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Abstract

In this study, we tackle the challenge of outliers in static fixed effects panel data by developing a

both cellwise and casewise robust methodology. Our approach integrates the adapted Gervini-

Yohai outlier filter for its outlier detection capabilities, followed by imputation of filtered outliers

using coordinate-wise medians. To address both cellwise and casewise outliers effectively, we

then incorporate the robust casewise WMS method, noted for its asymptotic efficiency and

regression properties.

Our evaluation through a Monte Carlo simulation study contrasts our method with the

classical Within Estimator, focusing on the bias and standard deviation impacts on regression

parameters. We explore the model’s resilience to local contamination through the empirical

influence function (EIF). This investigation is crucial as outliers, including vertical, horizontal,

or leverage points, can significantly distort statistical analysis outcomes in panel data, a context

where atypical observations or errors often happen. Classical OLS-based methods such as the

Within Groups estimator when faced with contaminated data, can yield inaccurate parameter

estimates, underscoring the need for our cellwise robust approach.

Subsequently, GY filtering is applied to the numerical variables in the fixed effects model by

Grossman, Pierskalla and Boswell Dean (2017) and sensitivity analysis is performed.

Our research fills a gap in the application of cellwise robust estimation techniques to panel

data models in econometrics, addressing the critical issue of managing cellwise outliers to prevent

incorrect interpretations and ensure reliable statistical analysis.
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Chapter 1

Introduction

Outliers can significantly influence results, specifically in the statistical analysis of fixed effects

panel data models. Although the effectiveness of robust estimators in linear regression models is

well recognised, the extension of these robust methods to panel data models in econometrics is

limited. We argue that handling outliers is especially crucial in the panel data context since large

panels are likely to contain atypical observations or gross errors - including typing, recording or

computation errors (Bramati & Croux, 2007). Next to that, the panel data may include vertical,

horizontal or leverage outliers (Bakar & Midi, 2015). Also, outliers can be concentrated in blocks

in a way that the fraction of outliers per cross-section constitutes at least half of the observations

over time periods (Aquaro & Č́ıžek, 2013). Because of this, classical OLS-based methods can

be seriously affected due to contaminated data. Consequently, commonly used estimators, such

as the within-group least squares estimators used in fixed effects panel data models, often result

in incorrect parameter estimates (Beyaztas & Bandyopadhyay, 2022). Additionally, visually

examining panel data - next to being a subjective approach - is not as straightforward as it is

with cross-sectional data, especially when dealing with multiple regressors, which can lead to

erroneous interpretations if not handled properly.

The robust statistics methodology, as developed in books Hampel (1968) and Huber and

Ronchetti (2009) finds a robust fit that works well for the majority of the data. Casewise

contamination, which means that each observation is either an outlier or not contaminated at

all, is a crucial assumption underlying this approach (Raymaekers & Rousseeuw, 2023). This

concept is also referred to as rowwise contamination because the data points are usually in rows

in a data matrix while columns represent the variables.

Various interpretations of casewise contamination are available, but the most prevalent one

is the Tukey-Huber contamination model (THCM), where a small portion of the cases might be

contaminated and follows an arbitrary distribution. Under the THCM, one believes that a case

either comes from the central model, or from a model that is unrelated to the control model.

Consequently, methods developed under this model often either fully trust or downweight all

aspects of a case simultaneously. Yet, there are instances where certain elements of a case

are suspect, while others remain valid. As Raymaekers and Rousseeuw (2023) write, fully

downweighting such cases might result in losing valuable insights from the uncontaminated

parts. This led to the consideration of an alternative approach, focusing on cellwise outliers,

where individual elements within a case are evaluated for contamination rather than the entire
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case. Alqallaf, van Aelst, Yohai and Zamar (2009) first formulated the cellwise outlier paradigm.

Their contamination model, the Fully Independent Contamination Model (FICM), assumes we

observe data vector d, given by

d = (I−Bϵ)d0 +Bϵd̃, (1.1)

where Bϵ is a diagonal matrix with diagonal values of either zero or one. d0 ∼ F0 represents

the uncontaminated original data vector, while d̃ ∼ F̃ represents the data vector from the

contaminated distribution. Therefore, the model assumes that the data was initially generated

by the clean distribution F0, but then contaminated by substituting some cells with arbitrary

values. In a particular row, it may be that either no, a few, or all cells are contaminated. This

contamination model allows for some elements of the observed random vector d to be contamin-

ated, while others remain unaffected. As Raymaekers and Rousseeuw (2023) write, the concept

of cellwise outliers represents a paradigm shift from the traditional view of rowwise outliers.

Alqallaf et al. (2009) specify that in multivariate statistics, cells are linked to the coordinate

system, and orthogonal or other linear transformations can alter these cells. Therefore, the

effect of outliers is propagated in the case of cellwise outliers. Take for example a standard

multivariate normal distribution, with 4 dimensions and observation (10, 0, 0, 0). An orthogonal

transformation can move this point to either (
√
50,

√
50, 0, 0) or (5, 5, 5, 5). In this case, any

orthogonally invariant casewise detection method yields the same result in the three situations.

In the cellwise paradigm however, (10, 0, 0, 0) contains one contaminated cell, (
√
50,

√
50, 0, 0)

contains two, and (5, 5, 5, 5) has four (Raymaekers & Rousseeuw, 2019).

If we assume a situation with K regressors, where cells are independently contaminated with

probability ϵ, then the probability that a row is contaminated in at least one of its cells equals

P [row is contaminated] = 1− (1− ϵ)K . (1.2)

This probability grows rapidly as dimension K increases (Raymaekers & Rousseeuw, 2023).

Traditional robust estimation methods primarily address casewise outliers, where entire ob-

servations are anomalous. Most of these methods for robust linear regression rely on the classical

Tukey-Huber contamination model (THCM), where a small portion of the cases might be con-

taminated. The field of robust estimators for panel data models with fixed effects is novel,

yet some researchers recently introduced robust and positive breakdown point alternatives to

Within Groups LS estimators. Bramati and Croux (2007) extended well known robust regression

estimators, namely the least trimmed squares (LTS) estimator by Rousseeuw (1984) and a com-

bination of M- and S-estimates: MS estimates by Maronna and Yohai (2000). Aquaro and Č́ıžek

(2013) introduced another robust estimation method for linear panel data with fixed effects, us-

ing first-difference and pairwise-difference data transformations. This method applies Gervini

and Yohai (2002)’s efficient weighted LS estimator and Č́ıžek (2013)’s reweighted LTS estim-

ator. Following this, Vı́̌sek (2015) developed a robust algorithm that employs a smooth decrease

of the influence of outliers through weighting of the order statistics of the squared residuals.

Additionally, Muhammad, Shamshuddeen and Baoku (2021) propose a Weighted Least Squares

(WLS) method, building upon the MM-centering approach initially introduced by Bakar and

Midi (2015). This method demonstrates significant resilience against both leverage points and

4



vertical outliers. More recently, Beyaztas and Bandyopadhyay (2022)’s approach extends the

M-estimation methods with various loss functions, incorporating iterative procedures to obtain

the tuning parameters.

These methods, however, often inadequately handle cellwise outliers since detection of out-

liers is based on detecting outlying rows. Because of this, the presence of cellwise outliers can

significantly distort the results of traditional casewise robust estimators. This led to a surge in

research of cellwise robust methods that can handle such outliers effectly. Most of the statistical

research on cellwise outliers focuses on the FICM by (Alqallaf et al., 2009). This model is very

useful when the number of considered regressors is small (Saraceno & Agostinelli, 2021). Other

papers including Raymaekers and Rousseeuw (2019) allow the cellwise outlying values to depend

on some systematic effect or structure, showing a pattern in their deviations. In this case, some

underlying factor or process, rather than random aberrations, influences these structured or

adversarial outliers. In this paper, we restrict ourselves to the FICM setting for simplicity.

Several papers have studied cellwise outliers in regression methods, although recent research

in cellwise robust estimators for static fixed effects panel data methods is lacking. Agostinelli

and Yohai (2016) proposed a fully cellwise robust approach for linear mixed models. Their

method uses composite τ -estimators that aggregate low-dimension likelihoods, often pairs, to

approximate the full likelihood. These robust procedures are resilient against outliers in both

the THCM and the FICM, demonstrating high breakdown points and offering a significant

advancement in handling high-dimensional data scenarios (Agostinelli & Yohai, 2016).

There is also extensive research into iterative approaches to robust cellwise methods in linear

regression. These typically involve a three-step process: detecting outliers, imputing outliers,

and then applying a casewise robust method. Estimators that include the first two stages, for

example Farcomeni (2014), perform well under FICM, but are not sufficiently robust under

THCM (Leung, Zhang & Zamar, 2016).

To detect cellwise outliers, the most direct approach involves examining each variable in-

dividually. A more sophisticated method for identifying marginal outliers involves employing

a univariate filter, as introduced in Gervini and Yohai (2002). The Gervini-Yohai (GY) filter

measures the disparity between the empirical and a reference distribution, subsequently com-

puting an adaptive cutoff value (Agostinelli, Leung, Yohai & Zamar, 2015b). While detecting

marginally outlying observations is quick, only extreme cellwise outliers will be reliably detected,

as correlations between variables are neglected (Raymaekers & Rousseeuw, 2023). This led to

the introduction of methods that consider more than just the marginal contributions. Leung,

Yohai and Zamar (2017) extend the univariate GY filter to a bivariate filter in the context of

estimating location and scatter. More recently, Saraceno and Agostinelli (2021) further expand

the filter to multiple dimensions. They show that the univariate-bivariate filter by Leung et al.

(2017) is a special case, if an appropriate statistical depth function is used.

