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Abstract

The Implied Volatility, derived from the Black-Scholes model, is a one-to-one mapping

of the price of an option. It provides insights into the financial market participants’

expectations of the underlying asset’s behavior throughout the duration of the option.

Well-known parametric models are commonly employed to predict the Implied

Volatility. In recent years, machine learning models have gained significant popularity

for their state-of-the-art performance in Implied Volatility prediction. This study aims

to exploit the potential of machine learning, building upon the unique two-step Implied

Volatility prediction procedure proposed by Almeida et al. (2022). We attempt to

improve the Implied Volatility prediction of the Black-Scholes, Ad-Hoc Black-Scholes

and Carr-Wu model with non-parametric models such as Random Forest, Extreme

Gradient Boosting and Neural Network models. Our analysis incorporates individual

American-style equity options from January, 2000 up to and including December, 2021.

The findings of this research illustrate that the tree-based non-parametric models

improve the Implied Volatility prediction of the parametric models in various scenarios.
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1 Introduction

It is essential to accurately price options for financial market participants in order to

effectively manage their portfolio. Hence, various parametric option pricing models, such

as the well-known Black-Scholes (BS) model introduced by Black and Scholes (1973), have

been developed over the years to predict the value of an option. These parametric models

are commonly solved for the volatility parameter referred to as the Implied Volatility

(IV). The IV is a popular measure for institutional investors to assess the relative value

of an option (Carr and Wu, 2016). Furthermore, the IV is a critical component of the

Implied Volatility Surface (IVS), which represents the relationship between the option’s

IV, maturity and strike price (moneyness). The IVS provides valuable insights into market

expectations of financial market participants.

Despite the developments in option pricing theory, the parametric models produce a

prediction of the IV that leaves room for improvement. In recent years, the popularity of

machine learning models, also known as non-parametric models, across various research

fields, including option pricing theory, has grown due to their potential to capture complex

patterns and strong predictive performance. Consequently, Almeida et al. (2022) propose

the innovative idea of correcting the IV predictions of a parametric model with a non-

parametric model using a two-step prediction procedure. They employ a Feed-Forward

Neural Network (FNN) in order to correct various parametric models and observe a sig-

nificant improvement in the IV predictions.

We follow the two-step prediction procedure of Almeida et al. (2022) and extend their

research by conducting a comparative study of multiple non-parametric models similar

to the study of Gu et al. (2020). Specifically, the BS, Ad-Hoc Black-Scholes (AHBS)

and Carr-Wu (CW) model are the relevant parametric models (Black and Scholes, 1973;

Dumas et al., 1998; Carr and Wu, 2016). These are corrected by an FNN, a Random

Forest (RF) or an Extreme Gradient Boosting (XGBOOST) model (Breiman, 2001; Chen

and Guestrin, 2016). Furthermore, we deviate from Almeida et al. (2022) by exploring

individual equity options instead of S&P 500 index options. This allows us to include firm

characteristics as features in the non-parametric models. In addition, we determine the

importance of the features with the use of Shapley Additive Explanation (SHAP) values
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(Lundberg and Lee, 2017).

The focus of our research is to compare and analyze the ability of various non-

parametric models to correct the IV prediction of the parametric models. Therefore,

the main question of our research is formulated as follows: “Can a non-parametric model

correct the Implied Volatility prediction of a parametric model for individual equity op-

tions?”. Moreover, some interesting follow-up questions are “Which combination of the

analyzed parametric and non-parametric model results in the best prediction of the Implied

Volatility?” and “Which features are the most important for the prediction of the Implied

Volatility?”.

We obtain end-of-month data for individual American-style equity options in the pe-

riod of January, 2000 up to and including December, 2021, which is accessible through

OptionMetrics (OM) via Wharton Research Data Services (WRDS). Furthermore, the

Center for Research in Security Prices (CRSP) provides the historical price of equities

and is also available in WRDS. In addition, the firm characteristic and macroeconomic

data originate from the papers by Gu et al. (2020) and Welch and Goyal (2008), respec-

tively.

We attempt to leverage the predictive capability of non-parametric models, namely

FNN, RF and XGBOOST, to correct the IV prediction of parametric models, such as BS,

AHBS and CW. In the initial step, the IV is predicted with a parametric model. Subse-

quently, the residuals of these predictions become the target variable and are predicted

using a non-parametric model. Afterwards, the corrected IV is achieved by combining the

two predictions. The final step consists of evaluating the performance of the models using

the Root Mean Squared Error (RMSE), Root Mean Squared Percentage Error (RMSPE)

and Outperformance Rate (OR). This evaluation is conducted across three distinct em-

pirical scenarios. In the first and second scenario, a daily and quarter year rolling window

approach is employed for the prediction and evaluation step mentioned above. In the

third scenario, the training time period spans the initial 19 years, while the test time

period covers the remaining two years.

Our research shows that the tree-based non-parametric models consistently improve

the predictions of the parametric models across all empirical scenarios. Particularly, the

BS model corrected by the RF or XGBOOST model are the top-performing two-step
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prediction models. In contrast, the parametric models corrected by the NN models have

a subpar performance. Moreover, the correction of the NN models lead to a deterioration

of the parametric models’ IV prediction in some cases. While the two-step prediction pro-

cedure results in improvements in the IV predictions of the parametric models, a similar

performance is achieved by predicting the IV directly with the non-parametric models.

The prediction of the two-step models are mostly influenced by option characteristics and

macroeconomic features based on the feature importance determined by the SHAP values.

When we employ the non-parametric models with exclusively the top seven most impor-

tant features, the performance of the two-step prediction models is similar to the original

case with all the features included. In addition, we conduct the empirical analyses on the

top five liquid firms and observe an improved or similar performance of the individual

and two-step prediction models in most cases compared to the analyses involving all the

firms.

The empirical findings presented in this research can have practical implications for a

wide range of professionals. This includes options traders looking to refine their strategies

and portfolio managers aiming for optimized investment decisions. Furthermore, financial

institutions can benefit from improved risk management while analysts and researchers

gain access to more accurate option pricing data to improve their research. Moreover,

our paper focuses on individual equity options, which represent a significant part of the

financial market’s value, instead of the commonly utilized S&P 500 index options in

research regarding IV prediction.

The remainder of the paper proceeds as follows. We provide a brief literature review

in Section 2. Next, the relevant data is described in Section 3. In Section 4, we introduce

the models and methods. Afterwards, Section 5 presents the results. Finally, we conclude

and discuss our results in Section 6 and Section 7, respectively.

2 Literature

In this section, we provide the main findings of previous research that has been con-

ducted on option pricing models. In addition, we explain crucial concepts for improved

understanding of our research process and how we add to the existing literature.
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Option pricing models are a common subject in financial literature and applications

such as hedging, investing and trading. The BS model introduced by Black and Scholes

(1973) stands out as the most notable and pioneering option pricing model. It exhibits

several desirable features such as its simplicity and closed-form solution. Although, this

is accompanied with the limitation of assuming constant volatility, which implies that

options sharing the same underlying asset, despite differences in strike price and matu-

rity, exhibit equivalent IVs at any given point in time. The IV is acquired by solving

the option pricing model for the volatility parameter. Institutional investors effectively

manage their option positions based on the IVs of the options instead of the prices as it

is more comparable across the option panel (Carr and Wu, 2016). Hence, the IVS, which

represents the IVs across different time-to-maturities and strike prices (moneyness), holds

significant value for institutional investors.

Subsequent research explored possible extensions and improvements to the BS model.

For instance, Merton (1973) derived a modified BS model to account for dividend pay-

ments on the underlying equity. Furthermore, a broadened BS framework that includes

commodity options, forward contracts and future contracts is introduced by Black (1976).

Comparably, Garman and Kohlhagen (1983) expanded the BS model to foreign exchange

options. However, Rubinstein (1985) documents the existence of an IV SMILE, which

refers to the U-shaped pattern of the IV across the strike price, in equity options after

conducting robust non-parametric tests to examine the constant volatility assumption

of the BS model. His first finding denotes that the IV tends to be consistently higher

for (deep-)out-of-the-money call options with shorter time-to-maturity. The observation

of the IV SMILE contradicts the fundamental assumption of the BS model in favor of

stochastic volatility models for option pricing (Sheikh, 1991). Moreover, Shastri and

Tandon (1986) utilize the framework introduced by Geske and Johnson (1984) to price

American-style options on futures. They observe an IV SMILE and term-structure effects

in options with S&P 500 futures or Deutsche Mark futures as the underlying asset. In

addition, Heynen (1994) identifies systematic SMILE effects with a U-shaped term struc-

ture for the IV. He evaluates the IV predictions of various stochastic volatility models and

finds that the predictions are inconsistent with the observed SMILE effects. Hence, his

suggestion for an alternative explanation for the volatility SMILE based on market inef-
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ficiencies. Thus, notable deviations persist between the IV predictions of the BS model

and the actual IVs observed in the market. This has attracted significant interest in the

academic world to improve the theoretical framework of Black and Scholes (1973). As

a consequence, Hull and White (1987) and Heston (1993) utilize stochastic volatility as

the basis for their approach, while Bates (1991) and Kou (2002) derive theoretical prices

assuming jump-diffusion processes. An alternative approach models the near-term dy-

namics of the BS IV and defines no-arbitrage constraints on the IVS in order to derive a

quadratic equation for the IV (Carr and Wu, 2016). Furthermore, Carr and Wu (2020)

introduce a novel approach where the current fair value of an option’s IV is linked with

the current conditional moments of log changes in the underlying price. Other studies

combine several existing frameworks such as Bates (1996b), who includes jumps in the

framework introduced by Heston (1993), and co-jump models presented by Andersen et al.

(2015), Carr and Wu (2017) and Bates (2019). These represent a limited portion of the

extensive literature on option pricing models (Smith Jr, 1976; Bates, 1996a; Bakshi et al.,

1997; Bates, 2003; Mitra, 2011; Orlando and Taglialatela, 2017; Bates, 2022).

All these parametric option pricing models require a specific set of assumptions such

as the distribution of the price process, the interest rate process and the market price

of factor risks (Bakshi et al., 1997). Therefore, alternative studies transition from the

common parametric models towards non-parametric models which effectively capture

non-linearity and exhibit strong prediction performance. The earliest contributions of

utilizing non-parametric models for option pricing are from Malliaris and Salchenberger

(1993), Hutchinson et al. (1994) and Boek et al. (1995). They demonstrate that NNs

are more accurate and efficient in option pricing compared to the BS model. Likewise to

Black and Scholes (1973), this initiated various option pricing studies which incorporate

non-parametric models (Ghysels et al., 1997). The studies conducted by Anders et al.

(1998), Garcia and Gençay (2000), Gençay and Qi (2001) and Gençay and Salih (2003)

demonstrate accurate option pricing using NNs. Moreover, Mitra (2011) states that NNs

offer the potential to surpass theoretical option pricing methodologies due to their abil-

ity to learn from features that are difficult to integrate into parametric approaches. In

recent years, model calibration and portfolio hedging with NNs is introduced (Buehler

et al., 2019; Becker et al., 2020; Cuchiero et al., 2020; Horvath et al., 2021). Ruf and
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Wang (2020) and Kumar (2023) present a thorough and comprehensive overview of the

extensive literature utilizing NNs in option pricing, hedging and risk management. In

addition, Ivas,cu (2021) provides a similar overview and expands upon it by incorporating

other notable machine learning models such as RF and XGBOOST.

