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Abstract

In this research, the impact of temperature and precipitation extremes on mort-

gage delinquency rates are investigated for nine U.S. states for the period 2008 to

2022. The trends of extremes are estimated using extreme value techniques in a

heteroscedastic extremes framework. To quantify the impact of temperature and

precipitation extremes, these trends are used as covariates in a fixed effects re-

gression model. In the regression analysis of the impact of extreme weather on

mortgage delinquency rates, extreme temperature showed a consistently positive

and significant impact on both short-term (30-89 days) and long-term (90+ days)

delinquencies during the summer period, and a significantly positive impact on

short-term delinquencies during the winter period. In contrast, precipitation only

had a significant positive effect on long-term delinquencies during the summer. The

results underscore the significant and nuanced impacts of climatic factors on fi-

nancial stability, with extreme weather events influencing mortgage delinquencies

differently across states and over time. This underscores the urgency for strategic

climate resilience and financial adaptation measures within mortgage and housing

policies to effectively mitigate the negative impacts of climate extremes.
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1 Introduction

For the past decades, climate change has had an increasing effect on the frequency and severity

of extreme weather events, such as hurricanes, floods, and wildfires, but also a rise in global

temperature and precipitation. According to NASA, the global temperature is currently

rising at a rate of over 0.20◦C per decade and is expected to rise further. Furthermore,

the worldwide increase in total annual precipitation over the last century is also raising

concerns. Global precipitation has been increasing at an average rate of 1.016 millimeters

per decade since the beginning of the 20th century. For the United States, this rate is even

bigger, observed at 5.08 millimeters per decade (Environmental Protection Agency, 2022).

These escalating extreme weather events have a significant impact on the financial system.

Indirectly by disrupting economic activities, and directly by causing damage to properties

and infrastructure. Therefore, it is essential to understand the connection between climate

change and the financial system, especially taking the accelerating pace of climate change

into account.

One of the aspects of the financial market that is particularly hard-hit by the effects of

climate change, is real estate. It is highly susceptible to the impacts of climate change, due

to its inherent immobility. Therefore, evaluating the effects of climate change on housing and

mortgage markets is of particular concern in the context of climate-related financial risks.

This research aims to better understand the effect of temperature and precipitation extremes

on both short-term and long-term mortgage delinquency rates.

For this research we used monthly data on mortgage delinquency rates for 30 to 89 days

delinquency as well as more than 90 days delinquency. This data stretches from January

2008 to December 2022 and was obtained from the Consumer Financial Protection Bureau.

For the weather data we used daily data on average temperature and precipitation for the

same time period. This data was extracted from the National Oceanic and Atmospheric

Administration (NOAA). All data was obtained for nine southeastern U.S. states, namely

Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina

and Tennessee. This region is particularly prone to extreme weather events, especially high
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temperatures and heavy precipitation. To handle seasonality in the weather data, we split the

data into a summer and a winter period. Furthermore, we perform a declustering procedure

to remove temporal dependence in our dataset.

We use the heteroscedastic framework of Einmahl et al. (2022) to obtain a space-time

trend of extremes in our weather data, and test for a constant frequency of extremes. By

aggregating these trends of extremes into monthly values, we incorporate them as covariates

in a regression model designed to quantify their impact on mortgage delinquency rates. Our

empirical framework examines the influence of weather extremes on both short-term (30-89

days) and long-term (90+ days) mortgage delinquencies, taking into account seasonal varia-

tions and controlling for key economic factors like the House Price Index and unemployment

rates. Additionally, we include state-by-year and month fixed effects in our regression model

to isolate the specific influence of temperature and precipitation.

Our results indicate that extreme temperatures, particularly during the summer, signif-

icantly increase both short-term and long-term mortgage delinquency rates. Additionally,

we find that during the winter, extreme temperatures also have a significant and positive ef-

fect on short-term delinquency rates. This relationship likely stems from increased economic

strain due to higher utility bills, reduced agricultural productivity, and heat-related disrup-

tions to employment, which are especially acute in regions dependent on climate-sensitive

sectors. Similarly, our findings reveal that extreme precipitation significantly affects long-

term delinquencies during the summer. This effect is pronounced in areas frequently hit by

severe weather events such as hurricanes, which can lead to substantial property damage

and prolonged economic disruptions. The contrast between the seasonal impacts suggests

that while some regions may benefit from increased winter precipitation through enhanced

agricultural yields and water availability, the overall negative economic impact of extreme

weather events, underscores a critical vulnerability. These insights highlight the need for

adaptive economic policies and infrastructural resilience to mitigate the financial instabilities

introduced by weather extremes. Our results not only resonate with the existing literature

on the financial consequences of climate change but also highlight the complex dynamics

between distinct weather extremes and economic outcomes.
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The body of literature that studies the relationship between climate change and mortgage

delinquency rates is growing. However, the impact of precipitation extremes on mortgage

delinquency rates has not been previously explored. Our research contributes to the existing

literature by investigating this relationship, using a heteroscedastic framework to obtain the

space-time trend of extremes. Additionally, our findings on the influence of temperature ex-

tremes on short-term mortgage delinquency rates are consistent with previous studies. These

findings not only support the growing consensus in this field of research, but also distinctly

illustrate the profound influence of extreme weather events on the economic stability of the

housing market. Through this extended analysis, our study casts new light on the complex

dynamics between extreme weather events and economic outcomes. It underscores the need

for a deeper understanding of these factors, which is crucial for policymakers and financial

institutions aiming to mitigate the risks associated with climate change.

The remainder of this paper will be structured as follows. First, we will discuss previous

relevant literature in Section 2. Subsequently, in Section 3 the data that is used in this paper

will be specified. In Section 4, all used methods will be introduced and explained. Section 5

will report the results, which will then be discussed in Section 6. Finally, the research will

be summarized and concluded in Section 7.

2 Literature review

2.1 Extreme weather impact on mortgage delinquency

In the past years, climate change has emerged as an increasingly prominent topic in the

scientific literature. This rise in attention coincides with an increase in the frequency of

natural disasters, which is expected to persist due to climate change (IPCC, 2021). While

there are a lot of ways in which climate change is affecting our lives, many researches studied

the impact of climate change on the financial system and the accompanying risk. Reports

from the European Central Bank emphasized the threats that climate change risks and

natural disasters could pose for the stability of the financial system (ECB, 2020, 2021). In

addition to natural disasters, Dell et al. (2014) identify extreme temperature and precipitation
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as risk factors that can affect the economy. Therefore, our research aims to investigate specific

effects of temperature and precipitation extremes.

In the context of climate-related financial risks, mortgages are of particular concern. This

is because their collateral, which consists of immovable assets, is fully exposed to physical

risks (Calabrese et al., 2021). Several studies have identified a significant influence of natural

disasters on mortgage delinquencies. The literature shows the impact of different type of

climate events, such as hurricanes (Rossi, 2021) or wildfires (Issler et al., 2021). Focusing

on temperature and precipitation, Calabrese et al. (2021) studied the impact of extreme

weather events on mortgage risks in Florida and found a statistically significant impact of

heavy rains on mortgage default in areas with large exposure to flood risks. Deng et al.

(2021) investigated the impact of high temperature on mortgage default in the United States

and discovered that one additional high temperature day in each month over the past year is

associated with a 3.2% increase in the probability of 30-day delinquency. However, they did

not observe a significant result for low temperature. Subsequently, Deng et al. (2023) further

researched this topic and found that the probability to default on underwater homes as a

consequence of high temperature is even higher. Specifically, when homes are underwater,

one additional high temperature day in a month increases the default rate by 6.9%.

To clarify how temperature extremes can affect mortgage delinquency rates, Deng et al.

(2021) propose three different mechanisms. The first mechanism is what they call rational

belief updating. This entails that exposure to high temperatures could change an individual’s

view on climate change risks, leading them to perceive more risk. Consequently, this could

cause them to update their beliefs and change their behaviour, ultimately triggering mort-

gage default. This increased likelihood of default is caused by a decline in utility associated

with living in their current home and location. The second explanation they propose is that

of income liquidity. When agricultural and other outdoor workers experience higher temper-

atures, they could face climate induced income loss or even job losses. Consequently, they

may be more likely to default on their mortgage due to liquidity constraints. Naturally, this

effect is most pronounced in states with a high proportion of outdoor labor. The third and

final explanation they propose is called a psychological-behavioural effect. They discovered
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that when people are exposed to high temperatures for a longer period of time, they are more

likely to experience irregular decision patterns, potentially leading to reckless financial choices

such as mortgage defaults. They find the first mechanism to be the most pronounced, with

the other two being complementary explanations. This shows how temperature extremes can

potentially increase mortgage delinquency. While multiple studies have investigated and es-

tablished the connection between temperature extremes and mortgage delinquency, research

on the connection between precipitation extremes and mortgage delinquency is limited. With

precipitation increasing due to climate change, this could also pose problems for the financial

system and mortgage delinquency. The mechanisms Deng et al. (2021) propose regarding

the impacts of extreme temperatures on mortgage delinquency could potentially also hold

for precipitation extremes. Moreover, heavy precipitation could lead to an increased flooding

risk, which can lead to decreased property values, increased insurance costs and ultimately

property damage. This is of particular concern for the southeastern states of the U.S., which

are most subject to rain.

Even though literature on the effects of precipitation on mortgage delinquency rates is

lacking, the negative impact of heavy precipitation on the financial system has been es-

tablished (OECD, 2021). Furthermore, Cathcart et al. (2023) studied the impact of high

temperature and heavy precipitation on the default probability of small and micro firms and

found a significant relationship for both variables. Specifically, they found that a 2.46 mil-

limeters increase in the average precipitation on wet days increases the probability of default

by 0.324%. This finding indicates that heavy precipitation could potentially impact mortgage

delinquency as well. Therefore, our research will further investigate the impact of both ex-

treme temperature and precipitation on mortgage delinquency to advance our understanding

of these climate-related financial risks.

2.2 Extreme Value Theory

Given our focus on the frequency of extreme events, it is essential to delve into the fundamen-

tals of Extreme Value Theory. This theory models the probability of extreme occurrences

effectively. It delves into the tail of a probability distribution, concentrating on regions close
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to the maximum values, where drawing conclusions becomes challenging due to the scarcity of

data. Extreme Value Theory was first introduced by Fisher and Tippett (1928) and Tippett

(1925) and has been extended and applied broadly on multiple areas since then.

