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Abstract

Lenders are required to estimate the Loss Given Default (LGD) accurately to adhere

to the Basel Accord. An accurate LGD estimation can help in determining a more pre-

cise capital buffer size, which in turn can absorb losses and free up capital for investments.

Traditional LGD forecasting techniques, however, can only use resolved cases in the model-

ling process, while resolved and unresolved cases may exhibit different recovery behaviour.

Therefore, these techniques may result in biased estimates. We propose a machine learning-

based Survival Analysis model; the Random Survival Forest, and compare this model to the

traditional Regression-Based model and the semi-parametric Survival Analysis model; the

Cox Proportional Hazards. The main advantage of these Survival Analysis models is that

they can handle unresolved cases. We predict the final and twelve-monthly LGDs on a set

of American mortgages from Freddie Mac. The results show that before calibration, the

Random Survival Forest was the only model that could capture the bimodal distribution of

the LGD. Furthermore, it had high discriminatory power, but low calibration power. After

calibrating the model via a binning method, we found that the calibration power improved,

while the discriminatory power remained the same. The Calibrated Random Survival Forest

model outperformed the (Calibrated) Regression-Based model and (Calibrated) Cox Pro-

portional Hazards model based on the Loss Capture Ratio and Mean Squared Error and

also outperformed all models based on the Mean Absolute Error and Loss Shortfall for the

twelve-monthly predictions. Specifically, when one prioritizes high discriminatory power and

the reduction of large errors in LGD prediction, or when one wants to perform short-term

LGD predictions, the Calibrated RSF model is an appropriate model.

The content of this thesis is the sole responsibility of the author and does not reflect the view

of the supervisor, second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

Following the Basel Accord, lenders are required to hold a minimum amount of capital based on

their estimated exposure to credit, market and operational risk (European Banking Authority,

2018). Credit risk is based on the Probability of Default (PD), Exposure at Default (EAD) and

Loss Given Default (LGD). The latter is the loss for the lender, for example, a bank, corres-

ponding to a default, that is, a non-performing loan. Defaulted loans can either be resolved or

unresolved. A resolved default is a defaulted loan for which the workout period, i.e. the duration

during which the lender attempts to recover as much value of the defaulted loan as possible, is

over and no more recoveries by the client are being made. In other words, the recovery cash

flow is determined. These resolved defaults are also known as closed cases. Unresolved defaults,

however, are defaulted loans for which the client is still in the process of repaying his or her loan,

i.e. further recoveries are still expected. In this case, it is unclear how large the final LGD will be.

It is important to be able to estimate the LGD accurately to adhere to the Basel Accord.

An accurate LGD estimation can help determine a more precise capital buffer size. A capital

buffer is required such that lenders are able to absorb losses while still being able to operate.

Setting the minimum amount of capital too low can result in bankruptcy for the lender. On

the other hand, setting the minimum amount too high, implies that the lenders cannot use the

surplus to, for example, invest. In this case, it is an opportunity cost to hold more capital than

needed. Another reason for accurate LGD estimation is that the lender can roughly estimate

its total expected loss and avoid bankruptcy by setting the terms and interest rates for future

credit transactions.

This research will try to correctly predict the expected future recovery cash flows of defaul-

ted loans. We will focus on finding a new method to predict the LGD more accurately. The

main problem with current techniques is that only resolved cases can be used in the modelling

process (Zhang & Thomas, 2012). However, resolved and unresolved cases may exhibit different

recovery behaviour, and thus, these techniques may result in biased estimates. Furthermore,

current techniques use linear regression, which means that only a linear relationship between

the dependent and independent variables can be modelled. Current LGD forecasting techniques

include the Direct Approach and the Component-Based Approach (Hurlin et al., 2018; Miller &

Töws, 2018; Zhang & Thomas, 2012). The Direct Approach is modelled with a linear regression,

in an LGD context this model is also known as the Regression-Based model. The Component-

Based Approach splits the LGD estimation into two parts. The most common method splits

it based on the default outcome; cure or non-cure, i.e. loans that returned to the performing

state or loans that were not able to return to the performing state, respectively. Loss given

cure and loss given non-cure are modelled via linear regression, and then, a probability of cure,

modelled via logistic regression, is used to combine the two models into a final LGD prediction.

This paper will try to apply new methods that can use both resolved and unresolved cases, and,

that do not assume a specific relationship between the dependent and independent variables to

obtain more accurate LGD predictions.
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We will use Survival Analysis (SA) to predict the expected future recovery cash flows of de-

faulted loans. SA is a common technique to forecast the time until a certain event happens,

in our case, a recovery cash flow, and has the major advantage that it can handle unresolved

cases. Particularly, the Cox Proportional Hazards (Cox PH) model and the Random Survival

Forest (RSF) model will be used. The first is a semi-parametric SA model and the latter is a

technique that combines machine learning, namely, Random Forest, with SA. These two models

will be compared to the traditional Regression-Based model. We will investigate which method

performs best in terms of LGD prediction.

The Freddie Mac Loan Level data set will be used for this research (Freddie Mac, 2023a).

It contains loan characteristics and performances of American mortgages that were sold to Fred-

die Mac, an American company that operates in the US secondary mortgage market. They buy

loans from lenders and pool them into securities which they again sell to investors around the

world.

Past research papers that address SA for time-to-event modelling find that SA models combined

with machine learning can outperform traditional statistic methods such as the Regression-

Based model and the Cox PH model. However, these machine learning-based SA models have

only been applied to making predictions in medical and PD cases, i.e. binary events. This

paper contributes to the current literature as we investigate whether these enhanced SA models,

specifically the RSF, also outperform the traditional Regression-Based and Cox PH method in

predicting expected future recovery cash flows, i.e. non-binary events, of defaulted loans.

The results following this research indicate that before calibrating the RSF model, the RSF

was the only model that could capture the bimodality of the LGD. Furthermore, it had the

best Loss Capture Ratio (LCR) and Loss Shortfall (LS) implying that it was able to differenti-

ate between the severity of losses better and could capture the total loss better. The latter is

important when lenders need to set their capital buffer. However, the Cox PH model slightly

outperformed the Regression-Based model and RSF model based on the Mean Absolute Error

(MAE) and Mean Squared Error (MSE), implying that the Cox PH model was able to make

more accurate LGD predictions. We also found that all three models were able to differentiate

well between resolved and unresolved cases. Furthermore, the Regression-Based model obtained

better values for the MAE, MSE and LS when we predicted the LGD at twelve-month intervals.

However, the twelve-monthly predictions were more cumbersome to calculate for the Regression-

Based model. Lastly, we calibrated the three models via a binning method. We found that the

Calibrated RSF model outperformed the (Calibrated) Regression-Based model and (Calibrated)

Cox PH model based on the LCR and MSE. It also outperformed all models based on all four

measures for the twelve-monthly predictions. Specifically, when one prioritizes high discrimin-

atory power and the reduction of large errors in LGD prediction, or when one wants to perform

short-term LGD predictions, the Calibrated RSF model is an appropriate model.

The remainder of this paper is structured as follows. In Section 2, we discuss past research
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papers regarding LGD models and (machine learning-based) SA models. Section 3 contains a

description of the data set used in this research. We discuss the methodology in Section 4, with

the corresponding results presented in Section 5. Lastly, a conclusion and future research ideas

are given in Section 6.

2 Literature Review

The following section gives a brief overview of several relevant papers on the prediction of future

recovery cash flows. First, current LGD modelling techniques are discussed. Subsequently, some

alternative methods are examined. Finally, the contribution of this research to the literature is

explained.

Currently, there are two general LGD forecasting techniques, the Direct Approach and the

Component-Based Approach (Hurlin et al., 2018; Miller & Töws, 2018; Zhang & Thomas, 2012).

The Direct Approach models the LGD with a linear regression, in an LGD context this model

is also known as the Regression-Based model. The main advantage of this parametric model is

that it is very interpretable. The Component-Based Approach splits the LGD estimation into

two parts. The most common method splits it based on the default outcome; cure or non-cure,

i.e. loans that returned to the performing state or loans that were not able to return to the

performing state, respectively. Loss given cure and loss given non-cure are modelled via linear

regression, and then, a probability of cure, modelled via logistic regression, is used to combine the

two models into a final LGD prediction. These techniques, however, have a few disadvantages.

First, linear regression has several assumptions, including that the error term follows a normal

distribution with mean zero. This assumption is, however, often violated as the distribution of

the LGD tends to be bimodal. Furthermore, only resolved cases can be used in the modelling

process of these two approaches. Resolved and unresolved cases may, however, follow different

recovery patterns, and thus, these techniques may result in biased estimates. Nevertheless, due

to their simplicity, both approaches are still commonly used in the prediction of future recovery

cash flows. The Regression-Based model is easier to interpret, and is, therefore, appropriate to

use as a benchmark model in this paper.

A good alternative to the Regression-Based model is time-to-event modelling which is com-

monly used in medical research (George et al., 2014). These models capture more information

than whether an event has occurred or not. An example of time-to-event modelling is Survival

Analysis (SA). In medical research, SA is used to, for example, compare the risk of death or

recovery from a disease between or among population groups receiving different medications or

treatments (Liu, 2012). The results provide information on which medication or treatment per-

forms better. An advantage of these SA models is that they can handle censored observations,

that is, observations that have not experienced the event before the end of the study yet (right-

censored) and observations that had already experienced the event at the start of the study

(left-censored) (George et al., 2014). Methods such as linear regression ignore these censored

observations. A common SA technique is the Cox Proportional Hazards (Cox PH) model which

is expressed by the hazard function, which estimates the rate at which events occur at a certain
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time. It is a semi-parametric model and can examine the effect of several predictor variables on

the time-to-event. In this research, we have that the event is a recovery cash flow, thus, unlike

in the medical field, we have a non-binary event. This requires an adjustment in the modelling

procedure, which we will need to apply.

Recent literature has shown that SA models also have become more popular in credit risk

modelling. Witzany et al. (2012), Zhang and Thomas (2012) and Pŕıvara et al. (2013) investig-

ated how SA models, such as the Cox PH model, performed in modelling the recovery process

of defaulted loans. They regarded the target variable as how much has been recovered before

the end of the collection period. Witzany et al. (2012) and Pŕıvara et al. (2013) found that the

Cox PH model outperformed the traditional regression method. An advantage of SA models is

that they can handle unresolved cases, that is, cases for which clients are still in the process of

repaying their loans. Furthermore, no distributional assumptions are required for the Cox PH

model, which is beneficial as the size of the recovery rate does not follow a normal distribution

(Miller & Töws, 2018). For these reasons, the Cox PH model will be used as our second model

to predict future recovery cash flows. The main difference between this research and the ones

mentioned is that Witzany et al. (2012), Zhang and Thomas (2012) and Pŕıvara et al. (2013)

look at unsecured loans, i.e. loans with no collateral, whereas this paper investigates loans with

collateral, this could influence the results. Loans that are not protected by collateral generally

carry a higher risk for the lender (Brock, 2023). This paper will contribute to the literature by

investigating whether the Cox PH model can also outperform the traditional regression method

in terms of LGD prediction for secured loans.

Doan et al. (2022) enhanced the traditional SA model by applying three machine learning

techniques to SA for both clinical and transcriptomic data. These three techniques included

Random Forest, Gradient Boosting and Support Vector Machine. Random Forest is a machine

learning method that uses bagging and feature randomness to create uncorrelated decision trees

(Yingchun, 2014). Predictions are then based on the average of the individual trees’ predictions.

The uncorrelated decision trees result in a model with low variance, meaning the model is a

good method against overfitting. Furthermore, the Random Forest has the additional advant-

age of being able to handle both continuous and categorical variables, however, it is memory

and time-intensive (Yingchun, 2014). Gradient Boosting is another machine learning technique

that uses a series of weak learners, such as decision trees, to improve the model sequentially

(Friedman, 2001). Each tree minimizes a loss function and learns from the residual of its suc-

cessor’s prediction. The final prediction is based on the weighted average of the prediction of all

the individual trees. As predictions are based on various estimations of weak learners, Gradient

Boosting provides robust estimates, moreover, it can also handle both continuous and categor-

ical variables, however, it is memory and time-intensive (Friedman, 2001). Another common

machine learning model is the Support Vector Machine. The objective of this model is to classify

data points by finding a separating hyperplane that maximizes the margin between groups and

minimizes misclassification (Cervantes et al., 2020). This model only uses a subset of the train-

ing data making it less prone to overfitting. Furthermore, it is robust to noise in data. However,
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it does not perform well in large data sets (Cervantes et al., 2020). Doan et al. (2022) show that

these machine learning-based SA models, the Random Survival Forest (RSF), Gradient Boosted

Survival (GBS) and Survival Support Vector Machine (SSVM), can outperform the traditional

statistic methods, such as the Cox PH model. These models combine the advantages of machine

learning techniques, which are well known for their ability to handle high-dimensional data,

non-linear relationships and interaction effects, and the advantages of SA models, which can

handle censored data. RSF computes a cumulative hazard function for each tree after which

all functions are averaged to obtain the final cumulative hazard function. GBS uses the partial

likelihood function of the Cox PH model as the loss function and SSVM uses an asymmetric

penalty function to handle survival data. Based on the results found in Doan et al. (2022), these

machine learning-based SA models seem to perform better than the traditional statistic methods

in the medical field. However, these techniques have not been investigated in the prediction of

future recovery cash flows yet. The main difference between Doan et al. (2022)’s research and

this research, is that we have a non-binary event in the credit risk field, whereas Doan et al.

(2022) investigated the prediction of a binary event in the medical field. Again, we will need to

adjust the modelling procedure to handle this difference which could affect the results.