A different method is the Detect Deviating Cells (DDC) algorithm by Rousseeuw and Van den

Bossche (2018) for numerical predictors and response variables. DDC uses robust simple linear

regressions of each regressor on other regressors in the data matrix (Raymaekers & Rousseeuw,

2023). A residual of each cell is calculated by the difference between the original data and

its prediction, and used to flag cellwise outliers. DDC can deal with high dimensions and has
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no restriction on the number of clean rows (Rousseeuw & Van den Bossche, 2018). Walach,

Filzmoser, Kouřil, Friedeckỳ and Adam (2020) apply a similar technique to metabolomics data,

focusing on aggregating deviations in pairwise log-ratios to identify outliers.

After detection of outlying cells, methods often replace the flagged cells by NA’s, a process

called ‘snipping’ by Farcomeni (2014). Next, these cells are imputed, for example by estimates

of expected values conditional on the observed part of the data, as done in Štefelová, Alf-

ons, Palarea-Albaladejo, Filzmoser and Hron (2021). Their method estimates such conditional

expected values by linear regression models, fitted using the casewise robust MM-estimator.

Agostinelli et al. (2015b) propose the General Sequential Element (GSE) method that res-

amples filtered data to compute an initial estimate. Subsequently, the GSE method iteratively

performs robust imputation and estimation steps till convergence. In response to Agostinelli

et al. (2015b), Agostinelli, Leung, Yohai and Zamar (2015a) propose an alternative that uses a

faster initial estimator. Their method imputes filtered cells using coordinate-wide medians to

obtain an initial estimator.

In this study, we develop a cellwise robust approach for static fixed effects panel data, pri-

oritising computational efficiency and robustness. We incorporate the adapted Gervini-Yohai

outlier filter (Leung et al., 2016), due to its superior detection performance. Subsequently, we

impute filtered outliers using coordinate-wise medians for computational feasibility, as sugges-

ted by Agostinelli et al. (2015a). The final phase employs the robust casewise WMS method

by Bramati and Croux (2007), chosen for its asymptotic efficiency and, regression and affine

equivariance properties. The WMS method is similiar to REWLS and RLTS estimators by

Aquaro and Č́ıžek (2013) and has similar breakdown points (Beyaztas & Bandyopadhyay, 2022).

Additionally, other methods, such as the method by Agostinelli and Yohai (2016) are more com-

putationally intensive. Our objective is to efficiently address both cellwise and casewise outliers,

while minimising the computational burden.

We assess our method by conducting a Monte Carlo simulation study, comparing it with the

classical Within Estimator used in panel data with fixed effects. This comparison focuses on

analysing the bias and standard deviation of the regression parameters. To make inference, we

need the asymptotic distribution of the estimator. Therefore, we estimate the bias and standard

error estimates over simulations. We assess the models’ resilience against local contamination

through the empirical influence function (EIF) of the beta estimates. Moreover, we plot the t-test

statistic and the EIF of the t-test statistic for the beta estimates with local contamination for

both the cellwise robust model and the classical WG estimator. The EIF functions demonstrate

that hypothesis testing becomes unreliable in the presence of cellwise outliers.

Lastly, we implement the GY filter on the fixed effects model as discussed in Grossman et

al. (2017) to evaluate the significance of addressing cellwise outliers in practical applications.

We also conduct a sensitivity analysis. This sensitivity study reveals that cellwise outliers can

significantly affect parameter estimates, underscoring the need of their consideration.

The remainder of this paper is structured as follows: Section 2 briefly outlines crucial ro-

bustness properties to be assessed for robust methods for static fixed effects panel data. Section

3 specifies the methodology of the proposed estimator, the contamination model, and perform-

ance measures used to evaluate the estimators. Subsequently, Section 4 describes the way the
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simulations are performed and the calculation of the empirical influence functions. It also re-

ports the obtained results and discusses their interpretation. Section 5 studies the GY filter

using empirical data. Finally, Section 6 summarises the results and discusses limitations and

suggestions for future work.

7



Chapter 2

Robustness measures

We define several robustness measures to assess the models’ resilience against outliers. In this

research, we focus on understanding the sensitivity of the estimator to small perturbations in the

data, known as local robustness. Local robustness refers to the impact of adding or modifying

a small number of observations in the dataset and observing how these minor changes influence

the estimator’s behavior. The Influence Function (IF) and the Empirical Influence function

(EIF), its empirical counterpart, provide insights into the estimator’s stability in the presence

of local perturbations.

On the other hand, the breakdown point offers insight into global robustness, which rep-

resents the maximum proportion of outlier data that the estimator can handle, before yielding

arbitrarily or infinitely large biases. Global robustness assesses the estimator’s robustness in

scenarios where a significant portion of the data is contaminated. In papers that study case-

wise robust methods, the breakdown point is defined as the number of cases or rows that are

contaminated.

We are particularly interested in the performance of models in the presence of cellwise

outliers. Until recently, most research has focused on the Tukey-Huber contamination model

(THCM), where a small portion of the data rows is contaminated. In this research, the focus

shifts to the Fully Independent Contamination Model (FICM).

2.1 Empirical influence functions

The empirical influence function, EIF (x, Tn, X), evaluates the influence of an observation x on

the estimator Tn in a sample X with n observations (Hampel, 1974). The empirical influence

function (EIF), or sensitivity curve, is the finite-sample version of the influence function (IF).

We require a functional form T of the estimator such that T (Fn) = Tn, where Fn is the empirical

distribution of the sample, X = x1, . . . , xn. The IF of an estimator T is defined as

IF (x;T, F ) = lim
ϵ→0

T {(1− ϵ)F + ϵ∆x} − T (F )

ϵ
, (2.1)

where F is the cumulative distribution function, and ∆x is the Dirac delta function, i.e. the

point mass function at x. The EIF is the sample version of (2.1), where F is replaced by Fn and

ϵ by 1/n.

8



Consider a sample, X = x1, x2, . . . , xn, and an estimator Tn based on this sample. The EIF

at an observation x∗ for the estimator Tn is given by

EIF (x∗;Tn, X) = n · {Tn(x1, . . . , xi−1, x∗, xi+1, . . . , xn)− Tn(x1, . . . , xn)}. (2.2)

A possible outlying value has a large influence on the estimator when EIF (x, Tn, X) is high,

which means the estimator is not robust.

2.2 Breakdown point

Let us examine a dataset, n × d matrix X, where n represents the number of data points

and d the number of dimensions. Our goal is to estimate the unknown location vector by the

estimator µ̂. We define the finite-sample cellwise breakdown value of µ̂ at X as the smallest

fraction of contaminated cells per column that pushes the estimator to infinity. Specify Xm as

any contaminated sample with no more than m outlying cells in each column. Hence, the finite-

sample cellwise breakdown value of the location estimator µ̂ at X is defined by (Raymaekers &

Rousseeuw, 2023) as

ϵ∗n(µ̂,X) = min

{
m

n
: sup
Xm

∥µ̂(Xm)− µ̂(X)∥ = ∞
}
, (2.3)

where ∥ · ∥2 denotes the L2 norm, or Euclidean norm, of the vector. The equation is a finite-

sample adaptation of the asymptotic cellwise breakdown value, that was originally proposed by

(Alqallaf et al., 2009).

The casewise breakdown value upper bound for an estimator is, clearly, also an upper bound

for the cellwise breakdown value of that estimator (Raymaekers & Rousseeuw, 2023). Because

of this, (2.3) can be
⌊
(n+1)

2

⌋
/n maximum for a translation equivariant estimator, by Theorem

2.1 of Lopuhaa and Rousseeuw (1991). We leave further investigation of the breakdown point

for cellwise robust estimators - specifically, in the linear panel data model with fixed effects - to

further research.

2.3 Tukey-Huber Contamination Model (THCM)

Before defining the methods used to mitigate cellwise outliers, let us first define the contamina-

tion methods considered in this research.

Most robust linear regression methods are based on the classical Tukey-Huber contamination

model (THCM) (Leung et al., 2016). The THCM has a significant influence in the general

approach of most robust statistical procedures: to identify outlying cases. For panel data models

with fixed effects, this is generally the only contamination model applied. THCM assumes that

a small fraction of cases is contaminated, reflecting the presence of outliers. This casewise

contamination model describes the contamination process as a mixture of two distributions: one

being the standard model and the other for outliers. Robust statistical analysis aims to conduct

inference on the dominant part of the mixture, filtering out outliers generated by the outlier

distribution (Alqallaf et al., 2009). The method by Huber (1964) and Tukey (1962) is specified
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as follows:

d = (1− ϵ)d0 + ϵd̃. (2.4)

Here, d represents a random vector. Under THCM, d ∼ F is modeled as a mixture of two

distributions, where F0 is the distribution of the uncorrupted data d0, F̃ is an arbitrary outlier

distribution for d̃ and ϵ (0 ≤ ϵ ≤ 1) is the proportion of contamination.

