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Abstract

This research investigates methods for classifying payment terms in invoices using supervised and semi-

supervised machine learning techniques. We analyze the effectiveness of different text representations and

classification models, including K-Nearest Neighbors, Multinomial Logistic Regression, and Support Vector

Machines. Our research demonstrates that the payment term of an invoice can be effectively classified into a

finite number of classes using a feature set based on bigrams, which are dimensionality reduced using SVD, and

employing a Multinomial Logistic Regression algorithm configured with the sag solver and a regularization

parameter strength of 10. Our findings reveal that bigram-based features consistently outperform other

representations, indicating the importance of capturing sequential dependencies in invoice text. Additionally,

we explore the potential of semi-supervised learning to enhance model performance but find that the top-

performing supervised model generally outperforms the semi-supervised learning models. Despite promising

results, our study identifies several limitations and suggests future research directions, such as incorporating

an infinite number of classes and exploring alternative algorithms. Overall, our research contributes to

improving automatic invoice processing, with implications for businesses like Blue10.
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1 Introduction

Accounting is the backbone of business. Accounting provides a business with financial insights

from previous, current and future years. Blue10 is a Dutch company that helps organizations

to automate administrative processes. These processes include digital processing of purchase

and sales invoices, packing slips and receipts. The Blue10 software automates repetitive tasks

and checks the quality and completeness of the administration. The goal of the company is to

make accounting fully automated by the year 2032. In order to achieve this goal, information in

invoices needs to be recognized by the Blue10 software. Data that can be retrieved from invoices

are, among others, the vendor, invoice date, IBAN, chamber of commerce number, VAT number,

total payment amount and payment term. Methods for recognizing and extracting the vendor,

invoice date, IBAN, chamber of commerce number, VAT number, and total payment amount

of an invoice are already available within the company’s software. Currently, the methods to

do this are developed mainly using rules and text patterns. As an illustration, extracting an

IBAN can be easily accomplished using a text pattern, given that an IBAN follows a predefined

structure. An IBAN usually starts with a two-letter country code, followed by two check digits

and accommodating up to thirty alphanumeric characters, all with a predetermined length

varying by country.

The payment term of an invoice refers to when its payment is due. This is usually relative

to the invoice date or the date on which the services were delivered. In most cases, the payment

term is stated directly in the invoice text or can be derived from other information in the invoice

text. For example, the invoice text specifies the maximum amount of days within which the

payment must be completed, or alternatively, the payment term corresponds to the number of

days between the invoice date and the due date. Developing a method reliant on rules and

text patterns to predict the payment term of an invoice poses challenges, given the substantial

variations in invoice and payment term formats across different vendors. The absence of a

standardized structure complicates the task. The accuracy of the predictions using a rule-based

method depends on the complexity of the rules and the method’s ability to capture patterns and

factors that determine the payment term. Machine learning approaches trained on historical

data are able to capture more complex patterns. The objective of this research is to find a

method to classify the payment term of an invoice based on the invoice text. To achieve this

we first need to consider how to process raw text, then given the text representation(s) how to

classify the payment term best.

Most machine learning algorithms work with numerical data and cannot process raw text

data. An invoice is a text document that consists of raw text data. Raw text data refers to
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text that has not yet been pre-processed or cleaned. There exist procedures that convert raw

text data into a numerical representation. These procedures usually consist of pre-processing

the text data, for example by removing stop-words like ”the” and ”is”, and converting the text

data into a numerical vector representation per text document. These vector representations

can serve as input for a machine learning algorithm that aims to classify the payment term of

an invoice.

Supervised classification in machine learning involves training a model with input objects

and their associated desired output values. These desired output values are also known as classes

or labels. The model learns from this training data to predict the output values for new input

objects. In this case, classification models are trained using the numerical representations of

invoices along with their corresponding labels. In our data set, invoices are labeled with their

payment term. The classification models include K-Nearest Neighbors, Multinomial Logistic

Regression and Support Vector Machines. Performance across models is evaluated by compar-

ing their outputs with actual values and calculating statistics such as the F1-score and Cohen’s

κ. The following two research questions capture the approach.

What procedure that converts raw text data into a numerical representation can best be used

in a supervised classification model, K-Nearest Neighbors, Multinomial Logistic Regression or

Support Vector Machines, to classify the payment term of an invoice according to the perfor-

mance denoted by the F1-score?

What algorithm out of K-Nearest Neighbors, Multinomial Logistic Regression and Support Vector

Machines can best be used to classify the payment term of an invoice according to the perfor-

mance denoted by the F1-score?

As previously mentioned, supervised classification algorithms rely on labeled data. Acquiring

labeled data for the problem at hand, classifying the payment term of an invoice, is expensive

and time-consuming. However, unlabeled data are readily available. When limited labeled data

and a lot of unlabeled data are available, semi-supervised learning algorithms can be appropriate

for the classification problem at hand. Especially, if the unlabeled data contain valuable infor-

mation for predicting classes. The information is valuable when it is not present in the labeled

data and it contributes to determining the class of an observation. Furthermore, unlabeled data

can improve the generalization performance of the model. Particularly, when the labeled data

are not representative of the population. In semi-supervised learning, a model is trained on both
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labeled and unlabeled data. For that reason, the following research question is:

Can semi-supervised learning improve the performance reported by the F1-score of payment term

classification for invoices, compared to the performance of the supervised learning models?

Frey and Osborne (2017) examined how likely jobs are to be automated. They concluded

that the accountancy profession will be highly automated in the future. Examining invoices

manually is sensitive to errors and is time-consuming. Providing customers of Blue10 with the

correct recognized data saves them time, money and resources.

The main relevance of this research can be divided into two fields, namely the relevance

for Blue10 and the scientific relevance. First, the relevance for Blue10 is explained. Results

of and methods developed within this research can be used to enrich the Blue10 software and

therefore serve the Blue10 customer. The solution enables Blue10 to classify the payment term

of invoices. Currently, when processing an invoice through Blue10, the payment term that is

assigned in the accounting system is not based on the payment term specified in the invoice

itself. Instead, it is determined by the vendor-specific settings configured by the users within

the accounting system. The real payment term may, in fact, be different. For example, consider

a scenario where the invoice explicitly indicates a payment term of thirty days. However, due

to the predefined payment term set by the accountant for the specific vendor, which is fourteen

days, the invoice will be recorded in the accounting system with a payment term of fourteen

days.

The payment term, and therefore the moment of payment, could influence a company’s

liquidity position, financial planning and risk assessments. Furthermore, payment terms play

a significant role in supplier relations. Consistent payment practices can build trust, support

suppliers’ cash flow, create a competitive advantage and enhance the overall reputation of a

company. It is important for companies to carefully consider payment terms.

Second, the scientific significance is elaborated upon. Research investigating the application

of semi-supervised machine learning algorithms for classifying the payment term of invoices

using raw text data is limited. Previous studies have not extensively explored the development

and evaluation of an optimal model designed and trained for the sole purpose of classifying the

payment term of an invoice, regardless of whether the model is semi-supervised or supervised.

Thus, there is a notable research gap in understanding the effectiveness and performance of such

models in accurately classifying the payment term of an invoice.

The rest of this paper is structured as follows. The following section provides a literature
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review focusing on techniques for converting text data into numerical representations, as well as

semi-supervised learning techniques and automation methods found in the literature concerning

invoice processing. Section 3 describes the data used in this research. Hereafter, the methodology

is described in Section 4. We present the results in Section 5. The last section gives a conclusion

and discussion. Suggestions for future research either on a scientific level or company level are

also provided in this section.

2 Literature Review

The tasks performed by an accountant are mainly repetitive tasks. Machine learning techniques

can be used to reduce and automate repetitive tasks. A task that can be automated is the

recognition of specific information present in an invoice, for example, the invoice date, IBAN or

payment term. The objective of this study is to develop an automated method for identifying the

payment term associated with an invoice. In this section, we first address the literature on textual

representations, followed by an overview of semi-supervised learning methods. Subsequently, we

investigate automation methods applied in invoice processing.

2.1 Textual Features

A corpus is a large collection of documents or text pages. The data that we consider for

classifying the payment term of an invoice are raw text data, namely the text present in invoices.

However, text data poses challenges regarding its automatic processing due to the ambiguity and

unstructured nature of the data. The textual representation of an invoice must be converted

to a numerical input vector to serve as input for a machine-learning algorithm, as machine-

learning algorithms process numerical features to make predictions or classifications. A first

step of converting textual data to numerical vectors is breaking down text data into individual

tokens, which is called tokenization. These tokens are sequences of characters or words. After

the text has been tokenized, the tokens are converted into numerical representations.

2.1.1 Bag of Words

A Bag-of-Words (hereafter BoW) representation can be used to represent text data as numerical

input vectors. The representation involves a vocabulary of tokens in the corpus and a measure of

the presence of a token. The vocabulary of tokens consists of (a selection of) unique tokens from

the corpus. Once a vocabulary is chosen, a matrix where each entry measures token presence

in a text document is created. The resulting matrix is called the Document-Term matrix. In
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its simplest form, the presence of a token is measured with a binary indicator, a token is either

present or absent. More sophisticated measures use raw counts or differently computed measures.

The BoW representation is a simple and orderless representation of the documents (Radovanović

& Ivanović, 2008). In this context, ”orderless” means that each document is treated as collection

(bag) of words without preserving their specific order. Information about the structure of words

is discarded. Instead, it focuses on the occurrence of individual words within the text. This

has some limitations, such as the loss of contextual information and the inability to capture the

relationships between words (Dharma, Gaol, Warnars, & Soewito, 2022).

A BoW representation can be created for a sequence of N tokens (N-grams). For example, a

1-gram, also known as a unigram, equals a single token extracted from a tokenized text. When

N increases, the number of N-grams present in the corpus typically increases exponentially. For

tasks that require understanding the text, such as topic modeling or document classification,

a larger N might be more appropriate as it captures longer phrases and semantic context. In

contrast, for tasks that require less understanding of the text, such as spell correction or named

entity recognition, a smaller N might be more suitable.

Naturally, some tokens appear more often than others and have a high frequency regardless

of the class. Because these tokens are common across multiple classes, they don’t provide

much information for distinguishing between the classes. These common tokens, despite not

being distinctive in the classes, can still influence the prediction of a document’s class label due

to random variations in how they are distributed across different classes within the dataset.

These tokens should be given less weight in a classification model. The Term Frequency Inverse

Document Frequency (hereafter TF-IDF) is a measure that can reflect how relevant a token is

to a document in the corpus. The resulting value reflects both the importance of the token

within the document and its importance across the corpus. It can be used as a weighting

measure which is applied to obtain more sophisticated BoW representations. TF-IDF is a result

of research conducted by Luhn (1957) and Sparck Jones (1972), and equals the product of two

measurements. The first part is the token frequency (TF), which represents the number of times

a token appears in a document, a row in the Document-Term matrix. The second part measures

the rarity of a token across the entire corpus (IDF), all rows in the Document-Term matrix.

The value of IDF increases for tokens that occur infrequently in the corpus and decreases for

tokens that occur frequently. A high TF-IDF value for a particular token suggests that the token

is both frequently used within that specific document and is relatively rare across the corpus.

This combination of high frequency within the document and relative rarity across the corpus

indicates that the token is important and distinctive within that specific document, potentially
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carrying significant meaning or relevance to the document’s content.

Dimensionality Reduction The BoW representations are often high dimensional sparse

document representations. That is, each document is described by a large number of features,

most of which are zero-valued. If the machine learning algorithms provided with these document

representations cannot scale to such high dimensions, then the machine learning algorithms can

experience decreasing performance. Furthermore, high dimensional sparse representations may

hinder the application of the algorithms due to technical reasons. Specifically, as the dimensions

increase, the computational and memory resources required to process and analyze the data also

increase (Radovanović & Ivanović, 2008).

Dimensionality reduction is the process of reducing the dimensions while preserving the most

important information. Singular Value Decomposition (hereafter SVD) is a matrix decomposi-

tion that can be used to reduce the dimensionality of a dataset. The SVD theorem states that

any real-numbered matrix A can be decomposed as the product of three other matrices. The

SVD of a matrix A can be found in Equation 1:

A = UΣV T (1)

In our context, the matrix An×m is the Document-Term matrix. U and V are orthogonal

matrices, with columns equal to the orthogonal eigenvectors of AAT and ATA, respectively.

The matrix Σ is a diagonal matrix, where the diagonal elements are the square roots of the

eigenvalues of AAT . These diagonal elements, referred to as singular values, are usually arranged

in descending order. The larger the singular value, the more variability in the data is captured by

the corresponding singular vector. Selecting the top k singular values allows us to approximate

the matrix A by multiplying the truncated matrices U∗
n×k, Σ

∗
k×k and V ∗T

k×m. For SVD reduction

we choose matrix V ∗ consisting of columns of V corresponding to the k largest singular values

and when the original Document-Term matrix A is multiplied with this matrix V ∗, this yields

a new matrix A∗ in a lower dimensionality.

Radovanović and Ivanović (2008) state that applying dimensionality reduction on BoW data,

such as the Document-Term matrix, results in columns that are “topics”. These new topics ob-

tained by the reduction are obtained from combinations of the original tokens. Dimensionality re-

duction transforms the initial high-dimensional Document-Term matrix into a lower-dimensional

space, capturing latent topics within the data. Textual data can contain complex relationships

and meanings that are not immediately apparent. Latent topics are not explicitly expressed in

the text but are inferred based on the co-occurrence patterns of words within the data. These
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topics are derived from the relationships between tokens appearing together in various docu-

ments. In the Document-Term matrix, each column corresponds to a unique token present in

the corpus vocabulary, while each row represents a document in the corpus. The three matrices

obtained when applying SVD to a Document-Term matrix are: U , Σ, and V T , where U contains

the left singular vectors, capturing the relationships between documents and latent topics. Σ

holds the singular values, representing the importance of each latent topic, and V T contains the

right singular vectors, which encode the relationships between tokens and latent topics.

Each column in the matrix V T corresponds to a token in the corpus vocabulary, and each row

represents a latent topic. The elements in each column cell indicate the strength of association

between the token and each latent topic. Therefore, the columns in this matrix can be interpreted

as token embeddings. Token embeddings represent individual tokens as real-valued vectors. Each

column represents a token as a dense vector in a vector space, where the dimensions capture

different latent topics. These token embeddings encode the relationships between tokens based

on their co-occurrence patterns in the corpus.

In the resulting lower-dimensional Document-Term matrix, each row represents a document,

while each column represents a latent topic. The elements in each row indicate the strength

of association between the document and each latent topic captured by SVD. Therefore, the

rows in this matrix can be interpreted as document embeddings. These embeddings encode the

content of documents based on their relationships with latent topics extracted from the corpus

to real-valued vectors.

Meyer (2000) provides a clear explanation of SVD along with an example illustrating its

application to a Document-Term matrix. Meyer (2000) emphasizes that since the dimensions of

a reduced matrix obtained through SVD are linear combinations of the input terms, there is a

possibility of losing the clear distinction between documents that would be evident when con-

sidering the original tokens themselves. This issue becomes more prominent when a separation

on a fine level is desired for a diverse set of documents, for example distinguishing documents

about corn and wheat (Albright, 2004).

2.1.2 Word2Vec

Word2Vec refers to a collection of models that are also used to generate word embeddings. A

word embedding represents a word as a numerical vectors in a predefined vector space, where

words that are close to one another in meaning have a similar representation, meaning they are

close to one another in the vector space. These word embeddings are commonly expressed as

real-valued vectors spanning tens or hundreds of dimensions. In contrast to the high dimensions
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observed for the sparse Document-Term matrices, which can reach up to thousands or even

millions of dimensions. A Word2Vec word embedding captures the meaning of a word and its

relationship with other words within the corpus. In classification tasks like ours, classifying the

payment term of an invoice, word embeddings have the advantage of retaining predicting power

without the need for omitting or approximating variables. Compared to sparse vectors, although

they are short, dense vectors are more meaningful.

The Word2Vec model structure was developed by Mikolov, Sutskever, Chen, Corrado, and

Dean (2013) at Google. Word2Vec models are shallow, two-layer neural networks trained on

a text corpus. The models construct a vector space where each distinct word in the corpus is

assigned a corresponding vector in the space. Two different neural model architectures are part

of the Word2Vec framework and can be used to learn word embeddings, namely Continuous

BoW (hereafter CBoW) and Continuous Skip-Gram (hereafter Skip-Gram). The Skip-Gram

model takes a target word as input and aims to predict the surrounding words within a specified

window. The CBoW model takes a window of surrounding words as input and aims to predict

the target word. In both architectures, a softmax activation function is utilized in the output

layer. The softmax activation function is used to produce a probability distribution over the

vocabulary. It assigns higher probabilities to words that are more likely to appear in the context

words for a Skip-gram model or as the target word for a CBoW model.

