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Abstract

We evaluate an extended version, of the Intertemporal Capital Asset Pricing Model (ICAPM)

based on a Markov switching VAR (MSVAR) model, ICAPM-MS, to assess its effectiveness in

explaining the variation in returns of size and value sorted portfolios. The ICAPM-MS, intro-

duced by Bianchi (2020), allows for the estimation of discount rates and cash-flow news terms

through an MSVAR model. The constructed MSVAR model identifies recession (as defined by

the NBER) and stable states of the US market. Consequently, the decomposed market shocks

are estimated, assuming that long-term investors make an inference of the current and future

states of the market. As demonstrated by Bianchi (2020), the ICAPM based on an specific

MSVAR framework that identifies the Great Depression, yields greater explanatory power com-

pared to the traditional ICAPM. Generalizing the MSVAR such that it identifies more common

events like recessions, could offer insights on more broader characteristics of long-term investor

behavior. Based on the results of various asset pricing tests using a rolling sample window,

the ICAPM-MS can be more effective in explaining the variation in the cross-section of size

and value sorted portfolios, however for specific periods and sample sizes. The improvements in

performance with respect to a traditional ICAPM occurred during the transition of a recession

regime to a stable regime. These results indicate that the assumption that the investor under-

stands the changing dynamics of the market during such a transition is of importance. While

the performance of the ICAPM-MS improved during these periods with respect to the ICAPM,

the difference in performance measures is however not significantly large, and the overall per-

formance of the ICAPM-MS is not high. The performance of the ICAPM-MS is also dependent

on the window, suggesting that the constructed market factors do not sufficiently encapsulate

systemic risk over an extended period.
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Chapter 1

Introduction

Asset pricing theory is based on the assumption that, in an efficient market, the returns on an

investment in a specific asset act as compensation for the systemic risk involved in investing

in the asset. Based on this assumption, if all relevant risk factors of the asset are understood

and known, they can be related to expected future returns. This approach has proven to be

successful as financial institutions utilize asset pricing models to make investment decisions.

Said models are of interest as they provide a quantitative framework for evaluating investment

opportunities and constructing optimal portfolios. Describing risk factors and constructing asset

pricing models that explain the cross-sectional variation in asset returns remains vital, given the

dynamic nature of financial markets. Additionally, describing in what context, and under which

specifications the models have a high performance is essential, such that the applicability and

limitations of these models are well understood.

Recent research by Bianchi (2020) explores a particular asset pricing model, the two beta

Intertemporal Capital Asset Pricing Model (ICAPM) introduced by Campbell and Vuolteenaho

(2004), an extension of the CAPM that incorporates the expectation of long-term investors

about future investment opportunities. The ICAPM is an extension of the traditional CAPM,

as it assumes that investors take into account the future prospects of the assets they hold. To

the contrary, the CAPM assumes that investors have constant expectations of future investment

opportunities. An important finding by Bianchi (2020) is that the ICAPM, which additionally

assumes that investors anticipate crises like the Great Depression, performs significantly better.

My aim is to evaluate the two beta ICAPM, where investors consider regime switching, and

to understand under what circumstances and model specifications such a model performs well in

explaining sectional variations in asset returns. More specifically, the question I wish to answer

reads:

How does the explanatory power of the two beta ICAPM that considers recessions and stable
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regimes on size and value sorted portfolios, compare to the two beta ICAPM and the CAPM that

do not consider different regimes at all?.

This question is addressed across various model specifications for different samples. This

paper contributes to the literature by offering insights into systematic and period-specific investor

sentiment within the ICAPM framework. This is of importance as such a model may explain

investment behaviour in general, as opposed to ad-hoc factor models that mainly relate returns

to specific firm characteristics. Additionally, the relevance of ICAPM is emphasized by Nagel

(2013), as he concludes that variations of the ICAPM are able to explain the abnormalities in

asset returns well for modern samples. This conclusion is drawn based on the comparison of a

wide range of common factor models.

The state variables used to construct the MSVAR model are excess market returns, the term

yield spread, the small value spread, the dividend-price ratio, and the price-earnings ratio. I

compare this ICAPM to a benchmark ICAPM based on a regular VAR model that does not

include inferences on regimes. Additionally, a CAPM model serves as a benchmark.

