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Abstract

This research delves into the potential of weather derivatives, specifically temperature derivatives,

in hedging energy assets across Europe. With increasing climate variability, there’s a heightened

demand for effective risk management tools. The study decomposes temperature data from 18 European

cities between 2000-2023 and simulates temperature derivatives, it utilizes energy generation data

between 2018-2023. The findings reveal that these derivatives can significantly reduce the variance of

energy portfolios, especially in Southern European countries. While the decomposition model effectively

captures temperature dynamics, residuals still exhibit slight non-normality. The research also unveils

differences in hedging preferences among energy types. The study’s methodologies and data are open-

sourced for further exploration.
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1 Introduction

Weather derivatives are financial instruments designed to help manage risk associated with adverse

weather conditions. They enable parties to hedge or speculate on the financial impact of future weather

events, such as temperature, precipitation, or wind CME Group [2021]. Temperature derivatives are of

particular interest to businesses in the energy and agriculture sectors, as well as other industries that are

sensitive to temperature fluctuations. For example, energy companies may use these to hedge against

the risk of unusually warm or cold seasons, which can significantly impact their revenues. Similarly, agri-

cultural producers may use these instruments to protect against crop losses due to extreme temperature

events.

Over the past few years, the demand for weather derivatives has increased substantially, reflecting the

growing need for effective risk management tools in the face of increasing climate variability and extreme

weather events. The increased demand for weather derivatives has led to a greater need for accurate pricing

models and methods for hedging energy assets. This has been facilitated by the improved availability of

weather data from sources such as the European Centre for Medium-Range Weather Forecasts (ECMWF),

and the National Oceanic and Atmospheric Administration (NOAA).These data sources provide a wealth

of information for developing sophisticated risk-neutral pricing models for weather derivatives, which can

be tailored to specific assets, industries and regions.

This thesis focuses on managing risks associated with energy assets using weather derivatives. In this

research, continuous-time autoregressive moving-average (CARMA) models are utilized for the simulation

of future weather conditions (temperature) in different cities across Europe. Using these simulations, daily

price series of temperature derivatives can be constructed. For simplicity, we assume in this thesis that

we can buy an wi amount of temperature derivatives at the beginning of each month which must be held

throughout the entire month, where i = 1, 2, .., 11, 12. Using the full sample, we construct a portfolio of

the combined revenue of each energy generation type and the weather derivatives for different countries

in each month.

The usage of CARMA models to model weather parameters and eventually price weather derivatives is

well-documented, but integrating these derivatives with electricity asset revenues for portfolio construction

is less explored. Our work contributes to the literature by analyzing the effectiveness of modern portfolio

theory in this context, using a full sample for weight construction and evaluation. This approach is due

to the limited sample size in each portfolio, with only around 150 (5 ∗ 30) observations per portfolio from

five years of generation data as the portfolios are constructed on a monthly basis.

As the temperature is not only a predominant factor in energy usage, e.g. heating or AC, but also

energy generation through solar, its influences on prices are quite large. However, it’s not clear to what

extent the weather derivatives can have impact on different energy portfolios. Given this, the following

research questions (RQ) are proposed:

1. How can temperature be effectively decomposed for use in weather derivative pricing models?

2. How effective are temperature derivatives at hedging energy portfolios?

3. How do different energy asset types (e.g., wind farms, solar power plants, and conventional power
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plants) influence the effectiveness, or use, of a temperature derivative for hedging purposes?

Firstly, given the extensive research done on modeling weather parameters, a lot of methodology has

been developed on decomposing the seasonality of temperature and wind. However, due to the lack of

data, this methodology has often been tested on just a single geography. With the first RQ, we provide

statistics and results for multiple locations across Europe.

For the second and third RQ, we draw on modern portfolio theory. We find the global minimum

variance portfolios for multiple energy generation types, compute the reduction in variances, and compare

their results.

The main findings of this thesis are as follows. While the methodology developed to capture and

decompose the dynamics of temperature is extensive, it doesn’t fully convert the residuals of temperature

in white noise. There is still a slight auto correlation, accompanied by some excess kurtosis and (positive)

skew in the residuals. However, using the modeled derivatives, we observed a significant reduction in

the variance of the energy portfolios, ranging between 1% and 20%. In addition to this, there are some

visible differences in how the weights are composed for the temperature derivatives for different energy

generation types. For wind, the weights indicated that protection against colder winters was deemed

necessary, while for other generation types, the preference for protection against hotter winters was given.

This finding, aligns with the operational characteristics of wind energy, which is often higher in colder

conditions due to increased wind speeds. As a result, there is a necessity for hedging against unusually

cold winters which might lead to excess supply and lower prices. The author’s key contribution in this

thesis is the development and open-sourcing of the code for the fundamental aspects of pricing weather

derivatives. This code not only covers the basics of derivative pricing but also facilitates easier access to

the necessary data, something which as of the author’s knowledge has not yet been done.

The rest of the thesis is organized as follows. Section 2 presents a background on electricity markets

and weather derivatives, Section 3 presents the data utilized in this thesis. In Section 4 we present

models for temperature decomposition, and the continuous-time simulation of weather derivatives. Next,

in section 5 we present the results. Finally, section 6 concludes the thesis.
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2 Background

In this chapter, the background for this thesis is provided. Given the use of weather derivatives to hedge

energy assets, it’s helpful for readers to grasp the workings of the electricity grid and the dynamics of

electricity markets.

The first section sheds light on the European electricity grid. This is followed by an explanation of

how financial electricity markets are orchestrated in Europe. The subsequent part gives an overview of

the market in weather derivatives. To conclude, a review of relevant literature on weather derivatives and

their applications is presented.

2.1 Electricity Grid

The main grid actors on the European electricity grid are the Transmission System Operators (TSO), the

Balance Responsible Parties (BRP), and the Balance Service Providers (BSP). The TSO is responsible

for the reliable transmission of power from generation plants to regional or local electricity Distribution

System Operators (DSO) using the high-voltage electricity grid. The TSO holds a natural monopoly and is

tasked with maintaining the electricity grid. The BRP is an entity that can and may handle the balancing

responsibility for production and consumption units and/or trades actual electricity units. The BSPs are

market participants that provide balancing energy and balancing capacity to the TSO. Examples of these

entities include TenneT as a TSO; Enexis as a DSO; Eneco Energy Trade as a BRP; and Giga Storage as

a BSP (capacity trader). For additional examples, refer to the EIC approved codes. An overview of the

organization of European electricity balancing markets is presented in Figure 1 (Tolstrup et al. [2020]).

Figure 1: Overview of the organization of European electricity balancing markets. The focus of this thesis

is on the short-term markets, in particular the Day-ahead market. Adapted from Tolstrup et al. [2020].
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Every day, various grid actors engage in interactions to ensure a continuous match between electricity

demand and supply. Failure to achieve this balance can lead to frequency deviations, leading to system

malfunctions within the grid. The key grid actors involved in this process are the Transmission System

Operator (TSO), the Balance Responsible Party (BRP) and the Balance Service Provder (BSP). The

TSO plays a crucial role in securing bids for the balancing market to ensure an adequate supply of bal-

ancing power. The BRP serves as the link between electricity consumption and generation. The BRP

also bears responsibility for managing imbalances resulting from deviations between this link. At the

end of each day, any discrepancies between actual and forecasted consumption are settled through an

imbalance system. The Balancing Services Provider (BRP) provides short-term balancing services, also

known as ancillary services, to the electricity grid. They play a critical role in balancing out short-term

grid deviations to ensure grid security.

Electric power generation is mainly done by thermal power plants, using fossil fuels or nuclear fission to

convert thermal energy to electric energy. More recently, renewable energy is playing a more prominent

role in the supply of electricity, owing to the declining costs of these energy sources and the implemen-

tation of supportive policies. The recent surge in growth can be attributed to onshore wind farms and

solar photovoltaic farms, with an anticipated increase in offshore wind electricity generation in the coming

years.

Figure 2 and Table 1 highlight the total energy mix for the countries discussed in this thesis. A notable

trend from these references is the rapid growth of renewable energy, solar photovoltaic in particular.

Many countries, with the exception of the Nordics, France, and Switzerland, predominantly depend on

fossil fuels, with gas being a major contributor. France, however, is distinguished by its significant

nuclear-installed capacity. On another note, Norway, despite being one of the world’s leading natural

gas exporters, primarily relies on hydro for its energy production. It’s important to highlight that large

renewable capacities don’t always equate to their full contribution to the energy generation mix, given

the weather-dependent nature of renewable energy.

Austria Belgium Switzerland Germany Denmark Spain France Italy Netherlands Norway Portugal Sweden

AT BE CH DE DK ES FR IT NL NO PT SE

biomass 0.48 0.71 - 8.47 1.75 0.71 1.34 1.53 0.42 - 0.68 -

fossil (brown coal lignite) - - - 17.69 - - - - - - - -

fossil (coal derived gas) - - - 1.26 - - - 2.07 - - - -

fossil (gas) 4.21 6.92 - 31.81 1.57 29.90 12.89 44.22 18.35 0.46 4.52 -

fossil (hard coal) - - - 18.13 3.02 3.22 1.82 5.58 4.01 - - -

fossil (oil) 0.12 0.46 - 4.08 0.96 0.67 2.57 1.54 - - - -

geothermal - - - 0.06 - - - 0.87 - - - -

hydro (pumped storage) 3.36 1.31 6.70 10.03 - 3.42 5.05 7.26 - 1.06 2.83 -

hydro (run of river) 5.90 0.19 0.60 3.72 - 1.16 11.70 10.55 0.04 6.70 2.86 -

hydro (water reservoir) 2.77 - 5.59 1.43 - 15.77 8.79 4.44 - 26.70 1.52 16.30

nuclear - 5.94 2.97 4.06 - 7.12 61.37 - 0.49 - - 6.90

other 0.84 0.02 - 1.71 - 0.12 1.14 0.85 - 0.03 0.03 9.00

other (renewable) - - - 0.38 0.14 0.28 - - - 0.10 - -

solar 3.26 6.48 - 63.07 2.32 18.52 14.64 5.43 22.59 - 1.03 -

waste 0.10 0.38 - 1.91 0.38 0.55 0.93 0.12 0.79 0.09 - -

wind (offshore) - 2.25 - 8.13 2.31 - 0.49 0.03 3.22 - 0.02 -

wind (onshore) 3.57 2.99 - 57.59 4.71 29.32 20.84 11.20 6.19 5.13 5.33 14.70

Total 24.61 27.65 15.86 233.53 17.16 110.76 143.57 95.69 56.10 40.27 18.82 46.90

Table 1: Table of the installed capacity in GW of different energy sources for the countries of interest in

this thesis. The installed capacity is measured on the 1st of January 2022.
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Figure 2: Historical series of the installed capacity in GW of different energy sources for the countries of

interest in this thesis.