Our focus lies with the research conducted by Almeida et al. (2022), who propose an

innovative two-step IV prediction procedure utilizing a parametric and non-parametric

model. They demonstrate that an FNN can correct the IV prediction of various paramet-

ric models. In particular, the initial prediction of the IV is done by a parametric model.

Afterwards, the residuals of the initial IV prediction are predicted with an FNN by tak-

ing time-to-maturity, moneyness and, if applicable, time-varying features as an input.

The last step involves correcting the IV prediction with the residual prediction. Their

study serves as a robust foundation for demonstrating the feasibility of their methodol-

ogy, as it incorporates various parametric models with unique fundamental frameworks.

Specifically, the BS model and, its more pragmatic successor, the AHBS model are in-

cluded (Black and Scholes, 1973; Dumas et al., 1998). The other two models move away

from BS and are defined as stochastic volatility models. Namely, the stochastic volatility

model introduced by Heston (1993) and the CW model presented by Carr and Wu (2016).

Almeida et al. (2022) examine the performance of their approach on a day-to-day and

h-days ahead basis. In addition, they conduct a further analysis of the correction on the

Heston model based on the methodology of Andersen et al. (2015). However, limitations

in the study conducted by Almeida et al. (2022) are present, which is common in research.

They state that the performance of their models can be considered as a benchmark due

to the choice of NN architectures, activation function and optimization algorithm. In

this paper, we aim to address some of these limitations and explore possible extensions

in order to build upon their robust foundation. They investigate a set of five distinct

NN architectures, as originally proposed by Gu et al. (2020). These architectures vary in

the number of hidden layers, which range from one to five hidden layers, and uniformly

employ the sigmoid activation function. Several research papers discuss the limitations

of the sigmoid activation function in NNs (Glorot and Bengio, 2010; Glorot et al., 2011;

Krizhevsky et al., 2012; Sussillo and Abbott, 2014; Sharma et al., 2017; Nwankpa et al.,

2018). The main drawback is the vanishing gradient problem of the sigmoid activation
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function. This is the phenomenon where the gradients exponentially decrease towards

zero or increase during the back-propagation procedure as they move away from the in-

put layer. As a consequence, the NN experiences slow learning and potential convergence

problems. In contrast, the Rectified Linear Unit (ReLU) activation function, which is

introduced by Nair and Hinton (2010), has become a popular choice in NNs due to its

advantages in overcoming the vanishing gradient problem. Furthermore, Almeida et al.

(2022) omit regularization in their NN models as they only include a small amount of

features. We investigate individual equity options and incorporate a total of 108 features

regarding firm characteristics, option characteristics and macroeconomic data. Therefore,

regularization is an important tool to prevent overfitting in our case. Popular regulariza-

tion methods such as L1 and L2 regularization, dropout, max-norm and early stopping

can be included to improve our NNs. In addition, despite the significant performance

of NNs in various fields including option pricing, it is crucial to conduct a comparative

study with alternative non-parametric models. This establishes a more robust and com-

prehensive foundation for future research. Therefore, we consider RF and XGBOOST as

potential substitutes for the NN.

3 Data

In this section, the data of our research is introduced. We discuss the data selection,

necessary transformations and present descriptive statistics to provide insights into our

dataset.

We acquire end-of-month data for individual American-style equity options in the

period of January, 2000 up to and including December, 2021 from OM. Each observation

consists of the option’s OM IV measure, strike price, expiration date, best bid and ask

price, volume and delta. Afterwards, the raw data is filtered by excluding observations

with null IV, bid or ask, zero volume or bid, a mid-point of bid and ask below 1
8
and bid

greater than ask following the approach of Freire and Kleen (2023). Furthermore, the

equity prices are obtained from the CRSP. In addition, we include the firm characteristics

data, which originates from Gu et al. (2020), provided on the website of Dacheng Xiu1. As

1The website of Dacheng Xiu for the relevant data is https://dachxiu.chicagobooth.edu/
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per convention, we substitute the missing values in the firm characteristics with the median

of the cross-section in that particular month (Kelly et al., 2019; Freyberger et al., 2020;

Gu et al., 2020; Freire and Kleen, 2023). Moreover, we apply a monthly standardization

to the firm characteristics by adjusting the cross-sectional ranks to fall within the interval

of [91, 1]. The macroeconomic data is found on the website of Amit Goyal (Welch and

Goyal, 2008)2. These individual datasets are merged with the linking table provided by

WRDS. Utilizing the equity price, we remove observations violating the weak no-arbitrage

bounds equal to

Call: max(0, Sj
t −Kj

it) ≤ Cj
it ≤ Sj

t , (1)

Put: max(0, Kj
it − Sj

t ) ≤ P j
it ≤ Kj

it, (2)

where Sj
t is the price of underlying asset j on day t, Kj

it the strike price of option i and

Cj
it (P j

it) the price of the call (put) option calculated as the mid-point of the bid and

ask. To conclude, we examine options across all maturities and moneyness range, where

moneyness is defined as the ratio between the equity and strike price, spanning from 0.5

to 2.0 in our study. This results in the final sample of 13,203,378 options across 8,896

distinct firms. Each firm has 20 observations on average per day which is notably less

than the thousands of daily S&P 500 index options. We do not differentiate between calls

and puts as the focus lies on the IVs.

Table 1 displays the descriptive statistics of our dataset. Specifically, the dataset is

split into several bins according to the moneyness, m, and time-to-maturity, τ , of the

equity options. Each bin includes, from top to bottom, the time-series average of the

number of observations, average IV in % and its standard deviation in parentheses, the

10% and 90% percentile of the IV in brackets and the number of firms in curly braces. We

observe the well-known SMILE phenomenon across the various time-to-maturity rows. In

the context of IVs, SMILE refers to the U-shaped curve when plotting the IV against the

moneyness of options. In alternative terms, the IV for further In-The-Money (ITM) and

Out-of-The-Money (OTM) options is higher compared to At-The-Money (ATM) options.

However, the SMILE is less steep as the time-to-maturity increases. We observe a similar

2The website of Amit Goyal for the relevant data is https://sites.google.com/view/agoyal145
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SMILE for the moneyness columns. Moreover, the number of observations and firms

decreases when the time-to-maturity increases with an exception for the final row.

Table 1

The descriptive statistics of the equity options.

0.50 ≤ m < 0.90 0.90 ≤ m < 0.97 0.97 ≤ m < 1.03 1.03 ≤ m < 1.10 1.10 ≤ m ≤ 2.00

τ < 0.25

4569 5957 8652 5749 5968
62.8% (31,9%) 43.1% (20.5%) 39.6% (18.7%) 44.4% (19.7%) 61.6% (29.0%)
[32.4%, 101.7%] [23.0%, 68.3%] [21.3%, 62.5%] [25.4%, 68.5%] [34.2%, 96.3%]

{950} {1141} {1137} {1021} {1110}

0.25 ≤ τ < 0.50

2514 1467 1395 1191 2597
49.7% (23.1%) 38.7% (17.9%) 38.5% (17.4%) 40.6% (17.5%) 50.7% (20.9%)
[26.3%, 78.4%] [21.1%, 61.2%] [21.5%, 60.2%] [23.6%, 62.4%] [29.9%, 76.4%]

{971} {799} {703} {623} {899}

0.50 ≤ τ < 0.75

1400 701 652 543 1401
46.9% (21.6%) 37.9% (17.4%) 38.0% (17.1%) 39.9% (17.1%) 48.5% (19.9%)
[24.9%, 74.5] [20.9%, 60.1%] [21.4%, 59.4%] [23.2%, 61.6%] [28.7%, 73.4%]

{592} {425} {373} {324} {540}

0.75 ≤ τ < 1.00

566 196 184 174 604
33.6% (13.7%) 29.4% (11.0%) 29.4% (10.3%) 31.1% (10.4%) 37.3% (11.9%)
[21.3%, 48.1%] [19.8%, 41.2%] [20.5%, 40.4%] [22.1%, 42.4%] [26.2%, 50.3%]

{184} {111} {98} {95} {169}

1.00 ≤ τ

1320 405 398 362 1392
40.5% (17.0%) 36.9% (15.1%) 36.7% (14.7%) 37.8% (14.9%) 43.2% (16.0%)
[23.4%, 62.7%] [21.9%, 56.3%] [22.3%, 55.1%] [23.3%, 56.5%] [27.2%, 63.4%]

{413} {223} {205} {193} {401}

Note: This table presents the descriptive statistics of the equity options sorted into bins categorized by
time-to-maturity (τ) and moneyness (m). The values represent (1) the number of observations, (2) the
average Implied Volatility in % and its standard deviation in parentheses, (3) the 10% and 90% quantiles
of the Implied Volatility in square brackets and (4) the number of firms in curly braces from the top to
the bottom of each cell. We calculate these values as the time-series averages of the daily values from the
period of January, 2000 up to and including December, 2021.

In Figure 1, the left panel illustrates the number of observations, while the right panel

shows the average number of observations over the firms for the time period January,

2000 up to and including December, 2021. The plotted values are derived from the entire

dataset and a subset based on a liquidity criterion. The liquid subset consists of firms

with a minimum of 20 observations for a given day. Our models require a certain number

of observations in order to estimate their parameters and, hence, the relevancy of the

liquid subset. We observe a significant increase over time in both panels. This aligns

with the general growth of the equity market over the years. The sharp decrease in

some years can be explained by global events such as the dot-com bubble in the year

2000, the financial crisis in 2009 and the recent Covid-19 pandemic in 2020. In addition,

the difference between the entire data set and the liquid subset plot in the left panel is
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insignificant, which suggests that each non-liquid firm consists of a few observations. The

right panel supports this suggestion as the average number of observations of the liquid

sample ranges from two to three times that of the entire dataset. Moreover, an increasing

difference between the two datasets is present in the right panel. The liquidity of the

liquid subset increases relatively more than that of the non-liquid subset.

Figure 1

These figures illustrate the number of observations (left) and average number of observa-
tions (right) for all firms and liquid firms, which requires a minimum of 20 options, for
each day. The sample includes the period of January, 2000 up to and including December,
2021.

Figure 2 displays the number of firms over the time period January, 2000 up to and

including December, 2021. The number of firms increases over time and the difference

between the datasets remains constant. Moreover, we observe that the entire dataset

includes around three to four times the number of firms of the liquid subset. In addition,

Figure 3 showcases the frequency of the daily average number of observations per firm. It

is apparent that most firms consist of one to ten daily observations on average. Hence, the

substantial difference in the number of firms between the liquid and non-liquid dataset,

as seen in Figure 2, while the difference in the number of observations between these two

datasets is insignificant, as illustrated in Figure 1.
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Figure 2

This figure depicts the number of firms and liquid firms, which requires a minimum of
20 options, for each day. The sample includes the period of January, 2000 up to and
including December, 2021.

Figure 3

This figure presents the frequency of the average number of observations per firm, which is
calculated as the time-series average of the daily values from the period of January, 2000
up to and including December, 2021.
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4 Methodology

This section provides thorough explanations of the methods used in our research. We start

by discussing the parametric and non-parametric models employed for the IV prediction.