The RSF and GBS models are also investigated by Xia et al. (2021). They found that a

variation of GBS outperformed other models in terms of the dynamic predictions on probability

of default (PD) under out-of-sample validation. However, they also found that this variation

did not significantly outperform the other methods under out-of-time validation. This variation

of GBS is called the Survival Extreme Gradient Boosting (SurvXGBoost) model, which com-

bines Extreme Gradient Boosting, an advanced version of Gradient Boosting that uses a more

regularized model formalization to control overfitting, with survival models. Extreme Gradient

Boosting is known to outperform Gradient Boosting in terms of accuracy and speed (Wade &

Glynn, 2020). Nevertheless, Bhakta et al. (2021) mention that it does not perform as well as

the Random Forest in large data sets, furthermore it is more prone to overfitting. SurvXGBoost

was compared to the traditional Cox PH model, RSF, GBS and a time-varying Cox PH model.

Again, this comparison has not been performed on the prediction of future recovery cash flows

yet. Xia et al. (2021) investigated the prediction of a binary event, whereas we have a non-

binary event. An adjustment in the modelling procedure will need to be made to manage this

difference which could affect the performance results. As RSF performs better than SSVM and

SurvXGBoost, which itself performs better than GBS, in large data sets, we will investigate RSF

in the prediction of future recovery cash flows. This research will contribute to the literature by

applying a machine learning-based SA model in the prediction of recovery cash flows.

To summarize, based on the discussed literature, this paper contributes to the current liter-

ature. To the best of our knowledge, a comparative study of different prediction techniques for

future recovery cash flows has not been performed yet. The main contribution of this paper is to

propose a machine learning-based SA model in the prediction of recovery cash flows. Traditional

SA models have already been used in LGD prediction, and machine learning-based SA models

have already been used in binary-event predictions, such as in the medical field and for PD pre-
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diction. However, machine learning-based SA models have not been investigated in non-binary

events, specifically LGD, prediction yet.

3 Data

In this section, the data set is analysed. First, a general description of the data and its source is

given. Then, the procedure of how the data is cleaned is explained, after which the risk drivers

are discussed. Next, the summary statistics are given. Lastly, the division of the data set into

a training and test set is explained.

3.1 Mortgage Data

The Freddie Mac Loan Level data set will be used for this research. It contains loan charac-

teristics and performances of American mortgages that were sold to Freddie Mac, an American

company that operates in the US secondary mortgage market (Freddie Mac, 2023a). They buy

loans from lenders and pool them into securities which they again sell to investors around the

world. Data is available with mortgage start dates in 1999-2022. The original data set contains

approximately 52.4 million mortgages. As this is computationally challenging, a subsample is

also provided; 50,000 mortgages are randomly selected per year from the original set. For this

research, the subsample is used with start dates in 2005-2022, this way, both the financial crisis

in 2007-2008 and the Covid-19 pandemic in 2020-2023 are included. The data set includes

899,968 unique mortgages.

The data set consists of two parts; a yearly origination file and a monthly loan performance

set. The first consists of 32 fields regarding loan, borrower and property characteristics at the

start date. Examples include loan-to-value, credit score, debt-to-income ratio, property type

and postal code. The monthly loan performance set consists of 32 fields regarding monthly per-

formance metrics for each loan. These fields include the loan delinquency status, interest rate

and monthly loan balance. A unique identification number for each loan links the two parts. A

description of all the variables can be found in Freddie Mac (2023b) and a description of the

important variables for this research can be found in Table A1.

3.2 Data Cleaning

As this research focuses on predicting future recoveries of defaulted loans, we only include mort-

gages that have defaulted (approximately 4.5% of the 899,968 unique mortgages). A mortgage

is considered to be in default if it has been delinquent for 90 days or more (European Banking

Athority, 2018). In the data set, a delinquency status of 0 represents a loan that has been delin-

quent for 0-29 days. A value of 1 corresponds to 30-59 days delinquent, etc. Therefore, all loans

included in the data set have a delinquency status of at least 3 at least once. Moreover, loans

already in default at the start of the observation window are removed as well as information at

the time of default is unknown. The workout period then starts on the date the mortgage goes

into default and ends on the date a zero balance event occurs or on the performance cutoff date.

The latter is the last date for which performance data is available for any loan in the data set.
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The zero balance event date is the loan termination date, i.e. the date the loan is considered

cured or non-cured, which will be explained more in Subsection 3.3.

Furthermore, we exclude observations that were repurchased, modified and deferred. We provide

a more in-depth elaboration on the decisions made in the process of removing these observations

in Section A.2. Moreover, there are approximately 450 loans that have been terminated but

without a reason given. We will assume these loans have not been cured. Lastly, loans that

are terminated in the same month as they went into default, are deleted as well. After deleting

these observations, we remain with 17,439 unique mortgages. An overview of the data removal

is also provided in Table A2.

Table 1 summarizes the procedure for removing certain variables. We remove variables based on

their correlation with other variables, missing values, whether they only have one unique value,

and their definition. The full list of variables with their reason for removal, if removed, can be

found in Table A1. We also provide a more in-depth explanation of this procedure in Section

A.2. We end with 32 variables, of which 29 are risk drivers.

Table 1: Variable requirements

Requirement Reason

Correlation <70% Strong correlation affects the predictor standard error negatively
Missing Values <70% Variables with too many missing values provide no useful information
More than One Value Variables with only one unique value don’t provide additional relevant information
Loan Characteristic Only loan properties are of interest
Normal Loans Characteristic Variables related to the deferred payment plan and modified loans are irrelevant

Moreover, only the first digit of the three-digit Postal Code is used, this digit corresponds to one

of ten regions in the US. Figure 1 shows the postal code division. The ten regions will be named

Northeasteast, Northeast, East, Southeast, Mideast, North, Mid, South, Midwest, and West,

for first digit 0-9 respectively. Lastly, before the second quarter of 2018, the variable Number

of Borrowers could only take two values; 1, if there was only one borrower, and 2, if there was

more than one borrower. From the second quarter of 2018 onwards, the variable takes the value

equivalent to the number of borrowers, that is, it can also take a value larger than 2. To handle

this difference, we use the first definition and set all values larger than 2, equal to 2.

3.3 Risk Drivers

Additional variables are created for the calculation of the LGD. The LGD is given by

LGDi,T = 1−RRi,T = 1− 1

EADi

T∑
t=1

CFi,t

(1 + ri)t−t0
, (1)

where RRi,T is the recovery rate at time T and EADi is the Exposure at Default, equal to the

outstanding amount of the mortgage at the time of default, t0, for observation i. The cash flows

of observation i at time t > t0, CFi,t, are discounted by discount rate ri, for t− t0 months after

the default date. A cash flow is defined as the difference between the Current Actual Unpaid
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Figure 1: Postal code division

Principal Balance (UPB) of a certain month with the previous month. We have T cash flows,

where T is the number of months after the default date at which the LGD is calculated, and we

use the Current Interest Rate for the discount rate. Note that in practice the 500bps plus three-

month Euro Interbank Offered Rate (3M Euribor) is used for discounting (European Banking

Authority, 2017), however, for simplicity, the Current Interest Rate will be used. This may affect

the size of the estimated losses, as higher rates result in lower present values of future cash flows,

and therefore, higher loss estimates, and vice versa. Nevertheless, as the same discount rate is

used consistently over the whole data set, using the Current Interest Rate should not impact

the internal model performances, however, one may need to adjust the rates when the models

are performed on other data sets. Furthermore, the name Current Interest Rate suggests the

variable is time-varying. However, we find that the variable is loan specific, and does not vary

with time.

Moreover, the LGD must be adjusted for loans that have been cured (European Banking Au-

thority, 2017). For these loans, an artificial cash flow is added to the calculation at the time of

termination. This artificial cash flow is discounted in the same way as a normal cash flow, how-

ever, this results in non-zero LGDs for cured losses. Nevertheless, this way reflects the economic

loss, which we are interested in, rather than the accounting loss, obtained by setting the LGD to

zero for cured cases. The Zero Balance Code indicates whether the loan is cured or not, Table 2

gives an overview of which Zero Balance Event belongs to a cured loan. When a defaulted loan

is cured, it means that the client was able to recover the loan, non-cured otherwise.

There are several categorical variables in the data set. If a categorical variable has M different

values, M − 1 dummy variables are created to avoid the ”dummy variable trap” (Hirschberg

& Lye, 2001). If all M values were constructed as dummy variables, perfect multicollinearity,

and thus, inaccurate results, could occur. The following values of the categorical variables are

excluded: First Time Homebuyer Flag - No, Occupancy Status - Primary Residence, Property
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Table 2: Overview of zero balance events

Zero Balance Event Definition

Cured
Prepaid or Matured (Voluntary Payoff) The outstanding amount is fully paid
Reperforming Loan Securitizations The loan is sold once it has been cured

Non-Cured

Third Party Sale The loan is sold to a third party
Short Sale or Charge Off The loan is sold at a lower price
Real Estate Owned Disposition The loan is sold to the lender
Whole Loan Sale The loan is sold in the secondary market

Type - Single-Family, Loan Purpose - Purchase, Prepayment Penalty Mortgage (PPM) Flag -

No and Postal Code - Northeasteast. Note that the choice of which value is to be removed is

arbitrary.

Lastly, all numeric variables are normalized via the min-max scaling technique (de Amorim

et al., 2023). Let Xij be the jth variable of loan i, the normalized variable then becomes

Xij,scaled =
Xij −Xj,min

Xj,max −Xj,min
, (2)

with i ∈ {1, . . . , N} and j ∈ {1, . . . , P}, where N and P are the number of loans and explanatory

variables, respectively. The minimum and maximum value over all loans i of variable j is

denoted by Xj,min and Xj,max, respectively. Normalizing variables ensures each feature is of

equal importance. By the min-max scaling, each variable is scaled to a value between 0 and 1,

this allows for a better comparison of the coefficients. When features have different scales, the

feature with a larger range of values can influence the results more, although it is not necessarily

more important as a predictor (Vidiyala, 2020).

3.4 Summary Statistics

Table 3 contains the summary statistics of the remaining non-categorical risk drivers before

normalizing the variables. The credit score is an indication of the borrower’s likelihood to repay

loans in a timely manner. Scores generally range from 300 to 850, a higher score means the

likelihood is higher. In the data set, borrowers score quite high on their credit score, the average

credit score is 707.43. The average mortgage insurance percentage is 5.89%, however, at least

75% of the mortgages have no mortgage insurance. Mortgage insurances are intended to protect

the lender, higher mortgage insurance percentages lead to lower LGD since the recoveries are

higher. Thus, it is expected that a higher mortgage insurance percentage is negatively related to

LGD. Similarly, at least 50% of the mortgage notes are to be repaid by one borrower, and nearly

all mortgages are for one-unit properties. It is expected that the number of borrowers is also

negatively related to the LGD as the mortgage can be repaid by more people, this hypothesis is

also supported in Section 5. The number of units, on the other hand, is likely to be positively

related to the LGD. Multi-unit properties are more complex to handle and come with higher

operational costs (Trion Properties, 2023).

In Table 4, the summary statistics of categorical risk drivers are given. Most borrowers (86.41%)
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Table 3: Summary statistics1 of non-categorical risk drivers

Risk Driver Mean Std Min p25 p50 p75 Max

Exposure at Default 183,067.61 109,744.92 35.26 99,990.16 159,635.53 245,671.94 916,535.07
Credit Score 707.43 58.00 300 667 708 752 839
MI2 Percentage (%) 5.89 11.11 0.00 0.00 0.00 0.00 42.00
Number of Units 1.04 0.25 1 1 1 1 4
Original CLTV3 80.12 23.14 8 70 80 90 529
Original DTI4 Ratio (%) 38.50 10.70 2 32 39 45 65
Current Interest Rate (%) 5.59 1.06 1.88 4.75 5.88 6.38 8.75
Original Loan Term 338.36 56.74 96 360 360 360 480
Months in Default5 26.22 30.73 0 6 14 33 205
Number of Borrowers 1.37 0.48 1 1 1 2 2
1 Statistics are of variables before normalizing the data
2 MI = Mortgage Insurance
3 CLTV = Combined Loan-to-Value
4 DTI = Debt-to-Income
5 Statistics of Months in Default includes unresolved cases

are not a first-time homebuyer. It is expected that first-time homebuyers have more difficulty

repaying their mortgage, and therefore, have a higher LGD. As the majority of borrowers are

not a first-time homebuyer, this could mean the average LGD is slightly lower than if there were

more first-time homebuyers. However, in Section 5, we find that there is a negative relation

between the two. An explanation of this negative relation will be provided in Section 5. Fur-

thermore, nearly all properties (88.04%) are occupied by the owner of the mortgage, and most

properties (71.70%) are single-family homes. The loan purpose types are fairly evenly distrib-

uted, and very few loans (0.10%) are prepayment penalty mortgages. Lastly, the least number

of properties (4.29%) are located in the North of America, and the most (17.73%) are located in

the Southeast. Highly imbalanced categorical variables may affect the estimation performance

(Moerbeek & van Schie, 2016). We have some risk drivers with very few observations belonging

to one outcome, therefore, the outcome may contribute minimal information for prediction.