For both Skip-gram and CBoW models, the output of the network is not of interest as

the word embeddings are learned in the projection layer (hidden layer). The desired word

embeddings are represented by the weights of the hidden layer. Mikolov (2013) stated that when

provided with a substantial amount of training data, both implementations exhibit comparable

performance in achieving their prediction objectives. However, when less data is available, Skip-

Gram performs better and gives a good representation of rare words. CBoW, on the other hand,

trains faster. Both architectures ignore the word order which accelerates the training process

(Mikolov, Chen, Corrado, & Dean, 2013).

2.1.3 GLOVE

Pennington, Socher, and Manning (2014) introduced an embedding model called Global Vector

(hereafter GLOVE). GLOVE incorporates word co-occurrences to obtain word vectors. It is a

model that learns the relationship of words by investigating how often words appear close to

each other in the given corpus. The objective of GLOVE is to learn word embeddings that

minimize the difference between the dot product of the two word vectors and the logarithm of

their co-occurrence probability. To achieve this, GloVe defines an objective function that equals
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the sum of the squared errors between the dot product of word embeddings and the logarithm

of the co-occurrence counts. The objective function can be found in Equation 2.

J =

V∑
i,j=1

f(Xi,j)(w
T
i w̃j + bi + b̃j − log(Xi,j))

2 (2)

In Equation 2, X denotes the word co-occurrence matrix, that represents the frequency of word

co-occurrences within a defined context window. Xi,j represents the number of times word Wj

occurs in the context of word Wi. The vector wi represents the word embedding in the word

space for word Wi and w̃j is the word embedding in the context space for word Wj . Additionally,

bi denotes the bias term in the word space associated with word Wi, and b̃j stands for the bias

term in the context space associated with word Wj .

The function f(·) is a weighting function typically used to reduce the influence of highly

frequent word pairs. The term log(Xi,j) ensures that the model captures the logarithmic rela-

tionship between the word co-occurrences and the inner products of the vectors.

During training the objective function is minimized using an iterative optimization algo-

rithm to learn the word vectors, as well as the bias terms. By construction, both GLOVE

and Word2Vec models are unable to produce embeddings for out-of-vocabulary words. These

out-of-vocabulary words are words that the models have not encountered during training and,

therefore, do not have any numerical representation.

2.1.4 FastText

The FastText algorithm, developed by Facebook, is designed to overcome this limitation of not

being able to produce embeddings for out-of-vocabulary words. Unlike Word2Vec and GLOVE,

which consider words as indivisible, FastText breaks down each word into all possible character

N-grams before learning their representations.

A character N-gram is a sequence of N characters. For example, the word ”book” can

be broken down into the character 2-grams: ”bo”, ”oo”, and ”ok”. The word itself is also

included in the set of its N-grams, to learn a representation for each word. The architecture

of this algorithm is similar to that of Word2Vec’s CBoW or Skip-gram. FastText predicts the

probability of a target word given its context, or vice versa, taking into account both word and

sub-word information. To obtain a word-embedding out of the set of N-gram embeddings, the

vectors are summed.

Fasttext represents words as a set of character N-grams in order to produce vector representa-

tions for both words that are and are not encountered during training. By utilizing subword-level

9



embeddings, the algorithm can provide representations that capture the meaning and context of

words not present in the corpus (Bojanowski, Grave, Joulin, & Mikolov, 2017). For example, we

consider the words ”playing” and ”player”. These words have the same root, ”play,” but have

different grammatical forms. Even if ”playing” is encountered in the corpus while ”player” is

not, there would still be a meaningful embedding for ”player” due to the presence of ”playing”.

Breaking down these words into character N-grams allows the embeddings to incorporate the

common root ”play,” enabling them to establish a connection between ”playing” and ”player”

despite their differing grammatical roles.

2.1.5 Document Representations

Word2Vec, GLOVE and Fasttext generate vectors for individual words. To derive a document

embedding—a numerical representation capturing the semantic and contextual information of

an entire document—from these word vectors, several methods have been suggested.

Schmidt (2019), for example, described a method that uses the TF-IDF measure in a weight-

ing technique to improve upon the simple weighted sum of word vectors to obtain a dense vector

for a document.

Le and Mikolov (2014) extended the Word2Vec model to also embed documents, this is

referred to as Doc2Vec. Doc2Vec is a neural network-based model for generating document

embeddings. The resulting vector is trained to capture the overall semantics of the document.

Similar to Word2Vec, two different neural model architectures are part of the Doc2Vec frame-

work, specifically the distributed bag-of-words model (hereafter DBOW) and the distributed

memory model (hereafter DM). DBOW is a simpler model and can be compared to Word2Vec’s

Skip-gram implementation. In this approach, the focus lies on the document as a whole, the

word order and the context words are disregarded. The document vectors are used to predict

randomly sampled words from the document. DM works in a comparable way to CBoW, as DM

aims to predict a target word given its context. However, in the DM framework, the document

is seen as an additional input. The document vector is concatenated with the word vectors of

the context words. This combined representation is then used to predict the target word.

Compared to BoW representations, Le and Mikolov (2014) found significant improvement in

performance when using the Doc2Vec algorithm in information retrieval and sentiment analysis

tasks. This suggests that Doc2Vec can be useful to capture the semantics of the input text.

According to Le and Mikolov (2014), a combination of DM and DBOW is recommended due

to its consistency across different tasks. However, DM performed better in capturing document

semantics and context. Lau and Baldwin (2016) had contradictory results. They evaluated
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Doc2Vec in two task settings. The first task is duplicate question detection in a web forum

and the second task is predicting the similarity of a pair of sentences. Lau and Baldwin (2016)

concluded that for both tasks, based on performance, DBOW is superior to DM.

2.1.6 Cross-Lingual Feature Representation

Words in a corpus may be from different languages. Thus, a feature generation method that

incorporates a multi-lingual solution can be beneficial. Feature generation is the process of

creating new input variables (features) from existing data. The goal is to create variables that

better capture underlying patterns in the data. It can involve transforming existing variables,

gathering new variables, or even creating new variables based on domain knowledge.

Van der Goot, Ljubešić, Matroos, Nissim, and Plank (2018) developed a feature generation

method, called bleaching text. In this method, tokens in a text are transformed into abstract

features using the token frequency, punctuation usage, vowel structure, shape, casing and length.

The goal of the paper was to test whether abstract features perform well and are not restricted

by the limitations of any single language but instead function effectively across a variety of

languages. In order to do so, Van der Goot et al. (2018) designed experiments for predicting the

gender of an author. In these experiments the abstract features are compared with features based

on words and N-grams present in a given text, for both in- and cross-language. The experiments

provide evidence that the abstract features enable models to function well when dealing with

different languages. The abstract features ensure that a model is not restricted to understanding

only one language. Instead, it has the ability to understand the shared underlying structures and

meanings across different languages. In a uni-lingual case, features based on words and N-grams

present in a given text perform the best. In a multi-lingual setting, this approach decreases in

accuracy. The bleaching text model performs well in a multi-lingual setting and can identify

certain hidden user characteristics by analyzing patterns in the data.

Van der Goot et al. (2018) compared the bleaching text approach with a model that uses

multilingual embeddings developed by Plank (2017). Plank (2017) used the bilingual word

embedding approach of Smith, Turban, Hamblin, and Hammerla (2017) and extended it to a

multi-lingual setting, where words from multiple languages are mapped into a shared vector

space. Van der Goot et al. (2018) showed that their solution is comparable to the multi-lingual

word embeddings by Plank (2017).
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2.1.7 BERT

The previously discussed embedding techniques are static, meaning that for each word or se-

quence of words only one vector exists. Alternatives that incorporate the fact that words can

have multiple meanings are called bidirectional transformer encoders and lie at the basis of the

BERT model developed by Google (Devlin, Chang, Lee, & Toutanova, 2018) or its modified

document variant DocBERT (Adhikari, Ram, Tang, & Lin, 2019).

BERT, short for Bidirectional Encoder Representations from Transformers, relies on the

Transformer architecture, a neural network architecture with multiple layers introduced by

Vaswani et al. (2017). The Transformer consists of an encoder and a decoder. For BERT

only the encoder is of importance. The encoder processes the input, such as a sentence, and

converts it into a sequence of hidden representations. Each position in the input sequence is pro-

cessed independently, allowing the model to capture contextual information. The Transformer

utilizes a self-attention mechanism to evaluate the importance of words in a sentence during

processing.

As opposed to language models that process text from right-to-left, or vice versa, BERT

uses a bidirectional approach, which means that it processes the entire sequence of words at

once. BERT is trained on two training objectives simultaneously, namely masked language

modelling and next sentence prediction. In masked language modelling, words in the given text

are randomly masked. Then, based on the context, the model learns to predict the original value

of the masked word. In the next sentence prediction training process, the model receives pairs of

sentences and learns to predict whether the second sentence follows the first sentence in the given

text. BERT is typically trained on large amounts of unlabeled text to learn contextualized word

embeddings. Hereafter, the trained BERT model can be adapted to perform well on a specific

task like named entity recognition or text classification.

In order to obtain a document embedding using BERT, a document is first tokenized using

BERT’s tokenizer. Special tokens, denoted as [CLS] (for classification) and [SEP] (for separa-

tion), are then added to mark the beginning and end of the document, respectively. The tokens

serve as an input for the BERT model. Each transformer layer processes the input sequences

and produces hidden representations for each token. The representation of the start [CLS] token

from the final transformer layer is trained to capture the overall meaning and context of the

input sequence.
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2.2 Semi-Supervised Learning

Two main practices have been discussed in the machine learning literature, specifically, su-

pervised and unsupervised learning. In supervised learning, labeled data are present. The

supervised learning methods attempt to generate a function with the labeled data, that can

successfully determine the label of unseen data. For unsupervised learning, the label is un-

known. Unsupervised learning methods map the data based on underlying patterns. In the

case of a classification problem with scarce labelled data and lots of unlabelled data, creating a

reliable supervised classifier can be challenging. In this case semi-supervised learning might be

the solution.

Semi-supervised learning aims to combine both supervised learning and unsupervised learn-

ing. Labeling data can be time consuming, expensive or not even feasible due to the amount

of data that are needed and/or available to produce an accurate classification algorithm. Semi-

supervised learning takes advantage of all available data and attempts to construct a learner that

outperforms learners that only make use of the labeled data. This is possible if the unlabelled

data contain patterns or useful information for the predicting the label of an observation that

is not available within the labelled data.

Van Engelen and Hoos (2020) present an overview of semi-supervised learning methods.

The focus of the overview mainly lies on semi-supervised classification. In the paper more

recent advances as well as earlier work are discussed. In our research, we make use of the

wrapper methods as described by Van Engelen and Hoos (2020). In particular, Self-training

and Co-training are implemented. Wrapper Methods are intuitive, straightforward and easy

to implement. Furthermore, wrapper methods can be applied to any classification algorithm

that can be trained on labeled data. This allows for direct comparison of performance with

the supervised counterpart since the same classification algorithm can be used for both semi-

supervised and supervised classification.

2.2.1 Wrapper Methods

Wrapper methods use one or more supervised classification algorithms in their process. This

process involves two iterative steps: training and pseudo-labelling. First, labeled data are used

to train the supervised classifiers. These classifiers are then used to predict the labels of the

unlabeled data. The instances with the highest confidence scores are then labeled and added to

the training set, this is called pseudo-labelling. The process is repeated until a satisfactory level

of performance or a certain condition is achieved.

Self-training is the most simple approach among the wrapper methods, it only makes use of
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one supervised classifier (Triguero et al., 2017). Self-training was first used by Yarowsky (1995)

in order to predict the meaning of a word based on its context. Design decisions for this method

include the stopping criteria, the re-use of pseudo-labelled data and the selection of observations

to be pseudo-labeled. The probabilistic predictions play an important role in the selection of ob-

servations to be pseudo-labeled. If the supervised classifier produces well-calibrated predictions,

the approach is iterative and similar to the expectation-maximization algorithm (Dempster,

Laird, & Rubin, 1977). Well-calibrated predictions refer to the situation where the predicted

probabilities produced by a machine learning model match the true probabilities of the events

being predicted. In other words, if the model predicts a probability of 0.8 for a certain event,

then that event should occur approximately 80% of the time. When well-calibrated predictions

are not available, for example when tree based algorithms are used, adaptions must be made in

order to be able to use Self-training (Provost & Domingos, 2003).

Co-training is another approach among the wrapper methods in which two or more classifiers

are trained that iteratively refine each other’s predictions on the unlabeled data. The classifiers

are iteratively trained. During each iteration, the most confident pseudo-labeled data generated

by one classifier are added to the labeled dataset of the other classifier. The class predictions

generated by the classifiers should demonstrate minimal correlation for a successful Co-training

implementation. If the predictions are strongly correlated, then the potential that a classifier

provides the other classifier with useful information is limited (Wang & Zhou, 2010).

Multi-view Co-training addresses this problem by exploiting the idea of training two classifier

on two distinct feature sets. After each training step, the most confident predictions produced

with the classifiers trained on each feature set are added to the labelled data for the classifier

with the other feature set. This algorithm was first proposed by Blum and Mitchell (1998) and

is applied in various fields, with particular emphasis on the field of computer science that fo-

cuses on enabling computers to process human language, known as Natural Language Processing

(hereafter NLP) (Van Engelen & Hoos, 2020). Blum and Mitchell (1998) applied the multi-view

Co-training algorithm to classify university web pages. They used the web page text and the

text in the links to the web page from external sources to produce two distinct feature sets.

Co-training can be successfully implemented even when there is no apparent split in the

feature set. In single-view Co-training, each classifier is trained on a different subset of features

extracted from the same feature set, compared to multi-view Co-training where each classifier

is trained on a different set of features that provides a different perspective of the data. Other

single-view Co-training approaches focus on different ways to introduce diversity, such as using

different classification algorithms or using different hyperparameters.
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2.3 Machine Learning Techniques used in Invoice Processing

During invoice processing, machine learning algorithms have been applied in order to automate

repetitive tasks. One such task involves the extraction of structured information from invoices.

Early approaches make use of document formats and positions to extract fields. The template

of an invoice is either matched with previously processed templates (Schuster et al., 2013) or

grouped based on similar properties (Hamza, Beläıd, Beläıd, & Chaudhuri, 2008; Esser, Schus-

ter, Muthmann, & Schill, 2014). The desired information is then extracted using the matched

observed field formats or rules. This extracted information is reliable when the documents are

matched with the correct class or cluster, and thus the fields are extracted with the correct ob-

served field formats and rules, but become unreliable when they are applied to unseen structures.

Further, the number of groups and classes grows over time due to new vendors or appended for-

mats and, therefore, this process is challenging to maintain. Format based methods, however,

have the advantage of recognizing multiple fields all at once.

In order to achieve the advantage of detecting multiple invoice parts but being able to

produce a method that generalises to unseen formats and that eliminates the idea of invoice

classes, Aslan, Karakaya, Unver, and Akgül (2016) proposed a method for parsing invoices. The

goal of this method is to identify and extract different parts of an invoice, such as line items,

totals, and other relevant information. The method consists of two phases. The first phase

employs various methods such as Support Vector Machines to generate candidate regions for

the different type of invoice parts. In the next phase the detected candidate regions are utilized

to determine the final positions. This last phase makes use of an optimization framework that

allows for considering the interdependencies between the invoice parts and their relationship to

the invoice as a whole.

Palm, Winther, and Laws (2017) developed a system called CloudScan that also has the

capability to generalize to unseen invoice layouts. CloudScan utilizes a bidirectional long short-

term memory network, a Recurrent Neural Network that effectively captures dependencies in

sequential data from both past and future contexts. This model is trained on features derived

from N-grams, along with labels provided by end-users. CloudScan focuses on extracting 8 fields

typically found on invoices. The system is benchmarked against a Logistic Regression model.

The models produced for unseen invoice layouts a F1-score of 84% and 79%, respectively.

Named Enitity Recognition (hereafter NER) is a NLP task that involves locating and clas-

sifying specific named entities in a text. The goal of CloudScan, extracting key information,

is very similar to performing NER. For that reason BERT for NER can be employed as well.

Zhao, Niu, Wu, and Wang (2019) stated that applying BERT instead of the bi-directional long
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short-term memory network applied in CloudScan can achieve better results due to its superior

performance. The latter model struggles to capture the relationship between distant words.

