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Abstract

Eye movement data yield insights into the underlying cognitive processes that occur when ex-

amining a visual stimulus. The aim of eye movement research is to establish which areas of

the stimulus attract the most visual attention. This is done by classifying eye movements into

fixations and saccades. For this purpose, a large number of fixation identification algorithms

have been proposed. This paper is the first to use a hierarchical combination of supervised and

unsupervised machine learning to detect fixations in eye tracking data. An unsupervised learn-

ing method first identifies the latent data structure and labels eye movements as fixations or

saccades, after which a supervised learning algorithm utilises these identified data patterns for

further classification. The four combinations of unsupervised and supervised learning methods

used in this research result in similar eye movement statistics and sample classification, while

the unsupervised techniques independently vary in both aspects. Hence, the proposed method

is promising to identify fixations in eye tracking data in a general applicable way.



Contents

1 Introduction 3

2 Literature 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Data 9

3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Methodology 11

4.1 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Binocular-Individual Threshold algorithm . . . . . . . . . . . . . . . . . . 12

4.1.2 Eye Movements Metrics & Visualisations algorithm . . . . . . . . . . . . . 14

4.2 Combining Supervised and Unsupervised Learning . . . . . . . . . . . . . . . . . 16

4.2.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Results 24

5.1 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Combined Unsupervised-Supervised Learning . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.3 Final predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Conclusion 40

A Choice Tasks 51

B Data Statistics 51

C Comparison Fixation Centers Unsupervised Learning Methods 51

D Random Forest 52

D.1 Grid search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



D.2 Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



1 Introduction

When people examine a visual stimulus, for example an advertisement, it is of interest to establish

which areas of the stimulus attract the most visual attention. Visual attention is focused on

the most informative areas of a stimulus (Loftus and Mackworth, 1978; Rayner, 1998). Eye

movements reflect the underlying cognitive processes that occur when viewing a stimulus (Rayner,

1978), and therefore enable establishment of principles of human information processing (Radach

et al., 2004). In other words, the underlying cognitive processes of visual perception rely on

the acquisition and processing of visual information. Consequently, eye movement data yield

insights into unobservable processes that are difficult to obtain otherwise. Eye movements are

discontinuous when observing a visual stimulus, with distinct areas being fixated sequentially

(Yarbus, 2013). The question of how one can determine which areas of a visual stimulus get the

most visual attention, i.e. are the most informative, is addressed in eye movement research.

Eye movement data are collected by eye tracking devices. These devices measure where one is

looking (point of gaze), sample the location that each eye is focused on, and track its movement

multiple times per second. Typically in eye movement research, eye movements are classified

into fixations and saccades. Fixations are defined as periods between eye movements when the

eyes are relatively motionless and focused. During fixations, the eyes are aimed at a specific area

of a visual stimulus. Saccades are fast eye movements between fixations, in which a viewer’s eye

is directed to a visual target (Rayner, 1998). Cognitive and visual information processing occur

during fixations, whereas vision is essentially suppressed during a saccade (Rayner, 1998). The

frequency of fixations is an indication of the level of informativeness, whereas the duration of

fixations indicates the complexity and difficulty of visual display (Fitts et al., 2004).

The aim of eye movement research is to robustly classify eye movement events, such as fix-

ations and saccades, from the stream of raw eye movement data points obtained from an eye

tracker device. Since limited visual processing occurs during saccades, the the principal interest

of eye movement research is to distinct fixations from saccades. Robust, efficient, and accurate

identification of fixations provides valuable information on what areas of visual stimuli attract the

most attention for various applications. In the medial research for instance, eye movement data

have been used for detection of developmental disorders including dyslexia (Rello and Balles-

teros, 2015) and autism (Vabalas et al., 2020), and for disease diagnosis such as Schizophrenia

(O’Driscoll and Callahan, 2008), Parkinson (Stuart et al., 2016) and Alzheimer (Crawford et al.,

2015). In the marketing domain (Wedel and Pieters, 2017), advertisements, designs, and cus-

tomers’ shopping behaviour are evaluated using eye tracking tools. Other common applications

include human-computer interactions (Pan et al., 2004; Majaranta and Bulling, 2014; Wu et al.,
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2019), entertainment (Pucihar and Coulton, 2015; Hartmann and Fox, 2021), and virtual reality

(Smith and Neff, 2018; Clay et al., 2019).

To identify fixations in eye movement data, a large number of fixation identification algo-

rithms have been developed. However, there is no standard method to detect fixations in eye

movement data. In fact, the choice of algorithm may drastically affect the resulting classified

fixations (Karsh and Breitenbach, 2021). In recent years, the quality of eye tracker devices has

improved due to technological advancements, while various machine learning methods have suc-

cessfully been proposed to identify events in eye movement data. Supervised learning methods

such as Neural Networks (Yin et al., 2018), Random Forest (Zemblys et al., 2018), Support Vec-

tor Machine (Wu et al., 2010), Naive Bayes classifier (Bhattarai and Phothisonothai, 2019) show

encouraging results in eye movement analysis as significant progress is made in the classification

of events compared to state-of-the-art algorithms. However, training supervised deep learning

models requires a large amount of labeled data. Obtaining labels for eye tracking data can be

an exhaustive process. Furthermore, supervised learning tends to suffer from overfitting when

data is noisy, high-dimensional and/or complex. Unsupervised classification algorithms have also

been used to identify events in this context (Otero-Millan et al., 2014; Göbel and Martin, 2018;

Fuhl and Kasneci, 2022). They do not need labeled input, but typically result in less accurate

classification than supervised methods.

The purpose of this research is to address this problem of difficult-to-obtain labeled eye

tracking data while supervised techniques generally show better accuracy in identifying events

than unsupervised methods. Therefore, I propose a combination of supervised and unsupervised

learning to classify fixations in eye movement data. Combined unsupervised-supervised machine

learning has recently shown promising results in multiple research domains (Hashemzadeh and

Azar, 2019; Kim et al., 2022; Mishra et al., 2022). This study first uses an unsupervised algorithm

to label eye tracking data as either fixations or saccades by identifying the latent structure of

the data. These labeled data are utilised for further classification using a supervised learning

technique. This idea is visualised in Figure 1. The complementarity between the two techniques

seems appealing in the context of eye tracking data, because the proposed method combines the

superior performance of supervised machine learning with the ability of unsupervised learning

to detect inherent data patterns. The following research question is investigated:

Is it beneficial to combine supervised and unsupervised learning to identify fixations in eye tracking

data relative to the individual algorithms? Questions that arise and help answering the research

question include:

• What are the differences between the fixations identified by the proposed combined method
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and the unsupervised method (on its own)?

• To what extent is the proposed method able to transfer learn from a previously seen task?

• How do different combinations of unsupervised and supervised methods affect the classified

fixations?

Figure 1: Visualisation of combining supervised and unsupervised learning

In this research, the velocity-based Binocular-Individual Threshold algorithm of Van der

Lans et al. (2011) and the dispersion-based Eye Movements Metrics & Visualizations algorithm

of Krassanakis et al. (2014) are used as unsupervised learning techniques. The supervised meth-

ods include Random Forest (Breiman, 2001) and Convolutional Neural Network. The four dif-

ferent combinations of the unsupervised and supervised learning algorithms are applied to an

eye tracking dataset for a study on consumer choice in the Netherlands. Their performance is

compared in terms of the classification of samples into fixations and saccades, and several eye

movement statistics. The results show that the supervised learning methods are able to learn

the latent data structure that is identified by the unsupervised methods, but adjust the labels

where needed. Both the classification of samples into fixations and saccades as well as the eye

movement statistics obtained by the four unsupervised-supervised methods are in line with each

other, whereas the results from the unsupervised methods independently vary a lot. Using differ-

ent choice tasks to train the supervised methods do not majorly influence the results, suggesting

the method’s ability of transfer learning. The proposed hierarchical combination of unsupervised

and supervised learning is thus a promising method to identify fixations in eye tracking data in

a general applicable manner.

The remainder of this paper is structured as follows. Section 2 provides a review on the

relevant existing literature on eye movement data analysis. The eye tracking data used for this

research is described in Section 3. The proposed methods to answer the research questions are

explained in Section 4. In Section 5, the results are presented and discussed. Finally, Section 6

concludes this research and provides ideas for future research.
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2 Literature

2.1 Background

Initial eye movement research dates back to the early 1900s (Rayner, 1998). Since then a large

number of different algorithms aiming to detect fixations have been developed. These fixation

detection algorithms translate raw eye movement data points to fixations locations. For a long

time, two classes of fixation detection algorithms were distinguished. Firstly, the velocity-based

algorithms use horizontal and vertical differences between measurements to detect saccades and

assume the rest to be fixations. A sequence of eye movements is defined as a saccade if eye speed

exceeds the speed threshold. The most popular algorithm using the velocities of samples is the

Identification by Velocity Threshold of Bahill et al. (1981) and Salvucci and Goldberg (2000).

The other type of fixation detection algorithms is dispersion-based. Since fixation points tend to

cluster together, these algorithms use the location of eye-samples directly to detect fixations and

assume the rest to be saccades. Fixations are identified as a sequence of eye movements that do

not exceed the spatial threshold for a given duration. One of the most common dispersion-based

algorithms is the Identification by Dispersion-Threshold algorithm of Salvucci and Goldberg

(2000) that measures the dispersion as the distance between points in the fixation that are the

farthest apart. Another method is to define dispersion as the distance between data points and

the fixation center (Camilli et al., 2008).