2.2 Electricity Markets

Since the market liberalization that started in the early 1990s, the introduction of competitive markets in

the electricity grid has reshaped the landscape of monopolistic and government-controlled energy sectors.

Currently, the economic law of supply and demand determines the price in marketplaces where electricity

can be traded in either spot or forward contracts.

The European electricity market follows a sequential model, where energy is procured on various

time horizons before the actual energy exchange event. This process can be categorized into year-ahead,

month-ahead, week-ahead, day-ahead, and intraday markets. For the purpose of this research, the focus

primarily lies on the day-ahead markets.

In each European country, the TSO designates ones (or multiple) parties as the Nominated Electric-

ity Market Operator (NEMO). These are granted the authority to operate the day-ahead and intraday
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markets. For example, within the Netherlands, EPEX spot and Nordpool have been designated.

As discussed, the trading of electricity, both physically and financially, can start many years ahead in

forward markets. Long-term energy trading is a strategy adopted to mitigate the market risk associated

with fluctuating energy prices and allow hedging for producers and consumers. These markets continue

until one day before delivery (of the actual energy exchange). Afterwards, the Day-Ahead market runs

until 12:00 AM (in most countries), in which energy players must submit their bids for all hours in the

subsequent day. After this bidding process, the intraday market opens in which energy players can freely

trade electricity until delivery. During delivery, the balancing market opens to ensure a continuous match

between demand and supply. This process is schematically displayed in Figure 3.

Figure 3: Overview of the temporal sequence of European electricity balancing and spot markets. The

focus of this thesis is on the short-term markets, in particular the Day-ahead market. Adapted from

Tolstrup et al. [2020].

Figure 4: Overview of the different

bidding zones in the European elec-

tricity grid. Each colored area is a

different bidding zone. Sourced from

OFGEM.

To tackle the complex physical reality of the grid when trading

electrical energy, zonal pricing has been developed. Zonal pricing

means that wholesale electricity prices can differ between bidding

zones in Europe. From the market perspective, the network within

a bidding zone is considered to be a copper plate - physical capacity

is treated as infinite. The different bidding zones within Europe

can be found in Figure 4, while they mostly follow the borders of

countries, some countries are subdivided into additional bidding

zones.

These bidding zones play a role in this thesis due to several rea-

sons. Firstly, the weather patterns and their financial implications

on energy assets can vary significantly across these zones. This

could directly impact the pricing and effectiveness of the weather

derivatives. Secondly, as this thesis delves into the hedging of

energy assets using weather derivatives, understanding the zonal

distinctions helps in tailoring hedging strategies to specific regions.
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2.2.1 Day-Ahead Market

Closer to delivery, electricity is traded in the short-term markets.

These are composed of the day-ahead market, intraday markets,

and the real-time balancing market. The day-ahead market, is an

auction typically held between 36 to 12 hours before the actual energy delivery. Market participants that

have not yet committed their electricity supply or demand through bilateral contracts submit their bids

and offers to the NEMO. At the clearing time, at 12:00 the day before delivery, the NEMO combines

all bids and offers according to a public couple merit order algorithm. This algorithm matches demand

and supply within the whole operating zone of the NEMO, also accounting for cross-border capacity and

different bidding zones.

The consolidation of bids and offers follow a merit order system, where the highest marginal accepted

bid determines the price for all other bids. As coupling between bidding zones is executed implicitly,

any price disparities between different bidding zones can only arise if the cross-border capacity is fully

utilized. Additionally, the algorithm couples different NEMOs, ensuring that prices on all exchanges are

aligned.

Prices on the day-ahead electricity market are subject to influences, such as commodity prices, weather

conditions, infrastructure limitations, and unusual occurrences. Given the coupling of the entire European

electricity market, events occurring in one region can have ripple effects on the other side of the continent.

Weather-related incidents, such as Germany experiencing low river levels leading to challenging coal ship-

ments to the Rhine region, can significantly affect electricity market dynamics. Similarly, extreme storms

may require wind turbines to be curtailed, subsequently leading to higher electricity prices. Unusual

occurrences, like an influx of extreme jellyfish, can have unexpected consequences, such as clogging water

cooler units in nuclear plants. These occurrences add to the complexity of managing electricity market

operations and supply.

2.2.2 Intraday and the imbalance settlement market

After the day-ahead power auction, producers and consumers have the possibility to continuously adjust

their positions through intraday markets. This flexibility ensures the BRPs can further correctly match

supply and demand based on new information, and in doing so, limit their exposure to the imbalance

market. IIntraday trading remains open until a specific moment known as the intraday gate closure time

(GCT), after which the final production schedule is determined for all market participants. Once the GCT

is reached, only the TSO can act to adjust deviations between supply and demand using the balancing

mechanism. This balancing mechanism operates through two distinct balancing markets: the balancing

market for capacity and the balancing market for energy.

The balancing market for capacity occurs between one year and one day before real-time. During this

period, generators or demand providers are contracted to be available to deliver balancing capacity in

real-time. The second market, the balancing market for energy, allows participating generators or demand

providers to indicate the price at which they are willing to increase or decrease their energy injection or

withdrawal in real-time
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In real-time, the TSO activates the least-cost resources with the necessary technical capabilities to

rectify imbalances between electricity generation and consumption.

2.2.3 Power Purchase Agreements

In practice, a significant number of electricity generators do not actively participate in the electricity

markets; instead, they directly sell their electricity through a BRP. This arrangement involves the signing

of a Power Purchase Agreement (PPA) between the electricity generator and the BRP. PPAs are contracts

that outline the terms of electricity purchase and can be structured based on either a fixed price or be

linked to market prices. These agreements serve as a means of securing a steady income for electricity

generators and providing stability for the BRP in meeting their customers’ electricity demands.

PPAs can vary in duration, from short-term contracts covering a few years to long-term agreements

spanning several decades. Prices may be flat, escalate over time, or be negotiated in any other way. The

most common PPA pricing structures can be found in Figure 5.

Within the fixed price nominal PPA, the buyer locks in a fixed electricity price for the duration of the

PPA contract. This fixed price is often based upon the price of a power future contract. In this contract,

the buyer completely bears the electricity price risk. One may also have a fixed price nominal PPA with

an escalation, to capture inflationary effects. Additional options include a discount to market, a collar

structure, or a hybrid structure. Many of the different types of PPA structures can be summarised using

the following equation:

f(Pt;Pf , ϕ, λ, δ,C,F) =


C, if f(Pt;Pf , ϕ, λ, δ,C,F) < C,

F, if f(Pt;Pf , ϕ, λ, δ,C,F) > F

λ(Pf + ϕ) + (1− λ)(1− δ)Pt, otherwise.

(1)

Where Pt is the day-ahead (hourly) price of electricity at time t, Pf is the fixed price of electricity. For

simplicity, this thesis will assume the fixed price of electricity to be the median electricity price of the

quarter of time t (Q1, Q2, Q3, Q4). The weight of the fixed price component is represented by λ, and

the premium on the fixed price can be set through ϕ. The collar is represented by C (cap) and F (floor).

Finally, the discount to market is controlled through δ.

Figure 5: Overview of different PPA pricing structures from Equation 1. The data is fictional.
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Within the context of the thesis, it is helpful to understand the nuances of different PPA structures.

These structures influence the revenue of energy assets and therefore shape the strategies for using weather

derivatives as hedging tools.

2.3 Weather Derivatives

Weather derivatives are financial instruments designed to help manage risk associated with adverse

weather conditions. They enable parties to hedge or speculate on the financial impact of future weather

events, such as temperature, precipitation, or wind. Temperature derivatives are of particular interest to

businesses in the energy and agriculture sectors, as well as other industries that are sensitive to temper-

ature fluctuations. For example, energy companies may use these to hedge against the risk of unusually

warm or cold seasons, which can significantly impact their revenues. Similarly, agricultural producers

may use these instruments to protect against crop losses due to extreme temperature events.

The main exchange where weather derivatives are traded is the Chicago Mercantile Exchange (CME).

More recently, EPEX Spot, a power exchange, together with Speedwell Climate cooperatively launched

new weather-based power indices for different European countries. These are used for OTC pricing and

are not traded on an exchange but rather used by reinsurance parties to help create standardized con-

tracts. In addition to this, Nasdaq Commodities provide tradable wind power futures by utilizing NAREX

WIDE as the underlying index to settle on the relative German wind power utilization. The NAREX

WIDE is a specific synthetic index that calculates the German wind power production, it’s a bottom-up

model calculated by StormGeo, essentially summing unique power forecasts for each wind asset. The

index is based on data from the ECMWF weather forecasting model.

Except for weather futures traded on the CME, which use measured temperatures from a specified

weather station in the vicinity for settlement prices, using weather data for pricing from ECMWF either

directly or indirectly is the industry standard.