Both models encounter difficulties in handling the variability of aligned text resulting from dif-

ferent invoice layouts. Zhao et al. (2019) proposed the Convolutional Universal Text Information

Extractor (CUTIE ), with the aim of incorporating spatial information into the key information

extraction process to tackle the problem. CUTIE utilizes a Convolutional Neural Network that

includes a word embedding layer to process text arranged in a grid structure. The grid contain-

ing invoice text is constructed using a grid positional mapping that takes the spatial relationship

of the text into account. The word embedding layer effectively captures semantic information

from the gridded text, allowing CUTIE to leverage both semantic and spatial information.

Other methods designed to extract key information incorporate characteristics of the specific

fields. The OCRMiner developed by Ha and Horák (2022) incorporates, besides NER and other

logical rules, key phrases. An example key phrase in the process of extracting the field invoice

date is ”invoice date:”. This key phrase can be seen as a signal that the desired information

can be found in the neighborhood content. This is combined with the use of the datatype

of the desired field to extract the correct value. The choice of key words can, nevertheless,

vary a lot. Liu, Zhang, and Wan (2016) used bags of potential features, that are constructed

to capture properties for the 8 fields of interest to avoid the use of keywords. These are then

weighted using Logistic Regression, Näıve Bayes and Support Vector Machine in order to classify

every word group. Support Vector Machine produced the best result. Majumder et al. (2020)

did not use key words either. They generated extraction candidates with the use of the data

type of the target field. Then, the neighboring words of these candidates are used in a neural

network system to score the candidates. The above mentioned models are, however, not models

specifically designed for one of the target fields and are thus applicable for multiple entities

present on invoices.

The previously mentioned research focuses on extracting multiple fields using either a single

method or a method designed to generalize across multiple fields. However, research targeting

the extraction of specific fields, such as payment terms, remain scarce. Topics that are closely

related to payment term recognition, are the prediction of the moment of payment for an invoice

and late payment predictions. Appel et al. (2019) compared the results of a Logistic Regression,

Näıve Bayes, K-Nearest Neighbors, Random Forest and Gradient Boosted Decision Trees in a

binary supervised classification problem and developed a predictive invoices label system based

on an ensemble approach using Random Forest and Gradient Boosting. They attempted to

predict whether an invoice will be paid on time or late and used features including total invoices
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late, average days late and standard deviation invoices late, in which they considered an invoice

late when the payment occurred 5 days or more after the due date. The mentioned features as

well as the classification problem itself, are dependent on the due date and thus the payment

term. They achieved significant results with an accuracy up to 77%.

In the field of invoice processing, research has focused on various topics such as anomaly

detection, invoice classification, invoice recognition, and predicting accounting journal entries.

Anomaly detection, which involves identifying abnormal behaviors like sudden invoice ar-

rivals or invoices received at unusual times, presents challenges for manual detection. Tang

et al. (2020) employed a machine learning-based technique to develop an anomaly detection

method, achieving an accuracy exceeding 98%.

Invoice classification is another area of interest. Tarawneh, Hassanat, Chetverikov, Lendak,

and Verma (2019) compared algorithms like K-Nearest Neighbors, Näıve Bayes, and Random

Forest in categorizing invoices into types like handwritten, machine-printed and receipts, achiev-

ing an overall accuracy of 98.4% using K-nearest neighbors. Another study by Jadli and Hain

(2020) compared combinations of pre-trained neural network’s, dimension reduction techniques

and classifiers, in a comparable task, and achieved a classification rate of 96.1% by using a full

feature set and combining a Logistic Regression with a model that is called the VGG119 model.

Invoice recognition refers to the process of automatically identifying an invoice within a set

of documents. Ha (2017) used several supervised machine learning models, to detect the first

page of an invoice from a set of documents. For this task the Logistic Regression scored best

with an accuracy and F1-score of 95%. In a study by Bouguelia, Beläıd, and Beläıd (2013)

different types of financial documents, including invoices, were classified. They extended their

efficient active learning method Adaptive incremental neural gas (AING) to A2ING in order

to process both labeled and unlabeled data. A2ING is a stream-based active learning method,

that is, an algorithm that updates the model incrementally with every document that becomes

available from the stream. The algorithm chooses which documents are important to label by

an human annotator, based on the learning results of each document it queries the class.

Predicting details of an accounting journal entry is done by, among others, Bengtsson and

Jansson (2015). They tried to predict account codes with the use of classification algorithms

such as Support Vector Machines with stochastic gradient descent and a Feed-Forward Neural

Network. No significant improvement compared to a rule-based deterministic approach was

achieved, which is possibly due to the heavy reliance on inconsistent labels in the classification

algorithms. Therefore, they suggested the use of unsupervised or semi-supervised learning, and

in particular the use of clustering. Similar to the case of Bengtsson and Jansson (2015), there
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might be some inconsistent classes present in our research, due to manual labelling. This needs

to be taken into consideration.

3 Data

In this study, we consider both labeled and unlabeled financial document pages processed by the

Blue10 software. Financial document pages belonging to 10 customers of Blue10 are retrieved

and a random selection of financial document pages are manually assigned a class label based

on their payment term. In total this is 16077 labeled financial document pages and 3500660

unlabeled financial document pages. The primary objective behind labeling a random selection

of financial document pages from 10 different customers was to investigate pages with diverse

layouts. This diversity arises because each vendor typically adheres to its unique document

format, including the presentation of payment terms whenever they are provided. In the context

of machine learning models, it is crucial to include a diverse range of pages in the training data.

This ensures that the model can effectively learn from a multitude of formats, thereby avoiding

any potential bias towards specific page layouts.

An example invoice page can be found in Appendix Figure 7. Invoice text is considered

semi-structured data because invoices typically contain certain structured elements, such as

predefined fields like invoice number and date. However, the main content, including product

descriptions and customer notes, lacks a predefined format. Additionally, the content within

invoices is typically not presented as a single continuous flowing text. Most invoices contain

the same basic structure and information like vendor name, invoice date and total amount due.

However, the specific placement and values of each field may vary across different invoices.

Humans can easily identify relevant information in an invoice, such as the payment term and

invoice date. The payment term of the invoice in Appendix Figure 7 is 30 days and the invoice

date is 1-3-2022. Automating this process with the use of machine learning algorithms requires

the extraction of numerical features.

The main source of information for the task of classifying the payment term of an invoice

is the text data present in the invoice itself, the raw text data. Optical Character Recognition

(hereafter OCR), can be used to convert an image or scanned document into a text document.

The OCR-extraction is done by renowned Google services.

3.1 Classes

The payment term of a financial document page is not provided, necessitating manual labeling

based on information in the invoice text before any (semi-)supervised machine learning algorithm
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can be applied. Manual labeling involves selecting the string of text that corresponds to the

payment term information and converting it into a standardized format. For instance, an invoice

that includes the text ”We kindly ask you to succeed the payment within 7 days” and another

invoice with ”invoice date: 2 February 2023” and ”due date: 9 February 2023” can both be

labeled with a payment term of 7 days. In cases where no payment term information can be

extracted from the text, the label ”Other” is assigned. The remaining pages that are labeled

with ”Other” are pages that represent: payment reminders with no new payment due date,

credit notes, an invoice where the payment is settled via direct debit, packing slips, an invoice

where the payment is settled upfront, a financial document where multiple terms are included

and invoices where payment is to be settled using either credit invoices from the vendor or one’s

own previously sent invoices to them.

The pages are labeled with their payment term, representing a number of days. The distri-

bution of pages across these classes can be observed in Table 1. In reality, a payment term, and

therefore a class, could span any number of days. However, within our labeled dataset, there are

65 distinct classes where the financial document pages can belong to. The largest class (”Other”)

comprises roughly 56% of all pages. The class imbalance is given explicit consideration during

the evaluation process.

Table 1: Payment Term Classes

Class Amount of pages (%) Class Amount of pages (%)

Other 55.53% 22 days 0.03%

30 days 21.93% 62 days 0.03%

14 days 9.67% 32 days 0.03%

21 days 2.69% 42 days 0.03%

45 days 1.55% 25 days 0.02%

7 days 1.34% 35 days 0.02%

8 days 1.20% 11 days 0.02%

60 days 1.16% 90 days 0.02%

15 days 1.07% 19 days 0.02%

28 days 0.76% 24 days 0.02%

10 days 0.74% 92 days 0.02%

5 days 0.26% 26 days 0.02%

31 days 0.21% 34 days 0.01%

20 days 0.17% 33 days 0.01%

56 days 0.14% 120 days 0.01%

61 days 0.12% 39 days 0.01%

3 days 0.11% 50 days 0.01%

2 days 0.09% 36 days 0.01%

40 days 0.09% 71 days 0.01%

17 days 0.09% 84 days 0.01%

18 days 0.08% 66 days 0.01%

1 days 0.08% 65 days 0.01%

16 days 0.07% 53 days 0.01%

12 days 0.07% 74 days 0.01%

4 days 0.06% 86 days 0.01%

29 days 0.06% 64 days 0.01%

46 days 0.04% 41 days 0.01%

27 days 0.04% 59 days 0.01%

6 days 0.04% 43 days 0.01%

9 days 0.04% 23 days 0.01%

13 days 0.04% 140 days 0.01%

44 days 0.01%
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4 Methodology

This section provides an overview of all the methods used to convert the raw document text

into numerical representations, to classify the payment term of a financial document page and

to evaluate the performance of the developed methods.

4.1 Text to Features

Each document page is passed through an OCR system, which extracts text tokens and their

positions. Problems such as nonsensical combinations of words or pieces of text due to different

document formats and misinterpreting characters due to poorly scanned documents can arise

and add noise. However, there have been no attempts to identify or rectify these errors. The

expectation is that these errors do not significantly impact the overall analysis of the invoice

text, and specifically, these errors are not expected to influence a payment term classification

model.

Before the textual document data are converted into numerical input data, the data are

pre-processed. The text is converted to lowercase and punctuation removal is performed. Addi-

tionally, any user-specific information such as email addresses, URLs, addresses, and numerical

sequences representing phone numbers or coordinates are replaced with entity-specific tokens,

such as ”ADD” for addresses, to ensure anonymity. An overview regarding the categories of text

replaced and the technique employed can be found in Appendix Section 7.3.4. The replacement

of user-specific information with tokens helps reduce the variability of tokens.

Hereafter, the invoice text is divided into tokens in a consistent and task specific way, this is

called tokenization. Tokenization is implemented using NLTK’s word tokenize (Loper & Bird,

2002).

Next, stop words are removed. Words that occur more frequently and which are not signifi-

cant in terms of content are called stop words. Each language has its own stop words. English

stop words, for example, may include the words ”the”, ”unless” and ”each”. Removing these

stop words from the words of the corpus reduces the input dimension and, therefore, improves

scalability without losing information. Several lists of stop words are available on the internet,

ranging from uni-lingual to multi-lingual lists. This research makes use of the list of stop words

included in the pip package called NLTK (Loper & Bird, 2002). This list contains words from

languages as Dutch and English, which are the most common languages in the given corpus. If

the corpus still contains task-irrelevant words that appear frequently but do not carry signifi-

cant information relevant to classifying the payment term of the page, these custom stop words

are also removed. The removal of stop words reduces token frequency and noise in the data,
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potentially improving the accuracy of downstream tasks.

Last, we replace rare tokens with a special token represented as ”<UNK>”, where the term

”UNK” is an abbreviation for unknown. This step is valuable in handling large corpora, as they

tend to include a multitude of unique tokens. Tokens that appear infrequently in the corpus,

falling below a predefined frequency threshold, are all mapped to the ”<UNK>” token. This

practice not only helps to preserve minimal information about uncommon tokens but also enables

a future model to deal with out-of-vocabulary tokens when documents outside the current corpus

are presented. To establish the threshold for identifying these rare tokens, we turn to Zipf’s law.

Zipf’s law follows a power-law distribution, that is a statistical distribution that describes data

where a small number of items occur frequently, while the majority of items occur infrequently.

Zipf’s law can describe the distribution of word frequencies in natural language, suggesting that

a small number of words are extremely common, while the majority are rare (Manning, 2009).

When token frequencies against their ranks are plotted on a log-log scale, we should observe a

roughly straight line that starts at the top left corner of the plot and gradually slopes downward

as rank increases. The closer the slope is to -1, the more closely it adheres to Zipf’s law. At the

beginning of the plot, you often see a steep drop, representing the most common tokens. As you

move to the right along the x-axis, the line should flatten out, indicating that token frequencies

decrease less rapidly. This long tail represents rare and infrequent tokens. The point where the

line starts to deviate from a straight line signifies the transition from common to rare tokens.

This is the point where we set the threshold. Figure 1, created by Zhang (2008), illustrates the

distribution of word frequencies on a log-log scale for the words found in the novel ”Ulysses”

by James Joyce. The blue points on the plot represent empirical data, providing an illustration

of a possible distribution. Utilizing linear regression on the log-log plot, a straight line with a

slope of -1.03 can be derived. Therefore, the distribution closely adheres to Zipf’s law.

Figure 1: The distribution of word frequencies on a log-log scale in the novel “Ulysses”
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In the remainder of this section, all methods that are used to convert the pre-processed textual

data into feasible feature sets are described. An overview of the produced feature sets can be

found in Appendix Section 7.3.3

4.1.1 BoW

The BoW representations are confined to unigrams and bigrams at the word level, where un-

igrams represent single words and bigrams represent sequences of two adjacent words. Lists

of all the unique unigrams and bigrams present in the corpus are generated. As the sequence

of adjacent words grows larger, the lists expand, demanding more computational and memory

resources for processing. However, employing larger sequences of adjacent words can enhance

text comprehension by capturing richer contextual information and word relationships.

The generated lists are used to create separate Document-Term matrices for unigrams and

bigrams. These matrices serve as Bag-of-Words representations with TF-IDF weighting, where

each unigram or bigram in every document is assigned a feature value based on its TF-IDF score.

These resulting Document-Term matrices are then utilized as input datasets for the machine

learning algorithms.

TF-IDF

TFij =
fij

maxk fkj
(3)

IDFi = log2
N

ni
(4)

TF - IDFij = TFij × IDFi (5)

The formula used for TF-IDF weighting can be found in Equation 5. In this formula the term

frequency, as defined in Equation 3, is multiplied with the inverse file frequency, defined in

Equation 4. In the equations, N equals the number of documents in the corpus, fij is the

frequency of token i in document j and ni equals the number of documents in which token

i appears. The token i with the highest TF-IDF value characterizes document j the best

(Leskovec, Rajaraman, & Ullman, 2020).

SVD The dimensions of the produced Document-Term matrices are high, especially when a

large sequence of tokens is used to produce features. To illustrate, the column dimension of

a Document-Term matrix created with bigrams is typically higher than the column dimension

of a Document-Term matrix created with unigrams. With unigrams, each word in the text is

considered as a distinct feature. However, with bigrams, each feature represents a combination
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of two consecutive words. The SVD of a matrix can be used to derive an approximation of the

the original Document-Term matrix with a significantly lower dimensionality.

Dimension reduction is performed with Scikit-Learn’s TruncatedSVD (Pedregosa et al., 2011).

TruncatedSVD implements a truncated randomized SVD, aiming to approximate a matrix by

retaining only the top k singular values and their corresponding singular vectors.

In this implementation U , Σ and V T are approximated with the use of the randomized

algorithm developed by Halko, Martinsson, and Tropp (2010). Here, the original matrix is

multiplied by a random Gaussian orthonormal matrix to obtain a smaller matrix. The random

matrix, often referred to as a random projection, has entries that are drawn from a Gaussian

distribution and which are then orthogonalized to form an orthonormal matrix. The dimensions

of this matrix are m× k, where m is the number of columns in the original matrix, and k is the

desired number of singular values to be retained.

The obtained matrix, produced by the multiplication, preserves the essential properties of

the original matrix while reducing its size. Then, the standard SVD algorithm is applied to

this matrix to compute an approximation of the SVD. This implementation is well-suited for

large matrices, as randomized techniques, such as the one applied here, generally demand fewer

computational and memory resources compared to standard SVD implementations.

The resulting decomposition, provides a reduced-rank approximation of the original matrix,

which can then be used to reduce the dimensions of the original matrix. In the TruncatedSVD

implementation, A∗ = AV is applied to obtain a new matrix A∗ in a lower dimensionality.

Applying this variant of SVD to a TF-IDF weighted Document-Term matrix is known as latent

semantic analysis.

The value of k is determined by the explained variance ratio, this is the summed variance

of the columns after the transformation divided by the summed variance of the columns before

the transformation. In this research, we aim to retain at least 90% of the original variability.

Therefore, a threshold of at least 90% for the explained variance ratio is chosen. This ensures

that a substantial portion of the original information is retained in the truncated representation.