Einmahl et al. (2016) extend classical Extreme Value Theory to datasets where observa-

tions are not uniformly disributed, by introducing a theoretical framework that allows for

time-varying frequency of extreme observations, also referred to as heteroscedastic extremes.

They introduce a model accommodating this variability through a positive scedasis function.

This function helps model potential changes in the tail of a distribution function continuously

over time, offering a way to examine changes in extreme event frequencies. Furthermore, they

introduce a test statistic for evaluating the constancy of these frequencies. Their approach

applies to the analysis of heteroscedastic extremes without assuming a specific parametric

model and requires only a single observation at each time point for analysis.

Subsequent research by Einmahl et al. (2022) has further developed and implemented the

approach for investigating heteroscedastic extremes, by incorporating spatial and temporal

dimensions into the analysis of extreme events. This extension allows for a nuanced examina-

tion of how extreme weather events, like rainfall, are interconnected across different locations

and how their frequencies and intensities evolve over time. Additionally, they introduce a test

statistic to assess whether the frequency of extreme events remains constant over both time

and space. They apply their methods to analyze the space-time trends in extreme rainfall

events across North-Western Germany. We will use this space-time framework to identify

the trend of extremes in our temperature and precipitation data.

2.3 Fixed effects

In panel regression, it is common in the literature to add fixed effects to the regression

model. Fixed effects control for unobservable characteristics that are unique to each cross-

sectional unit and are constant over time. These could include individual-specific attributes

or other invariant features within entities such as firms, countries, or states. By controlling

for these fixed, unobserved traits, the models are able to focus on estimating the effect of the

variables that change over time within those units. This approach helps to mitigate the issue

9



of omitted variable bias, which occurs when the omitted characteristics are correlated with

both the dependent and independent variables. Consequently, including fixed effects in panel

regressions allows for more precise estimation of causal relationships, as it isolates the impact

of the independent variables from the influence of the constant unobserved heterogeneity.

However, when determining which fixed effects to include, it is crucial to consider the potential

pitfall of overfitting and multicollinearity. Overfitting occurs when too many fixed effects

tailor a model too closely to the sample, reducing its predictive power. It often happens

when the number of fixed effects is close to the number of observations. Multicollinearity

from multiple fixed effects can inflate standard errors, obscuring the significance and impact

of predictors.

Previous literature has used many different combinations of fixed effects. For example,

Deng et al. (2021) use three two-way fixed effects, specifically, county-by-year, county-by-

month and year-by-month fixed effects. Similarly, Aguilar-Gomez et al. (2022) use municipality-

by-year, municipality-by-quarter and year-by-quarter fixed effects. Others decided to include

less fixed effects, such as Jacob et al. (2007) who use jurisdiction-by-year and month fixed

effects in their regression, Cathcart et al. (2023) use firm and industry-by-year fixed effects,

Cathcart et al. (2020) use country and industry fixed effects and Addoum et al. (2020) use

industry-by-year and establishment-by-quarter fixed effects.

In our research, we included state-by-year and month fixed effects in the panel regression.

The inclusion of state-by-year fixed effects allows to control for unobserved, time-varying

factors that are unique to each state and could influence delinquency rates, such as state-

specific economic trends, policy changes, and other local developments that occur on an

annual basis. By incorporating month fixed effects, we account for common seasonal patterns

that affect all states similarly, such as seasonal employment fluctuations, holiday effects, and

general economic cycles. This fixed effects structure is chosen to capture the broad temporal

and seasonal variations that could confound the impact of weather conditions on mortgage

delinquencies, without overfitting the model with more granular interactions.

10



3 Data

Our analysis is based on data from nine U.S. states, specifically Alabama, Arkansas, Florida,

Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee.

3.1 Mortgage delinquency rates

For our analytical framework, we make use of monthly mortgage delinquency rates, differenti-

ating amongst delinquencies spanning 30 to 89 days and those exceeding 90 days. Borrowers

who fall into the former category have missed one or two mortgage payments. This rate is

a measure of early stage delinquencies and can be an early indicator of the mortgage mar-

ket’s overall health. Borrowers that are over 90 days delinquent have missed three or more

mortgage payments. This rate measures more severe economic distress. Our dataset con-

tains observations from January 2008 to December 2022, resulting in a total of 180 months.

This data was obtained from the Consumer Financial Protection Bureau. Panel A in Ta-

ble 1 displays the overall mean and standard deviations of mortgage delinquency rates in

our dataset. We observe that the average delinquency rate for 30-89 days is 3.27%, with a

standard deviation of 1.31%, while the mean for 90+ days is 2.19%, with a slightly higher

standard deviation of 1.54%. These numbers indicate that while the mortgage delinquency

rate is higher for the 30-89 days category, there is more variability in the 90+ days category.
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Figure 1: Mortgage Delinquency Rates per State over Time

Figure 1 shows the yearly mortgage delinquency rates over time per state, for 30 to 89
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days delinquency as well as more than 90 days delinquency. We observe an overall decrease

over time for each state for the 30 to 89 days delinquency rates. This trend may be attributed

to multiple factors, such as overall improvements in economic conditions or implementation

of policies aimed at preventing delinquencies. Remarkably, Mississippi consistently maintains

a higher average 30 to 89 days mortgage delinquency rate compared to the other states.

Considering the graph for the 90+ days mortgage delinquency rates, we see an increase

for each state between 2008 and 2010. This was in all probability a consequence of the 2008

housing crisis, which led to widespread economic distress, job losses and dropping property

values, leaving all homeowners struggling to meet their mortgage obligations. However, this

increase is particularly high for Florida, resulting in a spike of over 8%, reflecting that Florida

was particularly hard-hit by the housing crisis.

Table 1: Overall descriptive statistics

Variables Mean St. dev.

Panel A: Delinquency rates (in %)
30-89 days 3.27 1.31
90+ days 2.19 1.54
Panel B: Weather variables
Temperature (in ◦C) 18.55 8.65
Precipitation (in mm) 3.79 11.36
Panel C: Control variables
Unemployment rate (in %) 3.27 1.31
House Price Index 2.19 1.54

Note: Statistics of delinquency rates and control vari-
ables were calculated using monthly data. Weather
statistics were calculated using daily data.

3.2 Weather

Daily weather data for the aforementioned nine states were obtained from the National

Oceanic and Atmospheric Administration (NOAA). As weather data is only available per

weather station, we decided to obtain records from five weather stations within each state,

balancing time limitations with the necessity to ensure adequate data representation. This

weather dataset encompasses the key meteorological variables used for this research, which are

average temperature and precipitation. Temperature values were converted from Fahrenheit

to Celsius and precipitation values were transformed from inches to millimeters. Figure
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2 displays the locations of the weather station areas that were obtained for this research,

ensuring a broad spread across each state.

Figure 2: Map of the weather station locations

Furthermore, the dataset contained two types of missing values. Firstly, within the pre-

cipitation data, several dates contained a T value, signifying a small amount of precipitation

that will wet a rain gauge but is less than the 0.01 inch measuring limit. As this research

specifically focuses on precipitation extremes, days containing the T values, indicating very

low precipitation, are set to zero. Secondly, the dataset contained some values marked as

M , indicating missing statistics. Data for an element can be missing if the primary sensor

for that weather element is inoperable or malfunctioning and any collocated backup sensor

is also inoperable or malfunctioning. We dealt with these missing values by computing the

mean of the corresponding date from the two preceding years and the two subsequent years.

Subsequently, the missing value was substituted with this computed mean. In the case of

any of these four dates being unavailable, the corresponding data point was simply omitted

from the calculation.

Panel B in Table 1 reports overall descriptive statistics for both our weather variables,

calculated from daily data. We observe an average mean temperature of 18.55◦C with a

standard deviation of 8.65◦C. The average daily precipitation amount is 3.79 mm with a

standard deviation of 11.36 mm, indicating high variability. This finding is not unusual,

as there are numerous days with little to no precipitation, alongside days that experience
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significantly high rainfall amounts.

3.2.1 Seasonality

Seasonality commonly shows in meteorological variables such as temperature and precipita-

tion. Figure 3 displays boxplots depicting the seasonality of daily data for precipitation and

temperature in Alabama, respectively.

Figure 3: Seasonality boxplots of average daily precipitation and temperature in Alabama

The boxplot for temperature clearly shows a seasonal pattern, with higher average tem-

perature during the summer months than during the winter months. Somewhat less clearly,

average precipitation exhibits a similar seasonal pattern. Given that our data display sea-

sonal patterns, we anticipate that their extremes will follow a similar trend. The black circles,

representing the outliers, confirm the presence of this pattern. To address this seasonality in

our data, we will divide the data into summer and winter periods, following Einmahl et al.

(2022). Excluding transitional months April and October, we define the summer period as

May to September and the winter period as November to March.

3.2.2 Descriptive statistics

Table 2 shows the descriptive statistics of the daily temperature data for each state and

the summer and winter period separately. The dataset exhibits spatial consistency across

the states during the summer season. However, during the winter season, Florida’s average

temperature is notably higher than that of the other states. Furthermore, we can observe
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the seasonal pattern here as well. Specifically, the temperature during the summer months

exceeds that of the winter months in terms of the mean, 95th percentile, and maximum value.

Table 2: Descriptive statistics for temperature in ◦C
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Summer

Mean 26.08 24.33 27.60 26.17 27.23 25.86 24.36 25.61 24.40
St. dev. 2.88 4.61 1.70 2.76 2.67 3.43 3.33 3.04 3.43
95th percentile 29.56 30.06 29.78 29.50 30.56 29.72 28.61 29.44 28.72
Max. 31.67 36.00 31.50 31.61 32.78 32.50 31.06 31.50 32.11

Winter

Mean 11.62 7.18 17.96 12.19 13.42 11.50 8.83 10.81 7.65
St. dev. 5.62 6.26 4.31 5.24 5.56 5.77 5.52 5.34 5.76
95th percentile 20.67 17.56 23.89 20.78 22.11 20.94 18.39 19.67 17.06
Max. 24.94 23.00 26.78 25.78 26.06 25.06 24.17 24.33 22.61

Note: All statistics are calculated using daily data from five weather stations per state,
resulting in a total of 11475 observations (2295 days × 5 stations) for each state in the
summer period and 11345 observations in the winter period

Similarly, Table 3 presents the descriptive statistics for daily precipitation data across each

state, for summer and winter periods separately. The spatial coherence across the states is

evident for both the summer and winter periods. Again, seasonal patterns are observable,

with the mean, 95th percentile, and maximum values being higher for the summer period

compared to the winter period.