Afterwards, the empirical study is explained and the model performance measures are

described. We conclude this section with the description of the method to determine the

importance of the features in our models.

4.1 Parametric models

We intend to remain similar to Almeida et al. (2022) and, therefore, work with the para-

metric models covered in their research. Specifically, the BS, AHBS and CW model are

utilized. The Heston model is computationally too expensive for our individual equity

option data versus their index option data. Hence, we omit this model without losing

substantial importance as the focus lies on the accurate correction accomplished by the

non-parametric models, which can be employed on a diverse range of parametric models.

All in all, the following sections discuss the BS, AHBS and CW model. We adopt the

notation presented in Almeida et al. (2022) whenever it is feasible. In order to accommo-

date the cross-section, we follow Freire and Kleen (2023) and denote firm i = 1, . . . , N ,

time period t = 1, . . . , T and option j = 1, . . . , Ji. N and Ji vary over time as we work

with an unbalanced panel. The subscript t, representing the time period, is omitted to

maintain brevity.

4.1.1 Ad-Hoc Black-Scholes

Dumas et al. (1998) aim to address certain limitations they identify in the BS model

and stochastic volatility models, such as the Heston model. Specifically, the BS model

assumes constant volatility and stochastic volatility models commonly rely on the market

price of the risk parameter, which is challenging to estimate. Therefore, they propose to

model the IV as a quadratic function of the moneyness, m, and time-to-maturity, τ . We

adjust the function for panel data with a cross-section similar to Bernales and Guidolin
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(2014) and Freire and Kleen (2023). Hence, the AHBS model is denoted as

σij = α0,i + α1,imij + α2,im
2
ij + α3,iτij + α4,iτ

2
ij + α5,imijτij + εij, (3)

where σij is the IV of firm i and option j, mij the moneyness, τij the time-to-maturity,

α0,i a constant, αk,i with k = 1, . . . , 5 the coefficient of the relevant feature and εij the

residual. To maintain conciseness with Almeida et al. (2022), the other models mentioned

by Dumas et al. (1998) are omitted.

To estimate the parameters of the AHBS model in Equation (3), Bernales and Guidolin

(2014) follow the suggestion of Hentschel (2003) and utilize Generalized Least Squares

(GLS) due to the potential presence of heteroskedasticity and autocorrelation in the Or-

dinary Least Squares (OLS) residuals. However, they observe comparable results between

the GLS and OLS method. In addition, instead of separate individual regression, Freire

and Kleen (2023) utilize a pooled OLS regression. In particular, their approach involves

modeling the deviation from the average firm IV as an alternative to direct IV pre-

diction. This methodology considers the various levels of average IVs and aims for a

positive bias-variance trade-off. We employ both OLS and pooled OLS in order to main-

tain a comprehensive analysis. The parameter estimation of Equation (3) is achieved

by minimizing the MSE (Heij et al., 2004). This results in the estimated parameters

α̂′
i = (α̂0,i, α̂1,i, α̂2,i, α̂3,i, α̂4,i, α̂5,i). Common practice dictates that Z + 1 observations are

necessary to estimate a regression model with Z parameters. To conclude, the AHBS IV

prediction equals

σ̂AHBS
ij = α̂0,i + α̂1,imij + α̂2,im

2
ij + α̂3,iτij + α̂4,iτ

2
ij + α̂5,imijτij. (4)

The BS model predictions also follow from Equation (3) by setting the parameters

α1,i, α2,i, α3,i, α4,i and α5,i to zero. Hence, the prediction follows from

σ̂BS
ij = α̂0,i (5)
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4.1.2 Carr-Wu

Another option pricing model, which aligns with the methods of institutional investors for

managing options positions, is derived by Carr andWu (2016). The framework begins with

the near-term dynamics of the IVS and derives no-arbitrage constraints based on the shape

of the IVS. In contrast, standard option pricing models rely on specifying the complete

instantaneous variance rate dynamics. For instance, the flat and constant dynamics under

the BS model and the stochastic volatility equation under the Heston model (Black and

Scholes, 1973; Heston, 1993). However, the instantaneous variance rate is unobserved

(Carr and Wu, 2016). Instead, we observe the IVS consisting of numerous options that

span different strike prices and maturity dates. The initialization with the observed IVS

and minimal specification of the current levels of the drift and diffusion processes reduces

the computational complexity compared to starting with a single instantaneous variance

rate and complete specification of the dynamics. Furthermore, the connection between

the IVS and the instantaneous variance rate dynamics is unclear at times, which leads to

institutions frequently calibrating their models in order to account for changing market

conditions. Carr and Wu (2016) state that these parameters are theoretically fixed over

time. Hence, they present a quadratic equation to solve the shape of the complete IVS.

We follow the notation of Carr and Wu (2016) and denote the equity price under the

risk-neutral dynamics as
dSt

St

=
√
vtdWt, (6)

where St is the equity price at time t, vt the instantaneous variance rate following a

positive, real-valued stochastic process and Wt a standard Brownian motion under the

Q-measure. However, the risk-neutral dynamics of the instantaneous variance rate is not

specified by Carr and Wu (2016). Alternatively, the framework defines the risk-neutral

dynamics of the IV based on the BS model as

dσt(K,T ) = µtdt+ ωtdZt, (7)

where σt(K,T ) is the IV of the option with strike price K and maturity T , µt the drift

of the IV process, ωt the volatility of the IV process and Zt a standard Brownian motion.
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Furthermore, the standard Brownian motions Wt and Zt have a correlation equal to

ρt ∈ [91, 1] or in mathematical terms Et[dWtdZt] = ρtdt. When the drift, µt, and diffusion,

ωt, are established as proportional to the IV level, Carr and Wu (2016) derive

dσt(K,T )

σt(K,T )
= e9ηt(T−t)(mtdt+ wtdZt), (8)

where mt, wt and ηt are stochastic processes that are not conditional on K, T or σt(K,T ).

The process wt is bound to remain strictly positive and the inclusion of the exponential

dampening term e−ηtτ with τ = T − t accounts for the fact that IVs with long ma-

turities tend to exhibit less movement in empirical observation (Carr and Wu, 2016).

Subsequently, they denote k = log(K
St
) and derive a quadratic equation for the IVS as a

function of k and τ under the no-arbitrage assumptions in combination with the dynamics

in Equations (6)-(7) equal to

1

4
e92ηtτw2

t τ
2σ4

t + (1− 2e9ηtτmtτ − e9ηtτwtρt
√
vtτ)σ

2
t

− (vt + 2e9ηtτwtρt
√
vtk + e92ηtτw2

t k
2) = 0.

(9)

Equation (9) indicates that the no-arbitrage constraint is dependent on the current levels

of the stochastic processes (mt, wt, ηt, vt, ρt) rather than their exact dynamics. As a result,

the IV prediction process requires extracting the current levels of the five dynamic states

without estimating the underlying dynamics. Therefore, it is possible to model the IVS

on day t by considering the values of the dynamic states as parameters. Particularly, we

attempt to find the optimal set of θ′
t = (mt, wt, ηt, vt, ρt) for which the left-hand side of

Equation (9) is approximately zero. Hence, θ̂t is estimated with

θ̂t = argmin
θt

n∑
i=1

(1
4
e92ηtτi,tw2

t τ
2
i,tσ

4
i,t + (1− 2e9ηtτi,tmtτi,t − e9ηtτi,twtρt

√
vtτi,t)σ

2
i,t

− (vt + 2e9ηtτi,twtρt
√
vtki,t + e92ηtτi,tw2

t k
2
i,t)
)2
,

(10)

where σi,t is the observed IV of option i on day t. The optimization is done iteratively

using Non-Linear Least Squares (NLS) with initialization θ0. The final prediction of the

IV is obtained by solving Equation (9) given the optimal set θ̂t, k and τ of a particular

option. This process is iterated for each firm.
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4.2 Non-parametric models

The goal of this paper is to use the methodology introduced by Almeida et al. (2022) which

employs a two-step prediction procedure with a parametric and non-parametric model in

order to predict the IVS. The IVS is defined as the mapping of the IVs, σ, with varying

moneyness, m, and time-to-maturity, τ . Despite extensive research into IVS modeling, the

underlying assumptions deviate from the real world and lead to misspecification. Hence,

Almeida et al. (2022) introduce the Pricing Error Surface (PES) which is the difference

between the observed and predicted IVS. This is denoted as

ε̂P (m, τ) = σ(m, τ)− σ̂P (m, τ), (11)

where ε̂P (m, τ) is the PES of parametric model P and σ(m, τ) (σ̂P (m, τ)) the observed

(predicted) IVS.

Almeida et al. (2022) propose the idea of decreasing the prediction errors in a two-

step prediction procedure. First, a parametric model is employed to predict the IVS.

Second, they leverage a non-parametric model to predict the PES and correct the pre-

dicted IVS. In our study, a parametric model is calibrated on the observed IVs σ(mij, τij)

and used to predict σ̂P (mij, τij) per firm. In the second step, we calculate the residuals

ε̂P (mij, τij) = σ(mij, τij)− σ̂P (mij, τij) and deploy them as the dependent variable for the

non-parametric model. In contrast to the parametric model, the non-parametric mod-

els are not calibrated per firm as the firm characteristics differentiate the observations.

Hence, the non-parametric models are employed for all the observations in the relevant

time period. The parameters of the non-parametric models are estimated by minimizing

the objective function

1

J

N∑
i=1

[
Ji∑
j=1

(
ε̂P (mij, τij)− fNP (xij| θNP )

)2]
, (12)

where J is the summation of J1, . . . , JN , fNP (xij| θNP ) the PES prediction of non-

parametric model NP with a vector of features xij and parameter set θNP . Afterwards,

the IV prediction is calculated as the combination of the predictions produced by both
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the parametric and non-parametric models denoted as

σ̂(mij, τij) = σ̂P (mij, τij) + f̂NP (xij| θNP ). (13)

The two-step prediction procedure for the IV can be generalized to a strict non-parametric

prediction by slightly altering Equation (12) (Almeida et al., 2022). In particular, the IV

prediction of the parametric model is included in the equation and the target variable of

the non-parametric model changes from the residual to the observed IV. This results in

the following minimization problem

1

J

N∑
i=1

[
Ji∑
j=1

(
σ(mij, τij)− cij − fNP (xij| θNP )

)2]
, (14)

where cij is the IV prediction of the parametric model denoted as σ̂P (mij, τij).

We have established the two-step prediction procedure. The subsequent sections focus

on the specifics of the machine learning models employed in the second step. We consider

well-known adaptable machine learning models with a minimal demand for hyperparam-

eter tuning considering the frequent training of the models. In addition, the machine

learning models require the ability to effectively capture complex relationships between

the features and the target variable. Therefore, we choose the Random Forest, Extreme

Gradient boosting and Neural Network model as candidates for the non-parametric model.

4.2.1 Random Forest

Breiman et al. (1984) introduce the Classification And Regression Tree (CART) algorithm

which consists of building a decision tree from the relevant features. Specifically, the data

is recursively partitioned into subsets based on thresholds of the independent variables

such that the observations in each region are as similar as possible. In our case, the

decision tree is configured as a regression to accommodate the continuous dependent

variable. Therefore, the subsets A and B in each split follow by minimizing

∑
i: σi∈A

(σi − σ̃A)
2 +

∑
i: σi∈B

(σi − σ̃B)
2, (15)
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where σ̃A (σ̃B) is the sample mean of the observations in subset A (B) and σi the observed

IV of observation i. This results in a threshold for the relevant feature in each split and

a tree emerges as seen in Figure 4. Unknown observations are assigned to a final node

based on the splits in the tree and the dependent variable is predicted as the mean of the

relevant final node.

