentrate only results in infeasibility when the copper concentrate is used before
the solution is re-optimized or there is not enough copper concentrate available at the site that meets
the smelter throughput and element constraints. Concluding, the SBCP is moderately sensitive to mass
uncertainty of copper concentrates, increasing by an increasing scheduling horizon.

We observe that the SBCP is sensitive to mass fraction uncertainty in the elements with feasibility ra-
tios ranging from 26.0 (instance A, N = 100) to 0.0 (instances C, D, E). This is due to the strict upper
bound constraints for the mass fraction of elements in the final flow. In addition, for the larger instances,
interdependency constraints on the ratios of elements in the final flow are required for the SBCP. When
the actual mass fraction deviates, both higher and lower, this can quickly result in exceeding these ele-
ment constraints, which results in an infeasible solution. Specifically, the SBCP reacts very sensitively
to uncertainty in the mass fractions of element 2 and element 7. Furthermore, we conclude that the
SBCP is very sensitive to arrival time uncertainty. The solution of the nominal model does not remain
feasible for any of the arrival time uncertainty realizations indicated by feasibility ratios of zero across
all instances. This is because when one copper concentrate arrives later than expected but is used in
the current re-optimization period, the solution becomes infeasible immediately. The feasibility of the
nominal solution to the SBCP is thus very sensitive to arrival time uncertainty.

For general supply uncertainty, where the above uncertainties are combined, the risk of infeasibility of
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the nominal solution is 100 percent, denoted by the feasibility ratios of zero for all instances. This is
primarily due to the mass fraction uncertainty and arrival time uncertainty for which the SBCP is very
sensitive. We conclude that the feasibility of the nominal solutions to the SBCP is very sensitive to
supply uncertainty.

Research question (d)
We call a solution to the SBCP obtained via optimization under uncertainty a robust solution. The fi-
nal sub-question is, what is the quantified risk of the infeasibility of the robust solution due to supply
uncertainty for the SBCP? How much has the performance improved in comparison with the nominal
solution?

The performance of each designed optimization under uncertainty model is evaluated with a simulation
that generatesN realizations of the corresponding uncertainty type. The performances of the designed
optimization models are much better than the performance of the nominal model. However, they still
are not 100 percent robust against supply uncertainty, denoting that the optimal blending schedule
should remain feasible across all realizations of the supply uncertainty. The feasibility ratios of the
robust mass model are 100.0, 100.0, 97.5, 100.0, and 100.0 for instances A through D with N = 1000,
and instance E with N = 100, respectively. These feasibility ratios have either remained the same or
increased compared to the nominal model, which has feasibility ratios of 94.7, 100.0, 70.3, 78.3, and
30.0 for instances A through E, respectively. The risk of infeasibility due to mass uncertainty is thus
small with the robust solution obtained from the robust mass model. The model effectively captures
mass uncertainty and, with weekly re-optimization, can effectively adapt to changes in the mass of
copper concentrates. Overall, it can be concluded that the feasibility ratio of the robust mass model is
high, nearly reaching 100 for all instances at the cost of minor profit reduction.

The feasibility ratios of the solution of the robust mass fraction model are also increased compared to
those of the nominal model. The feasibility ratios of the nominal model for mass fraction uncertainty are
low, with feasibility ratios of 20.0, 10.0, 0.0, 0.0, and 0.0 for instances A through E, respectively. The
feasibility ratios of the designed robust mass fraction models are 96.3 (instance A, Γ = CC, N = 1000),
94.7, 81.5, 86.0 (instances B, C, D, Γ = 1

2CC,N = 1000), and 80.0 (instance E, N = 10). This indi-
cates that the provided robust solution is more feasible against realizations of mass fraction uncertainty.
However, as the scheduling horizon increases, there is a higher probability that at some point in the
scheduling horizon, the mass fractions of the copper concentrates deviate too much, resulting in an
infeasible solution. This suggests that the defined budgeted uncertainty sets do not completely cover
the probability space of mass fraction uncertainty. The robust model results in a minor profit reduction.

The feasibility of the nominal solution for the SBCP reacted very sensitively to arrival time uncertainty,
resulting in feasibility ratios of zero across all instances. The feasibility ratios are increased for the
multistage stochastic arrival time model with scenario tree Zworst. The feasibility ratio of instance A
is zero because the solution becomes infeasible before the re-optimization period; however, feasibil-
ity ratios of 77.0, 98.0, and 80.0 are obtained for instances B through D, respectively, with N = 100.
The multistage stochastic model is conservative, resulting that for not all realizations with the use of
re-optimization feasible solutions can be found. However, when a feasible solution is found it is robust
against worst-case delays of the expected copper concentrates. The conservative solution results in
significant profit reduction. The SBCP still experiences a risk of infeasibility due to arrival time uncer-
tainty; however, the risk is significantly decreased compared to the performance of the nominal model.

The quantified risk of the infeasibility of the robust solution for all supply uncertainty is obtained by com-
bining the three above models. The feasibility ratios are similar to the feasibility ratios obtained by the
multistage stochastic model evaluated only on arrival time uncertainty. This indicates that we can cre-
ate solutions that remain robust against realizations of the mass andmass fraction uncertainty, by either
using the double robust model or considering that all copper concentrates experience their maximum
delay, as in the multistage stochastic model. Concluding, the quantified risk of the infeasibility obtained
by the robust supply model is very instance dependent. The robust supply model finds often infeasible
solutions because including the worst-case delay for each copper concentrate is over-conservative.
However, the robust supply model illustrates that with the use of optimization under uncertainty meth-
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ods the mass and mass fraction uncertainty can be effectively captured and the risk of infeasibility due
to these uncertainties is decreased significantly. Capturing the complete arrival time uncertainty and
creating a model that finds feasible solutions for the entire scheduling proved to be more difficult. How-
ever, when a feasible solution is obtained it shows promising effects for the robustness of the solution
across realizations of the supply uncertainty.

Main research question
” What is the influence of supply uncertainty on the feasibility of the SBCP and how can we find a robust
solution to the SBCP, indicating a feasible blending schedule for the entire scheduling horizon after the
uncertainty realization, with the use of optimization for a mid-term scheduling time horizon?”

Due to the supply uncertainty, the nominal solution to the SBCP becomes infeasible across all uncer-
tainty realizations even when a re-optimization period of the model of seven days is applied. Primarily,
mass fraction uncertainty and arrival time uncertainty have the largest negative impact on the feasibility
of the solution. The SBCP has strict elemental and smelter throughput constraints, which makes it a
difficult problem to solve, in particular under supply uncertainty. The feasibility of the SBCP is thus very
sensitive to supply uncertainty. Currently, many last-minute adjustments are made to obtain feasible
blends that can be fed into the smelter to let the smelter continuously work to avoid the interruptions
costs of a million euros per day the smelter does not work.