Memory issues may arise when dealing with large Document-Term matrices or when the

SVD computations and results become excessively large. To address this, we employ a strategy

of computing the SVD on a subset of observations from the complete matrix. This subset is

generated by randomly selecting a number n∗ of observations, where n∗ is smaller than the total

number of observations, and is determined to be as large as possible while avoiding memory

issues. The TruncatedSVD implementation is then applied to this subset.

However, in scenarios where the column dimension of the matrix is sufficiently large that
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even the subset, designed to avoid memory issues, consists of only a few observations (less

than 10,000), producing a good approximation of the whole document-term matrix becomes

challenging. In such cases, we resort to an alternative solution. Initially, we employ the Vari-

anceThreshold by Scikit-Learn (Pedregosa et al., 2011). This method identifies and eliminates

columns with low variance, thereby filtering out those that show minimal variation across docu-

ments, and are therefore less likely to offer meaningful information for machine learning models.

The threshold is set using the elbow point in the plot of all sorted column variances. The elbow

point is a common heuristic in mathematical optimization to choose a point where diminish-

ing returns are no longer worth the additional cost. Figure 2 provides a visualization of the

elbow point. Subsequently, a substantial subset is extracted to approximate the SVD, similar to

the previous approach. This strategy helps manage the computational and memory challenges

associated with large-scale matrix operations.

Figure 2: Elbow Point

4.1.2 Document Representations

Skip-gram and FastText models are utilized to convert words into numerical vectors, with im-

plementation facilitated through the Gensim library, an open-source Python library for NLP

(Rehurek & Sojka, 2011). Hyperparameters, such as the dimension of the word vector, maxi-

mum distance between words in a sentence to be considered, and the minimum word count are

fine-tuned through a grid search. The grid includes various values to optimize results. Specif-

ically, the dimension of the word vector is chosen from either 100 or 300, and the window size

is set to be either 5 or 15. The minimum word count is fixed at 1. It is important to note that

rare words were addressed during the pre-processing steps.

Although the CBoW and GLOVE models are mentioned in Section 2, they are not imple-

mented. The CBoW model is an alternative to the Skip-Gram model within Word2Vec. The
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GLOVE model can be relatively straightforward to implement by utilizing open-source resources

that provide pre-trained GLOVE embeddings. However, implementing the GLOVE model with-

out relying on pre-trained embeddings can be more complex and time-consuming. Therefore,

other models fine-tuned specifically for the given corpus are preferred.

To derive a document representation from the word embeddings produced by the Skip-gram

and FastText models, the word vectors are multiplied by the corresponding TF-IDF values of

the tokens. These modified vectors are then accumulated and divided by the summed TF-IDF

values. The resulting vector represents the document and serves as its feature representation

(Schmidt, 2019).

Doc2Vec is a model that generates document embeddings that capture the overall semantics

of the document. Doc2Vec is implemented using the Gensim library (Rehurek & Sojka, 2011).

The training algorithm that is used is the distributed memory model. This model aims to predict

a target word given its context and the document is seen as an additional input. This model

requires specific hyperparameters, including the dimension of the document vector, the amount

of times a word must appear in the corpus to be considered and the maximum distance between

the current and predicted word within a sentence. Again, multiple values are tested in order to

achieve the best possible outcome. Specifically, the dimension of the document vector is either

300 or 1000, and the window size is set to either 5 or 15. The minimum count is set to 1. The

resulting vector represents the document and serves as its feature representation. Document

embeddings aim to represent the overall meaning of an entire document. The choice of the

embedding sizes is guided by the complexity of the information we want to capture, resulting in

larger size values for document embeddings compared to those of the word embeddings.

Default values are used for all other hyperparameters. For specific values, please refer to the

documentation of Gensim 1 2 3.

4.1.3 Cross-Lingual Feature Representations

The next text representations that are evaluated, are included in the method developed by

Van der Goot et al. (2018), which is called bleaching text. In this method the text tokens are

converted into abstract features. Then, with these abstract features a BoW representation is

created, similar to the BoW representation created for N-grams. This involves creating a BoW

representation with TF-IDF weighting. In this representation, the TF-IDF score serves as the

feature value for each abstract feature in each document.

1https://radimrehurek.com/gensim/models/doc2vec.html
2https://radimrehurek.com/gensim/models/word2vec.html
3https://radimrehurek.com/gensim/models/fasttext.html
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Six feature sets were created based on the bleaching text variations proposed by Van der

Goot et al. (2018) by using their original code 4. The feature sets for the bleached data variations

were created based on length, punctuation usage, capital casing, and vowel/consonant-structure.

Examples illustrating how text tokens are converted to abstract features in each variation are

given for the six variations in Table 2. The leftmost column refers to the name of the resulting

feature set. The column header includes examples of original tokens.

The sixth representation is a combination of all methods described in Table 2, the token a

is for example converted to 01 W W L V. This feature set is indicated by Bleach Text ALL.

The authors also proposed a frequency based representation, however, the BoW representation

described in Section 4.1.1 covers the same idea, and therefore, this feature set is not created.

An explanation for each feature generation method resulting in the feature sets, mentioned in

the row headers of Table 2, can be found in Appendix Section 7.3.6.

Table 2: Examples for Converting Text Tokens to Abstract Features

a Erasmus 7 Company123@gmail.com

Bleach Text L Length 01 07 01 020

Bleach Text C Punctuation W W W W@W.W

Bleach Text A Punctuation W W W WPWPW

Bleach Text S Shape L ULL D ULLDDXLLXLL

Bleach Text V Vowel V VCVCCVC O CVCCVCCOOOOCCVVCOCVC

Bleach Text ALL Concatenation of all above 01 W W L V 07 W W ULL VCVCCVC 01 W W D O 020 W@W.W WPWPW ULLDDXLLXLL CVCCVCCOOOOCCVVCOCVC

Just like in the Document-Term matrices for unigrams and bigrams, sparsity and high dimen-

sionality may occur, especially for the feature sets Bleach Text V and Bleach Text ALL. The

dimension reduction techniques as described in Section 4.1.1 are applied on the created BoW

representations that have more columns than labeled observations (labeled rows), in order to

simultaneously reduce the dimension and retain at least 90% of the explained variance.

4.1.4 BERT

Approaches that produce numerical vector representations for sentences or paragraphs using

BERT is to average the BERT output layer or to use the representation of the earlier mentioned

[CLS] token. However, Reimers and Gurevych (2019) showed that this practice often yields

suboptimal results, particularly when these representations are intended for tasks involving

similarity measures. To address this, they developed Sentence-BERT. Sentence-BERT modifies

the BERT network architecture by incorporating Siamese network structures during training.

Siamese networks are designed to learn similarity between pairs of inputs. The architecture

involves two identical BERT models with shared weights. During training, the Siamese network

4Code: https://github.com/bplank/bleaching-text
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takes pairs of input sentences and learns to output similar representations for semantically

similar sentences and dissimilar representations for non-similar sentences. The BERT models

process pairs of sentences independently, but their parameters are updated simultaneously during

training. Once trained, vector representations for input sentences are produced by adding a

pooling operation to the output of BERT, such as the mean of all output vectors or the output

of the [CLS]-token. By training in this manner, Sentence-BERT ensures that sentences with

similar meanings or contexts are closer together in the resulting vector space. This work is the

initial work of the Sentence Transformers framework, a Python framework for sentence, text

and image embeddings.

Distiluse-base-multilingual-cased-v2 is a pretrained Sentence-BERT model available through

the Sentence Transformers library. It operates by mapping paragraphs to a 512-dimensional

dense vector space using mean pooling.

The model follows a teacher-student approach, where a teacher model produces sentence em-

beddings in one language. The student model aims to replicate the teacher’s behavior, ensuring

that comparable text across different languages are positioned closely in the vector space. To

achieve this, the student model is trained on translated sentences, ensuring that the transla-

tion of each sentence is also mapped to the same vector as the original sentence (Reimers &

Gurevych, 2020).

In our case, the teacher is the multilingual Universal Sentence Encoder (Yang et al., 2019).

The student is a DistilBERT-based model, a compact and lighter version of BERT (Sanh, Debut,

Chaumond, & Wolf, 2020).

The distiluse-base-multilingual-cased-v2 model supports over 50 languages including Dutch

and English and does differentiate between uppercase and lowercase letters. To illustrate, it

differentiates between ”dutch” and ”Dutch”. However, during the pre-processing steps, we

converted all text to lowercase, enhancing the flexibility of the embeddings in relation to one

another. The model can be used to encode the financial document pages. The resulting vector

represents the document and serves as its feature representation.

By using a pre-trained language model, it is possible to leverage the knowledge learned from

the large amounts of training data. Training data for the multilingual Universal Sentence En-

coder consists of data from various sources, including question-answer pairs, translated pairs, the

Stanford Natural Language Inference (SNLI) corpus and Google’s translations to the SNLI cor-

pus (Bowman, Angeli, Potts, & Manning, 2015). The distiluse-base-multilingual-cased-v2 model

uses parallel translated datasets from the OPUS website in the training process (Tiedemann &

Thottingal, 2020).
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It is important to note that when the pre-trained model is used, the features may not be

optimized for the specific task at hand. Fine-tuning the model on a specific corpus or task

may lead to better performance as the model can learn to capture the patterns in the data.

Given that the other models are specifically fine-tuned on the given corpus, it can be valuable

to include a pre-trained model such as distiluse-base-multilingual-cased-v2. Although the model

is not specifically designed for large text documents, financial documents can be used as input

text for the model.

4.2 Classifying Payment Term

In this section, the methods employed to generate models for classifying the payment term

of an invoice, utilizing both supervised and semi-supervised learning approaches, are outlined.

Initially, the best-performing combination of a supervised classifier and dataset is identified

based on the F1-score. Subsequently, this combination is integrated into a semi-supervised Self-

training algorithm to explore potential performance enhancement. Additionally, the top two

best-performing combinations of a supervised classifier and dataset are incorporated into a semi-

supervised Co-training algorithm to further investigate potential performance improvement.

4.2.1 Supervised Machine Learning Methods

The first set of models that we consider are supervised classifiers that use labeled data to train

the model. Three supervised learning algorithms are selected.

First, algorithms are chosen based on their performance in similar tasks. K-Nearest Neigh-

bors and Multinomial Logistic Regression are selected for their performance, particularly in

tasks such as invoice classification and the recognition of invoices (Tarawneh et al., 2019; Jadli

& Hain, 2020; Ha, 2017).

Second, Radovanović and Ivanović (2008) stated that the most popular classifiers applied to

text are, among others, K-Nearest Neighbors and Support Vector Machines. Therefore, Support

Vector Classifier is implemented as well.

An overview of the implementation and the hyperparameter values that are taken into ac-

count per algorithm is presented below.

K-Nearest Neighbors K-Nearest Neighbors (hereafter KNN) is a supervised machine learn-

ing algorithm that operates on the principle of similarity, predicting the class of a new data point

by considering the classes of its K nearest neighbors within the training dataset. The algorithm

is non-parametric, meaning that it does not assume any specific distribution of the data. To

identify the K nearest neighbors for a new data point, the algorithm uses a distance metric, such
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as the Euclidean or Manhattan distance. This metric calculates the distances between the new

observation and all observations in the training set. Then, the class of the new observation is

determined through a majority vote among its K nearest observations.

This algorithm is implemented using Scikit-learn’s KNeighborsClassifier (Pedregosa et al.,

2011). One of the most important hyperparameters that needs to be determined is the number

of neighbors (K neighbors). In binary classification, it is advisable to evaluate odd values for K -

neighbors to avoid ties. In multi-class classification, where there are more than two classes, ties

are less likely to occur. If the input data has more noise, a higher value of K would be advisable.

The values considered for K neighbors are: [3, 33, 67, 99]. The weighting function within KNN

assigns varying weights to individual neighbors. In an uniform weighting function, all neighbors

are treated equally. Conversely, in a distance-based weighting function, closer neighbors have

a greater impact on the prediction of the class of the new data point than farther ones. Both

weighting function are examined. For calculating the distance between two data points, the

Euclidean, Manhattan and Cosine distances are considered.

Euclidean Distance d(p, q) =

√√√√ n∑
i=1

(pi − qi)2

The euclidean distance is the straight-line distance between two points. This measure is best

suited for continuous data and performs well when the features are measured on the same scale.

Euclidean distance is sensitive to the scale of the individual features.

Manhattan Distance d(p, q) =
n∑

i=1

|pi − qi|

The manhattan distance is calculated as the sum of the absolute differences between correspond-

ing coordinates of two points. It is suitable for datasets with high dimensionality. Manhattan

distance is less sensitive to outliers compared to the euclidean distance. The euclidean distance

considers the square of differences, which can magnify the effect of outliers

Cosine Distance d(p, q) = 1− p · q
||p||||q||

The cosine distance is calculated as 1 minus the cosine similarity between two vectors. Cosine

similarity equals the cosine of the angle between two vectors. Unlike euclidean and manhattan

distances, cosine distance focuses more on the direction of vectors rather than the scale of

individual feature values, making it a better choice for measuring similarity in embedding spaces.
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For example, in Word2Vec, words with similar meanings have embeddings that are close in the

vector space. Consequently, their cosine similarity, a measure of their directional similarity, will

be higher compared to embeddings of words with dissimilar meanings.

Default values are used for all other hyperparameters. For specific values, please refer to the

documentation of Scikit-Learn’s KNeighborsClassifier5.

Multinomial Logistic Regression Multinomial Logistic regression (hereafter MLR) is de-

signed to calculate the probabilities of an observation belonging to each class. In a classification

problem, MLR assigns the observation to the class with the highest probability.

Let yi ∈ 1, ...,K be the class of observation i. The MLR model predicts the probability

that observation i belongs to class k given the corresponding feature vector Xi (P (yi = k|Xi))

as p̂k(Xi) defined in Equation 7. During the training phase the cost function in Equation 6 is

minimized. In this equation, W corresponds to a matrix of coefficients to be optimized, where

each row vector Wk corresponds to class k. I[yi = k] is the indicator function evaluating to 1 if

yi = k and 0 otherwise. r(W ) is the regularization term which in our case is set to the L2 norm

as shown in Equation 8. The regularization term is an additional component added to the loss

function to prevent overfitting and improve the models generalization performance on unseen

data. The regularization strength is controlled by C. Iterative optimization algorithms, such as

stochastic gradient descent, can be used to minimize the loss function.

min
w

− C
n∑

i=1

K−1∑
K=0

I[yi = k]log(p̂k(Xi)) + r(W ) (6)

p̂k(Xi) =
exp(XiWk +W0,k)∑K−1
l=0 exp(XiWl +W0,l)

(7)

r(W ) = l2 =
1

2
||W ||2F =

1

2

m∑
i=1

K∑
j=1

W 2
i,j (8)

MLR is implemented using Scikit-Learn’s LogisticRegression (Pedregosa et al., 2011). The op-

timization algorithms considered are lbfgs, newton-cg and sag. The parameter that controls

the penalty strength is optimized using values on a logarithmic scale, specifically [0.1 , 1.0,

10.0]. Last, the maximum amount of iterations is set to 1,000. Default values are used for all

other hyperparameters. For specific values, please refer to the documentation of Scikit-Learn’s

LogisticRegression6.

5https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
6https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html
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Support Vector Machine A Support Vector Machine (hereafter SVM) finds an optimal

hyperplane that best separates data points in two different classes in the feature space. In

other words, the hyperplane needs to maximize the distance between classes while minimizing

classification errors. When the data is perfectly separable, the hyperplane is known as the hard

margin. This can be formulated as the following primal optimization problem.

minw
1

2
||w||2

subject to yi(w · xi + b) ≥ 1

i = 1,...,n

In this optimization problem w equals the weight vector which is normal to the hyperplane, xi

is the feature vector of a data point i, yi is the class label and b is the bias term. The problem is

a convex optimization problem that can be solved using optimization algorithms. The decision

function for classifying a new data point with features x is given by f(x) = sign(w ·x+b), where

sign(·) is the function that assigns the class based on the side of the hyperplane the data point

lies.

However, when dealing with data that is not linearly separable or when there are outliers

present, the optimization problem can be modified to allow for wrongly classified data points.

The hyperplane related to this case is known as the soft-margin. A slack variable ζi for each

data point is introduced to relax the constraints of the optimization problem. The slack variable

measure the degree of misclassification. C is the regularization parameter that controls the

trade-off between maximizing the distance between classes and minimizing the sum of the slack

variables. A larger C results in a smaller distance but fewer wrongly classified data points, while

a smaller C allows for a larger distance but may lead to more wrongly classified data points.