3.2.3 Declustering of extremes

Besides seasonality, meteorological variables also tend to exhibit temporal dependence, mean-

ing that extreme events could be clustered over time. Therefore, we will follow Einmahl et al.

(2022) and employ their declustering procedure in order to remove the temporal dependence.

The idea is to remove some observations in order to create gaps between consecutive extreme

observations, which will be explained in more detail in the next paragraph.

The declustering procedure is performed for both variables and each state separately.
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Table 3: Descriptive statistics for precipitation in mm
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Summer

Mean 4.14 3.45 6.15 3.72 4.59 4.20 4.20 4.20 3.51
St. dev. 7.14 7.13 7.81 6.39 8.67 7.69 7.90 7.69 6.22
95th percentile 17.83 17.96 21.05 16.10 21.27 18.29 18.43 19.50 15.18
Max. 86.31 71.32 107.75 84.43 90.98 77.06 87.93 100.69 98.65

Winter

Mean 4.15 3.10 2.44 3.29 3.76 4.19 3.05 2.90 3.99
St. dev. 8.79 7.94 5.07 7.37 8.43 8.71 6.81 6.83 7.67
95th percentile 22.97 17.89 12.71 19.05 21.80 23.22 16.57 17.08 21.29
Max. 63.65 95.91 52.83 67.61 77.93 68.02 77.27 66.55 63.09

Note: All statistics are calculated using daily data from five weather stations per state,
resulting in a total of 11475 observations (2295 days × 5 stations) for each state in the
summer period and 11345 observations in the winter period

First, we will calculate the maxima for each point in time i = 1, . . . , n across all five weather

stations. Second, we will order these maxima from high to low. When the date of the second

largest maximum is within two days of the largest maximum, this specific date is removed

from the dataset across all stations. Otherwise, both dates are kept in the dataset. This

process is methodically applied to each subsequent pair of maxima, sequentially eliminating

temporally related data. After the declustering procedure, we have a serially independent

dataset for both variables and each state, with the number of observations for each state,

variable and period summarized in Table 4.
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Table 4: Number of observations for each state after declustering
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Precipitation

Summer 9370 8200 10745 9590 9290 9015 9690 9315 9400
Winter 8170 7590 8820 8110 7950 7980 8255 7760 8975

Temperature

Summer 9370 10025 8755 9465 9220 9285 10055 9820 10015
Winter 10625 10850 10070 10710 10695 10725 10875 10730 10740

Note: The declustering procedure is performed on each state, period and variable

4 Methodology

This section explains the methods used to perform our research and consists of two main

parts. First, we will use Extreme Value Theory and the heteroscedastic extremes framework

of Einmahl et al. (2022), Einmahl et al. (2016) to extract a trend of extremes from the weather

data. Subsequently, we will use these trends as covariates in our regression to quantify the

effect of extreme temperature and extreme precipitation on mortgage delinquency rates. For

the latter part, our approach follows that of other studies relevant to our objectives, which

include Cathcart et al. (2023), Dell et al. (2014), Deng et al. (2021), and Jacob et al. (2007).

4.1 Space-time framework

We will introduce our methods by first introducing the Peak-Over-Threshold method where

observations are assumed to be independent and identically distributed (i.i.d.). Then, re-

laxing this assumption and by allowing for spatial dependence, we will estimate and test

the frequency of extremes for both our variables applying the method developed by Einmahl

et al. (2022).
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4.1.1 Peak-Over-Threshold

Suppose that we have univariate (X1, X2, . . . , Xn), which we treat as an i.i.d. sample, where

n denotes the number of observations, with corresponding identical distribution functions

F (x) = P{X ≤ x}. The Peak-Over-Threshold (POT) method is useful for assessing the risk

of extreme events, where the idea is to consider only the extreme observations in the data.

Therefore, we let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the order statistics of (X1, X2, . . . , Xn). Then,

for an intermediate sequence k = k(n), that is, a sequence that satisfies

lim
n→∞

k = ∞ and lim
n→∞

k

n
= 0, (1)

we select the extreme value threshold as the upper order statistic Xn−k:n, where k represents

the number of observations that exceed the threshold in the sample. Following Einmahl et

al. (2022), we will use pseudo maximum likelihood estimation to estimate the extreme value

parameters (γ, σ).

Now, we can define the set {Y1, . . . , Yk} as {Xi − Xn−k:n|Xi ≥ Xn−k:n}, which de-

notes the set of exceedances above the threshold Xn−k:n, with distribution function Fk(x) =

P (X −Xn−k:n ≤ x|X > Xn−k:n). Pickands III (1975) proved that if Fk is in the maximum

domain of attraction of the Generalized Extreme Value (GEV) distribution Gγ, that is,

Fk ∈ D(Gγ), then the distribution function Fk is approximately a Generalized Pareto (GP)

distribution with the same shape parameter γ. For σ > 0, we can define the continuous

distribution function of the GP distribution as

Zγ(x; γ;σ) =

1−
(
1 + γx

σ

)− 1
γ for γ ̸= 0

1− exp
(
−x

σ

)
for γ = 0

(2)

where x ≥ 0 if γ ≥ 0, and 0 ≥ x ≥ −σ
γ
if γ < 0.

For the estimation of γ and σ, Pseudo Maximum Likelihood Estimation is applied. The
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log-likelihood function derived from equation (2) is denoted by

L(γ, σ|Y1, . . . , Yk) = −k log σ −
(
1 +

1

γ

) k∑
j=1

log
(
1 +

γ

σ
Yj

)
(3)

Generally, γ̂ and σ̂ are maximum likelihood estimates if they maximize L(γ, σ|Y1, . . . , Yk),

which means solving the score equations
∂
∂γ
L(γ, σ|Y1, . . . , Yk) = 0

∂
∂σ
L(γ, σ|Y1, . . . , Yk) = 0

(4)

The score equations can be numerically solved for γ and σ. From Einmahl et al. (2022) we

know that, under the required conditions, with γ > −1
2
, there exists a unique sequence of

estimators (γ̂, σ̂) that maximizes equation (3) and tend to the true unknown extreme value

parameters.

Evidently, selecting an appropriate threshold is crucial as it involves a trade-off between

variance and bias. Setting the threshold too low might lead to biased estimates by including

ordinary data points that are not genuinely extreme. Conversely, setting the threshold too

high can cause parameter estimates to be based on too few data points, increasing uncertainty

and reducing the reliability of statistical conclusions. Following Einmahl et al. (2022), the

pseudo maximum likelihood estimators (γ̂, σ̂) as a function of k will be used to identify a

plateau of stability to determine our threshold.

However, since observations can differ in their distribution over time and space, the next

section will introduce a model that takes spatially dependent observations into account. Note

that the declustering procedure explained in Section 3.2.3 ensures that the observations are

independent across time.

4.1.2 Space-time trend

We follow the framework of Einmahl et al. (2022) who extended previous methodology to

the situation that includes spatially dependent observations. This allows us to model spatial
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trends and examine the spatial coherence for temporal trends. We will apply this framework

to our nine different states, denoted by v, separately. Let (Xi,1, Xi,2, . . . , Xi,m), with i =

1, 2, . . . , n, be independent random vectors where n denotes the number of observations and

m the number of weather stations.

Let Fi,j be the continuous distribution function of Xi,j, for all i = 1, . . . , n and j =

1, . . . ,m. Then, for some continuous distribution function F0 in the maximum domain of

attraction of an extreme value distribution, we get

lim
x↑x∗

1− Fi,j(x)

1− F0(x)
= c

(
i

n
, j

)
∈ (0,∞) (5)

which holds for i = 1, . . . , n and j = 1, . . . ,m. The scedasis function c
(
i
n
, j
)
is a positive

continuous function. To ensure that the scedasis function c is uniquely defined, we impose

the condition
m∑
j=1

1

m

∫ 1

0

c(u, j)du = 1 (6)

For the estimation of the scedasis function c
(
i
n
, j
)
, we will use a kernel density estimation

(KDE) method. This method allows for a flexible approach to model the scedasis function

without assuming a specific parametric form. Let G be a continuous kernel function defined

on [−1, 1], such that
∫ 1

−1
G(s)ds = 1, and set G(s) = 0 for |s| > 1. Let h := hn > 0 be a

bandwidth such that h → 0 and kh → ∞ when n → ∞. Additionally, following Einmahl et

al. (2022), we define the common threshold to be a high empirical quantile of the combined

observations of all weather stations, which is defined as N := n × m. Using the pooled

observations for the estimation of the extreme value index improves estimation accuracy.

Then, the scedasis function c can be estimated non-parametrically by

ĉ(s, j) =
1

kh

n∑
i=1

1{Xi>XN−k:N}G

(
s− i

n

h

)
(7)

Similar to the application in Einmahl et al. (2016), we will use the biweight kernel G(x) =

15(1 − x2)2/16 as our kernel function. The scedasis function c
(
i
n
, j
)
can be interpreted

as the relative frequency of extreme events at time i and station j, where c ≡ 1 represents
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homoscedastic extremes, which corresponds to a constant frequency of extreme events. While

the scedasis function c
(
i
n
, j
)
is valuable for exploratory analysis due to its straightforward

interpretability, we need the integrated scedasis for formal testing. The integrated scedasis

for station j is given by Cj(s) and defined as

Cj(s) =
1

m

∫ s

0

c(u, j)du for s ∈ [0, 1] (8)

Combining equation (8) with the imposed condition in (6) translates to imposing the condi-

tion
m∑
j=1

Cj(1) = 1 (9)

We assumed that F0 is in the maximum domain of attraction of Gγ, that is, F0 ∈ D(Gγ),

with γ ∈ R. Thus, we have that Fi,j ∈ D(Gγ) for all i = 1, . . . , n and j = 1, . . . ,m.