Figure 4

An example of a decision tree. The observations in nodes 1-3 and 5 are partitioned into
two nodes in the subsequent layer. Unknown observations are assigned a value equivalent
to the mean at the final nodes 4 and 6-9.

The resulting decision tree is considered simple and interpretable. Although, it is

prone to overfit and exhibit high variance due to its sensitivity to outliers. CART can

be improved by ensemble methods, such as bagging and boosting methods introduced by

Breiman (1996) and Schapire (1990), respectively. These ensemble methods are employed

in practice as an alternative to improve overall performance due to a net positive in the

bias-variance trade-off (Dietterich, 2000; Sutton, 2005; Bramer, 2007; Ganaie et al., 2022).

RF represents the bagging method, whereas XGBOOST, which will be elaborated upon

in the following section, serves as an example of the boosting method. Figure 5 shows the

general procedure for the bagging and boosting method. We observe that bagging includes
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multiple independent models, while the models in the boosting method are dependent on

each other.

Figure 5

Ensemble methods; Bagging includes a large number of independent decision trees. Boost-
ing consists of sequential optimization, where each new tree is improved with information
from the previous tree.

We consider RF introduced by Breiman (2001) as our first non-parametric model due

to its simpleness and broad applicability. This ensemble method leverages a substantial

number of independent decision trees (Breiman, 1996). Each decision tree is grown with

the complete dataset in the relevant period. To partition the observations, a random se-

lection of
√
p out of the total p independent variables is incorporated in each decision tree.

This significantly reduces the correlation among the decision trees. The final prediction

is equal to the average of all decision tree predictions. It is important to note that their

are several crucial hyperparameters. Specifically, three key hyperparameters significantly

influence the performance of the RF model. Namely, the number of trees which deter-

mines the size of the model and is positively correlated with the generalization error of

the model. The remaining two are the maximum depth allowed for each tree and the

minimum number of samples required for a node split. These affect the pruning process

of the individual trees and, therefore, the proneness to overfitting. We accomplish the

implementation of the RF model with the Scikit-learn library for Python (Pedregosa

et al., 2011)3.

3The documentation of the Scikit-learn Python library is found on https://scikit-
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4.2.2 Extreme Gradient Boosting

The second non-parametric model in our study is a relatively newer model known for

its performance named XGBOOST (Chen and Guestrin, 2016). This ensemble method

utilizes a gradient boosting method where the model is iteratively optimized in order to

decrease the bias of an individual decision tree (Bartlett et al., 1998). The sequential

process distinguishes XGBOOST from RF. Instead of growing new independent trees

through bootstrapping, XGBOOST adjusts the structure of the new tree based on the

performance of the former tree. Hence, relatively simple and shallow trees, known as weak

learners, are sequentially combined in order to acquire an overall strong learner with a

net positive bias-variance trade-off. The gradient descent method is utilized to optimize

the loss function and improve the previous tree. Moreover, XGBOOST is regularized and

exploits second-order gradients for efficiency.

Following the notation of Chen and Guestrin (2016), XGBOOST utilizes K additive

functions to predict the dependent variable given a dataset with n observations and m

features. This is denoted as

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F , (16)

where ŷi is the prediction for observation i that consists of adding theK additive functions.

Furthermore, F = {f(x) = wq(x)} is the space of the regression trees with structure

q : Rm → T with a total of T leaves and leaf weights w ∈ RT . Each fk represents

an independent tree structure characterized by the parameters q and leaf weights w.

Consequently, each leaf has a continuous score wi as we employ regression trees. Therefore,

the regularized objective function, which is to be minimized, is defined as

L(ϕ) =
∑
i

ℓ(ŷi, yi) +
∑
k

Ω(fk), (17)

where L(ϕ) is the total loss, ℓ(ŷi, yi) the differentiable convex loss function that quantifies

the difference between the predicted value ŷi and real value yi, and Ω(f) = γT + 1
2
λ||w||2

a regularization term with hyperparameters γ and λ. It serves as a penalty to regulate

learn.org/stable/index.html

22



the complexity of the model to decrease the risk of overfitting.

Conventional optimization methods are not viable as Equation (17) includes functions

as parameters and the sequential dependency of fk. Instead, the model follows an additive

training approach. Hence, let ŷti be the predicted value of observation i in iteration t and

add ft to the objective function as follows

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), (18)

where ft is selected such that the improvement to the model performance is maximized

as specified by Equation (17). This leads to a second-order approximation equal to

L(t) ≃
n∑

i=1

(
l(yi, ŷ

(t−1)) + gift(xi) +
1

2
hif

2
t (xi)

)
+ Ω(ft), (19)

where gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)l(yi, ŷ
(t−1)) are the first and second order

derivatives of the loss function, respectively. The corresponding optimal value for a fixed

structure q(x) is then derived as

L(t)
q =

1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT. (20)

Equation (20) is computationally too extensive and, therefore, a greedy algorithm is

utilized (Chen and Guestrin, 2016). The greedy algorithm adds branches to the decision

tree in each iteration. The splits are evaluated by calculating the loss reduction denoted

as

Lsplit =
1

2

(
(
∑

i∈IL gi)
2∑

i∈IL hi + λ
+

(
∑

i∈IR gi)
2∑

i∈IR hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

)
− γ, (21)

where IL (IR) is the left (right) sample after the split. Similar to RF, the XGBOOST

model’s performance is notably affected by key hyperparameters such as the number of

estimators, K, the maximum depth allowed for each tree and the minimum loss reduction,

γ, required to make a node split. Furthermore, XGBOOST includes hyperparameters re-

garding the iterative process. Namely, the learning rate parameter, η, which is equivalent

to the shrinkage of the optimal weights in each step in order to maintain a conservative

process. In addition, the hyperparameters α and λ represent the L1 and L2 regularization
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terms, respectively. The L1 regularization (LASSO) encourages sparse feature selection

by driving some feature weights to zero (Tibshirani, 1996). On the other hand, the L2 reg-

ularization (Ridge) penalizes large weights and promotes a more balanced use of features

for overall model stability (Hoerl and Kennard, 1970). By tuning these hyperparameters,

XGBOOST achieves a generalizable model by finding a balance between model complex-

ity and predictive accuracy. The last two important hyperparameters are the subsample

ratio and the column subsample ratio. These control the sample and number of fea-

tures utilized in the model similar to regularization, respectively. The implementation is

performed with the XGBoost Python library created by Chen and Guestrin (2016)4.

4.2.3 Neural Network

We step away from the tree-based models and introduce the final non-parametric model,

known as the Neural Network. Theoretically, it is considered to be a universal approxi-

mator capable of handling complex and non-linear relationships in data (Cybenko, 1989;

Hornik et al., 1989; Hornik, 1991; Leshno et al., 1993). Moreover, its flexibility through

subsequent layers of non-linear transformations results in a complex model with state-of-

the-art performances for various applications, such as asset pricing (Heaton et al., 2017;

Gu et al., 2020), option pricing (Hutchinson et al., 1994; Sirignano and Spiliopoulos, 2018;

Becker et al., 2019; Liu et al., 2019b,a), computer vision (Hinton et al., 2006; Krizhevsky

et al., 2012) and natural language processing (Bordes et al., 2012). Hence, making it

a significant component of our research. However, the flexibility is accompanied with a

higher degree of parameterization and, thus, significant decrease in interpretability (Gu

et al., 2020). A graphical example of a Neural Network can be seen in Figure 6.

4The documentation of the Xgboost Python library is found on https://xgboost.ai/
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Figure 6

A graphical illustration of a Neural Network with an input layer, two hidden layers and
an output layer.

In particular, we investigate the Feedforward Neural Network (FNN) with the back-

propagation learning procedure popularized by Rumelhart et al. (1986). We maintain

the notation introduced by Almeida et al. (2022) and denote the vector of features as

xi,j, which corresponds to option i and firm j. We define the Neural Network model

f : R|xi,j | → R, where |xi,j| is the number of features in xi,j, and denote

zl
dl×1

= h̊( Al−1
dl×dl−1

zl−1
dl−1×1

+ bl−1
dl×1

), (22)

where zl refers to the lth layer in the NN with l = 0, . . . , L, z0 is the input vector and

equivalent to xi,j, dl the amount of neurons, Al−1 the weight matrix, bl−1 the bias and

h̊ : Rdl → Rdl an activation function applied to each element of the vector. The final layer
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consists of the calculation of the target variable which is equivalent to

f(xi,j)
1×1

= AL
1×dL

zL
dL×1

+ bL
1×1

, (23)

where f(xi,j) is the final output. The FNN requires hyperparameter tuning comparable

to the other non-parametric models. We start with the architectures of the FNN. Almeida

et al. (2022) include the five FNN architectures presented by Gu et al. (2020), who follow

the geometric pyramid rule of Masters (1993):

• Neural Network 1: 1 hidden layer with 32 neurons.

• Neural Network 2: 2 hidden layers with 32 and 16 neurons, respectively.

• Neural Network 3: 3 hidden layers with 32, 16 and 8 neurons, respectively.

• Neural Network 4: 4 hidden layers with 32, 16, 8 and 4 neurons, respectively.

• Neural Network 5: 5 hidden layers with 32, 16, 8, 4 and 2 neurons, respectively.

They combine these architectures with the sigmoid activation function defined as

sigmoid(x) = h̊(x) = 1
1+e−x . As stated before, the sigmoid activation function suffers from

the vanishing gradient problem where the gradients exponentially decrease towards zero

or increase during the back-propagation procedure as they move away from the input

layer. Therefore, deep NNs using the sigmoid activation function potentially encounter

slow learning and convergence problems. To overcome the vanishing gradient problem,

we substitute the sigmoid activation function with the popular ReLU activation function

denoted as ReLU(x) = h̊(x) = max(0, x) (Nair and Hinton, 2010). Another important tool

for the fine-tuning of a NN is regularization in order to prevent overfitting. Conventional

methods include L1 and L2 regularization, dropout, max-norm and early stopping. L1

and L2 regularization involves including penalty terms in the loss function as follows

Lreg(X) = L(X) +
L∑
l=1

αl|| Al−1
dl×dl−1

||1,1 +
L∑
l=1

λl|| Al−1
dl×dl−1

||2,2, (24)

where Lreg(X) is the regularized loss function, L(X) the loss function, || Al−1
dl×dl−1

||N,N the

N -norm of weight matrix Al−1
dl×dl−1

and αl (λl) the hyperparameter regarding the L1 (L2)
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regularization. Similar to the idea of L1 and L2 regularization, max-norm regularization

involves setting an upper bound for the 2-norm of the weight vectors. The constraint is

denoted as

||ai,l||2 ≤ cl, (25)

where ai,l is the ith row of the weight matrix Al and cl the upper bound. Max-norm

prevents individual weight vectors from becoming significantly large and influencing the

learning process. Another regularization method in NNs is dropout. The idea behind

dropout is to introduce noise in the NN to achieve a more robust NN. As the name

suggests, a certain number of neurons in each layer, determined by the dropout rate

pdrop, are ”dropped out” which implies that the output of these neurons are omitted

in the training process. The output of the remaining neurons is scaled with 1
pdrop

to

compensate for the fact that in the testing process all neurons are utilized (Hinton et al.,

2012; Srivastava et al., 2014). Pairing dropout with L1, L2 and max-norm regularization

optimizes its effectiveness (Srivastava et al., 2014). The final regularization method is

early stopping. Despite its earlier implementation in various models and application,

Morgan and Bourlard (1989) introduced early stopping in NNs. During the training

process, a validation set is utilized to evaluate the performance of the NN in each epoch.

