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Abstract

This thesis investigates the performance of various (single and multiple) imputation algorithms

under four missingness mechanisms: MCAR (Missing Completely At Random), MAR (Missing

At Random), and MNAR (Missing Not At Random) Type 1 and 2. Using six different datasets,

we evaluate the methods using direct evaluation with RMSE (Root Mean Squared Error) and

PCP (Percentage of Correct Predictions), as well as indirect evaluation (post-imputation clas-

sification accuracy). Furthermore, computation time is taken into account when determining

which methods are most suitable for business use. We find that no single method outperformed

all other methods in all evaluation criteria. The goal for why imputation is required heavily

influences which method is best, as well as data type and size. For categorical data under

MCAR, MAR and MNAR Type 1, Predictive Mean Matching is superior to all other algorithms

based on the PCP metric. Under Type 2 MNAR missingness, Linear Bayesian Regression ob-

tained the highest PCP values. For continuous data, non-parametric methods such as k-Nearest

Neighbours and Random Forest show great accuracy and post-imputation classification accur-

acy under all missingness mechanisms, but also become very computationally intensive for large

datasets, highlighting the importance of practical constraints in business applications. Under

Type 2 MNAR, post-imputation classification accuracy for categorical variables showed that not

imputing the values at all yields better results compared to imputing them.

Keywords: Multiple Imputation, Direct Evaluation, Classification, Type 2 MNAR
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1. Introduction

Total data creation is estimated to reach a staggering 180 zettabytes in 2025 (Statista, 2022).

With this rise in data creation, data quality management becomes equally important. The

availability and utilization of these vast amounts of data have revolutionized various fields: from

business to healthcare, and from social sciences to engineering. However, the quality of that

data is as, if not more, important than the amount of data available in order to get reliable

and valid results. As IBM computer scientist and instructor George Fuechsel famously coined:

”Garbage in means garbage out” (Fuechsel, 1960s).

Figure 1.1: Total data volume through the years. (Statista, 2022)

One critical aspect of data quality management is the way in which missing values are

handled. Missing values are inevitable in real-world datasets, and how they are dealt with can

significantly impact the efficiency, outcome and reliability of data mining techniques (R. J. Little

& Rubin, 2019; Jadhav, Pramod & Ramanathan, 2019). Furthermore, for machine learning ap-

plications, high data quality is crucial for robust predictions and automated decision-making

(Jäger, Allhorn & Bießmann, 2021). As such, the process of filling in or estimating missing

values in a dataset, known as data imputation, has emerged as a vital tool in the arsenal of

data scientists and analysts. The rise in popularity of data imputation can be seen in Figure

A.1 in Appendix A, where the number of publications regarding data imputation has increased
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drastically from approximately a dozen a year a decade ago to more than 50 a year in the past

couple of years.

Initially, approaches to data imputation were relatively straightforward, often involving the

deletion of cases with missing values (complete-case analysis) or filling them with mean or me-

dian values (mean/median imputation). However, these techniques come with some inherent

flaws, such as the distortion of the data distribution and the loss of information (R. J. Little &

Rubin, 2019). Over time, more sophisticated and advanced techniques have been introduced in

order to tackle this problem (Schafer & Olsen, 1998).

The existing research regarding missing values considers multiple different mechanisms for

missing data. These are called missingness mechanisms. The three main mechanisms are Miss-

ing Completely At Random (MCAR), Missing At Random (MAR) and Missing Not At Random

(MNAR) (Rubin, 1976). This paper will consider all three and will aim to investigate the effects

of the different missingness mechanisms on the performance of imputation methods and down-

stream data mining tasks. Additionally, this paper investigates the Type 2 MNAR mechanism

using a novel approach to introducing missing values.

In the literature, a significant amount of work has been done regarding the various statistical

and machine learning techniques that can be implemented for data imputation. A majority of

this literature, however, predominantly focuses on the mathematical and computational aspects

(Lin & Tsai, 2020). A less explored avenue is understanding and addressing the problem of

missing data from a business or company perspective. Here is where this thesis finds its niche,

aiming to bridge this gap in the literature by considering the company’s viewpoint on data

imputation. It delves into how firms can navigate the complexities of missing data, assessing

the practicality and time-effectiveness of different imputation methods in a real-world business

context when underlying missingness mechanisms are often unknown. Thus, the main research

question that this thesis will aim to answer is:

”Which imputation method yields most reliable and robust results under different missingness

mechanisms, while being feasible for implementation in a business setting?”

To confidently address the main research question, we have to consider multiple factors.

First off, the main factor to include is imputation accuracy, or direct evaluation. This is the

most researched part of the imputation literature, and is also important for businesses (Lin &

Tsai, 2020). Therefore, the first sub-question that needs to be answered is as follows:

”Which imputation method most accurately estimates missing values?”

In order to obtain an answer to this question, a direct evaluation of imputation accuracy,

the Root Mean Squared Error (RMSE), will be used. Another important factor to consider,

one which might be more important to companies in certain scenarios than direct perform-

ance, is indirect performance. Indirect performance refers to the efficacy of data mining tasks
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post-imputation. In the research by Lin and Tsai (2020), only 8 out of 111 analyzed papers

investigated both direct and indirect performance, showing that more research is needed on that

front. In business analytics, imputation techniques that are effective at generating data that

can be used for actionable insights are of paramount importance. For this reason, classification

tasks are a good method to measure this effectiveness, as classification tasks are often used

by businesses in real life for various objectives, such as predicting customer churn, customer

segmentation or fraud detection. Therefore, a classification task in this setting is in line with

industry practice. Colleagues at Deloitte, a global consultancy firm, have shared that these

classification tasks are common in their client projects. Aside from that, another reason we use

a classification task to measure indirect performance is that if an imputation method preserves

classification accuracy well, it is a good indicator that the imputation technique has not ruined

the internal structures and relationships of the data. Therefore, the sub-question that will be

answered in regards to this problem is as follows:

”Which imputation method best preserves classification accuracy post-imputation?”

In a business setting it might not be feasible to spend lots of time setting up an algorithm,

and tuning it to perfection. Furthermore, when dealing with large datasets, some methods,

especially machine learning methods, can become very computationally intensive. This is not

desirable, especially in instances where a company wants to set up a pipeline that continu-

ously imputes the missing values. Again, Lin and Tsai (2020) showed that only 11 out of 111

investigated papers considered some metric for computational efficiency. Therefore, the last

sub-question is as follows:

”Which imputation methods are computationally attractive and feasible for business

applications?”

To answer that question, computational time will be taken into consideration, as well as the

amount of tuning parameters and simplicity of setting the algorithm up.

Lastly, this paper will feature an extension where the MNAR missingness mechanism will be

explored in more detail. More precisely, the Type 2 MNAR mechanism will be explored where

missing probabilities depend on factors outside of the dataset. As this missing mechanism is

often found in real life, it is important to know how to deal with this adequately. Therefore, a

final additional sub-question is:

”Which method is most suitable under Type 2 MNAR missingness?”

This thesis is organized as follows: to start, Chapter 2 will offer a summary of the existing

literature. Next, Chapter 3 will discuss the data used or generated in this research, detailing

any transformations and related aspects. In Chapter 4, a thorough overview of the statistical

and machine learning methods will be presented, including the assumptions, strengths, and

weaknesses of each method. This chapter will also provide a comprehensive explanation of all
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the different missingness mechanisms. Then, Chapter 5 will reveal the main results of this

research. After that, Chapter 6 will cover the results of the extension of this thesis regarding

Type 2 MNAR missingness. To wrap up, Chapter 7 will further discuss all results, leading to

the final conclusions.
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2. Related Work

In this section, we aim to shed light on the existing body of literature surrounding missing value

imputation (MVI). The goal is to provide a clear overview of the current state of research in

this area, highlighting both the strengths and the potential gaps in current knowledge. We will

outline the key findings of several significant papers, offering a straightforward summary of their

results. Additionally, areas where current research might be lacking will be identified, pointing

towards opportunities for further exploration and investigation in this domain.

A big downside often found in the body of literature surrounding missing value imputation

is that they mainly rely on smaller machine learning datasets. These usually have a few fea-

tures, no more than 100, and not a lot of data samples, generally only going from a couple of

hundred to a few thousand (Lin & Tsai, 2020). However, there have been some exceptions to

this trend. For instance, the studies by Folino and Pisani (2016) and Farhangfar, Kurgan and

Pedrycz (2007) made use of much larger datasets. These encompassed 216 feature dimensions

and included a massive number of data samples, with counts of 581,012 and 256,000 samples

respectively. However, the study by Folino and Pisani (2016) did not study the actual imputa-

tion of values, but rather a meta-ensemble method of classifiers for handling missing values.

Additionally, Folino and Pisani (2016) only investigated the MAR mechanism, and Farhangfar

et al. (2007) only investigated MCAR. Farhangfar et al. (2007) found that their unsupervised

imputation methods were more stable compared to the supervised ones, indicating that the im-

putation accuracy gets less worse than other methods when increasing the amount of missing

values. Specifically, the unsupervised methods seemed less sensitive to the amount of missing

values.

In a paper by Jäger et al. (2021), a comprehensive benchmark of several classical and mod-

ern imputation techniques was performed. They analysed the data and results under realistic

circumstances, with different missingness mechanisms and percentages of missing values. A wide

range of real-life datasets were used in order to get a good understanding of the performances

under different conditions, with a maximum of 25 variables and 100.000 observations. The au-

thors compared several imputation techniques, including Mean/Mode, k-NN, Random Forest,

Discriminative Deep Learning, Variational Autoencoder Imputation and Generative Adversarial

Network Imputation. For the evaluation of imputation accuracy of continuous variables and

of regression tasks, Jäger et al. (2021) used the RMSE metric. For the evaluation of categor-

ical variables and classification tasks, they used the macro F1-score metric. Jäger et al. (2021)

found that simpler supervised learning methods often obtain similar results, and sometimes
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even outperform, modern generative methods. The authors do point out that the deep learning

approaches can be significantly slower than other methods, due to the time it takes to optimize

and train the model. They concluded that Random Forest Imputation yielded the most accurate

results, also accounting for post-imputation data mining performance.

Hameed and Ali (2022) analyzed seventeen different MVI techniques. These included, but

were not limited to, mean/mode, k-NN, regression, Multiple Imputation by Chained Equations

(MICE), Expectation Maximization (EM) Imputation and Support Vector Machine (SVM) Im-

putation. They found that the performance of these methods depends on various factors, such as

the field of study, the performance matrix used and the characteristics of the dataset (Hameed &

Ali, 2022). They found that MICE worked well in the medical field, whilst also highlighting that

popular methods like mean imputation, k-NN and MICE are not necessarily the most efficient,

meaning that they either become computationally intensive for large datasets (k-NN, MICE) or

their reliability for imputations is questionable (mean imputation).

The study by Faisal and Tutz (2021) focuses on the modern biomedical field where missing

data is a common issue. The field of biomedical sciences often contains a large number of mixed-

type variables, which not all imputation methods can handle well. The authors proposed a novel

imputation method that uses a weighted version of nearest neighbours to accommodate mixed

data. They compared it to existing methods, namely k-NN and Random Forest imputation.

Faisal and Tutz (2021) tested their method on a number of different, real or simulated, datasets

and found that their proposed method yielded smaller imputation errors than the two aforemen-

tioned methods. The imputation error did however heavily rely on the size of the correlation

in the data. Additionally, they note that their proposed method was relatively time-consuming

due to the hyperparameter optimization being essential for good results. The authors used the

proportion of falsely imputed categories (PFC) and mean squared imputation error (MSIE) for

the evaluation of categorical and continuous imputations, respectively.