2.3.1 Temperature Futures

This thesis will focus specifically on how the weather futures on the CME are structured. Therefore, we

will explain how weather is traded on the CME exchange. As discussed, the weather products quantify

weather in terms of how much the temperature deviates from the monthly or seasonal average in a

particular city, allow market participants to trade the weather much like any other commodity index.

The value of a future is determined by the value of the underlying weather index, measured in Heating

Degree Days (HDD) or Cooling Degree Days (CDD) - the total number of degrees that the average outside

air temperature falls or rises below or above the base temperature of 18°C. The European summer cooling

month contracts are based on a Cumulative Average Temperature (CAT). Each monthly CAT index is

simply the accumulation of daily average temperatures recorded in degrees Celsius over a calendar month.

The HDD is especially useful in winter, to measure the demand for heating. Conversely, the CAT/CDD

is useful in the summer, to measure the demand for air conditioning.
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For example, we take the HDD and CDD contract. If on a certain day the average temperature was

20°C, the value of the HDD would be 2, and the value of the CDD would be 0. When evaluating a

monthly contract, where on each day the measured average temperature was as in our example, an av-

erage temperature of 20°C Accordingly, the cumulative monthly HDD would equal 60 (2 HDDs x 30

days). The value at settlement would be determined by multiplying the cumulative HDD or CDD by the

contract’s tick size, which in the CME’s case is $20. Therefore the final value would equal $1200.

The CME has its weather futures and options listed in strip contracts that span a couple of months.

The HDD contract consists of a nov-mar (November to March) strip, and a dec-feb (December to Febru-

ary) strip. The CDD contract consists of a may-sep (May to September) strip and a jul-aug (July to

August) strip. Within Europe the CDD is replaced by the CAT index. For completeness, an overview of

the weather futures traded are given in Figure 6. For simplicity, this thesis will use fictionalized monthly

futures that only span single months.

Figure 6: Overview of the weather futures and options codes traded on the CME.

2.4 Literature Review

We review some of the relevant literature on stochastic modeling of weather variables, and their financial

applications. We will first review studies concerning stochastic modeling of temperature. Afterward, we

will review studies that hedge energy portfolios using these derivatives.

11



Tol [1996] proposed to use a GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

model to evaluate daily temperature observations, arguing that the predictability of meteorological vari-

ables shows regular variations. He employed this model using 30 years of daily temperature data from

De Bilt, The Netherlands. Using the same dataset, Franses et al. [2001] used the QGARCH model that

enables asymmetry in how innovations impact conditional variance.

Building upon this, Dornier and Querel [2000] suggested a general Ornstein-Uhlenbeck dynamics model

with time-varying variance for temperature time series in Chicago, although their empirical examination

considered only a constant variance specification. Using a similar model, Alaton et al. [2002] applied it

to data gathered from Bromma, Sweden, introducing the time-dependent variance as a constant variance

over each different month.

The usage of CARMA models to model weather parameters and eventually price weather derivatives

is well-documented, e.g. Cabrera [2010] used Ornstein-Uhlenbeck models driven by a fractional Brownian

motion, Brownian motion or a Lévy process. She used this to transform non-tradable risk factors into

tradable financial assets. In addition to this, Benth et al. [2011] and Benth and Benth [2012] particularly

spearheaded the application of so-called CARMA models for weather derivatives. They proposed the

continuous-time autoregressive model for temperature dynamics with volatility being the product of a

seasonal function and a stochastic process, the same approach used in this thesis. By formalizing the

models in higher dimensions, using CAR(p) processes, they were able to analytically determine future

prices of Cooling Degree Days (CDD), Heating Degree Days (HDD), and Cumulative Average Temperature

(CAT) in Benth and Benth [2012].

Owing to the heightened penetration of wind power, there has been a surge in literature investigating

indices that enable the securitization of wind as well. Benth et al. [2021] employed continuous-time

autoregressive models to model the wind power utilization rate at different German wind sites. After

securitization, resulting in wind power futures; they compute risk premiums and discuss hedging strategies.

Härdle et al. [2021] used actual electricity obtained from the TSO to fit a CARMA model and securitize

the wind risk.

This thesis mainly builds upon the theoretical framework as laid out in Benth and Benth [2012],

while focusing specifically on integrating these derivatives with electricity asset revenues for portfolio

construction.
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3 Data

This section discusses the data utilized in this thesis. Firstly, historical weather is obtained through open-

meteo, which sources their weather data from the European Centre for Medium-Range Weather Forecasts

(ECMWF). The historical weather covers the period from January 1, 2000 to June 1, 2023 on a daily

sampling frequency.

In addition to this, all data pertaining to electricity is obtained from ENTSO-E. This data includes

the day-ahead electricity prices, the yearly energy-mix installed capacities, actual generation per energy

source and the actual generation per energy generation unit. The yearly energy-mix capacity covers 2014

to 2022. The day-ahead prices and generation data covers January 1, 2018 to June 1, 2023 on a hourly

sampling frequency.

As discussed in Section 2, not all bidding zones are considered in Europe. The thesis investigates data

from Austria (AT), Belgium (BE), Germany (DE), Denmark (DK), Spain (ES), France (FR), Italy (IT),

the Netherlands (NL), and Portugal (PT). Weather data is requested for two major cities in each country,

e.g. Copenhagen and Aarhus for Denmark, Amsterdam and Rotterdam for the Netherlands, etc.

The following table presents an overview of the different data sources used:

Data Description Retrieval Method Source

Weather

Reanalysis: ERA5 Global reach with spatial resolution of 0.25° (approximately 25km). open-meteo ECMWF

Hourly temporal resolution from 1959 to present.

Reanalysis: ERA5-Land Global reach with spatial resolution of 0.1° (approximately 11km). open-meteo ECMWF

Hourly temporal resolution from 2000 to present.

Electricity

Unit Generation Hourly generation for solar, wind and other generation assets entsoe-py ENTSO-E

as reported to the TSO. Data is from 2018-01-01 until 2023-01-01.

Generation Hourly generation per production type as reported/calculated entsoe-py ENTSO-E

to the TSO. Data is from 2018-01-01 until 2023-01-01.

Capacity Yearly Capacity per production type. Data is from 2018-01-01 until 2023-01-01. entsoe-py ENTSO-E

Day-Ahead Prices Hourly day-ahead electricity prices from 2018-01-01 until 2023-01-01. entsoe-py ENTSO-E

Table 2: Overview of data sources
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The general characteristics describing the different data are shown in Table 3. Upon examining the

day-ahead price data, it becomes apparent that Denmark registers the lowest average day-ahead electricity

price (78.86 EUR). This is primarily attributed to its extensive wind generation mix combined with its

relatively low energy consumption. However, the minimum of Denmark is not as low as in some other

European countries. This can be largely attributed to Denmark’s relative isolation from the broader

European grid, which is otherwise tightly interconnected, leading to more synchronized price levels across

the continent.

Other noteworthy features are the possibility of negative electricity prices, large outliers, and a stan-

dard deviation exceeding the mean. These features arise from the hourly variability of electricity prices,

which are influenced by factors like changing weather conditions, (unplanned) outages, and fluctuating

demand or supply within each hour.

Transitioning to the temperature data, a clear distinction emerges: Spain represents the warmest

region, while Denmark is the coldest. The temperature gradient, which follows the North-South direction,

is further supported by the moderate climates seen in other countries, as reflected in the provided statistics.

Austria Belgium Germany Denmark Spain France Italy Netherlands Portugal

Day-Ahead Price

Count 40803 47377 47473 60298 47377 47378 82140 47379 47377

Mean 108.24 96.34 90.19 78.86 83.89 102.32 161.36 95.14 84.14

Std 114.27 103.33 102.80 92.33 66.71 115.32 271.13 100.70 66.60

Min -81.59 -500 -129.96 -129.96 0 -75.82 0 -400 0

25% 37.39 36.64 34.46 32.47 42 36.49 48.56 37.40 42.08

50% 57.96 54.26 50 47.05 58.39 54.20 70.53 53 58.51

75% 145.08 115.90 102.67 86 108.52 126.80 149.80 113.78 109.19

Max 919.64 871 871 871 700 2987.78 1750 871 651

Generation (Fossil Gas)

Count 47473 47418 235920 41663 23117 47440 205038 47473 23137

Mean 1070.89 2449.69 3478.52 241.66 7024.93 4048.02 4848.41 4934.25 1636.19

Std 897.70 1091.15 3234.26 168.51 3010.68 2416.44 5375.81 2411.53 957.87

Min 0 436 0 0 0 300 0 0 102

25% 289.25 1517 582 110 4642 2281 763 2740.25 830

50% 924 2280 2726.25 193 6330 3713 2064 4868.50 1553

75% 1716.75 3211 5652.75 340 8962 5778.25 8047 6909.50 2388

Max 3926 5760 19779.75 895 17922 13816 50901 11443.50 4044

Temperature

Count 17106 17106 17106 17106 17106 17106 17106 17106 17106

Mean 10.25 11.04 10.01 8.91 15.63 13.83 14.45 10.72 16.14

Std 8.07 6.23 7.31 6.48 6.97 6.98 7.43 5.95 4.90

Min -15.80 -8.05 -17.15 -11.70 -2.40 -5.35 -6.95 -8.50 3

25% 3.80 6.35 4.45 4.05 10.10 8.55 8.55 6.30 12.25

50% 10.50 11.20 10.05 8.85 15 13.50 14.25 10.75 15.75

75% 16.85 15.95 15.90 14.35 21.70 19 20.60 15.50 20.05

Max 31.30 29.45 29.85 25.25 32.55 32.45 30.90 29.05 33.25

Table 3: General characteristics of the day-ahead prices, generation (using fossil gas), and temperatures

per country. Notice that the count in Denmark of day-ahead prices is higher due to multiple bidding

zones. Additionally, temperature is on daily frequency and contains aggregate statistics of two cities,

whereas generation and prices are on hourly frequency.
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3.1 Preliminary Analysis

As previously mentioned, the historical weather data is obtained for two major cities in Austria, Belgium,

Germany, Denmark, Spain, France, Italy, the Netherlands, and Portugal. An analysis of the temperature

within Denmark and France, to give the reader insight, is presented in Figure 7.