The performance is evaluated based the ability of the models to explain the variation in

the cross-section of size-and value-sorted portfolio returns. Following the Fama-Macbeth two-

pass approach, I construct test statistics including the GLS R2 and p-values of a GLS test

that examines whether the pricing errors are close to zero. The analysis assesses the models’

capability to capture period-specific investor sentiment by constructing factor models using a

35-year rolling window. The capability to capture systemic investor sentiment is evaluated based

on the same procedure on a full (modern) sample ranging from 03-1963 until 12-2022.

Findings suggest improvements of the MSVAR-based ICAPM during transitions from reces-

sion regimes to stable regimes, based on the GLS R2 and the p-values of the pricing error test,

which is not rejected during such periods at a 90% confidence level for this model. However,

the overall performance of the model and the results of the full sample regression indicate a

relatively low overall performance.
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Chapter 2

Literature

2.1 The two factor Intertemporal CAPM

Empirical evidence has shown that the CAPM fails to explain the cross-sectional variation in

asset returns since the 1960s. Fama and French (1992) show that the presence of anomalies like

the size- and value effect contribute to the limited performance since they cannot be explained

by the CAPM beta. This indicated that asset returns are exposed to other sources of risk. As

a consequence, many other risk factors have been introduced that contribute in explaining the

dispersion in average asset or portfolio returns.

One of the other fallacies of the CAPM is the inability to capture the long-term expecta-

tions of investors about future returns. The Intertemporal CAPM (ICAPM) by Merton (1973)

accounts for this. In his paper, he derives an intertemporal model based on the behaviour of

long-term investors who maximize their utility and account for uncertainty in future invest-

ment opportunities. It is concluded that the inherent assumption by the CAPM, that investors

have a two-period horizon or assume constant investment opportunities over time, is unreal-

istic. Campbell and Shiller (1988) further describe how innovations in market returns are due

to changes in expectations for future cash-flows as well as future discount rates. A decomposi-

tion method of market innovations into cash-flow and discount rate news terms is developed by

Campbell (1991). Building upon the idea, that shocks in market returns is actually the aggreg-

ate of shocks in expectations of future discount rates and cash-flows, Campbell and Vuolteenaho

(2004) argue that the CAPM beta should be split into a cash-flow beta and a discount rate

beta, resulting in the two beta ICAPM. The rationale behind this is that investors recognize

that news about future cash-flows and news about the future discount rate have different im-

plications for future investment opportunities. While news about a decrease in future cash-flows

and an increase in future discount rates both result in a contraction of the market, the discount
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rate news is associated with improved investment opportunities in the future. Cash-flow shocks

are regarded as permanent shocks to wealth. Under the assumption that the discount rate news

correlates with improved investment opportunities in the future, its corresponding risk premium

should be lower. Hence, the negative cash-flow news is considered ’bad’ and negative discount

rate news ’good’, or rather, less bad. The importance of this decomposition of risk sources is

demonstrated by Campbell and Vuolteenaho (2004) as they find that the two risk factors are

weakly correlated. Further results show differences in discount rate and cash-flow betas for

different portfolios. They find that the two beta ICAPM is more successful than the CAPM in

explaining the cross-sectional spread in average returns of value-size sorted portfolios.

2.2 Identifying regimes using the MSVAR model

The aforementioned decomposition method by Campbell (1991) assumes that investors predict

market returns through a VAR(1) model consisting of excess market returns and macroeconomic

variables. Based on the estimated VAR model, at period t, predictions are made of the market

returns at t+1 as well as the long-run expectation of market returns. At period t+1, the market

return shock can be defined as the difference in predicted and actual market returns. The long-

run expectation of the market returns is re-estimated such that changes in this expectation can

be related to innovations in discount rate expectations. Since both market shocks and discount

rate shocks are now estimated, the cash-flow shock can be backed out as well.

This described method relies on a static VAR model, imposing that the investor expects

constant economic conditions, disregarding changing dynamics due to factors such as business

cycle effects and structural changes. As is pointed out by Campbell and Vuolteenaho (2004),

the assumption of constant volatility of market returns may be an issue given empirical evidence

on potential drawbacks in forecasting ability due to the presence volatility clustering. Engle

(1982) and Bollerslev (1986) show the importance of capturing the heteroskedasticity in the

conditional variance of returns via (G)ARCH models. Other methods assume the existence of

different regimes, e.g. bull and bear markets or recession and expansion regimes. An example

is the Threshold AutoRegressive (TAR) model, that allows for time-varying parameters within

an autoregressive model that are dependent on the current regime (Tong, 1978). Similar is the

Markov Switching VAR (MSVAR) model, introduced by Hamilton (1989). A general Markov

Switching model assumes that regime-switching is governed by a hidden Markov process. The

regime, or state, is latent. Therefore, at each period t, probabilities that each of the regimes

prevails, are estimated. By estimating regime-specific model parameters along with probabilities

for each regime, a mixture model can be constructed. While these regime-specific models may
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be linear, the eventual mixture model may be nonlinear depending on the estimated parameters

of the model. In an MSVAR model, these regime-specific linear models are VAR models.