Consequently, γ is the common extreme value index, and is therefore assumed to be constant

over time and space, within each state.

The function Cj can be estimated by the number of exceedances over a certain high

threshold at station j. Because we want to test for a trend in frequency of extremes across

space, we need to use the same threshold for all weather stations within each state. Let

XN−k:N be the (N − k)-th order statistic of the observations {Xi,j} for i = 1, . . . , n and

j = 1, . . . ,m. Then, for an intermediate sequence k, i.e., k = k(n) → ∞ and k(n)/n → 0 as

n → ∞, we define the integrated scedasis estimator as

Ĉj(s) :=
1

k

⌊ns⌋∑
i=1

1{Xi,j>XN−k:N} (10)

We can now test for a trend in frequency of extremes across space. Specifically, we will

test whether Cj(1) =
1
m

for all j = 1, . . . ,m. Mathematically, this looks like

H0 : Cj(1) =
1

m
for all j = 1, . . . ,m (11)

Ha : Cj(1) ̸=
1

m
for some j = 1, . . . ,m (12)
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Define M = Im − 1
m
1m1

′
m with Im the m×m identity matrix and 1m the m-unit vector.

Einmahl et al. (2022) show that under the null, it holds thatD =
√
k
(
Ĉ1(1)− 1

m
, . . . , Ĉm(1)− 1

m

)′
is asymptotically, m-variate normally distributed with zero mean vector and the covariance

matrix denoted by MΣM ′, where Σ denotes a symmetric matrix whose entries are given by

σj1,j2 =
1

m

∫ 1

0

Rj1,j2

(
c(u, j1), c(u, j2)

)
du (13)

for all j1 and j2 for which holds that j1 ̸= j2. Here, Rj1,j2 is defined as the tail copula of j1 and

j2. We assume that Σ is invertible, it then follows that rank(MΣM ′) = rank(M) = m − 1.

Therefore, we will focus on the first m − 1 elements of D, indicated by Dm−1, with an

asymptotic covariance matrix denoted by (MΣM ′)m−1. Specifically, this notation indicates

a restricted matrix consisting of the first m− 1 rows and columns. Following Einmahl et al.

(2022), the estimator of Σ, Σ̂ = (σ̂j1,j2)1≤j1,j2≤m, is done using the empirical counterpart of

equation (13), which, for j1 ̸= j2, is shown by

σ̂j1,j2 =
1

k

n∑
i=1

1{Xi,j1
>XN−k:N ,Xi,j2

>XN−k:N} (14)

Finally, the test statistic is defined as

T1 = D′
m−1

((
MΣ̂M ′

)
m−1

)−1

Dm−1 (15)

From Einmahl et al. (2022) we get the joint asymptotic properties under the null. Assuming

that the required conditions are satisfied, then as n → ∞, we get

T1
d−→ χ2

m−1 (16)

Subsequently, we will test whether the scedasis function c
(
i
n
, j
)
for each station is constant
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over time. Mathematically, this means testing

H0 : Cj(s) = sCj(1) (17)

Ha : Cj(s) ̸= sCj(1) (18)

Here, rejecting the null means that the frequency of extremes is not constant for a specific

station over the considered time period. Einmahl et al. (2022) propose a Kolomogorov-

Smirnov test statistic based on the process
√
k
(
Ĉj(s)− sĈj(1)

)
/
√
Ĉj(1) for 0 ≤ s ≤ 1.

Under the null, we get that{√
kĈj(1)

(
Ĉj(s)

Ĉj(1)
− s

)}
0≤s≤1

d−→ {B(s)}0≤s≤1 (19)

with B a standard Brownian bridge. Then, we define the Kolmogorov-Smirnov test statistic

as

T2 := sup
0≤s≤1

∣∣∣Ĉj(s)− sĈj(1)
∣∣∣ 1√

Ĉj(1)
(20)

Assuming all the required conditions are satisfied, then, as T → ∞,

√
kT2

d−→ sup
0≤s≤1

|B(s)| (21)

is the asymptotic distribution of the test statistic under the null.

4.2 Regression model

Our regression model aims to quantify the effect of temperature and precipitation extremes

on mortgage delinquency rates. There are nine states, denoted as v = 1, . . . , 9. Our regression

model is defined by the following equation:

Rd,p
v,t = β0 + β1Pv,(t−1,t−10) + β2Tv,(t−1,t−10) + ρXv,t + µv,y + δlp + εv,t (22)

where v denotes a state and t denotes the time in months. The dependent variables are gath-

ered in Rd,p
v,t , which represent the mortgage delinquency rates, with d = {30-89, 90+} the dis-
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tinction between 30-89 days delinquency or 90+ days delinquency, and p = {summer,winter}

the distinction between the summer and winter period. For each state v, there are 5 sta-

tions and estimates Ĉj,v(s) for 0 ≤ s ≤ 1, j = 1, . . . , 5 and v = 1, . . . , 9. In order to

obtain the monthly integrated scedasis for our precipitation variable, we calculate Pv,t as

the monthly integral of scedasis function c, that is, Pv,t =
∑5

j=1 Ĉj,v(bt) − Ĉj,v(bt−1). Here,

bt corresponds with the end of month t. Specifically, in equation (22), Pv,(t−1,t−10) is calcu-

lated as 1
10

∑10
q=1 Pv,t−q, which is the average over the preceding ten months. We calculate

Tv,t analogously. We decided to include both the temperature and precipitation extremes

in this manner following Deng et al. (2021), who showed that the effect of extreme weather

is strongest in the last twelve months. However, given the seasonality in our weather data,

we excluded two months from our analysis. Consequently, we will apply their insights to

the preceding ten months instead. Finally, Xv,t contains other control variables, specifically

House Price Index and unemployment rate. The decision on which and how many control

variables to include is a trade-off between “bad controls” and “over-controlling” (Angrist &

Pischke, 2009). Note that the regression will be performed for the summer period and winter

period separately.

Additionally, in order to isolate the effect of high temperature and heavy precipitation

on mortgage delinquency rates, we included two different fixed effects, which are used to

account for unobserved omitted variables. Specifically, µv,y contains the state-by-year fixed

effects and δlp represents month fixed effects, where a specific month is denoted by lsummer =

{May, June, July, August, September}, lwinter = {January, February, March, November,

December} and a specific year by y = {2008, 2009, . . . , 2021, 2022}. State-by-year fixed

effects capture long-term trends specific to each state, primarily accounting for state-specific

economic changes that might impact residents’ ability to pay their mortgages. These effects

also account for the cross-sectional differences between states that cannot be captured in the

regression, due to the loss of information when the scedasis functions from individual weather

stations are aggregated into a state-level frequency of extremes. Furthermore, month fixed

effects capture common seasonal patterns that affect all states similarly. This fixed effects

structure is chosen to capture the broad temporal and seasonal variations that could influence

the impact of weather conditions on mortgage delinquencies, without overfitting the model.
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Finally, as we investigate the effect of weather conditions on mortgage delinquency rates,

it is important to account for the potential autocorrelation in our data, both spatially and

temporally. This is because weather conditions and mortgage performance are likely to be

spatially and temporally correlated. To handle this, we cluster all standard errors at the

year-month level. Using two-way clustered standard errors provides greater robustness com-

pared to standard errors clustered only at the state level or adjusted for spatial correlations

(Addoum et al., 2020). Moreover, standard errors clustered at the state level here could

potentially lead to small cluster bias.

4.3 Robustness

To enhance the robustness of our analysis, we will explore variations in the number of lags in-

cluded in the regression for both the extreme temperature and extreme precipitation variable.

This approach allows us to assess the sensitivity of our results to different lag specifications,

investigating whether our findings are not driven by a specific temporal configuration. This

robustness test contributes to the reliability and generalizability of our findings, ensuring

that the patterns observed are not contingent on specific methodological choices but hold

under alternative specifications, thereby enhancing the credibility of our research outcomes.

5 Results

The results are applied on each state separately, using the pooled observations of all five

weather stations per state.

5.1 Precipitation

We will use Pseudo Maximum Likelihood Estimation to estimate shape and scale parameters

(γ̂, σ̂) using pooled observations N = n× w for each state v. We interpret γ̂ as the extreme

value index, which in this framework is common over space and time, within each state.

First, we will find a value k to select a proper threshold XN−k:N using stability plots.

These plots display the maximum likelihood estimate γ̂ as a function of k. Figure 4 shows
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the stability plots for daily precipitation in Alabama, for the summer and winter period

respectively.

Figure 4: Stability plots of average daily precipitation in Alabama for the summer and winter
period

Our goal is to choose the largest possible value for k, while avoiding the inclusion of

non-tail observations that could introduce bias. For the summer period we identify a plateau

of stability around k = 1200, after which we observe a steep increase. This is similar for the

winter period, where we identify an increase in Extreme Value Index for k bigger than 1100,

hence we set k = 1100. The stability plots for the other states are displayed in the Appendix.

After we set appropriate thresholds for each state and period, we estimate the parameters

(γ̂, σ̂) using Pseudo Maximum Likelihood Estimation. The results are presented in Table 5.