The first thing to note is that bimodal distributions can be imputed from the figure. This can be

largely attributed to the summer and winter seasons. Additionally, significant large autocorrelation is

present in the temperature; which are persistent over a longer period of time. These can to a large

extent be attributed by the seasonality in the temperature. This indicates that constructing a model that

captures both seasonality and the auto regressive nature of temperature might be sufficient in modelling

the temperature.

Figure 7: General analysis of temperature dynamics for a subselection of the total data. The temperature

is measured 2 meters above ground and covers the period from January 1, 2000 to June 1, 2023.
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4 Methodology

This section introduces the mathematics needed to model and simulate the required weather parameters,

and consequently price their derivatives. Additionally, we discuss how to manage risk exposure using

these derivatives.

4.1 Continuous-time autoregressive models

We introduce the continuous-time design of the ARMA models. The continuous-time autoregressive

moving-average (CARMA) has been developed by Doob [1944] and extended to financial applications

by Brockwell [2001]. We follow the methodology of Benth and Benth [2012] who used the CARMA for

modeling weather parameters.

4.1.1 CARMA

Let B be a Brownian motion which is defined on a complete filtered probability space (Ω,F , {F}t≥0, P ).

Additionally, we introduce a stochastic process X(t) defined in Rp for p ≥ 1 as the solution of the

stochastic differential equation (SDE):

X(t) = AX(t)dt+ epσ(t)dB(t) (2)

where ep the pth Euclidean unit vector. The (p× p) matrix A is defined as:

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−ap −ap−1 −ap2 · · · −a1


. (3)

The constants ak, k = 1, ..., p are assumed to be non-negative (αp > 0). In order to model and account

for a seasonal volatility pattern, we consider a bounded and continuous function for σ(t) that is strictly

bounded away from zero.

The solution of Equation 2 starting at time t ≥ 0 is given by the stochastic process X(s), s ≥ t below,

the full derivation can be found in Benth and Benth [2012]:

X(s) = exp(A(s− t))X(t) +

∫ s

t
exp(A(s− u))epσ(u)dB(u). (4)

For 0 ≤ q < p, define the vector b ∈ Rp with coefficients bj , j = 0, 1, ..., p− 1 satisfying bq = 1 and bj = 0

for q < j < p. We can now define the CARMA(p,q) process as:

Y (t) = b′X(t) (5)

The CAR(p) process, which is the standard workhorse of modeling weather parameters, is a special

case of the CARMA(p,q) process when q = 0 and therefore b = e1. The process Y (t) needs to be

stationary, which happens when the eigenvalues of the matrix A have a negative real part.
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4.1.2 Simulation

As the goal of this thesis is to price weather derivatives where no analytical formula exists, it becomes

necessary to simulate the weather dynamics and thus a CARMA(p,q) process. This requires Monte Carlo

(MC) simulations of the future weather conditions. This section will discuss recursive schemes that can

be utilized in conjunction with MC. These rely on the idea of Euler discretization and have been worked

out extensively in Benth and Benth [2012].

Let time run on a uniform grid of step size ∆, that is t = 0,∆, 2∆, .... From Kloeden and Platen

[1992], Benth and Benth [2012] finds an Euler approximation of SDE 2 given by the p-dimensional time

series x(t) = (x1(t), ..., xp(t))
′ solving the difference equation:

x(t+∆)− x(t) = Ax(t)∆ + epσ(t)∆B(t), (6)

where ∆B(t) = B(t + ∆) − B(t). We note that in distribution, ∆B(t) =
√
∆ε(t), with {ε(t)}t=0,∆,2∆,...

being standard normal i.i.d. This results in a simple recursive schema for simulating X(t) at discrete

times t.

It is possible to increase the simulation accuracy by taking into account the analytical expression for

X(t) as given in Equation 4:

X(t+∆) = exp(A∆)X(t) +

∫ t+∆

t
exp(A(t+∆− u))epσ(u)dB(u), (7)

The stochastic integral of the equation becomes a p-dimensional Gaussian random variable at each time

step t. More specifically, we can define z(t) as:

z(t) =

∫ t+∆

t
exp(A(t+∆− u))epσ(u)dB(u), (8)

where z(t) ∼ N(0,Σz
t ). The variance-covariance matrix, Σz

t , is given by:

Σz
t = cov(z(t)) =

∫ t+∆

t
σ2(u)

[
exp(A(t+∆− u))epe

′
pexp(A

′(t+∆− u))
]
du

=

∫ ∆

0
σ2(t+∆− v)

[
exp(Av)epe

′
pexp(A

′v)
]
dv.

Additionally, by the increment property of Brownian motion, {z(t)}t=0,∆,2∆,..., are independent random

variables. Consolidating these results, yields the following simulation scheme forX(t) given by the discrete

time series x(t) :

x(t+∆) = exp(A∆)x(t) + z(t). (9)

As the reader may have noticed, the variance-covariance matrix of z(t) is time-dependent, leading to

inefficient and time-consuming simulations. Benth and Benth [2012] suggests approximating the stochastic

integral in Equation 8 by:∫ t+∆

t
exp(A(t+∆− u))epσ(u)dB(u) ≈ exp(A∆)epσ(t)∆B(t). (10)

Additionally, they rewrite the simulation in Equation 9 to the following Euler scheme:

x(t+∆) = eA∆x(t) + (Σz
t )

1/2ε(t), (11)
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where ε(t) is a vector of p independent standard normally distributed random walks. Combining the two

results, provides an approximative Euler scheme of X(t) given recursively as the time series:

x(t+∆) = exp(A∆)
[
x(t) + epσ(t)

√
∆ε(t)

]
. (12)

4.1.3 Linking ARMA to CARMA

This section identifies the relations that link the CARMA model to the discrete-time ARMA. This will

enable us to identify the parameters of a CARMA process, from the estimates obtained from an ARMA

process.

We focus on the CAR models only, that is, on the process Y (t) = X1(t) (where q = 0). The derivations

and relations which yield a link between continuous-time AR(p) and the discrete-time counterpart in Benth

and Benth [2012] result in the following equality:

1

∆p−1

p∑
k=0

(−1)kbpkx1(t+ (p− k)∆)

=−
p∑

i=1

ap−i+1
1

∆i−2

i−2∑
k=0

(−1)kbi−1
k x1(t+ (i− 1− k)∆)+

+ σ(t)
√
∆ε(t), (13)

where the coefficients bik are defined as bi0 = bii = 1 for i = 0, ..., p. Using an AR(p) time series model for

x1(t), we can estimate the coefficients and use equality 13 to find the corresponding parameters a1, ..., ap

in the CAR(p) dynamics.

We will consider the trivial case of an Ornstein-Uhlenbeck process to verify and provide the reader

with some intuition. Consider p = 1, such that:

b10x1(t+∆)− b11x1(t) = −a1
1

∆−1
b00x1(t) + σ(t)

√
∆ε(t)

⇐⇒ x1(t+∆)− x1(t) = a1x1(t)∆ + σ(t)
√
∆ε(t) (14)

We observe that to estimate the Ornstein-Uhlenbeck process; we can use the first auto regressive coefficient

of the AR(1) process. When p > 1, we will need to solve a system of equations; this is discussed in more

detail in succeeding sections.

4.2 Temperature Dynamics

From multiple empirical analyses in the literature, an AR process with a seasonal component is found to

be a suitable model for temperature data. In the following section, we will discuss the motivation of the

model and formulate the continuous-time framework.

We will assume that temperature T (t) at time t ≥ 0 follows CARMA(p,q) dynamics for q < p, such

that:

T (t) = Λ(t) + Y (t), (15)

where Λ(t) a seasonality function and Y (t) = b′x(t). As long as the matrix A satisfies the conditions for

stationarity, and volatility is periodic, we observe that the deseasonalized temperatures are stationary.
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In other words, the CARMA(p,q) implies temperature mean-reverts to the seasonal level Λ(t). In their

empiric research, Benth and Benth [2012] argued for an AR(3) structure for different weather stations in

Lithuania. Additionally, they chose a seasonal component defined as:

Λ(t) = a0 + a1t+ a2 cos
2πt

365
+ a3 sin

2πt

365
. (16)

During the literature review, we found multiple seasonality functions. For instance, Cabrera [2010] used

a truncated Fourier series defined as:

Λ(t) = a0 + a1t+

L∑
l=1

al+1 cos {
2π(t− dl)

l · 365
}. (17)

where the average temperature and global warming are indicated (in both seasonality functions) by the

coefficients a0 and a1 respectively.

Due to the inherent variability in weather, particularly during winter, the residuals or Yt, still exhibit

a time-varying variance. Following the approach used by Benth and Benth [2012], we utilize a truncated

Fourier Series to capture the seasonal patterns evident in the time-varying variance of weather data:

f(t) = a0 +

N∑
n=1

(an cos(
nt

365
) + bn sin(

nt

365
)), (18)

where N is the number of harmonics used in the approximation, a0 the average value of the function, an

and bn respectively the cosine and sine coefficients.

4.3 Pricing Forwards

In this section, different methodologies for pricing weather contracts based on temperature and wind

speed are presented and discussed. Consider a forward contract at time t, the arbitrage-free price of the

forward contract will be:

g(t, T ) = S(t) exp(r(T − t)), (19)

where r is a constant compounding interest rate, T the delivery date of the forward, and S(t) is the

current spot price. From the general arbitrage pricing theory, we know that a market is free of arbitrage

as long as there exists at least one equivalent martingale measure Q.