Jadhav et al. (2019) aimed to gain insight into data missingness mechanisms and imputation

performance. They did this by analying seven different imputation algorithms, including mean

imputation, median imputation, k-NN imputation, predictive mean matching and Bayesian Lin-

ear Regression. Five different datasets from the University of California, Irvine repository were

used to test these methods. It should be noted that these datasets were quite small, as none

of them exceeded more than 1030 observations and 13 attributes, and that they were all nu-

merical datasets. They analyzed the methods using the Normalized Root Mean Squared Error

(NRMSE) metric. They found that the k-NN algorithm outperformed all others and that its

relative performance was independent of the dataset and the amount of missing values used

(Jadhav et al., 2019).

In a paper by Randahl (2022), the effect of missing values and imputation techniques on

the forecasted number of fatalities as an effect of political violence in various countries was in-

vestigated. He investigated all three main missingness mechanisms using 7200 simulations. The

8



imputation algorithms that were tested were mean imputation, Random Forest, k-NN, Predict-

ive Mean Matching, Expectation Maximization and Bayesian linear regression. He found that

the choice of imputation algorithm significantly affected the predicted casualties, and perhaps

surprisingly found that single imputation methods worked best overall, especially the k-NN and

Random Forest algorithms (Randahl, 2022).

To conclude, the existing body of literature relies mostly on small datasets with few variables

and often do not investigate all missingness mechanisms. Exceptions do exist, but the combina-

tion of sizable datasets, all mechanisms and utilizing both direct and indirect evaluation remains

a gap in the literature. This thesis will aim to bridge this gap, by using both small and bigger

datasets, exploring all missingness mechanisms, and using both direct and indirect evaluation

of the methods. Some studies suggest that the type of data is paramount to choosing the right

imputation technique (Faisal & Tutz, 2021). This will also be looked at in further detail. Ad-

ditionally, this thesis will aim to gain insight into which imputation technique works best for

business applications, incorporating computation time, feasibility, and robustness to the differ-

ent types of missingness as well. Finally, very few papers exist on the Type 2 MNAR mechanism

and its effect on the optimal imputation strategy. This thesis will aim to find answers to the

questions that arise from this gap in the literature.
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3. Data

This section will explain the data that is used in this research. It will be divided into two

parts: public data sets and simulated data sets. All transformations and other steps in data

preparation will be explained in order to make this research reproducible. An overview of all

datasets and their characteristics can be found in Table 3.1.

3.1 Public data sets

All public data sets are retrieved from either the University of California, Irvine (UCI) Machine

Learning repository, or Kaggle.

3.1.1 Iris

The Iris dataset by Fisher (1988) is a very well-known dataset, used in many studies for classi-

fication or other machine learning tasks (Eirola, Doquire, Verleysen & Lendasse, 2013; Kiasari,

Jang & Lee, 2017; Silva-Ramı́rez, Pino-Mej́ıas & López-Coello, 2015; Hameed & Ali, 2022;

Gautam & Ravi, 2015). It contains 150 observations of 5 variables, one of which is the target

variable. The four predictor variables are height and width measurements of the petals and

sepals of the Iris flower, which are used to predict which of the three species of Iris flower it is.

All predictor variables are continuous, ranging from 0.1 to 7.9 cm. The four predictor variables

do not have a multivariate normal distribution, as can be seen from the Mardia’s tests in Table

A.1 in Appendix A (Mardia, 1970). When categorizing by the outcome variable however, they

do approximate multivariate normality. This dataset only needed one transformation, where the

target variable was transformed from a string to a categorical variable by coding the strings to

integer values.

3.1.2 Car Evaluation

The car evaluation dataset by Bohanec (1997) is a dataset consisting of exclusively categorical

variables. It has 1,728 observations containing 6 predictor variables and 1 multinomial target

variable with 4 levels (unacceptable, acceptable, good, very good). The 6 predictor variables can

be divided into two groups: price (buying price, maintenance price) and technology (number of

doors, capacity, size of luggage boot, estimated safety). The goal is to predict the acceptability

of the car. This dataset can be used in order to evaluate the performance of imputation methods

for categorical variables. As the variables are all categorical, they follow a multinomial distribu-

tion. Most predictor variables are balanced, meaning that the categories of each attribute are
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approximately equally present in the dataset. The multinomial target variable ’Acceptability’

is imbalanced however, with ’unacc’ (unacceptable) being the most frequent (1210 out of 1728

observations). This dataset was transformed in the same way as the Iris dataset, where all string

(categorical) values were coded to be represented as integer values.

3.1.3 Banknote Authentication

The banknote dataset by Lohweg (2013) is a dataset often used for training of binary classi-

fication tasks. It consists of 1,372 observations with four continuous predictor variables and

one binary target variable (0 for authentic, 1 for inauthentic). The predictor variables are the

Variance, Skewness and Kurtosis of a wavelet-transformed image, as well as the overall entropy

of the image. All values come from real-life images of banknotes. The variables are not normally

distributed, but rather skewed (See Table A.2 in Appendix A). This dataset did not need any

transformations or adjustments before use.

3.1.4 Adult/Census Income

The adult dataset (also known as Census Income) by Becker and Kohavi (1996) is a dataset that

is commonly used for classification tasks. The goal is to predict whether an individual’s earnings

exceed $50.000 per year based on various factors. The dataset contains 32,561 observations of

15 variables, of which one is the target variable where 0 denotes an income of less than $50.000
and 1 denotes an income of $50.000 or more. The data contains both categorical/binary and

continuous variables. The categorical/binary variables are workclass, education, marital-status,

occupation, relationship, race, gender and native-country. The continuous variables are age, fn-

lwgt, education-num, capital-gain, capital-loss and hours-per-week. The categorical and binary

variables were again mapped to be represented by integers.

Table 3.1: Summary of datasets and their characteristics

Dataset Name Observations Variables Variable Type Domain

Iris 150 5 Continuous Biology
Banknote Authentication 1,372 5 Continuous Finance
Car Evaluation 1,727 7 Categorical Automotive
Adult/Census Income 32,561 15 Mixed Demographics
Simulated Data 1,000 18 Mixed Simulation

3.2 Simulated Data

In the interest of obtaining data that adhere to the assumptions of most models, namely the mul-

tivariate normal assumption, simulated datasets were created. This way, a multivariate normal

dataset could be created in combination with categorical or binary variables with explanatory

power. This was done by first simulating a continuous multivariate normal classification dataset

with a binary target variable using the sim classification function from R package modeldata

(Kuhn, 2023). This function takes a few parameters, including the number of observations,
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number of linear predictors and an intercept value. The intercept value (α) was set at −5, with
1000 observations and 5 linear predictors. The predictors are simulated in two sets: first, two

multivariate normal predictors (β1 and β2) are simulated with a correlation of approximately

0.65 and a zero mean. These change the log-odds using main effects and an interaction term as

follows:

α− 4β1 + 4β2 + 2β1β2

The intercept can be changed to introduce class imbalance. An intercept of −5 gives a slight

imbalance towards the positive class, meaning that approximately 550 observations will have

a 1 as their outcome variable. The second set of predictors (γk, k = 1, ..., 5) are linear, and

contribute to the log-odds using alternating signs and coefficients having a constant sequence of

values between 2.5 and 0.25. Their contribution to the log-odds is as follows:

−2.5γ1 + 1.9375γ2 − 1.375γ3 + 0.8125γ4 − 0.25γ5

All linear predictors follow a standard univariate normal distribution with mean 0 and a stand-

ard deviation of 1.

After that, four random categorical variables were added that had no explanatory value

for the target. These variables attain values ranging from 0 to 4, with equal probability. To

add explanatory categorical variables, conditional probabilities were used where the probabil-

ity of a low number was higher when the target value was 0, and conversely, the probability

of a high number was higher when the target value was 1. The categorical variables range in

values from 1 to 4. When the target variable is 0, the probabilities of getting a 1, 2, 3 or 4

were [0.5, 0.4, 0.1, 0.0], respectively. When the target variable is 1, these probabilities change to

[0.1, 0.2, 0.3, 0.4] respectively.

In the interest of seeing what happens to the imputation performance when data is not nor-

mally distributed, we create another dataset where we add skewness to our originally simulated

data. For this, we use the exact same simulated dataset as explained before, but add a trans-

formation to the first two normally distributed variables. These are also the variables where

missing values will be introduced. The transformation consists of two parts. First, we apply

a Box-Cox transformation on the variable after we make all values positive, see Equation 3.1.

Then, we shift the data back, see Equation 3.2.

Xskewed =
(X −min(X) + 1)λ − 1

λ
(3.1)

Xskewedback = Xskewed +min(X)− 1 (3.2)

After this transformation, the range of the variables was different than the original variables.

In order to still be able to compare the two in our direct evaluation, a linear transformation

was applied. This transformation consists of two steps: first, we make sure that the differ-

ence between the minimum value and the maximum value is the same. This can be done by
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multiplying the skewed data by a scaling factor, which is calculated as follows:

max(Xoriginal)−min(Xoriginal)

max(Xskewed)−min(Xskewed)
(3.3)

After that, the only thing left to do is to shift the data so that they have the same range.

This can be done by adding the following to the scaled data:

max(Xoriginal) + min(Xoriginal)

2
− max(Xscaled) + min(Xscaled)

2
(3.4)

In Equation 3.1, the λ parameter determines how much skewness is introduced. When

0 < λ < 1, the data will become right-skewed. When λ > 1, the data will become left-skewed.

Smaller values of λ will result in more right-skewness. In this thesis, λ will be set to 0.01. See

Figure 3.1 for the histograms of the two transformed of our simulated data, before and after

performing the transformation.

Figure 3.1: Histograms of the first simulated variable, before and after Box-Cox transformation
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4. Methods

This section is structured as follows: Section 4.1 and 4.2 will explain all imputation methods that

are used in this paper. It will cover how they work, what kind of assumptions they make and

the potential advantages and disadvantages that they bring. After that, Section 4.4 will explain

the three main missingness mechanisms, and Section 4.5 will explain the extension on this paper

with an extra, less explored, missingness mechanism in the Type 2 MNAR missingness.

4.1 Single Imputation

This section will outline each of the single missing value imputation methods. It will explain

how they are used, how they work and their potential advantages or disadvantages.

4.1.1 Listwise deletion

Listwise deletion, or complete-case analysis, refers to the analysis where only the complete ob-

servations are considered. All observations that have one or more missing attributes get removed

from the dataset, after which the required data mining task is performed on the remaining data.

This method is simple, but may introduce bias, affects variability and causes a big loss of data

and precision (Hameed & Ali, 2022).

4.1.2 Mean/Median - Mode Imputation

Mean/mode or median/mode imputation is used as a baseline imputation method. This im-

putation technique is most often used in practice because it is the easiest to implement (Ambler,

Omar & Royston, 2007). These methods work by simply taking the mean or median value

of all observed values for each continuous variable, and imputing the missing values with this

number. For categorical or binary variables, we take the mode of each variable and impute the

missing values accordingly. When using the mean for the imputation of continuous variables,

the algorithm can be sensitive to outliers. Using the mode circumvents this problem. However,

it should be noted that both methods can significantly change the mean and standard deviation

of the data post-imputation (Hameed & Ali, 2022).

4.1.3 k-NN Imputation

K-nearest neighbours (k-NN) imputation is a non-parametric method that uses a predefined

distance metric to quantify the degree of proximity among observations. In this research, the

kNN() function from R package VIM was used to implement this imputation method. The
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algorithm consists of two steps. First, the distances between the observation with a missing

value to all other observations are calculated. Then, the k closest neighbours are aggregated to

calculate the imputed value.