Figure 2: Histogram of the loss given default
of cured, non-cured and unresolved loans

Figure 3: Histogram of the number of months
in default

As this paper focuses on LGD, we also look at the LGD distribution of the data set and its de-

velopment over time. In Figure 2, the histogram of the LGD of cured, non-cured and unresolved

loans is given. Here, it is seen that the LGD is bimodally distributed. Most loans experience
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Table 4: Summary statistics of categorical risk drivers

Risk Driver Categories N %

First Time Homebuyer Flag No 15,069 86.41
Yes 2,370 13.59

Occupancy Status Primary Residence (P) 15,354 88.04
Investment Property (I) 1,444 8.28
Second Home (S) 641 3.68

Property Type Single-Family (SF) 12,504 71.70
PUD (PU) 3,084 17.69
Condo (CO) 1,647 9.44
Manufactured Housing (MH) 167 0.96
Co-op (CP) 37 0.21

Loan Purpose Purchase (P) 6,358 36.46
Refinance - No Cash Out (N) 5,592 32.07
Refinance - Cash Out (C) 5,489 31.47

PPM1 Flag No 17,421 99.90
Yes 18 0.10

Postal Code Southeast (3) 3,092 17.73
West (9) 2,879 16.51
Midwest (8) 1,757 10.07
Mideast (4) 1,754 10.06
East (2) 1,646 9.44
Northeasteast (0) 1,452 8.33
Mid (6) 1,403 8.05
South (7) 1,359 7.79
Northeast (1) 1,348 7.73
North (5) 749 4.29

1 PPM = Prepayment Penalty Mortgage

no loss or a complete loss, this may influence the performance of some models when predicting

the LGD. Figure 3 shows the histogram of the number of months in default of all loans. The

majority of the loans are less than 3 years in default. Interesting to see is that there is a small

peak at approximately 30 months in default. This means fewer loans are slightly shorter and

slightly longer than approximately 30 months in default. From Table 5, we see that the average

number of months in default is slightly more than 26 months, with an average LGD of 59%.

However, if we only look at cases that are closed, the average is slightly more than 23 months,

with an average LGD of 51%. Approximately 54% of the resolved loans are cured. We also see

that the average LGD is approximately 1 for non-cured cases, that is, if a loan is considered

non-cured the owner was hardly able to repay the loan. From Figure 2 and Table 5, we also see

that the highest LGD for cured cases is 57%, though only very few loans experience an LGD of

more than 40% if the loan was considered cured. Similarly, the smallest LGD for non-cured cases

is 5%, though only very few non-cured loans experienced an LGD of less than approximately

100%. The smallest LGD for unresolved cases is 4%, though only very few unresolved cases

have an LGD of less than 60%.

Lastly, in Figure 4, the cumulative LGD is plotted against the number of months in default. We
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see that the LGD goes towards 59% when we include both resolved and unresolved cases, this

is the average LGD of all mortgages, as was also seen in Table 5. Note, however, that the exact

number (59.63%) is slightly higher than the exact average LGD (58.60%) observed in Table 5.

This is because the calculation in the cumulative LGD is based on the sum of cash flows per

month in default divided by the total exposure at default. It is, therefore, a weighted LGD,

whereas the average LGD in Table 5 is unweighted. From Figure 4, we can also clearly see that

resolved and unresolved loans follow a different LGD pattern. However, this is mainly caused

by the last cash flow of a loan. Often the largest cash flow is observed at the end of the workout

period. Excluding these cash flows results in a similar LGD pattern as the unresolved cases.

Nevertheless, to avoid biased predictions this means we must use both resolved and unresolved

loans in the modelling process.

Table 5: Summary statistics1 of resolved and unresolved cases

Months in Default Loss Given Default
N Mean Min Max Mean Min Max

Resolved Cured + Non-Cured 14,111 23.46 1 203 0.51 0.00 1.00
Cured 7,597 27.89 1 203 0.10 0.00 0.57
Non-Cured 6,514 18.29 1 145 1.00 0.05 1.00

Unresolved 3,328 37.95 0 205 0.90 0.04 1.00
All 17,439 26.22 0 205 0.59 0.00 1.00
1 Statistics are of variables before normalizing the data

Figure 4: Cumulative loss given default against the number of months in default

3.5 Training and Test Set

To test the performance of the models, the data set is split into a training and test set. For this

research, 75% of the loans with their monthly performances are put into the training set, and the

other 25% is put into the test set for performance validation. Loans are divided randomly. The

models are estimated on the in-sample set, i.e. the training set. Validation is then performed
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on the out-of-sample set, in this case, the test set, to measure the consistency of performance.

For the Random Survival Forest, we split the data another time. Trees are created by randomly

selecting features from the training set (the in-bag data), and then, with the remaining data

(approximately 37% (Qu et al., 2020)) of the training set (the out-of-bag data), each tree is

validated. The test data set is again used as an overall performance measure of the model.

4 Methodology

This research will evaluate the semi-parametric Cox PH model and the machine learning-based

RSF model against the traditional Regression-Based model. The latter will be considered the

benchmark model. In the next section, first, the three different models are explained. Then,

the variable selection method will be discussed. Lastly, an overview of the different performance

measures is given.

4.1 Regression-Based Model

The Regression-Based method models the LGD with a linear regression (Hurlin et al., 2018;

Miller & Töws, 2018; Zhang & Thomas, 2012). It assumes that the error term follows a normal

distribution with mean zero. This assumption is often, however, violated as the distribution of

the LGD tends to be bimodal (Figure 2). This model, therefore, could result in weak predictive

performances. Furthermore, only resolved cases can be used in the modelling process. However,

resolved and unresolved cases may exhibit different recovery behaviour (Figure 4), and thus, this

technique may result in biased estimates. Nevertheless, this approach is still commonly used in

the prediction of future recovery cash flows, and is, thus, appropriate to use as a benchmark

model. It uses Ordinary Least Squares (OLS) to model the LGD of loan i ∈ {1, . . . , N}, where
N is the number of loans, on the explanatory variables in a linear combination,

LGDi = βRB
0 +

P∑
p=1

βRB
p Xip + ϵi, (3)

where βRB
0 is the regression’s constant, βRB

p the slope coefficient of explanatory variable Xip, P

the number of explanatory variables and ϵi the residual. Let βRB = (βRB
0 , βRB

1 , . . . , βRB
P ), the

parameters are estimated by minimizing the residual sum of squares (RSS):

β̂RB = argmin
βRB

RSS = argmin
βRB

N∑
i=1

LGDi − βRB
0 −

P∑
p=1

βRB
p Xip

2

. (4)

4.2 Survival Analysis

Survival Analysis is a popular technique for time-to-event modelling. In this research, we have

that the event, also known as a failure, is a recovery cash flow. SA models are able to handle

right- and left-censored observations, for this research, however, only right-censored observations

in the data set will be considered. Right-censored observations, in the context of this research,

are clients who are in default but whose workout period has not ended yet, that is, there might
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still be recovery cash flows in the future. This section provides the basic principle of SA and

also introduces two types of modified SA models, namely the Cox Proportional Hazards and

Random Survival Forest model.

Let T be the non-negative random variable that represents the time the event happens. It

has probability density function f(t) and cumulative distribution function F (t). The survival

function, S(t) = 1 − F (t), is the cumulative probability of the subject not having encountered

the event until time t ≥ 0, with t = 0 the start time. In our case, we have that the survival

function represents the cumulative probability of not receiving a cash flow by the end of the

study period, and t is the number of months the loan has been in default, with t = 0 the time

the loan defaulted. Then, the hazard function, which is defined as

h(t) = lim
τ→0

P(t ≤ T ≤ t+ τ |T > t)

τ
=

f(t)

S(t)
, (5)

is the rate at which the events happen exactly at time t given survival, that is, the event has

not happened yet, until t. The second equality holds by definition of the conditional density

function and the derivative of a function. The cumulative hazard rate is derived as follows

H(t) =

∫ t

0
h(s) ds. (6)

Lastly, by the chain rule,

− ∂

∂t
logS(t) = −

∂
∂tS(t)

S(t)
= −

∂
∂t [1− F (t)]

S(t)
= −−f(t)

S(t)
= h(t), (7)

therefore, the survival function takes the following form

S(t) = exp

[
−
∫ t

0
h(s) ds

]
= exp[−H(t)] = P(T > t). (8)

The above is the general concept of SA. The following two subsections will explain two methods

for the implementation.

4.2.1 Cox Proportional Hazards Model

The Cox Proportional Hazards model can examine how specific factors influence the rate of a

particular event happening at a certain point in time. The hazard function takes the form

h(t|Xi) = h0(t) exp(X
′
iβ

CPH), (9)

where h0(t) is a non-parametric baseline hazard, and exp(X ′
iβ

CPH) denotes a parametric re-

lative risk function, with Xi = (Xi1, . . . , XiP )
′ a vector of P explanatory variables of loan

i ∈ {1, . . . , N}, with corresponding coefficients βCPH = (βCPH
1 , . . . , βCPH

P )′. The Cox PH

model is, thus, a semi-parametric model. The cumulative baseline hazard and baseline survival
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function are, respectively, defined as

H0(t) =

∫ t

0
h0(s) ds; (10)

S0(t) = exp[−H0(t)]. (11)

Consider two individuals i and j, i ̸= j, the ratio between their hazard rates is

h(t|Xi)

h(t|Xj)
=

h0(t) exp(X
′
iβ

CPH)

h0(t) exp(X ′
jβ

CPH)
=

exp(X ′
iβ

CPH)

exp(X ′
jβ

CPH)
= κ, (12)

where κ > 0 is a constant independent of time. In other words, we assume that an individual is

always a certain factor riskier to experience the event compared to another individual at every

point in time. This assumption is tested with the Schoenfeld Residuals statistic (Winnett &

Sasieni, 2001). Violation of this assumption could lead to weak predictive performances.

Cox PH models are estimated via the partial likelihood function (Hosmer et al., 2008). This

method depends only on the parameters of interest and the estimation of the baseline func-

tion is disregarded. Including the baseline function will result in difficulties when using the

log-likelihood function. The partial likelihood, nevertheless, obtains the same distributional

properties of the parameter estimates as the full likelihood. The proof can be found in Slud

(1982).

Let R(ti) denote the set of defaulted loans at time ti, where ti is the time that observation

i ∈ {1, . . . , N} experiences the event. Furthermore, let δi indicate whether observation i exited

from default by curing or writing off. If δi = 1, observation i is uncensored at time ti, and δi = 0

otherwise. In the latter case, the survival time is longer than the observed event time of the

loan; the loan is right-censored. The partial likelihood, is, therefore, denoted by

L(βCPH) =

N∏
i=1

(
h(ti|Xi)∑

l∈R(ti)
h(ti|Xl)

)δi

=

N∏
i=1

(
h0(ti) exp(X

′
iβ

CPH)∑
l∈R(ti)

h0(ti) exp(X ′
lβ

CPH)

)δi

=
N∏
i=1

(
exp(X ′

iβ
CPH)∑

l∈R(ti)
exp(X ′

lβ
CPH)

)δi

.

(13)

Here, we assume that all observations are independent. Although loans are generally independent

of each other, the loss rates might be correlated due to, for example, bad market conditions to sell

collateral. This could result in weak predictive performances. The log-likelihood then becomes

logL(βCPH) =
N∑
i=1

δi

X ′
iβ

CPH − log

 ∑
l∈R(ti)

exp(X ′
lβ

CPH)

 , (14)

16



which is maximized with respect to βCPH .

The above formulation is based on the assumption that events do not happen at the exact

same time. Survival times are continuous random variables, so to a certain extent this assump-

tion is valid, however, due to discrete observation moments, cash flows can be received at the

same time. Breslow (1974) and Efron (1977) derived an approximation of the above model to

solve this problem.

When we obtain the estimates of βCPH , β̂CPH , we can estimate the cumulative baseline hazard

rate. Peng and Dear (2000) proposed the following estimate

Ĥ0(t) =
∑
ti≤t

di∑
l∈R(ti)

exp(X ′
l β̂

CPH)
, (15)

where di is the number of events at time ti. From equations (8), (9), (10) and (15), the estimated

survival function can be computed by

Ŝ(t)
(8),(9)
= exp

[
−
∫ t

0
ĥ0(s) exp(X

′
iβ̂

CPH) ds

]
= exp

[
− exp(X ′

iβ̂
CPH)

∫ t

0
ĥ0(s) ds

]
(10)
= exp

[
− exp(X ′

iβ̂
CPH)Ĥ0(t)

]
(15)
= exp

−∑
ti≤t

di∑
l∈R(ti)

exp(X ′
l β̂

CPH)
exp

(
X ′

iβ̂
CPH

) .

(16)

Furthermore, with the relation S(t) = 1 − F (t), the estimated probability of receiving a cash

flow, P̂(T ≤ t) = F̂ (t), is denoted by

P̂(T ≤ t) = F̂ (t) = 1− Ŝ(t) = 1− exp
[
−Ĥ0(t)exp

(
X ′

iβ̂
CPH

)]
. (17)

4.2.2 Random Survival Forest Model

Random Survival Forest is an extension of the Random Forest method that includes SA. It

uses bagging and feature randomness to create uncorrelated decision trees (Yingchun, 2014).

Bagging, or bootstrap aggregation, is the random selection of data from the training set with

replacement, that is, data points can be selected more than once. Feature randomness, or fea-

ture bagging, is the random selection of features. Predictions are then based on the average

of the individual trees’ predictions. RSF extends this by creating survival trees by splitting

nodes based on the log-rank splitting rule that maximizes the survival difference between chil-

dren nodes (Doan et al., 2022). A cumulative hazard function (CHF) is then computed for each

tree, after which all functions are averaged to obtain the final CHF. The main advantage of

RSF over Cox PH is that RSF does not assume proportional hazard rates (Nasejje & Mwambi,

2017). Furthermore, it is non-parametric, that is, it does not assume a specific form of the

hazard function. However, this does imply that the coefficients of the covariate effects are less
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interpretable.