To derive the explicit price, a specification is needed for the risk-neutral probability measure Q.

However, the weather derivatives market is an incomplete market, as weather parameters themselves

cannot be stored or traded. Because of this incompleteness, any probability measure Q is equivalent to

the real measure P in a risk-neutral measure, yielding a zero risk premium.

4.3.1 Temperature Derivatives

Temperature futures are contracts based on a deviation of daily average temperature from a specified

reference temperature and measured over specified periods [τ1, τ2] like weeks, months or quarters of a

year. For temperature, the Heating Degree Days (HDD), Cooling Degree Day (CDD), and Cumulative
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Averages (CAT) are the most common contracts. These can be mathematically defined as:

HDD(τ1, τ2) =

∫ τ2

τ1

max(c− Tu, 0)du, (20)

CDD(τ1, τ2) =

∫ τ2

τ1

max(Tu − c, 0)du, (21)

CAT(τ1, τ2) =

∫ τ2

τ1

Tudu, (22)

where c is a baseline temperature, which is usually 18◦C or 65◦F , and Tu =
Tu,max+Tu,min

2 is the average

daily temperature on day u. The CDD index is intended to measure the demand for air-conditioning,

whereas the HDD measures the demand for heating. The typical seasons of these contracts correspond to

when heating demands or cooling demands are high, thus the HDD index usually measures the temper-

ature from October to April whereas the CDD index measures the temperature from April to October.

The CAT index substitutes the CDD index for the European cities traded on the CME. A HDD-CDD

parity can be deducted from the previous expressions which can be expressed as:

CDD(τ1, τ2)−HDD(τ1, τ2) = CAT(τ1, τ2)− c(τ2 − τ1). (23)

As discussed in Section 2.3.1, we will multiply the value of the CDD, HDD or CAT index with the index

points ($20) to obtain an actual value of the contract. Additionally, to simplify the portfolio construction,

we will create a new contract that implements both the CAT and HDD contract depending on the period

within the year. For the winter period (month 10 through 12 and 1 through 4), we will use the HDD value

for this contract and for the summer period (month 5 through 9) we will use the value of the CAT index.

We will call this new contract the OT contract (Overall Temperature), or mathematically OT (τ1, τ2), to

avoid confusion.

4.4 Portfolio Construction

We define the power output of an asset i as ξt,i and the selling price of electricity of the asset as P k
t , for

k = 1, 2, .., 8. We can then compute the revenue within a given time period (τ1, τ2) using:

πk
t,i(τ1, τ2) =

τ2∑
t=τ1

P k
t · ξt,i. (24)

The revenues are structured like payoffs. To construct a portfolio with an energy asset’s payoff and the

different temperature and wind derivatives, we will need to transform the prices of the weather derivative

into a payoff as well. For this, we are going to assume that we can only purchase or sell the derivative

at the beginning of the month and hold it throughout the month whilst having a daily settlement. This

entails that on the first day we have a zero payoff. On each subsequent day, the payoff of the HDD will be

positive (negative) if the observed temperature exhibits a more pronounced negative (positive) deviation

relative to the mean temperature on that day. For the CDD and CAT indices, the effect on price will be

positive (negative) if the deviation from the mean is positive (negative). This is as simple as computing

the differential in prices for each day following the initial day within the month.

The payoff of the portfolio can then be constructed as follows:
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πk
t,i(τ1, τ2) +

L∑
j=1

γjWt,j(τ1, τ2), (25)

where Wt,j the payoff of a certain weather derivative at time t, e.g. the OT (τ1, τ2) for Amsterdam or

Copenhagen. The weight of the payoff of weather derivative j is given by γj . As the weather derivatives

are monthly strip contracts, we will compute the weights in Equation 25 for every month in a year resulting

in 12 different weight vectors for each asset.

The focus is on optimizing the variance-covariance matrix of the payoffs. Because the payoff in

Equation 25 can be utilized with multiple weather derivatives, when L > 1, we opt not to use the

analytical solution to the global minimum variance portfolio. Instead, we follow a different approach.

This approach minimizes the variance of Equation 25 each month for each generation type, using the

full sample of observations in a given month. For illustration purposes, we optimize the weights for the

combination of e.g. January 2020 and fossil gas generation by collecting all observations in January

between 2018 and 2023. While this indeed means, that our study has some look-ahead bias, this study

is exploratory in the sense of investigating the usefulness of weather derivatives in the context of hedging

energy assets.

4.5 Scoring evaluations

There are 4 scoring evaluations chosen. Given that we can express the revenues of the hedged (H) and

unhedged (P) portfolios as such:

∑
RH = πk

t,i(τ1, τ2) +

L∑
j=1

γ̂jWt,j(τ1, τ2), (26)

∑
RP = πk

t,i(τ1, τ2), (27)

the scoring metrics can be defined. Firstly, we define the cost of hedging as a percentage of the regular

revenue (
∑

RH−RP∑
RP

), the variance reduction (1−
σ2
RH

σ2
RP

), and to obtain a risk-adjusted metric, we show the

mean revenue divided by the standard deviation for both the hedged ( R̄H
σRH

) and non-hedged portfolio

( R̄P
σRP

).
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5 Results

In this section, the results of the models imitating the temperature dynamics are shown, additionally, the

resulting weather indices are described. This section also describes the portfolios that are consequently

built with the weather indices and the energy assets.

The weather data used for the calibration of the CARMA models is from 2000-2018, from this, we

simulate 250 series of temperature observations between 2018 and 2023 for each city.

The data used for optimizing the energy portfolios is from 2018-2023. This consists of the electricity

generation for each generation type, and the day-ahead prices for each country.

5.1 Temperature Dynamics

The imitation of temperature dynamics is a combination of three kinds of models: a seasonal component

(Equation 17), an autoregressive component, and a time-varying variance function (Equation 17). The

fitted parameters for the seasonal and autoregressive components can be found in the following table.

Seasonal Component Autoregressive Component

a0 a1(10−3) a2 a3 d1 d2 L1 L2 L3

country city

DK
Copenhagen 8.346 0.137 8.353 0.210 -158.138 -73.294 0.907 -0.200 0.096

Aarhus 8.531 0.115 8.055 0.221 -157.284 -68.305 0.876 -0.150 0.096

FR
Paris 11.352 0.125 7.865 -0.043 -160.843 -1256.779 0.952 -0.248 0.088

Marseille 15.312 0.141 9.121 0.030 -160.399 38.090 0.862 -0.106 0.048

NL
Amsterdam 10.295 0.099 7.225 0.229 -157.935 -103.658 0.943 -0.227 0.087

Rotterdam 10.409 0.101 7.343 0.220 -159.275 -108.739 0.946 -0.235 0.087

AT
Vienna 10.335 0.167 10.555 0.071 -165.997 76.849 0.981 -0.248 0.068

Graz 8.943 0.154 10.082 0.082 -165.942 -522.271 0.934 -0.156 0.036

ES
Madrid 13.877 0.170 10.226 -0.179 -161.093 -46.745 1.003 -0.234 0.054

Barcelona 16.262 0.128 7.629 -0.102 -154.653 -97.480 0.852 -0.076 0.032

PT
Lisbon 16.564 0.096 5.822 -0.096 -153.380 1.449 0.951 -0.240 0.066

Porto 15.018 0.092 6.162 -0.110 -154.425 6.416 0.976 -0.243 0.056

IT
Rome 15.350 0.124 8.932 -0.137 -156.428 -122.136 0.905 -0.147 0.051

Milan 12.626 0.126 10.448 -0.248 -165.227 -96.926 0.929 -0.076 -0.019

BE
Brussels 10.602 0.114 7.569 0.150 -160.536 -93.842 0.954 -0.243 0.083

Antwerp 10.650 0.109 7.578 0.168 -160.716 -96.579 0.954 -0.240 0.083

DE
Berlin 9.525 0.155 9.698 0.245 -163.559 -48.535 0.973 -0.258 0.096

Hamburg 9.423 0.128 8.516 0.243 -161.227 -59.963 0.940 -0.224 0.088

Table 4: Fitted parameters of the linear trend, seasonal component, and the AR(3) process on the

temperature dynamics.

The coefficient a0 represents the average temperature value over the dataset. Consequently, we see

a higher coefficient in Spain when compared to Denmark due to the warmer climate. The coefficient

a1 captures the linear trend over time. This coefficient, albeit small (notice the 10−3), is positive over

the entire range of locations; consistent with our knowledge about climate change. The cosine terms

capture the cyclical patterns, with the magnitude of al+1 determining how influential the pattern is. The

cyclical patterns are defined on 365 days, or annually, (a2), and 182.5 days, or semi-annually, (a3). For

visual interpretation, we direct the reader to Figure 8, which visualizes the seasonality component for the

different cities.
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The coefficients dl+1 dictate the phase shift of the cosine wave. From the table, we can see similar

impacts of the annual cyclical pattern and a phase shift. The observant reader might notice d1 to be

close to -160 for all cities, this is no coincidence as this aligns with approximately mid-May, the inflection

point leading to Summer (160365 ≈ 44% of 12 months). The entire phase shift positions the start of the

pattern at around begin-July, ensuring that the wave’s peaks and troughs align with the Summer and

Winter seasons. When considering the autoregressive components, we find similar coefficients across the

locations. However, considering the slight coefficient differences in locations, it makes the most sense to

uniquely model all cities independently instead of a generalized model for all.

The fitted parameters for the time-varying variance function can be found in the following table.