2.4 Fully Independent Contamination Model (FICM)

Contamination, however, can occur differently in the sense that individual components in X

are independently contaminated. In high-dimensional datasets often used in applications, where

variables are collected seperately, each is susceptible to contamination independently (Leung et

al., 2016). This cellwise contamination can significantly impact the effectiveness of traditional

(casewise) robust methods. Alqallaf et al. (2009) introduce a new model to address this issue,

known as the Fully Independent Contamination Model (FICM). Alqallaf et al. (2009) formulate

the FICM as follows

d = (I−Bϵ)d0 +Bϵd̃, (2.5)

where Bϵ = diag(b1, b2, . . . , bk) is a diagonal matrix and each bj is an i.i.d. Bin(1, ϵ) random

variables. Stated differently, each value in d has a probability of ϵ of being independently

contaminated. That makes the probability that at least one element of d is contaminated equal

to

ϵ̂ = 1− (1− ϵ)k. (2.6)

In a data matrix with regressors and response variables, this equals the probability that at least

one element in a row is contaminated. Therefore even a small ϵ results in a large ϵ̂ in the case

of multiple dimensions (Raymaekers & Rousseeuw, 2023). Alqallaf et al. (2009) show that the

breakdown point of all traditional 0.5 breakdown point affine equivariant location estimators is

1 − 0.51/k as k → ∞ (Leung et al., 2016). This explains the need for another, cellwise robust

method to tackle both cellwise and casewise outliers.
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Chapter 3

Methodology

3.1 Static panel data model with fixed effects

The static fixed effects panel data model is used to analyse data that varies across individuals

and entities over time. This model is particularly useful for examining the impact of variables

that change over time while controlling for unobserved heterogeneity that is constant over time

but varies between individuals. The essence of the fixed effects model is to allow for individual-

specific intercepts, capturing the effect of omitted variables that do not change over time for

each individual.

Consider a dataset with i = 1, . . . , N individuals observed over t = 1, . . . , T time periods.

The static fixed effects model can be represented by the following equation:

yit = αi + x′
itβ + ϵit, (3.1)

where yit is the dependent variable for individual i at time t, αi is the unobserved individual-

specific effect, xit is aK×1 vector of explanatory variables, β is aK×1 vector of coefficients to be

estimated, and ϵit is the idiosyncratic error term. The αi captures the unobserved heterogeneity

across individuals that could bias the estimates of β if not properly accounted for.

In later sections, we describe the traditional estimation of the fixed effects model and propose

a cellwise robust alternative.

3.2 Detection: Adapted Gervini-Yohai filter

The first step in handling cellwise outliers is detecting them. Gervini and Yohai (2002) introduce

a univariate filter to identify marginal outliers. The Gervini-Yohai (GY) filter measures the dis-

parity between the empirical distribution and a reference distribution, subsequently computing

an adaptive cutoff value.

While detecting marginally outlying observations is quick, only extreme cellwise outliers will

be reliably detected, as correlations between variables are neglected (Raymaekers & Rousseeuw,

2023). Therefore, considering more than marginal contributions is essential. We consider a

univariate plus bivariate filter in this research, as proposed by Leung et al. (2017) in the context

of estimating location and scatter. We use univariate and bivariate filter because of our emphasis

11



on cellwise outliers, compared to cellwise outliers. Compared to a multivariate filter, this also

significantly reduces the computational complexity.

pointed out that filtering the variables based solely on their value may be too limiting as

no correlation with other variables is taken into account. A not-so-large contaminated cell

that passes the univariate filter could be flagged when viewed together with other correlated

components, especially for highly correlated data. To overcome this deficiency, we introduce a

consistent bivariate filter and use

3.2.1 Univariate filter

The univariate filter aims to detect large cellwise outliers by looking at marginals. Gervini and

Yohai (2002) propose the use of an adaptive cutoff, instead of a fixed cutoff value. Leung et

al. (2017) assume a consistent filter for a distribution F0 as one that asymptotically will not

mistakenly classify a cell as an outlier if the data is derived from F0. For a clean dataset, this

means that the proportion of flagged outliers approaches zero as the sample size tends to infinity:

limn→∞ fn = 0 a.s. [F0]. Here, fn is used to denote the proportion of flagged outliers.

To illustrate the adapted GY filter, we consider x1, . . . , xn, a random (univariate) sample of

observations. We introduce the location estimator T0n and estimator of scatter S0n, for which we

adopt the median and median absolute deviation (MAD) in this paper, respectively as in Leung

et al. (2017, 2016); Agostinelli et al. (2015b). The standardised version of xi is zi = xi−T0n
S0n

and F the chosen reference distribution for zi. Although F0 is unknown in practice, a standard

normal distribution is typically assumed. In our case, we know the distribution F0 is standard

normal since we simulate the data. We define adapted cutoff values by Gervini and Yohai (2002)

as follows

F+n(t) =
1

n

n∑
i=1

I(|zi| ≤ t), (3.2)

where F+n is the empirical distribution function. We define the fraction of outliers by

dn = sup
t≥η

{F+(t)− F+n(t)}+

= max
i>i0

{
F+(|z|(i))−

i− 1

n

}
+

.
(3.3)

Here {F}+ denotes the positive component of the distribution of |z| when z ∼ F . The term

|Z|(i) refers to the order statistics of |zi|. We define i0 as the maximum index for which |z|(i)
is less than threshold η. η is a quantile of F+, η = (F+)

−1(α). We set α = 0.95 to detect

large outliers in the univariate filter, as is the default in Leung et al. (2017, 2016); Agostinelli

et al. (2015b). We then flag ⌊ndn⌋ - the greatest integer not exceeding ndn - cells with the

highest standardised values as cellwise outliers, subsequently replacing these with NA’s. We

then determine the adaptive cutoff value for each zi as

tn = min {t : F+n(t) ≥ 1− dn} , (3.4)

which corresponds to tn = Z(in), with in = n − ⌊ndn⌋. In practice, this means we flag xi when

|zi| ≥ tn.
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3.2.2 Consistent bivariate filter

Consider a random sample of bivariate observations (x1, . . . ,xn), where each xi = (xi1, xi2)
′.

We introduce a pair of initial location and scatter estimators,

T0n =

(
T0n,1

T0n,2

)
and C0n =

(
C0n,11 C0n,12

C0n,21 C0n,22

)
.

Following the univariate approach, we use the coordinate-wise median for T0n. For C0n, we

use the bivariate estimator with MAD scale by Gnanadesikan and Kettenring (1972). Specific-

ally, we define the initial scatter estimators as

C0n,jk =
1

4

{
MAD(xij + xik)

2 −MAD(xij − xik)
2
}
, (3.5)

where MAD({yi}) is the MAD of y1, . . . , yn. We note that C0n,jj = MAD({xj})2, consistent
with our choice of coordinate-wise dispersion estimators.

Then, we define the pairwise (squared) Mahalanobis distances as Di = (xi −T0n)
′C−1

0n (xi −
T0n). The empirical distribution for these distances is

Gn(t) =
1

n

n∑
i=1

I(Di ≤ t). (3.6)

Outlying points xi are then identified by comparing Gn(t) with a reference distribution G. In

this study, we use the chi-squared distribution with two degrees of freedom, G = χ2
2. The

fraction of flagged bivariate outliers is noted as

dn = sup
t≥η

{G(t)−Gn(t)}+, (3.7)

where η = G−1(α). For bivariate filtering aimed at moderate outliers, we set α = 0.85, though

other values of α may be considered. Subsequently, we flag ⌊ndn⌋ observations with the greatest

pairwise Mahalanobis distances as bivariate outliers. We define the adaptive cutoff value for the

distances for the bivariate filter in the same way as in (3.4).

3.2.3 Univariate and bivariate filter

We begin the detection of large cellwise outliers with the univariate filter. The bivariate filter

then aims to detect moderate cellwise outliers by incorporating information about the correlation

structure of the data (Leung et al., 2016). When viewed marginally, a moderately contaminated

cell passes the filter, but can be flagged when other variables are taken into account, especially

for highly correlated data (Rousseeuw & Van den Bossche, 2018). We describe the following

adapted approach from Leung et al. (2017) adapted for static fixed effects panel data. We

assume a NT ×K matrix, which is displayed in R as follows
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X =



x1,1 x1,2 · · · x1,K

x2,1 x2,2 · · · x2,K
...

...
. . .

...

xN,1 xN,2 · · · xN,K

x
(2)
1,1 x

(2)
1,2 · · · x

(2)
1,K

x
(2)
2,1 x

(2)
2,2 · · · x

(2)
2,K

...
...

. . .
...

x
(2)
N,1 x

(2)
N,2 · · · x

(2)
N,K

...
...

. . .
...

x
(T )
1,1 x

(T )
1,2 · · · x

(T )
1,K

x
(T )
2,1 x

(T )
2,2 · · · x

(T )
2,K

...
...

. . .
...

x
(T )
N,1 x

(T )
N,2 · · · x

(T )
N,K



,

where each x
(t)
i,j can be independently contaminated. We must note that for simplicity, we

assume pooled data for the filter, meaning we do not distinguish between time periods and

cross-sectional units. To illustrate, if we would take into account averages over time periods, for

example, to take into account deviations between cross-sections, we would have k×N values of

T0 to estimate, whereas, in the current situation, we have K.

We apply the univariate filter separately to each variable in X, consisting of N individuals

observed over T time periods. We use the initial location and dispersion estimators T0,NT =

(T0,NT,1, . . . , T0,NT,k) and S0,NT = (S0,NT,1, . . . , S0,NT,k). We introduce an auxiliary binary

matrix U, with zeros indicating filtered entries in X across both individuals and time periods.

We then proceed to evaluate all pairs of variables for each individual at each time period to

identify bivariate outliers, which helps filter cells with moderate contamination.

For each individual at each time period, denoted as (i, t), and for a selected pair of vari-

ables (xitj , xitp), we set x
(jp)
it = (xitj , xitp), with 1 ≤ j < p ≤ k. We then compute an

initial pairwise scatter matrix estimator C
(jp)
0,NT for this pair. We compute d

(jp)
it = (x

(jp)
it −

T
(jp)
0,NT )

t(C
(jp)
0,NT )

−1(x
(jp)
it −T

(jp)
0,NT ), the pairwise Mahalanobis distances, and apply bivariate fil-

tering to these pairwise distances, excluding those with flagged components by the univariate

filter: {d(jp)
it : uitj = 1, uitp = 1}. We repeat this procedure for all variable pairs, where

1 ≤ j < p ≤ k, for each individual at each time period.