The terms bull and bear markets imply that there are two distinct states of the market.

Empirical evidence supports this specification of market regimes (Ang & Timmermann, 2012).

The two regimes are often characterized by high/low mean asset returns in combination with

low/high volatility. Allowing for more regimes is done by Guidolin and Timmermann (2007)

and Guidolin and Ono (2006), such that more specific states, e.g crashes and recovery states,

can be recognized. To identify bull and bear markets, it is useful to allow for a time-varying

mean, autoregressive coefficients and volatility within an MSVAR model (Ang & Timmermann,

2012). Results by Kole and Van Dijk (2017) show that including additional macro-financial

variables to a Markov Switching model that already contains a volatility proxy as indicator does

not have much of an effect on the regime probabilities. This implies that the volatility in returns

dominates the market regime identifying process. In the same manner, Ang and Timmermann

(2012) find that regimes are primarily identified by variations in volatility.

2.3 An ICAPM based on an MSVAR model

The previously discussed VAR decomposition method is generalised by Bianchi (2020) such that

discount rate and cash-flow news terms are constructed through MSVAR models instead of

regular VAR models. This extension allows for investors to take into account possible regimes

changes as they predict future market returns. The MSVAR model estimated by Bianchi (2020)

identifies the Great Depression regime. Based on the estimated smoothed probabilities, this

regime does not reoccur for a long period but prevails again during the financial crisis for a brief

moment. Results show that the two beta ICAPM, that considers the existence of this regime,

have increased explanatory power. This conclusion is drawn based on a cross-sectional regression

on size-value sorted portfolios using a 35-year rolling window. The R2 of this regression is

systematically and significantly higher than the R2 of the regular ICAPM. These results suggest

that the perception of investors of risk and future investment opportunities is dynamic and

relies on their inference of the current and future state of the economy. It is concluded that, as

long as the Great Depression or the Great Recession are included in the sample, the ICAPM

is able to explain the cross section of asset returns. The performance of the ICAPM drops

significantly whenever neither of the crises are considered. It is therefore interesting to assess

if such results can also be found for an ICAPM that is based on an MSVAR that identifies

recessions and stable regimes in general. In support of this hypothesis are the results by Gordon

and St-Amour (2000). A consumption-based asset pricing model (C-CAPM) is developed such
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that risk aversion of agents is regime dependent. They find that their estimated preference

regimes move in parallel to the bull and bear markets to a certain degree. Similar conclusions

are drawn by Maio (2013), where a conditional ICAPM is constructed by splitting the cash-flow

beta into a constant and a time-varying component. The time-varying beta is scaled by variables

such as the CPI, making its fluctuations correlate with the business cycle. It is found that the

conditional ICAPM is able to explain the spread in momentum sorted portfolios well, and that

the scaled cash-flow beta plays a significant role to achieve this result. Asymmetry in behaviour

of shocks in returns is shown by Kole and van Dijk (2023), but from a different perspective.

They formulate an MSVAR model as an extended linear non-Gaussian VAR model considering

bull and bear markets as the possible regimes. They find evidence that the shocks have a regime

dependent effect on the Markov-switching process. It is concluded that the effects of the shocks

vary in strength depending on the current state and the direction of the shock.

The decomposition method by Campbell (1991) relies on the investors’ expectations of the

future market. This expectation is modeled based on the level variables (intercepts and AR-

coefficients) of the estimated VAR models. As is discussed before, the volatility of the returns

often dominate the regime switching process, i.e. regimes are identified mainly based on differ-

ences in volatility. A consequence is that the ICAPM based on the MSVAR may closely resemble

the traditional ICAPM if the regime-specific level variables are similar. This is accounted for

by Bianchi (2020) by assuming different level regimes as well as variance (or volatility) regimes.

The level regimes and variance regimes are further assumed to be independent from each other.

The investors therefore make projections of the market while considering these level regimes.