The primal optimization problem is now formulated as:

minw,b,ζ
1

2
wTw + C

n∑
i=1

ζi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ζi

ζi ≥ 0, i = 1,...,n

The following dual problem can be used to solve the primal problem more efficiently.

31



maxα
1

2
αTQα− eTα

subject to yTα = 0

0 ≤ αi ≤ C, i = 1, ..., n

In this equation αi are the dual coefficients, and Qi,j = yiyjK(xi, xj). K(xi, xj) = ϕ(xi)
Tϕ(xj) is

the kernel. A kernel function transforms data into higher-dimensional spaces, making it possible

to find a hyperplane capable of separating non-linearly separable data. The output decision

function becomes f(x) = sign(
∑

i∈SV yiαiK(xi, x) + b). This function includes a summation

over all support vectors xi, all data points that lie on or within the distance boundary. These

are the critical points for determining the decision boundary.

This classifier is implemented using Scikit-Learn’s SVC (Pedregosa et al., 2011). The algo-

rithm implements an “one-versus-one” approach for multi-class classification. In this approach,

a classifier is trained for each pair of classes in the dataset. Each point is then classified accord-

ing to a majority vote among the classifiers. The kernels considered are Polynomial, Sigmoid,

Linear or Gaussian RBF. The definitions of these kernel are denoted in Appendix Section 7.4.1.

The regularization parameter C is fine-tuned using values on a logarithmic scale, similar to the

values mentioned for the parameter controlling the penalty strength in the MLR implementa-

tion, [0.1 , 1.0, 10.0]. The maximum amount of iterations is set to 100,000. Default values are

used for all other hyperparameters. For specific values, please refer to the documentation of

Scikit-Learn’s SVC 7.

4.2.2 Semi-Supervised Machine Learning Methods

Our attention now turns to exploring semi-supervised algorithms to determine their potential

for enhancing overall performance in classifying the payment term of a financial document page.

In our approach, we use wrapper methods which belong to a class of models that utilize both

labeled and unlabeled data. The use of wrapper methods allows for direct comparison of per-

formance results with comparable supervised classifiers. Specifically, we implement Self-training

and single-view Co-training due to their simplicity and effectiveness. Both algorithms are im-

plemented without the use of any pre-defined semi-supervised python module. The supervised

classifiers discussed in Section 4.2.1 are used as parameters for the semi-supervised algorithms.

7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.htmlsklearn.svm.SVC
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In our Self-training approach, the best performing supervised classifier is used to make

predictions for the unlabeled data. The predicted observations for which the model is most

certain are assigned pseudo-labels and are added to the labeled data set. This augmented data

set is used to retrain the classifier. Hereafter, predictions are made for the remaining unlabeled

data. This process continues until either a maximum number of initially unlabeled instances

that can be added to the initially labeled data is reached, in our case this number is set to

250000, or until no new observations can be added based on the confidence threshold.

The question remains how to determine for which predicted observations the model is the

most certain. Multinomial Logistic Regression calculates the probabilities of an observation

belonging to each class, providing a measure of certainty regarding class membership. In the

case of Multinomial Logistic Regression as the best performing supervised classifier, a prediction

probability threshold is used to determine which observations to add to the labeled data set in

each iteration. All observations with a prediction probability above the predefined threshold

are pseudo-labeled and added to labeled data set. To explore various levels of certainty, we

consider multiple thresholds, namely [0.999, 0.999999, 0.999999999]. The idea behind selecting

these specific thresholds lies in the trade-off between the confidence level required for pseudo-

labeling and the number of instances added to the pseudo-labeled dataset. Higher thresholds

result in more confident predictions but may lead to fewer instances being pseudo-labeled. The

thresholds are chosen to ensure that not for all thresholds all maximum number of instances are

included in the first iteration, allowing for multiple iterations (1 or more) to be conducted.

Support Vector Machines and K-Nearest Neighbors do not directly provide prediction prob-

abilities. For Support Vector Machines (SVM) probability estimates can be obtained using

Platt-scaling. Platt-scaling requires the decision function (f(·)) of the trained SVM classifier.

Then, the parameters A and B in the following function are optimized.

P (y|X) =
1

(1 + exp(A× f(X) +B)
(9)

Platt scaling involves training a probability model based on the outputs of the SVM using a

cross-entropy loss function. To avoid overfitting, this model implements five-fold cross validation.

K-Nearest Neighbors (KNN) calculates probabilities based on the classes of the K nearest

neighbors. When a new data point needs to be classified, KNN identifies its K nearest neigh-

bors in the training dataset. Once the nearest neighbors are identified, KNN can compute class

probability estimates by considering the classes of these neighbors. In the case where an uni-

form weighting function is applied, each neighbor’s class contributes equally to the probability

estimate. With a distance-based weighting function, the contribution of each neighbor to the
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probability estimate is weighted according to its distance from the new data point.

For SVM and KNN, which are not explicitly designed for probabilistic classification, instead

of using a probability threshold to determine which observations are added to the labeled data

set, the top T observations based on their probability estimates are selected. For the values of

T, we consider [250000, 100000, 50000]. These values are chosen to cause a small amount of

iterations, which is especially convenient for SVM. The probability estimates of SVM can be

computationally expensive due to the one-to-one approach applied in training the classifier and

cross-validation in calculating the probability estimates.

In our single view Co-training implementation, we exploit the difference between the super-

vised classifiers. Initially, the top two supervised classifiers are used to make predictions for

the unlabeled data. We then select the T instances for which the classifiers exhibit the highest

confidence and add them to the labeled data set of the other classifier. Hereafter, the classi-

fiers are trained again using the updated labeled datasets. These retrained classifiers are then

used to predict labels for the remaining unlabeled data specific to each classifier. This process

continues until a maximum number of initially unlabeled instances that can be added to the

initially labeled data is reached, in our case this number is set to 250000. For the values of T

we consider [125000, 50000, 25000].

4.3 Evaluation

A total of 12 different feature sets are used in the three different supervised algorithms, resulting

in a total of 36 supervised models. The performance of the models is evaluated using a train

and test data split. Specifically, 15% of the labeled data is randomly selected for a final test of

the models. This set is an entirely independent dataset and can provide insight into how well

the models generalize to unseen data.

During training, the labeled train data is divided into two datasets: a set used to train the

machine learning models and a validation set. The validation set is used to tune the hyperpa-

rameters and evaluate the performance during training. The validation set consists of 20% of

the train data.

Scikit-Learn’s train test split is used to create splits that maintain the distribution of classes

in each set that closely mirrors the original class distribution in the entire dataset (Pedregosa et

al., 2011). This is particularly useful when dealing with imbalanced data, where some classes are

underrepresented compared to others. It helps to prevent bias and ensures that the performance

metrics accurately reflect a model’s ability to generalize across all classes.

The hyperparameters for the supervised classification algorithms are tuned on the validation
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performance using grid search. A grid is created with all possible combinations of hyperparam-

eter values, then the model performance is evaluated on the validation set for the combinations.

This technique can be computationally expensive, but it is a simple and deterministic approach.

Hereafter, the models using the optimal hyperparameter values are trained on the training data

as well as the validation data and then evaluated with the unseen test data. This procedure

prevents data-leakage, and reduces the chances of low accuracy when the chosen model is de-

ployed.

The best-performing model, consisting of a specific combination of a dataset and an al-

gorithm, is employed in our Self-training approach, while the top two performing supervised

models are utilized in the single view Co-training approach. During each iteration of these semi-

supervised learning algorithms, the validation performance and test performance are assessed.

It’s important to note that the unlabeled data is exclusively employed during the training phase

of the semi-supervised learning algorithms. Therefore, no data split is required for the unlabeled

data.

The metric used for evaluating the models is the F1-Score. The F1-Score is the harmonic

mean between precision and recall. For multi-class classification, we calculate the Precision,

Recall and F1-Score for each class in an one class (in this example class A) versus the others

procedure.

PrecisionA =
TPA

TPA + FPA
(10)

RecallA =
TPA

TPA + FNA
(11)

F1A = 2× PrecisionA ×RecallA
PrecisionA +RecallA

(12)

In an invoice processing workflow, false negatives and false positive are equally costly, since

users are provided with the wrong payment term in both scenarios. Thus, no adjustments with

respect to relative weights for precision and recall are necessary.

Given the large sample size and the presence of numerous classes, the decision was made

not to perform resampling. Resampling, which involves artificially adjusting the distribution of

the dataset, was considered undesired in this context. Preserving the original class distribution

was considered more important, as the class distribution is expected to align with the real-world

distribution the models will encounter.

To address the class imbalance without resorting to resampling, the weighted-average F1-

Score is used. This metric considers the class imbalance by assigning weights to class-based F1-

Scores relative to their actual support. By doing so, the evaluation metric provides a balanced

assessment of the model’s performance across all classes, accounting for the varying number of
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instances in each class.

F1 =
(Observations in class A × F1A) + (Observations in class B × F1B ) + ...

Total observations
(13)

Furthermore, to exclude the contribution of the majority class on the weighted F1-Score, a

weighted F1-Score for the classes without the inclusion of the class ”Other” is calculated.

The accuracy of the experiments is reported as well. However, the data used in this research

is heavily skewed towards the class ”Other”. This has the consequence that the use of the accu-

racy metric is not insightful. When the classification works well for this dominating class, but

performs poorly for the classes that are underrepresented, accuracy may still be high depending

on the class imbalance.

Another metric that can be used in a multi-class classification setting is Cohen’s Kappa (κ).

This metric can show how well the generated model performs compared to random allocation

of the classes. The definition of κ can be found in Equation 14.

κ =
(po − pe)

(1− pe)
(14)

In this equation po represents the accuracy of the generated model. pe, on the other hand,

is the accuracy achieved with random allocation. In this case Cohen’s Kappa captures the

predictive power of the generated model. When κ > 0, the model is said to have predicting

power. Generally, if κ exceeds 0.4 the predictive power is considered good, and beyond 0.7 it is

excellent.

5 Results

All data processing is executed using python 3.10. Appendix Section 7.2 provides a comprehen-

sive list of all libraries included in the project-specific python environment.

5.1 Feature Sets

5.1.1 Pre-Processing

All documents undergo the pre-processing steps outlined in Section 4.1. Converting of the

the text to lowercase, punctuation removal, and anonymization are applied before forming a

train-test split, as they are not directly influenced by the split and contribute to general data

preparation. In contrast, stop word removal and addressing rare words take place after the split.

This sequential approach is crucial because custom stop words must be identified based on the
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train and unlabeled data exclusively. The same principle applies to determining the threshold

for defining a rare word. Custom stop words and the rare word threshold are established using

the train and unlabeled data to prevent any data leakage from the test set, ensuring that the

test data remain new and unseen.

Custom stop words are selected based on the train and unlabeled data, and these identified

words are excluded from each document in the train, test and unlabeled datasets. The stop-

word extraction process, incorporating stop words from both the NLTK package and custom

stop words, results in a reduction of 0.04% of unique words. The list of chosen custom stop-words

can be found in Appendix Section 7.3.2.

Additionally, replacing rare words with the UNK-token ”<UNK>” leads to a further re-

duction of 91.87% of unique words. The threshold for this replacement is determined based

on the plot presented in Figure 3. The word distribution approaches a straight line, indica-

tive of following Zipf’s law. The deviation from this line occurs when the log rank approaches

1,000,000. To manage the vocabulary size and computational complexity, a more flexible thresh-

old is adopted. This decision aims to ensure that an adequate number of words are replaced

with the ”<UNK>” token, causing better model generalization. Additionally, it helps prevent

overfitting to rare words in the training data, which may not generalize well to unseen data.

The threshold is determined by rounding up to the nearest multiple of 10, resulting in our case

to a threshold value of 10. This threshold dictates that all words with a total corpus frequency

below or equal to 10 are replaced with ”<UNK>”. Then, this ”<UNK>” token is handled as

a new unique word. Furthermore, words in the test set that are not found in the corpus are

also treated as unknown, and are similarly represented by the ”<UNK>” token. This approach

allows the models to handle unseen words during prediction. All word statistics based on the

train set can be found in Appendix Section 7.3.1.

(a) Token Distribution (b) Token Distribution After Mapping

Figure 3: Token distributions before and after mapping of rare words
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5.1.2 Bag-of-Words

Due to computational and memory constraints, the Bag-of-Words representations in this re-

search are restricted to word unigrams and bigrams. The unigram train vocabulary includes

614,038 unique words, the bigram train vocabulary includes 32,074,403 unique word-pairs. Uti-

lizing these vocabularies, Document-Term matrices are constructed with the TF-IDF weighting

procedure as described by Schmidt (2019). Initially, this yields Document-Term matrices with

column dimensions of 614,038 for unigram-based representations and 32,074,403 for bigram-

based representations.

To reduce training time and address memory issues arising from the high dimensionality

of the document-term matrices, the number of columns is reduced. This reduction is achieved

by retaining a subset of columns based on a specified threshold for column variances, using

Scikit-learn’s VarianceThreshold. This method eliminates columns with low variance, those that

show minimal variation across observations, and are therefore less likely to offer meaningful

information for machine learning models. The threshold for column variance is established by

analyzing the sorted column variances (Appendix Figure 8). Specifically, a threshold of 0.001

is set for unigram Document-Term matrices, while a threshold of 0.005 is applied for bigram

Document-Term matrices. Despite this reduction, the number of columns still exceeds the count

of labeled instances in the training set for both unigram and bigram matrices. Consequently,

SVD is employed as a subsequent step to further decrease the dimensions of the columns.

By ensuring a minimum explained variance retention of 90%, the unigram-based Document-

Term matrix is reduced to 9,500 columns by using a SVD constructed on a subset of 250,000

pages, constituting a total reduction of 98.45%. Similarly, the bigram-based Document-Term

matrix is reduced to 7,500 features using a SVD constructed on a subset of 200,000 pages,

resulting in a total reduction of 99.98%. Detailed statistics for the train set can be found in

Appendix Section 7.3.1.

5.1.3 Bleaching Text

The unique abstract token counts for the bleaching text feature generation methods, namely

Bleach Text V, Bleach Text L, Bleach Text S, Bleach Text A, Bleach Text C, and Bleach Text

ALL, are 35732, 151, 2397, 8, 22, and 36885, respectively. These tokens are utilized to construct

Document-Term matrices using the TF-IDF weighting procedure. The token counts represent

the column dimensions.

As previously mentioned, SVD reduction is applied when the column/feature dimension

exceeds the number of labeled instances in the training set, which is the case for the Document-
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Term matrices constructed for the Bleach Text V and Bleach Text ALL datasets. In these

datasets, SVD reduction is applied directly, without prior column selection. The SVD’s are

approximated on a random selection of 750,000 labeled pages from the training set. The resulting

Document-Term matrices matrices consist of 3000 columns for both data sets, resulting in a

reduction of 91.60% for Bleach Text V and 91.87% for Bleach Text ALL. More detailed statistics

on the bleaching text train sets can be found in Appendix Section 7.3.1.

5.1.4 Overview Data Sets

The generated data sets can be categorized into three types based on the intended use, namely

train, test and unlabeled data sets. The train set includes 13665 document pages, the test

set consists of 2412 document pages, and the unlabeled set contains 3500660 document pages.

Each feature generation method, which converts text into numerical vectors, utilizes the train

data to train a model or make decisions, and is then applied to convert the train, test and

unlabeled datasets. The row dimensions, representing the number of pages in each dataset,

remain consistent across all feature generation methods. An overview of the column dimensions

is depicted in Table 3.