A drawback of both classes of algorithms is that they require the pre-determination of a

large number of thresholds. Consequently, the fixation identification algorithms may be sensi-

tive to the fixed, a-priori thresholds. Different choices of algorithms and their thresholds can

result in systematic differences in identified fixations, and consequently in less reliable and less

comparable interpretations of eye-tracking data (Shic et al., 2008). In addition, both types of

algorithms usually do not account for heterogeneity in the stimulus. For example, fixations on

text typically exhibit mostly side-to-side eye-movement, while fixations on an image may consist

of movement in both directions. Differences in the spatiotemporal characteristics of eye move-

ments of observers is also not accounted for, while the characteristics of fixations and their role

in information processing may exhibit systematic differences between tasks and individuals (An-

drews and Coppola, 1999; Rayner et al., 2007). For instance, it is shown that gender of observers

influences ocular behaviour (Meyers-Levy and Maheswaran, 1991; Pan et al., 2004). To allow

for differences in characteristics of fixations between both stimuli and individuals, the algorithm

thresholds should vary between both individuals and tasks. A final drawback is that eye-tracking

data are incorrectly classified if the algorithms are applied to data with a sampling frequency

outside the intended range, or if the data contain noise, post-saccadic oscillations and smooth
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pursuit (Holmqvist et al., 2011). Noise may include noise in the recording system (e.g., in the

signal itself, video, or voltage) and physiological artifacts (including head movements, or changes

in pupil size). Therefore, a more objective method for classifying eye-tracking data would be

appropriate, accounting for both individual variation and noise variation.

Recently, event detection algorithms have been improved by introducing adaptive individual-

and task-specific thresholds (Engbert and Kliegl, 2003; Nyström and Holmqvist, 2010; Mould

et al., 2012). However, researchers still need to set specific parameters.

2.2 Machine Learning

In the last few years, research in the area of the detection of eye movements has been emerging

with the increase in popularity of machine learning methods. The first machine learning ap-

proach introduced Hidden Markov Models that do not need fixed, a-priori thresholds based on

the individual, task, and stimuli (Salvucci and Anderson, 2022). Instead, fixations are probabilis-

tically identified based on the different distributions of velocities during fixations and saccades.

Although this yields more robust fixation detection than the state-of-the-art algorithms, Hidden

Markov Models are computationally unattractive and difficult to implement. Recent increases

in computational resources have resulted in the development of many new machine learning al-

gorithms. Their ability to learn from previously seen data and to handle enormous data sets

make machine learning appealing for big data. Machine learning methods are typically divided

into two categories: supervised learning classifies unseen data based on labeled input and output

data, whereas unsupervised learning clusters data based on patterns or similarities of only input

data.

For the detection of events in eye movement data, both supervised and unsupervised learning

methods have been applied with great success relative to state-of-the-art algorithms. Supervised

techniques include Random Forest (Zemblys et al., 2018), Support Vector Machine (Wu et al.,

2010; Rello and Ballesteros, 2015), Naive Bayes classifier (Bhattarai and Phothisonothai, 2019),

and Convolutional Neural Network (Hoppe and Bulling, 2016; Wang et al., 2016; Arsenovic

et al., 2018; Yin et al., 2018). In contrast, unsupervised clustering algorithms aim to identify

inherent patterns that can be used to cluster eye tracking data. For instance, Otero-Millan

et al. (2014) cluster eye movement velocities using k -means, Krassanakis et al. (2014) propose

a dispersion-based algorithm with a two-steps spatial threshold, and Fuhl and Kasneci (2022)

apply a combination of k -means clustering and Principal Component Analysis to cluster eye

movement data. In general, unsupervised machine learning methods provide less accurate classi-

fication than supervised ones if the training data is representative and labeled properly. Zemblys
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(2017) compares the performance of ten machine learning algorithms in the identification of eye

movement events, and conclude that Random Forest outperforms the other supervised and un-

supervised methods. This supervised method provides accurate event detection output that is

robust to noise and data sampling frequencies. However, a big drawback of supervised machine

learning in the context of eye movement data is the large amount of labels that are required to

train supervised methods. Since there is no golden standard or objective truth on when a fixation

starts or ends (Andersson et al., 2017), these labels are usually hard to obtain. Some studies use

human-made labels but they require extensive effort and may be biased, or inconsistent due to

human errors (Kothari et al., 2020). For example, Hooge et al. (2018) compared the classified

fixations of twelve human coders, and found that different thresholds and selection rules were

used among the coders, resulting in substantial differences between fixation duration and num-

ber of fixations. Additionally, supervised learning methods tend to suffer from overfitting when

the data is noisy, high-dimensional and/or complex. Overfitted supervised learning algorithms

cannot generalise because they memorise noise in the training data as concepts.

I propose a method that hierarchically combines supervised and unsupervised learning. First,

an unsupervised algorithm labels eye tracking data into fixations and saccades by identifying

inherent data patterns. Thereafter, a supervised technique learns the identified pattern between

the two clusters and provides further classification. Combining supervised and unsupervised

learning has recently shown great potential in several research domains. In medical research for

instance, Mishra et al. (2022) uses unsupervised K-Means clustering to identify outlier attributes.

The resultant data are used as input to the supervised Naive Bayes classifier to determine chronic

disease risks’ presence. Gatidis et al. (2015) train a Support Vector Machine classifier using

labeled prostate cancer data obtained from a spatially constrained Fuzzy C-Means algorithm.

Kim et al. (2022) also use Fuzzy C-means clustering as preprocessing unit of the supervised fuzzy

max–min Neural Network to diagnose diabetes. They find that the hierarchical combination of

unsupervised and supervised learning may solve overfitting issues since the labels obtained by

unsupervised learning can function as an intermediate concept or noise filtering scheme for the

supervised method. The proposed method of Hashemzadeh and Azar (2019) first uses Fuzzy

C-Means clustering to extract the thick and clear blood vessels, after which a Decision Tree

extracts the thin vessels only from non-vessel regions detected in the previous step. Compared

to the individual supervised method, the hierarchical combination of supervised and unsupervised

learning deals much better with the problem of intra-class heterogeneity in vessel appearance.

Training a supervised method on data where the same features vary a lot within a vessel class

may reduce the overall efficiency, because the training data does not contain sufficient data to
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cover the range of diversity. The proposed method was successful when it was trained on a

dataset and tested on another dataset. In additional research areas, Shah and Murtaza (2000)

and Du Jardin (2021) use a Neural Network based clustering method to predict bankruptcy, and

conclude that combining supervised and unsupervised learning yields robust and accurate results.

Ippolito et al. (2021) combine Self-Organising Maps and Random Forests to classify facies, and

find this method to be more accurate than using these algorithms independently. In the area of

human activity recognition, the combination of K-Means clustering with Graph Convolutional

Networks of Budisteanu and Mocanu (2021) outperforms the individual supervised method. The

unsupervised learning method extracts the salient information in the data and provides valuable

insights for the supervised method.

To conclude, the hierarchical combination of unsupervised and supervised learning shows

encouraging results in the existing literature. The unsupervised learning algorithm uses the

latent structure inherent in a dataset to provide the supervised method with informative labels.

This yields more accurate results than both methods independently, prevention of overfitting, a

solution to heterogeneity issues, and transfer supervised learning. To the best of my knowledge,

combining supervised and unsupervised learning has not been applied in the context of eye

movement data. In this field in particular, the complementarity between the two techniques

seems appealing: the superior performance of supervised machine learning is combined with the

ability of unsupervised learning to identify the latent data structure.

This paper contributes to the field of fixation identification in eye tracking data in three

aspects. Firstly, a hierarchical combined supervised-unsupervised learning clustering algorithm

is proposed to identify fixations in eye tracking data. Secondly, the proposed method reduces

the effort required to label eye tracking data for the supervised learning method. The labels

are based on the latent data structure rather than on subjective expert judgement. Thirdly, the

proposed algorithm automatically adjusts for the differences in eye movements for participants

and tasks, and hence is generally applicable to any dataset.

3 Data

3.1 Data description

In order to empirically examine whether combining supervised and unsupervised learning is

beneficial for the identifaction of fixations, eye tracking data for a study on consumer choice

is used. This study was done at Tilburg University in the Netherlands in 2016 by Martinovici

(2019). 446 students from Tilburg University were asked to make brand choices in five product
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categories on simulated websites: toothbrush (practice task), light bulb (task 1), travel mug

(task 2), TV (task 3), fridge (task 4). The complete set of product attributes are included in

Appendix A. The participants were stimulated to make choices that align with their preferences

by both a compensation for participation and by a lottery which prize was one of the chosen

products. The participants were informed that for each of the five choice tasks, they were shown

three slides. The first slide displays a description of the task and an example of the website.

The description contains information about the quality/price ratio, the goal of the choice task,

and the amount of time for which the next slide is shown. On the second slide, the website and

the product descriptions are shown for a fixed amount of time. The third slide shows the four

brand names and asks the participant to choose the brand he/she would buy. The first task

(toothbrush) is used as an example to familiarise the participants with the tasks. All slides were

projected on a (320 x 88 mm) screen and participants continued to the next slide by making one

click, apart from the slides showing product descriptions for a fixed amount of time.

There are eight experimental conditions consisting of the goal of the task (environmentally

friendly and performance), the duration of the task (low time pressure and high time pressure),

and the presented order of the brands (ABCD and DCBA). The participants were randomly

assigned to one of the experimental conditions. So in total, there are 5×8 = 40 files of binocular

data. Two examples of the different conditions and tasks are depicted in Figure 2. The eye

movements were recorded using a Tobii T60XL eye tracker (www.tobii.com) with a sampling

frequency of 60 Hz. This implies that eye movements were recorded every 16.67 ms. Participants

were seated in front of the screen at a distance of approximately 625 mm. Stimuli were displayed

at a resolution of 1920 x 1200 pixels. Prior to the choice tasks, the eye tracker was calibrated for

each participant. The raw data consist of a total of approximately 607,800 samples for each task.

A sample refers to a time-stamped (x, y) coordinate pair for each of both eyes. Additionally,

the data contain participant keys, the experimental condition, and the distance to the screen for

both eyes.