The measure of distance between two observations is computed as a weighted mean of the

individual contributions from each variable. The selection of weights reflects the significance of

each variable in the analysis. Consequently, the distance between the i-th and j-th observations

is defined as follows:

di,j =

∑p
k=1wkδi,j,k∑p

k=1wk
(4.1)

where di,j is the distance between observation i and j, wk is the weight of variable k and

δi,j,k is the contribution of the k-th variable. The weights wk are calculated using a Random

Forest regression, where the variable weights are based on the variable importance according

to a Random Forest regression. These feature importances range from 0 to 1, and thus can

be directly used as weights for the k-NN imputation. The main advantage of this method is

that the algorithm can assign higher weights to variables that are important for predicting the

outcome variable, which can lead to more accurate imputations. For continuous variables, the

method involves calculating the absolute distance between elements and then dividing it by the

total range of the variables:

δi,j,k =
|xi,k − xj,k|

rk
(4.2)

where xi,k is the value of the k-th variable of the i-th observation and rk is the range of the k-th

variable, i.e. its maximum value minus its minimum value (Kowarik & Templ, 2016). For ordinal

variables, the categories are converted to integers, after which it follows the same contribution

equation (Equation 4.2). As such, if an ordinal variable has values 1, 2, 3 and 4, the different

values are seen as equidistant. One can change these values to adjust the distance between the

unique values.

For nominal and binary variables, a regular 0/1 distance is used:

δi,j,k =

0 if xi,k = xj,k,

1 if xi,k ̸= xj,k.
(4.3)

After all the distances are calculated, the k nearest neighbours to the observation with the

missing value (based on di,j) are aggregated to calculate the imputed value. For continuous

variables, the imputed value will simply be the median value of these k nearest neighbours. For

categorical variables, the mode of the k nearest neighbours is used to impute the missing value.

An advantage of this technique is that it is suitable for both continuous and categorical

variables. Furthermore, it eliminates the necessity of generating a predictive model for every

individual missing data attribute. This is particularly advantageous in scenarios involving mul-

tiple instances of missing values (Hameed & Ali, 2022). However, as this method requires the

algorithm to go through each observation to calculate its distance to the incomplete observation,
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it gets computationally intensive as the data set grows large.

4.2 Multiple Imputation

The idea of Multiple Imputation (MI) was first proposed by Rubin (1978) and refers to the

process of imputing a certain missing values multiple times, each time generating a slightly dif-

ferent value. The main idea behind MI is that it tries to encapsulate the inherent uncertainty

that comes with missing value imputation. With single imputation, subsequent analyses are

performed based on the assumption that the imputed value is the true value, which is a very

strong assumption and often not true. MI aims to circumvent this problem by imputing the

missing values M times, and performing the subsequent analyses on all M datasets, treating

each imputed dataset as if it were the one real dataset (Rubin, 1978). After that, the resulting

parameter estimates get pooled together in order to get a more accurate estimate with the un-

certainty of imputation included.

In this thesis, all MI methods except for Expectation Maximization were performed using R

package mice (Van Buuren & Groothuis-Oudshoorn, 2011). MICE is an acronym for Multiple

Imputation by Chained Equations. It is a widely used approach in the broad framework of MI.

MICE works as follows: It starts with the initialization step, where the algorithm performs a

simple imputation, namely mean or mode, depending on the data type. Then, the iterative

procedure starts. Each variable that had missing values is marked as missing. One by one,

each variable with missing values is used as a target variable, with the other variables being

used as predictors, including the simply imputed variables. Each time, a model is trained with

those predictors and target variables. This is where the different model selections play into effect.

In this thesis, we use Linear Bayesian Regression, Predictive Mean Matching and Random

Forest. The missing values are imputed based on the predictions of the selected model. The

variables get imputed one by one, each time also using the most recent imputed values in the

models. After all variables have been updated, the entire process repeats itself multiple times

in a chained fashion, meaning that each time the newly imputed values are used to predict the

missing values. The amount of iterations can be adjusted. In this thesis, the maxiter variable

was set to 10 each time, as the creators of the algorithm state that good results should be

obtained after as few as 5 or 10 iterations (Van Buuren & Oudshoorn, 2000). I chose to keep

it at 10, and not more, due to time and computational restraints. After these 10 iterations,

we have imputed one dataset. This entire process is repeated M times, each time getting new

estimates for the missing values. Normally, one would perform analyses on all M datasets, but

as we are focusing on the imputation performance we will take a different approach. Instead, we

will average all M imputations to get the final estimates of our missing values. For categorical

variables, the average values will be rounded to obtain the final imputed value. We use the

rounded mean, as the categorical variables that we impute generally have an order to them,

making the rounded mean represent a central tendency of the imputations. The only dataset

where this does not fully apply is the Adult dataset, where we impute the maritalstatus variable.
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The rest of this section will outline each of the multiple imputation techniques that are used in

this research. It will explain how they are used, how they work and their potential advantages

or disadvantages (Van Buuren & Oudshoorn, 2000).

4.2.1 Expectation Maximization Imputation

The Expectation Maximization (EM) Imputation algorithm makes use of an iterative procedure

in order to estimate the missing values. It achieves this by determining the maximum likelihood

estimates for the parameters of the distribution that the entire dataset is assumed to follow.

The algorithm assumes multivariate normality, thus it estimates the means and (co)variances of

the multivariate normal distribution. In the context of missing value imputation, this method

seeks to estimate the missing values in a dataset by maximizing the expected log-likelihood of

that value. The iterative procedure contains two steps. The first step is the E-step, or the

Expectation step. The algorithm evaluates the conditional expectation of the log-likelihood of

the data (Krishnan & McLachlan, 2012).

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)] (4.4)

Here, the expectation is taken with respect to the missing data (Z), conditional on the complete

or observed data (X) and the parameters of the previous iteration (θ(t)). Additionally, Z

are the latent variables. In the context of data imputation, the missing values are treated as

latent variables. In the E step, these missing values are estimated given the current estimated

parameters and the observed data.

The second step is the M-step, or the Maximization step. Here, the algorithm maximizes

the expected log-likelihood that was evaluated in the E-step in order to obtain new estimates

for the parameters (Ghomrawi, Mandl, Rutledge, Alexiades & Mazumdar, 2011).

θ(t+1) = argmax
θ

Q(θ|θ(t)) (4.5)

In other words, the algorithm finds the parameters that maximize the new expected log-likelihood,

using both the observed and missing data in the process. These two steps are repeated in an

iterative manner until the algorithm reaches convergence, when the change in log-likelihood from

one iteration to the next gets smaller than a certain threshold, or the difference in parameter

estimates crosses a certain threshold (Lin & Tsai, 2020; Krishnan & McLachlan, 2012).

The EM imputation algorithm has some drawbacks. First, it is possible that, if multiple

local maxima exist, the EM algorithm can converge to a local maximum of the log-likelihood

instead of a global maximum (Redner & Walker, 1984). Furthermore, if the estimation of the

complete-data maximum likelihood is complicated, the algorithm can become computationally

intensive (McLachlan & Krishnan, 2007). This is especially the case for large datasets. Lastly,

even though the EM algorithm does not have many assumptions, it does assume multivariate

normality and a MAR missingness mechanism, which can be particularly challenging to satisfy

for categorical or binary data (McLachlan & Krishnan, 2007). The implementation of the EM

algorithm in this thesis is done using R package Amelia (Honaker, King & Blackwell, 2011).
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4.2.2 Linear Bayes Imputation

The Linear Bayes (LB) imputation algorithm uses a Bayesian framework to impute the missing

values. It specifies a linear model, which implies that it assumes a linear relationship between

variables. This linear model takes the following form:

Y = β0 +

p∑
i=1

βixi + ϵ (4.6)

where Y is the dependent variable, β0 is the constant term, the βi’s are the coefficients corres-

ponding to variables xi and ϵ is the error term, which is assumed to be normally distributed

(Raftery, Madigan & Hoeting, 1997).

To estimate the imputed values, it first estimates the parameters of the linear model. Using

the Bayesian method, it treats each parameter β as a random variable, and provides a distribu-

tion for these parameters, capturing the uncertainty around them. These distributions are called

priors. These priors can be a standard normal distribution, but they can also take other forms

when information is already available from previous studies for example. Using the observed

data, these priors are updated to form posterior distributions using Bayes’ Theorem (Joyce,

2003). For each missing value, the model uses the estimated parameters to generate a value

that fits the data and the model. Because it is a Bayesian technique, it samples these values

from the posterior distribution which means it encapsulates the uncertainty of the imputation.

Because of that uncertainty, the LB algorithm is used in a multiple imputation setting, where

it generates multiple plausible values for one missing cell.

4.2.3 Random Forest Imputation

Random Forest Imputation, also known as Missing Forest in some literature, is a non-parametric

imputation method that harnesses the strengths of the machine learning algorithm Random

Forest (RF). The conceptual framework of RF, which serves as the cornerstone of this imputa-

tion method, is founded on the idea of constructing multiple decision trees on the training set

and outputting a value that is the mode of the classes from individual trees for classification

problems (missing values in categorical variables), or a mean prediction of the individual trees

for regression problems (missing values in continuous variables) (Breiman, 2001).

The algorithm works as follows: first, the dataset is split into a training set and testing set.

For all model building purposes, only the training set is used. Then, a decision tree is fitted to

the data. A decision tree is built by recursively splitting the data based on (random) feature

variables, where each time the best split is chosen among these variables (see Figure 4.1 for a

simplified example). For each Random Forest, a large amount of trees are made.
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Figure 4.1: Simplified Decision Tree example.

All trees are then combined in order to make a final prediction. For categorical values that

are missing, the formula is as follows:

Ŷ (X) = argmax
j∈{1,2,...,k}

B∑
b=1

I(fb(X) = Cj) (4.7)

Here, Ŷ (X) is the final predicted value, k is the number of categories for this categorical variable,

B is the total amount of trees, I is an indicator function which is 1 if the condition is true and 0

otherwise, and fb(X) corresponds to the prediction of tree b. In other words, the function counts

which class was predicted most often by all trees, and selects that class as the final prediction.

For continuous variables, the equation is as follows:

Ŷ (X) =
1

B

B∑
b=1

fb(X) (4.8)

Again, Ŷ (X) denotes the final prediction, B is the number of trees and fb(X) denotes the pre-

dicted value of tree b. In other words, this function calculates the mean value of all predictions

and selects that as the final predicted value.

In the application of missing value imputation, the strategy is relatively straightforward: a

Random Forest model is fitted to the observed data while treating the missing data as the target

variable, on a variable-by-variable basis for each column that contains missing values. Following

this, the model predicts each missing value and fills it in accordingly. Notably, this process

does not require the specification of a model beforehand and makes no assumptions concerning

the distribution of the complete data. Moreover, it effectively captures non-linear relationships

and can handle mixed-type data, presenting a considerable advantage in data analysis (Shah,

Bartlett, Carpenter, Nicholas & Hemingway, 2014; Stekhoven & Bühlmann, 2012).
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4.2.4 Predictive Mean Matching Imputation

Predictive Mean Matching (PMM) imputation, as proposed by R. J. A. Little (1988), is a semi-

parametric method that tries to retain the distributional properties of the data (R. J. Little,

1988; Robins & Wang, 2000). Where parametric methods make distributional assumptions such

as multivariate normality, PMM makes use of the observed data to impute the missing values.

In order to efficiently explain how this method works, let us introduce some new notations. Let

v be the variable that contains missing values, and let X be the other variables. The method

fits a multivariate linear regression of v on X, based solely on the observed data. Using this

regression, it predicts a value for v for each observation, which we will call µ̂i. It then checks the

data for which variable v is observed for potential candidate donors, and selects 5 (this varies

across implementations and packages, R package mice uses 5) candidates that are closest in

predicted mean µ̂i based on absolute differences. From these 5 so-called ’donors’ that are closest

to the missing observation in terms of predicted mean µ̂, one is randomly chosen. It is not the

value of µ̂j , where j is the selected donor, that the missing value is imputed with, but rather the

true value of that donor in that variable, namely vj . This way, it maintains the variability and

distributional characteristics of the dataset (Morris, White & Royston, 2014). As explained in

Section 4.2, the MICE algorithm then iteratively imputes all variables.