We let

J = {(i, t, j, p) : d(jp)
it is flagged as a bivariate outlier},

be a set of triplets, identifying pairs of cells detected by the bivariate filter across individuals

and time periods (i = 1, . . . , N , t = 1, . . . , T ). To determine the cells (i, t, j) that should be

detected as cellwise outliers, we first count the number of flagged pairs involving cell (i, t, j) for

each individual, at each time period, which corresponds to row i× t in X:

mit,j = #{p : (i, t, j, p) ∈ J}. (3.8)
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Cells with large mit,j are most probably univariate outliers. If we assume that xit,j is not cellwise

contaminated, then mit,j is approximately binominally distributed, Bin(
∑

k ̸=j uitk, δ), under the

FICM. Here, δ is the overall fraction undetected by the univariate filter. The observation xit,j

is flagged if

mit,j > cit,j ,

where cit,j is the 0.99-quantile of the respective binomial distribution. We use a conservative

δ = 0.10 as is used in Leung et al. (2016, 2017). These values prove to have good results in

simulation and real data (Leung et al., 2017).

3.3 Imputation: coordinate-wise medians

After detecting cellwise outliers using the adapted Gervini-Yohai approach, we impute the

filtered cells. We introduce a similar approach to that of Agostinelli et al. (2015a), imput-

ing the filtered cells using coordinate-wise medians. We calculate the median across columns,

disregarding the NA’s. Then, this median replaces the NA’s in that particular column. Such

an imputation approach is based on a pooled specification, assuming that each variable’s dis-

tribution can be independently considered, simplifying the imputation process for panel data

with missing values. We apply the casewise robust method by Bramati and Croux (2007) to the

imputed data.

3.4 Cellwise robust estimation

We first specify the general formulation of the linear panel data model with fixed effects,

individuals (i = 1, . . . , N) and time points (t = 1, . . . , T ). We present the relationship as

yit = αi + xitβ + εit, where yit denotes the dependent variable. The K × 1 vector xit displays

the explanatory variables. The model includes a K × 1 vector of regression coefficients β. The

fixed individual-specific effects αi are time-invariant and unobserved. The error terms εit are

assumed to be uncorrelated through time and cross-sections.

In matrix form, often referred to as the stacked form representation, the linear static fixed

effects panel data model is expressed as

y = eT ⊗α+Xβ + ε, (3.9)

where y is an NT × 1 vector containing all observations, and X is an NT × K matrix of

explanatory variables. Here, α is an N × 1 vector representing individual effect coefficients, eT

is a T × 1 vector consisting of ones, and ⊗ denotes the Kronecker product.

3.4.1 General Within Groups estimator

Our analysis involves contrasting robust estimators with the traditional Within Groups (WG)

estimators. In this approach, the dataset undergoes an initial transformation where each time
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series is centered. This centering looks as follows:

ỹit = yit −
1

T

T∑
t=1

yit, (3.10)

and similarly for the explanatory variables:

x̃it = xit −
1

T

T∑
t=1

xit. (3.11)

Post-centering, we obtain

ỹit = β′x̃it + errorit, (3.12)

where the fixed effects αi are removed through the centering process. Applying Ordinary Least

Squares (OLS) estimator of ỹit on x̃it yields the Within Groups estimator β̂WG. While the

primary focus is on estimating β, the fixed effects parameters are also derivable. For a compre-

hensive discussion on the classical Within Groups estimator, Baltagi and Baltagi (2008) provide

an extensive review.

3.4.2 Equivariance properties

Before introducing robust alternatives to the within estimator for panel data, we discuss equivari-

ance properties that a regression estimator in panel data should satisfy (Rousseeuw & Leroy,

2005). Let us define R as an estimator for the regression coefficient β in (3.9). An estimator R

in panel regression is scale equivariant if the following condition holds:

R(xit, cyit) = cR(xit, yit) (3.13)

for any scalar c. Additionally, the estimator is regression equivariant if

R(xit, yit + xitγ) = R(xit, yit) + γ, (3.14)

where γ is a K × 1 constant vector. Moreover, R is affine equivariant if it satisfies

R(Axit, yit) = A−1R(xit, yit), (3.15)

for all individuals i = 1, . . . , N and time points t = 1, . . . , T , and for any K × K nonsingular

matrix A (Bramati & Croux, 2007). The classical Within Groups estimator fulfills these three

equivariance criteria.

3.4.3 The Within Groups MS (WMS) Estimator

Outlying observations disrupt the classical Within Groups estimator. Bramati and Croux (2007)

built the Within Groups MS (WMS) estimator to deal with casewise outliers. After detection and

imputation of cellwise outliers, the WMS estimator is used to estimate the regression parameters

and deal with casewise outliers. To obtain a robust alternative to the Within Groups estimator,

we robustly estimate the center of each time-series, using the median, for both the dependent
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and independent variables, and subtract it from each observation in the block. Afterwards,

we use a robust regression method on the centered data to obtain robust coefficient estimates

(Bramati & Croux, 2007).

Bramati and Croux (2007)’s WMS estimator is a particular application of the MS regression

estimator by Maronna and Yohai (2000). The approach robustly estimates both continuous

and categorical regressors and is affine and regression equivariant. Moreover, the method act-

ively alternates between M-estimators for categorical variables and S-estimators for continuous

variables. M-estimators are quick to calculate, though they may lack robustness against lever-

age points. However, since categorical and particularly dummy variables rarely present large

leverage points, we can efficiently apply M-estimators for regression on these variables. The

M-estimator diminishes the impact of categorical variables compared to continuous variables.

The S-estimator is robust, also with regards to leverage points. Therefore, the S-estimator is

applied to continuous variables. (Bramati & Croux, 2007) implemented the WMS estimator for

numerical variables only, therefore we only implement the method for numerical variables.

Let us assume that the fixed effects αi are known. We obtain an S-estimate of regression

by minimising the M-estimator of scale derived from the regression residuals rit(α, β) = yit −
xitβ − αi (Rousseeuw & Leroy, 2005). We determine the M-estimator of scale S by solving the

equation for s:

1

NT

N∑
i=1

T∑
t=1

ρS

{
rit(α, β)

s

}
= b, (3.16)

Here, ρS(·) is an even, symmetric, and continuously differentiable loss function with ρS(0) = 0

(Bramati & Croux, 2007). The value of b is set to be equal to E[ρS(ε)], where ε denotes the

standard normal distribution, to ensure consistent estimates for the regression scale parameter.

We then define the S-estimator of regression as the argument that minimises S, that is

β̂S(α) = argmin
β

S {r1(α, β), . . . , rNT (α, β)} . (3.17)

S-estimators are more efficient than the LTS estimator and have a higher breakdown point

in regression analysis (Bramati & Croux, 2007). For the loss function, we employ the Tukey

Biweight function (ρ(q)), defined as

ρ(q) =


c2

6

[
1−

{
1−

( q
c

)2}3
]
, for |q| ≤ c,

c2

6 , for |q| > c,

where q represents the residual in a regression model, and c is a tuning constant determining

the threshold for outlier identification (Rousseeuw & Leroy, 2005). c is chosen such that the

regression estimator has an overall breakdown point of 25%, as in Bramati and Croux (2007).

The S-estimator can be computationally heavy when the dimension of β is large. We do not

optimise α and β simultaneously, because α can contain many elements, making it time intensive

to compute the S-estimator. Alternatively, consider the scenario where β is known.

The estimator α̂, defined as α̂ = (α̂1, . . . , α̂N ), is derived as an M-estimator of regression
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α̂(β) = argmin
α

N∑
i=1

T∑
t=1

ρM {rit(α,β)} , (3.18)

which implies

α̂i(β) = argmin
αi

T∑
t=1

ρM
(
yit − x′

itβ −αi

)
, for i = 1, . . . , N. (3.19)

Given the presence of many fixed effects, quick estimation is crucial. We suggest using

ρM (·) = | · |, the absolute value loss function. This provides a clear formula for the above

expression:

α̂i(β) = mediant
(
yit − x′

itβ
)
, for i = 1, . . . , N. (3.20)

The WMS estimator for a linear panel data model, denoted as β̂WMS, is then defined as

β̂WMS = argmin
β

S [r1 {α̂(β),β} , . . . , rNT {α̂(β),β}] , (3.21)

where

rit {α̂(β),β} = yit − x′
itβ −mediant(yit − x′

itβ). (3.22)

These equivariance properties remain intact by jointly minimising α and β.

3.5 Quantile-Quantile plots

Ideally, we would like to prove the asymptotic properties of an estimator analytically. However,

the complexity of the cellwise robust estimator compels us to investigate the asymptotic distri-

bution numerically, by comparing it directly with the normal distribution. We plot Quantile-

Quantile (QQ) plots to illustrate how closely the asymptotic distribution of the GY-WMS BC

estimator aligns with the normal distribution, without outliers.

For the robust estimator, the QQ plot of the estimator should adhere to a straight line,

indicating conformity with the normal distribution. Deviations from this line, particularly in

the plot’s tails, show a deviation from the normal distribution.

3.5.1 Asymptotic distribution

We evaluate the asymptotic distribution of the GY-WMS BC estimator numerically. In the

Quantile-Quantile (QQ) plots depicted in Figure 3.1 and Figure 3.2, we plot the GY-WMS BC

estimator for the scenario with uncorrelated and correlated regressors, respectively.