An effort is made to create a robust blending schedule that remains feasible across different realizations
of the supply uncertainty can by considering the supply uncertainty directly in the optimization model for
the SBCP. The defined optimization model can be applied to any general probability distribution. We
observed that mass uncertainty can be sufficiently modeled with the use of a box uncertainty set with
a normalized perturbation factor of λ = 0.1. This results in solutions with a feasibility ratio of 100, indi-
cating that the solution remains feasible for all the simulated realizations of the mass uncertainty with
a re-optimization period of seven days. The model captures thus mass uncertainty effectively against
a minor profit reduction. The mass fraction uncertainty for an element can be sufficiently modeled with
the use of a budgeted uncertainty set. The normalized perturbation factors λ = 0.001 for element 2
and element 7 and λ = 0.01 for the other elements are chosen. The SBCP reacts very sensitively to
mass fraction uncertainty, especially for the uncertainty in the mass fraction of element 2 and element
7, and therefore the included budgeted uncertainty sets can not be very large. The robust mass fraction
model provides feasibility ratios ranging from 70 to 100, indicating that they effectively capture mass
fraction uncertainty, however less efficient for larger scheduling horizons. The arrival time uncertainty
is modeled with the use of a multistage stochastic model. However, the lower average objective ratio
may indicate that the current scenario tree considering no delay or the maximum delay for each copper
concentrate does not span the whole probability space for the arrival time uncertainty. The multistage
stochastic model with the scenario tree defined by Zworst provides feasibility ratios between 50 percent
and 100 percent, for the instances where a feasible solution could be found with the model. Consider-
ing the worst-case delay for each copper concentrate results thus in a solution that remains feasible
during arrival time uncertainty, however, is denoted as over-conservative, because for most instances
only infeasible solutions can be obtained with the model.

The models combined result in a robust supply optimization model which provides results of 50 percent
feasibility ratio to 100 percent, dependent on the SBCP instance. In comparison with the performance
of the nominal model, an increase in feasibility ratio is obtained by the robust supply model perfor-
mances has increased. The model has difficulty in capturing effectively the arrival time uncertainty,
because the conservative model leads not to feasible solutions for each instance. However, when a
feasible solution is found it will remain feasible across all realizations of arrival time uncertainty. The
conservative model leads to a significant decrease in profit. The double robust model effectively cap-
tures the mass uncertainty and the mass fraction uncertainty and finds feasible solutions that remain
feasible across most realizations of these uncertainties. The feasibility ratio is thus increased with the
use of the robust supply model. Especially, when the fee for downtime of the smelter is considered,
the use of the robust solutions provided by the robust supply model will be profitable for the refinery.
The results illustrate that using robust blending schedules that consider supply uncertainty improves
the feasibility ratios of the solution.
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Discussion

While this study contributes significantly to the literature on the optimization of the SBCP, particularly
in the context of supply uncertainty, it is essential to acknowledge its inherent limitations. Section 8.1
describes these limitations. Furthermore, Section 8.2 provides recommendations for further research.

8.1. Limitations
The linear nominal model developed serves as a foundational framework for understanding the refinery
blending operations. However, its simplifications are notable, designed to render it a quickly solvable
linear model. While these simplifications aid in comprehending the impact of supply uncertainty on the
SBCP and lay the groundwork for implementing optimization under uncertainty methods, they introduce
several limitations. Firstly, the nominal model overlooks detailed operational constraints. Therefore,
any solution derived from it must align with additional operational constraints before implementation.
Moreover, the current discrete-time model assumes daily periods for blending operations. However,
in reality, operational shifts are often changed at multiple periods in a day. Therefore, the possibility
of changing a blend during the day is overlooked. Furthermore, the nominal model assumes a singu-
lar outgoing flow, utilizing a blending network consisting of one pre-blender and one blender because
in this way the nonlinear constraints needed to ensure identical concentrations of multiple outgoing
flows can be omitted. While the model can be adapted for refineries with multiple units by running it
separately for each unit, this approach overlooks the interactions between different blending units. Ad-
ditionally, the linear nominal model optimizes the profit generated solely by throughput in the smelter.
However, recent research indicates that optimizing the duration of one blend could lead to enhanced
throughput for the entire refinery and less accumulation of materials. This aspect is not accounted for
in the current model, highlighting a potential avenue for further improvement.

The optimization models that consider the supply uncertainty offer a more realistic optimization ap-
proach for the SBCP. The robust models considering mass uncertainty and mass fraction uncertainty
both provided promising results for creating solutions that remain feasible under mass and mass frac-
tion uncertainty. However, the one-stage robust mass fraction model could not find feasible solutions
for the entire scheduling horizon for values of the normalized perturbation factor larger than λ = 0.1.
Similarly, the one-stage robust mass fraction model could not find feasible solutions for larger values
than λ = 0.3 for all the budgeted uncertainty sets for the elements together. If the refinery desires to
include larger perturbations of the uncertain parameters into the uncertainty set, a multistage model
should be employed. These bounds on the size of the uncertainty sets are thus limitations of the cur-
rent robust one-stage models. Additionally, the upper and lower bound constraint on the ratio between
the mass fraction of element 7 and element 2 results in a maximum range of uncertainty that can be
included in an uncertainty set for these parameters, without creating a contradiction. This is a limitation
of the robust approach. If the refinery desires to include perturbations outside the range of the maxi-
mum uncertainty set, for example, a violating model can be formulated with a penalty in the objective
for the size of the violation term. However, the model becomes than less interpretive but could result in
robust solutions with a higher feasibility ratio. The stochastic model with reduced scenario tree Zworst

was for most instances not capable of finding a feasible solution for the entire scheduling horizon. This
denotes that the model is too conservative. Although copper concentrates may experience their maxi-
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mum delay, by including this possibility in the scenario tree, the resulting stochastic model should hold
for the scenario that all copper concentrates are maximum delayed. The results illustrate that this is
(over-)conservative for most instances. However, by including the mean delay as possible realization
for each copper concentrate, the model found feasible solution, but the simulation results showed that
these solutions did not remain feasible for the majority of the arrival time uncertainties. Therefore, a
limitation of the current stochastic model where for each copper concentrate two possible delays are
selected to generate the scenario tree, is that is does not result in a feasible solution for the entire
scheduling horizon that remains feasible across different arrival time uncertainty realizations.

An additional limitation of the multistage stochastic model, is that for larger instances with more ex-
pected copper concentrates, the scenario tree expands quickly in size. When more delays for a copper
concentrate are considered, the scenario tree grows even more quickly. This results in computational
hard models to solve. The current models could not be solved for instance E, denoting that the num-
ber of scenarios and instances size is a severe limitation of the multistage stochastic model due to
extended computation times. A similar limitation is denoted for the simulation algorithm which is used
to evaluate the models. For larger instances it takes longer to compute the simulation, due to more re-
optimizations over the scheduling horizon. Currently, the re-optimization of the larger instances leads
to memory issues. It should be looked into how the potential memory leak can be eliminated in the
simulation algorithm.

8.2. Further Research
Finally, we provide a couple of recommendations for further research. First, we observed that for the
simulation results the performance measures for N = 100 and N = 1000 did not differ largely. We
would recommend further analyzing how much the results change for larger numbers of simulation it-
erations. If N = 100 turns out to be a sufficient number of iterations, this is promising for the option
to evaluate larger instances in reasonable computation time. It is in the refinery’s interest to evaluate
how the solutions change for a long-term scheduling horizon. Therefore we recommend extending the
scheduling horizons of the studied SBCP instances, and adjust the programming of the models accord-
ingly so they stay computationally efficient. Further, we highly recommend validating the results on a
case study with actual data from a refinery. In this way, the performance of the optimization models
and the results of this study can be validated.

Next, the construction of the scenarios for the multistage stochastic model can be further studied. The
current results show that the scenario tree including the worst-case delay or the scenario tree including
the mean delay both lead to insufficient solutions. We recommend further studying which delays of a
copper concentrate should be selected in the generation of the scenario tree. For instance, the con-
struction of a scenario tree where a delay in between the average delay and worst-case delay could
be studied. Another possibility is to include only the worst-case delay for the most important copper
concentrates, necessary for feasibility of the SBCP, and to be less conservative for the other copper
concentrates. It could be studied to add scenarios to the model following an sequential approach in
such a way that not only the worst-case scenarios are included.