Table 3: Column Dimensions Feature Sets

Features Based On (Optional) Hyperparameters Number of Columns

Bag of Words: Unigrams 9500

Bag of Words: Bigrams 7500

BERT Algorithm 512

Bleach Text A Algorithm 8

Bleach Text C Algorithm 22

Bleach Text L Algorithm 151

Bleach Text S Algorithm 2397

Bleach Text ALL Algorithm 3000

Bleach Text V Algorithm 3000

Doc2Vec Algorithm Vector length: 300, Window length: 15 300

Doc2Vec Algorithm Vector length: 1000, Window length: 15 1000

Doc2Vec Algorithm Vector length: 300, Window length: 5 300

Doc2Vec Algorithm Vector length: 1000, Window length: 5 1000

Word2Vec Algorithm Vector length: 300, Window length: 15 300

Word2Vec Algorithm Vector length: 100, Window length: 15 100

Word2Vec Algorithm Vector length: 300, Window length: 5 300

Word2Vec Algorithm Vector length: 100, Window length: 5 100

FastText Algorithm Vector length: 300, Window length: 15 300

FastText Algorithm Vector length: 100, Window length: 15 100

FastText Algorithm Vector length: 300, Window length: 5 300

FastText Algorithm Vector length: 100, Window length: 5 100
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5.2 Payment Term Prediction Supervised Learning

Table 4: Top 2 F1-Scores Supervised Learning

Rank Features Algorithm F1-score

1 Bigram based MLR algorithm using a Sag solver and penalty strength C of 10 0.89

2 Bigram based SVM using a RBF kernel and penalty strength C 10 0.88

Table 4 shows the top two performing supervised payment term prediction models based on the

F1-Score calculated using the predictions on the test dataset. All other model specifications and

statistics of the supervised payment term prediction models are reported in Appendix Tables 20,

21 and 22. Figure 4 provides a visualization of their performance expressed by the F1-Score, the

F1-Score considering the exclusion of the ”Other” class and the accuracy. The predictive power

is visualized by Cohen’s Kappa (κ). The F1-Score varies between 39.5% and 89.3%. Among the

three evaluated algorithms, SVM can be considered as the most stable algorithm for predicting

payment terms in a set of financial document pages. This algorithm performs best for 11 out

of 21 datasets and does not result in a worst performing model for each of the datasets. KNN

excels for 8 out of 21 datasets but performs the worst for 3 out 21 datasets. MLR achieves the

best performance in only 2 out of 21 test results and exhibits the worst performance in 18 out

of 21 datasets. However, the best performing model based on the F1-Score (89.3%) is produced

using the MLR algorithm.

Figure 4: Test Results Supervised Learning
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The MLR algorithm did not converge to a stable solution within the specified maximum number

of iterations for 9 out of 21 datasets. In logistic regression, convergence refers to the algorithm’s

ability to find the optimal coefficients that minimize the loss function and accurately predict

the payment term. The cases in which the algorithm did not converge are written in red in

Appendix Tables 19 and 21.

The results of the grid search consistently indicate that the RBF kernel and a penalty

strength of 10 are the optimal hyperparameters for SVM across all datasets. Regarding the

KNN algorithm, it’s noteworthy that using 3 neighbors is optimal for most datasets, except

for those created with the bleaching text feature generation methods: Bleaching Text A and

C. These datasets have relatively small column dimensions, 8 and 22 respectively, which could

explain why more neighbors are optimal for them. Additionally, the majority of datasets show

that a distance-based weighting function is optimal, except for the Doc2Vec dataset with a

length of 300 and a window usage of 15. Cosine distance emerges as the optimal choice for

the majority of datasets, particularly those utilizing embeddings like Word2Vec and FastText.

This preference is driven by the nature of the embeddings and cosine distance, which measures

similarity based on the direction of vectors rather than their magnitudes. In high-dimensional

embedding spaces, where vectors represent connections between words or phrases based on their

meanings, cosine distance effectively captures resemblance in meaning by focusing on vector

direction.

The bigram based dataset is the best performing set, delivering good results across all three

algorithms. It achieves a F1-Score surpassing 83% for all three algorithms. Notably, when paired

with this set, MLR and SVM stand out as the two leading performers based on the F1-Score.

The feature set derived from bigrams appears to be more suitable than the feature set based

on unigrams. This is evident across all algorithms, where the bigram based dataset consistently

yields a higher F1-Score.

The feature sets created with the Doc2Vec algorithm result in inferior performance compared

to the other feature sets constructed at the word level. This implies that, in terms of predictive

accuracy or effectiveness for predicting payment terms, the embeddings derived from Doc2Vec

at the document level are not as successful as those generated from alternative methods that

focus on individual words.

Inline with Van der Goot et al. (2018), the concatenated bleaching feature set outperforms

generic lexical features when used as data in all three the algorithms. However, this improvement

is marginal when contrasted with lexical features extracted from vowel structures.

The hyperparameters in the feature generation methods reveal specific trends. For the
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Doc2Vec algorithm, a smaller window size (5 versus 15) is found to be more suitable. Conversely,

for the Word2Vec algorithm, a larger window size (15 versus 5) proves to be more effective.

Interestingly, for the FastText algorithm, a smaller vector length (100 versus 300) yields better

performance based on the F1-Score. However, the differences in F1-Scores are minimal.

The F1-Score is a metric that balances precision and recall and considers the class distribution

in the data. When the largest class ”Other”, which is substantially larger than the other classes,

is excluded from evaluation, the F1-Score decreases. Tables 23, 24 and 25 show the absolute

difference, as well as the difference expressed as a percentage of the overall F1-Score. Generally

the negative impact of the exclusion of the ”Other” class on the F1-Score increases when the

the F1-Score decreases. This suggests that the model maintains robust performance on smaller

classes in the good performing experiments. Meaning that the model’s ability to correctly classify

observations in the smaller classes is not compromised by the dominance of the largest class.

The negative impact on the scores produced by the MLR algorithm are the largest.

The predictive power for the majority of models, 42 out of 63, can be considered good as κ

exceeds 0.4. The predictive power for 17 models is considered excellent, given that κ is larger

than 0.7. The combination of the MLR algorithm with the bigram dataset, which yielded the

highest F1-Score, also has the highest predictive power κ (0.87).

5.3 Payment Term Prediction Semi-Supervised Learning

In our semi-supervised learning implementations, we aim to enhance the performance of the

top-performing supervised model based on the F1-Score, specifically the MLR algorithm coupled

with the bigram dataset.

5.3.1 Self-Training

In our Self-training approach, the optimal hyperparameters obtained from the supervised coun-

terpart are adopted in every iteration of the Self-training algorithm. In particular, the MLR

algorithm is set to use the sag algorithm in every iteration, and the penalty strength is specified

as 10. We assess the efficacy of three distinct thresholds for selecting unlabeled instances that

can be pseudo-labeled, namely 0.999, 0.999999 and 0.999999999. The results of each iteration

under these thresholds in the Self-training algorithm are illustrated in Figure 5.
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Figure 5: Results Self-Training

The F1-Score calculated using the predictions on the test dataset is displayed in the left sub-

figure, while the right sub-figure presents the F1-Score calculated using the predictions on the

validation dataset. Each line within the sub-figures corresponds to a distinct threshold, and every

dot represents an iteration. Specifically, when the threshold is set to 0.999, a single iteration

is executed; for a threshold of 0.999999, two iterations are conducted, and for a threshold of

0.999999999, four iterations take place.

Observing the right sub-figure, it is evident that the F1-Scores produced with the predictions

on the validation dataset are consistently higher than the final F1-Score obtained with supervised

learning (89.3%). In contrast, the F1-Scores produced with the predictions on the test dataset

exhibit a decrease with each iteration. The first F1-Score in this plot represents the final result

of the supervised algorithm, followed by a subsequent decline in F1-Score per iteration for each

of the thresholds.

With a threshold of 0.999, the final F1-Score is 88.5%. Increasing the threshold to 0.999999

results in a slightly higher final F1-Score of 88.6%, while a threshold of 0.999999999 yields a final

F1-Score of 88.5% when the stopping condition of adding 250,000 initially unlabeled instances

is met. Notably, there are no convergence issues after a single iteration for each threshold. Fur-

thermore, the stricter the threshold, the less noticeable the decline in each subsequent iteration

until reaching the stopping criteria. For more detailed results, please consult Appendix Tables

26 and 27.
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5.3.2 Co-Training

Co-training is implemented using the top two performing-models based on the F1-Score as

showed by Table 4. Specifically, the MLR algorithm and SVM algorithm, when coupled with

the Bigram dataset. The optimal hyperparameters obtained from the supervised counterparts

are applied in every iteration of the Co-training algorithm. In particular, the MLR algorithm is

set to use the sag algorithm, the SVM algorithm uses the RBF kernel, and the penalty strength

for both algorithms is specified as 10.

We assess the efficacy of three distinct thresholds for selecting unlabeled instances that can

be pseudo-labeled per underlying algorithm to refine the predictions of the other algorithm,

namely 125000, 50000 and 25000. The results of each iteration under these thresholds in the

semi-supervised learning algorithm are illustrated in Figure 6.

Figure 6: Results Semi-Supervised Learning

In the left sub-figure, the F1-Scores are displayed based on predictions made by the MLR

algorithm on the test dataset. The middle plot illustrates the F1-Scores derived from predictions

made by the SVM algorithm on the same test dataset. In the right sub-figure, the F1-Scores

are presented for the MLR algorithm on the validation set. Each line within these sub-figures

corresponds to a distinct threshold. Specifically, one iteration occurs when the threshold is set to

125000, three iterations are performed for a threshold of 50000, and six iterations are executed

for a threshold of 25000.
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Observing the right sub-figure, it is evident that the F1-Scores produced with the predictions

on the validation dataset are again consistently higher than the final F1-Score obtained with

supervised learning (89.3%). Conversely, the F1-Scores produced with the predictions on the test

dataset using the MLR algorithm exhibit an overall decrease. The first test F1-Score represents

the final result of the supervised algorithm, followed by an overall decline in F1-Score. With a

threshold of 125000, the final F1-Score is 87.8%. The more stricter threshold of 50000 results in

a slightly higher final F1-Score of 88.2%, while a threshold of 25000 results in the least decline

with a final F1-Score of 88.4% when the stopping condition of adding 250,000 initially unlabeled

instances is met.

Notably, the F1-Score obtained from predictions on the test dataset using the SVM algorithm

exhibits an overall increasing trend. With a threshold of 125000, the final F1-Score reaches

88.7%. Employing a stricter threshold of 50000 results in a slightly lower final F1-Score of 88.6%,

while a threshold of 25000 yields a final F1-Score of 88.7% upon fulfilling the stopping condition

of adding 250,000 initially unlabeled instances. Although there is an observed improvement

in F1-scores with the SVM algorithm, all final scores remain below those achieved by the top-

performing model. Specifically, the MLR algorithm coupled with the bigram dataset attained

a F1-Score of 89.3%. For more detailed results, please refer to Table 28, 29 and 30 in the

Appendix.

6 Discussion and Conclusion

6.1 Discussing Research Questions

6.1.1 Feature Sets

The first research question aims to determine the most effective procedure for converting raw text

data into a numerical representation suitable for classifying the payment term of an invoice using

supervised classification models such as K-Nearest Neighbors, Multinomial Logistic Regression,

or Support Vector Machines, with performance measured by the F1-Score. The findings indicate

that the bigram-based feature set consistently outperforms other representation types across all

three supervised algorithms, emerging as the top-performing dataset. Additionally, the unigram

and Bleach Text ALL representations also demonstrate suitability for representing document

pages, as measured by their performance.

Bigrams capture sequential dependencies between words, allowing the models to better un-

derstand the context and meaning of the text. This improvement in performance compared to

using unigrams or abstract tokens based on single words suggests that the task of predicting
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the payment term benefits from not only analyzing individual words but also their interactions.

This shows the importance of considering semantic relationships in invoice data processing, as

it enhances the model’s ability to extract meaningful information from the text.

The varying performance of abstract tokens and not one of the datasets being the top-

performing dataset, suggests that the task at hand may not necessitate or benefit from the

additional linguistic diversity offered by the abstract tokens. This could imply that either

the data or the task of predicting the payment term does not inherently involve multi-lingual

elements, leading to a situation where leveraging abstract tokens does not provide a significant

advantage. Alternatively, it could indicate that the multilingual representation does not offer

distinct benefits over the uni-lingual representation for our specific task.

In contrast to the findings of Le and Mikolov (2014), the document embeddings do not outper-

form the Bag-of-Words representations. In fact, they perform the worst. Moreover, embeddings

constructed at the word level outperform embeddings at the document level. This discrepancy

suggests that, in this research, features derived from individual words are more effective predic-

tors than those obtained at the document level using Doc2Vec. Possible explanations for this

performance difference could involve challenges in capturing nuanced document-level semantics

caused by the specific nature of invoice data or limitations in the training process that impact

the quality of document embeddings. Further, no apparent difference in F1-Score behavior is

observed between the Word2Vec and FastText algorithms.

6.1.2 Supervised Learning

The second research question focuses on determining the most suitable supervised machine

learning algorithm among K-Nearest Neighbors (KNN), Multinomial Logistic Regression (MLR),

and Support Vector Machines (SVM) for classifying the payment term of an invoice based on

the F1-Score performance. KNN is advantageous due to its non-parametric nature, resulting

in faster computation time compared to MLR and SVM, which require multiple iterations to

find optimal models. SVM, in a multi-class setting, involves creating multiple models in each

iteration, making it slower to train.

MLR, when combined with the bigram dataset, shows the best performance according to the

F1-Score. However, when compared with the other two algorithms, MLR performs the worst for

18 out of 21 datasets and is the best for only 2 out of 21. On the other hand, SVM performs best

for 11 out of 21 datasets and does not result in the worst performance for any of the datasets.

Regardless of the dataset, SVM consistently utilizes the RBF kernel with a penalty strength

of 10, while KNN tends to perform well with 3 neighbors, using a distance-based weighting
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function and a cosine distance measure.

It’s important to note that the accuracy of predictions and test results heavily depends on the

quality of the labeled data used for training the models and the algorithm’s ability to generalize

to unseen data. Consequently, while the MLR algorithm yields the top-performing model, the

KNN algorithm with 3 neighbors, a distance-based weighting function, and cosine distance is

recommended when rapid training is prioritized. On the other hand, in scenarios where training

time is not a concern, employing a SVM algorithm with a RBF kernel and penalty strength of

10 is suggested.

6.1.3 Semi-Supervised Learning

The final research question examines whether semi-supervised learning can improve the perfor-

mance compared to that of the supervised models. The results indicate that the best-performing

supervised learner consistently outperforms the semi-supervised counterparts. Both Self-training

and Co-training iterations show a decrease in performance with the use of the Multinomial Logis-

tic Regression algorithm. Although the Support Vector Machine algorithm exhibits an increasing

trend in performance across iterations, it fails to surpass the top performance achieved by the

supervised model. Finally, the validation results consistently outperform the test results and

show an increasing trend, possibly indicating overfitting to the training data and the ”Other”

class caused by the natural imbalance in the class distribution.

6.2 Limitations and Future Research

Despite excellent results, several limitations and future improvements can be identified. In our

research, the payment term is categorized into a finite number of classes (65), whereas in real-life

scenarios, payment terms can span any number of days. To address the challenge of handling a

potentially infinite number of payment term classes, a two-stage approach can be adopted.

In the first stage, the problem is treated as a binary classification task. The objective here

is to determine whether an invoice falls under the class ”Other”. In other words, it is about

identifying invoices where the payment term is not among the classes that represents a number

of days greater than or equal to one in our dataset.

For invoices that do not belong to the ”Other” class in the first stage, the second stage of

classification is employed. Here, an algorithm, that is not bounded to classes, such as regression

algorithms, is utilized since the payment term can encompass any numerical value between

1 and infinity. The (regression) model predicts a numerical value, representing the payment

term, based on the independent variables. To handle the practicality of payment terms, which
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are typically discrete and rounded, the predicted numerical value is rounded to the nearest

whole number. In cases where the predicted value is below one, it’s rounded up to one. An

alternative is choosing a model or an adapted version of a model that assume non-negativity.

For example, an (adapted) implementation of a survival analysis model can be used. Despite

using regression or other non-classification models, this approach can still be evaluated the same

as a classification problem with an infinite number of classes, considering the rounding applied

to the predicted values. To assess the performance of both stages, similar evaluation metrics

as used in this research can be employed. The final evaluation metric is derived from classes

obtained by combining both stages, providing an overall measure of the model’s effectiveness.

The extensive dataset provided by Blue10 has proven extremely valuable, but it also forced

modelling decisions that may have hindered performance. For instance, due to computational

constraints, we were unable to thoroughly explore character N-grams or implement a full SVD.

Furthermore, flexible thresholds that do not require a lot of iterations in the semi-supervised

learning algorithms are used. In reality, more iterations, caused by using a stricter threshold,

can be beneficial.

Additionally, future research could explore the potential benefits of rectifying OCR errors on

model performance. Moreover, investigating alternative embedding or classification algorithms

may lead to performance improvements. Finally, incorporating additional features that capture

information present on an invoice, such as vendor details, total amount, invoice date, etc. and

including an invoice’s meta-data, could enhance model performance. While the features utilized

in this research are based solely on the textual content before invoice processing, the inclusion of

features like vendor information may offer valuable insights, potentially correlated with payment

terms. However, it’s essential to consider the accuracy of these additional features, as their

quality directly influences model performance. Future research can investigate whether it is

beneficial to add these features and try to determine which features should be added.

6.3 Conclusion

In conclusion, our research demonstrates that the payment term of an invoice can be effectively

classified into a finite number of classes using a feature set based on bigrams, which is dimension-

ality reduced using SVD, and employing a MLR algorithm configured with the sag algorithm

and a regularization parameter strength of 10. The payment term of unseen invoice can be

predicted to a satisfying extent, as verified by the models’ high F1-scores (89.3%), accuracy

(89.8%) and predictive power (83.4%).