An epoch refers to a single iteration of the training data through the NN. The weights

are updated after each epoch to achieve a better performing NN. If the performance does

not improve after a certain number of epochs, known as the patience, the training process

stops. Afterwards, the final weights are acquired and the NN is calibrated with the total

training data. Finnoff et al. (1993), Prechelt (1998) and Gençay and Qi (2001) state that

early stopping significantly reduces overfitting in NNs.

We train the NNs with the Adam optimizer introduced by Kingma and Ba (2014).

Furthermore, the ReLu activation function is initialized with the most common initializa-

tion method called the ‘He Normal Initialization’ (He et al., 2015; Shin and Karniadakis,

2020). We implement the NNs in the TensorFlow library with the Keras API5. The

complete list of our non-parametric models with their respective hyperparameters can be

found in Appendix B. The values of the hyperparameters are chosen based on tests run

on a subset of our data and common values in similar research.

5The documentation of the TensorFlow library is found on https://www.tensorflow.org/
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4.3 Empirical Study

In this section, we present the various scenarios of the empirical study conducted in

our research. First, we evaluate the models on a daily basis similar to Almeida et al.

(2022). Second, we employ a rolling window spanning three end-of-month time points as

an extension of the daily analysis. Finally, we aim to include macro variables leading us to

conduct a comprehensive analysis spanning the entire time frame. Freire and Kleen (2023)

utilize the same dataset and, hence, we adopt some of their elements for our empirical

study. The following sections provide detailed explanations of the scenarios.

4.3.1 Daily Analysis

Our research begins with a daily analysis, where the observations for each firm are ran-

domly divided into two equally sized sets on a daily basis. The first set, assigned as the

training set, is employed to calibrate our models, while the second set is appointed as the

test set, utilized for model evaluation. We calibrate the parametric models per firm and,

therefore, require a minimum of 10 observations per firm in both the training and test set

following Freire and Kleen (2023). In contrast, the non-parametric models incorporate

firm characteristics as features, which eliminates the need for individual firm calibration.

The firm characteristics enable the non-parametric models to group similar observations

from different firms providing them access to more information for calibration purposes

compared to the individual firm calibration of the parametric models. Afterwards, the

training set is partitioned once more into a smaller training set and validation set with

80% and 20% of the observations from the initial training set, respectively. The smaller

training and validation set are utilized in a gridsearch to determine the optimal values for

the hyperparameters of the non-parametric models. We opt out of cross-validation due

to its computational demands. Note that the training, validation and test set are equal

across the models to provide a fair comparison. Thereafter, the non-parametric models

with the optimal hyperparameters are calibrated using the complete training set. In the

end, we calculate the performance measures based on the predictions derived from the

test set.
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4.3.2 Quarterly Analysis

The second scenario is a quarterly analysis of the models. We calibrate, train and test the

models almost identical to the first scenario. The difference lies in the time frame of the

analysis. The data consists of a rolling window of three end-of-month time points instead

of one. The first two end-of-month time points of the rolling window are included into the

training set. Subsequently, the final end-of-month time point is randomly split into two

equally sized sets. One set is added to the training set, while the other set is assigned as

the test set. Hence, the test set only includes observations of the final end-of-month time

point to avoid a look-ahead bias. If the test set would include observations of the first

and second end-of-month time points of the rolling window, the models would be trained

on data in the future compared to these time points. A quarterly analysis might offer

more stable predictions by reducing the effect of possible outliers in the data. Moreover,

certain investment strategies occur on a quarterly basis. Hence, an analysis with the same

frequency could be more relevant.

4.3.3 Complete Dataset Analysis

In the final scenario, we focus on the predictive performance of the models on a test set

outside of the training set time period. The training set consists of the observations from

the year 2000 up to and including 2019 with the last two years acting as the validation

set. The test set includes the years 2020 and 2021. The training, validation and test

set include individual stock market crashes such as the dot-com bubble in the year 2000,

the financial crisis in 2009, the cryptocurrency crash in 2018 which also affected the stock

market, and the recent Covid-19 pandemic in 2020. Hence, the training and validation are

representative of the test set. Gu et al. (2020) observe that some macroeconomic variables

can be influential in asset pricing. The increased training and test time frame opens up

the possibility to include time-varying macroeconomic variables in the non-parametric

models. Moreover, the extended time frame for training allows for an even more robust

model compared to the previous scenarios.
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4.4 Performance Measures

A popular model performance measure utilized in similar research is the Root Mean

Squared Error (RMSE) (Andreou et al., 2010; Liu et al., 2019b; Ruf and Wang, 2020;

Ackerer et al., 2020; Ivas,cu, 2021). In addition, the parametric and non-parametric models

in our research are calibrated with the RMSE, which is consistent with Almeida et al.

(2022). The RMSE is computed as

RMSEt =

√√√√ 1

n

n∑
j=1

(σj,t − σ̂j,t)2, (26)

where n is the number of observations, σj,t the observed IV of option j at time t and σ̂j,t

the predicted IV. It is important to acknowledge that this approach does not take the

difference in IV levels of the various firms in our data into account. Therefore, we also

evaluate the models with a scale-invariant version of the RMSE. This is known as the

Root Mean Squared Percentage Error (RMSPE) and denoted as

RMSPEt =

√√√√ 1

n

n∑
i=1

(
σj,t − σ̂j,t

σj,t

)2. (27)

Furthermore, Freire and Kleen (2023) utilize a scale-invariant performance measure

that is calculated relative to a benchmark model. This is the Outperformance Rate (OR)

which is equal to

ORk
t =

1

n

n∑
j=1

1(RMSEk
j,t < RMSEb

j,t), (28)

where RMSEk
j,t is the RMSE of model k and RMSEb

j,t the RMSE of the benchmark model.

In our case, the benchmark model is the simplest parametric model without a correc-

tion, which is the BS model estimated with OLS. We calculate the various performance

measures for each day and take the average of the resulting time-series of performance

measures.
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4.5 Feature Importance

While machine learning models are known for their significant performance, they are con-

sidered as black-box models due to their limited interpretability. Hedge funds, investing

firms, trading firms and other similar firms manage a substantial volume of financial re-

sources. Hence, the understanding of a model is of great importance. Researchers have

introduced methods to increase the interpretability of machine learning models. Almeida

et al. (2022) utilize a permutation based approach, similar to the Permutation Feature

Importance (PFI) method introduced by Breiman (2001) and further developed by Fisher

et al. (2019), to evaluate the importance of a feature in the NN models. Specifically, they

set one of the features to zero and observe the change in the RMSE of the model. However,

the PFI method has two main drawbacks. First, when two or more features are correlated

and one of the feature values is permuted, unrealistic combinations of the feature values

could arise and lead to false conclusions in the importance of the feature. Second, cor-

related features could share their overall feature importance as they are associated with

each other. There are various other methods to assess feature importance (Linardatos

et al., 2020). Other popular approaches are the Local Interpretable Model-agnostic Ex-

planations (LIME) and SHapley Additive exPlanations (SHAP) method introduced by

Ribeiro et al. (2016) and Lundberg and Lee (2017), respectively. The LIME method

creates a new dataset of altered samples from the original data set with the underlying

predictions. Subsequently, an interpretable model, such as a linear regression, is trained

on the altered dataset. Finally, the prediction is explained by interpreting the trained

interpretable model. The simplicity of LIME is accompanied with a decrease in precision

compared to the SHAP method. Furthermore, the LIME method lacks a theoretical foun-

dation in contrast to the SHAP method. Hence, we utilize the SHAP method to calculate

the feature importance.

The SHAP method is based on the Shapley values introduced by Shapley (1953).

These values originate from game theory and quantify the contribution of a player to

the game. Specifically, the average marginal contribution of a player across all possible

coalitions is calculated. In our context, the players are the features incorporated in the

non-parametric models and the game is the prediction of the IV. We follow the notation
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of Lundberg and Lee (2017) and specify the Shapley value of a feature as

ϕj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{j}(xS∪{j})− fS(xS)], (29)

where F is the set of features with S ⊆ F and fS∪{j}(xS∪{j}) (fS(xS)) the machine learning

model including (excluding) feature j.

Lundberg and Lee (2017) state that Shapley values have unique solutions and exhibit

three desirable properties, namely the local accuracy, missingness and consistency. First,

local accuracy requires that the output of the explanatory model is equivalent to the

output of the original model. Second, missingness implies that a missing feature in the

original input has zero importance in the model. Last, consistency ensures that the

Shapley value assigned to a specific feature is greater in model A than in model B if that

particular feature holds greater importance in model A compared to model B.

The calculation of the Shapley values for a model with a significant amount of features

is extensive. A popular substitution is the SHAP method which combines the game theory

of Shapley values and the local interpretability of model-agnostic methods, such as LIME

(Lundberg and Lee, 2017). We employ TreeSHAP and DeepSHAP, which are algorithms

designed by the author of Lundberg and Lee (2017), for the tree-based machine learning

models and Neural Networks, respectively6.

5 Results

The outcomes of our research are discussed in this section. We conduct a comparative

analysis between the (non-)parametric models in the various scenarios of our empirical

study.

5.1 Empirical Study Results

5.1.1 Daily Analysis

We start with the daily analysis, which involves calibrating the parametric and non-

parametric models on the daily cross-section. Table 2 showcases the RMSE, RMSPE and

6python library https://github.com/shap/shap
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OR of the daily analysis. The first row (column) in each panel reports the performance

measures of the respective (non-)parametric model. Subsequent rows represent the per-

formance measures of a specific parametric model corrected by a non-parametric model

indicated in the corresponding column. We denote a parametric model (P) estimated with

parameter estimation method (M) corrected by a non-parametric model (NP) as P-M-NP

for brevity. For instance, the RMSE of 3.76% in panel A’s top left corner follows from the

BS model estimated with OLS and corrected by the RF model and is denoted as BS-OLS-

RF. Similarly, individual performances of the parametric and non-parametric models are

denoted as P-M and NP, respectively. Furthermore, the number after the NNs indicates

the number of underlying hidden layers. The bold values highlight the best result per

parametric model, while the bold and underlined values represent the best overall result

within the relevant panel. In Panel C, we deviate from highlighting the best performance

measure per parametric model as these are relative to a benchmark model. Therefore,

we only emphasize the best overall result. In our study, we designate the BS model es-

timated with OLS, which is the simplest model in our paper, as the benchmark model.

Furthermore, the hyperparameter grid search details are found in Appendix B. The val-

ues in the grid searches are based on common hyperparameter values in similar research

and randomized grid searches performed on subsets of the dataset due to computational

constraints (Breiman, 1996).