By creating both a nominal optimization model and optimization models that consider uncertainty, dif-
ferent mathematical formulations have been obtained for the SBCP. When a robust formulation is used
with an uncertainty set containing only the zero element, this revealed that different solutions are ob-
tained for the optimal objective value with the different formulations of the model. This is of interest,
because this indicates that multiple feasible blending schedules are generating the same optimal objec-
tive value. It is of interest to study the differences of the solutions and if they influence the robustness
of the model under supply uncertainty.

Further, it is of interest to perform a sensitivity analysis on the capacity and the start-inventory in the
SBCP and how these parameters influence the sensitivity of the SBCP to supply uncertainty. Includ-
ing a limited capacity increased the difficulty of remaining feasible for the SBCP considering supply
uncertainty. The results show that the feasibility of the SBCP is very dependent on the agreements
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made with the suppliers about when and which copper concentrates are deliver over the scheduling
horizon. Therefore, performing experiments with different frequencies of averring copper concentrates
and studying the effect on the feasibility ratio of the solution under supply uncertainty is recommended.
In addition, sensitivity analysis on how much start-inventory is included in comparison with how much
copper concentrate is ordered is of interest. Lastly, it is suggested to classify copper concentrates
using a categorisation system based on how easy they are to blend and the profitability. This could
help to gain insights in how to obtain a robust blending schedule under supply uncertainty.
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A
Derivation of robust counterparts

This chapter presents the derivation of the robust counterparts for the constraints including the uncertain
mass fraction parameter θk,c. For the uncertain parameter, θk,c, the implemented budgeted uncertainty
set is formulated as follows.

Θk =

{
θk,c ∈ Rkxc : θk,c(1− δpk,c) ≤ θk,c ≤ θk,c(1 + δpk,c), 0 ≤ pk,c ≤ 1, 0 ≤

∑
c∈C

pk,c ≤ Γ

}
(A.1)

Upperbound element 7/2 ratio constraint
Open Form Robust Constraint. The steps of the derivation of the robust counterpart are applied for the
interdependency ratio constraint for element 2 and element 7.

0.64
∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≥
∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T , ∀θ2,c ∈ Θ2, ∀θ7,c ∈ Θ7 (A.2)

Worst-Case Constraint. The worst case of this constraint is when the left side of the inequality is
minimized and the right side is maximized over the uncertain parameter θk,c. The uncertainty sets of
element 2 and element 7 are independent of each other.

0.64 min
θ2,c∈Θ2

∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≥ max
θ7,c∈Θ7

∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T (A.3)

Auxiliary Problem. This constraint can be split into two auxiliary optimization problems. These are a
minimization optimization problem and amaximization optimization problem. Theminimization problem
can as follows be transformed into amaximization problem. In this way, the same dual auxiliary problem
can be used. Than the reformulation for every individual inequality (t ∈ T ) is given by:

min
θ2,c∈Θ2

(∑
c∈C

∑
e∈E′

θ2,cfe,c,t

)

≡ min
θ2,c∈Θ2

(∑
c∈C

∑
e∈E′

θ2,cfe,c,t(1− δp2,c)

)

⇐⇒ min

(
−
∑
c∈C

∑
e∈E′

θ2,cfe,c,tp2,c

)
(A.4)

≡ −max

(∑
c∈C

∑
e∈E′

θ2,cfe,c,tp2,c

)
(A.5)

s.t. 0 ≤ p2,c ≤ 1 ∀c ∈ C∑
c∈C

p2,c ≤ Γ
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Robust Counterpart. Now we can use the already derived dual auxiliary problem for both maximization
problems and substitute it into the constraint. This provides the robust counterpart as shown in equation
(A.6).

0.64
∑
c∈C

∑
e∈E′

θ2,cfe,c,t − δ(Γq2 +
∑
c∈C

s2,c) ≥
∑
c∈C

∑
e∈E′

fe,c,tθ7,c + δ(Γq7 +
∑
c∈C

s7,c) ∀t ∈ T (A.6)

Lowerbound element 7/2 ratio constraint
Open Form Robust Constraint. The open form of the robust constraint for the lower bound of the ratio
of element 7 and element 2 is formulated as follows.

0.58
∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≤
∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T , ∀θ2,c ∈ Θ2, ∀θ7,c ∈ Θ7 (A.7)

Worst-Case. The worst case of this constraint is when the left side is maximized and the right side is
minimized over the uncertain parameter theta.

0.58 max
θ2,c∈Θ2

∑
c∈C

∑
e∈E′

θ2,cfe,c,t ≤ min
θ7,c∈Θ7

∑
c∈C

∑
e∈E′

θ7,cfe,c,t ∀t ∈ T (A.8)

Robust Counterpart. The same auxiliary optimization problems can be formulated as above. The same
dual auxiliary problem can then be used and substituted in the formulation. This results in the robust
counterpart as formulated in equation (A.9).

0.58
∑
c∈C

∑
e∈E′

θ2,cfe,c,t + δ(Γq2 +
∑
c∈C

s2,c) ≤
∑
c∈C

∑
e∈E′

θ7,cfe,c,t − δ(Γq7 +
∑
c∈C

s7,c) ∀t ∈ T (A.9)

Interdependency between elements constraints
Open Form Robust Constraint. The derivation of the robust counterpart for the interdependency con-
straints for the elemental flows is as follows. First, the robust constraint in open form is formulated as
in equation (A.10).

Uk

∑
k′∈K

(Kk′

∑
c∈C

∑
e∈E′

θk′,c)fe,c,t ≥ Kk

∑
c∈C

∑
e∈E′

fe,c,tθk,c ∀k ∈ K, ∀t ∈ T , ∀θk,c ∈ Θk (A.10)

Worst-Case. Because it is preferred to be able to define a dual variable per element k′, the constraint
is reformulated, and then the worst case constraint is defined.

Uk min
θk,c∈Θk

 ∑
k′∈K,k′ ̸=k

∑
c∈C

∑
e∈E′

θk′,cfe,c,tKk′


≥ Kk(1− Uk) max

θk,c∈Θk

∑
c∈C

∑
e∈E′

θk,cfe,c,t ∀k ∈ K, ∀t ∈ T
(A.11)

Auxiliary problem. There are two auxiliary optimization problems. The dual reformulation of the right
maximization problem is already known. The derivation of the dual formulation of the left minimization
optimization problem remains to be done. First, the minimization problem is rewritten to a maximization
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problem.

min
θk,c∈Θk
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)
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(A.12)

s.t. 0 ≤ pk′,c ≤ 1 ∀k′ ∈ K, k′ ̸= k, ∀c ∈ C (A.13)∑
c∈C

pk′,c ≤ Γ ∀k′ ∈ K, k′ ̸= k (A.14)

Dual Auxiliary problem. The dual variable s′k′,c is introduced for constraint (A.13) and the dual variable
q′k′ is introduced for constraint (A.14). For each problem with (k ∈ K, t ∈ T ) the dual auxiliary problem
is then formulated as follows.

min
∑

k′∈K,k′ ̸=k

Γq′k +
∑
c∈C

∑
k′∈K,k′ ̸=k

s′k,c (A.15)

s.t.s′k′,c + q′k′ ≥
∑
e∈E′

θk′,cfe,c,tKk′ ∀c ∈ C, k′ ∈ K, k′ ̸= k

s′k′,c ≥ 0 ∀c ∈ C, k′ ∈ K, k′ ̸= k

q′k′ ≥ 0 k′ ∈ K, k′ ̸= k (A.16)

Robust Counterpart. By strong duality, the initial optimization problem (A.12) which is a −max problem
is equivalent to a−min problem and this is equal to a max− problem. This is substituted into constraint
(A.11), providing the following inequality. Because the primal problem is feasible, the dual problem will
be bounded and thus for general dual variables, it will be definitely feasible for the optimal dual variables.
So the minimum sign can be dropped. This results in the following robust counterpart.