In this paper, I develop an MSVAR based ICAPM, following the methodology described by

Bianchi (2020). The aim is to assess the regime-dependent nature of the ICAPM, given the

discussed evidence in favor of this specification. Various modifications to the ICAPM models

constructed by Campbell and Vuolteenaho (2004) and Bianchi (2020) are considered, such that

recession regimes are identified. Bianchi (2020) assumes independent level- and variance regimes.

An issue with this method is that investors do not consider the variance regimes to identify bull

and bear markets. This may be an issue as bear markets, or recessions in general are more

dynamic and less persistent than the Great Depression regime. A compromise is made by

allowing for four regimes, with each regime being a combination of a set of two level parameters

and two variance parameters. Given this specification, the level regimes and variance regimes

are dependent, allowing for the variance to affect the course of the level regimes. An issue with

this method is that investors do not consider the variance regimes to identify bull and bear

market.
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Chapter 3

Data

The variables of the ICAPM estimated via an MSVAR model, the ICAPM-MS, are the excess

market returns, the term yield spread, the small value spread, the dividend price ratio (D/P

ratio) and the price earnings ratio (P/E ratio). Due to the design of the ICAPM-MS, the state

variables serve as indicators of the business cycle as well predictors of the excess market returns.

Both properties coincide to large degree, as the state variables capture shifts in investment

behavior. Investors may adjust their portfolios based on expectations of economic conditions,

influencing market returns. The term yield spread, defined as the difference between the interest

rates of short- and long term government bonds, is a common business cycle predictor. The

term yield spread is typically positive during times of economic stability and the spread is

mainly caused by differences in duration risk. During recessions however, various factors such as

monetary policies and changes in risk perspectives cause elevated short term interest rates and

may even result in an inverted yield spread. The P/E ratio is the ratio between the level and

earnings of companies in the S&P 500 index. This variable is a predictor of market returns, as

an increase in the price of the market, given constant growth, is associated with lower long-term

expected returns (Shiller, 1996). Predictive power of the D/P, which is the ratio of the annual

paid out dividends and the level of the S&P 500 ratio of the market, is shown by Campbell and

Shiller (1988) and Fama and French (1988). More recent evidence by Park (2010) shows that

there is some predictive power as long as the D/P ratio is stationary, which depends on the

sample period. The small value spread is the difference in log book-to-market ratios of small

value and small growth stocks. The predictive ability of this variable arises due to the presence

of the value anomaly. Small value portfolios are associated with higher expected returns than

small growth portfolios. An increased small value spread implies better relative performance of

small growth portfolios, which in turn implies lower future expected market returns.

Portfolios sorted on size and value are available in the library of Kenneth. R. French (French,
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2012). The dataset provides the monthly average value weighted returns of the sorted portfolios.

The excess markets returns are available in the library as well. Portfolio returns ranging from 03-

1963 until 12-2022 are used for the asset pricing tests. The excess market returns are computed as

the difference between the log return on the CRSP value-weighted stock index and the rate on 1-

month T-bills. The term yield spread is calculated using data available on Global Financial Data,

as the difference between 10-year constant-maturity yield and 3-Month T-bills, in percentage

points. The small value spread is constructed by the log of the ratio of book-to-market/market

equity (BE/ME) ratio of small value portfolios and small growth portfolios. These portfolios

are formed annually in June based on sorts on size and book equity-to-market ratio. Firms

considered small have a market equity lower than the median NYSE market equity in June.

These small firms are further categorized based on their book equity-to-market equity ratio.

Specifically, small growth firms are identified as the 30% of stocks with the lowest BE/ME ratio,

while small value firms are those falling within the 30% of firms with the highest BE/ME ratio.

The D/P ratio is defined as the log of the ratio of the annual paid out dividends and the level

of the S&P 500. The annual dividends at month t is therefore constructed as the sum of the

monthly dividends at the sum of the dividends of month t− 11 until month t. Furthermore, the

P/E ratio is defined as the log of the ratio between the level of the S&P 500 index and earnings

of companies in the S&P 500 index. The data of the state variables ranges from 01-1928 until

12-2022. Table 1 shows summary statistics of the state variables. Statistics are determined using

monthly dating ranging from 01-1928 until 12-2022. The presence of skewness along with large

excess kurtoses indicate dynamics that deviate from normality. The strong autocorrelations

highlight the importance of the autoregressive terms in the models.

3.1 stationarity

The standard VAR model, which is used as a benchmark, assumes stationary variables. There-

fore, variables deemed nonstationary are differenced in both the VAR and MSVAR models, as

the VAR model relies on the state variables being stationary. While the MSVAR model does

not necessarily rely on individual variables to be stationary, this way the models consist of the

same specification of the state variables. The Augmented Dicky Fuller (ADF) test is used to

test for the presence of a unit root in each individual variables. If a variables is deemed to be

nonstationary, it is differenced by the moving average of the six previous months.