3.2 Cleaning

Raw eye tracking data may contain outliers and missing data points due to eye blinks and record-

ing issues. To reconstruct the missing data points, the Piecewise Cubic Hermite Interpolating

Polynomial (Pchip) (Kahaner et al., 1989) is used. This interpolation method is accurate for

eye tracking data because it takes into account its continuity and slow variation over time by

preserving monotonicity (Dan et al., 2020). A cubic Hermite interpolating polynomial P (x) is

performed on each subinterval xk ≤ x ≤ xk+1 for the given data points. At the interpolation
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Figure 2: Light bulb and travel mug example

points, the derivatives (slopes) of P (x) are specified, respecting the monotonicity of the data. As

a result, P (x) is monotonic on intervals where the data points are monotonic, and P (x) has a

local extremum at points where the data have a local extremum. This method has no overshoots

if the data is not smooth.

Since the ability of interpolation methods to accurately infill data decreases proportionally as

the number of consecutive missing values increases (Kornelsen and Coulibaly, 2014), missing eye

locations are interpolated if the duration of periods of missing data does not exceed 100 millisec-

onds, and if at least 50% of the data for the participant for the task are available. Observations

for which there are still no gaze points after interpolation are removed. If the remaining samples

for a participant take up less than 5 seconds for a task, the data are considered to be unreliable

and are deleted. These datasets do not yield sufficient information as they either have too many

deleted observations, or the participant did not spend enough time looking at the choice task.

Since the gaze position for the left and right eyes are expected to be similar (Zhao et al., 2013),

observations for which the difference in location between two eyes exceeds 500 pixels are expected

to suffer from measurement errors and are deleted. The above-mentioned cleaning procedure re-

sults in discarding 9.2% of the observations ending up with 429-433 participants per task. On

average, there are approximately 1,300 observations per task per participant, which corresponds

to 21.7 seconds. Some more specific statistics on the data per task can be found in Appendix

B.

4 Methodology

To detect fixations in eye tracking data, a combination of unsupervised and supervised machine

learning is applied. This approach first uses an unsupervised learning algorithm to label the data
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points as either fixations or saccades. Thereafter, a supervised learning algorithm is trained on

the labeled data to identify fixations. I use two unsupervised and two supervised learning algo-

rithms yielding four hierarchical combinations of unsupervised and supervised learning methods.

The performance of the four combinations are compared to each other and to the performance

of the unsupervised methods independently.

4.1 Unsupervised Learning

The main objective of the unsupervised learning method is to cluster similar activities together

by identifying inherent latent structures in the data. To label the eye tracking data, two differ-

ent unsupervised learning methods are used: the velocity-based Binocular-Individual Threshold

(BIT) algorithm of Van der Lans et al. (2011), and the dispersion-based Eye Movements Metrics

& Visualizations (EMMV) algorithm of Krassanakis et al. (2014).

4.1.1 Binocular-Individual Threshold algorithm

Van der Lans et al. (2011) proposed the velocity-based BIT algorithm for parameter-free fixation

detection using eye tracking data of both eyes. Based on the natural within-fixation variability of

both eyes, the algorithm automatically identifies velocity thresholds that are specific to each of

the eyes, to directions of eye movements, to tasks and to individuals. Samples corresponding to

velocity that exceeds the within-fixation variability are labeled as candidate saccades. The BIT

algorithm utilises the fact that both eyes are often directed at the same location to distinguish

saccades from noise. If both eyes show a peak in velocity simultaneously, this velocity peak is

likely to be a real movement rather than noise. The BIT algorithm automatically eliminates eye

blinks and other recording abnormalities before identifying fixations. This pre-processing pro-

cedure consists of determining correctly measured samples, valid distances between gaze points

from both eyes, and potential outliers.

The observed eye tracking data at time sample t = 1, ..., T zt = (xt,l, yt,l, xt,r, yt,r) consist

of the x-y locations of the left and right eye. Taking the first difference ∆zt = zt − zt−1 yields

the velocities of each eye tracking data sample. The within-fixation variability is assumed to

have a (multivariate normal) distribution with individual-, eye- and task-specific means and

covariance matrices. To estimate the means and covariances, the (fast) Minimum Covariance

Determinant method (Rousseeuw, 1984; Rousseeuw and Driessen, 1999) is used. This statistical

method bases its estimates on the subset of observations with the smallest determinant of the

covariance matrix. In this way, outliers are robustly detected such that they do not affect the

estimates extravagantly. Increases in ∆zt are considered as outliers relative to the within-fixation
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distribution of ∆zt. To detect saccades, i.e., data points with ‘extreme’ velocities relative to the

within-fixation variability, a multivariate Shewhart control chart procedure is used which assumes

that data is generated from a multivariate distribution with mean µ and covariance Σ. In the

context of eye tracking data, µ indicates the mean fixation variability, whereas Σ represents the

within-fixation variation. Extreme data points ∆zt that are unlikely to be generated from this

distribution are flagged. For large T , it follows from the normal distribution that the variable

wt = (∆zt − µ)′Σ−1(∆zt − µ) is approximately χ2-distributed with four degrees of freedom.

For each individual and task, the robustly estimated mean and covariance are computed. For

each velocity ∆zt, wt is used to determine whether the corresponding data point is a candidate

saccade. The control ellipse represents the velocities ∆zt for which p(wt|µ,Σ) equalsχ. Hence,

velocities that lie inside the control ellipse, i.e., velocities for which p(wt|µ,Σ) > χ, are consistent

with the within-fixation variability for that individual and task. On the other hand, velocities

that lie outside the control ellipse, i.e. velocities for which p(wt|µ,Σ) < χ, are unlikely to be due

to within-fixation variability and are classified as candidate saccades. The unlikely variations in

these velocities will not always correspond to saccades, but may also be due to blinks and other

anomalies. Samples are qualified as saccades if at least two consecutive velocities are outside

the control ellipse. The control ellipse is thus determined from the observed within-fixation

variability. This allows for different, automatically set thresholds that may vary in the x- and

y-direction and that may vary across both tasks, eyes, and individuals. In this way, the statistical

information available in the variability of both eyes is exploited. A more detailed description of

the algorithm can be found in Van der Lans et al. (2011).

One of the parameters that need to be set is the minimum fixation duration. It is stated by Manor

and Gordon (2003) that setting the threshold for minimum fixation duration to 100 milliseconds

is in line with theory, and yields a balance between the risk of identifying false fixations resulting

from a too low threshold and the risk of missing fixations because of a too high threshold. The

parameters representing the height and width of the screen that displays the choice tasks are

adjusted to 1920 x 1200 pixels. The control percentage in quality control is set to its default

value of 1−
√
0.001, which corresponds to a control limit of 0.001 that is usually used in quality

control as explained in Van der Lans et al. (2011). The last parameter includes the maximum

number of consecutive samples that are not tracked (i.e., blinks or missing data points) within

a fixation. However, after the data cleaning process described in Section 3, there are no missing

sample values. Hence, this parameter value is redundant and its default value of 3 is used (i.e.,

50 ms).
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4.1.2 Eye Movements Metrics & Visualisations algorithm

The second unsupervised algorithm used in this research is the dispersion-based EMMV algo-

rithm of Krassanakis et al. (2014). This is a two-step spatial fixation detection algorithm that

can be used as a spatial noise filtering approach during the detection of fixation. The proposed

algorithm is based on spatial and temporal constraints that define the spatial characteristics of

fixations. The parameters include two spatial dispersion thresholds t1 and t2, and a threshold

for minimum fixation duration v. The dispersion is computed by applying a “two-steps” spatial

threshold. In both steps, the Euclidean distance between data point zt = (xt, yt) and the fixa-

tion’s mean point (mx,my) is compared to a threshold. This implies that the spatial threshold

is defined through a circle rather than through a rectangle, as usually done in Identification by

Dispersion-Threshold (I-DT) algorithms (Salvucci and Goldberg, 2000; Nyström and Holmqvist,

2010). The EMMV algorithm is visualised in Figure 3, and described in Algorithm 1. Since eye

movement characteristics vary across both individuals and tasks (Andrews and Coppola, 1999),

this algorithm is applied per task per participant. The gaze points from the left and right eye

are averaged as is usually done in eye tracking research (Hooge et al., 2019).

Figure 3: Visualisation EMMV - source: Krassanakis et al. (2014)

The first spatial parameter t1 corresponds to the maximum distance between a gaze point and the

center of the fixation cluster. It describes the limited spatial distribution of fixations as it takes

into account the relative stationarity of human eyes. This dispersion threshold should include at

least 0.5◦ visual angle (Salvucci and Goldberg, 2000). In this way, the risk of a too low threshold

leading to exclusion of fixations of people with a large amount of tremor is balanced with the risk

of a too high threshold resulting in misclassificaiton of saccades as fixations or incorrectly merged

fixation clusters. For the data described in Section 3, 0.5◦ visual angle corresponds to 75 pixels,
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hence t1 is set to 75. The implementation of the second spatial parameter t2 ensures consistency

among the raw data of each fixation cluster by removing the noise that was produced during the

recording process. Recording noise is one of the sensitive points in the performance of state-of-the-

art I-DT algorithms as discussed in Section 2. With a sampling frequency of 60Hz, noise including

ranges up to 16.67 ms is added to the recording process (www.coonect.tobii.com). The average

(absolute) eye movement (aem) during 16.67 ms is defined as the average (absolute) eye movement

between two consecutive samples: aem = 1
2(T−2)

∑T
t=2 |∆xt|+ |∆yt| where ∆xt = xt − xt−1 and

∆yt = yt − yt−1. As suggested in Krassanakis et al. (2014), the statistical interval of 3 is

implemented to calculate t2, i.e., 3aem. This results in t2 = 45. The minimum fixation duration

is set to v = 100 ms following the same reasoning as for the BIT algorithm.