Aside from not assuming a certain distribution, another one of the advantages of PMM

is that it works particularly well when the data is not normally distributed or when there is

a non-linear relationship between variables. Literature has shown that it also works well for

categorical variables, and has computational advantages when the number of categories is large

(Van Buuren & Groothuis-Oudshoorn, 2011). Additionally, it can handle both continuous and

categorical variables. A final advantage is that because of how the algorithm works, imputed

values are always restricted to the observed values (R. J. Little, 1988). The downside of PMM

is that it can be more computationally intensive than other methods, but not as intensive as

methods like Random Forest imputation or k-NN imputation (R. J. Little, 1988).

4.3 Evaluation

As mentioned in Section 1, this research will make use of several evaluation metrics. These can

be split up as direct evaluation, indirect evaluation and feasibility.

4.3.1 Direct Evaluation

Direct evaluation refers to the direct imputation accuracy of each method. This will be quantified

by using the Root Mean Squared Error (RMSE) of the imputed values compared to the original

true values. The RMSE is calculated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (4.9)

Here, n denotes the total number of missing values. xi and x̂i denote the true value and imputed
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value, respectively. Lower values for the RMSE correspond with a better imputation accuracy.

The RMSE is a metric that can be used correctly for continuous variables, but not for categorical

or binary values. Therefore, for the evaluation of discrete variables the Percentage of Correct

Predictions (PCP) is used (Nishanth & Ravi, 2016; Valdiviezo & Van Aelst, 2015).

PCP = 100 ∗ # of correctly imputed values

# of total predictions
(4.10)

Higher PCP values correspond with a better imputation accuracy for the discrete variables.

A problem that arises when comparing some methods, is that not all methods are suited for

multiple imputation. This is because MI needs a random component to the imputation procedure

in order to obtain different results for each imputation. This can be in the form of a random

noise that is added or in other ways that introduce randomness to an algorithm, like the way in

which Random Forests are built. Methods like k-NN imputation do not have a random aspect

to them, but are deterministic. This means that each time that you run the algorithm, you will

get exactly the same imputed values. To circumvent this problem and be able to compare all

methods to each other directly, this research uses multiple amputation. Multiple amputation

refers to the process of introducing missing values to the same dataset multiple times, so that in

each amputed dataset the values that are missing differ from each other. One then imputes these

datasets separately, after which statistics like the mean and standard deviation of the RMSE

and PCP can be calculated in order to compare all methods. For the methods that can be used

for multiple imputation, each amputed dataset gets multiple (5) imputations as explained in

Section 4.2, after which the mean values of all imputations are taken as the final imputed value.

This way, the power of multiple imputation is upheld, while subsequently being able to compare

all methods to each other.

4.3.2 Indirect Evaluation

Indirect evaluation refers to the process of evaluating the methods by their post-imputation data

mining task performance. This research will focus on classification performance. Each imputed

dataset will be run through a simple XGBoost algorithm, after which the classification accuracy

will be calculated.

The XGBoost algorithm, like the Random Forest, is a nonparametric decison tree-based

ensemble method. It was first introduced by Chen and Guestrin (2016). The efficiency, effect-

iveness and scalability is widely lauded since its inception, as it was dominating machine learning

challenges (Chen & Guestrin, 2016). XGBoost is an acronym for eXtreme Gradient Boost. The

boosting refers to the practice where weak learners, usually decision trees, are sequentially built.

In this process, each new tree learns and corrects the errors that are made by previous trees.

This works via an additive model, where the models are added together to correct residuals from

previous models. This process can be defined in the following way:

Ft(x) = Ft−1(x) + η ∗ ht(x) (4.11)
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Here, Ft(x) denotes the model at iteration t, ht(x) is the new ’weak learner’ that is added at

iteration t, and η is the learning rate which has a default value of 0.3. The algorithm optimizes

an objective function based on the predictions of the previous trees, the contribution of the

current tree and regularization terms:

L(ϕ) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (4.12)

Here, ϕ is a set of parameters for the model, yi is the true outcome value of observation i, ŷ
(t−1)
i

denotes the model’s prediction based on the previous t− 1 trees, and ft(xi) is the prediction of

the new tree for observation i. The regularization term Ω(ft) is there to prevent overfitting. This

works by adding a penalizing term to the objective function when the model gets too complex.

l(·) is the loss function, which changes depending on what type of outcome variable your dataset

has. For binary classification tasks, the loss function is typically a binary logistic loss function,

also known as log-loss. The log-loss function for a single observation is as follows:

l(y, p) = −(y log(p) + (1− y) log(1− p)) (4.13)

Here, y is the true class label, and p is the predicted probability of having an outcome value

of 1. This loss function penalizes predictions that are confidently wrong. For multinomial

classification tasks, the loss function takes on a slightly different form. This loss function is

called the softmax loss function. This function is also for a single observation.

l(y,p) = −
M∑
c=1

yc log(pc) (4.14)

Here, y is a one-hot encoded vector with length M that denotes the true class label of the ob-

servation, with yc = 1 for the class that it is in and 0 otherwise. M is therefore the total number

of classes. The vector p is also a vector of length M , and contains the predicted probabilities

of being in each class. yc and pc denote the true label and predicted probability of being in

class c. Note that in the objective function (Equation 4.12), we have yi, ŷ
(t−1)
i and ft(xi) as

’parameters’ in the equation, which is different to the parameters y, y, p and p in Equations

4.13 and 4.14. This is because the objective function aims to explain how each new tree (ft(xi))

is added to the model’s existing predictions (ŷ
(t−1)
i ). The loss functions however, aim to explain

a single observation’s prediction, namely p or pc. These probabilities are essentially the same as

ŷ
(t−1)
i + ft(xi)), but just captured into one term.

Because of the use of multiple amputation, mean and standard deviation values can be

calculated for the classification accuracy as well. The XGBoost algorithm is used because it has

the addition of being able to handle missing values. Because it can handle missing values, we can

also perform the classification task on the incomplete dataset, and get a baseline classification

accuracy. If a company is only interested in a classification task, it might not be worth imputing

the values if the classification accuracy of the XGBoost model is comparable or even higher than

the post-imputation classification accuracy. For each classification, 5-fold cross-validation was
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used in order to obtain more accurate results for classification accuracy.

4.3.3 Computation Time And Feasibility

The evaluation on the basis of feasibility relies on two things. One is the computation time, or

the time it takes each algorithm to finish the imputation procedure. This is internally measured

in the amount of seconds from the start of the procedure until the end. For all imputation tasks,

a HP EliteBook x360 1040 G6 was used, with an Intel Core i7-8665U processor. The power mode

of the laptop was set to maximum at all times. As we are using multiple amputation, the total

time it takes for all 20 iterations will be averaged. It should be noted that the methods that use

multiple imputation will have to impute the data multiple times, which will clearly impact the

computation time. However, this will not be corrected as in practice, one will also want to use

multiple amputation for these methods because that is where their strength lies. Additionally,

due to the nature of how this research is set up, the computing time of the different methods

will also include saving each imputed dataset and calculating RMSE values. This added time

is negligable when compared to the total computation time of the algorithms. Additionally,

these extra computations are the same for each method, which means it will not affect the

overall conclusions. The second part consists not of a metric, but more of a nuanced perspective

on feasibility. The amount of hyperparameters that need tuning can become large for some

methods, which is not always desirable in a business setting. Therefore, this will also be taken

into consideration in the final evaluation of this thesis.

4.4 Missingness Mechanisms

In the realm of missing data, three main so-called missingness mechanisms can be identified.

Those three mechanisms are: Missing Completely At Random (MCAR), Missing Not At Ran-

dom (MNAR) and Missing At Random (MAR) (Rubin, 1976). The differences between these

mechanisms are quite subtle. To help clarify these nuances, this section will offer fictive ex-

amples to illustrate each one more clearly, as was done by Jäger et al. (2021).

In this study, each of the three mechanisms will be simulated in order to see the different effects

they might have on the efficiency and results of the imputation techniques. This is done using

the ampute function in R package mice (Van Buuren & Groothuis-Oudshoorn, 2011). The

percentage of missing values was set to 50%. This means that in total, 50% of observations

will have a missing value in one of its columns. Furthermore, it should be noted that for each

dataset, two variables were amputed. This means that for each variable that has been amputed,

approximately 25% of the observations will be missing. There are no observations with a miss-

ing value in both variables. These variables that are amputed were selected based on feature

importances from a base XGBoost model on the full dataset. If the dataset was continuous or

categorical only, like the Iris and Car datasets, the two most ’important’ variables were selected

for amputation. If the dataset has mixed variables, the most ’important’ continuous and cat-

egorical variables were selected. See Appendix A.1 for all feature importance graphs.

In order to provide adequate mathematical formulas for the different missingness probabilities,
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we need to establish some notation. Let the variables (excluding the Y variable) of our dataset

be represented as the n × p matrix X, with n observations and p variables. So xij is therefore

the i-th observation of the j-th column. Let xik, where k = 1, ..., p; k ̸= j denote the vector of

values for observation i, except for column j. So

xik = [xi1, xi2, ..., xi,j−1, xi,j+1, ..., xi,p−1, xip]

Furthermore, let Rij be a binary indicator variable, indicating 1 when the value of xij is missing,

and 0 otherwise. Lastly, let ui denote all unobserved variables that are not present in the data.

It should be noted that in this thesis it is assumed that all missingness probabilities of all

observations are independent from each other. In a survey setting, this would mean that the

answers that one person fills in (or does not fill in), do not affect the probability that someone

else does or does not fill in their answer.

4.4.1 MCAR

MCAR, or Missing Completely At Random, is the most commonly investigated missingness

mechanism in the current literature on data imputation techniques. MCAR means that values

are missing independent of any other variables, see Equation 4.15 and Table 4.1. The missing

values are perfectly randomised.

MCAR: P (Rij = 1) = Q (4.15)

Here, Rij denotes whether the value of observation i and variable j is missing or not, with

Rij = 1 denoting a missing value and R = 0 otherwise. Q denotes the percentage of missing

values, which is a constant under MCAR.

Height Gender HeightMCAR

179.0 F ?

192.0 M ?

189.0 M 189.0

156.0 F 156.0

175.0 M ?

170.0 F 170.0

181.0 M 181.0

197.0 M ?

156.0 F ?

160.0 F 160.0

Table 4.1: Applying the MCAR condition to column height with 50% missing values removes five out of
ten height values, independent of height or gender.
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4.4.2 MAR

The MAR mechanism, or Missing At Random, denotes the missingness mechanism where the

missing values are correlated with another variable’s values, but independent of its own value.

Equation 4.16 and Table 4.2 illustrate this.

MAR: P (Rij = 1|xij , xik) = P (Rij = 1|xik) (4.16)

Again, Rij = 1 denotes a missing value being present in the j-th column of the i-th observation.

xij denotes the i-th observation of column j, and xik denotes all columns of observation i except

for the j-th column. We can see that the probability of having a missing value does not depend

on the true value itself, but solely on other observed variables (excluding the outcome variable).

Height Gender HeightMAR

179.0 F 179.0

192.0 M ?

189.0 M ?

156.0 F 156.0

175.0 M ?

170.0 F 170.0

181.0 M ?

197.0 M ?

156.0 F 156.0

160.0 F 160.0

Table 4.2: Applying the MAR condition to column height with 50% missing values removes five out of
ten height values, independent of its own value but dependent on the gender value. Observations with
gender ’Male’ correspond to missing values.

4.4.3 MNAR

The MNAR mechanism, or Missing Not At Random, has some ambiguous definitions. One

says that MNAR is simply missing data that is neither MCAR nor MAR (Polit & Beck, 2008).