Survival trees are binary trees grown by recursive splitting of tree nodes (Ishwaran et al., 2008).

A node is split based on the survival difference between its two daughter nodes. The survival

difference is the difference in the survival probability curves of observations. The best split is

the split for which the largest survival difference is obtained, found by searching over all k ≤ P

randomly selected predictor variables of loan i ∈ {1, . . . , N} and split values c. This way, the

differences between trees are maximized, while differences within trees are minimized. A sur-

vival tree reaches its saturation point when no new daughters can be formed because of the

criterion that each node must contain a minimum number of events. Let P denote the set of

the P predictor variables, and K the set of the k randomly selected predictor variables, K ⊆ P.

In the remainder of this subsection, let Xi denote the k predictor variables in subset K of loan i

and Xip the pth covariate of Xi. The log-rank statistic of Xip, with splitting value c is given by

L(Xip, c) =

∣∣∣∣∣∣
∑N

i=1(di,1 −
di
Yi
Yi,1)√∑N

i=1
Yi,1

Yi
(1− Yi,1

Yi
)(Yi−di

Yi−1 )di

∣∣∣∣∣∣ , (18)

where di,j is the number of events in daughter node j = 1, 2 at time ti, di = di,1+di,2. Similarly,

Yi,j is the number of individuals who are alive in daughter node j = 1, 2 at time ti, Yi = Yi,1+Yi,2.

The split value c determines whether an observation Xip goes to the left (Xip ≤ c) or the right

(Xip > c) daughter node.

Let h denote a terminal node of a saturated tree, and t1,h < t2,h < · · · < tm(h),h the dis-

tinct event times within node h. Furthermore, let d∗l,h and Y ∗
l,h denote the number of cash flows

and individuals at risk at time tl,h, respectively (Xia et al., 2021). The CHF and survival func-

tion for terminal node h are estimated using the Nelson-Aalen and Kaplan-Meier estimators,

respectively,

H∗
h(t) =

∑
tl,h≤t

d∗l,h
Y ∗
l,h

; (19)

S∗
h(t) =

∏
tl,h≤t

(
1−

d∗l,h
Y ∗
l,h

)
. (20)

Equation (19) implies that for a given tree, the hazard estimate for node h is the ratio of events

to individuals at risk, summed across all unique event times. Given a new sample i with features

Xi, Xi will be assigned to a unique terminal node h due to the binary nature of a tree. The

CHF and survival function for Xi are given by the Nelson-Aalen and Kaplan-Meier estimator

for Xi’s terminal node:

H∗(t|Xi) = H∗
h(t), i ∈ {1, . . . , N}; (21)

S∗(t|Xi) = S∗
h(t), i ∈ {1, . . . , N}. (22)

The in-bag ensemble CHF and survival function are derived by dropping the sample through

all B trees and averaging the hazard and survival function from each tree. Let H∗
b (t|Xi) and

S∗
b (t|Xi) denote the CHF and survival function of the bth survival tree, b ∈ {1, . . . , B} of loan
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i. The ensemble estimators are computed as

H̄∗
e (t|Xi) =

1

B

B∑
b=1

H∗
b (t|Xi), i ∈ {1, . . . , N}; (23)

S̄∗
e (t|Xi) =

1

B

B∑
b=1

S∗
b (t|Xi), i ∈ {1, . . . , N}. (24)

The out-of-bag (OOB) estimates for case i are given by

HOOB(t|Xi) = H∗
h(t), if Xi ∈ h and case i ∈ {1, . . . , N} is OOB; (25)

SOOB(t|Xi) = S∗
h(t), if Xi ∈ h and case i ∈ {1, . . . , N} is OOB. (26)

Let Oi denote the trees where case i is OOB. The ensemble CHF and survival function for

individual i are then given by

H̄OOB
e (t|Xi) =

1

|Oi|
∑
b∈Oi

H∗
b (t|Xi), if i ∈ {1, . . . , N} is OOB; (27)

S̄OOB
e (t|Xi) =

1

|Oi|
∑
b∈Oi

S∗
b (t|Xi), if i ∈ {1, . . . , N} is OOB. (28)

Note that the Nelson-Aalen and Kaplan-Meier estimators do not use risk drivers to fit the

model. However, the risk drivers are used in growing the trees. Furthermore, as RSF makes use

of Random Forest, interpreting the results is not very straightforward. Generally, the Variable

Importance (VIMP) measure is used to make the model more explainable. The VIMP measures

how much the predictive accuracy score decreases when a variable is removed. For RSF the

predictive accuracy score is given by the Concordance index, which measures the rank correlation

between correctly ordered (concordant) pairs to comparable pairs (Pölsterl, 2023b). Samples

i and j are comparable and concordant if the sample with lower observed time (let’s assume

sample i) experienced an event and the corresponding survival risk of i is higher than j. The

RSF algorithm can be found in Algorithm 1.

4.2.3 Censoring

SA works slightly differently in the LGD context compared to the context of, for example, the

medical field. In the latter, we have that the event, for example, is that the client died, i.e.

we have a binary event, and no more data is observed. As you can only die once, each client

encounters the event only once. However, in LGD modelling, the event is that a cash flow is

received, i.e. we have a non-binary event, and clients can experience the event multiple times. To

handle this, weights are assigned to the observations such that the sum of weights for each client

equals one (Witzany et al., 2012). The weight at time t is defined as di,t =
CFi,t

EADi
, with CFi,t

and EADi the cash flow and EAD, respectively, corresponding to observation i. If the sum of

weights for a loan equals one it is comparable to the event that a client dies in medical research.
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Algorithm 1 Random Survival Forest Algorithm

Input: Let B be the number of trees in the forest and k the number of predictors used for
splitting each node.
Output: A Random Survival Forest

1: Draw B independent bootstrap samples from the training data. Use the in-bag data (on
average 63% per bootstrap sample, a formal proof can be found in Qu et al. (2020)) to grow
the tree and for prediction, and use the out-of-bag data for cross-validation.

2: Grow a survival tree for each bootstrap sample b ∈ {1, . . . , B}:
• At each tree node, randomly select k candidate predictor variables.

• Compute the log-rank statistic, L(Xip, c) (equation (18)), for each candidate variable
and splitting value c.

• Split the node based on the log-rank splitting rule that maximizes the survival difference
between children nodes.

• Grow the tree to full size under the constraint that the number of event observations
(cash flows) in each node is greater than a predefined minimum terminal node size.

3: Compute the CHF for each tree. Then, average all functions to estimate the ensemble CHF
(equations (19), (21), (23)).

4: Use out-of-bag data to calculate the prediction error for the ensemble CHF (equation (27)).

However, if a case is censored in a credit modelling context, it can still have an outstanding

amount. For SA this means that the weight is smaller than one. To make it equal to one, we

set the remaining weight to an artificial observation at a maximum time (Witzany et al., 2012).

If the sum of weights is less than one, it practically means the client never ”dies”, which is not

possible. When we add an artificial observation with the remaining weight this means that the

client is still alive, and only ”dies” at the maximum time. A payment can be censored due to

two reasons (Pŕıvara et al., 2013):

1 Loss Event: The sum of payments of a resolved case is less than the EAD. In this case, an

artificial observation with weight di,tmax =
EADi−

∑tmax
t=1 CFi,t

EADi
, which is censored at tmax,

the maximum length of the recovery process, is included. In this research, we will set tmax

to the maximum number of months a cured loan was in default, from Table 5, we see this

is 203 months;

2 Unresolved Event: The workout period lasts longer than the study period and the sum

of payments is less than the EAD. An artificial observation censored at time tend with

weight di,tend
=

EADi−
∑tend

t=1 CFi,t

EADi
is then included, where tend is the last known date of the

concerning loan.

The sample weights indicate the importance of an observation, an observation with a larger

weight means the observation is more important in the prediction. Furthermore, for each ob-

servation, we need to specify whether an event has occurred or not. There are three scenarios

(Witzany et al., 2012):

1 Repayment Event: A cash flow at time t is received, eventi,t = 1;

2 Loss Event: The sum of payments of a resolved case is less than the EAD, if a cash flow at

20



tend is received then eventi,tend
= 1 and eventi,tend

= 0 otherwise. Its artificial observation,

as previously explained, censored at tmax, has eventi,tmax = 0;

3 Unresolved Event: The workout period lasts longer than the study period and the sum of

payments is less than the EAD, if a cash flow at tend is received then eventi,tend
= 1 and

eventi,tend
= 0 otherwise. Its artificial observation, as previously explained, censored at

time tend, has eventi,tend
= 0,

where eventi,t = 1 means the event has occurred at time t, i.e. a cash flow is received, and

eventi,t = 0 otherwise.

4.3 Variable Selection

Not all features are necessary in the estimation and prediction procedure. Some features may be

insignificant, and, therefore, not provide sufficient explanatory power. Moreover, if the number

of risk drivers used is large, there is a risk of overfitting the data, and the computation time

can be long. To select relevant variables, the stepwise selection method will be used. This is

a common method in LGD modelling (Zhang & Thomas, 2012) and is based on a selection

criterion, such as the Akaike Information Criterion (AIC),

AIC = 2k − 2 logL(β̂), (29)

where k is the number of estimated parameters and L(β̂) is the maximized value of the likelihood

function for the model with parameters β̂. The AIC makes a trade-off between the number of

variables in the model and the log-likelihood achieved with the corresponding set of features.

There are many other information criteria, however, for this research, only the AIC is considered

as it is known to select the model with the most predictive power (Song, 2020).

The stepwise selection method goes as follows. Start with an empty set of risk drivers. For

all variables, check if including it in the set improves the AIC, i.e. it decreases, if so, the variable

that improves the AIC the most is added to the set of risk drivers. Then, for each variable in

the set, test if the AIC improves if the variable is removed from the set. Remove the variable for

which the AIC improves the most. Repeat these steps for all features. Lastly, for the remaining

variables in the set, remove the insignificant variables based on a significance level α.

4.4 Performance Measures

There are two types of performance measures. The first is discrimination, which refers to how

well the model can correctly assign rank orders. A commonly used measure of discrimination

in LGD modelling is the Loss Capture Ratio (LCR) (Li et al., 2009). It explains how well the

model captures the final observed loss amount. The loss capture curve (LCC) is defined as the

cumulative observed loss amount captured from the highest to the lowest expected LGD. The

LCR is then the ratio of the area between the model LCC and the random LCC (Area B in
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Figure 5) to the area between the ideal LCC and the random LCC (Area A + B in Figure 5),

LCR =
B

A+B
. (30)

The ideal model is the model that can perfectly predict LGDs, and the random model represents

a hypothetical model that randomly assigns LGDs. The LCR takes values between 0 and 1,

where a value close to 0 means the model can poorly estimate LGDs, and a value close to 1

means the model’s LGD estimation is a good representation of the observed LGDs.

Figure 5: The loss capture curves

Performance can also be measured by calibration metrics, that is, metrics that reflect the ac-

curacy of the LGD estimations. The Mean Absolute Error (MAE) and the Mean Squared Error

(MSE) are two calibration measures commonly used in LGD modelling (Witzany et al., 2012;

Zhang & Thomas, 2012; Pŕıvara et al., 2013; Miller & Töws, 2018). The first measures the

average absolute deviation between the actual and predicted LGD. The latter measures the av-

erage squares of the errors, which means that larger deviations are punished harder. For both,

a smaller value corresponds to a better model. The MAE and MSE are defined, respectively, as

MAE =
1

N

N∑
i=1

|LGDi − ˆLGDi|; (31)

MSE =
1

N

N∑
i=1

(LGDi − ˆLGDi)
2, (32)

where ˆLGDi is the predicted final LGD of loan i ∈ {1, . . . , N}.

The t-test is another common calibration method to assess the predictive ability of LGD models

(European Central Bank, 2019). The t-test compares predicted LGD with actual LGD under

the null hypothesis that the predicted LGD is equal to the actual LGD. The test statistic is

asymptotically Student-t distributed with N − 1 degrees of freedom under the null hypothesis,
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with N the number of observations. The t-test statistic is defined as

T =
√
N

1
N

∑N
i=1(LGDi − ˆLGDi)√

s2 ˆLGD

, (33)

where

s2 ˆLGD
=

∑N
i=1

(
(LGDi − ˆLGDi)− 1

N

∑N
j=1(LGDj − ˆLGDj)

)2
N − 1

, (34)

with ˆLGDi again defined as before, similarly ˆLGDj of loan j ∈ {1, . . . , N}. If the corresponding
p-value is lower than the significance level, we reject the null hypothesis which states that the

true LGD is equal to the predicted LGD.

Lastly, the Loss Shortfall (LS) indicates how well the model can capture the total loss (Li

et al., 2009). It measures the relative error in predicting losses and is defined as

LS = 1−
∑N

i=1(
ˆLGDi × EADi)∑N

i=1(LGDi × EADi)
, (35)

where, ˆLGDi again defined as before and EADi the EAD corresponding to loan i. A value close

to zero is an indication that the model can capture the total loss of clients well.

5 Results

In the following section, first, the selected risk drivers are discussed. Then, the estimates of the

Regression-Based, Cox PH and RSF model are given. Next, the models are compared using

different performance measures. Lastly, we discuss an interesting finding discovered during the

process of predicting LGD with SA. All coding was done in Python.

5.1 Variable Selection

The stepwise selection procedure is applied to the training set and the AIC is based on the

model fitted by OLS. We use a significance level of 5%. After going through all regressors, we

end with 19 risk drivers. These can be found in the tables in the following subsections. We

use these variables for all three different models for best comparison. These regressors result in

the best performance for the benchmark model, the Regression-Based model. Therefore, if the

Cox PH and RSF models perform better than the benchmark with the same variables, we can

conclude that the optimal performance of these models is at least the performance found with

the benchmark optimal risk drivers.