The MSVAR model does not rely on the assumption of stationary individual variables.

However, mean-square stability of the MSVAR process or a time series process in general is

important to ensure that the model is robust and the assumptions on the statistical properties
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hold. There is mean-square stability if both the first- and second moment of the process are

asymptotically finite. The test for mean-square stability is described in the methodology.

Table 1: Summary statistics variables

Mean Std. Skewness Kurtosis Autocorr.

reM 0.65 5.38 0.16 11.37 0.10

TY 1.44 1.10 -0.18 2.61 0.95

V S 1.73 0.34 1.26 4.26 0.98

DP -3.42 0.48 -0.59 2.41 0.99

PE 2.85 0.41 0.73 2.27 0.99

Note: This table shows the mean and standard deviation in percentage points as well as the skewness, kurtosis,

and the autocorrelation of the excess market returns (reM ), term yield spread (TY ), small values spread (V S),

the D/P ratio (DP ), and the P/E ratio (PE).
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Chapter 4

Methodology

4.1 The MSVAR model

A multivariate VAR(1) model consisting of n variables that assumes m potential regimes can

be described by

yt = cSt +ΦStyt−1 + ΛStϵt, (1)

with ϵt ∼ N(0, In), where yt is a vector of n variables, c a vector of length n consisting of

intercepts, and Φ is an n × n matrix that contains the autoregressive coefficients. The error

terms are multiplied with the n× n matrix ΛStϵt to introduce heteroskedasticity to the model,

with ΛSt
Λ′
St

equal to the covariance matrix ΣSt . The terms that contain the subscript St vary

per regime St = 1, . . . ,M .

Under the assumption that the regime process St evolves according to a time-invariant first

order Markov chain, the probability of regime j prevailing exclusively depends on the current

regime i. Thus the probability of entering regime j on time t conditional on the all past in-

formation until time t− 1, It−1 only depends on the prevalent regime at time t− 1 and is given

by

Pij = P (St = j|It−1) = P (St = j|St−1 = i) = pij . (2)

The transition matrix P contains all transition probabilities.

Assuming two regimes as an example, we denote ξt|t = (1, 0)′ if the true state at time t is 1

and ξt|t = (0, 1)′ if the true state at time t is 0, given all information available time t. Due to

the states being latent, the true states are not known. Therefore, an inference is made regarding

the likelihood that the states prevail at time t, conditional on all available information up until
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time t, which is denoted by ξ̂t|t. Element i of ξ̂t|t, ξ̂i,t|t = P (St = i|It) for i = 0, 1.

4.1.1 The EM algorithm

The EM algorithm by Dempster, Laird and Rubin (1977) is an iterative algorithm that alternates

between an expectation step, that updates the inferences made of the regimes prevailing, and a

maximisation step, that updates the parameters of the regime-specific models. The expectation

step consists of a prediction step, a filter step by Hamilton (2010) and the Kim (1994) smoother

step. At the prediction step, the state at time t + 1 is estimated, conditional on all available

information up until time t. The transition probabilities are used and ξ̂t+1|t can be calculated

by

ξ̂t+1|t = Pξ̂t|t. (3)

At the filter step, ξ̂t+1|t is updated by incorporating the additional information of the next

observable yt+1. Given two states, the updated estimation of the state ξ̂t|t−1 is defined as

ξ̂t|t =

P (St = 1|It−1,yt)

P (St = 0|It−1,yt)

 (4)

and is calculated by

ξ̂t|t =
f(yt)⊙ ξ̂t|t−1

ι′2

[
f(yt)⊙ ξ̂t|t−1

]′ , (5)

with f(yt) a vector of regime-specific pdf’s and ι2 a vector of ones with length 2. This

can naturally be extended to multiple regimes. The following expressions and derivations are

not constrained to two regimes. By performing predicting and filtering steps alternately, the

predicted and filtered state can be obtained for the full timeframe of the dataset.