Uk

(∑
c∈C

∑
e∈E′

θk′,cfe,c,tKk′ − δ(Γq′k +
∑
c∈C

s′k,c)

)
≥ Kk(1− Uk)

∑
c∈C

∑
e∈E′

θk,cfe,c,t + δ(Γqk +
∑
c∈C

sk,c) ∀k ∈ K, ∀t ∈ T (A.17)

s.t. s′k′,c + q′k′ ≥
∑
e∈E′

θk′,cfe,c,tKk′ ∀c ∈ C, k′ ∈ K, k′ ̸= k

s′k′,c ≥ 0 ∀c ∈ C, k′ ∈ K, k′ ̸= k

q′k′ ≥ 0 ∀k′ ∈ K, k′ ̸= k
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Additional results optimization

models

This appendix presents additional numerical results for the formulated optimization models for the
SBCP. Sections B.1 and B.2 present the optimization results for the robust mass fraction model for
varying values of the normalized perturbation factor λk for different elements. Section B.3 presents the
results for the one-stage stochastic model utilizing the scenario tree Zsampled. Section B.4 presents
the performance of the double robust model evaluated for both mass and mass fraction uncertainty.

B.1. Optimization results robust mass fraction model for varying
lambda

Table B.1 presents the optimization results of the robust mass fraction model, which utilizes a budgeted
uncertainty set for themass fraction parameters for all the elements k ∈ K. The normalized perturbation
factor λ that denotes the maximum percentage deviation of the nominal mass fraction in the budgeted
uncertainty set is varied between 0.01 and 0.05. The budget parameter is set to Γ = 1

2CC and the
results are presented across instance A till instance E. The table illustrates that from a value λ = 0.01
applied to the budgeted uncertainty sets of all elements simultaneously, the model is not able to find a
feasible solution across all instances.

Table B.1: Optimization results of the robust model for uncertainty in the mass fraction of elements in a copper concentrate. A
budgeted uncertainty set has been implemented with a varying normalized perturbation factor λ across the budgeted

uncertainty sets for all elements. The budget parameter is Γ = 1
2
CC. The results are shown for instance A till instance E.

Output λ = 0.0 (deterministic) λ = 0.01 λ = 0.02 λ = 0.03 λ = 0.04 λ = 0.05
Instance A Feasibility status feasible feasible feasible infeasible at p7 infeasible at p7 infeasible at p7

Computational time (s) 0.23 0.28 0.25 * * *
Objective value (million euros) 9.5 9.4 9.2 * * *

Instance B Feasibility status feasible feasible feasible feasible infeasible at p5 infeasible at p5
Computational time (s) 0.76 1.04 1.29 1.02 * *
Objective value (million euros) 17.5 17.3 17.1 16.2 * *

Instance C Feasibility status feasible feasible feasible feasible infeasible at p5 infeasible at p5
Computational time (s) 0.32 0.57 0.99 0.65 * *
Objective value (million euros) 36.9 36.0 34.7 33.3 * *

Instance D Feasibility status feasible feasible infeasible at p5 infeasible at p5 infeasible at p5 infeasible at p5
Computational time (s) 0.53 10.92 * * * *
Objective value (million euros) 63.2 62.4 * * * *

Instance E Feasibility status feasible infeasible at p5 infeasible at p5 infeasible at p5 infeasible at p5 infeasible at p5
Computational time (s) 3.16 * * * * *
Objective value (million euros) 199.0 * * * * *

Table B.1 presents again the optimization results of the robust mass fraction model, which has a bud-
geted uncertainty set for the mass fraction parameter for all the elements k ∈ K. Now, the normalized
perturbation factor for the budgeted uncertainty sets applied to the mass fraction parameter of element
2 and element 7 are set to λ2 = λ7 = 0.001 because we know that these the SBCP reacts more sen-
sitively to uncertainty in these parameters. The normalized perturbation factors for the other elements
are varied between 0.01 and 0.05. The budget parameter is set again to Γ = 1

2CC and the results
are shown across instance A till instance E. The table illustrates that from λ = 0.03 for the budgeted
uncertainty sets for the remaining elements, not for every instance a feasible solution can be found.
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Table B.2: Optimization results of the robust model for uncertainty in the mass fraction of elements in a copper concentrate. A
budgeted uncertainty set has been implemented with a varying normalized perturbation factor λ across the budgeted
uncertainty sets for the elements k ∈ K \ {2, 7}. The normalized perturbation factor for elements 2 and 7 is set to

λ2 = λ7 = 0.001. The budget parameter is Γ = 1
2
CC. The results are shown for instance A till instance E.

Output λ = 0.0 (deterministic) λ = 0.01 λ = 0.02 λ = 0.03 λ = 0.04 λ = 0.05
Instance A Feasibility status feasible feasible feasible infeasible at p7 infeasible at p7 infeasible at p7

Computational time (s) 0.23 0.28 0.22 * * *
Objective value (million euros) 9.5 9.4 9.2 * * *

Instance B Feasibility status feasible feasible feasible feasible feasible feasible
Computational time (s) 0.76 1.098 1.235 1.358 0.991 1.543
Objective value (million euros) 17.5 17.31745185356401 17.12453134699347 16.90182473326156 16.67941015644814 16.45761145695507

Instance C Feasibility status feasible feasible feasible feasible feasible feasible
Computational time (s) 0.32 0.57 0.632 0.728 0.737 0.685
Objective value (million euros) 36.9 36.7 36.52797871869253 36.33309999745168 36.14162223127252 35.874036888419454

Instance D Feasibility status feasible feasible feasible feasible feasible feasible
Computational time (s) 0.53 4.80 14.51 8.83 6.38 9.87
Objective value (million euros) 63.2 62.9 62.1 61.2 60.1 59.1

Instance E Feasibility information feasible feasible feasible infeasible at p5 infeasible at p5 infeasible at p5
Computational time (s) 3.16 635.93 801.75 * * n*
Objective value (million euros) 199.0 189.8 181.3 * * *

B.2. Optimization results robust mass fraction model individual un-
certainty sets

The sensitivity of the SBCP to mass fraction uncertainty is studied in detail by creating different ro-
bust models, each incorporating a budgeted uncertainty set implemented for an individual element k
as opposed to an uncertainty set applied to all elements simultaneously. The normalized perturbation
factor λk is varied between 0 and 0.1 with steps of 0.01. This allows us to analyze the size of the
uncertainty set for an individual element for which the robust model still finds feasible solutions across
the instances. The budget parameter Γ = 1

2CC is used and the study is performed on instance A till
instance C. Figure B.1a till B.4b show the results, where the objective value of each instance is scaled
between 0.0 and 1.0, denoted as the uniform objective value.
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Figure B.2: Optimization results for robust model with a budgeted uncertainty set for respectively element 3 or element 4
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(a) Robust model with budgeted uncertainty set for
element 6.
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Figure B.4: Optimization results for robust model with a budgeted uncertainty set for respectively element 7 or element 8
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B.3. Result one-stage stochastic model with sampled scenario set
Optimization results
Table B.3 shows the optimization results of the one-stage stochastic model with a reduced scenario
set Zsampled that is constructed by sampling X random scenarios from the probability distribution that
describes the delay of a copper concentrate, as discussed in Section 4.5.2. This probability distribution
is described in Section 4.2.3. We exclude instance E due to memory constraints.