Algorithm 1 EMMV algorithm
Require: data in the form of (x, y, time), and

Require: set values of parameters (t1, t2, v)

1: for zt = (xt, yt), t = 1, ..., T per task per participant do

2: while ∥(mx,my), (xt, yt)∥ < t1 do

3: compute the mean value of horizontal and vertical coordinates mx and my

4: if ∥(mx,my), (xt, yt)∥ > t1 then

5: generate a new fixation cluster and go to Step 2

6: end if

7: end while

8: end for

9: for cluster k = 1, ...,K do

10: for zt ∈ k, t = 1, ..., T do

11: if ∥(mx,my), (xt, yt)∥ > t2 then

12: remove zt

13: end if

14: end for

15: Compute fixation’s coordinates as k’s mean point

16: Compute fixation’s duration as the difference of the time between the last and first record

17: if k’s fixation duration < v then

18: remove k

19: end if

20: end for
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4.2 Combining Supervised and Unsupervised Learning

Two supervised learning methods are trained on the labeled data obtained from the unsupervised

learning algorithm, namely Random Forest and Convolutional Neural Network.

4.2.1 Feature extraction

For equal comparison between the methods, the same features are used for both RF and CNN. It

is shown that velocity-based features work well with high-quality data, and spatial features work

better for noisy and low sampling rate data. Since the eye tracking dataset described in Section

3 contains noisy and low sampling rate data, spatial features are expected to be important in

deciding whether a sample belongs to a fixation or saccade. Both velocity and dispersion are in-

cluded as features. The most common way to measure dispersion is (xmax−xmin)+(ymax−ymin)

over a 100 ms window (Salvucci and Goldberg, 2000). As suggested in Nyström and Holmqvist

(2010), velocity is calculated by means of a Savitzky–Golay (SG) smoothing filter (Savitzky and

Golay, 1964) with polynomial order 2 and a window size of 50 ms. The SG smoothing filter

aims to increase the precision of the data by reducing high frequency noise and preserving high

frequency signal. The filter fits the polynomial function that best describes the raw data in

each 50 ms window, differentiates the polynomial analytically, and resamples it to the original

sampling frequency.

Additionally, Zemblys et al. (2018) found three features that were most important in deciding

whether a sample belongs to a saccade or fixation for their RF. Feature importance was based on

both univariate feature selection as well as mean decrease impurity and mean decrease accuracy.

The main two features include the distance between both the mean and the median gaze in a 100

ms window preceding and succeeding the sample: meandif and mediandif proposed by (Olsson,

2007). These spatial features represent movement, but are unaffected by noise as their values

are only large in the case of a real movement. The third most important feature in Zemblys

et al. (2018) is the standard deviation stdev of the eye location in a 100 ms window centered

on a sample. This is a common measure to describe eye tracker noise (Holmqvist et al., 2011).

Furthermore, the differences between this noise measure are calculated for 100 ms windows pre-

ceding and succeeding the current sample. This feature stddif is used in Zemblys et al. (2018)

and was inspired by Olsson (2007). The largest differences in stddif should correspond to the

start and end of saccades. The last feature that is included, is rayleightest which is suggested

by Larsson et al. (2015). It represents the probability of the sample-to-sample directions in a

50 ms window being uniformly distributed around the unit circle. The remaining features of

Zemblys et al. (2018) are not included, because they are highly correlated with included features
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and were less important in deciding whether a sample belongs to a fixation or a saccade. As a

result of leaving out the less important features, the features that are highly correlated with the

left out features will provide more unique information to the classifier.

To get insight in the extent to which features will add extra information compared to the other

features because of high correlation, Spearman’s rank correlation between the features is calcu-

lated as
∑T

t=1(ut−ū)(vt−v̄)√∑T
t=1(ut−ū)2×

∑T
t=1(vt−v̄)2

, where ut = rank(xt) and vt = rank(yt) (Spearman, 1961).

The results and displayed in Figure 4. Correlations between features that describe similar proper-

ties of the data are strong. For example, it can be seen that stdev, dispersion and mediandif are

highly correlated with each other (r ∈ [0.94, 1]). Since stdev and dispersion are both measures

of precision, their high correlation implies that they provide very similar information. The reason

for high correlation between mediandif and the two precision measures is probably that all three

features represent the amount of sample-to-sample movement or spatial spread of the data. For

the same reason is meandiff relatively strong correlated with meandiff with stdev, dispersion

and mediandiff (r ∈ [0.78, 0.82]), since meandiff also describes movement. The finding that

the correlations of stddif with all other features are close zero implies that this feature provides

some unique information that is not reflected in any of the other features. Although correlations

of rayleightest with the other features are a bit higher (|r| ∈ [0.019, 0.47]), this feature still holds

a significant amount of unique information. velocity is moderately correlated with all the other

features (r ∈ [−0.47, 0.67]).

Figure 4: Spearman’s rank correlation between features
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4.2.2 Random Forest

The motivation behind the choice for applying Random Forest (RF) (Breiman, 2001) to eye

tracking data with the purpose of classifying fixations, is that it is shown that RF outperforms

both state-of-the-art detection algorithms (Zemblys et al., 2018) and other supervised learning

methods including Support Vector Machine (Dong et al., 2016), Naive Bayes (Zemblys, 2017)

and Recurrent Neural Network (Kothari et al., 2020) in classifying fixations.

RF consists of multiple uncorrelated decision trees that operate as an ensemble. A decision

tree consists of a series of decisions. Trees are grown according to the bagging procedure, i.e.,

a random subset of data points are drawn without replacement. For each so called bootstrap

sample, a randomly selected subset of features is considered. As a result, the correlation between

trees is reduced. Decision trees aim to split the data at so-called nodes. A node is a condition

on a feature to split the data. To place a split, the algorithm determines which feature and what

cut-off value maximises the heterogeneity within the partitions created by the split. As long

as there is sufficient heterogeneity among partitions, the tree continues to grow by splitting the

data. When we eventually arrive at the leaf node, the tree decides whether the sample belongs

to a fixation or a saccade. In classification problems, the RF’s final prediction is the class that

obtains the majority vote of the decision trees. This procedure is summarised in Algorithm 2.

As a result of the reduced correlation between trees, the variance of the RF’s prediction decreases.

Bagging usually yields a slight increase in bias, but this is compensated by the decrease in

variance.

To examine the ability of transfer learning, the eye tracking data are split into training and

test data according to the following procedure. For each participant, one choice task is used to

train the model. The trained RF is then used to classify fixations for this participant for each of

the remaining four tasks. As an example, the labeled data on task 1 for the first participant are

used to train the RF. Thereafter, the trained RF is used to classify fixations for task 2, 3, 4 and

5 of the first participant. The same process is applied using the other tasks as training data, and

for each participant. The results are averaged across participants. By applying this procedure

per participant, the significant differences in eye movements across individuals are accounted for.

Transfer learning implies that a model trained on a task is reused on another, related task. The

knowledge that was learned from the first task is transferred to the new task. If the results are

not affected by training using different tasks, this favours the RF’s ability of transfer learning.

Through training with the labeled data obtained from unsupervised learning, the Random Forest

learns to detect fixations by identifying combinations of features. To optimise the RF, the hyper-

parameters of the RF are tuned by means of k-fold cross validation. Because of time constraints,
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Algorithm 2 Random Forest for Classification
Require: data in the form of (x, y, time)

Require: parameter values m, nmin

1: for b = 1 to B do

2: (a) Draw a bootstrap sample Z∗ of size N from the training data

3: while the minimum node size nmin is not reached do

4: Grow a tree Tb to the bootstrapped data by recursively repeating the following steps for

each terminal node of the tree

5: i. Randomly select m variables from the p features

6: ii. Pick the best variable/split-point among the m

7: iii. Split the node into two daugther nodes

8: end while

9: (b) The class prediction of the bth tree at a new point x is Ĉb(x)

10: end for

11: The prediction of the RF at a new point x is ĈB
rf (x) = majority vote{Ĉb(x)}B1

this procedure is only applied on the first task, after which the most frequent hyperparameter

values are used in the RF. The complete process is summarised in Algorithm 3, where lines 1-5

describe the cross validation for the first task, and lines 6-14 explain transfer learning for all

tasks.

I created a random search using the Python method ’RandomizedSearchCV’ of the package by

Buitinck et al. (2013). This technique randomly selects and tests combinations from the grid of

hyperparameter values, and is therefore more efficient than considering all possible combinations.

The number of different combinations to consider in each grid search is set to 100. The number

of folds to use for cross validation for each RF is set to 3 to ensure that each fold contains

both fixations and saccades. The combinations of hyperparameters are evaluated based on

their accuracy classification score. The hyperparameters and their ranges are depicted in Table

17. The number of trees in the RF n_estimators ranges from 50 to 200 with step size of 50.

This range of trees is suggested by Oshiro et al. (2012) as it yields a good balance between

performance, computational efficiency, and memory usage. The maximum number of features

that are considered at each split range from 1 to 6. The maximum number of levels in a tree

is denoted by maxdepth and ranges from 10 to 25 with step size 5. The minimum number of

samples that is required to split a node is indicated by minsamplessplit, whereas the minimum

number of samples that is required at each leaf node is denoted by minsamplesleave.

The remaining hyperparameters are set as follows. Due to the nature of the human visual system,
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Algorithm 3 Random Forest Transfer Learning
Require: create grid by specifying possible values of the hyperparameters of the RF

Require: set the number of combinations to consider in each grid and the number of folds

1: for each participant do

2: (a) Train the random forest on Task 1 using k-fold cross validation

3: (b) Save the hyperparameter values of the best fit

4: end for

5: Create random forest with the most frequent hyperparameter values from the cross validation

6: for each choice task c = 1, ..., 5 do

7: for each remaining task r do

8: for each participant do

9: i. Train RF on c and predict r

10: ii. Safe predictions and evaluation measures

11: end for

12: Average evaluation measures over all participants

13: end for

14: end for

the majority of eye tracking samples belongs to fixations rather than saccades. For example,

Hooge et al. (2018) find that 71.1% of samples belong to fixations in their dataset, whereas

Tinker (1928) reports an average of 94.4%. As a consequence of this imbalance in the data, some

bootstrap samples might contain few or even no saccades which results in poor classification due

to bias towards the majority class (i.e., fixations) (Chen et al., 2004). To deal with imbalanced

data, the balanced subsample weighting method is used. This method calculates weights that

are inversely proportional to the class frequencies in each bootstrap sample: N
2×nf ix

, where N

represents the bootstrap sample size, and nf ix the number of fixations in the sample. Lastly, the

criterion is a function used to measure the class label distribution in a node, representing the

quality of a node split. Since different criteria hardly result in different decisions made by the

tree (Raileanu and Stoffel, 2004), the Gini impurity measure is used because it is computational

fast. It is calculated as 1− p2fix − p2sac, where pfix denotes the fixation frequency in a node, and

psac the saccade frequency.