Note that when testing the significance of the coefficients of the remaining risk drivers, multiple

hypotheses are tested simultaneously (Herzog et al., 2019). This leads to an increased risk of

making at least one Type I error, i.e. rejecting a true null hypothesis of the risk driver’s coef-

ficient being equal to zero. To address this problem, we use the Bonferroni Correction. We

adjust the significance level of 5% by dividing it by the total number of tests conducted during
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the stepwise procedure, that is, the number of remaining risk drivers after the stepwise selection

procedure. Therefore, the adjusted significance level, in our case, is equal to 0.26%.

Furthermore, we find that not all dummy variables for the categorical variables are included

in the optimal set of risk drivers. This means that these risk drivers do not significantly improve

the model’s predictive power. They may not provide any additional information. Consider the

following scenarios:

1 The base category is significant:

– Another category is significant: this category has a significantly different effect on

the dependent variable compared to the base category;

– Another category is insignificant: the effect of this category on the dependent variable

does not significantly differ from the base category.

2 The base category is insignificant:

– Another category is significant: this category has a significantly different effect on

the dependent variable compared to the base category;

– Another category is insignificant: the effect of this category on the dependent variable

is not significant.

In all scenarios, changing the base category does not change the relationship between variables

or the statistical significance of the model’s coefficients (Gujarati & Porter, 2009). Only the

interpretation of the coefficients changes as the coefficients depend on the base category.

5.2 Regression-Based Model

The Regression-Based model consists of four steps:

1 Only resolved loans are included in the data set. Each monthly performance of a loan is

treated as a different loan. However, as this implies that observations are very similar and

the data set will be highly correlated, only loans at month in default t = 0, 12, 24, . . . are

included in the training set. The dependent variable can then be defined as the expected

future recovery rate. We define the expected future recovery rate at time t′ as the sum of

cash flows till the loan is closed (time T ), divided by the current outstanding loan amount,

R̃Ri,t′ =

∑T
t=t′+1CFi,t

COAi,t′
, (36)

where COAi,t′ and CFi,t are the outstanding loan amount at current time t′ and cash flow

at time t of observation i, respectively. OLS is performed and the model is fitted.

2 Only unresolved loans are included in the data set. To estimate the final LGD of the

unresolved loans, for each last observation of the unresolved loans, we predict the future

recoveries by multiplying the current outstanding loan amount with the predicted future

recovery rate obtained from the fitted model in the previous step. The total sum of cash
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flows is then equal to the sum of the predicted future recoveries and the current sum of

cash flows. The final predicted LGD can be calculated as the complement of the total sum

of cash flows divided by the exposure at default,

˜LGDi = 1− R̂Ri,tend
× COAi,tend

+
∑tend

t=0 CFi,t

EADi
= 1−

∑T
t=0CFi,t

EADi
, (37)

where R̂Ri,tend
is the fitted recovery rate from Step 1 for observation i at time tend, the

last observation date.

3 Only the first observation for all resolved and unresolved observations is included in the

data set. The data set is split into a training and test set, and the variable selection

procedure is performed. Note that we exclude the risk driver Months in Default, as we

only look at the first monthly performance of each defaulted loan. With the obtained best

features, we fit the model on the training set for the final predicted LGD,

˜LGDi =

1− R̃Ri,0, if case i is resolved.

1− R̂Ri,0×COAi,0

EADi
, otherwise.

(38)

We exclude CFi,0 in the above equation, as we do not observe any cash flow at time of

default, CFi,0 = 0.

4 We predict the final LGD for resolved cases of the test set using the fitted model obtained

in the previous step. Note that we predict based on LGD estimations of unresolved loans.

In other words, we are using processed unresolved cases based on resolved cases, thus,

uncertainty may be introduced. These unresolved loans are, however, necessary in the

modelling process to include more recent data.

The result of the fitted model in the third step can be found in Table 6. Here, we see that at

a Bonferroni-adjusted significance level of 0.26%, all except four risk drivers are significant. At

a Bonferroni-adjusted significance level of 0.53% (original level of 10%), Number of Borrowers,

Postal Code - East (2) and Property Type - Co-op (CP) are insignificant, we, therefore, cannot

say anything about these risk drivers. Most significant risk drivers have an effect in the direc-

tion as expected. Notable is the direction of the First Time Homebuyer Flag - Yes coefficient

(significant at a level of 0.53%). A first-time homebuyer is expected to have fewer resources to

cover the mortgage payments and thus, has a higher LGD. However, in the USA it is common

to provide aid for first-time homebuyers (Araj, 2023). Grants and no-interest loans for the down

payment, tax reductions and several federal, state or local programs are available for first-time

homebuyers to assist them in buying a property. This could be an explanation of the negative

relation between the First Time Homebuyer Flag - Yes risk driver and the LGD. In Table 6, we

also see that the Original CLTV has the largest positive effect on the expected LGD. For a one-

unit increase in the Original CLTV, the expected LGD increases on average by approximately

1.533 percentage points, ceteris paribus. This positive effect is as expected, the Original CLTV

is the ratio between all outstanding loans and the property’s value. A higher value indicates the

25



borrower has a higher total loan value, or the property value is lower. This means it is harder for

the borrower to repay his or her loan, and the recovery rate is lower, i.e. the LGD is higher. The

largest negative effect is caused by Postal Code - South (7). The expected LGD decreases on

average by approximately 0.162 percentage points if the property lies in the Postal Code Area

South, compared to if the property lies in Postal Code Area Northeasteast (the base category),

ceteris paribus.

Table 6: Estimates of the Regression-Based model

Coefficient s.e. t-value p-value

Constant -0.428 0.020 -21.801 0.000∗∗

Current Interest Rate 1.101 0.021 52.948 0.000∗∗

First Time Homebuyer Flag - Yes -0.032 0.011 -2.989 0.003∗

Loan Purpose - Refinance - Cash Out (C) 0.035 0.009 3.871 0.000∗∗

Loan Purpose - Refinance - No Cash Out (N) 0.057 0.010 5.726 0.000∗∗

Number of Borrowers -0.014 0.007 -2.163 0.031
Occupancy Status - Investment Property (I) -0.056 0.011 -4.851 0.000∗∗

Original Combined Loan-to-Value (CLTV) 1.533 0.054 28.327 0.000∗∗

Original Debt-to-Income (DTI) Ratio 0.113 0.011 9.876 0.000∗∗

Original Loan Term 0.172 0.023 7.442 0.000∗∗

Postal Code - Northeast (1) -0.045 0.012 -3.701 0.000∗∗

Postal Code - East (2) -0.029 0.011 -2.638 0.008
Postal Code - Southeast (3) 0.055 0.009 6.261 0.000∗∗

Postal Code - North (5) -0.079 0.016 -5.017 0.000∗∗

Postal Code - South (7) -0.162 0.012 -13.124 0.000∗∗

Postal Code - Midwest (8) 0.078 0.011 7.061 0.000∗∗

Property Type - Condo (CO) 0.099 0.011 9.130 0.000∗∗

Property Type - Co-op (CP) -0.133 0.064 -2.074 0.038
Property Type - Manufactured Housing (MH) -0.100 0.032 -3.130 0.002∗∗

Exposure at Default 0.138 0.025 5.584 0.000∗∗

∗∗ p < 0.0026 Bonferroni-adjusted significance level with original α = 0.05
∗ p < 0.0053 Bonferroni-adjusted significance level with original α = 0.10

Lastly, we plot the realized LGDs against the predicted LGDs (Figure 6a). We find that the

Regression-Based model’s distribution is slightly right-skewed, and has a very small peak at an

LGD of approximately zero. However, overall, it is not able to capture the bimodality of the

LGD.

5.3 Cox Proportional Hazards Model

The Cox PH model can estimate the effect of an individual risk driver on the hazard rate, or,

the risk of a cash flow occurring. It uses all observations in the training set. First, we check

the proportionality requirement with the Schoenfeld Residuals test. We find that the Cox PH

model violates the proportionality assumption, i.e. the hazard ratios are not constant. This

could imply that the estimated coefficients are biased. The model may not accurately capture

the true relationship between covariates and the hazard ratio, therefore, the estimates need to

be interpreted with caution. The effect of a risk driver on the hazard rate changes over time,

making it difficult to provide a single magnitude for the entire study period, nevertheless, the
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direction of the effect can still be discussed.

The estimates of the Cox PH model can be found in Table 7, here, we see that only ten risk

drivers are significant at a Bonferroni-adjusted significance level of 0.26% and only eleven at a

Bonferroni-adjusted significance level of 0.53%. For all other risk drivers, we cannot conclude

anything about their estimates. Although we cannot say anything about the magnitude of the

effects of the (significant) risk drivers, the next part will interpret the estimates as if the propor-

tionality assumption were not violated. This way, we can indicate how the risk drivers affect the

hazard rate. The largest positive effect is caused by Postal Code - South (7). The risk of a cash

flow is exp(0.433) = 1.542 times for clients who have their property in Postal Code Area South,

compared to if the property were in the Northeasteast Area (the base category), ceteris paribus.

The largest negative effect is caused by Original Combined Loan-to-Value (CLTV). With a one-

unit increase of this variable, the expected hazard decreases by approximately 100%, ceteris

paribus.

For all significant variables, we see similar effects to the LGD as compared to the Regression-

Based model. When we have a positive effect in the benchmark model, we see a negative effect

on the expected hazard in the Cox PH model, and vice-versa. A negative effect on the expected

hazard implies the client has a smaller probability of receiving a cash flow, i.e. its LGD is higher.

Accordingly, the two risk drivers with the largest absolute effect on the LGD are the same for

both models and with an effect in the same direction.

Lastly, we plot the realized LGDs against the predicted LGDs (Figure 6b). We find that the

Cox PH model’s distribution is slightly right-skewed. Compared to the Regression-Based model,

it is skewed slightly more to the right but does not have a peak at an LGD of approximately

zero. Overall, it is not able to capture the bimodality of the LGD.

5.4 Random Survival Forest Model

As explained in Subsection 4.2.3, SA requires the usage of sample weights. The RSF package in

Python, however, is not able to incorporate these sample weights yet (Pölsterl, 2023a). To still

be able to implement the RSF as accurately as possible, we propose the following method. The

sample weights indicate the importance of an observation, an observation with a larger weight

means the observation is more important in the prediction. We duplicate each observation in the

training set sample weight number of times, where we convert the sample weights into numbers

between 1 and 1,000, and take its integer value. We also tried using sample weights with values

in the range of 1 to 100, although the computation time was shorter, we found that the model

performed poorly. Here, a trade-off between accuracy and speed had to be made. A larger range

for the sample weights would result in better accuracy, however, training the model would take

significantly longer. With sample weights with values in the range of 1 to 1,000, the following

results presented are adequate, but not optimal.

Furthermore, RSF is a machine learning-based model that requires hyperparameter tuning for
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Table 7: Estimates of the Cox Proportional Hazards model

Coefficient exp(Coeff) s.e. z-score p-value

Current Interest Rate -3.789 0.023 0.093 -40.827 0.000∗∗

First Time Homebuyer Flag - Yes 0.100 1.105 0.047 2.112 0.035
Loan Purpose - Refinance - Cash Out (C) -0.250 0.779 0.039 -6.332 0.000∗∗

Loan Purpose - Refinance - No Cash Out (N) -0.279 0.757 0.043 -6.423 0.000∗∗

Number of Borrowers 0.065 1.068 0.029 2.281 0.023
Occupancy Status - Investment Property (I) 0.235 1.265 0.051 4.637 0.000∗∗

Original Combined Loan-to-Value (CLTV) -9.893 0.000 0.316 -31.278 0.000∗∗

Original Debt-to-Income (DTI) Ratio -0.201 0.818 0.050 -3.983 0.000∗∗

Original Loan Term 0.071 1.074 0.090 0.790 0.429
Postal Code - Northeast (1) 0.093 1.098 0.052 1.790 0.073
Postal Code - East (2) 0.078 1.081 0.047 1.654 0.098
Postal Code - Southeast (3) -0.105 0.901 0.041 -2.551 0.011
Postal Code - North (5) 0.267 1.305 0.064 4.154 0.000∗∗

Postal Code - South (7) 0.433 1.542 0.048 9.045 0.000∗∗

Postal Code - Midwest (8) -0.179 0.836 0.053 -3.358 0.001∗∗

Property Type - Condo (CO) -0.219 0.804 0.054 -4.075 0.000∗∗

Property Type - Co-op (CP) 0.219 1.245 0.266 0.824 0.410
Property Type - Manufactured Housing (MH) 0.389 1.475 0.139 2.801 0.005∗

Exposure at Default 0.246 1.279 0.106 2.326 0.020
∗∗ p < 0.0026 Bonferroni-adjusted significance level with original α = 0.05
∗ p < 0.0053 Bonferroni-adjusted significance level with original α = 0.10

(a) The Regression-Based model (b) The Cox Proportional Hazards model

(c) The Random Survival Forest model

Figure 6: Histogram of the realized vs predicted LGDs for resolved cases

better performance. However, due to the large set of data, hyperparameter tuning takes a

substantial amount of time, therefore, we chose to perform the grid search on only a few hyper-
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parameter values. The hyperparameter tuning was done on the original set (pre-duplication)

and we used the grid search shown in Table B1. After the grid search, we trained the model. In

total, this took approximately four days.