For both the summer and winter period, we observe a positive shape parameter for each

state. In the summer, shape parameter estimates range from 0.08 to 0.21, indicating variabil-

ity in the tail heaviness of the precipitation distributions across states. The scale parameter

estimates vary more broadly, from 12.76 to 18.45, reflecting differences in the intensity of

precipitation events. During winter, the shape parameter estimates show a wider range,

from 0.04 to 0.29, suggesting a bigger difference in the distribution tails between states, with

Florida experiencing more extreme precipitation events. The scale parameter estimates for

winter also exhibit variability, from 10.50 to 17.01, indicating regional differences in precipi-

tation intensity. Furthermore, it is noticeable that the shape parameter is higher in summer
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Table 5: MLE parameter estimates (γ̂, σ̂) for average daily precipitation
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Summer

Shape γ̂
0.14
(0.03)

0.08
(0.03)

0.16
(0.04)

0.15
(0.03)

0.18
(0.04)

0.12
(0.03)

0.21
(0.04)

0.11
(0.04)

0.14
(0.04)

Scale σ̂
15.80
(0.72)

16.94
(0.80)

18.45
(0.84)

13.75
(0.60)

17.63
(0.81)

16.50
(0.77)

14.96
(0.74)

15.89
(0.77)

12.76
(0.59)

Winter

Shape γ̂
0.08
(0.03)

0.21
(0.03)

0.29
(0.04)

0.04
(0.03)

0.16
(0.04)

0.08
(0.03)

0.04
(0.03)

0.04
(0.03)

0.04
(0.03)

Scale σ̂
17.01
(0.80)

11.91
(0.58)

10.50
(0.60)

15.57
(0.76)

15.82
(0.78)

16.28
(0.74)

12.63
(0.62)

12.87
(0.63)

13.23
(0.62)

Note: Standard errors are reported in the brackets

than in winter for most states. This suggests that the distribution of extreme precipitation

events during the summer has a heavier tail compared to winter. This implies that, during

summer, there is a higher likelihood of observing very large extreme precipitation events.

Next, we estimate the integrated scedasis Ĉj(s) for j = 1, ...,m for each station, enabling

us to test for a trend in frequency of extremes across space within each state. That is, testing

the null that H0 : Cj(1) =
1
m

for all j = 1, . . . ,m. The results of the test statistics and the

corresponding p-values are reported in Table 6.

The p-values stay above 0.05 for most states in both the summer and winter period,

suggesting that we cannot reject the null hypothesis for those instances. However, for Georgia

and Louisiana we can reject the null in the summer period at a 5% significance level and

for South Carolina at a 10% significance level. In the winter period we can reject the null

for Arkansas, Florida, Georgia and Tennessee at a 5% significance level, indicating that the

precipitation extremes across space within these states are not constant.

Now, we test for a trend over time for each scedasis function, which we have for each

station j. That is, we tested the null that H0 : Cj(s) = sCj(1). The p-values of the test
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Table 6: Test statistics and corresponding p-values for T1 for daily average precipitation
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Summer

T1 4.78 7.47 0.77 9.67 40.38 6.07 6.98 8.69 1.49
p-value 0.3103 0.1131 0.9431 0.0464 0.0000 0.1941 0.1368 0.0692 0.8287

Winter

T1 3.03 44.74 34.71 17.91 5.14 2.13 1.79 3.16 9.86
p-value 0.5536 0.0000 0.0000 0.0013 0.2735 0.7110 0.7752 0.5312 0.0428

statistics are displayed in Table 7. The rows represent the states for both periods and the

columns represent the weather stations.

Table 7: p-values for T2 for daily average precipitation

Station 1 Station 2 Station 3 Station 4 Station 5

Summer

Alabama 0.4879 0.8395 0.5916 0.2567 0.6008
Arkansas 0.0136** 0.2822 0.0519* 0.1123 0.2933
Florida 0.1440 0.4440 0.6401 0.0543* 0.2277
Georgia 0.6541 0.2608 0.7884 0.3236 0.3209
Louisiana 0.0481** 0.0943* 0.4533 0.1460 0.6609
Mississippi 0.2041 0.2058 0.9458 0.3990 0.6363
North Carolina 0.5516 0.7873 0.8404 0.3866 0.1429
South Carolina 0.7847 0.8449 0.7041 0.6708 0.4375
Tennessee 0.3845 0.3126 0.6045 0.7921 0.8422

Winter

Alabama 0.9959 0.6505 0.9751 0.5335 0.9073
Arkansas 0.7725 0.2681 0.1599 0.4805 0.5088
Florida 0.1090 0.0006*** 0.4089 0.7089 0.6352
Georgia 0.7701 0.2154 0.6326 0.2701 0.0193**
Louisiana 0.6112 0.4520 0.5819 0.5906 0.3520
Mississippi 0.1564 0.4375 0.8728 0.3028 0.2507
North Carolina 0.2402 0.0047*** 0.4620 0.0986* 0.8087
South Carolina 0.0673* 0.5615 0.2287 0.4007 0.5790
Tennessee 0.1114 0.1015 0.5017 0.2704 0.4347

Note: p-values depend on k which varies across the states. ***p < 0.01,
**p < 0.05, *p < 0.1

For most weather stations we observe a high p-value in both the summer and winter

period. For those instances the results do not provide sufficient evidence to reject the null
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hypothesis of constant frequency of extremes over time. However, there are a few stations that

do return significant results, indicating that we can reject the null hypothesis and conclude

that a trend exists in the frequency of extremes at these locations.

Finally, we will aggregate the scedasis functions of all five weather stations w within

each state v, forming a state-level frequency of extremes that will be used in the regression

later. The test above reveals that for many stations we could not detect a trend in the

frequency of extremes, leading us to infer a similar absence of a temporal trend at the

state-level frequency of extremes. The relevance of including the frequency of precipitation

extremes might be called into question, given that a significant temporal trend is absent at

most stations. Nevertheless, the occurrence of significant trends at individual stations in

various states suggests that the possibility for a temporal trend in the state-level frequency

of extremes remains a reasonable consideration.

5.2 Temperature

Now, we will perform the same analysis on our temperature variable. First, using Pseudo

Maximum Likelihood Estimation to obtain estimates for our shape and scale parameters

(γ̂, σ̂) using pooled observations N = n× w for each state v. We interpret γ̂ as the extreme

value index, which in this framework is common over space and time within each state.

In order to obtain the parameter estimates, we will use stability plots to choose a value k

for the threshold XN−k:N for each state v. These plots display the parameter estimate γ̂ as a

function of k. Figure 5 presents the stability plots for daily average temperature in Alabama,

for the summer and winter period respectively.

The stair-shaped form of the graphs is caused by the temperature data which contains

many tied values, making it harder to identify a plateau of stability. However, for the

summer period we notice a downward sloping trend, where the values after each drop between

900 ≤ k ≤ 1200 are relatively stable around -0.2. Our goal is to choose the largest possible

value for k, while avoiding the inclusion of non-tail observations that could introduce bias.

Therefore, we set k = 1200 for the summer period. Similarly, for the winter period we see an
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Figure 5: Stability plots of average daily precipitation in Alabama for the summer and winter
period

overall downward trend. Between 800 ≤ k ≤ 1000 we again observe stable values after each

drop, at approximately -0.35. Following the same reasoning as before, we set k = 1000. The

stability plots for the other states are displayed in the Appendix.

After we set appropriate thresholds for each state and period, we estimate the parameters

(γ̂, σ̂) using Pseudo Maximum Likelihood Estimation. The results are presented in Table 8.

Table 8: MLE parameter estimates (γ̂, σ̂) for average daily temperature
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Summer

Shape γ̂
-0.02
(0.01)

-0.17
(0.06)

-0.24
(0.04)

-0.23
(0.12)

-0.12
(0.04)

-0.20
(0.03)

-0.30
(0.04)

-0.25
(0.03)

-0.19
(0.06)

Scale σ̂
0.68
(0.21)

1.76
(0.20)

0.89
(0.05)

1.14
(0.22)

1.10
(0.07)

1.05
(0.06)

1.54
(0.11)

1.26
(0.07)

1.43
(0.16)

Winter

Shape γ̂
-0.36
(0.03)

-0.39
(0.03)

-0.31
(0.05)

-0.25
(0.03)

-0.34
(0.04)

-0.46
(0.03)

-0.32
(0.03)

-0.39
(0.03)

-0.38
(0.03)

Scale σ̂
2.58
(0.18)

3.59
(0.20)

1.71
(0.17)

2.12
(0.15)

2.07
(0.17)

2.90
(0.19)

3.29
(0.19)

2.93
(0.19)

3.58
(0.18)

Note: Standard errors are reported in the brackets

All states show negative shape parameter estimates for summer, ranging from -0.02 to
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-0.30, indicating that the temperature distributions have lighter tails on the right side, which

suggests fewer and less severe hot temperature extremes than would be expected in a heavy-

tailed distribution like the generalized extreme value distribution. The scale parameter varies

among states, where higher values suggest a greater dispersion of temperatures around the

mean. Similar to summer, the estimates of the shape parameter for the winter period are

negative across all states, ranging more narrowly from -0.25 to -0.46. These values suggest

lighter tails for winter temperature distributions as well, but the magnitude of the shape

parameters is generally larger in winter than in summer, implying even fewer or less severe

cold temperature extremes.

Next, we estimate the integrated scedasis Ĉj(s) for j = 1, ...,m for each station. Subse-

quently, we test for a trend in frequency of extremes across space, that is, testing the null that

H0 : Cj(1) =
1
m

for all j = 1, . . . ,m. The results of the test statistics and the corresponding

p-values are reported in Table 9.

Table 9: Test statistics and corresponding p-values for T1 for daily average temperature
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Summer

T1 31.36 12.48 35.74 8.86 14.41 4.26 26.30 13.52 49.82
p-value 0.0000 0.0141 0.0000 0.0647 0.0061 0.3714 0.0000 0.0009 0.0000

Winter

T1 13.05 15.11 51.22 34.22 13.04 7.35 32.61 17.37 11.70
p-value 0.0110 0.0045 0.0000 0.0000 0.0111 0.1186 0.0000 0.0016 0.0198

For the summer period, Alabama, Arkansas, Florida, Louisiana, North Carolina, South

Carolina, and Tennessee show significant p-values at a 5% significance level and for Georgia

at a 10% significance level, indicating strong evidence against the null hypothesis. This

suggests a difference exists in extreme temperature frequencies across stations within these

states. For the winter period, we observe significant p-values for all states except Mississippi,

indicating strong evidence against the null, suggesting a difference in the frequency of extreme
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temperature across stations. This points to significant spatial variability in the occurrence

of extreme temperature events during both summer and winter.

Subsequently, we will test for a temporal trend for each weather station j separately, by

testing the null H0 : Cj(s) = sCj(1). The results are displayed in Table 10.