After training on one task, the test data consisting of the four remaining tasks is used to

evaluate the model’s generalisation to unseen data. The evaluation process is described in the

next subsection.
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Table 1: Grid search RF
Hyperparameter Grid

n_estimators {50, 100, 150, 200}

max_features {1, 2, 3, 4, 5, 6}

max_depth {10, 15, 20, 25}

min_samples_split {2, 4, 6, 8, 10}

min_samples_leave {1, 2, 3, 4, 5}

bootstrap {True, False}

4.2.3 Convolutional Neural Network

The Convolutional Neural Network (CNN), first introduced by LeCun et al. (1989), is a deep

learning neural network that is particularly satisfactory at finding patterns in data that have

a grid-like topology. CNN suits the nature of eye tracking data as it resembles the part of the

human brain that is responsible for organising and processing visual information. CNN has

successfully been applied in classifying eye movements (Anantrasirichai et al., 2016; Hoppe and

Bulling, 2016; Wang et al., 2016; Arsenovic et al., 2018; Yin et al., 2018).

A CNN typically consists of three layers: a convolutional layer, a pooling layer, and a fully

connected layer.

The convolutional layer, also known as feature extractor layer, is the core building block of a

CNN. This layer extracts patterns from the input data by applying filters to the input data.

The input data are the features described in the first subsection. Convolution is the process of

a pattern detector checking if the pattern is present. A linear operation performs element-wise

multiplication of the array of input data and an array of weights, called a filter or a kernel. The

kernel is applied systematically to each overlapping part or filter-sized patch of the input data.

Multiple kernels enable the CNN to learn to detect a variety of patterns from the input data. Due

to time constraints, the CNN consists of one convolutional layer with 32 kernels. These kernels

have size 1x3 which implies that the kernels slide or convolve over each 1x3 block of the input

data. This size generally yields accurate results (Ahmed et al., 2020). If kernels detect a specific

pattern at a given spatial position of the input, activation occurs. The activation function defines

the output value of kernel weights. The convolution layer uses the Rectified Linear Unit (ReLU)

function as the activation function, which is the most widely used activation function in CNN.

It is defined as f(u) = max(0, u).

The convolution layer is followed by the pooling layer. This layer performs downsampling or

dimensionality reduction to prevent overfitting and to reduce computation time and memory. In
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doing so, the most important information is retained. The pooling size is set to 1x2, implying that

the patterns are summarised in 1x2 data blocks. Because the input data contain features along

one direction, i.e., time direction, one-dimensional convolutional and pooling layers are used. An

advantage of one-dimensional CNNs over two-dimensional CNNs is that one-dimensional CNNs

generally use compact CNN architectures consisting of 1-2 layers (Kiranyaz et al., 2021).

The final layers of CNN include a fully connected or dense layer, and the output layer that

performs the final classification task. A flatten layer is used between the pooling layer and

the fully connected layer to reduce the patterns to a single one-dimensional vector. The fully

connected layer activates the (batch normalised and pooled) output of the convolutional layer

using the ReLU function. The output layer uses the SoftMax activation function to produce a

probability distribution over the two class labels: σ(z)i = exp zi∑K
j=1 exp zj

for i = 1, ...,K, where z is

an 1xK input vector. Samples are predicted as fixations if their probability of belonging to a

fixation exceeds 0.5.

The CNN architecture is shown in Figure 5. Using the patterns extracted through the previous

layers, the network learns the optimal filters through backpropagation and stochastic gradient

descent using the efficient Adam optimiser (Kingma and Ba, 2014). For the optimisation, the

sparse categorical cross-entropy loss function is used.

As with the Random Forest, the CNN is trained by means of transfer learning. Every task

is used to train each of the remaining tasks, for each participant. For efficiency reasons, a batch

size of 1028 is used in fitting the CNN and in predicting the class probabilities.

Figure 5: CNN architecture
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4.3 Evaluation

Combining the two unsupervised algorithms with both supervised techniques yields four hierar-

chical combinations. Firstly, the obtained labels from the two unsupervised algorithms are com-

pared and evaluated. Then, the final classification of the four combined methods are compared

with each other but also with the results from the individual unsupervised method. Evaluation

is done in terms of eye movement statistics, event matching, and classification metrics.

Startsev and Zemblys (2023) describe and analyse evaluation methods and measures em-

ployed in the field of eye movement event identification. Event-level quality metrics compare eye

movement statistics provided by classification. Following Andersson et al. (2017), evaluation is

based on the number of identified fixations, the durations of fixations (i.e. how many consecutive

samples), and the variance of these fixations durations. Van der Lans and Wedel (2017) consider

the minimum ratio of identified fixations to saccades to be 80%. Typically, this ratio ranges to

94.5% (Tinker, 1928). Rayner (1998, 2009); Andrews and Coppola (1999) report average fixation

durations of 150–250 ms during (silent) reading, 180–275 ms during visual search, and 200–400

ms during scene viewing.

Furthermore, Startsev and Zemblys (2023) discuss evaluation based on event matching. The

classification of samples into fixations and saccades is compared among the different methods.

For each comparison between the classification of two models, the following percentages are

calculated: the percentage of samples that is classified as fixations by both models, the percentage

of samples that were classified as saccades by both models, and the percentages of samples that

were classified as fixations by one model and as saccades by the other model.

To get insight into the amount of information the supervised learning methods absorb from

the unsupervised learning methods, a few classification metrics on the validation data are calcu-

lated. The most widely used threshold metric for classification problems is accuracy, including in

the field of eye movement event identification (Anantrasirichai et al., 2016; Hoppe and Bulling,

2016; Andersson et al., 2017). Accuracy represents the ratio between samples classified as the

same events by the unsupervised and supervised learning method, and the total number of sam-

ples. One of its limitations is that this metric favours the majority class (Chawla et al., 2004).

However, this issue is not too serious since the minority class will be well-represented as this

research only distinguishes between fixations and saccades. To get insight into the differences

between both classes, fixation accuracy is distinguished from saccade accuracy.

Secondly, the performance of the eye movement event detection is evaluated by means of the

F1-score as suggested by Hooge et al. (2018) and as used in Bellet et al. (2019); Startsev et al.

(2019) (0.83-0.96). This threshold measure represents the harmonic mean of precision and recall,
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and is a popular metric for imbalanced datasets (He and Ma, 2013). The F1-score ranges from 0

to 1, where 1 represents a model that classifies each observation into the class that was predicted

by the unsupervised learning method, and 0 corresponds to a model that disagrees with every

label obtained from the unsupervised method.

The area under the ROC curve (ROC AUC) (Fawcett, 2006) is a common ranking type metric

that evaluates classifiers based on their ability to distinguish between the classes. The ROC

AUC plots the true positive rate versus the false positive rate under different thresholds and

measures the area under the curve. A no skill classifier predicts the majority class under all

threshold values resulting in a score of 0.5, whereas a classifier that predicts the labels obtained

from the unsupervised learning technique will have a score of 1.0. Scores below 0.5 imply that

the algorithm classifies most of the samples that were labeled as fixations by the unsupervised

learning technique as saccades, and vice versa. The ROC AUC has been used as a metric to

compare eye movement event classification algorithms in Otero-Millan et al. (2014); Hoppe and

Bulling (2016).

The last metric is Cohen’s Kappa Score, which measures agreement between the model’s pre-

dictions and the labels obtained from unsupervised learning, adjusted for chance (Cohen, 1960).

This metric ranges from -1 to 1, where 1 corresponds to perfect agreement and 0 corresponds to

a model that is no better than random guessing.

5 Results

Before evaluating the performance of combining unsupervised and supervised learning techniques,

the classification results of both unsupervised methods independently are discussed.

5.1 Unsupervised Learning

Eye movement statistics of both unsupervised learning methods are summarised in Table 2. The

total number of fixations per task are displayed in the third column. The average number of

fixations and their standard deviation per participant for each task can be found in the fourth

and fifth column of Table 2 respectively. The last three columns represent the percentage of

samples that are classified as fixations, the mean fixation duration and its standard deviations

respectively.

For each task, the BIT algorithm detects more fixations than the EMMV algorithm: the

total number of fixations per task for BIT is around 35,000, whereas for EMMV this varies from

25,800 to 27,500. On average BIT identifies 83 fixations per participant per task relative to 62

fixations by EMMV. However, the durations of the fixations identified by EMMV are 50-70 ms
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Table 2: BIT and EMMV results
Number of fixations Fixation duration

Total Mean Stdev % fixations Mean (ms) Stdev

Task 1
BIT 35,069 81.37 27.96 80.39 225.71 145.64

EMMV 27,289 63.32 21.50 83.97 276.29 187.17

Task 2
BIT 35,895 83.09 29.13 80.49 220.41 118.39

EMMV 26,889 62.24 20.91 84.48 280.45 179.44

Task 3
BIT 35,823 82.73 28.58 80.21 219.72 115.26

EMMV 27,463 63.42 21.50 83.63 270.94 179.40

Task 4
BIT 35,735 82.91 29.62 80.34 220.26 112.99

EMMV 26,042 60.42 21.28 84.69 287.87 183.50

Task 5
BIT 35,569 82.91 29.13 79.00 217.14 118.53

EMMV 25,800 60.14 21.13 83.65 285.78 212.08

longer than those identified by BIT, resulting in a slightly higher percentage of samples identified

as fixations by EMMV (84% relative to 80%). The fixation durations identified by BIT (around

220 ms) are more in line with theory. The difference between the identified fixations by the

two unsupervised learning methods is visualised in Figure 6. This Figure displays the identified

saccade samples in blue, the identified fixation samples in yellow, and the fixation centers in

red. The left panels show the results of BIT, while the right panels display the EMMV results.