Other definitions say that values are at least missing dependent on its own (missing) value

(Equation 4.17), but may also depend on observed information (Equation 4.18) (Santos et al.,

2019). In the first ever paper on missingness mechanisms by Rubin (1976), the case where the

missing probability depends on the value itself is called censored data. For an example, see

Table 4.3. Unfortunately, this mechanism is most often found in real-life scenarios (Laaksonen,

2018). Because the missing values may also depend on observed data, MAR and MNAR can

become indistinguishable from each other based on your data, as can be seen when comparing

Equations 4.16 and 4.18. Because in real life we do not know the value of xij if it is missing,

MAR and MNAR can not be distinguished. MNAR is also called non-ignorable missingness,

because performing analysis on data that has MNAR missingness can significantly bias results

of parameter estimations (Fielding, Fayers & Ramsay, 2009).
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MNAR (Type 1): P (Rij = 1|xij , xik) = P (Rij = 1|xij) (4.17)

MNAR (Type 2): P (Rij = 1|xij , xik) = P (Rij = 1|xij , xik, ui) (4.18)

Again, Rij = 1 denotes a missing value being present, and xik and xij denote the other ob-

served variables and the variable with a potential missing value, respectively. Furthermore, we

see that in Equation 4.18, the probability of having a missing value can also depend on factors

that are not included in the dataset at all, denoted by ui.

Height Gender HeightMNAR

179.0 F 179.0

192.0 M 192.0

189.0 M 189.0

156.0 F ?

175.0 M ?

170.0 F ?

181.0 M 181.0

197.0 M 197.0

156.0 F ?

160.0 F ?

Table 4.3: Applying the MNAR condition to column height with 50% missing values removes five out of
ten height values, independent of gender but dependent on the height value. Lower values correspond to
missing values.

In this thesis, the Type 1 MNAR missingness is introduced using the ampute function from

R package mice, as explained before. The Type 2 MNAR missingness is not available in any

package, so we implement a novel approach to introducing missing values corresponding to

MNAR Type 2 missingness. This is an extension of this paper and will be a separate part

of the research because how it is implemented differs substantially from the other missingness

mechanisms, making it unsuitable to compare directly. The full method will be explained in the

following section, Section 4.5.

4.5 Extension: Type 2 MNAR

In order to introduce missing values dependent on factors outside of the dataset, we will base the

probability of having a missing value on a certain correlated variable that is also in the dataset,

after which we will delete this correlated variable before starting the imputation procedure.

This way, there is a definitive process behind the missingness probability, whilst simultaneously

simulating the MNAR 2 mechanism where the missingness depends on factors that are outside

the dataset.
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4.5.1 Variable Association Metrics

First, we need to determine which variables are suitable to base the missingness probability

on, i.e. which variables are correlated with the variables where we want to introduce missing

values. For continuous variables, the correlation coefficient is straightforward as we can use the

standard Pearson correlation for these variables. However, as we have mixed data as well, we

can not always use the Pearson correlation (which is only suitable for correlation between two

continuous variables). Table 4.4 shows an overview of suitable correlation measures for each

combination of variable types that we use.

Variable Type Continuous Binary Nominal Ordinal

Continuous Pearson Point-Biserial ANOVA n/a

Binary Point-Biserial n/a Cramer’s V Cramer’s V

Nominal ANOVA (η2) Cramer’s V Cramer’s V n/a

Ordinal n/a Cramer’s V n/a Spearman’s ρ

Table 4.4: Appropriate correlation methods for different types of variable combinations that occur in our
datasets. Combinations with value n/a do not occur in this thesis.

Pearson Correlation

As stated in Table 4.4, we use Pearson correlation for two continuous variables (Pearson, 1895).

The Pearson correlation coefficient, or Pearson’s r, is calculated between two continuous variables

(x and y) by the following formula:

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
(4.19)

Here, xi and yi are individual observations for variable x and y, and x and y are their respective

means. This coefficient takes on a value between -1 and +1, where -1 indicates a perfect negative

linear correlation between the variables, and +1 indicates a perfect positive linear correlation.

Point-Biserial Correlation

Pearson’s r can be applied to the case with one continuous and one binary variable as well. This

is called the Point-Biserial correlation coefficient. In this case, the formula simplifies to:

rpb =
µ1 − µ0

s
·
√

n1n0

n2
(4.20)

Here, µ1 and µ0 are the sample means of the continuous variable for each category of the binary

variable. The standard deviation of the continuous variable is denoted by s. Furthermore, n1

and n0 denote the number of observations where the binary variable is 1 and 0, respectively, and

n is the total number of observations. The point-biserial correlation is essentially a measure of

how the means of the continuous variable differ across the categories, adjusted for how big each

category is.
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ANOVA and η2

When we want to test the correlation between a nominal categorical variable and a continuous

variable, we use the ANOVA (Analysis of Variance), which essentially evaluates whether the

mean of the continuous variable differs between groups of the nominal variable. This is evaluated

by calculating the total sum of squares (SST) and the between-group sum of squares (SSB),

whose formulas are described below.

SST =
N∑
i=1

(xi − x)2 (4.21)

SSB =
k∑

j=1

nj(xj − x)2 (4.22)

In these equations, xi denotes a single observation, and x is the mean of x over all N observa-

tions. The number of categories of the nominal variable is denoted by k, nj is the number of

observations in group j and xj is the mean of each group j. The between-group sum of squares

is divided by the total sum of squares to obtain a measure of association, η2. The value of η2

gives the proportion of the variance of the continuous variable that can be attributed to the

variance of the nominal variable.

η2 =
SSB

SST
(4.23)

Cramer’s V

In order to get a measure of association for two nominal variables (where at least one has

more than 2 categories), we use Cramer’s V (Cramér, 1999). Cramer’s V gives a measure of

association between two nominal variables but does not give a direction (positive or negative

association). For this research, the direction of the association is not important, so Cramer’s V

is suitable. The calculation starts by creating a contingency table of the two nominal variables

and calculating the expected frequency of observations for each combination of the variables

(Eij). This is then compared to the observed frequency for each combination (Oij) to obtain a

χ2 statistic (Equation 4.24).

χ2 =
∑
i,j

(Oij − Eij)
2

Eij
(4.24)

This statistic is then used to calculate Cramer’s V in the following way:

V =

√
χ2

n×min(k − 1, r − 1)
(4.25)

Here, n is the total number of observations, and k and r are the number of categories in the

two nominal variables, i.e. the number of rows and columns of the aforementioned contingency

table.
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Spearman’s ρ

Lastly, when we want to obtain a measure of association between two ordinal variables, we

use Spearman’s ρ (Spearman, 1961). Spearman’s ρ, also called Spearman’s rank correlation

coefficient, is a non-parametric measure of dependence between two variables. Where Pearson’s

correlation metric assumes a linear relationship between two variables, Spearman’s ρ does not

assume this. However, it does assume a monotonic relationship between the variables, i.e.

relationships that consistently increase or decrease. As the full name suggests, it uses ranks

instead of true values to obtain the correlation coefficient. All values in each of the variables are

assigned ranks, based on their value respective to the other values of that variable. Then, for

each observation, the difference in ranks (di) is calculated by subtracting the rank of the first

variable from the rank of the second variable for that observation. These values of di are then

used as stated in Equation 4.26.

ρspearman = 1− 6
∑

d2i
n(n2 − 1)

(4.26)

Here, di are the differences in ranks as previously explained, and n is the number of observa-

tions. Spearman’s ρ takes on a value between -1 and 1, with -1 indicating a perfect negative

monotonic relationship, 1 indicating a perfect positive monotonic relationship, and 0 indicating

no monotonic relationship.

4.5.2 MNAR 2 Algorithm

After determining a correlated variable for each of our variables that we later want to impute,

we introduce missing values. The way in which the missing values are introduced depends on

which variable type the correlated variable is. This subsection will explain how the algorithm

works. For the full algorithm, see Appendix B.

As stated before, a distinction needs to be made for the different types of correlated variables.

For a continuous correlated variable, the process is as follows: the algorithm first determines a

threshold value based on the desired missing percentage. We will denote the desired percentage

as Q. The missing percentage, Q, is multiplied by 1.5. Then, based on the values of the correl-

ated variable, the value of the (1 − (1.5Q))-th percentile is calculated and set as the threshold

value. All values that are above this threshold will be considered candidate observations. From

these candidate observations, Q ∗ n observations are sampled without replacement to obtain

the observations where we will introduce missing values. The reason behind multiplying Q by

1.5 and subsequently sampling from that pool of candidates is to introduce randomness. We

need this random component in order to be able to ampute the dataset multiple times without

selecting the same observations to be missing each time.

When we are dealing with a binary correlated variable, the process is different. For binary

correlated variables, we only need to make a distinction between values 0 or 1. If the value

is 0, we assign a low probability of 0.2 times the desired missing percentage, and if the value

is 1 we assign a high probability of 1.9 times the desired missing percentage. For example, if
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the missing percentage is set to 50%, observations with a 0 in the correlated variable will be

assigned a probability of 0.1 and observations with a 1 will be assigned a probability of 0.95. For

each observation, a random value between 0 and 1 is generated and compared to the respective

probability of that observation. If the probability is higher than the randomly generated value,

it will be set as missing.

When dealing with a categorical correlated variable, the process is similar to the binary

case. The only difference is the way in which the probability is calculated. If the categorical

variable x has k levels, each observation will get a probability corresponding to xi
k ∗ Q. For

example, with a missing percentage of 50% and a categorical correlated variable with 4 levels,

the probabilities for levels 1, 2, 3 and 4 will be 12.5%, 25%, 37.5% and 50%, respectively.

These probabilities are again compared to a randomly generated value between 0 and 1, after

which the observation will be set as missing if the generated value is smaller than the probability.

After the missing indices are generated, a check is performed. If the number of missing indices

is greater than the number of missing values that we want, new indices are sampled from the list

of missing indices to obtain the desired amount. On the other hand, if the number of missing

indices is smaller than the desired number of missing values, additional random missing values

are assigned to the remaining observations to meet the specified missing percentage. Finally,

the correlated value should be removed from the dataset. For compatibility with the subsequent

imputations and other procedures, the correlated value is not removed but instead transformed

to a series of random values between -0.0001 and 0.0001. This way, the column structure of the

data is retained whilst making sure that the correlated variable itself is uninformative to the

subsequent imputation process, adhering to the Type 2 MNAR mechanism.
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5. Main Results

This section is organized to give a review of the main results obtained in this thesis. Section

5.1 will provide the direct evaluation of all methods, where the RMSE and PCP values can

be compared across all methods and datasets. After that, Section 5.2 will compare the post-

imputation classification performance of all methods, providing insight into how each method

prepares data for classification tasks. Finally, Section 5.3 will discuss the computational aspect

and feasibility of each method.

5.1 Direct Evaluation

This section will show and explain the results of our imputation procedures based on the RMSE

and PCP metrics. Table 5.1 shows all RMSE values. These values are the mean RMSE that

each method achieved over 20 imputation runs. The full distribution by way of IQR graphs of

the RMSE and PCP values of all 20 imputations can be found in Appendix A.2 and A.3.

The first thing we notice is that, as expected, Mean/Mode and Median/Mode imputation per-

form the worst across all datasets. Furthermore, Random Forest imputations show exceptional

performance in all datasets, but specifically in the Adult dataset. It should be noted that the

RMSE values in the Adult dataset are relatively large in comparison to the others, due to the

fact that one of the imputed variables in the Adult dataset was capital gain, which has a lot of

zero values but also a lot of very high values. This causes the RMSE to be larger by default. In

all other datasets, RF either has the lowest RMSE value or at least is very competitive with the

other imputation methods. This can be explained by the fact that RF is very good at encapsu-

lating complex and/or nonlinear relationships in the data. We also see that the Linear Bayesian

Regression is often underperforming compared to the other methods. This is not unexpected,

as the Linear Bayes algorithm assumes a linear relationship between variables, which is a strong

assumption as this is not always the case. This reasoning is further strengthened by the fact

that the LB algorithm does perform well for the Iris dataset, as well as the simulated and skewed

datasets. This is because the Iris dataset has strong linear relationships between the predictor

variables, as can be seen in Appendix A.6, Figure A.29. Both the simulated data and its skewed

version also have a strong linear relationship between the variables that have been imputed,

see Figure A.30 and A.31 in Appendix A.6. Furthermore, we can see that the k-NN algorithm

performs very well, especially in the Banknotes and Skewed datasets. Due to the nonparametric

nature of the k-NN algorithm, it obtains very good results for datasets that have non-normal (or

not close to normal) distributions. Conversely, we see that the EM algorithm performs well for

the Iris dataset, as well as the simulated dataset. This makes sense as the EM algorithm assumes
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multivariate normality, which is true for the simulated dataset, and roughly the case for the Iris

dataset. Lastly, the predictive mean matching imputation method also performs well for the

Iris, simulated and skewed datasets. It is surprising that it slightly outperformed methods such

as EM and Linear Bayes, as these assume multivariate normality (LB assumes this through the

MICE algorithm), and PMM is a nonparametric method. Therefore, it was expected that PMM

would outperform these methods in those datasets that did not have multivariate normality.