Table 10: p-values for T2 for daily average temperature

Station 1 Station 2 Station 3 Station 4 Station 5

Summer

Alabama 0.0000*** 0.0000*** 0.0002*** 0.0002*** 0.0144**
Arkansas 0.0000*** 0.0001*** 0.0000*** 0.0000*** 0.0000***
Florida 0.0493** 0.0006*** 0.0000*** 0.1512 0.0000***
Georgia 0.0280** 0.0170** 0.0002*** 0.0097*** 0.0000***
Louisiana 0.0040*** 0.0000*** 0.0000*** 0.0002*** 0.0007***
Mississippi 0.0000*** 0.0007*** 0.0000*** 0.0000*** 0.0010***
North Carolina NaN 0.0218** 0.1925 0.0002*** 0.1162
South Carolina 0.0023*** 0.0022*** 0.0041*** 0.0000*** 0.0022***
Tennessee 0.0871* 0.0019*** 0.0003*** 0.0067*** 0.0004***

Winter

Alabama 0.0006*** 0.0000*** 0.0024*** 0.0000*** 0.0000***
Arkansas 0.0428** 0.0606* 0.0222** 0.0301** 0.0391**
Florida 0.0003*** 0.0000*** 0.0000*** 0.0000*** 0.0000***
Georgia 0.0007*** 0.0000*** 0.0000*** 0.0000*** 0.0000***
Louisiana 0.0000*** 0.0002*** 0.1237 0.0000*** 0.0234**
Mississippi 0.0050*** 0.0000*** 0.0000*** 0.0000*** 0.0024***
North Carolina 0.0003*** 0.0000*** 0.0001*** 0.0013*** 0.0007***
South Carolina 0.0000*** 0.0000*** 0.0001*** 0.0016*** 0.0001***
Tennessee 0.0000*** 0.0000*** 0.0000*** 0.0359** 0.0000***

Note: p-values depend on k which varies across the states. NaN values
indicate that the test statistic could not be calculated because no data
points exceeded the threshold set for extreme values. ***p < 0.01, **p <
0.05, *p < 0.1

In contrast to the precipitation variable, the analysis of temperature extremes reveals

mostly significant outcomes, indicating a trend in frequency of temperature extremes over

time for the majority of weather stations. During the summer period, only a single station

in Florida and two in North Carolina yielded insignificant results. For one station in North

Carolina the test statistic and corresponding p-value were unobtainable, due to the absence

of data points that exceeded the predefined threshold. Furthermore, the winter period shows

only one insignificant result, from a weather station in Louisiana, denoting the lack of a

substantial temporal trend in the frequency of extreme temperature events. All other stations
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report significant results at the 5% or 1% significance level.

Finally, the scedasis functions of all five weather stations within each state will be ag-

gregated into a state-level frequency of extremes that will be used in the regression later.

From above test we concluded that most weather stations exhibit a temporal trend in the

frequency of temperature extremes, indicating that the state-level frequency of extremes

possibly depicts a similar temporal trend.

5.3 Regression results

Next, we will discuss the regression results that show the impact of extreme temperature and

precipitation events on mortgage delinquency rates. Following the structure of the previous

sections, we will differentiate between the summer and winter period for the regression as

well.

5.3.1 Summer

Table 11 presents the regression results for both short-term (30-89 days) delinquency and

long-term (90+ days) delinquency as dependent variables.

Table 11: Regression results for the summer period

30-89 days 90+ days

Intercept 3.332*** (0.826) 1.315 (1.400)
Precipitation -0.138 (0.385) 1.470** (0.708)
Temperature 0.232* (0.190) 0.575** (0.298)
Unemployment 0.064*** (0.016) 0.035** (0.013)
HPI -0.002 (0.002) -0.004 (0.003)

State-by-year FE Yes Yes
Month FE Yes Yes

Note: This table presents the effects of temperature
and precipitation on the probability of 30-89 days or
90+ days delinquency. Precipitation and tempera-
ture are calculated as the average over the last ten
months. All the estimates are based on equation (22).
All standard errors are clustered at the year-month
level. ***p < 0.01, **p < 0.05, *p < 0.1

The regression results for the short-term mortgage delinquency rates show that extreme
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temperature has a positive and significant influence on the delinquency rates, while the effect

of precipitation is not significant. This suggests that temperature extremes can directly

influence financial strain on households, leading to higher rates of delinquency. The lack of

significance for extreme precipitation is not surprising, as we observed the high p-values in

Table 7, indicating the absence of a temporal trend in the frequency of precipitation extremes.

The regression results for the long-term mortgage delinquency rates depict a different

picture. Here, we observe a statistically significant value for both precipitation and tempera-

ture extremes at the 5% significance level. This indicates that both types of extreme weather

conditions have a persistent impact on financial stability over a longer period during the sum-

mer. Such findings suggest that extreme weather not only affects immediate financial health

but also has more sustained effects that could influence the economic resilience of house-

holds. This could be due to long-term damage to property, prolonged economic disruptions

in weather-sensitive industries, or sustained increases in living and recovery costs.

Subsequently, we add both precipitation and temperature extremes separately to the

regression model to examine their individual and interactive effects on mortgage delinquency

rates. The results are displayed in Table 12.

When included without extreme temperature, extreme precipitation still does not return

a significant coefficient for short-term delinquency rates, when the control variables are either

included or excluded. However, extreme temperature shows a significant positive relationship

with short-term delinquency when solely included in the model, but becomes insignificant

again when included with the control variables. This significant result indicates a direct

relationship between extreme temperature and short-term delinquency rates, which may be

masked by the inclusion of control variables. This suggests that these economic control

variables, which have strong and direct correlations with mortgage delinquency rates, might

overshadow the effect of temperature under these specific conditions. This masking effect

occurs because these economic variables capture significant variations in short-term delin-

quency rates that are closely tied to economic conditions, which might also be influenced

indirectly by climate extremes. The results in Table 11 show that despite the precipitation

variable being insignificant itself, its presence in the model appears to enhance the significance
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Table 12: Alternative regression results for the summer period

30-89 days

Intercept
3.380***
(0.418)

3.139***
(0.305)

4.047***
(0.001)

2.739***
(0.156)

3.083***
(0.536)

Precipitation
-0.106
(0.336)

-0.418
(0.367)

Temperature
0.345**
(0.175)

0.257
(0.180)

Unemployment
0.067***
(0.015)

0.067***
(0.001)

0.063***
(0.016)

HPI
-0.002*
(0.001)

-0.003*
(0.659)

-0.002
(0.001)

90+ days

Intercept
4.326***
(1.401)

0.986
(0.754)

3.085**
(1.242)

1.772***
(0.226)

3.971***
(1.291)

Precipitation
1.251
(0.823)

0.778
(0.667)

Temperature
0.410
(0.259)

0.308
(0.240)

Unemployment
0.044***
(0.015)

0.044***
(0.015)

0.039***
(0.013)

HPI
-0.007*
(0.004)

-0.006
(0.004)

-0.007*
(0.004)

Note: This table presents the effects of temperature and precipitation
on the probability of 30-89 days or 90+ days delinquency. Precipitation
and temperature are calculated as the average over the last ten months.
All the estimates are based on equation (22). All standard errors are
clustered at the year-month level. ***p < 0.01, **p < 0.05, *p < 0.1

of temperature. This suggests that the interaction between temperature and precipitation,

or the methodological balance they provide when analyzed together, plays a critical role in

fully capturing the impact of weather variables on mortgage delinquencies. For long-term

delinquency, extreme precipitation and temperature neither are consistently significant across

different model setups and their predictive power heavily depends on the presence of each

other and control variables. Therefore, we conclude that neither temperature nor precipita-

tion are robust predictors of long-term mortgage delinquency rates on their own.

Finally, we perform the regression on each state separately, reported in Table 13. For

short-term delinquency all states show no significant relationship between precipitation ex-

tremes and short-term delinquency, which is in line with the results from Table 11 and

Table 12. For temperature extremes we observe a significant relationship only for Arkansas
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and North Carolina, indicating that higher frequencies of extreme temperature events are

associated with increases in short-term mortgage delinquencies in these states. A possible

explanation for this significant relationship may stem from the fact that both Arkansas and

North Carolina have economies heavily dependent on agriculture. Extreme temperatures can

dramatically affect crop yields and farming operations. For example, heat waves can stress

crops, reduce yields, and increase operational costs. These agricultural stresses can trans-

late into broader economic challenges, affecting employment and financial stability, thereby

impacting the ability to meet financial obligations like mortgage payments.

The impact of precipitation extremes on long-term delinquency is significantly positive

in all states except Mississippi and South Carolina. This indicates a strong positive rela-

tionship between extreme precipitation and long-term mortgage delinquency rates in these

states. The states where the relationship is significant often experience more severe precip-

itation extremes, such as hurricanes and tropical storms, which are particularly common in

Louisiana and Florida, as well as the states like Georgia and North Carolina. These events

can cause substantial property damage and economic disruption, leading to higher mortgage

delinquency rates. For temperature extremes we observe significantly positive coefficients for

all states except Georgia, Mississippi, South Carolina and Tennessee. This finding suggests

that extreme temperatures can have a prolonged impact on mortgage delinquency rates for

these states. The states where temperature extremes have a significant impact on long-term

mortgage delinquency rates likely exhibit a combination of higher economic vulnerability to

temperature changes, lower resilience in housing and infrastructure, and less comprehensive

adaptation strategies. Overall, there is a clear indication of regional variations in how weather

extremes affect mortgage delinquency rates.

5.3.2 Winter

We will discuss the regression results obtained for the winter period. First, Table 14 displays

our baseline regression results for both short-term and long-term delinquency rates as the

dependent variables.

The results show that temperature extremes have a significantly positive effect on short-
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Table 14: Regression results for the winter period

30-89 days 90+ days

Intercept 4.013*** (0.946) 0.230 (1.464)
Precipitation -0.681* (0.565) 1.117 (0.887)
Temperature 0.418** (0.188) 0.371 (0.274)
Unemployment Rate -0.000 (0.088) 0.199*** (0.057)
HPI -0.002 (0.002) -0.002 (0.003)

State-by-year FE Yes Yes
Month FE Yes Yes

Note: This table presents the effects of temperature and
precipitation on the probability of 30-89 days or 90+ days
delinquency. Precipitation and temperature are calcu-
lated as the average over the last ten months. All the
estimates are based on equation (22). All standard er-
rors are clustered at the year-month level. ***p < 0.01,
**p < 0.05, *p < 0.1

term delinquency rates, while precipitation extremes display a negative and significant effect.