What follows is the smoothing step. The smoothed estimate ξ̂t|T corresponds to the expect-

ation E[ξt|IT ]. Using the tower property, this can be written as

ξ̂t|T = E[E[ξt|ξt+1, IT ]|IT ]. (6)

The inner expectation can be expressed as

E[ξt|ξt+1, IT ] = ξ̂t|t ⊙ P′
[
ξt+1 ⊘ ξ̂t+1|t

]
(7)

13



and this expression can be used in equation 6 such that we get

ξ̂t|T = E
[
ξ̂t|t ⊙ P′

[
ξt+1 ⊘ ξ̂t+1|t

]
|IT

]
. (8)

By recognizing that the expectation of ξt+1 given IT is ξ̂t+1|T , we rewrite equation 8 as

ξ̂t|T = ξ̂t|t ⊙ P′
[
ξ̂t+1|T ⊘ ξ̂t+1|t

]
. (9)

Estimates of ξ̂t+1|T can be found by first performing all prediction and filter steps until time

T . At the last filter step, an estimate of ξ̂T |T is calculated. Subsequently, using equation 9 the

estimate ξ̂T−1|T can be derived since all terms on the right hand side have been calculated. This

recursive step can be iterated to obtain smoothed estimates of the states for each period.

We estimate the optimal parameters θ̂ that maximises the log-likelihood log(f(y|θ)). The

optimal parameters can be derived via

θ̂ = Ẽ [θ log f(y1:T , ξ1:T |θ)] . (10)

The joint probability density function f(y1:T , ξ1:T |θ) cannot simply be written as the product of

the individual density functions
∏T

t=1 f(yt|θ), due to the serial correlation between consecutive

observations of y. By applying Bayes’ rule, the joint pdf can however be written as the product

of conditional pdf’s. Using this approach, the joint pdf can be expressed as follows:

f(y1:T , ξ1:T |θ) =

[
T∏
t=2

f(yt|st;θ)P (St = st|st−1;θ)

]
f(y1, s1;θ). (11)

The expectation of the log-likelihood function given by equation 10 is maximized for a given set

of parameters, θ̂0, i.e.

Ẽ[log f(y1:T , ξ1:T |θ)|θ0] (12)

is maximized and subsequently the expectation of the log-likelihood function using the es-

timated parameters is taken for the next iteration. The likelihood function can be reformulated

as

f(y1:T , ξ1:T |θ,P,ρ) =
T∏
t=1

 n∏
i,j=1

(fi(yt)pij)
δij(t)

 n∏
j=1

ρ
δj(0)
j

 , (13)

such that the log-likelihood becomes
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log f(y1:T , ξ1:T |θ,P,ρ) =
T∑
t=1

n∑
i,j=1

δij(t) log(fi(yt)pij) +
n∑

j=1

δj(0) log ρj . (14)

Here, δij(t) is a random variable that is 1 if St = j, St−1 = i. Similarly, δj(0) is 1 if S0 = j. ρ

corresponds to the regime probabilities at t is 0, i.e. ρ = ξ0. Taking the expectation of equation

14 yields

Ẽ[log f(..)] =
T∑
t=1

n∑
i,j=1

p∗ij(t) log(fi(yt)pij) +
n∑

j=1

p∗j (0) log ρj . (15)

Here p∗j (0) = P (St = j|IT ), is simply the smoothed estimate of the regime probabilities at

t = 0. This expression of the expectation of the log-likelihood requires estimations of transition

probabilities p∗ij(t) = P (St = j, St−1 = i|IT ), which are not defined by the previous steps. The

smoothed step therefore includes an additional step that reads

P∗(t) = P (̇ξ̂t|T ξ̂
′
t−1|t−1)⊘ (ξ̂′t|t−1ι

′
n), (16)

with the matrix P∗(t) containing each element p∗ij(t). The maximisation step k + 1 consists

of finding the parameters θ̂k+1,Pk+1,ρk+1 that maximise Ẽ[log f(y1:T , ξ1:T |θk,Pk,ρk)].

The maximization problem for the parameters is solved by setting the partial derivative of

equation 15, w.r.t each respective parameter, to zero. By introducing the Lagrange multiplier

κ and adding a term that enforces that
∑n

j=1 ρj = 1 we find that the optimal parameter for

ρ is simply the smoothed estimate of the regime probabilities. For Pk+1 we also include the

Lagrange multiplier that enforces that
∑n

i=1 pil = 1. Solving the partial derivative per regime

m results in

pml,k+1 =

∑T
t=1 p

∗
ml(t)∑T

t=1 p
∗
l (t− 1)

. (17)

Given that
∑n

i=1 p
∗
ij = p∗j , to find θk+1 we solve

0 =
d
∑T

t=1

∑M
m=1 p

∗
m(t) log f(yt|θm,k+1)

dθm,k+1
. (18)