We conclude that both for the scenario with correlated and uncorrelated regressors, the

estimators’ distribution closely adheres to the normal distribution. For the estimator of β2 with

uncorrelated regressors, we see a slight downward tilt at the start, suggesting that the lower end

of the estimator’s distribution has fewer extreme low values than the normal distribution. For

the scenario with correlated regressors, we see a bit more deviation from the normal distribution

when looking at some of the tails of the estimators. Specifically, we see that the upper tails of
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Figure 3.1: QQ plot of the GY-WMS BC estimator compared to a normal distribution, for
uncorrelated regressors

Figure 3.2: QQ plot of the GY-WMS BC estimator compared to a normal distribution, for
correlated regressors

β̂2, β̂3 and β̂4 tilt up slightly, suggesting that the upper end of the distribution has more extreme

values than the normal distribution predicts.

3.6 Performance measures

The β parameters in the linear static fixed effects model are of main interest, because these

parameters describe the influence of the explanatory variables on the outcome variable. We can

use various performance measures to assess an estimator Tn. In this paper, we focus on the bias

and the variance.

3.6.1 Bias

Bias represents the difference between an estimator’s expected value θ̂ and the true parameter

value θ. For an estimator Tn aimed at estimating a parameter θ, bias is expressed as Bias(Tn) =

E[Tn]−θ, where E[Tn] denotes the expected value of Tn. Bias reflects a systematic, as opposed to

random, error in estimation. An ideal estimator is unbiased, where Bias(Tn) = 0. Additionally,

an estimator is considered consistent if it converges in probability to the true parameter value

as the sample size tends to infinity.

3.6.2 Variance

Variance measures the dispersion within a dataset, representing the average squared deviation

from the mean and thus indicating how the estimate changes over different simulations. We

denote the variance as Var(Tn) = E[{Tn − E(Tn)}2], or Var(Tn) = E(T 2
n) − {E(Tn)}2 . Altern-

atively, we can describe it as the covariance of the estimate Tn A lower variance indicates that

the estimates are close to each other across simulations, while a high variance suggests a wider
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spread. If there is no systematic bias, the point estimates tend to be nearer to the true para-

meter value as the sample size increases. Therefore, the variance of the estimate decreases when

the sample size increases.

In the Monte Carlo simulation, we calculate the sample version of the standard deviation,

the standard errors, by calculating the standard deviation of the betas across simulations. For

the empirical study, we use a bootstrapping technique where we bootstrap new data and use the

β estimates of those bootstrapped samples to compute the standard deviation. Specifically, we

apply a type of block bootstrapping, where we resample entire entities (countries) of the panel

data to account for temporal correlation between the variables.
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Chapter 4

Simulation study

4.1 Linear static fixed effects model

We initiate the simulation by setting a reproducible seed, to ensure consistency in our results.

Our panel dataset includesN = 100 individuals, each observed over T = 5 time periods. To show

the effect on a multivariate problem, X1, X2, X3, X4, and X5
iid∼ N (0, 1) for every individual at

each time point. We generate dependent variable yit as

yit = β0 + αi + β1xit,1 + β2xit,2 + β3xit,3 + β4xit,4 + β5xit,5 + ϵit, (4.1)

where αi ∼ N (0, 1) denotes the individual-specific effect and ϵit ∼ N (0, 1) represents the idio-

syncratic error term. We set the coefficients β0 = 1, β1 = 2, β2 = 1.5, β3 = −0.5, β4 = 0.8, and

β5 = 1.2. Subsequently, we draw observations from the model described above.

Across 500 simulations, we estimate the fixed effects model using the Within Groups es-

timator provided by the plm package. We also estimate the beta parameters using the Within

Groups estimator in the code provided by Bramati and Croux (2007), to provide a fair compar-

ison between the classical and the casewise robust method. The provided code was written in

Matlab and is translated into R for this paper.

4.2 Correlated regressors

Next to independent and identically distributed regressors, we also study a scenario with cor-

related regressors, to reflect common occurences in empirical datasets more accurately. We use

a Toeplitz matrix to systematically structure the covariance among regressors. While often

associated with temporal or spatial autocorrelation, here, the Toeplitz matrix structures the

covariance among regressors based on their relative positions to each other, not temporal lags.

Therefore, the correlation between X1 and X2 is the same as between X3 and X4, following a

systematic pattern of correlation that decreases with the increase in distance between variable

indices.
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The Toeplitz covariance matrix is constructed as follows:

ΣX =



1 ρ ρ2 . . . ρK−1

ρ 1 ρ . . . ρK−2

ρ2 ρ 1 . . . ρK−3

...
...

...
. . .

...

ρK−1 ρK−2 ρK−3 . . . 1


, (4.2)

where K represents the number of regressors, and ρ denotes the base correlation between adja-

cent regressors, set at 0.5 for our simulation study. This structure ensures that regressors are

correlated due to inherent characteristics or interactions among the variables.

4.3 Cellwise outliers

Only 1% of cells in the dataset are contaminated, without restrictions on the number of con-

taminated rows. We insert outliers according to the FICM by Alqallaf et al. (2009); replacing

selected cells’ values with samples drawn from an alternative normal distribution, with µ = 10

or µ = −10, depending on the outlier sign. The standard deviation σ equals 1. This contamin-

ation is equivalent to adding a magnitude of (negative) 10 to the uncontaminated cells to keep

interpretation simple.

4.4 Estimation

4.4.1 WMS estimator

We take a subsample I of size K from the set {(xit−mediantxit, yit−mediantyit)|1 ≤ i ≤ N, 1 ≤
t ≤ T}. For this subsample, a parameter β̂I exactly fits the observations within I. The fit of

β̂I over the entire dataset is evaluated using

sI = S
[
r1

{
α̂(β̂I), β̂I

}
, . . . , rNT

{
α̂(β̂I), β̂I

}]
. (4.3)

We generate Nsamp = 500 of such subsamples I, and choose the subsample with the minimal

sI . The chosen Nsamp ensures, with a certain probability, the presence of at least one casewise

outlier-free subsample based on the outlier proportion ε in the data, according to Bramati and

Croux (2007). We have to take into account, however, that Bramati and Croux’s procedure

initially only takes casewise contamination into account. In the GY filtering process, we aim to

tackle all cellwise outliers, but most likely, some cases will still be contaminated.

Assuming the absence of cellwise outliers, the likelihood of obtaining at least one casewise

outlier-free subsample approaches 1 −
{
1− (1− ε)K

}Nsamp > 0 as the number of observations

increases (Bramati & Croux, 2007).

The optimal fit β̂0, found through the minimal sI , is supposedly near the global solution

β̂WMS. Starting with β̂0, an iterative algorithm refines the estimate towards minimising (3.21).

At iteration (k + 1), we define
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β̂
(k+1)

= argmin
β

S
[
r1

{
α̂(β̂

(k)
),β
}
, . . . , rNT

{
α̂(β̂

(k)
),β
}]

. (4.4)

The corresponding first-order condition is given by

N∑
i=1

T∑
t=1

witxit

{
yit − xitβ − α̂i(β̂

(k)
)
}
= 0. (4.5)

Here, wit = W
[
rit

{
α(β̂

(k)
),β
}]

are weights derived from the weighting function W (r) =

ρ{S(r)}
r . Due to the unknown β to compute the weights, wit is approximated usingW

[
rit

{
α(β̂

(k)
), β̂

(k)
}]

,

making (4.5) linear and solvable for β̂(k+1). Subsequently, we compute α̂(β̂(k+1)) as in 3.20 and

the weights, after which the iteration continues. As suggested by Maronna and Yohai (2000),

the process iterates a fixed number of times, selecting the β̂
(k)

that minimises the objective

function in (3.21). In our case, we take M = 20 as in Bramati and Croux (2007).

4.5 Empirical influence function

We want to assess the influence of a single outlier in xit,j or yit on the β parameters of the

Within Groups estimator to show why a (cellwise) robust method is needed to handle outliers.

Then, we compare this EIF to the effect of a single (cellwise) outlier on the WMS estimator

with the Gervini-Yohai filter and coordinate-wise median imputation. We evaluate the empirical

influence function (EIF) on the β parameters of the before-mentioned estimators. This is done

for cellwise outliers in X and vertical outliers, respectively.

4.5.1 Simulation of cellwise contamination in X

We introduce a single contaminated cell in the matrix of independent variables X during each

simulation run. This approach enables us to methodically examine the empirical influence

function (EIF) by observing the variation in estimated β coefficients in response to outliers of

different magnitudes. We consider the same samples as used for the estimation procedure in

Section 4.1.

For the precise evaluation of the EIF concerning βj , we evaluate 500 simulation runs. Within

these iterations, contamination is placed in x∗it,j , a random cell within column j of X. Column

j directly relates to the β∗
j we aim to examine. We can therefore analyse how an outlier in a

given column impacts its corresponding estimator. The contaminated values introduced in x∗it,j
span from −6 to 6, covering a spectrum of potential outlier magnitudes.

4.5.2 Simulation of vertical outliers

To examine the effect of vertical outliers on an estimator β̂j , we now contaminate y∗it in each

simulation run by integer values from -6 to 6. The dataset is simulated as described in Section

4 and repeated for 500 simulations.
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4.5.3 Calculation of the EIF for β̂j

We evaluate the impact of these outliers on the Within Groups (WG) estimator using the plm

package in R. Subsequently, we compare the EIF for the WG estimator to the EIF of the robust

method. The cellwise robust WMS estimator, in combination with the GY filter and coordinate-

wise mean imputation, aims to mitigate the influence of cellwise outliers. Therefore, we expect

the EIF of the latter not to break down.

For each contamination level, we compute and store the estimated βj coefficients from the

cellwise robust method and the WG method. This process is repeated across all simulations,

such that we capture the variability of β estimates in response to cellwise contamination.