In Table 8, the importance values of the features are given. As RSF grows trees using dif-

ferent bootstrap samples of the data and considers a random subset of variables at each split,

variable important scores can vary between different runs of the algorithm. For a more robust

result, we computed the feature importance three times and took the average. Again, this was

a trade-off between computation time and robustness, as computing the importance measures

three times took eight hours in Python. We find that the Current Interest Rate is the most im-

portant feature. If its relation to survival time is removed, the Concordance index decreases on

average by approximately 0.043561 points. This is similar to the benchmark and Cox PH model,

where the Current Interest Rate also had a large effect on the dependent variable, measured by

the regression coefficient and hazard ratio, respectively. A negative or zero-importance value

indicates that the risk driver has no predictive power. Interesting to see is that eight out of

19 variables do not contribute to the predictive power in the RSF model. This could, however,

be caused by the fact that the model’s risk drivers are based on the optimal features of the

Regression-Based model. This may imply that the set of optimal features of the RSF model is

very different compared to the optimal set of features of the benchmark model. RSF models can

handle complex relationships, while the Regression-Based model is simpler and based on linear

relationships between the dependent variable and the risk drivers. The data may have complex

patterns, which the RSF can capture better, leading to differences in the selected features that

contribute to their predictive performance.

Table 8: Variable importance Random Survival Forest model

Importance mean Importance s.d.

Current Interest Rate 0.043561 3.9463 e-04
Postal Code - Southeast (3) 0.000321 4.6536 e-05
Postal Code - North (5) 0.000277 1.5635 e-05
Original Debt-to-Income (DTI) Ratio 0.000166 1.2152 e-04
Exposure at Default 0.000143 1.4095 e-04
First Time Homebuyer Flag - Yes 0.000127 9.3205 e-06
Property Type - Condo (CO) 0.000101 2.2881 e-05
Postal Code - East (2) 0.000099 1.6760 e-06
Postal Code - Midwest (8) 0.000064 2.2162 e-05
Occupancy Status - Investment Property (I) 0.000011 2.0536 e-06
Number of Borrowers 0.000003 2.6708 e-07
Property Type - Co-op (CP) 0.000000 0.0000 e+00
Property Type - Manufactured Housing (MH) 0.000000 0.0000 e+00
Postal Code - Northeast (1) -0.000004 2.2930 e-06
Postal Code - South (7) -0.000054 2.6371 e-04
Loan Purpose - Refinance - Cash Out (C) -0.000130 2.9042 e-06
Loan Purpose - Refinance - No Cash Out (N) -0.000151 1.4978 e-05
Original Loan Term -0.004680 2.7054 e-04
Original Combined Loan-to-Value (CLTV) -0.009805 2.5451 e-04
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Lastly, we plot the realized LGDs against the predicted LGDs (Figure 6c). We find that the

RSF model’s distribution has three peaks. The two largest are at an LGD of approximately

0.30 and 0.70. This shows that the RSF is somewhat able to capture the bimodality of the

LGD, however, the peaks are slightly closer to each other. Furthermore, it also has a slightly

smaller peak at an LGD of approximately 0.5. The fact that the RSF model is somewhat able to

capture the bimodality is very interesting. As seen in the previous sections, common modelling

techniques are not able to capture this distribution.

5.5 Model Comparison

Table 9 presents the performance results for the three different models. First, we compare the

backtesting results of the test set with resolved cases only. The Regression-Based model has a

good LCR of 0.6743, which is higher than the Cox PH model (0.5744), however, the RSF has the

highest LCR (0.7442), indicating that the RSF is able to differentiate between the severity of

losses better. The three curves are also shown in Figure 7. Here we see that all curves are very

similar, but the RSF model curve is the closest to the perfect model curve. Furthermore, the

MAE and MSE of the Regression-Based model and RSF model are worse compared to the Cox

PH. This indicates that the Cox PH has the most accurate LGD estimations. From Figure 8,

we see that the RSF has fewer almost perfect predictions as compared to the Regression-Based

and Cox PH model, however, the RSF has more observations at the peaks (± 0.3). We also

find that the RSF has the best LS (0.0132). This implies that the RSF model can capture the

total loss better than the Regression-Based and Cox PH model. Lastly, although the t-test is

a commonly used calibration metric, we find that it is not relevant to our data set. T-tests are

based on the assumption that the distribution of the data is normally distributed (Kim & Park,

2019), while the LGD of this data set is bimodally distributed (Figure 2). Furthermore, when

we plot the distribution of the differences between actual and predicted LGD we see that for

resolved cases this is bimodal, with the two peaks at a difference of ± 0.3 (Figure 8). This im-

plies that on average, these two cancel each other out, resulting in a very good average predicted

LGD. We, therefore, cannot conclude anything from the t-test and exclude this measure when

comparing the models. Overall, we find that the RSF model has high discriminatory power but

low calibration power. RSF is based on an ensemble of individual trees. While it is often able to

capture complex relationships in the data, leading to high discriminatory power, the predictions

are based on averaging the individual trees, making it more difficult to obtain LGD values close

to zero and one (Oleszak, 2023), as was also seen in Figure 6c. This could be a reason for the

low calibration power.

Next, we compare the results of when we train and test on only resolved cases with when we

train on resolved and unresolved cases but test on only resolved cases (Table 9). If the results for

both methods are similar, that is, both methods exhibit comparable levels of predictive power,

we can conclude that the model can handle unresolved cases well. We find that the results for

most performance measures are very similar for both methods for all models. Interesting to see

is that the LCR for the Regression-Based model is slightly better when we train on both resolved

and unresolved cases, similarly for the LS for all the models. A possible explanation could be
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Table 9: Model performances of final LGD predictions

Test Set Model LCR1 MAE2 MSE3 LS4

Resolved Regression-Based 0.6743 0.3486 0.1527 0.0341
Cox Proportional Hazards 0.5744 0.3426 0.1514 0.0377
Random Survival Forest 0.7442 0.3713 0.1551 0.0132
Calibrated Regression-Based 0.6700 0.3302 0.1492 0.0027
Calibrated Cox Proportional Hazards 0.5737 0.3346 0.1499 0.0376
Calibrated Random Survival Forest 0.7442 0.3328 0.1448 0.0039

Resolved - Resolved5 Regression-Based 0.6444 0.3411 0.1515 0.0351
Cox Proportional Hazards 0.5789 0.3409 0.1517 0.0564
Random Survival Forest 0.7597 0.3604 0.1508 0.0380
Calibrated Regression-Based 0.6399 0.3313 0.1495 0.0149
Calibrated Cox Proportional Hazards 0.5784 0.3356 0.1504 0.0366
Calibrated Random Survival Forest 0.7597 0.3220 0.1440 0.0009

1 LCR = Loss Capture Ratio
2 MAE = Mean Absolute Error
3 MSE = Mean Squared Error
4 LS = Loss Shortfall
5 Both training and testing on resolved cases only
Note: Bold values indicate the corresponding model performs the best

Figure 7: Loss capture curves for resolved cases

that the predictions are closer to the realized values, however, the predictions are consistently

over- or underpredicting. This improves the MAE and MSE, but the LS can worsen. Overall,

all models perform similarly for both methods, so we can conclude that all models can handle

unresolved cases well.

Furthermore, backtesting can only be done on resolved cases. We cannot compare the model’s

predictions with the realized LGDs, as the realized LGDs are not the actual final observed LGDs

of the loans. These are the final observed LGDs at the performance cutoff date, whereas the

model predicts the final observed LGDs till the case is closed. Backtesting unresolved cases would

require an estimation of the final realized LGDs, however, this would add extra uncertainty to
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(a) The Regression-Based model (b) The Cox Proportional Hazards model

(c) The Random Survival Forest model

Figure 8: Distribution of the differences between realized and predicted LGDs for resolved cases

the validation process. We considered a binning method in which we binned final realized LGDs

for resolved cases based on the most important risk drivers in Table 6 and the number of months

the observation was currently in default. After this a scale factor, defined as the ratio between

the average final LGD and the average current LGD of each bin was computed. Then, we binned

the unresolved cases in a similar way and used the scale factor to calculate the final estimated

LGD. These final estimated LGDs were then compared to the model-predicted LGDs. Although

this method works, it still brings too much uncertainty to the model performances. Backtesting

on unresolved cases should, therefore, be left for further research.

Then, we also compare the predictions at time t = 12, 24, 36, 48, 60, to see whether the models

can also predict on a short-term basis. This is particularly useful when one wants to know the

total loss at a specific date, rather than the total final loss. Knowing the total loss at a specific

date allows lenders to have a better and timely understanding of the financial performance and

risk associated with their loans, enabling better decision-making and risk management. Table

10 shows the performance results of the three models when we trained on resolved and unre-

solved cases but tested on resolved cases only. As with the final LGD, we find that the RSF

outperforms the Regression-Based and Cox PH model based on the LCR, however, it performs

worse based on the MAE and MSE. Interesting to see, is that all models have a negative LS,

i.e. they overpredict the LGDs, for t = 12, 24, 36, 48, and even t = 60 for the RSF model. This

may be favourable for risk-averse lenders who may prefer a more conservative prediction to help

protect their financial stability. Furthermore, we find that the Regression-Based model has the
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best LS for each twelve-monthly prediction until t = 60. Overall, it seems like the Regression-

Based model either performs the best or second-best based on the four performance measures.

Nevertheless, computing these twelve-monthly predictions is a lot more cumbersome compared

to the two SA techniques. Calculating the twelve-monthly predictions for the Regression-Based

model requires fitting the model for each t. For the Cox PH and RSF model, on the other hand,

the model has to be fitted only once, and the LGD for each observation is predicted for each t

directly.

Table 10: Model performances of twelve-monthly LGD predictions

Model \Time 12 24 36 48 60

LCR1

Regression-Based 0.3407 0.4547 0.4728 0.4786 0.4828
Cox Proportional Hazards 0.5070 0.5812 0.5833 0.5822 0.5833
Random Survival Forest 0.6924 0.7520 0.7463 0.7437 0.7466
Calibrated Regression-Based 0.4906 0.5768 0.5975 0.6073 0.6229
Calibrated Cox Proportional Hazards 0.5101 0.5854 0.5850 0.5840 0.5848
Calibrated Random Survival Forest 0.6924 0.7520 0.7463 0.7437 0.7466

MAE2

Regression-Based 0.3132 0.3297 0.3380 0.3446 0.3470
Cox Proportional Hazards 0.3032 0.3317 0.3398 0.3445 0.3450
Random Survival Forest 0.3183 0.3477 0.3593 0.3667 0.3702
Calibrated Regression-Based 0.3034 0.3167 0.3238 0.3313 0.3329
Calibrated Cox Proportional Hazards 0.3026 0.3151 0.3206 0.3279 0.3302
Calibrated Random Survival Forest 0.2967 0.3097 0.3147 0.3196 0.3223

MSE3

Regression-Based 0.1476 0.1526 0.1538 0.1551 0.1543
Cox Proportional Hazards 0.1505 0.1546 0.1541 0.1543 0.1533
Random Survival Forest 0.1486 0.1551 0.1561 0.1570 0.1568
Calibrated Regression-Based 0.1457 0.1499 0.1513 0.1528 0.1522
Calibrated Cox Proportional Hazards 0.1463 0.1491 0.1497 0.1511 0.1507
Calibrated Random Survival Forest 0.1424 0.1460 0.1465 0.1469 0.1468

LS4

Regression-Based -0.0064 -0.0095 -0.0034 -0.0033 0.0020
Cox Proportional Hazards -0.0428 -0.0380 -0.0147 -0.0041 0.0055
Random Survival Forest -0.0247 -0.0292 -0.0166 -0.0130 -0.0071
Calibrated Regression-Based 0.0062 0.0116 0.0148 0.0152 0.0122
Calibrated Cox Proportional Hazards 0.0022 0.0094 0.0175 0.0223 0.0248
Calibrated Random Survival Forest -0.0020 -0.0017 0.0024 0.0023 -0.0003

1 LCR = Loss Capture Ratio
2 MAE = Mean Absolute Error
3 MSE = Mean Squared Error
4 LS = Loss Shortfall
Note: Bold values indicate the corresponding model performs the best

Lastly, we observe that when predicting the final and twelve-monthly LGDs, the RSF model

performs poorly based on the MAE and MSE, but very well based on the LCR, and LS for

the final predictions. Furthermore, we found that the RSF was the only model that was able

to capture the bimodal distribution of the LGD. This implies that the RSF model has high

discriminatory power, but low calibration power. Nevertheless, this is a matter of calibrating

the model correctly. To calibrate the model correctly, we propose the following method. We

bin the predicted final LGDs of the RSF model in seven equal-sized bins. This is the minimum

number of buckets required in a credit risk context required by the European Banking Author-

ity (European Parliament, Council of the European Union, 2013). We compute a scaling factor
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based on the ratio between the average realized final LGD and the average predicted final LGD

per bucket. The predicted final LGDs are multiplied by this scaling factor. Finally, we calculate

the performance measures of the adjusted final LGDs. For a fair comparison, we also calibrate

the Regression-Based model and Cox PH model in the same way. Note that the calibration may

be specific to the data set considered. Applying the model to a different data set may require a

recalibration of the model.

Figure 9 shows the average realized and average predicted LGD per bucket with the corres-

ponding scale factor for all three models. Here, we clearly see that the scale factors of the

Regression-Based and Cox PH model are not monotonically increasing. The scale factors of the

RSF model are almost monotonically increasing, with just a slight decline from the fourth to the

fifth quantile bucket. Therefore, we get that the smallest LGD predictions become even smaller,

the largest LGD predictions become even larger, and similarly for the other bins. Furthermore,

as the observations within each bin are multiplied with the same scaling factor, we get that

the rank order of the LGDs remains the same within the bins. Therefore, overall, the order of

the predictions does not change, but the predictions are spread over a wider range. For this

reason, we improve the calibration power, while the discriminatory power remains the same.