Variance Function

a0 a1 a2 a3 a4 b1 b2 b3 b4

country city

DK
Copenhagen 3.089 0.853 0.327 0.244 0.121 0.183 -0.265 -0.042 0.008

Aarhus 2.502 0.722 0.275 0.011 0.096 0.243 -0.133 -0.076 -0.063

FR
Paris 3.488 0.538 0.300 0.000 0.125 0.167 -0.055 0.015 -0.031

Marseille 2.222 0.649 0.262 0.030 0.042 0.056 -0.136 -0.040 -0.032

NL
Amsterdam 2.757 0.309 0.457 0.099 0.021 0.288 -0.357 -0.042 -0.033

Rotterdam 3.104 0.393 0.440 0.140 0.051 0.330 -0.344 -0.070 0.003

AT
Vienna 3.888 0.441 0.235 0.024 0.150 0.400 0.158 -0.059 0.049

Graz 3.152 0.473 0.130 -0.036 0.169 0.298 0.125 0.260 0.124

ES
Madrid 2.478 0.107 -0.001 -0.021 -0.114 0.344 -0.210 0.009 -0.013

Barcelona 1.457 0.559 -0.037 -0.057 -0.073 0.105 -0.010 0.039 0.035

PT
Lisbon 1.629 -0.084 0.199 0.050 0.020 0.034 -0.015 -0.012 -0.040

Porto 2.043 -0.268 0.256 0.009 -0.041 -0.026 0.016 -0.061 -0.017

IT
Rome 1.793 0.778 0.203 0.064 -0.050 0.208 -0.071 -0.060 -0.073

Milan 1.856 -0.011 0.027 -0.062 -0.068 0.243 0.128 -0.052 -0.069

BE
Brussels 3.467 0.375 0.342 0.074 0.082 0.259 -0.113 -0.029 -0.026

Antwerp 3.302 0.343 0.417 0.099 0.060 0.272 -0.206 -0.017 -0.004

DE
Berlin 3.873 0.306 0.547 0.259 0.135 0.443 -0.148 0.120 0.173

Hamburg 3.592 0.249 0.506 0.088 0.073 0.475 -0.275 -0.025 -0.015

Table 5: Fitted parameters of truncated Fourier series on the temperature dynamics.

This component is designed to capture the periodic patterns, just like the seasonal and autoregressive

component, but it uses both cosine and sine functions. Using both cosine and sine functions allows this

component to capture phase shifts more flexibly. Again, for better visual representation, we direct the

reader to Figure 8.

Firstly, the seasonality component (in orange) imitates high temperatures in the Summer and low

temperatures in the Winter. Secondly, the autoregressive component ensures persistence in the simu-

lated temperatures (in gray). Finally, the variance function (in green) ensures that the variability in

temperature, peaking in Winter, is captured in the simulated temperatures as well.

The bottom graphs additionally display the residuals of the fitted components, which somewhat sug-

gest the white noise characteristics of the residuals. Notably, when accounting for the time-varying

variance, there’s a significant reduction in the absolute value of the residuals. Additional information

regarding the residuals can be found in Figure 9.
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Figure 8: Temperature dynamics between 2008 and 2010 obtained from ECMWF for the described

locations. The seasonal component and variance function are formats of truncated Fourier series. The

seasonality function is expressed as Λt = a0 + a1t +
∑2

l=1 al+1 cos {2π(t−dl)
l·365 }. The variance function is

expressed as f(t) = a0 +
∑4

n=1(an cos(
nt
365) + bn sin(

nt
365)).

While inspecting Figure 9, the residuals of the fitted model indicate that the constructed model is a

good fit for modeling the temperature dynamics. Especially when considering the additional component of

a time-varying variance (in green), the residuals seem to behave like they are normally distributed. These

residuals, for all cities, have zero mean, one standard deviation, their kurtosis near three, and mostly

small positive skews. In addition to this, the autocorrelation of the residuals seem to be non-existent.

However, when using more stricter tests, like the Jarque-Bera and Kolmogorov-Smirnov tests, we reject

the hypothesis of normality.
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Figure 9: Temperature residuals of the full data spanning 2000 until 2023 obtained from ECMWF using

the proposed seasonal component and variance functions. The orange color depicts the residuals on

temperature using only the seasonal component, and the green color depicts the residuals using both

the seasonal and time-varying variance components. The blue color depicts the normal distribution. The

statistics are given for solely the residuals of the combination of the seasonal and time-varying components.
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5.2 Weather Derivatives

Using the components mentioned above, we simulate 250 series of temperature observations between

2018-01-01 and 2023-06-01 for each city. These simulations are used to accurately price the temperature

indices, as defined in Section 4, using the data known at t. For simplicity, we will purchase or sell a

weather derivative at the start of every month and retain this position for the entire month. Additionally,

to simplify portfolio construction, we are only holding the HDD and CAT contracts in certain time periods.

During the winter months, from October to April, we’ll exclusively hold the HDD contract. Conversely,

in the summer months, from May to September, we’ll maintain the CAT contract. We call this contract

OT. Mathematically, this contract at time t is defined as:

OT(t, τ1, τ2) =

∑t
i=τ1

OT(i, τ1, τ2) +
∑τ2

j=t+1 ÔT(j, τ1, τ2)

τ2 − τ1
, (28)

where τ1 and τ2 respectively reflect the start and end of a single month, and the unknown observations

are replaced by the average of the simulated observations ÔT(j, τ1, τ2) at time step j. Using above, we

can create a continuous time series of temperature indices. Figure 10 provides a visual interpretation on

how the temperature derivatives evolve over time and their reaction to unexpected temperature shocks.

Figure 10: Temperature indices between 2018-01-01 and 2023-06-01, computed using weather data from

ECMWF for the described locations.
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The CAT index (blue) follows the observed temperature (yellow) the closest, deductible from its

definition, the Cumulative Average Temperature index. The HDD index (orange) is almost a mirror

image of the CAT index, however responds more moderate in summer periods and more extreme in

winter periods. This is due to it being constructed as an index to mainly track heating usage, whereas

the CAT index is not particularly seasonally dependent.

The payoffs of the OT derivative, as detailed in Table 6 and partially illustrated in Figure 11, suggest

that the payoffs don’t strictly follow a normal distribution. The test statistics of the Jarque-Bera test for

normality, as well as the Kolmogorov-Smirnov test, confirm this.

Due to the payoffs being a product of temperature, and particularly the (unexpected) temperature

deviation, the auto correlation, expressed in days, that’s visible in the payoffs makes sense. There is

high persistence in temperature, as seen in the preliminary analysis. When temperatures are higher than

average, and thus the payoff of the CAT derivative is positive, the temperature (due to the persistence)

stays higher than average for a few days, which in turn leads to positive payoffs for a few days. The

reverse happens in the winter for the HDD derivative. This persistence is translated back into our OT

derivative. Note, that this non-normality can provide problems when constructing portfolios due to the

normality assumption.

Figure 11: Payoffs for holding the OT derivative for the period of a month. The time period considered

is 2008-01-01 and 2023-06-01. The OT derivative is defined as the CAT index in the summer period and

the HDD index in the winter period.
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Table 6 shows that only except for Spain and France, the daily payoff for holding the OT derivative

for the period of a month is negative on average. The average payoff in Austria is quite more negative

than in the other countries. The standard deviation is in the same order of magnitude for most cities.

µ σ K S KS KSp JB JBp

country city

DK
Copenhagen -1.16 56.76 2.91 0.30 0.04 0.00 30.83 0.00

Aarhus -1.38 51.87 2.96 0.21 0.03 0.04 14.68 0.00

FR
Paris 0.56 63.25 2.92 0.20 0.03 0.03 14.15 0.00

Marseille 0.50 47.09 3.10 -0.09 0.02 0.44 3.48 0.18

NL
Amsterdam -0.97 56.16 3.56 0.46 0.05 0.00 95.90 0.00

Rotterdam -1.05 58.84 3.46 0.39 0.04 0.00 66.38 0.00

AT
Vienna -4.28 64.67 3.12 0.11 0.02 0.30 4.92 0.09

Graz -4.53 56.50 3.61 0.16 0.02 0.21 38.46 0.00

ES
Madrid 1.61 58.77 2.68 -0.02 0.03 0.12 8.60 0.01

Barcelona 1.60 40.13 3.37 -0.11 0.03 0.03 15.20 0.00

NO
Oslo -0.93 65.57 3.43 0.39 0.06 0.00 64.91 0.00

Bergen -1.82 60.81 4.22 0.59 0.05 0.00 237.52 0.00

CH
Zürich -1.15 61.58 2.74 0.12 0.03 0.03 10.57 0.01

Geneva -1.90 61.67 2.60 0.09 0.02 0.21 15.67 0.00

BE
Brussels -0.65 62.81 3.03 0.21 0.03 0.10 15.20 0.00

Antwerp -1.02 61.50 3.17 0.26 0.03 0.06 24.30 0.00

DE
Berlin -0.15 66.95 3.13 0.26 0.03 0.09 24.27 0.00

Hamburg -1.04 63.30 3.00 0.24 0.04 0.00 18.98 0.00

Table 6: Statistics for the payoffs for holding the OT derivative for the period of a month. The KS statistic

represents the Kolmogorov-Smirnov test for normality, while the JB statistic represents the Jarque-Bera

test for normality.
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5.3 Portfolio Construction

This section will discuss and evaluate the portfolios created from a combination of the energy assets, and

the weather derivatives.

We will discuss all the generation types in each country, more specifically we discuss fossil gas, fossil

hard coal, nuclear, solar, wind offshore, and wind onshore. We do this by using the entire generation from

a certain type of generation (e.g. wind, or fossil gas), and multiplying this by the day-ahead price at the

time of generation. This results in proxy revenue of the entire generation group, which will be hedged by

a temperature index. For simplicity, we use the temperature index of the capital of each country. The

weights for the minimum variance portfolio are computed for each month. The results are completely

in-sample, as all the data is used to compute the weights, see also Portfolio Construction in Section 4.