To estimate the EIF, we also calculate the non-contaminated β̂j across simulations. The

EIFβj
is then computed by N× (β̂∗

j − β̂j), as derived from (2.2). Subsequently, we plot boxplots

for this EIFβj
across contamination values x∗it,j ranging from integers -6 to 6.

Figure 4.1: EIF plots for β1 with outliers in x∗it,1, for M = 100

Figure 4.1 illustrates the EIF plots for β1 for the WG estimator and the GY-WMS estimator,

respectively, in the case of a single contaminated x∗it,1. These plots represent the empirical

influence functions for data with uncorrelated regressors. Therefore, we assume the plots for β1

to be representative of behavior of the other beta estimators. On the y-axis, we observe the

standardised bias of β1, while the variation of the estimates is depicted by the boxplots.

By variation or spread, we mean the interquartile range (IQR) reflected in the length of the

box and whiskers’ length, which extends to the largest (absolute) data point within 1.5 times the

IQR. As anticipated, the WG estimator breaks down completely as x∗it,1 increases in absolute

value. This breakdown is evident from the increased absolute standardised bias and the widened

spread.

Regarding the GY-WMS BC estimator, we observe relatively consistent standardised bias

across outlier values. However, a notable increase in bias and standard deviation occurs when

x∗it,1 equals -2 or 2. This increase can be attributed to the fact that at this level, x∗it,1 is

not yet considered an outlier by the model and is factored into the beta estimate calculation.

Once the outlier’s absolute value exceeds 3, the observation is disregarded in the beta estimate

calculation. Consequently, the bias and spread of the estimator decrease again, approaching the

scenario where the median of x∗it,1 approaches 0. Outliers in Xi are more likely to introduce
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bias in the estimation of βi, because they directly influence the slope of the regression line,

potentially distorting the estimated relationship between Xi and yit. The variance is increased

by adding leverage.

Figure 4.2: EIF plots for β1 with outliers in y∗it, for M = 100

Figure 4.2 displays the EIF for β1 of the WG estimator and the GY-WMS BC estimator,

respectively. In this scenario, we analyse a so-called vertical outlier, a single contaminated y∗it.

We expect that the contamination of a single response variable will have a less pronounced impact

on the estimation of β1 compared to the contamination of x∗ij,1, due to the direct relationship

between β1 and X1. For the WG estimator, we can see that the spread of the standardised

bias becomes larger as the absolute value of the vertical outlier increases. We also see that,

generally, there seem to be more outliers in the EIF values that are smaller than the true beta

parameter. Interestingly, the median of the EIF function for the WG estimator stays close to

0, even for outliers up to (negative) 6. This can be explained by the fact that an outlier in y∗it
does not directly influence β1 as an outlier in x∗it does. Additionally, the WG estimator focuses

on within-unit changes, where the bias impact of a one-off outlier is mitigated. However, since

the WG estimator uses within-entity changes to estimate β, any significant deviation in these

changes, such as those caused by an outlier, will increase the spread of the estimated coefficients.

The pattern for the GY-WMS BC estimator is difficult to identify. In general, we can deduct

that, similar to the WG estimator, the β estimate seems to be relatively unbiased. Furthermore,

the spread of the EIF values is relatively small all over the spectrum of y∗it. This finding suggests

that the estimator is indeed robust against leverage outliers.

4.5.4 Calculation of the EIF for the level of the t-test for β̂j

Next, we calculate the EIF to assess the sensitivity of the level of the t-test to small changes in

the data. The t-test’s level equals the probability of rejecting the null hypothesis when it is true.

If the EIF indicates that the t-test level is highly sensitive to slight changes in the data, it may

suggest that the test results are not reliable in the case of outliers. We compute the EIF for the

t-test level for both the WG estimator and the GY-WMS BC estimator. Our aim is to mitigate

the effect of cellwise outliers using the cellwise robust estimator, therefore we expect only the

WG estimator to break down. As above, we calculate and store the estimated β̂j coefficients of
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the two estimators. This process is repeated for M = 100 simulations.

The formula of the level of the t-test for β̂j is

tβj
=

β̂j − βj0

SE(β̂j)
, (4.6)

where βj0 represents the beta parameter under the null hypothesis and SE(β̂j) denotes the

standard error of the beta estimate. However, standard deviation estimates for the cellwise

robust method may not accurately reflect the true variability and uncertainty of the beta coef-

ficients. To address this, we employ a bootstrapping approach by resampling β̂b
j 25 times

and computing the standard error of β̂1
j , . . . , β̂

B
j . This provides a more robust alternative for

estimating standard errors.

One must note that detection followed by imputation of flagged cells may result in reduced

variability in the dataset. This occurs because the imputed values are coordinate-wise medians of

the columns, which inherently have less variation than the true values. Consequently, standard

errors derived from the imputed data may be underestimated, potentially leading to a higher

absolute value of the t-test. Moreover, outliers can impact the estimator in non-normal ways,

violating the normality assumption for the distribution of the estimator.

Figure 4.3: Plots of the t-test statistic for WG and GY-WMS BC estimators, respectively, for
β1 with outliers in x∗it,1, for M = 100 in the case of uncorrelated regressors.

Figure 4.3 depicts the test statistics for the levels of the t-test for the WG estimator and the

GY-WMS BC estimator, respectively. For the WG estimator, we see a similar parabolic shape

as we saw for the EIF of the β1 estimates themselves. We note that the null hypothesis of β1 = 0

is rejected for all outliers as the t-test statistic exceeds 1.96. The value of the t-test statistic

for the WG estimator, however, is halved as soon as we reach the outlier value of -5 or 5. We

conclude that only one outlying cell already impacts the reliability of the t-test significantly for

the WG estimator. For the GY-WMS BC estimator, however, the t-test statistic is significantly

lower overall, with a fairly constant median of 16 across outlier values. The standard errors of

the beta estimates are almost twice as large for the robust estimator, which explains why the
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t-test statistic is approximately half the size for GY-WMS BC.

For the t-test, EIFtβj
is computed by N × (t̂∗βj

− t̂βj
), as derived from (2.2). We display

the boxplots for the EIFtβj
in Figure 4.4 for the outliers in x∗it,j . To compute the value for t̂βj

for every simulation (M = 100), we again compute standard errors through bootstrapping with

B = 25. Because of the computation time, we reduce the range of values of the outliers from -5

to 5.

Figure 4.4: EIF plots for tβ1 with outliers in x∗it,1, for M = 100

We observe that the plots for the EIF of the t-test look similar to those of the t-test statistic

in shape. We note that the EIF for the WG estimator is strongly biased at the tails, as x∗it,j
exceeds the absolute value of 2. For the GY-WMS BC estimator, the EIF remains relatively

unbiased. For both estimators, however, we note that the spread of the EIF is extremely large.

For the WG estimators, values range from -4000 and 4000, while for the GY-WMS BC estimator

they are about half this size: -2000 to 2000. We explain this through the larger average variance

of the WMS estimator. Therefore, we conclude that cellwise outliers significantly affect the

reliability of the t-test statistic.

One drawback of this analysis is the small bootstrapping and simulation sample, which

results in a larger variation of the empirical influence function values.

4.6 Simulation study estimates

We describe the outcomes of the simulation studies using two plots for uncorrelated and cor-

related regressors. Table 4.1 and Table 4.2 illustrate the beta estimates for the Monte Carlo

simulation of the static panel data model with fixed effects, for uncorrelated and correlated

regressors, respectively. Note that the tables include estimates for the WG estimator as in the

commonly used plm package in R (“WG”) and for the WG estimator as in the code by Bramati

and Croux (2007) (“WG BC”). The aim here is to demonstrate that the efficiency of the code

can also affect the simulation results. Next, we incorporate the casewise robust estimator by

Bramati and Croux (2007) (“GY-WMS BC”), to explain that a casewise robust method is not

sufficient to tackle cellwise outliers. Lastly, we include the proposed cellwise robust method, the

GY-WMS BC estimator (“GY-WMS BC”). We distinguish between an uncontaminated scenario
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and a scenario where 1% of the cells are contaminated. The standard deviations in the table

are shown in parentheses.

As anticipated, in the ideal, uncontaminated scenario with independent regressors, the WG

estimator excels, in both bias and variance. In our examined uncontaminated case with cor-

related regressors, this classical estimator also outperforms the alternatives. However, this

advantage shifts when faced with cellwise outliers. The GY-WMS BC estimator stands out as

the only one resilient to even 1% of cellwise outliers. While we do see an increased variance

compared to the WG estimator in the uncontaminated scenario, it remains robust in the pres-

ence of 1% cellwise contamination. By the fact that the WMS BC estimator also breaks down

in case of cellwise outliers, we conclude that to effectively tackle cellwise outliers, a casewise

robust estimator is not sufficient.

4.6.1 Uncontaminated scenario

Clean data 1% cellwise contamination
WG WG BC WMS BC GY-WMS BC WG WG BC WMS BC GY-WMS BC

β1 = 2 1.998 2.002 1.996 1.941 0.801 0.803 1.981 1.938
(0.047) (0.067) (0.072) (0.104) (0.183) (0.191) (0.092) (0.105)

β2 = 1.5 1.500 1.497 1.491 1.445 0.610 0.604 1.392 1.444
(0.051) (0.075) (0.079) (0.098) (0.150) (0.159) (0.290) (0.100)

β3 = −0.5 -0.502 -0.500 -0.497 -0.482 -0.196 -0.197 -0.198 -0.481
(0.052) (0.071) (0.070) (0.082) (0.086) (0.090) (0.074) (0.084)

β4 = 0.8 0.795 0.793 0.789 0.763 0.323 0.319 0.352 0.762
(0.053) (0.073) (0.078) (0.091) (0.105) (0.108) (0.131) (0.090)

β5 = 1.2 1.198 1.201 1.195 1.161 0.489 0.484 0.867 1.160
(0.051) (0.072) (0.075) (0.095) (0.131) (0.134) (0.353) (0.097)

Table 4.1: Beta estimates (means and standard deviations) for the Monte Carlo simulation,
comparing clean data with 1% cellwise contamination for N = 100, T = 5, M = 500.