Table B.3: Optimization results of the one-stage stochastic model with the reduced set of scenarios Zsampled. The reduced
set of scenarios Zsampled is generated by sampling random scenarios from the probability distribution which describes the

uncertain delay of a copper concentrate. The parameter X denotes the size of the set of sampled scenarios.

Output Deterministic X = 10 X = 100 X = 1000

Instance A Feasibility status feasible infeasible at p8 infeasible at p6 infeasible at p6
Computational time (s) 0.02 * * *
Objective value (million euros) 9.5 * * *

Instance B Feasibility status feasible feasible feasible feasible
Computational time (s) 0.07 0.32 0.32 5.57
Objective value (million euros) 17.5 12.3 11.5 9.8

Instance C Feasibility status feasible feasible feasible feasible
Computational time (s) 0.07 0.13 0.22 2.34
Objective value (million euros) 36.9 32.3 24.7 24.7

Instance D Feasibility status feasible infeasible at p30 infeasible at p18 infeasible at p15
Computational time (s) 0.04 * * *
Objective value (million euros) 63.2 * * *

The table presents that the one-stage model with the reduced scenario set Zsampled feasible stochastic
solutions are found for instances B and C, regardless of the sampling size X. This illustrates that
for these instances the model is capable of finding a solution that is feasible for a large part of the
probability space. However, for instances A and B, solutions are consistently infeasible, independent
of the sampling size. This shows that themodel has difficulty in finding feasible solutions for the sampled
scenarios of arrival time uncertainty. The sensitivity of the SBCP to arrival time uncertainty appears
thus to be instance-specific, influenced by factors such as the availability of start inventory, the number
of expected copper concentrates, and the scheduling horizon’s length. We conclude that the one-
stage stochastic model can not find feasible solutions for scenarios that represent the majority of the
probability space of the arrival time uncertainty across all instances. When a feasible solution is found
this is accompanied by a significantly lower objective value compared with the nominal solution. The
computation time of the one-stage stochastic model is not significantly larger than the deterministic
model. However, the infeasibility of the solutions and the large decrease in objective value indicate that
the one-stage model may be too conservative for the SBCP and the implementation of a multistage
model would provide a more sufficient solution.

Performance results
Table B.4 shows the simulation results of the one-stage stochastic model with the reduced set of sce-
narios Zsampled. The number of sampled scenarios is X = 10. For a larger number memory issues
occurred during re-optimization. A re-optimization period of seven days is applied.
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Table B.4: Performance of one-stage stochastic model with the reduced scenario set Zsampled where the scenarios are
randomly generated from the probability distribution of the delay of a copper concentrate. The sample size is X = 10. A

re-optimization period of seven days is applied.

Number of simulations Performance measures Nominal Model OSM: Z = Zsampled, X = 10
Instance B 10 Feasibility ratio 0.0 *

Average objective ratio *** *
Simulation time (s) 2.13 18.529

100 Feasibility ratio 0.0 1.0
Average objective ratio *** 80.0
Simulation time (s) 15.10 162.24

Instance C 10 Feasibility ratio 0.0 10.0
Average objective ratio *** 89.0
Simulation time (s) 1.36 11.18

100 Feasibility ratio 0.0 16.0
Average objective ratio *** 88.8
Simulation time (s) 13.25 129.018

The table illustrates a low feasibility ratio for the one-stage stochastic model with the reduced scenario
set Zsampled varying from 1.0 (instance B, N = 10) to 16.0 (instance C, N = 100). The feasibility ratios
are low primarily because for the majority of the realizations, only infeasible solutions could be found
by the model. This indicates that the stochastic model does not yet capture the whole probability space
of the arrival time uncertainty. This is expected for a sample size of X = 10, enlarging the sample size
may result in higher feasibility ratios. The SBCP is sensitive to uncertainty in the arrival time of a copper
concentrate and we can conclude that the one-stage stochastic model with Zsampled andX = 10 is not
sufficient for providing a robust solution across all instances.

B.4. Performance results of double robust model
Table B.5 presents the simulation results of the double robust model (DRM) for simulated uncertainty
both in the mass of a copper concentrate and the mass fraction of the elements in a copper concen-
trate. For comparison, also the performances of the robust mass model (RMM) and the robust mass
fraction model (RMFM) in addition to the performance of the nominal model for simulated uncertainty
for both the mass and mass fraction of elements of a copper concentrate are presented. The results
are presented for instance A till instance C.

The above table illustrates that the nominal model evaluated for both mass uncertainty and mass frac-
tion uncertainty performs worse than only evaluated for mass uncertainty (refer to Table 6.2). Instance
A has a feasibility ratio of 40.0, which lies between the score of the evaluation for mass uncertainty
(100.0) and the feasibility ratio during the evaluation of mass fraction uncertainty (20.0). Both uncer-
tainties seem to level each other out for instance A. For instance B and C the feasibility ratio is 0.0,
indicating that the nominal solution is not feasible against realizations of the mass and mass fraction
uncertainty combined.

The performance of the robust mass model (RMM) is poor, indicated by feasibility ratios varying be-
tween 0.0 and 40.0. The robust mass model worked well to provide robust models for uncertainty in the
mass of a copper concentrate. However, when also uncertainty in the mass fraction of the elements is
applied to these solutions the table shows that the solutions perform the same as the nominal model.
The robust mass fraction model (RMFM) performs better for the uncertainties in both mass and mass
fraction. The feasibility ratios for instance A and instance B are high varying between 90.0 (instance
B, N = 10) and 100.0 (instance A, N = 10). However, as can be seen in Table 6.2 these instances
already performed well for mass uncertainty with the nominal solution. Therefore the addition of mass
uncertainty has not a large negative influence on the feasibility ratio of these instances. Instance C
however did not perform well under mass uncertainty with the nominal solution, and the solution from
the robust mass fraction model performed poorly under the addition of mass uncertainty (40.0). Both
robust models perform thus well for their uncertainty individually, however when the other uncertainty
is added the feasibility ratios drop.
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Table B.5: Performance of the models for simulated uncertainty in the mass of a copper concentrate and the mass fraction of
elements in a copper concentrate. The performances of the nominal model, the robust mass model (RMM), the robust mass

fraction model (RMFM), and the double robust model (DRM) across instances A till C are presented.

Number of simulations Performance measures Nominal Model RMM RMFM DRM
Instance A 10 Feasibility ratio 40.0 40.0 100.0 100.0

Average objective ratio 100.25 98.7 97.8 96.9
Simulation time (s) 0.97 1.43 1.69 1.86

100 Feasibility ratio 47.0 49.0 93.0 97.0
Average objective ratio 100.2 98.8 97.7 96.8
Simulation time (s) 6.14 8.80 10.91 11.0

Instance B 10 Feasibility ratio 0.0 0.0 90.0 90.0
Average objective ratio * * 98.9 98.9
Simulation time (s) 2.41 4.55 18.92 15.89

100 Feasibility ratio 3.0 3.0 93.0 93.0
Average objective ratio 100.3 100.0 92.2 99.1
Simulation time (s) 18.74 31.74 141.32 159.28

Instance C 10 Feasibility ratio 0.0 0.0 40.0 80.0
Average objective ratio * * 99.3 97.5
Simulation time (s) 1.84 4.30 9.87 9.57

100 Feasibility ratio 0.0 0.0 42.0 80.0
Average objective ratio * * 99.5 97.5
Simulation time (s) 12.25 26.89 87.84 92.82

Notably, the combination of above models, denoted as the combined robust model (CRM) can provide
robust solutions that remain feasible both under mass and mass fraction uncertainty, indicated by high
feasibility ratios (varying from 80.0 to 100.0). We can conclude that the robust models are sufficient
for capturing the uncertainty and yielding a feasible solution under mass and mass fraction uncertainty
under minor profit reductions in reasonable computation time.