The top two panels correspond to the data for participant 1 and task 2, the bottom panels to

participant 430 and task 4. From the numbers of red dots, it can be seen that BIT identifies

more fixations than EMMV. The groups of blue samples in the bottom right panel of Figure 6

seem to suggest that EMMV might not be able to detect all fixations. Figure 6 also shows that

both algorithms sometimes identify the same fixations, but often they are slightly different. It

is interesting to notice that although the number of identified fixations is higher for BIT, the

number of samples identified as fixations is higher for EMMV.

Lastly, the results of the unsupervised learning methods are evaluated based on event match-

ing. Table 3 shows the percentage of samples that are classified as fixations or saccades by both

algorithms relative to the total number of samples for each task. For example, from the top left

Table it can be seen that 5.99% of the samples of Task 1 are labeled as fixations by BIT and as

saccades by EMMV. The Table shows that for all tasks, the number of samples that are labeled

as fixations by EMMV but as saccades by BIT is slightly higher than the number of samples that

are labeled as fixations by BIT but as saccades by EMMV. This agrees with the visualisation

in Figure 6. Although the differences per task are minor, it seems that the algorithms disagree
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Figure 6: Examples BIT (left) and EMMV (right) results

the most for task 5. Additionally, the identified fixation centers are compared across the two

unsupervised learning methods in Appendix C.

Table 3: Event matching - sample classification

Task 1
EMMV

fix sac

BIT
fix 77.35% 5.99%

sac 6.49% 9.86%

Task 2
EMMV

fix sac

BIT
fix 77.94% 6.01%

sac 6.45% 9.29%

Task 3
EMMV

fix sac

BIT
fix 77.08% 6.40%

sac 6.52% 9.94%

Task 4
EMMV

fix sac

BIT
fix 77.98% 6.14%

sac 6.67% 9.07%

Task 5
EMMV

fix sac

BIT
fix 76.71% 6.54%

sac 6.86% 9.67%
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5.2 Combined Unsupervised-Supervised Learning

5.2.1 Random Forest

The results of Random Forest (RF) combined with BIT and EMMV are displayed in Table 4 and

5. First of all, it is worth mentioning that the random grid search yields the same hyperparam-

eters values for both BIT and EyeMMV labels. The values are included in Appendix D.1. The

sample-level evaluation metrics as discussed in Section 4 are shown in columns 3-8. Recall that

these metrics refer to the amount of information the RF absorbs from the unsupervised learning

method. The last six columns display eye movement statistics. The rows indicate the task that

was used to train the random forest, and the task that was predicted respectively. For example,

2-1 corresponds to the predicted labels of task 1, when the random forest was trained on task 2.

The results are averaged across all participants.

To evaluate the ability of transfer learning, the blocks are arranged per predicted task with the

remaining tasks used for training. For RF with EMMV labels, it can be seen that training

the random forest on task 4 yields relatively large numbers of identified fixations and relatively

small fixation durations. For the remaining tasks, the eye movement statistics are similar when

different training data were used, and differences in statistics across tasks are detected. For

example, for task 1 and 3, more fixations are identified than for task 2, 4, and 5 regardless the

training task that was used. The mean fixation duration is the shortest for task 3 (around 265

ms) and the longest for task 4 (around 290 ms). This suggests that the results are in favour of

the ability of transfer learning of the proposed method. For RF with BIT labels such patterns

are slightly less clear as the results across the different training tasks vary more than for RF

with EMMV. However, BIT-based RF also detects the highest number of fixations for task 1

and 3, but in addition also for task 2. The mean fixation duration is again shortest for task

3 (around 280 ms), and the longest for task 4 (around 305 ms). Training the RF on task 4

does not yield divergent results as with EMMV-based RF. The sample-level metrics are similar

across tasks generally. However, for both RFs, the saccade accuracy is lower for the last two

tasks than the first three tasks, indicating that the random forest absorbed less saccade labels

from EMMV and BIT for the last two tasks. All in all, both supervised methods distinguish

differences in eye movement statistics regardless of the task that was used to train the random

forest. The unsupervised methods did not notice these differences, but the theory suggests that

eye movements differ across tasks.

Compared to the results of the unsupervised learning algorithms independently in Table 2, the

differences in eye movement statistics between BIT and EMMV are smaller after the Random

Forest is applied. RF based on BIT still identifies more fixations than RF with EMMV labels.
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However, the mean number of fixations for RF based on BIT (74-83) is slightly lower compared

to applying solely BIT (81-83), while the mean number of fixations for EMMV has changed from

60-63 to 67-73 after applying the RF. This seems to suggest that the random forest corrects for

too little identified fixations from solely the EMMV algorithm, and for slightly too many identi-

fied fixations from solely the BIT algorithm. Furthermore, the percentage of samples identified

as fixations is similar for BIT and EMMV after applying the random forest. This percentage is

higher than solely applying the unsupervised learning methods, and more in line with theory.

The mean fixation durations are similar or slightly lower for EMMV, but have increased for BIT

labels after the RF is applied. This might indicate that the RF adjusts for the too short fixation

durations identified by the BIT algorithm independently.

Looking at the sample-level metrics, the high fixation accuracy implies that the labels of

fixations agree more often than the labels of saccades which can be explained by the previously

discussed imbalance in this ratio. Both the fixation accuracy and the saccade accuracy are higher

for RF based on EMMV. This implies that the RF takes over less BIT labels than labels obtained

from the EMMV algorithm. For example, the RF only agrees for just over 50% with the saccades

classified by BIT independently. This explains the lower F1, Kappa, and ROC AUC scores for

RF based on BIT labels.
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The identified fixations for the first participant for task 2 trained on each of the remaining

four tasks are visualised in Figure 7. The fixation centers displayed in red are calculated as the

average eye location of each consecutive series of predicted fixation samples. The left panels

show the results from the random forest with labels obtained from BIT, whereas the results from

the random forest with EMMV labels are displayed in the right panels. The evidence in favour

of transfer learning is visually supported as the different training tasks do not seem to influence

both the fixation centers and the classification of samples. It can be seen that the random forest

based on EMMV identifies more fixations than the random forest with BIT labels. However, the

classification of samples into fixations and saccades is similar across both methods and across

the different training tasks. Additionally, the sample classification between the two methods is

more similar than applying the unsupervised algorithms independently.

Random Forest provides insight in how useful the different features are for correctly classifying

eye movement data into events using mean decrease impurity. This measure indicates how much

each feature decreases the weighted impurity in a tree. The feature importances are included in

Appendix D.2.
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Figure 7: Examples RF-BIT (left) and RF-EMMV (right) results
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5.2.2 Convolutional Neural Network

The results of CNN are presented in Table 6 and 7 in a similar manner as the RF results. Re-

garding the ability of transfer learning, CNN with EMMV labels shows more varying results than

RF with EMMV labels. In particular, when the EMMV-based CNN is trained on task 4, less

fixations with longer fixation durations are identified for task 1, 2, and 3 compared to training

the model on the other tasks. Training EMMV-CNN on task 3 yields more fixations with longer

durations for task 4, and less fixations with longer durations for task 5 compared to training on

the other tasks. Yet, a clear distinction is again detected in the number of identified fixations

and fixation duration across tasks. As with RF based on EMMV, CNN with EMMV labels also

detects more fixations for task 1 and 3, and the least fixations for task 4 and 5. The average

fixation duration is again the longest for task 4 (around 285 ms) and the shortest for task 4

(around 260 ms). The percentage of samples classified as fixations is the highest for task 2 and

4. Looking at the sample-level metrics, the saccade accuracy is again lower for the last two tasks.

Although some predictions seem to be slightly off, in general the results seem promising for the

ability of transfer learning. Both supervised methods identify the same pattern in eye movement

statistics for the different tasks.

The results of CNN with BIT labels are quite consistent for each task regardless of what task

is used as training data. Again, the most fixations are identified for the first three tasks, the

fixation duration is longest for task 4 (around 350 ms), and shortest for task 3 (around 315

ms). This again suggests that the results are in favour of the ability of transfer learning. All

four hierarchical combinations of unsupervised-supervised machine learning methods find similar

patterns regarding eye movement statistics despite the task that is used for training.

Similarly to RF, the differences in eye movement statistics between BIT and EMMV are smaller

after the CNN is applied relative to the results of the unsupervised learning algorithms inde-

pendently in Table 2. Interestingly, CNN based on BIT identifies less fixations than CNN with

EMMV labels. The mean number of fixations for BIT-CNN is 61-67 compared to 74-83 from

BIT-RF and 81-83 from solely BIT. For EMMV-CNN, the mean number of fixations is 68-74 rel-

ative to the 67-73 from EMMV-RF and the 60-63 from EMMV on its own. Using EMMV labels,

both supervised methods identify similar numbers of fixations. CNN corrects for too many fixa-

tions identified by BIT independently, but maybe gets carried away slightly by doing so. Looking

at the mean fixation duration, something similar can be seen: both supervised methods yield

similar fixation durations when EMMV labels are used (260-295 ms), whereas the supervised

methods need to adjust for too short fixation durations identified by the BIT algorithm (217-225

ms). The CNN seems to exaggerate a bit (310-335 ms) compared to the RF (278-308 ms).
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As a result of the longer fixations, the percentage of samples classified as fixations is relatively

high for BIT-CNN (aorund 90%) compared to the 87% of EMMV-CNN, EMMV-RF, and BIT-

RF.