The top performing supervised model outperforms the semi-supervised algorithms and offers
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faster training times due to the restriction to one iteration and a smaller amount of data available

for training.

This paper has extended literature by solely focusing on predicting the payment term and

including semi-supervised algorithms in the process of finding an optimal model. The find-

ings not only contribute to the body of academic literature, but are also valuable for business

applications.

While real-life scenarios may involve an infinite number of payment term classes, our model

currently misclassifies such cases as either the class ”Other” or any another numbered payment

term class. However, given that the most common classes are included in our dataset, the

current approach suffices for practical purposes.

Overall, the findings presented in this paper, together with proposed directions for further

research, are promising for completing the goal of developing an optimal method for classifying

the payment term of an invoice.
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7 Appendices

7.1 Example Invoice

Figure 7: Example of an invoice
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7.2 Environment Packages

Table 5: Python Modules

Package Version Package Version Package Version Package Version

tflow select 2.3.0 google-auth 2.6.0 mkl-service 2.4.0 requests-oauthlib 1.3.0

abseil-cpp 20211102 google-auth-oauthlib 0.4.4 mkl fft 1.3.6 responses 0.13.3

absl-py 1.4.0 google-pasta 0.2.0 mkl random 1.2.2 rsa 4.7.2

aiohttp 3.8.3 grpcio 1.42.0 mpmath 1.3.0 sacremoses 0.0.43

aiosignal 1.2.0 gst-plugins-base 1.18.5 msgpack-python 1.0.3 scikit-learn 1.3.0

appdirs 1.4.4 gstreamer 1.18.5 multidict 6.0.2 scipy 1.10.1

astunparse 1.6.3 h5py 3.7.0 multipledispatch 0.6.0 sentence-transformers 2.2.2

async-timeout 4.0.2 hdf5 1.10.6 multiprocess 0.70.14 sentencepiece 0.1.99

attrs 22.1.0 heapdict 1.0.1 munkres 1.1.4 setuptools 68.0.0

aws-c-common 0.6.8 huggingface hub 0.15.1 networkx 3.1 sip 6.6.2

aws-c-event-stream 0.1.6 icc rt 2022.1.0 ninja 1.10.2 six 1.16.0

aws-checksums 0.1.11 icu 58.2 ninja-base 1.10.2 smart open 5.2.1

azure-common 1.1.28 idna 3.4 nltk 3.8.1 snappy 1.1.9

azure-storage-blob 2.1.0 intel-openmp 2023.1.0 numba 0.57.0 sortedcontainers 2.4.0

azure-storage-common 2.1.0 jinja2 3.1.2 numexpr 2.8.4 sqlite 3.41.2

blas 1 joblib 1.2.0 numpy 1.24.3 sympy 1.11.1

blinker 1.4 jpeg 9e numpy-base 1.24.3 tbb 2021.8.0

bokeh 3.2.1 keras 2.10.0 oauthlib 3.2.2 tblib 1.7.0

boost-cpp 1.73.0 keras-preprocessing 1.1.2 openssl 1.1.1v tensorboard 2.10.0

bottleneck 1.3.5 kiwisolver 1.4.4 opt einsum 3.3.0 tensorboard-data-server 0.6.1

brotli 1.0.9 krb5 1.19.4 orc 1.7.4 tensorboard-plugin-wit 1.8.1

brotli-bin 1.0.9 lerc 3 packaging 23 tensorflow 2.10.0

brotlipy 0.7.0 libboost 1.73.0 pandas 1.5.3 tensorflow-base 2.10.0

bzip2 1.0.8 libbrotlicommon 1.0.9 partd 1.2.0 tensorflow-estimator 2.10.0

c-ares 1.19.0 libbrotlidec 1.0.9 pcre 8.45 termcolor 2.1.0

ca-certificates 2023.7.22 libbrotlienc 1.0.9 pillow 9.4.0 threadpoolctl 2.2.0

cachetools 4.2.2 libclang 14.0.6 pip 23.2.1 tk 8.6.12

certifi 2023.7.22 libclang13 14.0.6 ply 3.11 tokenizers 0.13.2

cffi 1.15.1 libcurl 8.1.1 pooch 1.4.0 toml 0.10.2

charset-normalizer 2.0.4 libdeflate 1.17 protobuf 3.20.3 toolz 0.12.0

click 8.0.4 libffi 3.4.4 psutil 5.9.0 torchvision 0.15.2

cloudpickle 2.2.1 libiconv 1.16 pyasn1 0.4.8 tornado 6.3.2

colorama 0.4.6 libllvm14 14.0.6 pyasn1-modules 0.2.8 tqdm 4.65.0

contourpy 1.0.5 libogg 1.3.5 pycparser 2.21 transformers 4.24.0

cryptography 41.0.2 libpng 1.6.39 pyjwt 2.4.0 typing-extensions 4.7.1

cycler 0.11.0 libprotobuf 3.20.3 pyopenssl 23.2.0 typing extensions 4.7.1

cytoolz 0.12.0 libssh2 1.10.0 pyparsing 3.0.9 tzdata 2023c

dask 2022.2.1 libtiff 4.5.0 pyqt 5.15.7 urllib3 1.26.16

dask-core 2022.2.1 libuv 1.44.2 pyqt5-sip 12.11.0 utf8proc 2.6.1

dask-glm 0.2.0 libvorbis 1.3.7 pysocks 1.7.1 vc 14.2

dask-ml 2023.3.24 libwebp 1.2.4 python 3.10.12 vs2015 runtime 14.27.29016

dill 0.3.6 libwebp-base 1.2.4 python-dateutil 2.8.2 werkzeug 2.2.3

distributed 2022.2.1 libxml2 2.10.3 python-flatbuffers 2 wheel 0.38.4

filelock 3.9.0 libxslt 1.1.37 python-lmdb 1.4.1 win inet pton 1.1.0

flatbuffers 2.0.0 llvmlite 0.40.0 python-xxhash 2.0.2 wrapt 1.14.1

fonttools 4.25.0 locket 1.0.0 pytorch 2.0.1 xxhash 0.8.0

freetype 2.12.1 lz4-c 1.9.4 pytz 2022.7 xyzservices 2022.9.0

frozenlist 1.3.3 markdown 3.4.1 pyyaml 6 xz 5.4.2

fsspec 2023.4.0 markupsafe 2.1.1 qt-main 5.15.2 yaml 0.2.5

gast 0.4.0 matplotlib 3.7.1 qt-webengine 5.15.9 yarl 1.8.1

gensim 4.3.0 matplotlib-base 3.7.1 qtwebkit 5.212 zict 2.2.0

gflags 2.2.2 mkl 2023.1.0 re2 2022.04.01 zlib 1.2.13

giflib 5.2.1 requests 2.31.0 regex 2022.7.9 zstd 1.5.5

glib 2.69.1 glog 0.5.0
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7.3 Text to Features

7.3.1 Statistics

Table 6: Token Statistics

Statistic Value

Total words: 1057679905

Unique tokens: 7554704

Mean count: 140.0

StDev of count: 26028.9

Min count: 1

Q25% count: 1

Median count: 1

Q75% count: 2

Max count: 54996963

Table 7: Token Statistics: Stop Words Excluded

Statistic Value

Total words: 819282440

Unique tokens: 7551697

Mean count: 108.49

StDev of count: 22564.09

Min count: 1

Q25% count: 1

Median count: 1

Q75% count: 2

Max count: 54996963
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Table 8: Token Statistics: Stop Words Excluded and Rare Words Mapped, also Unigram Statis-

tics

Statistic Value

Total words: 819282440

Unique tokens: 614038

Mean count: 1334.25

StDev of count: 80451.07

Min count: 11

Q25% count: 17

Median count: 35

Q75% count: 110

Max count: 54996963

Table 9: Bigram Statistics

Statistic Value

Total words: 815770115

Unique tokens: 32074403

Mean count: 25.43

StDev of count: 1981.82

Min count: 1

Q25% count: 1

Median count: 1

Q75% count: 3

Max count: 7107613
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Table 10: Bleach Text V Statistics

Statistic Value

Total words: 819282440

Unique tokens: 35732

Mean count: 22928.54

StDev of count: 719400.06

Min count: 11

Q25% count: 21

Median count: 56

Q75% count: 268

Max count: 79407990

Table 11: Bleach Text L Statistics

Statistic Value

Total words: 819282440

Unique tokens: 151

Mean count: 5425711.52

StDev of count: 20821079.56

Min count: 11

Q25% count: 42

Median count: 214

Q75% count: 3819

Max count: 151533844

Table 12: Bleach Text S Statistics

Statistic Value

Total words: 819282440

Unique tokens: 2397

Mean count: 341794.93

StDev of count: 11551470.21

Min count: 11

Q25% count: 19

Median count: 49

Q75% count: 198

Max count: 552500011
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Table 13: Bleach Text A Statistics

Statistic Value

Total words: 819282440

Unique tokens: 8

Mean count: 102410305.0

StDev of count: 229732880.59

Min count: 69

Q25% count: 15361

Median count: 4252620

Q75% count: 32149056.25

Max count: 705001066

Table 14: Bleach Text C Statistics

Statistic Value

Total words: 819282440

Unique tokens: 22

Mean count: 37240110.91

StDev of count: 146555113.88

Min count: 28

Q25% count: 82

Median count: 5095

Q75% count: 1271121.75

Max count: 705001066

Table 15: Bleach Text ALL Statistics

Statistic Value

Total words: 819282440

Unique tokens: 36885

Mean count: 22211.81

StDev of count: 650808.64

Min count: 11

Q25% count: 21

Median count: 56

Q75% count: 267

Max count: 79407990
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7.3.2 Custom Stopwords

”x”, ”a1”, ”r”, ”onze”, ”g”, ”indien”, ”ten”, ”wij”, ”chr”, ”w”, ”enof”, ”welke”, ”f”, ”p”,

”enige”, ”tenzij”, ”zoals”, ”s1”, ”s3”, ”eventuele”, ”volgens”, ”slechts”, ”algemene”, ”huidige”,

”p3”, ”verzoek”, ”s4”, ”k2”, ”p1”, ”p2”, ”k1”, ”tussen”, ”enorm”, ”betreffende”, ”gevolg”, ”uit-

drukkelijk”, ”co”, ”uitsluitend”, ”zullen”, ”aa”, ”gelieve”, ”wel”, ”zie”, ”eveneens”, ”eventueel”,

”geacht”, ”a2”, ”graag”, ”ieder”, ”rgr”, ”s2”, ”elke”, ”wi”, ”zover”, ”fsc”, ”waarop”, ”waar-

van”, ”alleen”, ”xa9n” ”vd”, ”verzoeken”, ”elk”, ”daarvan”, ”alsmede”, ”jegens”, ”svp”, ”m3”,

”mede”, ”eo”, ”inzake” ”zb” , ”rgr”, ’pt’, ”a2”, ”dc”, ”aub”, ”alsjeblieft”

7.3.3 Overview

Table 16: Overview of the Generated Feature Sets

Feature Set Basen On BoW Representation Accumulated Word Vectors Document Vectors Bleaching SVD Applied Stop Word Removal

Unigram + + +

Bigram + + +

Word2Vec + +

Doc2Vec + +

Fasttext + +

Bert + +

Bleach Text L + + +

Bleach Text C + + +

Bleach Text A + + +

Bleach Text S + + +

Bleach Text V + + + +

Bleach Text ALL + + + +

7.3.4 Regular Expressions

Regular expressions define a search pattern. Regular expressions provide a way to match, search,

and manipulate sequences of characters in a text. The matched text is replaced by a pattern

specific token such as ADD for addresses. Table 17 shows all impletemented replacements.

Table 17: Implemented Regular Expressions

Pattern for Replacement Token Regular Expression Pattern

URL URL https?:\/\/?[a-z0-9]+\.[a-z0-9\/-]+ and www\.[a-z0-9-]+(\.[a-z]{2,3})+

E-mail address EMA [a-z0-9\.]+[@][a-z0-9\.-]+\.[a-z]{2,3}

Time TIM \d\d?:\d\d?

5+ digit number NMB \s?\w*\d{5,}\w*\s?

9+ number sequence NSQ (\d\s*){9,}

Symbols SYM [a-z0-9(\.]+\\xc\d\\[a-z0-9/\\)\.]+

Adress ADD [a-z]*(straat|(...)|street)[a-z]*
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7.3.5 Sorted Variances Unigram and Bigram

(a) Sorted Variances Unigrams (b) Sorted Variances Bigrams

Figure 8: Sorted Variances Unigram and Bigram

7.3.6 Bleaching Text Variations

This section provides an overview of the different bleaching text variants:

• Bleach Text L: The abstract tokens in this feature set are created by counting the characters

of each token, prefixed by 0.

• Bleach Text C : The abstract tokens in this feature set are created by merging all following

alphanumeric characters to a single W. Every other character remains as it is.

• Bleach Text A: The abstract tokens in this feature set are similar to Bleach Text C, nev-

ertheless, punctuation is converted to P

• Bleach Text S : In Bleach Text S uppercase characters are transformed to U, lowercase

characters to L, numerical characters to D and every other character to X to create the

abstract tokens in this feature set.

• Bleach Text V : In this representation, in order to create the abstract tokens, characters

equal to a, e, i, o or u are converted to V. Consonants are converted to C and everything

else to O.
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7.4 Predicting Payment Term

7.4.1 Kernel functions

Linear: K(w, b) = wTx+ b

Polynomial: K(w, x) = (γwTx+ b)N

Gaussian RBF: K(w, x) = exp(−γ||xi − xj ||n)

Sigmoid: K(xi, xj) = tanh(αxTi xj + b)

7.4.2 Overview Classification Algorithms

Table 18: Overview of the used Classification Algorithms

Classifier(s) Supervised Self-training Co-training

K-NN +

MLR + + +

SVC + +

7.4.3 Test F1-Scores Supervised Learning

Table 19: F1-Scores Supervised Learning

Dataset Based On (Optional) Hyperparameters KNN MLR SVC

Bert 0.8074 0.7253 0.8211

Bigram 0.8374 0.8930 0.8821

Bleach Text A 0.5742 0.4022 0.4945

Bleach Text ALL 0.8229 0.8015 0.8409

Bleach Text C 0.5909 0.4022 0.4878

Bleach Text L 0.7456 0.4568 0.6346

Bleach Text S 0.7102 0.4767 0.6139

Bleach Text V 0.8223 0.7991 0.8392

Doc2Vec Length: 1000 & Window: 15 0.4039 0.3947 0.4447

Doc2Vec Length: 1000 & Window: 5 0.4209 0.4476 0.4727

Doc2Vec Length: 300 & Window: 15 0.4108 0.4045 0.4451

Doc2Vec Length: 300 & Window: 5 0.4400 0.4306 0.4994

Fasttext Length: 100 & Window: 15 0.8230 0.6850 0.7785

Fasttext Length: 100 & Window: 5 0.8152 0.6828 0.7896

Fasttext Length: 300 & Window: 15 0.8138 0.7395 0.8158

Fasttext Length: 300 & Window: 5 0.8103 0.7309 0.8114

Word2Vec Length: 100 & Window: 15 0.8222 0.6917 0.8065

Word2Vec Length: 100 & Window: 5 0.8170 0.6778 0.8025

Word2Vec Length: 300 & Window: 15 0.8182 0.7343 0.8278

Word2Vec Length: 300 & Window: 5 0.8144 0.7282 0.8249

Unigram 0.8181 0.8676 0.8557

∗ Did not converge
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7.4.4 All Test Results SVC Supervised Learning

Table 20: Test Results SVC

Dataset Based On (Optional) Hyperparameters Kernel C Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bert rbf 10 0.8288 0.8211 0.7192 0.7569