We assume normality such that for the distribution of the parameters of regime m holds:

log f(yt|θm) ∝ 1

2
K(log(2π) + log |Σm|+ umt(c,Φ)′Σ−1

m umt(c,Φ)). (19)

The elements of P∗(t) do not have a subscript k + 1 for ease of notation. These elements,

along with the other estimates of the expectation step, can be assigned the subscript k + 1, as

they occur at EM step k + 1. By further recognizing that p∗m(t) = ξ̂m,t|T , the numerator in
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equation 18 is formulated as

1

2

T∑
t=1

M∑
m=1

ξ̂m,t|T
[
K(log(2π) + log |Σm|+ umt(c,Φ)′Σ−1

m umt(c,Φ))
]
, (20)

with m = 1, . . . ,M regimes, ξ̂mt|T the smoothed probability of regime m, Σm the covariance

matrix of regime m and umt(c,Φ) equal to yt − cSt + ΦStyt−1, using the notation of the VAR

model specified in equation 1. This specification assumes the variance parameters Σm and level

parameters um are constrained to be jointly dependent on the same regime m.

4.1.2 The updating steps under the assumption of a combination of level-

and variance regimes

To construct an MSVAR model that allow mṅ regimes that are combinations of m level- and n

variance parameters, the VAR model given by equation 1 can be modified to

yt = cSm
t
+ΦSm

t
yt−1 + ΛSn

t
ϵt, (21)

where we both assume level regimes Sm
t = 1, . . . ,M and volatility regimes Sn

t = 1, . . . , N .

This model assumes mṅ states, with ξ̂mn,t|t denoting the smoothed joint probability P (Sm
t ,=

m,Sn
t = n|It−1, yt).

The transition matrix P is initialised as the Kronecker product of the transition matrices

of the individual Markov chains Pm and Pn. The level- and variance regimes are not assumed

to follow separate Markov chains, therefore during optimization P is not constrained to be the

Kronecker product of Pm and Pn anymore. Equation 20 is generalized to

−1

2

T∑
t=1

M∑
m=1

N∑
n=1

ξ̂mn,t|T
[
K(log(2π) + log |Σn|+ umt(c,Φ)′Σ−1

n umt(c,Φ)
]
. (22)

Here, umt(c,Φ) is defined as yt − (cSm
t
+ ΦSm

t
yt−1). The maximization step entails solving

the systems of partial derivatives w.r.t Σ and γ. Where γ consists of a single vector of all level

coefficients, i.e. γ = (c′,Φ)′ following Krolzig (2013). This formulation allows for solving the

partial derivatives in a computationally convenient way. This can be achieved by redefining the

MSVAR model as

yt =

M∑
m=1

ξmtXmtγ + ΛSn
t
ϵt, (23)

with Xmt a K×R matrix given K state variables and R the total amount of level coefficient

which is equal to M times (K + 1). Xmt structures the regressors via
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Xmt = [(ιm, ỹt−1,m)⊗ Ik], (24)

with ιm a 1×M vector of zeros and with the m’th element equal to 1, and ỹt−1,m a 1×MK

vector defined as ιm ⊗ y′
t−1.

Eventually, for maximazation step k+1, the partial derivative with respect to the structural

parameters γk+1 can be rewritten as

γk+1 = (X ′W−1X)−1X ′W−1(1M ⊗ y). (25)

X is a MTK×R matrix constructed by stacking all matrices Xmt. W
−1 is a block-diagonal

matrix with each diagonal element given by
∑N

n=1 Ξ̂mn ⊗ Σ−1
n,k. y is defined as (y1

′)′, . . . , (yT
′)′

This is equivalent to the solution of a GLS regression. In addition to weights assigned based on

the inverse of the covariance matrices Σ, it can be observed from W−1 that each regression is

weighted with their corresponding estimated smoothed probability. Solving the partial derivative

w.r.t the covariance matrix leads to

Σ̂n =
M−1∑
m

1

T̂mn

um(γk)
′Ξ̂mnumγk, (26)

with T̂mn as the sum of ξmn,t|T of all t, Ξ̂mn a diagonal matrix with element t equal to ξmn,t|T ,

and umγ = (um0, ...umT ). Notice that there is no simultaneous update of all shape parameters

γ and Σ. Both parameters use an expression of the other at the maximization step. As can

be observed by the subscripts k at the right hand side of equations 25 and 26, the estimated

parameter of Σ at step k is used to update γ at step k+1 and vice versa. Simultaneously updating

the parameters is not possible, making the expression in equation 18 slightly inconsistent with

the actual process.