Noticeable about the sample-level metrics is the higher accuracy rates compared to those obtained

from RF. Both the fixation and saccade accuracy are higher, implying that CNN absorbs more

of the latent data structures identified by the unsupervised learning methods. This explains why

the other metrics are also slightly higher for CNN compared to RF. Similarly to RF, the CNN

only agrees on the saccade labels identified by the BIT algorithm for just over 50%. The metrics

are again similar across the tasks for both methods.

The results for the first participant for task 2 using each of the other tasks as training for

the CNN are visualised in Figure 8 in a similar manner as for the RF in Figure 7. It can be

seen that BIT-based CNN identifies less fixations than CNN based on EMMV labels. The visual

results suggest the CNN’s ability of transfer learning since the identified fixation centers and the

classification of samples are not affected by the different training tasks. Although the fixation

centers are not in line across the two versions of CNN, the classification of samples into fixations

and saccades is similar across both CNNs. Furthermore, the classification seems to be similar to

the classification done by the RF in Figure 7. This is further elaborated in the next subsection.
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Figure 8: Examples CNN-BIT (left) and CNN-EMMV (right) results
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5.2.3 Final predictions

The final predictions are defined as the event that was most frequently predicted across the four

different training tasks for each sample. The predicted event of each sample obtained from the

four combined unsupervised-supervised learning methods are compared to each other, and to the

labels obtained from the unsupervised learning algorithms. The sample comparison results are

displayed in Table 8 and 9 similarly to those of the unsupervised learning methods independently

in Table 3. For every comparison between two methods, the percentage of samples that are

classified as fixations or saccades by both algorithms are shown relative to the total number of

samples for each task. The first observation is that the percentages vary across tasks, implying

that the hierarchical combination of unsupervised and supervised machine learning algorithms

accounts for the differences in tasks.

The last two columns show the comparisons of the four hierarchical combinations with the

unsupervised learning methods independently. EMMV-based combinations seem to disagree

more with BIT labels than the extend to which BIT-based combinations disagree with EMMV

labels. All four combinations agree take over more EMMV fixations than BIT fixations. It

can be seen that CNN based on BIT labels takes over the vast majority of the fixation labels

identified by the BIT and the EMMV algorithm: the percentages of BIT predicting a fixation

and BIT-CNN predicting a saccade are low for every task (0.78%-1.87%), and the percentages

of EMMV predicting a fixation and BIT-CNN predicting a saccade are between 1.29%-2.09%.

BIT-CNN seems to classify roughly half the samples that BIT labeled saccades, as fixations

In the first columns, it can be seen that the sample classification of the unsupervised-supervised

learning combinations are more similar than comparing the two unsupervised learning algorithms:

for the unsupervised learning methods, Table 3 shows that the diagonal elements for each task

sum up to agreement of 87% for all samples, whereas the diagonal elements sum up to 92%-97%.

EMMV-CNN and EMMV-RF agree the most on the sample classification for each task (97%),

whereas BIT-RF and EMMV-CNN ’only’ agree for 92% of the samples. To conclude, applying

a supervised learning method to labels obtained from unsupervised learning techniques reduces

the differences in sample classification, and that is a promising step in the development of a

general applicable method to identify fixations in eye tracking data.

To conclude, all four combinations of unsupervised-supervised algorithms yield similar sample

classifications, regardless of the unsupervised algorithm that was used, the supervised method

that was used, and the task that was used to train the model. This implies that the proposed

method of hierarchically combined unsupervised and supervised machine learning methods is

promising to identify fixations in eye tracking data in a general applicable manner.
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Table 8: Sample classification comparison (1)

Task 1
BIT-CNN EMMV-RF EMMV-CNN BIT EMMV

fix sac fix sac fix sac fix sac fix sac

BIT-

RF

fix 86.14% 1.91% 85.33% 3.17% 84.34% 4.15% 80.13% 8.46% 82.06% 6.52%

sac 3.90% 8.05% 3.68% 7.83% 3.83% 7.68% 3.29% 8.13% 3.79% 7.63%

BIT-

CNN

fix 86.78% 3.83% 86.44% 4.17% 82.09% 8.58% 84.11% 6.56%

sac 2.23% 7.17% 1.73% 7.67% 1.32% 8.01% 1.75% 7.58%

EMMV-

RF

fix 85.80% 2.00% 78.32% 9.74% 82.99% 5.08%

sac 1.15% 11.05% 3.98% 7.96% 1.31% 10.62%

EMMV-

CNN

fix 77.94% 9.10% 83.10% 3.95%

sac 4.36% 8.59% 1.20% 11.75%

Task 2
BIT-CNN EMMV-RF EMMV-CNN BIT EMMV

fix sac fix sac fix sac fix sac fix sac

BIT-

RF

fix 86.13% 2.01% 86.08% 3.08% 85.33% 3.84% 82.24% 7.00% 82.57% 6.67%

sac 4.07% 7.78% 3.01% 7.82% 3.37% 7.47% 2.75% 8.01% 3.25% 7.51%

BIT-

CNN

fix 87.01% 3.71% 86.86% 3.87% 83.64% 7.16% 84.05% 6.74%

sac 2.08% 7.19% 1.84% 7.44% 1.35% 7.85% 1.77% 7.44%

EMMV-

RF

fix 86.45% 1.82% 80.31% 8.12% 83.49% 4.94%

sac 1.17% 10.56% 3.54% 8.03% 1.25% 10.32%

EMMV-

CNN

fix 80.07% 7.69% 83.69% 4.07%

sac 3.78% 8.46% 1.04% 11.19%

Task 3
BIT-CNN EMMV-RF EMMV-CNN BIT EMMV

fix sac fix sac fix sac fix sac fix sac

BIT-

RF

fix 85.88% 2.07% 84.67% 3.35% 83.88% 4.14% 80.55% 7.54% 80.94% 7.15%

sac 3.94% 8.11% 4.07% 7.92% 4.38% 7.61% 3.82% 8.09% 4.24% 7.67%

BIT-

CNN

fix 86.25% 3.84% 86.11% 3.98% 82.49% 7.66% 83.09% 7.06%

sac 2.48% 7.43% 2.14% 7.77% 1.87% 7.98% 2.09% 7.76%

EMMV-

RF

fix 85.49% 2.06% 79.52% 8.37% 82.69% 5.20%

sac 1.26% 11.20% 3.58% 8.52% 1.21% 10.89%

EMMV-

CNN

fix 79.17% 7.90% 82.82% 4.25%

sac 3.93% 9.00% 1.08% 11.85%
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Table 9: Sample classification comparison (2)

Task 4
BIT-CNN EMMV-RF EMMV-CNN BIT EMMV

fix sac fix sac fix sac fix sac fix sac

BIT-

RF

fix 87.23% 1.78% 87.09% 2.33% 86.42% 3.00% 82.71% 6.661% 84.90% 4.41%

sac 3.73% 7.25% 3.83% 6.75% 4.12% 6.46% 3.05% 7.64% 4.07% 6.61%

BIT-

CNN

fix 88.88% 3.21% 88.72% 3.37% 84.91% 7.14% 87.27% 4.78%

sac 2.04% 5.87% 1.81% 6.10% 0.84% 7.11% 1.70% 6.25%

EMMV-

RF

fix 86.87% 1.97% 81.00% 9.33% 86.58% 3.75%

sac 1.07% 10.09% 4.40% 5.27% 1.08% 8.59%

EMMV-

CNN

fix 80.64% 9.07% 86.62% 3.09%

sac 4.48% 5.52% 1.03% 9.24%

Task 5
BIT-CNN EMMV-RF EMMV-CNN BIT EMMV

fix sac fix sac fix sac fix sac fix sac

BIT-

RF

fix 86.67% 1.95% 86.99% 3.09% 86.25% 3.83% 82.94% 7.09% 83.68% 6.35%

sac 3.74% 7.65% 2.76% 7.16% 2.92% 7.00% 1.93% 8.04% 2.67% 7.31%

BIT-

CNN

fix 87.91% 3.55% 87.71% 3.76% 84.09% 7.31% 85.05% 6.35%

sac 1.84% 6.70% 1.46% 7.08% 0.78% 7.81% 1.29% 7.31%

EMMV-

RF

fix 86.27% 2.04% 79.00% 10.18% 84.56% 4.62%

sac 1.18% 10.51% 4.75% 6.07% 0.91% 9.91%

EMMV-

CNN

fix 78.77% 9.62% 84.62% 3.77%

sac 4.98% 6.63% 0.85% 10.76%

6 Conclusion

The identification of fixations in eye movement data provides valuable information on cognitive

processes that occur when viewing a stimulus. Accurate fixation classification is necessary to

understand how visual stimuli are examined, and consequently, to determine what areas of visual

stimuli attract the most attention. Many different algorithms have been developed which aim

to distinguish fixations from saccades in eye tracking data. In the last decade, machine learning

methods have become popular for this purpose. Various approaches have been presented based

on both unsupervised and supervised machine learning, with both categories having its advan-

tages and shortcomings. In this study, fixations in eye tracking data are detected by combining

the superior performance of supervised learning with the ability of unsupervised learning to iden-

tify the latent data structure. I combine the unsupervised (velocity-based) Binocular-Individual

Threshold and (dispersion-based) Eye Movements Metrics & Visualisations algorithms with su-
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pervised Random Forest and Convolutional Neural Network because of their good performances

to identify fixations in eye tracking data. However, there are unlimited possible combinations of

machine learning methods to use. The hierarchical combination of individual unsupervised and

supervised learning algorithms turns out to be a promising method to identify fixations in eye

tracking data. The supervised method is able to learn the latent data structure that was identi-

fied by the unsupervised method, but it adjusts where needed. Applying a supervised method on

eye tracking data using labels obtained by an unsupervised technique yields classification results

that are more in line with each other compared to applying the unsupervised methods indepen-

dently. Furthermore, all combinations detected the same differences in eye statistics across tasks

that the unsupervised techniques on their own did not identify. These results were not affected

by the task on which the model was trained, implying the proposed method’s ability of transfer

learning. To conclude, the hierarchical combination of unsupervised and supervised machine

learning algorithms could be a promising step in developing a generally applicable method to

identify fixations in eye tracking data regardless of the data, the unsupervised learning technique

used to label the data, and parameter values that need to be set.