Table 2 illustrates the superiority of tree-based models over NNs in terms of prediction

and correction. We note that the individual XGBOOST model and various parametric

models corrected by the XGBOOST model are the top-performing models in each col-

umn of panel A. In contrast, the RF model surpasses the XGBOOST model in terms of

correcting the BS-POLS and AHBS-POLS model in panel B. Although, the differences in

performance measures of these two models are marginal, similar to panel A. The results

suggest that the BS-OLS-XGBOOST is the best-performing IV prediction model across

all panels with an RMSE, RMSPE, and OR of 2.59%, 5.76%, and 77.24%, respectively.

The second-best predictions follow from the individual XGBOOST model with an increase

equivalent to 0.05%, 0.13% and -2.12% for the RMSE, RMSPE, and OR relative to the

BS-OLS-XGBOOST model, respectively. This prompts a consideration between utiliz-

ing the BS-OLS model followed by the XGBOOST model for the correction or directly
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employing the XGBOOST model for IV prediction, which is a trade-off between accu-

racy and computational efficiency. Comparing these top two models with the individual

parametric models reveals significant improvement in the performance measures.

When focusing on the performance measure of the NN models, we notice a significant

increase in RMS(P)E and decrease in OR for the parametric models corrected by the NN

models and the individual NN models compared to the tree-based models. A potential ex-

planation is the high parameterization combined with the limited amount of observations

in each daily cross-section.

A notable relative improvement is seen in the IV predictions of the CW-NLS model

due to the corrections of the XGBOOST model. In particular, we observe a decrease of

18.76%, 58.91% and increase of 65.95% for the RMSE, RMPSE and OR, respectively.

Surprisingly, the flat IVS prediction of the BS-OLS model outperforms the more complex

CW-NLS model before correction due to the CW model potentially being stuck in a local

optimum. After the correction with the various non-parametric models, the BS-OLS and

CW-NLS model exhibit a somewhat equivalent performance.

The BS-POLS and AHBS-POLS are the worse performing models including the cor-

rected variant. A possible reason is the difference in average firm IV of the train and test

set. The prediction of the test set includes the average firm IV of the train set. A larger

difference between these averages leads to larger errors in each observation and, therefore,

overall worse performance measures.

All things considered, the results highlight the effectiveness of the non-parametric

models, particularly the tree-based models, in capturing the complex relationship between

the IV and the incorporated features. Although, the improved performance could be

attributed to the inclusion of more features, in other words information, in the non-

parametric models for the prediction of the IV.
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Table 2

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the daily analysis.

Non-parametric BS AHBS Carr-Wu
OLS POLS OLS POLS NLS

Panel A: Root Mean Squared Error

Parametric 6.07 21.47 5.19 22.07 21.67
Random Forest 3.91 3.76 15.85 4.56 16.68 3.45
XGBOOST 2.64 2.59 15.63 4.04 16.47 2.91
Neural Network 1 7.41 5.76 17.89 5.63 18.69 5.40
Neural Network 2 7.75 5.93 18.12 5.78 19.06 5.41
Neural Network 3 7.61 5.43 17.89 5.25 18.85 5.03
Neural Network 4 7.37 5.38 18.18 5.22 18.93 4.96
Neural Network 5 7.12 5.69 18.90 5.19 19.75 5.14

Panel B: Root Mean Squared Percentage Error

Parametric 13.02 53.17 11.16 54.66 65.63
Random Forest 8.50 8.20 40.98 10.03 43.13 7.81
XGBOOST 5.89 5.76 50.00 8.97 43.16 6.72
Neural Network 1 17.58 13.10 45.55 12.65 47.65 12.45
Neural Network 2 18.45 13.72 45.97 12.96 48.46 12.52
Neural Network 3 18.01 12.05 45.44 11.41 47.60 11.29
Neural Network 4 17.30 11.92 46.24 11.33 48.02 11.21
Neural Network 5 16.74 12.38 47.85 11.21 49.62 11.29

Panel C: Outperformance Rate

Parametric 16.38 67.29 15.97 9.28
Random Forest 76.94 75.36 20.73 70.59 19.85 74.42
XGBOOST 75.12 77.24 21.18 72.83 20.29 75.23
Neural Network 1 44.20 55.26 19.12 63.49 18.16 57.80
Neural Network 2 43.34 55.92 18.79 64.13 17.98 58.61
Neural Network 3 42.83 56.78 18.96 66.51 17.96 60.12
Neural Network 4 43.93 56.46 18.74 66.31 17.99 60.50
Neural Network 5 45.10 53.46 18.06 66.89 17.39 59.36

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series averages of the daily cross-sections from the period of January, 2000 up to
and including December, 2021.

5.1.2 Quarterly Analysis

Table 3 reports the results for the quarterly analysis. The dominance of the tree-based

models continues comparable to the daily analysis. The BS-OLS-RF model emerges as

the best-performing IV prediction model with an RMSE and RMSPE equal to 3.75% and

8.21%, respectively. Meanwhile, the individual RF model has an OR of 76.94% and is

the top-performing IV prediction model based on panel C. Once again, the differences

between the performance measures of the top two IV prediction models are marginal.

Notable changes in the performances of some models are observed. While most models

are robust in performance, the individual XGBOOST model demonstrates a significant
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decline in terms of the performance measures compared to the daily analysis. In contrast,

the individual CW-NLS model exhibits significant improvement. This improvement could

be attributed to the larger training set utilized in the quarterly analysis, which includes

observations from two days preceding those in the test set. The larger number of observa-

tions may lead to a better convergence in the estimation of the parameters for the more

complex CW-NLS model. However, the increase in the number of observations did not

improve the performance of the NN models.

Table 3

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the quarterly analysis.

Non-parametric BS AHBS Carr-Wu
OLS POLS OLS POLS NLS

Panel A: Root Mean Squared Error

Parametric 6.06 21.40 5.16 22.00 4.40
Random Forest 3.90 3.75 15.80 4.54 16.62 3.83
XGBOOST 7.69 4.18 16.66 4.66 17.44 4.00
Neural Network 1 7.66 5.90 17.76 5.48 18.70 4.95
Neural Network 2 7.73 5.83 18.00 5.71 18.92 5.15
Neural Network 3 7.76 5.36 17.87 5.17 18.83 4.49
Neural Network 4 7.37 5.40 17.96 5.23 18.78 4.46
Neural Network 5 7.25 5.66 19.04 5.18 19.85 4.43

Panel B: Root Mean Squared Percentage Error

Parametric 13.02 53.22 11.16 54.70 9.87
Random Forest 8.51 8.21 41.03 10.02 43.18 8.54
XGBOOST 19.29 9.08 41.90 10.21 43.94 8.92
Neural Network 1 18.39 13.53 45.48 12.19 47.82 11.42
Neural Network 2 18.44 13.52 46.08 12.95 48.42 12.13
Neural Network 3 18.27 11.85 45.33 11.26 48.04 10.07
Neural Network 4 17.36 11.87 45.64 11.38 47.95 10.00
Neural Network 5 17.21 12.52 47.78 11.26 50.22 9.94

Panel C: Outperformance Rate

Parametric 16.38 67.39 15.97 67.40
Random Forest 76.94 75.34 20.73 70.70 19.85 70.38
XGBOOST 36.10 74.90 20.05 70.01 19.14 69.09
Neural Network 1 43.92 54.41 19.03 63.41 18.12 62.05
Neural Network 2 42.88 56.57 18.86 64.32 18.08 63.71
Neural Network 3 42.70 56.39 18.84 66.73 18.13 66.40
Neural Network 4 43.69 55.80 18.82 66.24 18.06 66.18
Neural Network 5 44.48 52.94 18.15 67.03 17.37 66.57

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series averages of the daily cross-sections from the period of March, 2000 up to and
including December, 2021.

5.1.3 Complete Dataset Analysis

We observe the results of the complete dataset analysis in Table 4. This scenario deviates

from the other scenarios due to inclusion of the macroeconomic features originating from
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Welch and Goyal (2008). The overall performance of the models deteriorates when the

out-of-sample test set is in the future. However, the two-step prediction procedure still

outperforms the individual parametric models. The XGBOOST model is once again the

top-performing model in terms of correction and individual prediction. Specifically, the

individual XGBOOST model has a significant lower RMSE and RMSPE and higher OR

compared to the second best model, which is the BS-OLS-XGBOOST model.

We explore the overall worse performance measures by calculating the performance

measures without the Covid-19 crisis in the test set, which is included in Table 12 in

Appendix C. However, the performance measures are better when we include this pe-

riod. Another possible explanation for the deterioration of the models is the time-varying

relationship between the features and the IV.

Table 4

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the complete dataset analysis.

Non-parametric BS AHBS Carr-Wu
OLS POLS OLS POLS NLS

Panel A: Root Mean Squared Error

Parametric 16.79 28.30 16.05 29.10 24.31
Random Forest 14.01 14.96 23.65 14.73 24.80 24.94
XGBOOST 7.57 10.87 21.00 11.48 22.94 23.26
Neural Network 1 17.41 16.25 26.16 15.50 25.97 28.32
Neural Network 2 20.75 17.96 32.65 17.58 25.60 30.18
Neural Network 3 21.34 17.28 26.48 16.37 28.77 24.96
Neural Network 4 15.74 16.36 24.24 15.74 26.19 24.68
Neural Network 5 20.03 14.15 23.81 18.93 24.73 26.80

Panel B: Root Mean Squared Percentage Error

Parametric 26.20 53.78 25.46 56.52 47.23
Random Forest 22.43 25.90 46.95 25.84 49.90 46.70
XGBOOST 13.46 19.94 46.05 20.94 50.48 46.64
Neural Network 1 29.43 27.71 51.47 25.86 51.56 54.89
Neural Network 2 34.24 30.70 66.18 30.32 53.92 60.10
Neural Network 3 38.72 28.76 53.26 27.73 57.37 48.49
Neural Network 4 26.87 28.07 49.33 25.99 52.39 47.56
Neural Network 5 32.87 23.70 49.28 33.98 51.23 51.52

Panel C: Outperformance Rate

Parametric 28.87 53.58 28.36 37.96
Random Forest 59.46 55.38 32.64 54.65 31.36 34.80
XGBOOST 73.09 61.30 37.47 60.48 34.11 42.62
Neural Network 1 44.25 50.36 28.59 54.55 29.43 28.84
Neural Network 2 34.01 40.15 21.20 46.11 33.35 26.98
Neural Network 3 35.92 46.61 30.29 47.54 25.38 37.65
Neural Network 4 52.44 44.03 31.45 51.54 29.11 36.50
Neural Network 5 33.74 53.72 33.11 47.74 31.55 30.14

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series average of the daily cross-sections from the period of January, 2020 up to
and including December, 2021.
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5.2 Empirical Study Top Five Liquid Firms Results

A further analysis into the impact of the liquidity on the performance of the models

is conducted. As seen in Section 3, each firm has 20 observations on average per day.

While the non-parametric models do not differentiate between the different firms in their

prediction, the low liquidity per firm could still have a negative impact on the performance.

Therefore, we employ the models on a subset consisting of the top five liquid firms based

on the number of observations in the original dataset. These are the only firms with more

than 100.000 observations over the period January, 2000 up to and including December,

2021. We exclude the pooled estimation method for the BS en AHBS model due to their

subpar performance in the original analyses.