Table 5.1: Mean RMSE results over 20 imputations. Bold values denote lowest (best) value for that
dataset.

Method Mean Median k-NN EM LinBayes pmm RF

Dataset Mechanism

Adult

MCAR 7546 7626 8049 5633 5649 5574 5438

MAR 8768 8872 9365 6388 6387 6492 6287

MNAR 10658 10786 10822 7496 7472 7381 7336

Banknotes

MCAR 4.62 4.63 0.98 1.69 1.69 1.54 1.09

MAR 4.88 5.01 1.04 1.66 1.67 1.53 1.16

MNAR 4.67 4.60 1.02 1.76 1.76 1.57 1.13

Iris

MCAR 1.38 1.41 0.28 0.28 0.28 0.26 0.27

MAR 1.41 1.27 0.34 0.29 0.30 0.29 0.28

MNAR 1.42 1.23 0.33 0.29 0.29 0.28 0.29

Simulated

MCAR 1.38 1.38 1.01 0.96 0.96 0.94 1.01

MAR 1.32 1.32 1.03 0.95 0.97 0.98 1.03

MNAR 1.41 1.41 1.09 1.01 1.01 1.03 1.10

Skewed

MCAR 1.22 1.24 0.84 0.84 0.85 0.83 0.84

MAR 1.09 1.07 0.78 0.80 0.80 0.79 0.79

MNAR 1.06 0.97 0.76 0.78 0.78 0.75 0.78

When we look at the imputation performance for the categorical variables in Table 5.2, we

see some interesting results. When we look at the ’baseline’ performance of the Mean/Mode and

Median/Mode methods (which obviously obtain the same PCP for categorical variables), we see

that its performance is heavily reliant on which dataset is used. This makes sense, as datasets

with categorical variables where one value dominates other values will yield good imputation

results when using the mode. This performance still depends on which missingness mechanism

is present. This can be easily explained by an example: take a categorical variable with three

levels: 1, 2 and 3. Let us say that 85% of the observations contain a 1, 10% contains a 2 and

5% contains a 3. Under MCAR, approximately 85% of the missing values would be a 1. As this

is the mode, each imputation would have approximately 85% chance of being correct, resulting

in a very high PCP. Under MNAR however, it can occur that high values correspond with a

higher probability of being missing. Therefore, the PCP would decrease drastically if all these

values are imputed with the mode (1).

We see that in the Adult dataset, imputing the missing values with the mode obtains very

competitive results compared to the other methods, outperforming all of them except for k-NN
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and RF. This is because for the variable where missing values were introduced, 46% had a value

of 2 (see Figure A.32 in Appendix A.6). k-NN and RF are both nonparametric methods, which

clearly excelled at identifying the underlying structures in the Adult dataset.

Table 5.2: Mean PCP values over all 20 imputations. Values are in percentages.

Method Mode k-NN EM LB PMM RF

Dataset Mechanism

Adult

MCAR 45.98 81.79 41.11 41.13 44.81 72.75

MAR 48.56 80.70 40.18 39.87 43.99 71.52

MNAR 45.98 75.85 40.09 39.72 42.51 67.06

Car

MCAR 31.25 37.99 40.65 42.05 45.17 41.16

MAR 29.75 42.29 41.95 42.78 46.07 41.40

MNAR 15.17 32.37 38.56 40.36 40.92 38.48

Simulated

MCAR 30.20 36.18 35.49 36.33 35.21 35.06

MAR 27.83 34.96 33.81 35.26 33.36 34.25

MNAR 21.47 32.74 32.73 32.90 32.04 32.13

Skewed

MCAR 30.25 37.27 35.94 35.64 36.56 36.51

MAR 27.42 34.90 34.97 35.41 34.44 34.95

MNAR 20.28 33.50 32.52 32.68 32.82 33.09

For the Car dataset we see that PMM obtained the highest PCP values, although EM, Linear

Bayes and RF are not much worse. The variables that were imputed in the Car dataset were very

balanced, with each value accounting for approximately one-third of all observations see Figures

A.33 and A.34 in Appendix A.6). We also clearly see that Mode imputation is by far the worst

when facing the MNAR missingness mechanism. This is due to the reasons stated before. For

both the simulated and skewed datasets, we see that all methods are very competitive, except

for the baseline Mode imputation. The differences in performance of all methods between the

simulated and skewed datasets are very small. Linear Bayes performed slightly better than the

rest, but not significantly. This is partly due to the fact that the variables that are imputed are

identical in both datasets, as the categorical variables were unchanged. The slight difference in

categorical imputation performance is likely a result of random noise, as the observations that

were made missing were randomly selected each time.

5.2 Indirect Evaluation

This section will show and explain the post-imputation classification accuracy results. The

XGBoost classifier was not tuned for any dataset or method to keep the comparisons consistent

and straightforward. First, the XGBoost classifier was run separately on each complete dataset,

in order to get a first benchmark for classification accuracy. Second, the reason for using the

XGBoost classifier was that it can handle missing data by itself. Therefore, all datasets with

missing values were also directly used to obtain a classification performance when no values were

imputed. Table 5.3 shows all classification accuracies in one overview.
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Table 5.3: Average XGBoost accuracy for all datasets and methods over 20 imputations.

Dataset

Method Mechanism Adult Banknotes Car Iris Simulated Skewed

Full Data 86.96 99.20 99.02 94.67 94.30 94.30

MCAR 86.58 96.65 84.26 94.33 93.49 93.76

No Imp. MAR 86.68 96.70 83.14 83.14 93.67 94.07

MNAR 86.38 96.88 87.81 87.81 93.73 93.61

MCAR 86.53 98.85 97.25 94.45 94.45 94.79

Listw. Del. MAR 87.71 98.97 96.61 95.77 94.57 94.20

MNAR 86.91 98.65 97.15 95.57 94.43 94.73

MCAR 86.55 96.25 78.21 95.13 93.04 93.19

MeanM MAR 86.60 96.17 70.28 70.28 93.36 93.19

MNAR 86.42 96.59 70.11 70.11 93.38 93.21

MCAR 86.56 96.25 78.21 95.13 92.94 93.26

MedianM MAR 86.49 96.10 70.28 70.28 93.36 93.17

MNAR 86.38 96.59 70.11 70.11 93.39 93.21

MCAR 86.80 99.38 97.45 95.90 95.63 95.62

k-NN MAR 86.77 99.35 97.51 97.51 95.59 95.54

MNAR 86.59 99.35 97.81 97.81 95.53 95.39

MCAR 87.52 99.16 88.53 95.53 95.19 95.49

LB MAR 87.66 99.17 89.14 89.14 95.38 95.42

MNAR 87.41 99.13 92.42 92.42 95.26 95.18

MCAR 87.46 99.28 95.65 95.70 94.90 95.40

RF MAR 87.53 99.34 95.37 95.37 95.11 95.24

MNAR 87.21 99.23 96.92 96.92 95.15 95.19

MCAR 88.14 99.13 95.48 95.53 95.39 95.68

PMM MAR 88.30 99.27 95.24 95.24 95.43 95.43

MNAR 87.89 99.19 96.79 96.79 95.39 95.35

MCAR 87.59 99.21 89.04 95.53 95.30 95.54

EM MAR 87.67 99.20 89.28 89.28 95.38 95.40

MNAR 87.44 99.15 92.29 92.29 95.24 95.15

The first thing that becomes obvious when looking at the classification results is that the

difference between the missingness mechanisms almost fully disappears. For the Iris dataset, we

see that there is still a relatively large difference in the performance of the benchmark methods

(i.e. No imputation, Mean/Mode and Median/Mode). This means that not imputing the values

in this dataset, or imputing them with the mean or median (as the Iris dataset does not contain

any categorical variables) can be a risk to your classification performance. Using the Linear
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Bayes or EM methods can also be detrimental to classification performance, but to a lesser

extent than the aforementioned methods. For all these methods, the classification performance

was still reliable under the MCAR mechanism.

When we look at the results for the Car dataset, we see some interesting results. For all non-

benchmark methods, we see that the post-imputation classification performance was actually

slightly higher for the MNARmechanism compared to the other mechanisms. This can be related

to the characteristics of the dataset itself. It is possible that under MNAR, certain values are

more often missing. If those values are then imputed by values that have even stronger correlation

with the outcome variable, it can lead to improved classification performance. We also see that

none of the imputation methods were able to attain the same classification accuracy post-

imputation as the complete dataset. This is interesting, as the imputations actually improved

classification accuracy across all other datasets compared to their complete counterparts. This

could be due to the fact that the Car dataset consists solely of categorical variables, and not

all methods are designed to be able to impute those. We see that k-NN imputation, which is

suitable for categorical imputation, performs the best for this dataset.

When we look at the results for the Simulated and Skewed datasets, we see that they are

very similar across all methods. This is likely due to the fact that the transformation did not

change any other relationships within the datasets. For both datasets, using (non-benchmark)

imputation methods actually improved classification performance. This is likely because the

imputation algorithms find the relationships between variables, and preserve them very well

(Finney & DiStefano, 2006). When outliers go missing, and are subsequently imputed, these

imputed values can sometimes be more useful for post-imputation classification tasks. This

improved classification performance was also noticeable in the Adult and Banknotes datasets,

as well as in the Iris dataset when using k-NN or RF imputations. Furthermore, we clearly see

that it is often not desirable to impute values with the mean/median and mode when preparing

data for a classification task: for all datasets, not imputing the values attained at least the same

classification accuracy compared to imputing them with the mean/median and mode.

5.3 Computation Time And Feasibility

This section will discuss the computational requirements for each method. As explained in

Section 4, the computational time that was measured was the time in seconds that it took

each algorithm to impute one dataset. For MI methods, the entire process of imputing the

dataset 5 times and then taking the mean counts as one imputed dataset. Figure 5.1 shows

the computation time across different dataset sizes. As expected, the most simple algorithms

(Mean/Mode and Median/Mode) were also the fastest, across all dataset sizes. We see that

after that, the EM algorithm was fastest overall.
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Figure 5.1: Computation time for each method to complete one dataset. Both axes are on a logarithmic
scale.

Linear Bayesian regression and PMM had very similar computation times, being the second

and third slowest for small datasets. For the bigger datasets, they became faster than k-NN. k-

NN itself was computationally very competitive for the smaller (< 1000 observations) datasets.

However, as the number of observations grows, it quite quickly becomes very computationally

intensive. This is because for each missing value (which also grows with dataset size), the

algorithm has to check every single other observation to see which are the nearest neighbours. For

the Adult dataset, with more than 30.000 observations, the k-NN algorithm took approximately

7 minutes to complete one dataset. For all datasets except for Adult, the Random Forest

algorithm took the longest time to complete. The full averaged values of all computation times

can be found in Appendix A.5.