There are 4 scoring evaluations chosen, which correspond to the cost of hedging as a percentage of

the regular revenue (
∑

RH−RP∑
RP

), the variance reduction (1 −
σ2
RH

σ2
RP

), and to obtain a risk-adjusted metric,

we show the mean revenue divided by the standard deviation for both the hedged ( R̄H
σRH

) and non-hedged

portfolio ( R̄P
σRP

).

Starting in Table 7 1, describing the portfolios constructed for Fossil Gas, we see positive variance

reductions when utilizing temperature indices to minimize variance. When comparing the risk-adjusted

metrics, we notice that for all countries except Italy the hedged portfolio has a higher risk-adjusted

expected revenue. Additionally, from the table we see that the cost of hedging is negative, for all countries

except Austria. For Austria, this means that the hedged portfolio actually yields higher revenues than

the unhedged portfolio.

Combining the cost of revenue and variance reduction, we can conclude from the table that for most

countries, the variance reduction is a multiple of the cost of hedging. Especially for Denmark and Spain,

which are both standing out with a variance reduction of about 15% at a cost of about 2%.

Looking at the weights, we notice a lot of variability across the countries and months. Not only does

the climate and average temperature have an impact, but as we are using a two-fold derivative (HDD in

winter period and CAT in summer period) the sign of the weight can suddenly switch from positive to

negative.

Recall that between May and September the Cumulative Average Temperature (CAT) index is used,

that is a positive weight given to the index during this period pays out when the temperature is higher than

expected, or hotter summers, whereas a negative weight represents protection against colder summers.

Between October and April, the Heating Degree Days (HDD) index is used, that is a positive weight

during this period pays out when the temperature is lower than expected, or colder winters, whereas a

negative weight represents protection against hotter winters.

Overall, most countries hold a negative weight for the fossil gas portfolio during the winter period,

implying protection against hotter winters. Hotter winters mean less power consumption, less demand,

1Electricity from these portfolios is traded on day-ahead electricity markets and hedged using a single monthly temperature

index (capital of the country). In this table, RP represents the revenue from the generation portfolio, while RH denotes the

revenue from the hedged portfolio. The analysis spans from January 1, 2018, to June 1, 2023. The weights are normalized

by the average generation over the entire period.
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and therefore lower prices and revenue. Additionally, regular gas consumption for heating might play a

role in these weights. However, in September most weights seem to be positive except for Portugal and

the Netherlands, implying protection against hotter summers.

Fossil Gas AT BE DE DK ES FR IT NL PT

Scoring evaluation∑
RH−RP∑

RP
1.372 -0.799 -0.554 -1.925 -1.979 -0.777 -4.730 -1.215 -1.759

R̄H
σRH

0.871 1.033 0.987 1.974 1.713 0.915 0.928 1.081 1.489

R̄P
σRP

0.844 1.010 0.968 1.849 1.617 0.897 0.944 1.071 1.442

1−
σ2
RH

σ2
RP

3.626 5.889 4.952 15.634 14.399 5.405 6.079 4.202 9.442

Weights evaluation

January -0.027 -0.429 -0.052 -0.228 -0.020 -0.413 -0.399 -0.171 -0.106

February -0.164 -0.031 0.002 -0.179 0.584 -0.054 -0.056 0.018 0.676

March -0.447 0.054 -0.041 -0.064 -0.104 0.017 -0.472 0.066 -0.494

April -0.596 -0.314 -0.335 0.001 0.132 -0.708 -0.742 -0.252 0.187

May -1.284 -0.232 -0.045 0.133 -0.031 -0.672 -0.245 -0.033 -0.141

June -1.089 0.187 0.648 -0.035 -0.049 0.063 -1.695 0.363 0.004

July -0.470 -0.143 -0.062 0.222 -0.150 -0.560 -1.942 -0.053 -0.030

August -0.425 -0.518 -0.464 0.024 0.075 -0.870 -0.258 -0.430 -0.058

September 0.518 0.046 0.112 0.209 0.037 0.126 0.089 -0.231 -0.021

October -0.040 0.182 0.170 -0.084 -0.053 0.487 0.172 0.332 -0.082

November -0.347 -0.210 -0.119 -0.075 -0.050 -0.166 -0.088 -0.035 -0.246

December -0.386 -0.530 -0.667 -0.150 0.145 -0.549 0.139 -0.559 0.068

Table 7: Characteristics of fossil gas generation portfolios for selected countries utilizing natural gas as

an energy source.

Fossil Hard Coal AT DE DK ES FR IT NL PT

Scoring evaluation∑
RH−RP∑

RP
-2.391 -0.188 -0.720 -1.702 1.633 -2.974 -0.563 -0.588

R̄H
σRH

0.465 0.955 1.844 1.150 0.567 1.027 0.998 1.017

R̄P
σRP

0.468 0.938 1.743 1.121 0.525 1.018 0.994 0.987

1−
σ2
RH

σ2
RP

3.433 3.868 11.885 8.192 11.396 7.504 1.849 6.890

Weights evaluation

January -0.390 -0.069 -0.154 -0.194 -0.961 -0.092 -0.062 -0.347

February 0.098 0.016 -0.207 -0.141 -0.361 -0.337 0.037 -0.595

March 0.088 -0.144 -0.061 -0.167 -0.298 -0.293 -0.068 0.022

April 0.495 -0.312 0.120 -0.120 -0.581 -0.365 -0.190 -0.391

May 0.366 -0.134 0.164 0.126 -0.194 -0.610 -0.113 0.228

June -0.660 0.507 0.153 0.027 0.101 -1.719 0.575 -0.077

July 0.088 -0.089 0.128 0.330 -0.453 -2.100 0.106 -0.047

August -0.895 -0.262 -0.017 -0.687 -0.144 -0.168 -0.273 -0.355

September -0.162 0.039 0.009 -0.798 -0.390 0.342 -0.301 -0.314

October 0.406 -0.103 -0.143 -0.092 -0.737 0.475 -0.030 0.118

November 0.071 -0.267 0.014 0.209 -1.013 -0.036 -0.169 -0.449

December -0.105 -0.653 -0.197 -0.328 -1.382 0.381 -0.348 -0.948

Table 8: Characteristics of coal generation portfolios for selected countries utilizing coal as an energy

source.

The scoring evaluation in Table 8, representing energy generation using fossil hard coal, looks com-
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parable to the previous table. However, the average risk-adjusted revenue is slightly lower overall than

for fossil gas. Given that the installed capacity (see Table 1) for fossil hard coal is comparably low for

the entirety of Europe, except for Germany, these results are to be expected. The highest variance reduc-

tions are achieved in France (11.4%) and Denmark (11.9%), with Spain (8.2%) and Italy (7.5%) following

closely.

Moving to the nuclear generation, depicted in Table 9, we again find a high variance reduction for

Spain (16.9%). Additionally, we find much higher average risk-adjusted revenues. As a nuclear power

plant cannot be simply turned off, nuclear generation is very constant over time, leading to higher average

risk-adjusted revenues. However, the difference between the hedged and unhedged portfolios is not as

significant as for the other generation types; with the hedged portfolio only performing marginally better.

Nuclear BE DE ES FR NL

Scoring evaluation∑
RH−RP∑

RP
-0.505 0.278 -3.809 -0.541 -1.161

R̄H
σRH

1.098 1.815 1.902 1.313 1.021

R̄P
σRP

1.098 1.806 1.803 1.311 1.022

1−
σ2
RH

σ2
RP

1.053 0.339 16.860 1.445 2.073

Weights evaluation

January -0.007 -0.021 0.011 -0.086 0.141

February 0.072 0.010 0.359 0.059 0.125

March 0.106 -0.000 0.135 0.065 0.118

April -0.209 -0.100 0.154 -0.216 -0.034

May -0.163 0.003 0.000 -0.128 -0.063

June 0.123 0.163 -0.010 -0.029 1.066

July 0.103 -0.046 0.034 -0.090 0.075

August -0.197 0.022 -0.070 -0.200 -0.302

September -0.011 -0.053 -0.173 0.055 -0.181

October 0.206 -0.010 0.014 0.060 0.313

November 0.034 -0.059 0.047 -0.140 0.127

December -0.128 -0.057 0.715 -0.173 -0.240

Table 9: Characteristics of nuclear generation portfolios for selected countries utilizing nuclear as an

energy source.

The solar generation, as seen in Table 10, show, much like what was seen previously, that the biggest

variance reduction can be achieved in Italy, Spain and Portugal. The risk-adjusted returns show only

marginal improvement for the other countries. Much like solar, the hydro generation (in Table 11) provides

the same conclusion, with the highest variance reductions being found in Southern Europe.

Finally, moving to the portfolios utilizing wind generation, we see that the highest improvements can

be achieved in Southern Europe. Still, for both offshore and onshore, variance reductions can be achieved

all throughout Europe. However, the average risk-adjusted revenue is only marginally better in the hedged

portfolio.
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Solar AT BE DE DK ES FR IT NL PT

Scoring evaluation∑
RH−RP∑

RP
0.971 -0.468 0.550 0.372 -1.757 -0.984 -3.759 -1.565 -0.930

R̄H
σRH

0.718 0.625 0.700 1.031 1.011 0.676 0.820 0.545 0.917

R̄P
σRP

0.709 0.624 0.696 1.042 0.995 0.674 0.815 0.548 0.889

1−
σ2
RH

σ2
RP

0.582 1.153 0.132 -2.817 6.579 2.451 8.499 1.933 7.870

Weights evaluation

January 0.376 -0.056 0.322 -0.198 -0.165 -0.259 -0.338 0.180 -0.032

February 0.041 -0.076 0.122 -0.019 0.363 0.076 -0.155 0.123 0.550

March -0.200 0.152 0.063 0.029 0.341 0.083 -0.357 0.445 0.337

April -0.373 -0.284 -0.246 0.063 0.606 -0.370 -0.636 -0.493 1.116

May -0.468 -0.170 -0.037 0.186 -0.059 -0.336 -0.479 -0.072 -0.277

June -0.089 0.353 0.620 0.212 -0.051 -0.078 -1.672 0.798 -0.043

July -0.159 0.205 0.117 -0.113 0.076 -0.219 -2.245 0.298 0.020

August -0.441 -0.393 -0.038 -0.087 0.019 -0.590 0.204 -0.522 0.025

September 0.424 -0.093 0.133 0.182 -0.162 0.323 0.282 -0.676 -0.082

October -0.019 0.220 0.192 -0.027 0.154 0.174 0.007 0.531 0.107

November 0.038 0.366 0.317 -0.026 -0.047 0.101 -0.329 0.551 -0.182

December -0.113 -0.605 -0.017 0.109 1.353 -0.316 0.321 -0.801 1.704

Table 10: Characteristics of solar generation portfolios for selected countries utilizing solar as an energy

source.