C
SBCP data instances

This chapter presents the nummerics of the SBCP instances which are used to evaluate the various
optimization models for the SBCP. Specifically, we present the list of expected copper concentrates
which corresponding copper concentrate parameters and similarly the parameters for the non copper
concentrates in each instance. The general blending system parameters and element constraint pa-
rameters have been already presented in Chapter 5. In total five data instances are studied, denoted
instance A until instance E respectively. Refer also to Chapter 5 for a description of the construction of
these instances.

C.1. Data of SBCP Instance A
Table C.1: Expected copper concentrates for SBCP instance A.

c t′ j gm,j,c,t′ αc θ1,c θ2,c θ3,c θ7,c

1 1 1 11380 146 0.254 0.297 0.329 0.12
2 7 1 10800 1172 0.7 0.00507 0.185 0.11
3 0 1 5017 319 0.25 0.22 0.27 0.26
4 0 1 5009 216 0.221 0.37 0.355 0.055
5 0 1 4719 264 0.241 0.255 0.315 0.189

Table C.2: The non-copper concentrates which arrive daily for instance A.

c j hj,c,t αc θ1,c θ2,c θ3,c θ7,c
1 S+1 38.14 0 0.207 0.35 0.121 0.322

C.2. Data of SBCP instance B
Table C.3: Expected copper concentrates for SBCP instance B.

c t′ j gm,j,c,t′ αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 0 1 11360 146 0.254 0.297 0.0000806 0.0000206 0.000112 0.000023 0.053 0.329
2 3 2 12590 1130 0.303 0.307 0.0000706 0.0000455 0.0000349 0.00457 0.0132 0.345
3 6 3 10800 1172 0.700 0.005 0.0005 0.0000015 0 0.06 0.00 0.185
4 7 4 15600 412 0.0372 0.176 0.000285 0.0000202 0.000184 0.0000597 0.136 0.130
5 10 5 183 766 0.002 0.0275 0.005 0.000370 0 0.00002 0.730 0.00200
6 0 6 5017 319 0.25 0.22 0.0100 0.0000001 0.00005 0.0001 0.0580 0.270
7 0 7 5009 216 0.221 0.37 0.000538 0.000000669 0.00000885 0.0000338 0.00467 0.355
8 0 8 4719 264 0.241 0.255 0.00157 0.000000157 0 0.0000243 0.0775 0.315
9 0 9 3543 214 0.236 0.0699 0.00155 0.000000075 0 0.0000135 0.125 0.118
10 0 10 2609 437 0.00219 0.280 0.00930 0.000129 0 0.000422 0.365 0.155

Table C.4: The non-copper concentrates which arrive daily for instance B.

c j hj,c,t αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 S + 1 1000 0 0 0 0 0 0 0 1 0
2 S + 1 1 6.26 0 0.241 0.309 0.00113 0.00000514 0 0.00322 0.183 0.2627
3 S + 1 36.05 0 0.207 0.350 0.000774 0.00000429 0 0.00211 0.240 0.1997
4 S + 1 37.34 0 0.428 0.00 0.0168 0.0000278 0 0 0 0.5556
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C.3. Data of SBCP instance C

Table C.5: Expected copper concentrates for SBCP instance C.

c t′ j gm,j,c,t′ αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 0 1 13960.0 448.0 0.17003871621971953 0.2567798830132928 0.001132613157673963 3.588290077199732E-5 0.0 3.89251771615203E-4 0.18391073041338413 0.561672431273802
2 0 2 7675.0 1241.0 0.1249883722283784 0.1286097062515374 7.805724288560929E-4 4.2332596562691696E-5 0.0 8.262286490755191E-4 0.28934605820305503 0.23818391974623285
3 0 3 7002.0 362.0 0.28884769317561776 0.31164335505359836 0.0019821005427581024 2.9272428358281307E-5 1.8049391053467958E-4 8.608559980975405E-4 0.0038419954727158755 0.35151979514931736
4 0 4 8146.0 207.0 0.6893054635920309 0.22072033282830786 4.294484551856119E-4 1.8464254066903144E-5 1.315657065484873E-4 2.263971027493371E-4 0.13888734552672685 0.20135204728395661
5 0 5 11157.0 551.0 0.2453211205509214 0.1388140131466227 0.001728642530183658 5.829495330693889E-5 9.822733224503581E-5 8.03097077692396E-5 0.09341354914413576 0.27461360803257856
6 1 1 8368.0 1014.0 0.48527898318182633 0.30966862163741843 0.001445659123864293 1.2733279842674029E-5 7.271809658320718E-5 0.0011551635748097647 0.18555232909710803 0.4249709704376927
7 6 1 5798.0 1021.0 0.695444664922607 0.35382624036268423 3.991604784599199E-4 5.772697992358675E-5 1.663948327993328E-4 4.403512993489768E-4 0.1970254023734932 0.3177650086132736
8 9 2 7549.0 245.0 0.35237537682206393 0.3968174772620357 0.0019407093642390388 2.1234881375333655E-5 0.0 0.0011844529727692682 9.397165288366871E-4 0.24117593307548357
9 12 1 6386.0 1093.0 0.6924058389658382 0.3081396306911185 0.0010379960490429965 1.5387354255469374E-5 0.0 0.0011172636695946597 0.21798857622780446 0.2692426436878386
10 11 2 741.0 1006.0 0.06271654271319631 0.34087304852940076 7.769421540508834E-5 1.8525498070495776E-5 5.56667930045994E-5 4.779619248371226E-4 0.28166448566732794 0.48337729117005107

Table C.6: The non-copper concentrates which arrive daily for instance C.

c j hj,c,t αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 S + 1 1000 0 0 0 0 0 0 0 1 0
2 S + 1 32.0 0.0 0.6362475269184792 0.02257379496193405 0.0013183890946644335 2.9845965535087666E-5 9.041446268270526E-5 3.115676850616224E-4 0.11355855380432417 0.40317663066941556
3 S + 1 30.0 0.0 0.22742059729210226 0.009603661119236375 0.0014231845273291314 4.474027015896369E-5 8.861199085794442E-5 8.606617059083683E-4 0.028568252525337144 0.3231628968022674
4 S + 1 10.0 0.0 0.40754428224669237 0.0 0.0 3.5667508659495156E-5 0.0 0.0 0.0 0.0

C.4. Data of SBCP instance D

Table C.7: Expected copper concentrates for SBCP instance D.