Bigram rbf 10 0.8885 0.8821 0.8157 0.8532

Bleach Text A rbf 10 0.5904 0.4945 0.1540 0.2027

Bleach Text ALL rbf 10 0.8478 0.8409 0.7495 0.7877

Bleach Text V rbf 10 0.8462 0.8392 0.7474 0.7879

Bleach Text C rbf 10 0.5916 0.4878 0.1365 0.1815

Bleach Text L rbf 10 0.6779 0.6346 0.4064 0.4773

Bleach Text S rbf 10 0.6646 0.6139 0.3742 0.4304

Doc2Vec Length: 1000 & Window: 15 rbf 10 0.5539 0.4447 0.0531 0.1207

Doc2Vec Length: 1000 & Window: 5 rbf 10 0.5605 0.4727 0.1071 0.1839

Doc2Vec Length: 300 & Window: 15 rbf 10 0.5518 0.4451 0.0580 0.1178

Doc2Vec Length: 300 & Window: 5 rbf 10 0.5767 0.4994 0.1607 0.2402

Fasttext Length: 100 & Window: 15 rbf 10 0.7939 0.7785 0.6543 0.6743

Fasttext Length: 100 & Window: 5 rbf 10 0.8022 0.7896 0.6704 0.6897

Fasttext Length: 300 & Window: 15 rbf 10 0.8238 0.8158 0.7099 0.7363

Fasttext Length: 300 & Window: 5 rbf 10 0.8197 0.8114 0.7044 0.7360

Word2Vec Length: 100 & Window: 15 rbf 10 0.8155 0.8065 0.6953 0.7275

Word2Vec Length: 100 & Window: 5 rbf 10 0.8122 0.8025 0.6894 0.7252

Word2Vec Length: 300 & Window: 15 rbf 10 0.8333 0.8278 0.7305 0.7719

Word2Vec Length: 300 & Window: 5 rbf 10 0.8313 0.8249 0.7252 0.7617

Unigram rbf 10 0.8661 0.8557 0.7765 0.8027
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7.4.5 All Test Results MLR Supervised Learning

Table 21: Test Results MLR

Dataset Based On (Optional) Hyperparameters Algorithm C Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bert sag 10 0.7504 0.7253 0.5685 0.6016

Bigram sag 10 0.8980 0.8930 0.8335 0.8698

Bleach Text A newton-cg 0.1 0.5601 0.4022 0 0

Bleach Text ALL sag 10 0.8060 0.8015 0.6876 0.7351

Bleach Text C newton-cg 0.1 0.5601 0.4022 0 0

Bleach Text L newton-cg 10 0.5680 0.4568 0.0815 0.1316

Bleach Text S newton-cg 10 0.5821 0.4767 0.1148 0.1693

Bleach Text V newton-cg 10 0.8047 0.7991 0.6844 0.7381

Doc2Vec Length 1000 & Window 15 newton-cg 1 0.4092 0.3947 0.0202 0.2144

Doc2Vec Length 1000 & Window 5 lbfgs 0.1 0.5323 0.4476 0.0581 0.1681

Doc2Vec Length 300 & Window 15 newton-cg 1 0.4685 0.4045 0.0095 0.1113

Doc2Vec Length 300 & Window 5 newton-cg 0.1 0.5406 0.4306 0.0304 0.0936

Fasttext Length 100 & Window 15 newton-cg 10 0.7094 0.6850 0.4976 0.5555

Fasttext Length 100 & Window 5 lbfgs 10 0.7106 0.6828 0.4953 0.5491

Fasttext Length 300 & Window 15 lbfgs 10 0.7521 0.7395 0.5858 0.6421

Fasttext Length 300 & Window 5 sag 10 0.7454 0.7309 0.5743 0.6303

Word2Vec Length 100 & Window 15 sag 10 0.7156 0.6917 0.5077 0.5499

Word2Vec Length 100 & Window 5 newton-cg 10 0.7040 0.6778 0.4840 0.5487

Word2Vec Length 300 & Window 15 newton-cg 10 0.7475 0.7343 0.5777 0.6358

Word2Vec Length 300 & Window 5 sag 10 0.7438 0.7282 0.5688 0.6320

Unigram sag 10 0.8735 0.8676 0.7947 0.8289

∗ Did not converge
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7.4.6 All Test Results KNN Supervised Learning

Table 22: Test Results KNN

Dataset Based On (Optional) Hyperparameters Neighbors Weight Distance Measure Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bert 3 distance cosine 0.8072 0.8074 0.6964 0.7659

Bigram 3 distance cosine 0.8391 0.8374 0.7435 0.7992

Bleach Text A 33 distance euclidean 0.6144 0.5742 0.3116 0.3793

Bleach Text ALL 3 distance cosine 0.8250 0.8229 0.7819 0.7175

Bleach Text C 33 distance manhattan 0.6298 0.5909 0.3362 0.4020

Bleach Text L 3 distance manhattan 0.7471 0.7456 0.5970 0.6849

Bleach Text S 3 distance manhattan 0.7143 0.7102 0.5370 0.6050

Bleach Text V 3 distance cosine 0.8242 0.8223 0.7863 0.7161

Doc2Vec Length: 1000 & Window: 15 3 distance euclidean 0.4851 0.4039 -0.0136 0.0981

Doc2Vec Length: 1000 & Window: 5 3 distance euclidean 0.4585 0.4209 0.0355 0.1945

Doc2Vec Length: 300 & Window: 15 3 uniform cosine 0.5232 0.4108 -0.0055 0.0646

Doc2Vec Length: 300 & Window: 5 3 distance euclidean 0.4689 0.4400 0.0731 0.2471

Fasttext Length: 100 & Window: 15 3 distance cosine 0.8242 0.8230 0.7209 0.7813

Fasttext Length: 100 & Window: 5 3 distance cosine 0.8151 0.8152 0.7078 0.7605

Fasttext Length: 300 & Window: 15 3 distance cosine 0.8138 0.8138 0.7052 0.7728

Fasttext Length: 300 & Window: 5 3 distance cosine 0.8105 0.8103 0.7000 0.7640

Word2Vec Length: 100 & Window: 15 3 distance cosine 0.8226 0.8222 0.7188 0.7779

Word2Vec Length: 100 & Window: 5 3 distance cosine 0.8172 0.8170 0.7095 0.7677

Word2Vec Length: 300 & Window: 15 3 distance cosine 0.8180 0.8182 0.7132 0.7887

Word2Vec Length: 300 & Window: 5 3 distance cosine 0.8151 0.8144 0.7065 0.7676

Unigram 3 distance cosine 0.8209 0.8181 0.7760 0.7118

7.4.7 Differences Between F1-Score and F1-Score Without the ”Other” Class

Table 23: F1-Scores KNN

Dataset Based On (Optional) Hyperparameters Neighbors Weight Distance Measure F1 Score F1 Score no other Absolute Difference Difference As Percentage

Bigram 3 distance cosine 0.84 0.80 0.04 4.55

Fasttext Length: 100 & Window: 15 3 distance cosine 0.82 0.78 0.04 5.06

Bleach Text ALL 3 distance cosine 0.82 0.78 0.04 4.98

Bleach Text V 3 distance cosine 0.82 0.72 0.11 12.91

Word2Vec Length: 100 & Window: 15 3 distance cosine 0.82 0.78 0.04 5.39

Word2Vec Length: 300 & Window: 15 3 distance cosine 0.82 0.79 0.03 3.60

Unigram 3 distance cosine 0.82 0.71 0.11 12.99

Word2Vec Length: 100 & Window: 5 3 distance cosine 0.82 0.77 0.05 6.03

Fasttext Length: 100 & Window: 5 3 distance cosine 0.82 0.76 0.05 6.71

Word2Vec Length: 300 & Window: 5 3 distance cosine 0.81 0.77 0.05 5.75

Fasttext Length: 300 & Window: 15 3 distance cosine 0.81 0.77 0.04 5.03

Fasttext Length: 300 & Window: 5 3 distance cosine 0.81 0.76 0.05 5.71

Bert 3 distance cosine 0.81 0.77 0.04 5.14

Bleach Text L 3 distance manhattan 0.75 0.68 0.06 8.14

Bleach Text S 3 distance manhattan 0.71 0.61 0.11 14.80

Bleach Text C 33 distance manhattan 0.59 0.40 0.19 31.96

Bleach Text A 33 distance euclidean 0.57 0.38 0.19 33.94

Doc2Vec Length: 300 & Window: 5 3 distance euclidean 0.44 0.25 0.19 43.83

Doc2Vec Length: 1000 & Window: 5 3 distance euclidean 0.42 0.19 0.23 53.78

Doc2Vec Length: 300 & Window: 15 3 uniform cosine 0.41 0.06 0.35 84.27

Doc2Vec Length: 1000 & Window: 15 3 distance euclidean 0.40 0.10 0.31 75.71
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Table 24: F1-Scores SVC

Dataset Based On (Optional) Hyperparameters Kernel C F1 Score F1 Score no other Absolute Difference Difference As Percentage

Bigram rbf 10 0.88 0.85 0.03 3.28

Unigram rbf 10 0.86 0.80 0.05 6.19

Bleach Text ALL rbf 10 0.84 0.79 0.05 6.33

Bleach Text V rbf 10 0.84 0.79 0.05 6.12

Word2Vec Length: 300 & Window: 15 rbf 10 0.83 0.77 0.06 6.76

Word2Vec Length: 300 & Window: 5 rbf 10 0.82 0.76 0.06 7.66

Bert rbf 10 0.82 0.76 0.06 7.82

Fasttext Length: 300 & Window: 15 rbf 10 0.82 0.74 0.08 9.76

Fasttext Length: 300 & Window: 5 rbf 10 0.81 0.74 0.08 9.29

Word2Vec Length: 100 & Window: 15 rbf 10 0.81 0.73 0.08 9.80

Word2Vec Length: 100 & Window: 5 rbf 10 0.80 0.73 0.08 9.63

Fasttext Length: 100 & Window: 5 rbf 10 0.79 0.69 0.10 12.65

Fasttext Length: 100 & Window: 15 rbf 10 0.78 0.67 0.10 13.38

Bleach Text L rbf 10 0.63 0.48 0.16 24.79

Bleach Text S rbf 10 0.61 0.43 0.18 29.90

Doc2Vec Length: 300 & Window: 5 rbf 10 0.50 0.24 0.26 51.90

Bleach Text A rbf 10 0.49 0.20 0.29 59.00

Bleach Text C rbf 10 0.49 0.18 0.31 62.79

Doc2Vec Length: 1000 & Window: 5 rbf 10 0.47 0.18 0.29 61.10

Doc2Vec Length: 300 & Window: 15 rbf 10 0.45 0.12 0.33 73.53

Doc2Vec Length: 1000 & Window: 15 rbf 10 0.44 0.12 0.32 72.87

Table 25: F1-Scores MLR

Dataset Based On (Optional) Hyperparameters Algorithm C F1 Score F1 Score no other Absolute Difference Difference As Percentage

Bigram sag 10 0.89 0.87 0.02 2.60

Unigram sag 10 0.87 0.83 0.04 4.46

Bleach Text ALL sag 10 0.80 0.74 0.07 8.29

Bleach Text V newton-cg 10 0.80 0.74 0.06 7.63

Fasttext Length 300 & Window 15 lbfgs 10 0.74 0.64 0.10 13.17

Word2Vec Length 300 & Window 15 newton-cg 10 0.73 0.64 0.10 13.42

Fasttext Length 300 & Window 5 sag 10 0.73 0.63 0.10 13.76

Word2Vec Length 300 & Window 5 sag 10 0.73 0.63 0.10 13.20

Bert sag 10 0.73 0.60 0.12 17.06

Word2Vec Length 100 & Window 15 sag 10 0.69 0.55 0.14 20.50

Fasttext Length 100 & Window 15 newton-cg 10 0.69 0.56 0.13 18.91

Fasttext Length 100 & Window 5 lbfgs 10 0.68 0.55 0.13 19.57

Word2Vec Length 100 & Window 5 newton-cg 10 0.68 0.55 0.13 19.05

Bleach Text S newton-cg 10 0.48 0.17 0.31 64.49

Bleach Text L newton-cg 10 0.46 0.13 0.33 71.18

Doc2Vec Length 1000 & Window 5 lbfgs 0.1 0.45 0.17 0.28 62.45

Doc2Vec Length 300 & Window 5 newton-cg 0.1 0.43 0.09 0.34 78.25

Doc2Vec Length 300 & Window 15 newton-cg 1 0.40 0.11 0.29 72.49

Bleach Text C newton-cg 0.1 0.40 0.00 0.40 100.00

Bleach Text A newton-cg 0.1 0.40 0.00 0.40 100.00

Doc2Vec Length 1000 & Window 15 newton-cg 1 0.39 0.21 0.18 45.69

∗ Did not converge
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7.4.8 All Test Results Self-Training

Table 26: Test Results Self-Training using MLR

Dataset Based On Iteration Threshold algorithm C Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bigram 1 0.999 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 0.999 sag 10 0.8852 0.8758 0.8083 0.8371

Bigram 1 0.999999 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 0.999999 sag 10 0.8897 0.8818 0.8166 0.8477

Bigram 3 0.999999 sag 10 0.8864 0.8773 0.8104 0.8392

Bigram 1 0.999999999 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 0.999999999 sag 10 0.8918 0.8846 0.8208 0.8537

Bigram 3 0.999999999 sag 10 0.8893 0.8811 0.8158 0.8463

Bigram 4 0.999999999 sag 10 0.8864 0.8777 0.8101 0.8400

Bigram 5 0.999999999 sag 10 0.8852 0.8754 0.8079 0.8380

7.4.9 All Iteration Results Self-Training

Table 27: Iteration Results Self-Training using MLR

Dataset Based On Iteration Threshold algorithm C Accuracy F1 Score Cohen’s Kappa

Bigram 2 0.999 sag 10 0.9943 0.9940 0.9923

Bigram 2 0.999999 sag 10 0.9925 0.9921 0.9901

Bigram 3 0.999999 sag 10 0.9942 0.9938 0.9921

Bigram 2 0.999999999 sag 10 0.9875 0.9867 0.9836

Bigram 3 0.999999999 sag 10 0.9930 0.9929 0.9905

Bigram 4 0.999999999 sag 10 0.9940 0.9936 0.9913

Bigram 5 0.999999999 sag 10 0.9941 0.9937 0.9915
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7.4.10 All Test Results Co-Training

Table 28: Test Results Co-Training MLR

Dataset Based on Iteration Threshold Algorithm C Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bigram 1 125000 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 125000 sag 10 0.8852 0.8775 0.8098 0.8504

Bigram 1 50000 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 50000 sag 10 0.8947 0.8886 0.8270 0.8649

Bigram 3 50000 sag 10 0.8889 0.8819 0.8164 0.8519

Bigram 4 50000 sag 10 0.8897 0.8822 0.8174 0.8504

Bigram 1 25000 sag 10 0.8980 0.8930 0.8335 0.8698

Bigram 2 25000 sag 10 0.8959 0.8901 0.8293 0.8677

Bigram 3 25000 sag 10 0.8959 0.8900 0.8292 0.8670

Bigram 4 25000 sag 10 0.8914 0.8845 0.8207 0.8568

Bigram 5 25000 sag 10 0.8914 0.8845 0.8210 0.8551

Bigram 6 25000 sag 10 0.8918 0.8845 0.8211 0.8552

Table 29: Test Results Co-Training SVC

Dataset Based On Iteration Threshold Kernel C Accuracy F1 Score Cohen’s Kappa F1 Score no other

Bigram 1 125000 rbf 10 0.8885 0.8821 0.8157 0.8532

Bigram 2 125000 rbf 10 0.8934 0.8866 0.8236 0.8577

Bigram 1 50000 rbf 10 0.8885 0.8821 0.8157 0.8532

Bigram 2 50000 rbf 10 0.8889 0.8813 0.8152 0.8495

Bigram 3 50000 rbf 10 0.8934 0.8866 0.8235 0.8577

Bigram 4 50000 rbf 10 0.8930 0.8862 0.8231 0.8569

Bigram 1 25000 rbf 10 0.8885 0.8821 0.8157 0.8532

Bigram 2 25000 rbf 10 0.8905 0.8832 0.8181 0.8526

Bigram 3 25000 rbf 10 0.8901 0.8827 0.8174 0.8526

Bigram 4 25000 rbf 10 0.8922 0.8853 0.8214 0.8555

Bigram 5 25000 rbf 10 0.8934 0.8862 0.8229 0.8572

Bigram 6 25000 rbf 10 0.8943 0.8875 0.8250 0.8587
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7.4.11 All Iteration Results Co-Training

Table 30: Iteration Results Co-Training MLR

Dataset Based On Iteration Threshold Algorithm C Accuracy F1 Score Cohen’s Kappa

Bigram 2 125000 sag 10 0.9903 0.9896 0.9805

Bigram 2 50000 sag 10 0.9778 0.9758 0.9600

Bigram 3 50000 sag 10 0.9871 0.9861 0.9749

Bigram 4 50000 sag 10 0.9905 0.9899 0.9835

Bigram 2 25000 sag 10 0.9637 0.9605 0.9367

Bigram 3 25000 sag 10 0.9776 0.9758 0.9564

Bigram 4 25000 sag 10 0.9837 0.9826 0.9619

Bigram 5 25000 sag 10 0.9855 0.9843 0.9631

Bigram 6 25000 sag 10 0.9872 0.9861 0.9653
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