Hydro: Run of River AT BE DE DK ES FR IT PT

Scoring evaluation∑
RH−RP∑

RP
1.710 1.392 0.604 0.597 -3.139 0.107 -2.588 -2.556

R̄H
σRH

1.095 0.928 1.475 2.546 2.256 1.227 1.359 1.041

R̄P
σRP

1.077 0.905 1.463 2.494 2.157 1.222 1.314 0.952

1−
σ2
RH

σ2
RP

-0.023 2.185 0.358 2.868 14.242 0.651 11.211 20.706

Weights evaluation

January 0.476 -0.088 0.086 0.033 0.022 -0.039 -0.140 0.116

February 0.068 -0.086 0.014 0.018 0.122 0.042 -0.054 -0.198

March -0.015 0.013 -0.006 0.167 0.021 0.090 -0.209 -0.415

April -0.135 -0.099 0.012 0.070 -0.011 -0.194 0.089 -0.161

May -0.451 -0.073 -0.160 0.123 0.021 -0.199 -0.218 0.185

June -0.094 0.096 0.271 0.031 0.094 0.001 -0.674 -0.269

July 0.007 0.357 -0.031 -0.039 0.196 0.010 -1.036 -0.008

August 0.049 0.694 -0.029 -0.072 -0.163 -0.141 -0.083 -0.310

September 0.410 -0.061 0.069 0.115 -0.269 0.099 -0.000 -0.125

October -0.117 -0.195 0.105 0.185 -0.148 0.186 -0.374 -0.086

November -0.041 -0.236 -0.034 0.041 0.035 0.028 -0.150 -0.026

December 0.084 0.163 -0.087 0.023 0.492 -0.080 0.199 1.309

Table 11: Characteristics of hydro generation portfolios for selected countries utilizing hydro as an energy

source.
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Wind Offshore BE DE DK FR IT NL PT

Scoring evaluation∑
RH−RP∑

RP
-1.252 -1.712 -0.405 -0.153 -0.254 -1.731 -13.628

R̄H
σRH

0.713 0.972 1.109 0.028 0.268 0.729 0.332

R̄P
σRP

0.712 0.968 1.111 0.028 0.266 0.732 0.344

1−
σ2
RH

σ2
RP

2.828 4.038 0.412 0.003 1.373 2.586 20.144

Weights evaluation

January 0.554 0.402 0.264 0.145 1.795 0.619 0.322

February 0.198 0.183 -0.046 -0.132 -1.093 0.239 1.303

March 0.166 0.031 -0.070 0.055 1.511 0.127 1.160

April -0.302 -0.223 0.011 -0.077 -0.494 -0.281 1.391

May -0.222 -0.109 0.392 0.018 0.990 -0.120 -0.451

June -0.139 0.445 -0.120 0.086 -8.606 0.518 -1.551

July -0.146 0.005 0.011 0.099 -4.308 -0.244 -0.632

August 0.117 0.089 -0.154 -0.045 2.954 0.063 0.712

September 0.292 -0.001 0.092 0.033 5.299 0.341 0.875

October 0.406 0.114 0.242 -0.088 4.489 0.500 0.456

November 0.253 0.181 0.243 0.072 -1.780 0.478 0.298

December 0.197 -0.101 -0.055 -0.064 1.797 -0.076 5.322

Table 12: Characteristics of wind offshore generation portfolios for selected countries utilizing wind off-

shore as an energy source.

Wind Onshore AT BE DE DK ES FR IT NL PT

Scoring evaluation∑
RH−RP∑

RP
-0.008 -2.574 -3.260 -0.721 -3.573 -2.329 -1.368 -2.262 -3.742

R̄H
σRH

0.808 0.729 0.845 1.189 1.122 0.830 0.765 0.721 1.131

R̄P
σRP

0.799 0.727 0.841 1.187 1.134 0.833 0.770 0.725 1.074

1−
σ2
RH

σ2
RP

2.241 5.468 7.270 1.658 5.059 4.077 1.301 3.459 16.447

Weights evaluation

January 0.354 0.785 0.560 0.450 -0.104 0.527 0.009 0.630 0.155

February 0.201 0.215 0.312 -0.075 0.035 0.207 0.147 0.336 0.250

March -0.222 0.291 0.082 -0.178 0.183 0.328 -0.048 0.202 0.204

April -0.065 -0.317 -0.268 -0.030 0.034 -0.362 -0.243 -0.277 -0.109

May -0.276 -0.026 -0.133 0.385 0.042 -0.028 -0.016 -0.168 -0.219

June 0.058 -0.140 0.476 -0.034 0.025 -0.325 -1.021 0.413 0.059

July 0.195 -0.136 0.010 -0.011 -0.020 -0.191 -0.792 -0.037 0.028

August 0.087 -0.119 0.039 -0.020 -0.100 -0.374 0.281 -0.080 0.092

September 0.491 -0.021 0.118 -0.015 -0.055 0.304 0.828 0.098 -0.052

October -0.260 0.604 0.169 0.237 -0.061 0.644 -1.158 0.572 -0.197

November -0.174 0.412 0.233 0.178 0.000 0.295 -0.093 0.543 0.115

December -0.005 0.386 0.189 0.061 0.638 0.198 0.247 0.170 1.474

Table 13: Characteristics of wind onshore generation portfolios for selected countries utilizing wind on-

shore as an energy source.
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6 Conclusion

In this section, the key findings, as well as contributions of this paper, are provided. Additionally, a

discussion followed by the limitations and potential further research is provided.

This research extends from Benth et al. [2011] and investigates the potential weather derivatives might

offer in hedging energy assets. The weather data is obtained for 18 European cities between 2000 and

2023, electricity generation and price data is obtained for the period 2018 until 2023. The temperature

is decomposed into three different components, a seasonal component, an autoregressive component, and

a time-varying variance component. Afterwards, 250 temperature simulations are obtained from this

decomposition; from which two temperature indices are created, the Cumulative Average Temperature

(CAT) index and Heating Degree Days (HDD) index. These indices are transformed into a new derivative,

which holds a HDD contract in the winter, and a CAT index in the summer. Using this derivative,

portfolios are created for each generation type in the countries, and optimized for minimum variance

every month.

The results offer insight in the potential of weather derivatives decreasing the total variance of energy

portfolios. From the results, we draw that significant variance reduction can be achieved using a simple

buy-and-hold strategy for monthly temperature indices. This is especially true for Southern European

countries, like Spain, Italy and Portugal. The cost of hedging, as a percentage of the total revenue, is a

fraction of the variance reduction.

The first research question, regarding the effectiveness of the decomposition of temperature, is de-

scribed in great detail in Benth et al. [2011]. However, this thesis extends this by providing residual

statistics for multiple locations. We can conclude, that while the proposed model is effective in its own

regard, the residuals are not completely white noise. There is still some kurtosis, autocorrelation, and

skewness left in the residuals.

The second research question investigates whether temperature derivatives are effective at hedging a

portfolio of energy assets. While in this research, we focussed mainly on complete country generation

portfolios, the derivatives certainly reduced total variances in the energy portfolios.

Thirdly, the differences between the energy asset type portfolios, are mainly characterized by the

weights of the temperature derivative. Whilst most energy types prefer negative weights over the winter,

protecting against hotter winters, wind offshore and onshore actually held positive weights over the winter,

therefore protecting against colder winters.

The above findings result in the conclusion that there definitely exist applications of weather derivatives

that reduce variances of energy portfolios, which provides more constant revenue streams. In addition to

this, it provides the basic fundamentals of pricing weather derivatives, and requesting appropriate data,

under an Open-Source license available on the author’s Github.

6.1 Limitations and Further Research

This thesis draws upon data from nine countries, encompassing both weather and electricity data. As a

result, the scope of the study is broad, leaving limited room for a detailed examination of specific regions,

such as the Netherlands. This breadth may have obscured some of the potential benefits of using weather
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derivatives as tools for variance reduction.

For more detailed insights, future research should consider narrowing the focus to assets in a specific

geographical area. This targeted approach would also facilitate a more in-depth exploration of the impact

on various Power Purchase Agreements (PPAs), a topic that remains largely unexplored in the current

study.

Furthermore, while the software developed for this thesis is capable of hedging portfolios with multiple

temperature derivatives (e.g. CDD Amsterdam and HDD Berlin), its practical application was limited

due to the expansive geographical focus. Therefore, it is strongly recommended that subsequent studies

focus on a more specific region and asset type.

Finally, as previously discussed, the study has some look-ahead bias due to utilizing the full sample for

the estimation of the weights. Therefore, this study is purely exploratory in investigating the usefulness

of weather derivatives in the context of hedging energy assets. To truly gauge how effective the hedging

can be, the weights need to be estimated and tested against out-of-sample data.
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