For the uncontaminated scenario, we can see that the beta estimates are all relatively un-

biased. As expected, WG and WG BC perform best with regards to bias. This can be un-

derstood by considering that in this scenario, we simulate data based on the assumptions of

the WG estimator. Minor variations can be attributed to our sample size restriction of 500

observations. WMS BC follows closely, with a deviation of less than 1% from the true beta.

Finally, the bias of the GY-WMS BC remains minimal in the uncontaminated scenario, devi-

ating by 5% or less from the true betas. WG performs best in terms of standard deviation for

the uncontaminated scenario, with standard deviations ranging from 0.047 for β̂1 to 0.053 for

β̂4. Notably, the standard deviations of WG BC are up to 50% higher than those of WG, which

can be attributed to modifications in plm for code efficiency. WMS BC shows a slightly higher

standard deviation than WG BC, a result of the trade-off between efficiency and robustness.

Moreover, GY-WMS BC shows the largest standard deviation, nearly doubling that of WG for

certain parameters. There is a clear robustness trade-off, where in the uncontaminated scenario,

the WG estimators outperform. For the contaminated scenario, we observe that WG and WG

BC break down entirely with only 1% cellwise contamination, producing estimates far from the

true betas. WMS BC already shows a significant improvement over the classical method, yet

the estimates still vary considerably from the true parameters. The only estimator that remains
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relatively unbiased, with a maximum deviation of 5% from the true parameter, is the GY-WMS

BC. The estimates produced by the GY-WMS estimator for the contaminated scenario closely

resemble those from the uncontaminated scenario. This can be attributed to the fact that the

outliers are generated from a normal distribution with µ = 10 or µ = −10, values substantial

enough to be detected by the GY filter.

Regarding the standard deviation of the classical estimators, we again find it significantly

higher compared to the uncontaminated scenario. Specifically, it doubles for β̂2 and even es-

calates from 0.047 to 0.183 for the WG estimator of β̂1. Interestingly, the standard deviations

for WMS BC estimator skyrocket for β̂2 and β̂5, yet remain relatively low for β̂1 and β̂3 with

coefficients of 0.092 and 0.074, respectively.

4.6.2 Correlated data estimates

Clean data 1% cellwise contamination
WG WG BC WMS BC GY-WMS BC WG WG BC WMS BC GY-WMS BC

β1 = 2 2.004 2.001 1.996 1.984 0.905 0.907 2.099 1.984
(0.058) (0.083) (0.087) (0.114) (0.220) (0.228) (0.267) (0.109)

β2 = 1.5 1.494 1.503 1.496 1.445 0.746 0.745 1.146 1.446
(0.068) (0.099) (0.103) (0.130) (0.200) (0.205) (0.466) (0.126)

β3 = −0.5 -0.493 -0.499 -0.488 -0.401 0.198 0.198 -0.038 -0.391
(0.067) (0.092) (0.097) (0.113) (0.105) (0.111) (0.094) (0.113)

β4 = 0.8 0.794 0.795 0.791 0.768 0.439 0.438 0.324 0.767
(0.064) (0.092) (0.099) (0.110) (0.144) (0.144) (0.261) (0.108)

β5 = 1.2 1.203 1.204 1.199 1.179 0.563 0.567 1.183 1.181
(0.060) (0.083) (0.087) (0.110) (0.165) (0.173) (0.403) (0.110)

Table 4.2: Beta estimates (means and standard deviations) for the Monte Carlo simulation,
comparing clean data with 1% cellwise contamination for N = 100, T = 5, M = 500.

Next, we evaluate the scenario where regressors are correlated using the Toeplitz matrix.

Table 4.2 presents the results in a similar way as above.

Remarkably, WG BC performs slightly better compared to WG in terms of bias, though the

difference between the two is less than 1%. Similar to uncorrelated scenario, WMS BC performs

slightly worse on bias, followed by GY-WMS BC. GY-WMS BC deviates less than 4% from the

true parameters for all parameters except β̂4, where the estimate is -0.401 in contrast to the true

β4 of -0.5. This discrepancy suggests that the method may incorrectly classify certain variables

as outliers when they should instead be identified as correlated values.

We observe a marginally higher standard deviation for estimators in the correlated scenario

compared to the uncorrelated scenario. Similar to the uncorrelated scenario, the WG BC estim-

ator’s standard deviation increases up to 50% compared to WG, likely for the same reasons as

previously noted. Furthermore, the GY-WMS BC estimator’s standard deviation doubles that

of WG, which can be attributed partially to less efficient coding and the robustness-efficiency

trade-off.

As in the scenario with uncorrelated regressors, WG and WG BC break down completely

with just 1% of cellwise contamination. For all betas, their estimates differ significantly from

the true betas. In terms of bias, WMS BC significantly outperforms the classical methods, yet

it still falls short when compared to the GY-WMS BC method, which surpasses all others by
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producing estimates very close to or even better than those in the uncontaminated scenario,

except for β3, which is estimated at -0.391 compared to the true value of -0.5. This can again

be attributed to the fact that some cells are incorrectly recognised as outliers and imputed, or

that some outliers are missed by either the GY filtering or the WMS estimator.

We again note that the classical estimators’ standard deviations are significantly higher

compared to the uncontaminated scenario and the contaminated scenario with uncorrelated

regressors. We observe in particular that the standard deviation of WMS BC explodes, taking

on values of 0.466 and 0.403 for the standard deviation of β̂2 and β̂5, respectively. This can

be explained by the fact that the estimator is not used to dealing with either cellwise outliers

or correlated variables. Finally, GY-WMS BC performs best in this scenario, with standard

deviations ranging from 0.108 to 0.113, because of its ability to deal with both marginally large

cellwise outliers and correlated cellwise outliers, thanks to the GY filter.
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Chapter 5

Empirical study

To explore the effects of regional government fragmentation on the quality of social services such

as health and education, Grossman et al. (2017) investigate a dataset manually recording the

number of top-tier regional government entities across Sub-Saharan Africa, from 1960 (or the

year of independence) to 2012. The primary variable is ‘N. Regional Gov pc’, which represents

the annual count of top-tier regional governments in a country per 1 million inhabitants. This

approach isolates the impact of government fragmentation on service delivery quality from other

institutional and economic influences. The analysis reveals a large number of regional govern-

ments from as small as two in São Tomé to 112 in Uganda, with an average of 12.6. When

adjusted for population size, the number of regional governments per 1 million people in Sub-

Saharan Africa ranges from 0.06 in Nigeria to 361.7 in Seychelles, averaging at 9.5, and showing

a pronounced right skew with 90% of country years falling under 10. (Grossman et al., 2017).

In the paper, the authors aim to mitigate endogeneity issues through two-way fixed effects

models and the use of instrumental variables. For this empirical study, we use their fixed

effects model B because it most closely aligns with our paper and we do not explicitly address

endogeneity problems in this research.

Fixed effects in this study account for various aspects of a country’s governmental structure,

including administrative layers, overall state capacity, historical factors such as colonialism,

and legal origins (Grossman et al., 2017). On the other hand, year fixed effects are necessary

to address long-term improvements in public services and to capture global policy influences.

Control variables are included to help address some time-varying factors such as politically

motivated changes in government structure.

To evaluate the hypothesis regarding a positive (yet nonlinear) relation between government

fragmentation and service quality, Grossman et al. (2017) employ, among others, the following

model:

yit = αi + γt + β1xit−1 + δ log(govpcit−5) + ϵit. (5.1)

Here, the outcome variable yit is the service provision index as a function of country and year

fixed effects αi and γt, respectively, along with a set of control variables xit. To capture the non-

linear effect of the main target variable, the log of the measure of regional government units per

capita dgovpcit is incorporated. Because changes in the number of regional governments may
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not yield immediate effects, the main independent variable is lagged by five years. Throughout

their analysis, Grossman et al. (2017) adjust for clustering of standard errors at the country

level to accommodate for arbitrary serial correlation and heteroskedasticity.

5.1 Replication

In our research, we include FE model B as in Table 1 in Grossman et al. (2017). The model

includes both categorical and numerical variables.

One limitation to our research is that we can not apply the WMS estimator for categorical

variables, as it was not yet implemented by Bramati and Croux (2007). The GY filter can also

only filter numerical variables. Therefore, we split the dataset into two subsets, one consisting

of categorical variables and one with the numerical variables. In this research, we disregard

potential outliers in the categorical variables. Subsequently, we apply the GY filter to this

dataset and estimate the parameters using the classical WG estimator. We compare the dataset

used by the authors to the dataset filtered by the GY filter

To compute the standard errors, the authors use clustered standard errors. In our paper, we

bootstrap the standard errors. We do so by using block bootstrapping, bootstrapping complete

entities from the dataset. We do this, because of this study’s explicit focus on over-time variation

within cases. One downside of this approach is that we do not account for the correlation of

variables between entities.

5.1.1 Block bootstrapping entities

To bootstrap standard errors, we resample complete entities (countries) with replacement from

the original dataset. We perform 500 bootstrap samples in Python and calculate the beta

estimates for each one in R, both with and without the GY filter with default setting. We

perform the same method for the sensitivity analysis described in the next section. The samples

are bootstrapped in Python and the estimation of the fixed effects model is performed in R.

Subsequently, the standard errors are calculated using the beta estimates computed from the

bootstrap samples.