5.2.1 Daily Analysis Top Five Liquid Firms

The performance measures of the daily analysis with the subset consisting of the top

five liquid firms are presented in Table 5. We observe a similar pattern as the results

above, where the tree-based models are superior and the NN models showcase a poor

performance. Furthermore, there is an overall improvement in the performance measures.

In particular, the top-performing model, which is the XGBOOST model instead of the

BS-OLS-XGBOOST model as in the original daily analysis, has an RMSE, RMSPE and

OR of 1.50%, 3.49% and 88.32%, respectively. This model exhibits the lowest RMSE and

RMSPE among the models considered and the second-highest OR, trailing behind the BS-

OLS-XGBOOST model with an OR equal to 88.60%. We notice the largest improvement

in the row of the RF and XGBOOST model, and the columns of the AHBS and CW

model. Taking everything into account, the increase in observations per firm seems to

improve the models and, specifically, the top-performing models in the daily analysis.
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Table 5

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the daily analysis for the top five liquid firms.

Non-parametric BS AHBS Carr-Wu
OLS OLS NLS

Panel A: Root Mean Squared Error

Parametric 5.98 4.03 22.82
Random Forest 1.89 1.87 2.07 1.74
XGBOOST 1.50 1.52 1.71 1.40
Neural Network 1 6.74 5.91 4.47 4.87
Neural Network 2 6.87 5.99 4.73 4.81
Neural Network 3 6.50 5.50 4.28 4.28
Neural Network 4 5.97 5.30 4.00 4.28
Neural Network 5 5.95 5.55 3.99 4.65

Panel B: Root Mean Squared Percentage Error

Parametric 15.17 9.97 75.95
Random Forest 4.33 4.30 4.85 4.27
XGBOOST 3.49 3.52 4.01 3.41
Neural Network 1 18.04 15.26 11.52 12.90
Neural Network 2 18.75 16.16 12.11 13.42
Neural Network 3 17.40 13.99 10.67 11.38
Neural Network 4 15.99 13.56 9.99 11.47
Neural Network 5 15.66 14.15 9.91 12.37

Panel C: Outperformance Rate

Parametric 71.40 6.25
Random Forest 88.24 88.45 85.64 86.85
XGBOOST 88.32 88.60 87.22 88.71
Neural Network 1 50.05 56.26 65.51 63.36
Neural Network 2 49.17 56.48 67.71 64.27
Neural Network 3 51.11 58.12 70.34 66.17
Neural Network 4 51.28 56.97 70.24 65.20
Neural Network 5 53.19 53.68 71.08 62.49

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series averages of the daily cross-sections from the period of January, 2000 up to
and including December, 2021 for the top five liquid firms.

5.2.2 Quarterly Analysis Top Five Liquid Firms

When we examine the performance measures of the models based on the top five liq-

uid firms for the quarterly analysis in Table 6, the overall performance of the models

has improved compared to the original quareterly analysis. The top-performing model

remains unchanged compared to the original quarterly analysis. Nonetheless, there has

been an improvement in its performance which resulted in an RMSE, RMSPE, and OR

of 1.83%, 4.30%, and 88.75%, respectively. The XGBOOST model remains substandard

in predicting and correcting the IV even though the liquidity of the firms has increased.

39



Table 6

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the quarterly analysis for the top five liquid firms.

Non-parametric BS AHBS Carr-Wu
OLS OLS NLS

Panel A: Root Mean Squared Error

Parametric 5.99 4.05 3.99
Random Forest 1.85 1.83 2.02 1.83
XGBOOST 5.97 3.75 3.09 3.10
Neural Network 1 6.97 5.78 4.47 4.32
Neural Network 2 6.65 5.80 4.67 4.58
Neural Network 3 6.43 5.47 4.23 4.08
Neural Network 4 6.14 5.34 4.09 3.95
Neural Network 5 5.75 5.56 4.04 3.94

Panel B: Root Mean Squared Percentage Error

Parametric 15.30 10.12 11.07
Random Forest 4.33 4.30 4.82 4.60
XGBOOST 16.71 9.52 7.69 8.54
Neural Network 1 18.77 15.85 11.65 12.01
Neural Network 2 18.20 15.44 12.34 12.92
Neural Network 3 17.44 13.96 10.67 11.14
Neural Network 4 16.31 13.75 10.37 10.72
Neural Network 5 15.21 14.20 10.28 10.79

Panel C: Outperformance Rate

Parametric 71.23 67.15
Random Forest 88.61 88.75 85.87 85.47
XGBOOST 52.45 87.85 81.56 78.34
Neural Network 1 50.76 56.05 65.60 63.40
Neural Network 2 49.91 57.79 67.67 65.32
Neural Network 3 49.49 57.94 69.45 67.17
Neural Network 4 51.41 55.68 69.37 66.95
Neural Network 5 53.57 53.36 70.65 66.88

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series averages of the daily cross-sections from the period of March, 2000 up to and
including December, 2021 for the top five liquid firms.

5.2.3 Complete Dataset Analysis Top Five Liquid Firms

The results of the complete dataset analysis with exclusively the top five liquid firms are

shown in Table 7. The best-performing model changed from the XGBOOST to the CW-

NLS-XGBOOST model. In addition, the performance of the benchmark model, which

is the BS model, improved relatively more than the other models as the OR decreased

significantly for all the models. Furthermore, the NN with one hidden layer deteriorated,

while the other NN models improved.
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Table 7

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the complete dataset analysis for the top five liquid firms.

Non-parametric BS AHBS Carr-Wu
OLS OLS NLS

Panel A: Root Mean Squared Error

Parametric 13.61 11.99 14.26
Random Forest 13.27 13.40 12.61 11.48
XGBOOST 10.27 10.34 10.55 9.75
Neural Network 1 18.57 19.17 13.14 14.36
Neural Network 2 16.52 13.95 12.00 26.00
Neural Network 3 16.31 13.55 12.79 13.18
Neural Network 4 17.87 13.72 13.56 14.04
Neural Network 5 15.36 14.87 11.55 13.54

Panel B: Root Mean Squared Percentage Error

Parametric 26.09 23.27 35.95
Random Forest 27.26 33.85 31.56 29.12
XGBOOST 21.74 26.70 27.50 26.08
Neural Network 1 33.43 41.40 26.34 34.30
Neural Network 2 33.77 29.37 25.10 59.24
Neural Network 3 37.92 26.73 25.80 31.06
Neural Network 4 33.00 26.04 25.45 31.28
Neural Network 5 28.83 27.14 24.08 31.21

Panel C: Outperformance Rate

Parametric 58.38 38.24
Random Forest 46.34 51.00 48.39 51.04
XGBOOST 58.49 58.15 55.88 53.28
Neural Network 1 32.87 33.69 52.96 41.47
Neural Network 2 34.32 49.82 56.60 32.68
Neural Network 3 42.98 48.59 55.36 44.01
Neural Network 4 34.03 43.34 45.80 39.03
Neural Network 5 41.89 37.10 56.30 41.33

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series average of the daily cross-sections from the period of January, 2020 up to
and including December, 2021 for the top five liquid firms.

5.3 Feature importance

To examine the feature importance, we calculate the SHAP values in the complete dataset

analysis. Given that we employ various models, we focus on the feature importance of

the best two-step prediction model. The relevant model in this case is the BS-OLS-

XGBOOST model. Figure 7 shows the mean absolute SHAP value of the features. The

larger the value the greater the importance of that particular feature in the predictions

of the BS-OLS-XGBOOST model. Time-to-maturity, moneyness and macro equity-to-

price ratio are the top three most important features based on the SHAP values. The

following four features, namely the delta, bid-ask spread (baspread), stock variance (svar)
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and midpoint of the bid and ask price (mid point) are still somewhat relevant. These

seven features are option characteristics and macroeconomic features. The importance of

the remaining features, which are mostly firm characteristics, are individually negligible.

An equivalent conclusion regarding the most important features follows from the other

top-performing models as seen in Figures 13-15 in Appendix D.

Figure 7

This figure illustrates a bar plot of the mean absolute SHAP values per feature for the
best-performing two-step prediction model, which is the Black-Scholes model estimated
with Ordinary Least Squares and corrected by the XGBOOST model.

We delve deeper into the top four features and plot the contribution to the prediction

of each observation in Figures 8-11. For example, observations with a time-to-maturity

greater than two have a SHAP value of around -0.4 to 0, while the SHAP value of ob-

servations with a time-to-maturity around zero ranges from around 0 to 1.2. Therefore,

observations with a time-to-maturity of around 0 contribute more to the overall predic-

tion. The features have a non-linear relationship with the SHAP value. Figure 8 shows

that for the observations with low time-to-maturities have a strong positive contribution

towards the IV prediction. Furthermore, deep ITM and OTM options have a positive

contribution, while ATM options have a negative contribution as seen in Figure 9. Figure

10 showcases that most observations contribute positively to the prediction. The final
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figure is a special case due to the mirrored relationship starting from a delta of 0. This

is the boundary of put and call options. Put options have a negative delta, whereas call

options have a positive delta. The relationship for both types of options can be seen as

negative parabolic where the observations in the middle and outskirts of the parabola

have the most contribution towards the correction.

Figure 8

This figure shows a scatter plot of the
time-to-maturity (τ) against SHAP val-
ues.

Figure 9

This figure shows a scatter plot of the
moneyness (m) against SHAP values.

Figure 10

This figure shows a scatter plot of
the macro equity-to-price (ep y) ratio
against SHAP values.

Figure 11

This figure shows a scatter plot of the
delta against SHAP values.

To examine the relevancy of the feature importance, we employ the non-parametric

models with a limited subset of the features based on the feature importance in the

complete dataset analysis. In particular, the top seven most important features observed

in Figure 7 are included. These are the time-to-maturity, moneyness, macro equity-to-

price ratio, delta, bid-ask spread, stock variance and midpoint of the bid and ask price.

The performance measures are included in Table 8. The continued dominance of the
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XGBOOST model is evident. Compared to Table 4, we observe the RMSE, RMSPE and

OR of the individual XGBOOST model improving from 7.57%, 13.46% and 73.09% to

6.10%, 11.58% and 75.72%, respectively. In contrast, the performance of most other mod-

els deteriorated slightly or remained relatively stable. Furthermore, a substantial decrease

in computational time relative to the initial complete dataset analysis is noted. This re-

duction can be attributed to the utilization of only six features in the non-parametric

models in stark contrast to the original 108 features.

Table 8

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
employed in the complete dataset analysis with exclusively the top seven most important
features.