Furthermore, we find that the Regression-Based and Cox PH model follow a similar pattern,

the average predicted LGD is slightly below the average realized LGD in the first, and fourth

till sixth quantile bucket, while it is slightly above in the second and third bucket. As their

scale factor pattern is similar as well, the effect of calibrating the models will likely be the

same for these two models. We will support this later in Tables 9 and 10. The RSF model, on

the other hand, consistently overpredicts for the first few buckets, and thereafter consistently

underpredicts. This characteristic (two monotonic relations) is favourable for improving the

calibration power. Monotonic relations are easier to calibrate when one uses a single calibration

function rather than a calibration factor per bucket. Lastly, we find that the difference between

the average realized and predicted LGD increases per bucket further away from the median

bucket for the RSF model. In the fourth quantile bucket, the average realized and predicted are

almost the same. This result will positively influence the calibration performance of the RSF

model. We will support this later in Tables 9 and 10.

We find that the Calibrated RSF model outperforms the (Calibrated) Regression-Based model

and (Calibrated) Cox PH model on the LCR and MSE (Resolved Test Set, Table 9). When a

lender prioritizes the identification and reduction of large errors in LGD prediction, a lower MSE

is desired, and the Calibrated RSF would be a good model. The Calibrated Regression-Based

model performs slightly better than the (Calibrated) Cox PH and (Calibrated) RSF model based

on the MAE and LS, though the difference with the Calibrated RSF model is minimal. Overall,

the calibration power of the RSF model improved substantially, while the discriminatory power

remained the same. The discriminatory power of the Regression-Based and Cox PH model, on

the other hand, decreased. Figure 10 shows the distributions of the adjusted final LGDs. We

observe that the predicted LGDs for all three models are slightly more spread over the range

of 0 to 1 when we calibrate the LGDs. We also find that the Regression-Based and Cox PH
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(a) The Regression-Based model (b) The Cox Proportional Hazards model

(c) The Random Survival Forest model

Figure 9: Average realized vs average predicted LGDs for resolved cases of the calibrated models
and their scale factors per bucket

models become slightly more bimodal after calibration (Figures 10a and 10b). Again, as an

extra check, we also train and test the calibrated models on resolved cases only. We find that

the Calibrated RSF model outperforms all other models and that the performances of the Cal-

ibrated RSF and Calibrated Cox PH model are similar to when we trained on both resolved

and unresolved cases. This means that the Calibrated RSF and Cox PH models are also able to

differentiate between resolved and unresolved cases. However, the Calibrated Regression-Based

model performs worse on all four measures when trained on resolved cases only. This could

be an indication that the Calibrated Regression-Based model performs better when trained on

more dissimilar data. When trained on resolved cases only, it may become overly fit to the

specific patterns and characteristics of those cases. It may not be able to perform well on new

or unseen resolved cases. Lastly, we also calibrate the LGDs for the twelve-monthly predictions.

The results can be found in Table 10. We find that the Calibrated RSF model outperforms

the (Calibrated) Regression-Based model and the (Calibrated) Cox PH model based on all four

performance measures for all months t = 12, 24, 36, 48, 60.

5.6 Discovery: LGD Prediction with Survival Analysis

During the process of predicting LGD with SA, we discovered an interesting finding. SA is able

to predict the final LGD well for a period t1 = 0 till another period t2. However, we found

that SA is not able to predict the expected future recoveries between a certain period t1 and

t2, 0 < t1 < t2. In this case, the model considers unrecovered parts of resolved cases as still
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(a) The Regression-Based model (b) The Cox Proportional Hazards model

(c) The Random Survival Forest model

Figure 10: Histogram of the realized vs predicted LGDs for resolved cases of the calibrated
models

performing at time t1 and predictions become inaccurate. The expected LGD at time t2 is

therefore incorrect. In Table 11, we give a simple example, where we have six loans, all with

outstanding amounts of 100 at t1 = 0, time of default. We indicate the moment a loan resolves

with underlined values. The aim is to predict the LGD between t1 = 0, 1, 2 and t2 = 3. For

illustration purposes, we use a simplified SA model, namely, the Kaplan-Meier model. This

model works similarly to the Cox PH model, however, it does not include explanatory variables

in the estimation (Witzany et al., 2012).

The SA predicted recovery rate between time t1 and t2 is calculated by

RRt1,t2 =
Survival Functiont1 − Survival Functiont2

Survival Functiont1
, (39)

where Survival Functiont1 is the predicted LGD based on the survival curve at time t1, similarly

for Survival Functiont2 . Note that the survival curve is the same for each observation as we use

the Kaplan-Meier model, that is, no risk drivers are taken into account. In this example, the

values of the survival curve are the same as the average Realized Predicted LGDs in Table 11b

as we only have resolved cases. We divide by Survival Functiont1 in equation (39) to adjust

for the LGD already known at time t1 (the recovery between time t1 and t2 can be seen as a

conditional probability). In Table 11b, we see that the predicted LGD at t2 = 3 for t1 = 0, 1, 2,

LGDt1,t2 = LGDt1 − RRt1,t2 , is only correct for t1 = 0, where LGDt1 is the average Realized
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Table 11: Example of LGD prediction with Survival Analysis

(a) Outstanding amounts

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 100 100 100 100
2 100 100 100 0
3 100 100 100 100
4 100 100 0 0
5 100 100 100 100
6 100 0 0 0

(b) Current Survival Analysis realized predicted LGD

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3 Workout Length1

1 1 1 1 1 3
2 1 1 1 0 3
3 1 1 1 1 2
4 1 1 0 0 2
5 1 1 1 1 1
6 1 0 0 0 1

Average Realized Predicted LGD 1 0.83 0.67 0.50
SA Predicted RRt1,t2

2 0.50 0.40 0.25 -
SA Predicted LGDt1,t2

3 0.50 0.43 0.42 -
Scaling Factor 1 1.25 2 -

(c) Survival Analysis adjusted predicted recovery4

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0.50 0.50 0.50 0
2 0.50 0.50 0.50 0
3 0.50 0.50 0 0
4 0.50 0.50 0 0
5 0.50 0 0 0
6 0.50 0 0 0

Average 0.50 0.33 0.17 0

(d) Final adjusted predicted LGD5

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0.50 0.50 0.50 1
2 0.50 0.50 0.50 0
3 0.50 0.50 1 1
4 0.50 0.50 0 0
5 0.50 1 1 1
6 0.50 0 0 0

Average 0.50 0.50 0.50 0.50

1 Workout Length: the number of months the loan was in default
2 SA Predicted RRt1,t2 : Unadjusted predicted recovery rate between time t1 and t2
3 SA Predicted LGDt1,t2 : Predicted LGD at t2 = 3 when we look at current time t1, LGDt1,t2 = LGDt1 - RRt1,t2
4 Survival Analysis adjusted predicted recovery: SA Predicted RRt1,t2 × Scaling Factor, or 0 if loan is already resolved
5 Final adjusted predicted LGD: Current Survival Analysis realized predicted LGD - Survival Analysis adjusted predicted
recovery, i.e. adjusted predicted LGD at t2 = 3 when we look at current time t1
Note: Underlined values indicate the case is resolved

Predicted LGD at time t1. The issue of incorrect recovery predictions is only present for pre-

dictions between t1 and t2, 0 < t1 < t2 because at time t1 = 0, there are no closed cases with

unrecovered exposure yet. To the best of our knowledge, this has never been discovered before.

The problem arises due to the way the data is used in the model. In binary scenarios, such

as in medical cases, we can say with certainty that at time t = ∞ a client has ”died” and

no more data is observed. In an LGD context, on the other hand, the remaining exposure of

resolved cases is set to an artificial observation at time tmax, as explained in Section 4.2.3. This,

however, implies that we still expect recoveries even though the observation is already resolved.
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We call this the Naive Approach and also show it in Table 12. Note that the Naive Approach

does not regard the recovery between time t1 and t2 as a conditional probability, therefore, we

do not divide by Survival Functiont1 as in equation (39). We find that using the Naive Approach

also leads to the correct final LGDs. Nevertheless, SA assumes that once a case is closed, there

cannot be any recoveries anymore. For this reason, we need to use a scaling factor.

Table 12: The Naive Approach

(a) Naive recovery rates

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0 0 0 0
2 1 1 1 0
3 0 0 0 0
4 1 1 0 0
5 0 0 0 0
6 1 0 0 0

Average 0.50 0.33 0.17 0

(b) Naive predicted LGDs

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 1 1 1 1
2 0 0 0 0
3 1 1 1 1
4 0 0 0 0
5 1 1 1 1
6 0 0 0 0

Average 0.50 0.50 0.50 0.50

If we first multiply the recovery rate by a scaling factor

Scaling Factort1 =

∑N
i=1 LGDi,t1

Number of observations with workout length larger than t1
, (40)

where LGDi,t1 is the LGD of loan i at time t1, and set the recovery to 0 if the case is already

resolved (Table 11c), we do get the correct predicted LGDs (0.50 in this example, Table 11d). To

show that this also works for more complex examples of resolved cases, we provide an example

in Tables B2 and B3.

This method of scaling the LGDs works for resolved cases, however, further research is re-

quired about the appropriateness of this approach for unresolved cases. For unresolved cases,

the ”desired” final LGD is not as straightforward as for resolved cases. When there are also

unresolved cases, the predicted LGD will be lower for the SA model since it assumes a certain

extent of recoveries to come in for the unresolved cases, whereas the average LGD calculation

simply looks at realized cashflows. An additional scale factor for unresolved cases may be needed.

This, nevertheless, goes beyond the topic of this research and will, therefore, be left for further

research.

6 Conclusion

Lenders are required to estimate the Loss Given Default (LGD) accurately to adhere to the

Basel Accord. An accurate LGD estimation can help determine a more precise capital buffer

size, which in turn can absorb losses and free up capital for investments, for example. Traditional

LGD forecasting techniques, however, can only use resolved and adjusted unresolved cases in

the modelling process, while resolved and unresolved cases may exhibit different recovery beha-

viours. Therefore, these techniques may result in biased estimates. The purpose of this research
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was to accurately predict the expected future recovery cash flows of defaulted loans and invest-

igate which method performs best. We proposed a machine learning-based Survival Analysis

(SA) model; the Random Survival Forest (RSF), and compared this model to the traditional

Regression-Based model and the semi-parametric Cox Proportional Hazards (Cox PH) model.

We tested this on a set of American mortgages from Freddie Mac.

The results showed that before calibrating the RSF model, the RSF was the only model that

could capture the bimodality of the LGD. Moreover, it had the best Loss Capture Ratio (LCR)

and Loss Shortfall (LS) implying that it was able to differentiate between the severity of losses

better and it was able to capture the total loss better. However, the Cox PH model slightly

outperformed the RSF model and the Regression-Based model based on the Mean Absolute

Error (MAE) and Mean Squared Error (MSE), implying that the Cox PH model was able to

make more accurate LGD predictions. Furthermore, the built-in RSF function in Python was

not able to correctly implement the model yet, nevertheless, via a workaround we were able to

implement the RSF model. This, however, affected the computation speed and the obtained

performance of the RSF model. Due to these modelling limitations, the obtained RSF perform-

ance was not optimal. We also performed an extra check by training and testing on resolved

loans only. The results showed that all models performed similarly to when we trained on the

full training set. This implies that all models were able to differentiate well between resolved

and unresolved cases. Furthermore, we predicted the LGD at twelve-month intervals. The RSF

model again outperformed the other two models based on the LCR, but the Regression-Based

model outperformed the Cox PH and RSF model for most intervals based on the MAE, MSE

and LS. However, calculating the twelve-monthly predictions for the Regression-Based model is

more cumbersome as it requires fitting the model for each time period, rather than only once

for the Cox PH and RSF model.

Lastly, we observed that when predicting the final and twelve-monthly LGDs, the RSF model

had high discriminatory power, but low calibration power. Nevertheless, this was a matter of

calibrating the model correctly. After calibrating the model via a binning method, we found

that the calibration power improved, while the discriminatory power remained the same. We

found that the Calibrated RSF model outperformed the (Calibrated) Regression-Based model

and (Calibrated) Cox PH model based on the LCR and MSE. When a lender prioritizes the

identification and reduction of large errors in LGD prediction, a lower MSE is desired, and the

Calibrated RSF would be a good model. Furthermore, the Calibrated RSF model outperformed

all models based on all four measures for the twelve-monthly predictions. This implies that the

Calibrated RSF model was the best in short-term LGD predictions.

Overall, based on these findings, we can conclude that the RSF model is the only model that

can capture the bimodal distribution of the LGD and after calibrating the RSF model it often

outperforms the (Calibrated) Regression-Based model and (Calibrated) Cox PH model on all

four measures. Specifically, when one prioritizes high discriminatory power and the reduction

of large errors in LGD prediction, or when one wants to perform short-term LGD predictions,
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the Calibrated RSF model is an appropriate model.

One of the potential limitations of this study is that the RSF model was not optimally imple-

mented in Python. For a more credible conclusion, the RSF model must first be implemented

correctly in Python’s RSF package. Furthermore, the RSF model could not be optimally trained

with the best hyperparameters due to computation constraints. The obtained performance was

therefore affected, and we most likely did not obtain the optimal results. Lastly, all three models

used the risk drivers that were optimal for the Regression-Based model. However, we saw that

eight out of 19 risk drivers did not have any predictive power in the RSF model. Therefore, the

risk drivers could probably have been selected more appropriately. It would then be interesting

to see whether and how the results would change if we use the optimal risk drivers corresponding

to the model.