A decreasing effect of precipitation extremes on short-term mortgage delinquency rates indi-

cates that higher levels of precipitation during the winter are associated with lower short-term

mortgage delinquency rates. This might seem counterintuitive, but increased winter precip-

itation could be beneficial for agricultural output, particularly in areas where water may be

scarce at other times of the year. This can lead to a more stable income for those employed

in agriculture and related industries, ultimately improving financial stability. For long-term

delinquency rates, the results show insignificant coefficients for both temperature and pre-

cipitation extremes. This suggests that over longer periods, both weather-related variables

do not show a statistically measurable impact on mortgage delinquency rates.

Subsequently, both precipitation and temperature extremes are included to the regression

model separately, of which the results are presented in Table 15. In the case of short-term

delinquency rates, extreme temperature stays highly significant when included with or with-

out the precipitation variable and the control variables. This indicates that extreme temper-

ature is a robust estimator for short-term mortgage delinquency rates in the winter period.

Additionally, for extreme precipitation, we observe a significant and negative coefficient when

included with the control variables, but without the temperature variable. However, when
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Table 15: Alternative regression results for the winter period

30-89 days

Intercept
3.420***
(1.041)

3.838***
(0.447)

4.881***
(0.918)

2.801***
(0.117)

2.926***
(0.997)

Precipitation
-0.664
(0.493)

-0.984*
(0.529)

Temperature
0.496***
(0.129)

0.494***
(0.156)

Unemployment
0.009
(0.085)

0.011
(0.084)

-0.003
(0.087)

HPI
-0.001
(0.002)

-0.002
(0.002)

-0.000
(0.002)

90+ days

Intercept
2.261***
(0.942)

0.797
(0.940)

0.999
(1.174)

1.822***
(0.259)

2.014**
(0.888)

Precipitation
1.605
(1.039)

0.849
(0.799)

Temperature
0.507*
(0.305)

0.247
(0.212)

Unemployment
0.210***
(0.060)

0.209***
(0.059)

0.204***
(0.058)

HPI
-0.004
(0.003)

-0.002
(0.002)

-0.004
(0.003)

Note: This table presents the effects of temperature and precipitation
on the probability of 30-89 days or 90+ days delinquency. Precipitation
and temperature are calculated as the average over the last ten months.
All the estimates are based on equation (22). All standard errors are
clustered at the year-month level. ***p < 0.01, **p < 0.05, *p < 0.1

extreme precipitation is the only variable included in the model, the effect becomes insignifi-

cant. This result underscores that the effect of extreme precipitation on short-term mortgage

delinquency rates are not direct but are mediated through its interactions with other weather

and economic variables.

For the long-term delinquency rates, extreme precipitation shows no significant relation-

ship in any of the model setups, indicating the absence of a relationship. Interestingly,

extreme temperature displays a significant coefficient when it is the only variable included

in the model. This suggests that while temperature extremes do influence delinquency rates,

their impact is generally less pronounced or gets absorbed within the broader economic con-

ditions represented by the control variables.
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Finally, the regression is performed for each state separately, of which the results are

presented in Table 16. We observe a negative and significant relationship between precip-

itation extremes and short-term mortgage delinquency rates only in Florida and Georgia.

This finding indicates that these states effectively leverage their extreme weather conditions,

particularly with Florida’s robust tourism industry that thrives even during wet winters, and

Georgia’s agricultural sector that benefits from winter precipitation for crop health. Fur-

thermore, the effect of extreme temperature on short-term delinquency rates is positive and

significant in Alabama, Arkansas, Louisiana and Mississippi, which is likely due to a combi-

nation of high economic vulnerability to heat, less adaptive infrastructure, and higher energy

costs impacting household budgets.

Interestingly, where Table 14 showed no relationship of both extreme precipitation and

extreme temperature on long-term delinquency rates, there seem to be some significant re-

lationships when we investigate each state separately. Alabama, Georgia, Mississippi, North

Carolina and Tennessee display significantly positive coefficients for extreme precipitation.

This indicates that extreme precipitation can have a prolonged impact on mortgage delin-

quency rates. These states have significant agricultural sectors that can be sensitive to

extreme weather events. Heavy precipitation, particularly during winter, can disrupt agri-

cultural activities, damage crops, and lead to financial instability for those dependent on

farming incomes. While the short-term effects of increased winter precipitation can be ben-

eficial and can improve financial stability for the agricultural sector, leading to a decrease in

short-term mortgage delinquency rates, the long-term consequences of excessive rainfall may

impose burdens that destabilize this, potentially resulting in higher long-term delinquency

rates.

5.4 Robustness

We performed alternative regressions where we included the extreme precipitation and ex-

treme temperature variable with a different number of lags. In our baseline model, both are

calculated as the average over the past year.
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5.4.1 Summer

Table 17 presents the results for each variable and multiple variations of lags in the summer

period. For short-term delinquency, the effects of extreme precipitation are all insignificant,

except for the one month lag, confirming our previous results. Extreme temperature shows

a positive and significant coefficient for all numbers of lags except for the one month lag,

confirming the robustness of this estimator.

Table 17: Regression results for lagged variables for the summer period

Lag 30-89 days 90+ days

Precipitation

t− 1 0.239** (0.114) 0.087 (0.144)
(t− 1, t− 5) -0.022 (0.094) 0.163** (0.083)
(t− 1, t− 10) -0.138 (0.385) 1.470** (0.708)
(t− 1, t− 20) -0.396 (0.483) -2.542*** (0.660)
(t− 1, t− 30) 0.044 (0.628) -3.225*** (1.116)

Temperature

t− 1 0.092 (0.056) 0.094 (0.094)
(t− 1, t− 5) 0.096** (0.046) -0.004 (0.061)
(t− 1, t− 10) 0.232* (0.190) 0.575** (0.298)
(t− 1, t− 20) 0.426** (0.195) -0.249 (0.229)
(t− 1, t− 30) 0.723** (0.276) 0.107 (0.233)

Note: This table presents the effects of tempera-
ture and precipitation on the probability of 30-89
days and 90+ days delinquency. All the estimates
are based on equation (22). All standard errors
are clustered at the year-month level. ***p < 0.01,
**p < 0.05, *p < 0.1

Conversely, the effects of precipitation extremes on long-term delinquency rates is sig-

nificantly negative for the 20- and 30-month lag, while significantly positive for the shorter

lags. This pattern indicates that, over a longer period, the negative consequences of extreme

precipitation events might be offset by recovery and aid efforts, leading to an improved fi-

nancial capacity to meet mortgage obligations. The effect of extreme temperature is only

significant in our baseline model and insignificant for all other alternative lag specifications,

which highlights its lack of robustness.
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5.4.2 Winter

Similarly, the regression results for alternative lag specifications are displayed in Table 18.

The effects of precipitation extremes depict a similar picture for both short- and long-term

delinquency rates, with negative and significant coefficients for longer lags and significantly

positive coefficients for shorter lags, which can be explained in a similar way as before for

the summer period.

Table 18: Regression results for lagged variables for the winter period

Lag 30-89 days 90+ days

Precipitation

t− 1 0.374 (0.255) 0.492** (197)
(t− 1, t− 5) 0.836*** (0.219) 0.484** (0.219)
(t− 1, t− 10) -0.681* (0.565) 1.117 (0.887)
(t− 1, t− 20) -2.330*** (0.611) -3.451*** (0.593)
(t− 1, t− 30) -4.251*** (0.804) -3.705*** (0.922)

Temperature

t− 1 0.197 (0.128) -0.046 (160)
(t− 1, t− 5) 0.550*** (0.100) 0.183* (0.103)
(t− 1, t− 10) 0.418** (0.188) 0.371 (0.274)
(t− 1, t− 20) 0.134 (0.200) -0.525** (0.205)
(t− 1, t− 30) -0.098 (0.237) -0.064 (0.228)

Note: This table presents the effects of tempera-
ture and precipitation on the probability of 30-89
days and 90+ days delinquency. All the estimates
are based on equation (22). All standard errors are
clustered at the year-month level. ***p < 0.01,
**p < 0.05, *p < 0.1

Extreme temperature shows a different picture. For short-term delinquency rates, the

effect of extreme temperature is positive and significant for shorter lags and insignificant for

longer lags. This suggests that immediate increases in temperatures can lead to increased

financial burdens on households. This might be due to heightened energy costs for cool-

ing, reduced productivity in temperature-sensitive industries, or health-related expenditures,

which can strain household budgets quickly. Furthermore, for long-term delinquency rates,

we observe a significantly positive coefficient for the 5-month lag and a significantly negative

coefficient for the 20-month lag, confirming its expected lack of robustness.

Overall, the observed lag effects suggest a nuanced interaction between the timing of
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extreme weather events and their financial impacts on households. While immediate and

short-term effects are predominantly positive, and thus increasing delinquency rates, long-

term effects tend to be mitigated, possibly due to adaptation, financial recovery, or aid.

6 Discussion

This research investigates the impact of extreme weather conditions, characterized by tem-

perature and precipitation extremes, on short-term and long-term mortgage delinquency

rates. For this research, we utilized a heteroscedastic extremes approach in a space-time

framework to obtain a trend of extremes, which was then used in a fixed effects regression

model to measure the effect on mortgage delinquency rates. Our findings revealed a signifi-

cantly positive effect of both temperature and precipitation extremes on long-term mortgage

delinquency rates in the summer period, suggesting that as the frequency and intensity of

these weather extremes increase, so does the likelihood of mortgage delinquencies exceeding

90 days. Furthermore, the analysis of short-term mortgage delinquency rates during the

summer period showed a significant and positive impact of temperature extremes, while no

such significant result was found for precipitation extremes. This suggests a nuanced and

temporally contingent influence of climatic factors on financial stability, with temperature

extremes manifesting a more immediate impact on households’ financial distress, as indicated

by short-term delinquency rates. Conversely, during the winter period no significant result

for both temperature and precipitation extremes was found on the long-term delinquency

rates. However, precipitation extremes have a negative and significant effect the short-term

delinquency rates, while the effect of temperature extremes is significantly positive.