c t′ j gm,j,c,t′ αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 0 1 13960.0 448.0 0.17003871621971953 0.2567798830132928 0.001132613157673963 3.588290077199732E-5 0.0 3.89251771615203E-4 0.18391073041338413 0.561672431273802
2 0 2 7675.0 1241.0 0.1249883722283784 0.1286097062515374 7.805724288560929E-4 4.2332596562691696E-5 0.0 8.262286490755191E-4 0.28934605820305503 0.23818391974623285
3 0 3 7002.0 362.0 0.28884769317561776 0.31164335505359836 0.0019821005427581024 2.9272428358281307E-5 1.8049391053467958E-4 8.608559980975405E-4 0.0038419954727158755 0.35151979514931736
4 0 4 8146.0 207.0 0.6893054635920309 0.22072033282830786 4.294484551856119E-4 1.8464254066903144E-5 1.315657065484873E-4 2.263971027493371E-4 0.13888734552672685 0.20135204728395661
5 0 5 11157.0 551.0 0.2453211205509214 0.1388140131466227 0.001728642530183658 5.829495330693889E-5 9.822733224503581E-5 8.03097077692396E-5 0.09341354914413576 0.27461360803257856
6 1 1 8368.0 1014.0 0.48527898318182633 0.30966862163741843 0.001445659123864293 1.2733279842674029E-5 7.271809658320718E-5 0.0011551635748097647 0.18555232909710803 0.4249709704376927
7 6 2 5798.0 1021.0 0.695444664922607 0.35382624036268423 3.991604784599199E-4 5.772697992358675E-5 1.663948327993328E-4 4.403512993489768E-4 0.1970254023734932 0.3177650086132736
8 4 3 7549.0 245.0 0.35237537682206393 0.3968174772620357 0.0019407093642390388 2.1234881375333655E-5 0.0 0.0011844529727692682 9.397165288366871E-4 0.24117593307548357
9 12 1 6386.0 1093.0 0.6924058389658382 0.3081396306911185 0.0010379960490429965 1.5387354255469374E-5 0.0 0.0011172636695946597 0.21798857622780446 0.2692426436878386
10 11 2 741.0 1006.0 0.06271654271319631 0.34087304852940076 7.769421540508834E-5 1.8525498070495776E-5 5.56667930045994E-5 4.779619248371226E-4 0.28166448566732794 0.48337729117005107
11 13 3 8160.0 373.0 0.033235999651613155 0.2604559409103614 0.0010291331815335527 3.0439093137474696E-5 3.6895024588858746E-5 5.761826341004262E-4 0.16574257181869315 0.27923767863773374
12 27 1 2073.0 862.0 0.4913819814530637 0.2994143798546626 0.0012423019467767147 1.4162272422410154E-5 0.0 1.5505569126304556E-4 0.10056711659158354 0.41364359804453477
13 23 2 5270.0 1443.0 0.6252066008731575 0.12253946463975869 8.981283024187955E-4 4.1276531918168036E-5 0.0 0.0010255627543749293 0.05099853279482679 0.3275594863339609
14 27 3 1519.0 1443.0 0.40689034074270863 0.2067484145795626 6.725144104400573E-4 3.2448247044972334E-5 3.6910038129883872E-6 6.278524091524897E-4 0.26339000920512157 0.4490291374688676
15 30 4 10543.0 253.0 0.5193497933254405 0.2544148818890922 6.781532972131784E-4 4.503982190385099E-5 0.0 6.239992520972819E-4 0.2782007517514631 0.2835382486170498
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Table C.8: The non-copper concentrates which arrive daily for instance D.

c j hj,c,t αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 S + 1 1000 0 0 0 0 0 0 0 1 0
2 S + 1 32.0 0.0 0.21928481551326517 0.21416544636693283 4.1592004615343076E-4 6.899380326411973E-6 1.4673430618318922E-4 0.0012300680644086865 0.015336477491002953 0.294204172161606
3 S + 1 32.0 0.0 0.15165719975009348 0.13682322248791082 5.539844989171829E-4 4.415225637149414E-5 0.0 3.52949145447458E-4 0.13411452854574435 0.3660892772714125
4 S + 1 10.0 0.0 0.05593109469411624 0.0 0.0 7.917444591101817E-6 0.0 0.0 0.0 0.0

C.5. Data of SBCP instance E

Table C.9: The non-copper concentrates which arrive daily for instance E.

c j hj,c,t αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 S + 1 1000 0 0 0 0 0 0 0 1 0
2 S + 1 36.0 0.0 0.6138607907800575 0.33581503315727707 8.085552158124025E-4 2.0818647696045746E-5 1.5362533676094797E-4 0.0010176019096367296 0.18360816151519999 0.20614580465932109
3 S + 1 32.0 0.0 0.4997748726214602 0.3434882414160816 6.769526701096945E-4 1.4942692518273655E-6 0.0 5.762170851756262E-4 0.057350780463013395 0.5593032329452856
4 S + 1 10.0 0.0 0.27901990591219444 0.0 0.0 4.815185568842242E-6 0.0 0.0 0.0 0.0
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Table C.10: Expected copper concentrates for SBCP instance E.