All computation times logically increase when the number of observations increase. However, we

see that for the Car and Banknotes datasets (at 1728 and 1372 observations respectively), there

are breaks in the lines. The computation times were faster than for the simulated datasets, which

have less observations. This can be explained by the fact that both the simulated and skewed

datasets contained 18 variables, compared to 7 and 5 for Car and Banknotes, respectively. This

explains the decrease in computation times, even though the number of observations was slightly

larger.
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6. Extension: Type 2 MNAR Results

This section will provide an overview and interpretation of the results obtained for the Type 2

MNAR mechanism. Due to the nature of how this research was conducted, this section should

be seen as separate from the main results in Section 5. The structure will be the same: first, the

used association measures are discussed briefly, after which the direct evaluation metrics will be

reviewed in Section 6.1. After that, Section 6.2 will analyze the indirect evaluation in the form

of post-imputation classification accuracy.

As explained in Section 4.5, we use different correlation or association metrics for different

types of variables. The variables where we introduce Type 2 MNAR missingness are the same as

in the main results, i.e. the two variables with the highest XGBoost-based feature importance

for each dataset are imputed. For each of those variables, we test which other variable has

the highest correlation and use that correlated variable to introduce missingness. Table 6.1

shows an overview of which variables had the highest correlation, as well as the value of the

correlation/association. The last column shows the XGBoost-based feature importance for the

correlated variable.

Dataset Var to Impute Correl. Var Metric Value Importance

Adult
Cap gain Income P-B 0.22 n/a

Maritalstatus Age ANOVA (η2) 0.18 0.11

Banknotes
Variance Target P-B -0.71 n/a

Skewness Kurtosis Pearson -0.79 0.14

Car
Persons Acceptability Spearman’s ρ 0.39 n/a

Safety Acceptability Spearman’s ρ 0.47 n/a

Iris
Petal Length Sepal Length Pearson 0.87 0.01

Petal Width Sepal Length Pearson 0.82 0.01

Simulated
Two Factor 1 Two Factor 2 Pearson 0.65 0.13

Cat1 Target Cramer’s V 0.64 n/a

Skewed
Two Factor 1 Two Factor 2 Pearson 0.65 0.13

Cat1 Target Cramer’s V 0.64 n/a

Table 6.1: Correlation Metrics and Values for Different Datasets

As can be seen in the above table, not all variables had another variable that was highly

correlated. Especially the variables in the Adult dataset did not have a highly correlated vari-

able. When looking at the outcomes of the direct and indirect evaluation, we should look at
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the strength of the association as well, as this can influence how heavily the Type 2 MNAR

mechanism affects the missing values.

6.1 Direct Evaluation

For the direct evaluation, the analysis is twofold: for the continuous variables, we examine the

RMSE of the imputed values compared to the original values. For the categorical variables, we

analyze the PCP for each variable. Table 6.2 shows the RMSE values under the Type 2 MNAR

missingness mechanism. Full IQR graphs can be found in Appendix A.4.1.

Table 6.2: Mean RMSE results for Type 2 MNAR mechanism. Bold values denote lowest (best) value
for that method. Values in parentheses denote standard deviations.

Dataset Adult Banknotes Iris Simulated Skewed

Method Cap Gain Variance Skewness PetalLength PetalWidth TwoFactor1 TwoFactor1

Mean 10,294 (80.7) 4.13 (0.04) 6.51 (0.11) 2.08 (0.11) 0.89 (0.05) 1.46 (0.04) 1.19 (0.04)

Median 10,332 (77.9) 4.41 (0.04) 6.55 (0.09) 3.11 (0.29) 1.24 (0.08) 1.49 (0.04) 1.08 (0.04)

k-NN 10,339 (71.5) 3.46 (0.17) 5.17 (0.19) 0.47 (0.03) 0.24 (0.03) 1.82 (0.05) 1.51 (0.06)

LB 10,288 (74.3) 4.27 (0.10) 4.92 (0.09) 0.54 (0.02) 0.21 (0.01) 1.64 (0.04) 1.40 (0.05)

EM 10,292 (71.2) 4.21 (0.11) 4.97 (0.11) 0.55 (0.03) 0.21 (0.01) 1.62 (0.04) 1.39 (0.05)

RF 10,306 (74.4) 3.14 (0.12) 5.57 (0.20) 0.64 (0.13) 0.27 (0.05) 1.61 (0.05) 1.35 (0.06)

pmm 10,281 (74.6) 4.18 (0.09) 4.94 (0.11) 0.47 (0.04) 0.23 (0.02) 1.64 (0.05) 1.42 (0.06)

The first thing that stands out is the performance of the mean and median imputations. Unsur-

prisingly, for the Adult, Banknotes and Iris dataset they underperform compared to the other

methods. However, for the Simulated and Skewed datasets they achieve the lowest RMSE out

of all methods. Mean imputation performed best for the Simulated data, which had a normal

distribution. For the Skewed data, median imputation worked slightly better. This is in line

with what we would expect, as the median is more robust to outliers which are more present in

the Skewed dataset.

For the Adult dataset, LB, EM and PMM were the best performing methods. Surprisingly,

k-NN was the worst for this dataset, even achieving a higher RMSE than mean and median

imputation. This could be due to the nature of the data, as the Cap Gain variable contains

a lot of zero values. It should also be noted that the RMSE values could be close due to the

weak association in the underlying Type 2 MNAR mechansim, with a point-biserial correlation

of only 0.22.

When we look at the Banknotes dataset, we see some surprising results. Methods that im-

pute the Variance variable well (k-NN, RF), do not achieve the same results for the Skewness

variable. Conversely, methods that impute Skewness well (LB, EM, PMM) perform worse for

Variance. This could be due to the underlying mechanism in which the Type 2 MNAR miss-

ingness is introduced. For Variance, the Target variable was used to introduce missingness.
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For Skewness, the correlated variable was Kurtosis. This suggests that in this case, the Target

variable is more important in the imputation process for LB, EM and PMM than the Curtosis

variable is. Conversely, LB, EM and PMM seem to handle the imputation process better in the

absence of the Curtosis variable.

For the Iris dataset, all methods except mean and median imputation achieved more similar

results than in the other datasets. However, k-NN and PMM did seem to work best across both

variables. Random Forest imputation shows that it needs more of data to be able to compete

with the other methods, as the Iris dataset only contains 150 observations.

When we evaluate the PCP for all categorical variables, the results are more clear. Table

6.3 shows the mean Percentage of Correct Predictions for each method and dataset. Full IQR

graphs can be found in Appendix A.4.2.

Table 6.3: Mean PCP results for Type 2 MNAR mechanism. Bold values denote highest (best) value for
that method. Values in parentheses denote standard deviations.

Dataset Adult Car Simulated Skewed

Method Maritalstatus Persons Safety Cat1 Cat1

Mode 16.35 (0.17) 31.17 (0.69) 30.75 (0.85) 12.71 (4.90) 13.07 (5.49)

k-NN 75.47 (0.23) 29.16 (0.88) 28.99 (1.71) 27.89 (2.12) 27.52 (2.39)

LB 41.68 (0.33) 33.54 (1.22) 33.35 (1.16) 28.05 (1.68) 28.14 (2.13)

EM 41.84 (0.36) 33.51 (1.51) 32.79 (1.27) 27.65 (1.70) 27.29 (1.83)

RF 68.46 (0.23) 31.11 (1.13) 30.92 (1.22) 27.02 (2.08) 26.69 (1.97)

pmm 40.84 (0.39) 33.45 (1.22) 32.88 (1.35) 27.43 (1.84) 27.49 (1.79)

We immediately see that with the exception of the Adult dataset, the Linear Bayesian algorithm

outperforms all other algorithms, albeit marginally. Only one method significantly outperformed

all other methods in a dataset, which was the k-NN algorithm for the Adult dataset. We see

that for the other datasets, the best performing methods were LB, EM and PMM. Interestingly,

Mode imputation often performs worse than expected due to the Type 2 MNAR mechanism.

For the Adult dataset, the mode value for Maritalstatus accounts for 46% of all observations.

However, mode imputation only achieved a PCP of 16.35%. Similarly, it achieved a PCP of

approximately 13% for both the Simulated and Skewed dataset, where the mode accounts for

33% of all observations. In the Car dataset the difference is smaller: a PCP of approximately

31% where the mode is present in 33% of observations. With the exception of k-NN and RF

in the Adult dataset, no method achieved a PCP value that was higher than the percentage

of observations that correspond to the mode. This suggests that k-NN and RF achieve better

results when more data is available. It also highlights how the Type 2 MNAR mechanism

can heavily influence imputation performance, as the underlying missingness is much harder to

predict for our imputation algorithms.
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6.2 Indirect Evaluation

For the indirect evaluation, we again look at the average XGBoost classification accuracy over

20 imputation runs. Table 6.4 shows the summarized results for each method and variable.

Table 6.4: Average XGBoost accuracy for all datasets and methods over 20 imputations under Type 2
MNAR missingness. Values are percentages, bold values denote highest accuracy. ’Full’ column denotes
XGBoost accuracy for full dataset.

Dataset Variable
Method

Full No Imp. Mean Median k-NN LB RF PMM EM

Adult
CapGain 86.96 89.89 89.88 84.85 84.74 89.69 85.08 85.35 89.68

Maritalstatus. 86.96 86.54 86.58 86.58 86.55 87.17 86.60 87.12 87.13

Banknotes
Variance 99.20 97.27 97.43 97.35 94.82 95.20 95.03 94.91 95.05

Skewness. 99.20 95.65 95.18 95.07 97.91 94.89 95.71 95.42 94.84

Car
Persons 99.02 85.81 74.05 74.05 78.65 82.99 81.52 83.47 82.97

Safety 99.02 80.38 71.73 71.73 73.08 76.51 75.54 76.46 76.51

Iris
PetalLength 94.67 94.47 94.47 94.43 97.43 95.10 95.73 95.30 95.67

PetalWidth 94.67 93.00 93.03 93.03 97.33 97.10 95.03 97.07 97.27

Simulated
TF1. 94.30 90.65 90.59 90.60 92.82 91.96 91.39 92.29 92.24

Cat1 94.30 96.56 94.39 94.39 94.14 94.20 94.29 94.11 94.38

Skewed
TF1. 94.30 90.74 90.66 90.59 93.08 92.53 92.37 93.18 93.14

Cat1 94.30 96.66 94.62 94.62 93.85 94.31 94.00 94.04 94.47

The first thing that we notice is that k-NN seems to be the best overall method when it

comes to preserving post-imputation classification accuracy. However, perhaps more import-

antly, the results show that in some cases it is better to not impute the variables at all if one

is looking to optimize classification accuracy. Under Type 2 MNAR missingness, the imputa-

tion algorithms seem to struggle to find the underlying missingness pattern and data structure,

resulting in more noise due to bad imputations and lower classification accuracy. Surprisingly,

Random Forest imputation does not outperform the other methods in any dataset, although it

is competitive everywhere.

When we look at the types of data, we see that the imputation algorithms mostly struggle

with categorical data. The cases where a categorical variable had to be imputed almost all had

higher classification accuracy when the missing values were not imputed, with Maritalstatus

being the exception.

Because we essentially remove the correlated variable from the dataset, we should take into

account how important that variable was for a classification task. As was shown in Table 6.1,

the variables Maritalstatus, Skewness and Two Factor 1 (for both the Simulated and Skewed

datasets) were amputed using a correlated variable that had a significant XGBoost feature im-

portance. We see that for these variables, the classification accuracy was on average lower when
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compared to the other variable from that dataset. This makes sense, as the variable itself had

to be imputed, which affects classification performance, but the correlated variable was ’lost’ as

well. Interestingly, the k-NN algorithm seems to perform well in these cases, often even exceed-

ing the classification accuracy for when the other variable was missing.

Another thing that stands out is that in some cases, the classification accuracy is higher

post-imputation compared to the full data. This is the case for the Iris dataset when imputed

with any of the non-benchmark methods, but also for Adult (CapGain), Simulated (Cat1) and

Skewed (Cat1) when the variables were not imputed at all. The latter suggests that for these

variables, the imputations were bad enough to have a detrimental effect on the classification

accuracy by adding more noise than relevant information.