5.1.2 Sensitivity Analysis

To illustrate the potential effect of cellwise outliers. We add 0.5% of cellwise outliers to the

numerical variables of the dataset. The approach is the same as in the Monte Carlo simulation

described earlier. We only contaminate the numerical variables to distinguish the effect of

applying the GY filter, which can only be applied for numerical variables, after contamination.

Subsequently, we apply the GY filter to illustrate what effect cellwise outliers have if they are

accounted for, versus the situation for which they are not.

5.2 Results

We compare the results for model B in Table 1 of Grossman et al. (2017). Specifically, we

contrast the estimates of the fixed effects within estimator (“GPB FE”), as replicated from
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(Grossman et al., 2017), to estimates of the within estimator after the GY filter (“GY FE”).

The results are depicted in Table 5.1. Please note that our comparison includes a column for

the original estimates with clustered standard errors, as replicated from Grossman et al. (2017),

and a column with bootstrapped standard errors, respectively. We focus on the bootstrapped

standard errors for an equal comparison between the scenario with and without GY filter.

We conclude that filtering out cellwise outliers with GY filter leads to similar estimates as

the FE model as used in GPB, with higher standard errors. We therefore conclude that there are

little cellwise outliers in the dataset. Therefore, we propose to conduct a sensitivity analysis with

0.5% cellwise outliers. The difference between parameter estimates in the contaminated scenario

with and without GY filter is significant. Whereas unaccounted-for cellwise contamination

results into an insignificant target variable, log(N local gov PC), results with the GY filter are

fairly similar to the GPB FE estimates. As regards to the standard deviation, we see that the

filter increases the variance for some parameters while diminishing it for others. This suggests

that cellwise outliers are to be accounted for, even with a small contamination percentage. One

must, however, take into account that contaminating only 0.5% of the variables, can lead to

very different estimates and standard deviations depending on which cells are contaminated.

Grossman et al. (2017) data Sensitivity analysis
GPB FE GPB FE GY FE GPB FE GY FE
(clus. se) (bt. se) (bt. se) (bt. se) (bt. se)

log(Population) 2.290∗∗∗ 2.290∗∗∗ 2.037∗∗ 1.659∗∗ 2.033∗∗

(0.531) (0.728) (0.632) (0.717) (0.836)
Urbanization −0.024∗∗ −0.024∗∗ −0.026· −0.018∗ −0.024·

(0.008) (0.011) (0.016) (0.009) (0.017)
log(GDP pc) 0.271· 0.271· 0.337∗ 0.069∗∗∗ 0.313·

(0.148) (0.181) (0.164) (0.108) (0.198)
Intrastate conflict 0.011 0.011 0.042 0.027 0.044

(0.053) (0.060) (0.051) (0.063) (0.059)
State elections 0.224 0.224 0.232 0.303· 0.235

(0.142) (0.191) (0.160) (0.211) (0.200)
Polity 2 0.016 0.016 0.016 0.020 0.017

(0.014) (0.015) (0.014) (0.015) (0.015)
log(Oil value pc) −0.066∗ −0.066∗ −0.061· −0.043∗ −0.061·

(0.031) (0.041) (0.035) (0.031) (0.052)
Foreign aid pc 0.000 0.000 0.003∗ 0.000 0.003∗

(0.000) (0.001) (0.001) (0.001) (0.001)
log(N local gov pc) 5-year lag 0.388∗∗ 0.388∗∗ 0.380∗ 0.000 0.383∗

(0.147) (0.197) (0.153) (0.107) (0.220)

Note: ·p < 0.1; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001.

Table 5.1: Results for the regular dataset and the sensitivity analysis of the beta coefficients for
the FE model with and without GY filter
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Chapter 6

Conclusion

In our research, we develop a both cellwise and casewise robust methodology for static panel

data with fixed effects. We take the adapted Gervini-Yohai outlier filter (Leung et al., 2016)

for its recognised performance in outlier detection. Subsequently, we impute filtered outliers

using coordinate-wise medians for computational feasibility, as suggested by Agostinelli et al.

(2015a). The final phase employs the robust casewise WMS method by Bramati and Croux

(2007), chosen for its asymptotic efficiency, and regression and affine equivariance properties.

To assess the models’ resilience against outliers, we test the sensitivity of the estimator to

small perturbations in the data, known as local contamination, through the empirical influence

function. For single cellwise outliers in x1, the WG estimator shows a breakdown in both

standardised bias and spread as the absolute value of the outlier increases. Conversely, the

GY-WMS BC estimator exhibits neglectable bias across outlier levels, with bias and standard

deviation spiking only when the outlier value is close to -2 or 2. This change underscores the

model’s initial failure to recognise such points as outliers, incorporating them into the beta

estimate calculation. Once outliers exceed an absolute value of 3, they are excluded from the

calculation, leading to a reduction in both bias and spread, showing the estimator’s robustness

against outliers.

In our analysis of the impact of single vertical outliers on beta coefficient estimation, we

find that outliers in the response variable affect the estimation less severely than outliers in

regressors. With the WG estimator, the variation in standardised bias increases with the size

of the outlier, yet the median bias stays close to zero, highlighting the estimator’s ability to

mitigate one-off outlier impacts through its focus on within-unit changes.

The GY-WMS BC estimator maintains a relatively unbiased estimate across outlier values,

with consistently small variation in standardised bias. This behavior indicates its robustness

against vertical outliers.

Our study of the t-test’s sensitivity to data changes through the EIF reveals significant dif-

ferences between the WG and GY-WMS BC estimators. The WG estimator shows a pronounced

sensitivity to outliers, with the reliability of the t-test significantly compromised by even a single

outlying cell. On the other hand, the GY-WMS BC estimator maintains a lower, more stable

t-test statistic across outlier values. We observe that the robust method significantly reduces

(the EIFs of) the t-test statistics, a result of its larger standard errors for beta estimates.

These observations suggest that the WG estimator, while beneficial for its focus on within-
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unit changes, may not be suitable in scenarios where cellwise outliers are present. The GY-WMS

BC estimator, with its robustness to leverage outliers, offers a more reliable alternative for such

cases. However, the significant spread of the EIF for both estimators indicates that outliers can

still substantially affect the reliability of statistical inferences, emphasising the need for careful

outlier management and robust statistical methods.

Subsequently, we performed a simulation study with both correlated and independent re-

gressors. As expected, the WG estimator performs exceptionally well in terms of both bias and

variance in a perfect, uncontaminated environment with independent variables. In our examined

uncontaminated case with correlated regressors, this classical estimator also outperforms the al-

ternatives. However, this advantage shifts when faced with cellwise outliers. The GY-WMS BC

estimator stands out as the only one resilient to even 1% of cellwise outliers. While we do see an

increased variance compared to the WG estimator in the uncontaminated scenario, it remains

robust in the presence of 1% cellwise contamination. By the fact that the WMS BC estimator

also breaks down in case of cellwise outliers, we conclude that to effectively mitigate cellwise

outliers, a casewise robust estimator is not sufficient.

For the empirical study, our analysis reveals that excluding outliers via the GY filter yields

estimates are similar to those obtained using the FE model in Grossman et al. (2017). For the

sensitivity analysis, however, the significant key variable, N. Regional Gov pc in Grossman et al.

(2017), is insignificant in the case of unaccounted-for cellwise outliers. The sensitivity analysis

shows that already for a cellwise contamination of 0.5%, the contamination significantly impacts

the parameter estimates. This underscores the potential issues that arise when one does not

account for cellwise outliers.

6.1 Limitations and suggestions for further research

While our study introduces a promising cellwise robust methodology for handling outliers in

static fixed effects panel data, there are limitations. The core of our methodology, the Gervini-

Yohai (GY) filter, employs the standard normal distribution for outlier detection, a choice that

aligns with our simulations derived from normal distributions. However, this assumption may

not hold in real-life scenarios where data distributions deviate significantly from normality. Addi-

tionally, imputation of the coordinate-wise median might impose bias and lead to less variability

in the dataset because it uses medians of the columns to impute the cells. Furthermore, our

approach to computing the EIF by substituting an existing observation with an outlier could

introduce additional bias, a concern not present when an outlier is added to the dataset.

To ensure computational feasibility, we constrained our study in several ways: limiting sample

and bootstrap sizes, not varying the number of individuals or time periods, and solely applying

the GY filter on the empirical data, without its integration into the full model. Our investig-

ation did not extend to exploring temporal or spatial relationships between variables, except

for correlated regressors using the Toeplitz matrix. We did not tackle the prevalent issue of

endogeneity in panel data. Also, we did not account for correlation between entities in our

bootstrapping approach.

Despite the slower computational performance of the cellwise robust model, the standalone

application of the GY filter is practical and offers a valuable preliminary robustness check. This
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aspect underscores the method’s utility even in its simplest form.

Our research, while comprehensive, does not fully capture the diversity of real-world data,

particularly in terms of dynamic panel data structures or non-linear effects. The effectiveness

of the GY filter and subsequent imputation strategy, along with the reliance on coordinate-

wise medians for imputation, may vary across different data structures and outlier patterns,

potentially limiting the generalisability of our findings. Additionally, the GY filter does not

account for temporal correlations or inter-entity correlations, commonly found in panel data.

Also, the computational and interpretative complexity introduced by the casewise robust WMS

method poses further challenges.

Future studies could also explore the influence functions for cellwise robust estimators ana-

lytically and examine their breakdown points. Additionally, exploring bootstrap techniques

tailored for generating standard deviation estimates from samples with cellwise outliers presents

a promising avenue for research. Finally, one could investigate an empirical dataset containing

cellwise outliers, and apply cellwise robust methods against that.
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