c t′ j gm,j,c,t′ αc θ1,c θ2,c θ3,c θ4,c θ5,c θ6,c θ7,c θ8,c

1 0 1 13960.0 448.0 0.17003871621971953 0.2567798830132928 0.001132613157673963 3.588290077199732E-5 0.0 3.89251771615203E-4 0.18391073041338413 0.561672431273802
2 0 2 7675.0 1241.0 0.1249883722283784 0.1286097062515374 7.805724288560929E-4 4.2332596562691696E-5 0.0 8.262286490755191E-4 0.28934605820305503 0.23818391974623285
3 0 3 7002.0 362.0 0.28884769317561776 0.31164335505359836 0.0019821005427581024 2.9272428358281307E-5 1.8049391053467958E-4 8.608559980975405E-4 0.0038419954727158755 0.35151979514931736
4 0 4 8146.0 207.0 0.6893054635920309 0.22072033282830786 4.294484551856119E-4 1.8464254066903144E-5 1.315657065484873E-4 2.263971027493371E-4 0.13888734552672685 0.20135204728395661
5 0 5 11157.0 551.0 0.2453211205509214 0.1388140131466227 0.001728642530183658 5.829495330693889E-5 9.822733224503581E-5 8.03097077692396E-5 0.09341354914413576 0.27461360803257856
6 0 6 4580.0 168.0 0.291624461211845 0.10444340578717912 0.0019000276358941066 4.14195844774437E-5 0.0 0.001177566986038912 0.2835999716878887 0.20494324958468088
7 0 7 13888.0 463.0 0.5979737409177263 0.3154867680717483 0.0019874047899882175 5.299503152844013E-5 0.0 2.2717703788899545E-4 0.05718505259288115 0.5327609615217079
8 0 8 4404.0 484.0 0.46047765343415764 0.13162416074461877 2.5608506012328436E-4 2.8328903605750995E-5 1.8251750839547992E-4 0.0014543197211264285 0.10593182165373545 0.21710801962493445
9 0 9 9977.0 778.0 0.022501513452284683 0.19604972509151458 0.001945880563368156 5.9347845258777975E-5 1.3232185334350336E-4 9.634329556798693E-4 0.10125214446704768 0.47317202119859614
10 0 10 13029.0 215.0 0.13395093454197848 0.08187094606119273 0.0016530515547834633 5.556366300143178E-5 6.765500334488727E-7 4.711831936886437E-4 0.1594825668746393 0.5380992705371465
11 29 1 1701.0 784.0 0.5396671940031859 0.2208446785645558 3.573198759204177E-4 5.864437787167624E-5 0.0 7.519987946250782E-4 0.1520104787858558 0.39146969236657325
12 26 2 12282.0 969.0 0.3877127468026742 0.09030378241081952 6.028901634020631E-4 5.741380779608724E-5 1.3714492631204537E-4 9.162339814883313E-4 0.07052451775924982 0.3429846045028013
13 14 3 15060.0 817.0 0.40754428224669237 0.2396106119399347 1.8380830106438738E-4 4.529969352940885E-5 0.0 6.510665085236548E-4 0.20626549145515913 0.3501492369003878
14 18 4 13720.0 46.0 0.2444425879953877 0.3396639905616926 0.0016878339986498739 2.6187389652463945E-7 0.0 4.7724301395208105E-4 0.16206882125142594 0.5580955479277375
15 29 5 6935.0 1096.0 0.6148439410780863 0.2724043152326981 6.50970090209479E-4 5.819990926998133E-5 0.0 9.521208150079381E-4 0.09446770455268659 0.4760545082551242
16 2 6 5457.0 1084.0 0.6492942219322949 0.09491612327921445 0.0013414412290163823 3.537208909291405E-5 0.0 2.795507145263164E-4 0.034164607391298986 0.45159559237968694
17 7 7 2092.0 685.0 0.03786315785998923 0.10635527560096218 1.5488918813269197E-4 3.7282400957476354E-5 4.6098656473909844E-5 0.001106880752544448 0.02734396857777812 0.29713280170631307
18 30 8 12418.0 1211.0 0.05593109469411624 0.05669404444697902 0.0014360090969213943 4.9079389680422915E-5 9.837353213376391E-5 1.4080730713951167E-4 0.15940576370841805 0.22672974360718962
19 28 9 8220.0 63.0 0.6124077065382231 0.3725725155239225 8.811196828673872E-5 2.5123766539175584E-6 5.025198882761118E-5 7.763522489647886E-4 0.28342207798472696 0.279897490831651
20 19 10 3367.0 1107.0 0.5256579107190078 0.26170738017817474 0.00189664152829989 5.2814592330302956E-5 0.0 3.498386210699549E-4 0.042020098192374934 0.42202457995871856
21 19 11 497.0 1032.0 0.33075279879606634 0.052999504642756975 5.071297687057466E-4 1.5035100512627715E-5 0.0 0.0010698462429556735 0.13024258066851688 0.501465687751003
22 37 1 11198.0 411.0 0.24955053458112167 0.18495174022170166 0.0014804035623128754 3.355597654734468E-5 3.7934160053218664E-5 2.3577787940850668E-4 0.27611166184556596 0.4529775803316598
23 40 2 10528.0 168.0 0.1435116463979041 0.09900060568038525 0.0016206676729089257 9.119394962567728E-6 2.5427493262224362E-5 1.581385893518446E-4 0.24590806847267174 0.4464321293885303
24 34 3 6889.0 1078.0 0.30821760680211463 0.08178699572559345 0.0012319031098268851 5.2460282813734334E-5 0.0 5.700205258883152E-4 4.921880189225236E-4 0.45364595213730635
25 55 4 10565.0 299.0 0.6754261856770654 0.3236716925068165 0.0017295045754087796 5.737453042407149E-5 6.283941249675381E-5 1.082732287383757E-4 0.10478549434793497 0.39154611743337675
26 51 5 5117.0 640.0 0.25697254358138416 0.3924125490280354 7.338825879732145E-5 3.672127686244973E-5 0.0 5.328301714878265E-4 0.20854688346652642 0.21164597642271987
27 55 6 301.0 656.0 0.5853933205033618 0.09241809447498568 0.0015279304546072362 2.9282212173592072E-5 0.0 2.639166778164546E-4 0.11152169064868725 0.2861210729977949
28 54 7 15620.0 1471.0 0.6217294658907725 0.11414171205155058 0.0011129419305534044 2.72664679718948E-5 0.0 0.0014043158120438505 0.26259223690140227 0.5134917001007198
29 47 8 12025.0 423.0 0.5453498397097957 0.2537197595325915 6.430178783501605E-4 4.494984784090452E-5 4.9920641623925265E-5 0.0010863133541187569 0.12584872926667898 0.306802921456048
30 32 9 11311.0 754.0 0.6315307568195456 0.259214827766231 0.001204979610785949 4.19485832522497E-5 4.8031474345375846E-5 9.354826937550293E-4 0.1472166533313642 0.3526667193811865
31 45 10 4664.0 815.0 0.3398588215568121 0.3128460405503276 0.0013382688498249152 2.08811634571409E-5 0.0 0.0011152664042792925 0.2629027541526534 0.30748546287458256
32 54 11 6000.0 333.0 0.5304931940354335 0.3079878120678261 0.0017238421852158361 1.3839631602310072E-5 0.0 3.883507860847146E-4 4.3027259950628727E-4 0.29865500971093695
33 34 12 8769.0 891.0 0.45453952718851265 0.22133722767695155 1.0861451573940455E-4 3.7173838153620006E-5 0.0 8.271987829804725E-5 0.291699153320518 0.3500757460477104
34 84 1 2875.0 712.0 0.12936461100567404 0.28664818937510383 8.027484586291066E-4 1.3465496239446769E-5 0.0 2.245079513484386E-4 0.2433252701678542 0.31618213861537553
35 79 2 9519.0 496.0 0.6805420279431091 0.18849777147888908 8.678447994672152E-4 3.7400533056955816E-5 0.0 5.725011704586867E-4 0.2738874134119105 0.40916822191879954
36 67 3 7965.0 120.0 0.4116120863106623 0.14321115866010212 8.860452209154284E-4 5.064988802134722E-5 3.0336272505827056E-5 0.001118190507473566 0.278494937357977 0.34317649350776397
37 69 4 9245.0 101.0 0.657898813159861 0.12595547086547704 0.0016494344175225632 2.9880783352595676E-5 0.0 5.01398021581993E-4 0.1747840814462245 0.3324764576238844
38 76 5 2224.0 871.0 0.285903199307652 0.30452135416158455 3.5793370467663535E-4 3.81440071513873E-5 1.1263759927153185E-4 3.7215266222879377E-4 0.11824954875314447 0.5661194940785389
39 66 6 2566.0 1076.0 0.49324915834663824 0.20720094798318242 4.037083144668818E-4 2.0538967654955078E-5 0.0 7.523782215897747E-4 0.15935274543966643 0.4583134270588869
40 66 7 2800.0 309.0 0.088266204851968 0.0528592247212124 2.947722499294059E-4 9.617878392230766E-6 0.0 9.80315689097683E-4 0.2134891288463723 0.5467222951263915
41 85 8 6313.0 1406.0 0.1538437819289439 0.24687498422052725 7.617515336472334E-4 2.9005381415655954E-5 0.0 0.00141044423848092 0.2257365374037753 0.268927254623615
42 79 9 15494.0 1103.0 0.4833457220597779 0.2696208571601767 0.0014431185775010907 8.48436943523324E-6 2.7392963411772774E-5 8.823129550800255E-4 0.2499956842774835 0.44693908909218616
43 68 10 10687.0 266.0 0.2704926561564325 0.2787818314504935 9.845553725061794E-4 6.533881634561765E-6 1.5286019907112018E-4 1.3949597008414168E-4 0.23088531973854468 0.4007415888967119
44 63 11 682.0 361.0 0.3117249275762517 0.07824114745186324 0.0017411417564300467 1.7350617029958877E-5 0.0 0.0012249683954947922 0.0877017057542281 0.36279238230541305
45 77 12 15921.0 756.0 0.41211696983017565 0.33745802056038465 1.9521220974978194E-4 4.6481029959561935E-5 4.3121393653917524E-5 0.0011185287156553984 0.20663927717377414 0.2372484904233098
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