Although most methods were competitive for most datasets, for continuous data the most

robust results were obtained by using the k-NN algorithm. For categorical data, the most robust

method that generalizes well over different datasets was actually not imputing the values at all

but rather letting the XGBoost algorithm deal with the missing values.
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7. Conclusion and Limitations

In this thesis, we set out to explore a range of imputation methods to find out which method

is most suitable for business applications. We analyzed how these methods performed under

different missingness mechanisms (MCAR, MAR, MNAR 1, MNAR 2), and tested them all on

six different datasets. The methods that were tested in this research consisted of both single and

multiple imputation methods. We used Mean/Mode and Median/Mode imputation as bench-

mark methods, and compared them to the performance of the k-NN, Expectation Maximization,

Linear Bayesian Regression, Random Forest and Predictive Mean Matching imputation methods.

To effectively be able to compare both single imputation and multiple imputation methods,

we made use of multiple amputation, where a dataset is amputed and imputed multiple times

in order to obtain more reliable results. All methods were evaluated by way of RMSE (Root

Mean Squared Error) and PCP (Percentage of Correct Predictions), post-imputation XGBoost

classification performance and computational requirements. We have found that unsurprisingly,

there is no one-size-fits-all solution. Each method had its strengths and weaknesses under dif-

ferent conditions.

In our main findings, for our dataset with only categorical variables, PMM outperformed all

other methods in the PCP metric, with LB being the second best. However, when we look at

the subsequent classification performance, k-NN showed that it was best at maintaining the un-

derlying structures in the dataset, therefore obtaining the highest post-imputation classification

accuracy. For continouous datasets, k-NN performed best when the data was not approximately

normally distributed. When the data did follow an approximately normal distribution, PMM

and RF performed best based on the RMSE metric. When looking at the post-imputation classi-

fication performance, these three methods were also the best at maintaining accuracy, regardless

of the type of missingness mechanisms. For our mixed-type datasets, RF appeared to be the

most consistent across all datasets and mechanisms based on the RMSE metric. However, for

the categorical imputations, k-NN was again the best or very competitive for all mixed datasets.

Post-imputation classification performance showed that PMM and k-NN were the best perform-

ing methods.

In the extension regarding the Type 2 MNAR mechanism, we obtained different results.

Although there was no clear winner, the k-NN algorithm appears to be most robust to different

datasets when dealing with continuous variables, obtaining competitive RMSE values most of

the time. When dealing with categorical imputations under Type 2 MNAR missingness, the
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Linear Bayes algorithm outperformed the other methods in five out of six cases, albeith mar-

ginally.

When looking at the results of the classification accuracy under Type 2 MNAR missingness,

we see surprising results. When looking at post-imputation classification accuracy for categor-

ical variables, it often was better to not impute the variables at all. The imputation methods

only introduced more noise in the dataset, resulting in lower XGBoost classification accuracy

post-imputation compared to letting the XGBoost classifier deal with the missing values itself.

This shows that algorithms can have real difficulty dealing with missing data that stems from

the Type 2 MNAR mechanism.

Whilst k-NN and RF may seem the clear winners, when we incorporate computation times

they do not appear as favourable. k-NN and RF showed to be the slowest algorithms by far

when dealing with larger (> 1000 observations) datasets. For our biggest dataset with approx-

imately 32 thousand observations, k-NN took more than 7 minutes to impute one dataset. This

is obviously not desirable, as real-life datasets often grow even larger than that. However, it

is also worth noting that in a business setting, a method that generalizes well across different

missingness mechanisms is desirable, as one can not test for these mechanisms in practice. In

this thesis, k-NN seemed most stable across these mechanisms.

Concluding, we can say that the imputation algorithm that is most suitable heavily depends

on the data type that one has, as well as the intended goal of the imputations and underlying

missing mechanism. When the goal is to obtain highest post-imputation classification accuracy,

k-NN, PMM and RF are best suitable, as long as the missingness is in some way related to your

data, i.e. it is not Type 2 MNAR missingness. If there are time constraints, one should choose

PMM out of these three. If the goal is to get the most accurate imputations, RF or k-NN could

be best suitable if computation time is not an issue.

This paper has some limitations. First, for all methods that were implemented using the

mice package, the maxiter variable was set to 10. Even though the literature states that con-

vergence should be reached after as few as 5-10 iterations, further research can be done to see

if more iterations provide better results. Second, due to time and computational restraints, we

could not optimize the XGBoost classifier and k-NN algorithm. The base XGBoost model was

used for each classification, and the k parameter in the k-NN algorithm was set to 3 for each run.

Optimization could lead to more accurate results. Future research can see if this optimization

changes the results in any way. Lastly, the percentage of missing values was constant throughout

this research, having been set at 50%. Due to time constraints it was not possible to investigate

the effects of different percentages on the performance of the imputation techniques.

Further research could improve on this paper by considering smaller and/or larger missing

value proportions. Another addition could be to try to improve computation time in the k-NN

and RF algorithms, whilst trying to maintain imputation performance. Furthermore, the Type
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2 MNAR mechanism is not yet widely studied, so more analyses and more thorough studies

should be done to further investigate how one should deal with this type of missingness.
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A. Tables and Figures

Figure A.1: Number of imputation publications by year (Adnan et al., 2022)

Table A.1: Results of Mardia’s Tests for Multivariate Normality in the Iris Dataset

Test Statistic p-value Result

Mardia Skewness 67.431 0.000 NO

Mardia Kurtosis −0.230 0.818 YES

MVN NA NA NO

Table A.2: Results of Mardia’s Tests for Multivariate Normality in the Banknotes dataset

Test Statistic p-value Result

Mardia Skewness 1025.282 0.000 NO

Mardia Kurtosis 0.620 0.535 YES

MVN NA NA NO
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A.1 Feature Importances

Figure A.2: Feature importances from base XGBoost model for Iris dataset

Figure A.3: Feature importances from base XGBoost model for Banknotes dataset
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Figure A.4: Feature importances from base XGBoost model for Car dataset

Figure A.5: Feature importances from base XGBoost model for Simulated dataset. 1, 2 and 3 are the
categorical predictor variables. two factor 1 and two factor 2 are continuous predictor variables.
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Figure A.6: Feature importances from base XGBoost model for Skewed dataset. 1, 2 and 3 are the
categorical predictor variables. two factor 1 and two factor 2 are continuous predictor variables.

Figure A.7: Feature importances from base XGBoost model for Adult dataset
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A.2 RMSE Graphs

Figure A.8: IQR Graph of RMSE values for the Adult dataset

Figure A.9: IQR Graph of RMSE values for the Banknotes dataset
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Figure A.10: IQR Graph of RMSE values for the Iris dataset

Figure A.11: IQR Graph of RMSE values for the Simulated dataset
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Figure A.12: IQR Graph of RMSE values for the Simulated skewed dataset

A.3 PCP Graphs

Figure A.13: IQR graph of PCP values for the Adult dataset
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Figure A.14: IQR graph of PCP values for the Car dataset

Figure A.15: IQR graph of PCP values for the Simulated dataset

Figure A.16: IQR graph of PCP values for the Skewed dataset
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A.4 Type 2 MNAR results

A.4.1 RMSE

Figure A.17: IQR graph of RMSE values for the Cap-Gain variable in the Adult dataset under Type 2
MNAR

Figure A.18: IQR graph of RMSE values for the Variance variable in the Banknotes dataset under Type
2 MNAR
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Figure A.19: IQR graph of RMSE values for the Skewness variable in the Banknotes dataset under Type
2 MNAR

Figure A.20: IQR graph of RMSE values for the Petal Length variable in the Iris dataset under Type 2
MNAR
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Figure A.21: IQR graph of RMSE values for the Petal Width variable in the Iris dataset under Type 2
MNAR

Figure A.22: IQR graph of RMSE values for the Two Factor 1 variable in the Simulated dataset under
Type 2 MNAR

59



Figure A.23: IQR graph of RMSE values for the Two Factor 1 variable in the Skewed dataset under Type
2 MNAR

A.4.2 PCP

Figure A.24: IQR graph of PCP values for the Maritalstatus variable in the Adult dataset under Type
2 MNAR
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Figure A.25: IQR graph of PCP values for the Persons variable in the Car dataset under Type 2 MNAR

Figure A.26: IQR graph of PCP values for the Safety variable in the Car dataset under Type 2 MNAR
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Figure A.27: IQR graph of PCP values for the Cat1 variable in the Simulated dataset under Type 2
MNAR

Figure A.28: IQR graph of PCP values for the Cat1 variable in the Skewed dataset under Type 2 MNAR
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A.5 Computation times

Table A.3: Computation time (in seconds) for different imputation methods across various dataset sizes.
Times are for a single imputation.

Method Iris Simulated Skewed Banknotes Car Adult

#Obs. 150 1.000 1.000 1.372 1.728 32.561

Mean/Mode 0.003 0.007 0.010 0.003 0.003 0.033

Median/Mode 0.003 0.007 0.011 0.003 0.003 0.057

k-NN 0.07 0.85 1.39 0.89 1.08 452.75

LinBayes 0.33 1.25 2.00 0.45 0.45 12.92

RF 1.88 6.82 10.5 5.26 5.20 112.45

PMM 0.37 1.32 2.09 0.60 0.54 15.83

EM 0.04 0.18 0.265 0.12 0.15 3.87

A.6 Correlation and frequency graphs

Figure A.29: Linear relationship between variables in Iris dataset. Upper right triangle shows correlation
coefficients, with *** denoting significance level. Diagonal shows density plots, and bottom left shows
correlation plots.
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Figure A.30: Correlation between first two variables of Simulated dataset.

Figure A.31: Correlation between first two variables of Skewed dataset.
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Figure A.32: Distribution of values for Marital Status in the Adult dataset

Figure A.33: Distribution of values for Persons in the Car dataset
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Figure A.34: Distribution of values for Safety in the Car dataset

Figure A.35: Distribution for Cat1 in the Simulated and Skewed datasets
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B. Programming code

Algorithm 1 MNAR 2 Mechanism

1: Input: data, dataframe name, var to impute, correlated var, proportion
2: Output: data with MNAR 2 missingness
3: set.seed(NULL) {For randomness}
4: n← nrow(data)
5: num missing ← round(n ∗ proportion)
6: cat var indices← get cat var and target(dataframe name) {Returns indices of all cat. var}
7: is categorical← which(names(data) == correlated var) ∈ cat var indices
8: if !is categorical then
9: expanded proportion← min(1, 1.5 ∗ proportion)

10: threshold← quantile(data[[correlated var]], probs = 1 - expanded proportion)
11: candidate indices← which(data[[correlated var]] ≥ threshold)
12: missing indices← sample(candidate indices, size = num missing, replace = FALSE)
13: else
14: if is binary then
15: high prob← proportion ∗ 1.9
16: low prob← proportion ∗ 0.2
17: prob missing ← ifelse(data[[correlated var]] == 1, high prob, low prob)
18: is missing ← runif(n) < prob missing
19: else
20: prob missing ← data[[correlated var]]/max(data[[correlated var]])
21: prob missing ← prob missing ∗ proportion
22: is missing ← runif(n) < prob missing
23: end if
24: missing indices← which(is missing)
25: if length(missing indices) ≤ num missing then
26: missing indices← sample(missing indices, size = num missing)
27: end if
28: actual num missing ← length(missing indices)
29: if actual num missing ≤ num missing then
30: Sample from not yet selected observations until enough missing
31: end if
32: end if
33: data[missing indices, var to impute]← NA
34: data[[correlated var]]← runif(nrow(data),min = −0.0001,max = 0.0001)
35: return data

Note: Algorithm works well for proportion ≤ 50%. For higher proportions missing, algorithm will

work as MCAR when correlated variable is continuous.
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