We have several suggestions for potential further research. First, during the process of predict-

ing LGD with SA, we discovered that SA is not able to predict the expected future recoveries

between a certain time period t1 and t2, 0 < t1 < t2, when the data set has resolved and un-

resolved cases. It would be valuable to find a way to be able to predict between any two time

periods, rather than only between the start and another period. This is particularly useful when

we have cases for which the information at the month of default is unavailable.

Furthermore, backtesting was only done on resolved cases. We found a way to backtest on

unresolved cases, however, this method still brought too much uncertainty to the model per-

formances. It would be interesting to find a way to backtest unresolved cases without adding

extra uncertainty to the validation process. This way, one can validate whether the models are

able to capture the different recovery behaviour of resolved and unresolved cases.

In this research, only mortgage-specific risk drivers were used, however, it has been shown that

macroeconomic variables have a positive effect on the prediction performance of LGD. It would

be useful to see how the results would change, and whether the performance of one model would

be affected more by the macroeconomic variables than the performance of the other models.

Lastly, there are several machine learning-based SA models, including the Survival Support

Vector Machine, Gradient Boosted Survival and Survival Extreme Gradient Boosting models.

Other research papers found that these models could also outperform the Regression-Based

model and Cox PH model in binary-event prediction. It would be interesting to see if the same

holds in the case of LGD prediction and whether these models could outperform the RSF model.
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A Data

A.1 Variables

Table A1: Variables and their description

Risk Driver Description Requirement

Violation7

Borrower Assistance Status Code The type of assistance plan that the borrower is Missing Values

enrolled in that provides temporary mortgage

payment relief.

Channel Denotes whether a Broker or Correspondent Loan Characteristic

originated or was involved in the origination of

the mortgage loan.

Credit Score Number that represents the borrower’s

creditworthiness at the time of origination.

Current Actual UPB The Current Unpaid Principal Balance (UPB): Correlation

the mortgage ending balance for the

corresponding monthly reporting period.

Current Interest Rate The current interest rate on the mortgage note.

Current Loan Delinquency Status A value corresponding to the number of days the Correlation

borrower is delinquent.

DDLPI 1 Due date of the loan’s scheduled principal and Missing Values

interest is paid through.

Deferred Payment Plan Indicates whether the loan follows a deferred Normal Loans

payment plan. Characteristic

Delinquency due to Disaster Denotes whether a disaster-related hardship took place. Missing Values

Estimated LTV2 (ELTV) The current LTV based on the current value of Correlation &

the property. Missing Values

Exposure at Default The Unpaid Principal Balance (UPB)

at the time the loan went into default.

First Time Homebuyer Flag Indicator that denotes whether the borrower had no

ownership in a residential property in the three years

preceding the origination date.

Interest-Bearing UPB Portion of the UPB that will accrue interest. Correlation

Loan Age The number of scheduled payments from the time Correlation

the loan was originated.

Loan Purpose Indicates whether the mortgage loan is a Cash-out

Refinance, No Cash-out Refinance or a Purchase

mortgage.

Loan Sequence Number Unique identifier assigned to each loan.

Loss Given Default (LGD) The current loss rate of the loan.

MI3 Percentage (%) The percentage of loss coverage on the loan, at the

time of Freddie Mac’s purchase of the loan, that a

mortgage insurer is providing to cover losses incurred

as a result of a default on a loan.

Modification Flag Indicates whether the loan has been modified. Normal Loans

Characteristic

Months in Default The number of months the loan has been in default.

MSA4 The five-digit value for the MSA or Metropolitan Correlation

Division of the mortgaged property.

Non-Interest-Bearing UPB Portion of the UPB that will not accrue interest. Correlation

Number of Borrowers The number of borrowers who are obligated to repay

the mortgage note secured by the mortgaged property.

Number of Units Denotes whether the mortgage is a one-, two-, three-,

or four-unit property.

Occupancy Status Denotes whether the mortgage type is owner occupied,

second home, or investment property.

Original Combined LTV2 (CLTV) The ratio between all outstanding loans and the value

of the property at origination.
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Original DTI5 Ratio The ratio between the total monthly debt expense and

the total monthly income of the borrower at

origination.

Original Loan Term The number of scheduled monthly payments of

the mortgage.

Original LTV2 The ratio between the original mortgage loan amount Correlation

and the value of the property at origination.

Original UPB The Unpaid Principal Balance (UPB) of the mortgage Correlation

on the note date.

Postal Code The three-digit postal code for the location of the

mortgaged property.

PPM6 Flag Denotes whether the mortgage is a PPM, that is,

a mortgage where the borrower is, or at any time has

been, obligated to pay a penalty in the event of certain

repayments of principal.

Property State The two-letter abbreviation indicating the state or Correlation

territory within which the mortgaged property is

located.

Product Type Denotes whether the product is a fixed-rate or More than One

adjustable-rate mortgage. Value

Property Type Denotes whether the property type secured by the

mortgage is a condominium, leasehold, planned unit

development, cooperative share, manufactured home,

or Single-Family home.

Remaining Months to Legal Maturity The remaining number of months to the mortgage Correlation

maturity date.

Zero Balance Code (ZBC) A code indicating the reason the loan’s balance was

reduced to zero.

Zero Balance Effective Date Date on which the event triggering the ZBC Missing Values

took place.

Zero Balance Removal UPB The amount of total UPB remaining on the loan Correlation

immediately before the application of the ZBC.

1 DDLPI = Due Date of Last Paid Installment
2 LTV = Loan-to-Value
3 MI = Mortgage Insurance
4 MSA = Metropolitan Statistical Area
5 DTI = Debt-to-Income
6 PPM = Prepayment Penalty Mortgage
7 Requirement definitions as stated in Table 1

A.2 Data Removal

We exclude observations from the data set that were repurchased, i.e. mortgages that have been

repurchased from Freddie Mac by the original seller. These mortgages contain faulty origination

documents in which the creditworthiness of the mortgagor or value of the property was mis-

represented (Hussain, 2022). Repurchased mortgages, therefore, do not represent a mortgage

under normal circumstances. Moreover, loans that have been modified are removed from the

data set as well. Modifications include changes of a loan such that these loans follow different

patterns, and are, thus, a misrepresentation of a loan under normal circumstances. The data set

also contains over 9,000 defaulted loans with a deferred payment plan. We see that these loans

hardly have any cash flows before the start of the deferred payment plan (Figure A.1), however,

after the start of the plan, these loans directly go back to performing loans. We consider the case

that these loans are treated as unresolved, that is, data until the month of deferral is included

in the data set, and data from the month of deferral onwards is removed from the data set. We
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then compare the average cash flow of the unresolved deferred loans to the average cash flow of

normal unresolved loans. The average cash flow of the first group is approximately 90, whereas

it is approximately 342 for the latter group. After performing a t-test, we can conclude that

these two groups are significantly different from each other (p-value of <0.0001). Therefore,

these deferred payment plans follow a different pattern than normal loans, including these loans

in the data set could lead to biases. We exclude all loans with a deferred payment plan.

Figure A.1: Total cash flow against months in default for loans before and after deferred payment
plan, and the full loan

Table A2: Data removal

Data Set N %

Full 52.4M 100
Sub-sample 899,968 1.72
Non-defaulted loans removed 40,600 4.51
Repurchased loans removed 39,447 97.16
Modified loans removed 27,528 69.78
Deferred loans removed 18,119 65.82
Loans for which termination is the same as default month removed 17,439 96.25

Furthermore, we consider the following procedure for removing certain variables. First, we look

at correlated variables. We have the variables Original Loan-to-Value (LTV) and Original Com-

bined Loan-to-Value (CLTV). The first is the ratio between the loan at origination and the value

of the property. The latter indicates the ratio between all outstanding loans and the property’s

value. The Original CLTV, therefore, captures at least the same amount of risk as the Original

LTV and is highly correlated with the Original LTV. For this reason, we exclude the variable

Original LTV. The Estimated LTV (ELTV) is the monthly LTV, as 65% of the data is missing

and the ELTV is also slightly contained in the Original CLTV, we delete this variable. Next,
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the Current Actual Unpaid Principal Balance (UPB) is calculated by the sum of the Interest-

bearing UPB and Non-interest-bearing UPB, due to the correlation we remove the Interest- and

Non-interest-bearing UPB. The Current Actual UPB is itself highly correlated to the Exposure

at Default. We disregard the first as a risk driver, however, do still need it to calculate the LGD,

explained in Subsection 3.3.

Then, variables with missing values are treated. The variable Number of Units has one miss-

ing value, we set this value to the mode of similar loans, based on Exposure at Default, Postal

Code and Property Type. Furthermore, variables with more than 70% missing data or variables

for which only one unique value exists, are removed. Moreover, the Channel variable is not a

property of the loan itself, and is, therefore, excluded. Lastly, variables related to the deferred

payment plan and modified loans are removed as well, as these are irrelevant due to the con-

struction of our data set. There are three variables that describe the location of the mortgaged

property. Since the three-digit Postal Code has no missing values, we only include this variable.

It is important that the remaining risk drivers are not highly correlated. A strong correlation

can have a negative effect on the predictor standard error. Typically, a correlation coefficient

with an absolute value of > 0.7 is considered to be a strong correlation between risk drivers

(Ratner, 2009). When deriving the correlations between risk drivers, the strongest correlation is

0.54, which is between Loan Purpose - No Cash Out and Original Debt-to-Income (DTI) Ratio.

Based on this, multicollinearity should not be a problem in the models. The full correlation

matrix can be found in Figure A.2.
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Figure A.2: Correlation matrix of risk drivers

B Results

Table B1: Grid search Random Survival Forest

Hyperparameter Description Values

n estimators The number of trees in the forest [100, 200, 300]
min samples split The minimum number of samples required to [4, 6, 8]

split an internal node
min samples leaf The minimum number of samples required to [1, 3, 5]

be at a leaf node
max depth The maximum depth of the tree [6, 10, 12]
max leaf nodes The maximum number of leaf nodes of the tree [10, 12, 14]

Note: Bold values indicate that value was chosen by the grid search
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Table B2: More complex example of LGD prediction with Survival Analysis

(a) Outstanding amounts

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 100 100 100 100
2 100 80 50 40
3 50 50 50 50
4 50 40 0 0
5 30 10 10 10
6 20 0 0 0

(b) Current Survival Analysis realized predicted LGD

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3 Workout Length1

1 1 1 1 1 3
2 1 0.80 0.50 0.40 3
3 1 1 1 1 2
4 1 0.80 0 0 2
5 1 0.33 0.33 0.33 1
6 1 0 0 0 1

Average Realized Predicted LGD 1 0.66 0.47 0.46
SA Predicted RRt1,t2

2 0.54 0.31 0.04 -
SA Predicted LGDt1,t2

3 0.46 0.35 0.43 -
Scaling Factor 1 0.98 1.42 -

(c) Survival Analysis adjusted predicted recovery4

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0.54 0.30 0.05 0
2 0.54 0.30 0.05 0
3 0.54 0.30 0 0
4 0.54 0.30 0 0
5 0.54 0 0 0
6 0.54 0 0 0

Average 0.54 0.20 0.02 0

(d) Final adjusted predicted LGD5

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0.46 0.70 0.95 1
2 0.46 0.50 0.45 0.40
3 0.46 0.70 1 1
4 0.46 0.50 0 0
5 0.46 0.33 0.33 0.33
6 0.46 0 0 0

Average 0.46 0.46 0.46 0.46

1 Workout Length: the number of months the loan was in default
2 SA Predicted RRt1,t2 : Unadjusted predicted recovery rate between time t1 and t2
3 SA Predicted LGDt1,t2 : Predicted LGD at t2 = 3 when we look at current time t1, LGDt1,t2 = LGDt1 - RRt1,t2
4 Survival Analysis adjusted predicted recovery: SA Predicted RRt1,t2 × Scaling Factor, or 0 if loan is already resolved
5 Final adjusted predicted LGD: Current Survival Analysis realized predicted LGD - Survival Analysis adjusted predicted
recovery, i.e. adjusted predicted LGD at t2 = 3 when we look at current time t1
Note: Underlined values indicate the case is resolved

49



Table B3: The Naive Approach

(a) Naive recovery rates

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 0 0 0 0
2 0.60 0.40 0.10 0
3 0 0 0 0
4 1 0.80 0 0
5 0.67 0 0 0
6 1 0 0 0

Average 0.54 0.20 0.02 0

(b) Naive predicted LGDs

Loan t1 = 0 t1 = 1 t1 = 2 t2 = 3

1 1 1 1 1
2 0.40 0.40 0.40 0.40
3 1 1 1 1
4 0 0 0 0
5 0.33 0.33 0.33 0.33
6 0 0 0 0

Average 0.46 0.46 0.46 0.46
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C Programming Code

Sample svcg data: This code loads the monthly performance data and cleans it as explained

in Table A2.

Sample orig data: This code loads the origination data and cleans it by only keeping the same

loans as in the monthly performances data set.

nonTimeVaryingDataDummies: This code converts the categorical variables to dummy

variables and concatenates the monthly performances data set with the origination data set.

nonTimeVaryingDataDummies Statistics: This code looks at the summary statistics of

the data set.

Lin Regr with SA data: This code implements the Regression-Based model and the Stepwise

Selection procedure.

Lin Regr Calibrated: This code implements the Calibrated Regression-Based model.

Cox PH Updated: This code implements the Cox Proportional Hazards model.

Cox PH Calibrated: This code implements the Calibrated Cox Proportional Hazards model.

RSF: This code implements the Random Survival Forest model.

RSF calibrated: This code implements the Calibrated Random Survival Forest model.
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