Our research closely aligns with existing literature, demonstrating how extreme weather

events impact mortgage delinquency rates. It specifically underscores the recognized financial

risks of climate change, revealing that extreme temperatures significantly elevate short-term

delinquency rates. The upwards effect of extreme temperatures on short-term mortgage

delinquency rates suggests that periods of extreme temperature may strain homeowners’

financial stability, leading to increased rates of mortgage delinquency. The main reason for

this was proposed by Deng et al. (2021) and says that exposure to high temperatures can
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alter an individual’s perception of climate change risks, leading them to view their current

living situation as less desirable. This reassessment can result in changed behaviors, including

a higher likelihood of mortgage default, due to a reduced sense of utility or satisfaction from

their home and location. However, due to its insignificance, this does not necessarily hold

for extreme precipitation. Regarding long-term mortgage delinquency rates, the significantly

positive findings for both extreme temperature and precipitation during the summer period

in our baseline model indicate that long-term mortgage delinquency rates are sensitive to

extreme weather conditions. Overall, our results are in line with previous literature regarding

the effects of extreme weather on mortgage delinquency rates.

Furthermore, the state-specific analysis revealed a heterogeneous impact across different

states, suggesting that local economic conditions, policies, and climate resilience measures

play a crucial role in how weather extremes affect mortgage delinquency rates. In states heav-

ily reliant on agriculture, such as Georgia, North Carolina and Arkansas, extreme weather

can dramatically influence income stability, directly affecting financial health. Meanwhile,

states like Florida and Louisiana, with advanced preparedness and robust infrastructure for

managing hurricanes and floods, show a greater resilience to the immediate economic shocks

caused by such weather events. This disparity underscores the importance of region-specific

strategies to mitigate the adverse effects of climate extremes on mortgage delinquencies.

Finally, the differing impacts of temperature and precipitation extremes on short- and

long-term mortgage delinquency rates, as indicated by varying lag lengths in our analysis,

offer insightful revelations about the temporal dynamics of extreme weather effects on finan-

cial stability. The observed lag effects suggest a nuanced interaction between the timing of

extreme weather events and their financial impacts on households. Immediate and short-

term impacts generally lead to an increase in delinquency rates, whereas long-term effects

appear to be lessened, likely as a result of adaptation measures, financial recuperation, or as-

sistance. The shift from positive to negative impacts, especially for precipitation, highlights

the importance of adaptation measures and recovery assistance in mitigating the financial

aftermath of extreme weather events. However, this analysis also confirmed the robustness,

or absence thereof, for certain variables.
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This study’s findings on how temperature and precipitation extremes, as aspects of cli-

mate change, affect mortgage delinquency rates offer significant insights for both economic

theory and the development of climate policy. This research underscores the importance

of incorporating climate risk into financial risk assessment and management practices, par-

ticularly within the housing and mortgage sectors. Given the significant impact of both

temperature and precipitation extremes on long-term mortgage delinquency, financial insti-

tutions, policymakers, and stakeholders in the real estate market must consider these findings

in their planning, risk assessment models, and mitigation strategies.

This research contributes to an expanding body of evidence demonstrating the tangi-

ble effects of climate change on the financial system. Previous studies have highlighted the

relationship between climate change and economic outcomes. Our study deepens this under-

standing by offering insights into how temperature and precipitation extremes affect financial

stability in the mortgage sector. This not only corroborates the findings of earlier research

but also provides a nuanced analysis that refines our understanding of climate risk as a

multifaceted financial threat. Among the new insights contributed by this study is the iden-

tification of precipitation extremes as a potentially suitable predictor of long-term mortgage

delinquency rates. Additionally, our research highlights the regional variability in the im-

pacts of climate extremes, underscoring the importance of localized climate risk assessments

and adaptation strategies.

While our research provides evidence of the impact of extreme temperature and precipita-

tion on mortgage delinquency rates, it is crucial to address certain methodological limitations

that have emerged from our analysis. Firstly, while our methodology effectively identifies rela-

tionships between extreme weather events and mortgage delinquency rates, attributing these

patterns directly to climate change presents challenges. Differentiating the direct impact

of climate change from natural variability in weather patterns requires a more nuanced ap-

proach, as the current model does not distinctly separate climate change-induced events from

those occurring naturally. This limitation suggests the need for a mechanism or model that

more accurately attributes extreme weather events to climate change, enhancing the robust-

ness of our findings. Secondly, our methodology might inadvertently assume homogeneity in
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both weather and economic data, potentially oversimplifying the complex dynamics at play.

The impact of extreme weather on mortgage delinquency is likely to vary across different

locations and economic contexts, driven by regional differences in housing markets, mortgage

practices, and vulnerability to specific types of extreme weather events such as hurricanes

versus floods. This assumption of homogeneity overlooks the heterogeneous nature of these

impacts, which could lead to misinterpretations of how climate change influences mortgage

delinquency rates across various regions. Additionally, the relatively limited range of control

variables used in the regression also imposes a challenge. The inclusion of other weather

variables that may have an effect on both the dependent and independent variables, such

as wind and snow, could potentially improve this study. Moreover, there could be other

macro-economic variables that also play a role in this study, but were omitted. However, the

trade-off between bad controls and over-controlling should always be taken into account.

The findings of this research offer valuable insights into the intersection of climate change

and financial stability, prompting several recommendations for future research directions.

First of all, it could be interesting to further look into each state specifically, as they all

have different economic and geographic characteristics. Looking into the economic and cli-

mate policies, the frequency and intensity of extreme weather events, and the demography

would give an even more insightful picture for each state. Future studies should also aim to

extend the geographic scope, examining the relationship between climate change and mort-

gage delinquency across different regions with varying climate patterns and socio-economic

contexts. This would enhance the generalizability of findings and provide a more compre-

hensive understanding of climate risk. Furthermore, exploring not only the frequency but

also the magnitude of extreme weather events would provide a more holistic understanding

of their effects, offering a fuller picture of how these extremes impact economic and financial

outcomes. Additionally, another interesting perspective on this research could be to take the

homeowners’ characteristics into account, personally as well as geographically. This could

provide an additional layer and interesting insight when comparing the homeowner’s feasibil-

ity to pay their mortgage based on income or geographical location. Finally, the different lag

specifications depict an interesting picture of the impact of extreme temperature and precip-

itation across different lag specifications. Future research could focus on a detailed temporal
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analysis, as understanding these temporal dynamics could provide valuable insights into the

economic and social mechanisms at play.

7 Conclusion

This research aimed to investigate how climate change, manifested through extreme weather

events, affects mortgage delinquency rates. Delving into the areas of temperature and pre-

cipitation extremes, we leveraged an extensive dataset encompassing nine southeastern U.S.

states from January 2008 to December 2022. Our regression model, complemented by the

heteroscedastic extremes approach and incorporating space-time trends, enabled us to dis-

cover patterns and relationships within our data, providing fresh insights into the extreme

weather impacts on mortgage delinquency. The findings conclusively demonstrate that both

precipitation and temperature extremes significantly elevate long-term mortgage delinquency

rates during the summer period, which also holds for the effect of extreme temperature on

short-term delinquency rates in the same period. Conversely, during the winter period, the

effect of weather extremes on long-term delinquency rates is not significant, while both vari-

ables do report significant effects on the short-term delinquency rates.

We performed an extensive analysis, utilizing monthly data on mortgage delinquency rates

and daily weather data from January 2008 to December 2022 across nine southeastern U.S.

states. Employing a heteroscedastic framework, we analyzed the space-time trend of weather

extremes and their impacts on mortgage delinquencies, controlling for economic factors and

incorporating state-by-year and month fixed effects in our regression model. The process

revealed significant regional variations in how weather extremes affect mortgage delinquency

rates. This thesis contributes new insights by quantifying the relationship between extreme

weather events and mortgage delinquency, a previously underexplored aspect. It highlights

the pronounced effect of temperature and precipitation extremes and enriches the under-

standing of climate change’s financial impacts, emphasizing the need for climate-resilient

financial policies and practices.

While this thesis underscores the complexity of the relationship between climate change
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and mortgage delinquency, we can suggest several avenues for future research. A detailed

state-specific analysis considering each state’s unique economic, geographic, and policy land-

scapes could uncover nuanced insights into climate risk. Expanding the research to cover

various regions would improve the findings’ applicability and offer a broader understanding

of climate impacts on financial stability. Additionally, investigating both the frequency and

magnitude of extreme weather events could yield a comprehensive view of their economic

repercussions. Incorporating homeowners’ characteristics, both personal and geographical,

could further refine our understanding, revealing how individual circumstances influence

mortgage payment capabilities in the face of climate-induced challenges. Finally, further

investigating the temporal dynamics of both weather variables could provide insightful infor-

mation into the different mechanisms.

In conclusion, this thesis underscores the complex link between climate change, manifested

through extreme weather events, and mortgage delinquency rates, reinforcing the importance

of incorporating climate risk into financial planning and policy-making. By shedding light on

this dynamic, the study paves the way for more informed, sustainable financial and housing

market strategies that can withstand the challenges posed by a changing climate.
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Appendix

Stability plots

(a) Alabama (b) Arkansas (c) Florida

(d) Georgia (e) Louisiana (f) Mississippi

(g) North Carolina (h) South Carolina (i) Tennessee

Figure 6: Stability plots of average daily precipitation for the summer period for each state
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(a) Alabama (b) Arkansas (c) Florida

(d) Georgia (e) Louisiana (f) Mississippi

(g) North Carolina (h) South Carolina (i) Tennessee

Figure 7: Stability plots of average daily precipitation for the winter period for each state
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(a) Alabama (b) Arkansas (c) Florida

(d) Georgia (e) Louisiana (f) Mississippi

(g) North Carolina (h) South Carolina (i) Tennessee

Figure 8: Stability plots of average daily temperature for the summer period for each state
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(a) Alabama (b) Arkansas (c) Florida

(d) Georgia (e) Louisiana (f) Mississippi

(g) North Carolina (h) South Carolina (i) Tennessee

Figure 9: Stability plots of average daily temperature for the winter period for each state
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