Non-parametric BS AHBS Carr-Wu
OLS POLS OLS POLS NLS

Panel A: Root Mean Squared Error

Parametric 16.79 28.30 16.05 29.10 24.31
Random Forest 12.20 14.18 21.76 14.44 23.03 23.94
XGBOOST 6.10 12.74 19.53 12.85 21.03 23.50
Neural Network 1 18.31 16.14 28.74 14.31 24.46 25.92
Neural Network 2 14.17 15.98 22.73 16.73 22.98 25.51
Neural Network 3 16.40 15.87 21.78 16.49 23.06 25.80
Neural Network 4 11.66 14.72 25.05 26.15 23.94 24.20
Neural Network 5 12.38 33.10 24.13 19.97 26.63 26.57

Panel B: Root Mean Squared Percentage Error

Parametric 26.20 53.78 25.46 56.52 47.23
Random Forest 21.54 26.26 47.57 26.76 51.08 47.37
XGBOOST 11.58 24.13 45.56 24.07 49.27 47.37
Neural Network 1 30.17 27.25 58.73 24.09 49.75 51.79
Neural Network 2 23.87 30.09 51.19 29.38 50.91 50.89
Neural Network 3 28.07 29.41 47.96 30.11 51.31 51.12
Neural Network 4 19.88 26.29 54.87 55.88 53.96 48.59
Neural Network 5 22.48 69.91 54.31 38.47 62.08 50.36

Panel C: Outperformance Rate

Parametric 28.87 53.58 28.36 37.96
Random Forest 58.93 51.76 38.15 52.41 37.01 37.54
XGBOOST 75.72 54.45 40.60 55.28 39.10 41.11
Neural Network 1 41.38 54.19 25.12 57.79 32.90 34.36
Neural Network 2 53.58 46.54 38.01 45.87 37.79 35.63
Neural Network 3 47.78 48.57 38.30 44.95 36.19 34.74
Neural Network 4 60.37 51.07 35.52 32.47 36.62 38.57
Neural Network 5 58.88 32.03 36.14 44.69 34.03 29.54

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. The non-parametric models exclusively incorporate the top seven
most important features. Each column represents the parametric model which is corrected by the non-
parametric model denoted in the rows. The first row and column are the performance measures of the
individual parametric and non-parametric models, respectively. Furthermore, the number after the Neural
Network models indicates the number of hidden layers. The relevant performance measures are calculated
as the time-series average of the daily cross-sections from the period of January, 2020 up to and including
December, 2021.
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6 Conclusion

We conclude our research in this section. Commonly, parametric or non-parametric mod-

els are employed in order to predict the IV of options. A more recent two-step prediction

procedure, which is introduced by Almeida et al. (2022), utilizes both types of mod-

els for the IV prediction of S&P 500 index options. In particular, the non-parametric

model is employed in an effort to correct the IV prediction of the parametric model. We

deviate from Almeida et al. (2022) by performing a comprehensive analysis of various non-

parametric models as correction models in different scenarios. In addition, our dataset

consists of individual equity options instead of S&P 500 index options. Hence, our primary

research question is: “Can a non-parametric model correct the Implied Volatility predic-

tion of a parametric model for individual equity options?”. In addition, we explore two

secondary questions, namely “Which combination of the analyzed parametric and non-

parametric model results in the best prediction of the Implied Volatility?” and “Which

features are the most important for the prediction of the Implied Volatility?”.

This paper employs the Black-Scholes, Ad-Hoc Black-Scholes and Carr-Wu model as

parametric models for the initial IV prediction (Black, 1976; Dumas et al., 1998; Carr

and Wu, 2016). The non-parametric models, utilized for the correction of the initial

IV prediction, are the Random Forest, Extreme Gradient Boosting and Neural Network

model (Breiman, 1996; Chen and Guestrin, 2016; Rumelhart et al., 1986). In order to

assess the models, three empirical scenarios are investigated. First, the parametric models

are calibrated daily for each firm, while the non-parametric models do not differentiate

between the firms and include firm characteristics as features. Second, we extend the

calibration time period to include three days and explore the performance of the models

on a quarterly basis. In the final scenario, we attempt to predict observations outside of the

training time period and include macroeconomic features. Furthermore, the importance

of the features included in this particular scenario are investigated with the SHAP method

derived from the Shapley values (Shapley, 1953; Lundberg and Lee, 2017).

We find a consistent superiority of the tree-based non-parametric models in the cor-

rection of the parametric models over the more complex NN models in the daily and

quarterly analysis. Other strong contenders are the individual XGBOOST and RF mod-
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els. All things considered, the IV prediction of the parametric model improves after the

correction of the XGBOOST and RF models. In case of the NN models, our choices in the

architectures in combination with a subpar convergence results in a marginal improvement

and, in some cases, a deterioration of the parametric models’ IV prediction. Moreover,

the performance of the individual NN models is also subpar. Hence, the preference for

the tree-based models in IV prediction and correction. When we extend the calibration

period to include multiple months, the results are similar. For the final scenario, we ob-

serve the performance of all models deteriorating due to the change in the relationship

between the included features and IV. The importance of these features are based on the

SHAP values (Lundberg and Lee, 2017). Option and macroeconomic characteristics are

the most important features, while the importance of the individual firm characteristics

are negligible for the IV prediction. When the non-parametric models are calibrated with

exclusively the top seven most important features, we notice a similar performance when

including all 108 features for the models corrected with the tree-based models, which are

the top-performing models. In contrast, the computation time is relatively lower due to

the difference in the number of features. Last, we observe an improvement in the perfor-

mance of the models when we conduct the same empirical analyses for exclusively the top

five liquid firms.

All things considered, the non-parametric models, specifically tree-based models, pro-

vide considerable improvements in the IV prediction of the parametric models. Moreover,

the option, macroeconomic characteristics and number of observations are the main drivers

of accurate IV predictions.

7 Discussion

Our research has several limitations and possible interesting areas to consider in future

research. The firm characteristics data, which originates from Kelly et al. (2019), is

missing 20% of the values in total. Moreover, the final two years are missing 30-40% of

the values as seen in Figure 12 in Appendix A.1. These years make up the test set of our

complete dataset analysis. Therefore, the results could be considerably influenced by the

imputation method of the missing values. We suggest improving the dataset with other
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data resources to accommodate the missing values and achieve a more complete dataset.

Another limitation is the grid specification for the hyperparameter tuning of the tree-

based non-parametric models. The values are partly based on a subset of the data and

are fixed over time due to limited computing power and time. A possible improvement is

to dynamically specify the hyperparameter grids. Similarly, we only calculate the feature

importance of the complete dataset scenario due to the computational expensiveness in

the other scenarios. Furthermore, we investigate a finite set of architectures for the NN

models. Possible extensions are wider and deeper NN models with various activation

functions and optimizers. Another extension is to create a two-step prediction model

with a switching parameter. In other words, an appropriate combination of the parametric

and non-parametric model will be chosen based on the underlying data in each iteration.

Similarly, the length of the rolling window for the training period could be included as

a parameter. The period could be adjusted based on the financial market conditions. A

possible split would be between a bull and bear market. Furthermore, a common approach

in similar research is to partition the options based on time-to-maturity and moneyness.

Afterwards, the models are calibrated per partition. In conclusion, we suggest exploring

real-world applications, such as portfolio construction and risk assessment.
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Appendices

A Data description

A.1 Missing values

Figure 12

The percentage of missing values in the dataset for the period of January, 2000 up to and
including December, 2021.

B Hyperparameter tuning

We list the hyperparameter grids utilized during the empirical analysis for the Random

Forest, Extreme Gradient Boosting and Neural Network model. The unspecified hyperpa-

rameters are set to the default values of the Scikit-learn Python library version 1.4.1,

XGBoost Python library version 2.0.3 and Tensorflow Python library version 2.15.0.
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B.1 Random Forest

Table 9

Hyperparameter Grid of the Random Forest model.

Hyperparameter General Grid

max depth {8, 10, 12}
max features {“sqrt”}
n estimators {100, 200, 500}

B.2 XGBOOST

Table 10

Hyperparameter Grid of the XGBOOST model.

Hyperparameter General Grid

learning rate {0.01, 0.1, 0.3}
max depth {6, 12}
n estimators {25, 50, 100, 200}
reg alpha {0.1, 0.5, 1}
reg lambda {0.1, 0.5, 1}
subsample {0.1, 0.5, 1}

B.3 Neural Network

Table 11

Hyperparameter Grid of the Neural Network models.

Hyperparameter General Grid

initializer {“HeNormal”}
optimizer {“Adam”}
activation {“ReLu”}

batch normalisation {“After the first layer”}
epochs {250}

learning rate {0.01}
batch size {#Number of observations

10
}

patience {50}
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C Complete dataset analysis excluding the Covid-19 crisis

Table 12

The Root Mean Squared (Percentage) Error and Outperformance Rate (in %) of the models
in the complete dataset analysis excluding the period January, 2020 up to and including
June, 2020 (Covid-19 crisis).

Non-parametric BS AHBS Carr-Wu
OLS POLS OLS POLS NLS

Panel A: Root Mean Squared Error

Parametric 14.81 27.49 14.22 28.43 23.77
Random Forest 12.71 13.96 21.76 13.86 23.02 24.11
XGBOOST 7.01 10.71 19.74 11.24 21.44 24.74
Neural Network 1 15.99 14.93 24.24 14.07 24.48 27.36
Neural Network 2 19.35 16.69 30.70 16.17 25.12 29.70
Neural Network 3 19.85 15.94 25.55 15.02 26.57 24.49
Neural Network 4 14.39 15.36 23.39 14.17 25.01 23.98
Neural Network 5 18.66 13.53 23.16 18.32 24.06 25.58

Panel B: Root Mean Squared Percentage Error

Parametric 24.69 55.92 24.07 59.03 48.71
Random Forest 22.13 26.26 45.97 26.32 49.22 47.57
XGBOOST 13.42 20.60 45.42 21.55 49.35 51.88
Neural Network 1 28.37 26.95 50.55 24.95 51.51 55.73
Neural Network 2 33.34 29.96 65.34 29.55 56.01 62.21
Neural Network 3 38.30 28.12 54.19 26.95 56.09 49.83
Neural Network 4 26.38 27.73 50.19 24.96 52.76 48.55
Neural Network 5 32.03 23.46 50.36 34.58 52.43 51.92

Panel C: Outperformance Rate

Parametric 27.21 53.73 26.59 35.62
Random Forest 56.69 51.57 32.61 50.68 31.21 33.08
XGBOOST 71.19 57.77 36.96 57.22 33.81 37.43
Neural Network 1 43.73 49.36 28.57 53.38 28.69 27.96
Neural Network 2 32.69 39.11 20.68 45.12 31.27 25.16
Neural Network 3 34.95 44.94 28.85 46.24 25.67 35.23
Neural Network 4 50.68 42.10 29.92 50.78 28.07 35.05
Neural Network 5 32.03 51.21 31.53 45.33 29.64 29.71

Note: This table presents the Root Mean Squared Error, Root Mean Squared Percentage Error and Out-
performance Rate (in %) of the models. Each column represents the parametric model which is corrected
by the non-parametric model denoted in the rows. The first row and column are the performance measures
of the individual parametric and non-parametric models, respectively. Furthermore, the number after the
Neural Network models indicates the number of hidden layers. The relevant performance measures are
calculated as the time-series average of the daily cross-sections from the period of July, 2020 up to and
including December, 2021.
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D SHAP values

D.1 SHAP values of the XGBOOST model

Figure 13

This figure illustrates a bar plot of the mean absolute SHAP values per feature for the
XGBOOST model.
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D.2 SHAP values of the CW-NLS-XGBOOST model

Figure 14

This figure illustrates a bar plot of the mean absolute SHAP values per feature for the
Carr-Wu model estimated with Non-linear Least Squares and corrected by XGBOOST.
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D.3 SHAP values of the AHBS-OLS-XGBOOST model

Figure 15

This figure illustrates a bar plot of the mean absolute SHAP values per feature for the
Ad-Hoc Black-Scholes model estimated with Ordinary Least Squares and corrected by XG-
BOOST.
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