Future research could be focused on the incorporation of the identified fixations into market-

ing decision models. It would be interesting to see whether consumer choices could be predicted

and/or explained by the fixations that were identified by the algorithm. This could also be used

as a method to evaluate the detected fixations.

Another idea would be to adjust the supervised models to the context of eye tracking data

specifically. Because of time constraints, the supervised models are quite general and easy to

implement. On the other hand, the unsupervised learning methods used in this research are

specific to eye tracking data.

Lastly, this research focussed on the identification of fixations and distinguished solely between

fixations and saccades. In reality however, there might be more eye movement events such as

post-saccadic oscillations, smooth pursuits, and blinks. It would be interesting to extend the

proposed method in a multi-category manner to also identify these events, and to compare the

results to the binary results obtained in this study.

There are a few limitations of this research that need to be addressed. Firstly, the proposed

method should be applied to data obtained by different eye trackers with different sampling rates

and noise levels to generalise the results. For example, Hessels et al. (2017) evaluate robustness

against noise by adding noise points (saccades) to the data and compare the classification of

fixations to the original data with a small noise amplitude. The proposed method is considered
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to be robust to noise if the number of classified fixations and the corresponding distribution

of fixation durations remain unchanged as noise increases. Robustness to different eye tracker

sampling rates can also be tested by changing the sample rate and evaluating the algorithm’s

performance as in Yu et al. (2016).

Additionally, both unsupervised methods used in this research have their own process to deal with

blinks, outliers and other types of noise. It would be interesting to see whether pre-processing the

data yields more accurate comparisons, or whether this does not affect the classification results.

Thirdly, the eye tracker signal may contain empty samples (also referred to as data loss). This

study dealt with data loss by means of interpolation and discarding observations. However, there

may be a better way to extract information from the data.

Furthermore, both unsupervised machine learning algorithms used in this research require the

specification of a few parameters, for example the minimum fixation duration. It would be

worthwhile researching if the supervised methods get affected by different parameter values.

If the supervised methods yield the same fixation identification for different parameter values,

the proposed method of hierarchically combining unsupervised and supervised machine learning

techniques is generally applicable without having to set parameter values.

Lastly, after applying the supervised method to the labeled eye tracking data, the fixation centers

are calculated as the average eye location of each consecutive series of fixation samples. This

is done with the purpose to easily compare the identified fixation centers across the different

methods. However, for more accurate fixation samples, the output of the supervised methods

should be post-processed.
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A Choice Tasks

Table 10: Toothbrush (task 1)
Brand Jordan Nature Oral-B Preserve

Handle Recycled plastic Recycled wood Plastic

Bristles Natural hair Nylon

Whitening Yes No

Rubber grip Yes No

Tongue cleaner Yes No

Table 11: Light bulb (task 2)
Brand Megaman Osram Philips Sylvania

Bulb type Energy saver Halogen LED

Energy efficiency class A B

Wattage 10W 11W 28W 42W

Voltage 220-240V

Light output (lumens) 345lm 630lm 803lm

Equivalent to 40 watts 52 watts 60 watts

Colour Warm white Daylight

Average lifetime 2,000 hours 15,000 hours 25,000 hours

Table 12: Travel mug (task 3)
Brand Aladdin Grace Monbento Zuperzazial

Volume 350ml 400ml 470ml 500ml

Size 6.4x6.4x19.4 8.0x7.5x20.0 8.7x12.7x20.3 9.5x9.5x14.5

Material Bamboo Plastic Thermo plastic (TP) TP&double glass

Recycled Yes No

Weight 120gr 186gr 200gr 270 gr

B Data Statistics

C Comparison Fixation Centers Unsupervised Learning Methods
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Table 13: Television (task 4)
Brand Panasonic Philips Samsung Sony

Energy efficiency A A++ A+++

Power consumption 41W 48W 57W 58W

Electricity consumption 60kWh 70kWh 83kWh 85kWh

Screen size 40 inch 42 inch

Image quality Full HD

Image resolution 1920x1080

Image motion rate 200Hz 300Hz 400Hz 500Hz

Audio power 20W RMS 24W RMS

Dimensions 95.7x61.9x21.7 95.7x63.5x29.4 97.2x64x26.5 97.7x62.9x24

Table 14: Fridge (task 5)
Brand Bosch Samsung Siemens Whirlpool

Energy efficiency A+ A++ A+++

Electricity consumption 172kWh 204kWh 293kWh 308kWh

Cooling space (litres) 225 234 245 260

Freezer space (litres) 85 98 113

Fast chill option Yes No

Freezer/fridge 2/2 2/3

Freezer position bottom

Dimensions (WxHxD) 59.5x178x66.8 59.5x187.5x64 60x185x65 60x201x65

Weight (kg) 63 79 94 101

Table 15: Data statistics after cleaning

#participants Total #samples Mean #samples Min #samples Max #samples

Task 1 431 568,248 1,318 330 1,804

Task 2 432 563,328 1,304 292 1,805

Task 3 433 562,825 1,300 296 1,805

Task 4 431 557,642 1,294 302 1,805

Task 5 429 554,726 1,293 301 1.804

D Random Forest

D.1 Grid search

D.2 Feature Importance
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Table 16: Comparison fixation locations BIT and EMMV

Within 1 pixel Within 5 pixels

Task 1 1827 1853

Task 2 2408 2299

Task 3 1687 1860

Task 4 151 695

Task 5 249 720

Table 17: Grid search results BIT & EMMV
Hyperparameter Grid

n_estimators {50, 100, 150, 200}

max_features {1, 2, 3, 4, 5, 6}

max_depth {10, 15, 20, 25}

min_samples_split {2, 4, 6, 8, 10}

min_samples_leave {1, 2, 3, 4, 5}

bootstrap {True, False}
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Table 18: Mean feature importance (1)

Train-test task velocity dispersion stdev stddif meandif mediandif rayleigh

2-1
BIT 0.318 0.162 0.166 0.085 0.074 0.098 0.096

EMMV 0.301 0.138 0.186 0.112 0.080 0.120 0.062

3-1
BIT 0.323 0.158 0.163 0.086 0.075 0.100 0.095

EMMV 0.301 0.139 0.183 0.112 0.083 0.118 0.062

4-1
BIT 0.308 0.164 0.170 0.088 0.078 0.102 0.090

EMMV 0.284 0.144 0.186 0.113 0.085 0.123 0.064

5-1
BIT 0.305 0.164 0.166 0.090 0.082 0.101 0.091

EMMV 0.277 0.143 0.187 0.115 0.088 0.126 0.065

1-2
BIT 0.318 0.161 0.169 0.084 0.075 0.100 0.092

EMMV 0.299 0.144 0.189 0.109 0.080 0.119 0.0602

3-2
BIT 0.323 0.158 0.163 0.086 0.074 0.100 0.095

EMMV 0.300 0.140 0.183 0.112 0.083 0.118 0.063

4-2
BIT 0.308 0.164 0.170 0.088 0.078 0.102 0.090

EMMV 0.284 0.144 0.187 0.113 0.085 0.123 0.064

5-2
BIT 0.305 0.164 0.166 0.090 0.082 0.101 0.091

EMMV 0.277 0.143 0.187 0.114 0.088 0.126 0.065

1-3
BIT 0.318 0.161 0.169 0.084 0.075 0.100 0.092

EMMV 0.299 0.144 0.189 0.109 0.080 0.119 0.060

2-3
BIT 0.318 0.162 0.166 0.086 0.074 0.098 0.096

EMMV 0.301 0.139 0.187 0.112 0.080 0.120 0.062

4-3
BIT 0.308 0.164 0.170 0.088 0.078 0.102 0.090

EMMV 0.284 0.145 0.187 0.113 0.085 0.123 0.064

5-3
BIT 0.305 0.164 0.166 0.090 0.082 0.101 0.091

EMMV 0.277 0.143 0.187 0.114 0.088 0.126 0.065

1-4
BIT 0.318 0.161 0.169 0.084 0.075 0.100 0.092

EMMV 0.299 0.144 0.189 0.109 0.080 0.120 0.060

2-4
BIT 0.318 0.162 0.166 0.085 0.074 0.098 0.096

EMMV 0.302 0.138 0.186 0.112 0.080 0.120 0.062

3-4
BIT 0.323 0.158 0.163 0.086 0.075 0.100 0.095

EMMV 0.301 0.140 0.183 0.112 0.083 0.119 0.062

5-4
BIT 0.305 0.164 0.166 0.090 0.082 0.101 0.091

EMMV 0.277 0.143 0.187 0.114 0.088 0.126 0.065
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Table 19: Mean feature importance (2)

Train-test task velocity dispersion stdev stddif meandif mediandif rayleigh

1-5
BIT 0.318 0.161 0.169 0.084 0.075 0.100 0.092

EMMV 0.299 0.144 0.189 0.109 0.080 0.119 0.060

2-5
BIT 0.318 0.162 0.166 0.085 0.075 0.098 0.097

EMMV 0.302 0.138 0.186 0.112 0.080 0.120 0.062

3-5
BIT 0.323 0.158 0.163 0.086 0.075 0.100 0.095

EMMV 0.301 0.140 0.183 0.112 0.083 0.118 0.063

4-5
BIT 0.308 0.165 0.170 0.088 0.078 0.102 0.090

EMMV 0.284 0.144 0.186 0.113 0.085 0.123 0.064
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