For the algorithm, all parameters are initialized with a degree of randomness, ensuring they

are not excessively unreasonable as well as satisfy the constraints implied by the model. Below

is the pseudocode shown that calculates the optimal parameters.
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Algorithm 1 MSVAR
the dataset T runs from 1928-01 until 2022-12

1: Set l∗ = −108

2: Set threshold = 10−2

3: for n = 1, 2, . . . until Nruns do

4: Initialize parameters P0, λ0 and θ0

5: Set l0 = −108

6: for i = 1, 2, . . . until Niterations do

7: for t ∈ T do store in T

8: Run Hamilton filter/smoother to obtain estimates of state probabilities λi

9: end for

10: for t ∈ T do store in T

11: Calculate parameters Pi, θi using λi and θi−1

12: end for

13: Calculate log-likelihood li

14: if li − li − 1 < threshold

15: li = l

16: Pi, λi and θi = P , λ and θ

17: Break

18: end for

19: if l > l∗ l = l∗

20: P , λ and θ = P ∗, λ∗ and θ∗

21: Return P ∗,λ∗,θ∗

4.1.3 Mean-square stability

As is stated bofore, there is mean-square stability if both the first- and second moment of the

process are asymptotically finite. R. E. Farmer, Waggoner and Zha (2009) show that even with

unstable, but inpersistent, regimes the MSVAR process can be stable. Under the assumption

of ergodicity and covariance stationarity of the innovation terms, the MSVAR model is mean-

square stable if and only if is second order stationary in the limit (Costa & Dufour, 2005).

Covariance stationarity can be proven by showing that the spectral radius of the matrix

Υ(P ⊗ In2) < 1, (27)

where P is the transition matrix and In2 a n2 × n2 identity matrix. Υ is the block diagonal

bdiag[Φ1, . . . ,Φmn] of the autoregressive coefficients (Bianchi, 2016), (Kole & van Dijk, 2023).

4.1.4 Standard errors of the estimates

As the EM-algorithm maximizes the likelihood function, standard assumptions on the maximum

likelihood estimators hold. Therefore, if the regularity conditions discussed by Krolzig (2013) are

satisfied, the estimated parameter vector θ̂ converges in distribution to a normal distribution,
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i.e.

√
T (θ̂ − θ0)

d−→ N (0, I−1
0 ), (28)

where θ0 is the true parameter vector. The most suitable estimation of the information

matrix I0 in the case of many parameters is the outer product of the gradient of the conditional

likelihood

ÎG(θ̂) ≡
1

T

T∑
t=1

gt(θ̂)gt(θ̂)
′, (29)

where the conditional score gt(θ̂) can be expressed as

gt(θ̂) ≡
∂ℓ(yt|It−1;θ)

∂θ
=

∂ℓ(It;θ)

∂θ
− ∂ℓ(It−1;θ)

∂θ
. (30)

The conditional score is decomposed in this equation by Hamilton (1993) to avoid solving

a long sequence of derivatives. To see this, Kole (2019) shows that, for given shape parameter

vector(e.g the set of VAR parameters) λ,

∂ℓ(It;λ)

∂λ
=

t∑
τ

∂ log f ′τ
∂λ

ξτ |t. (31)

The distribution function f t = P (yt|st,λ) is in this case the normal distribution, also denoted

in equation 19. Using the recursive relation in equation 30, Kole (2019) expresses the score as

∂ℓ(yt|It−1;θ)

∂θ
=

∂ log f ′t
∂λ

(ξt|t) +
t−1∑
τ

∂ log f ′τ
∂λ

(ξτ |t − ξτ |t−1), (32)

where the smoothed probabilities ξτ |t are obtained by running the Kim (1994) smoother start-

ing from filtered probability ξt|t. The partial derivatives w.r.t. to shape parameters of regime

m, λm = {cm,Φm,Σm} with m ∈ {1, 2, . . . ,M}, derived using matrix identities (Petersen,

Pedersen et al., 2008), are

∂ log f ′t
∂cm

= Σ−1(yt − umt), (33)

∂ log f ′t
∂Φm

= Σ−1(yt − umt)y
′
t−1 (34)

and
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∂ log f ′t
∂Σm

= −1

2

(
2(Σ−1

m −Σ−1
m (yt − umt) (yt − umt)

′Σ−1
m

)
)

−
(
diag(Σ−1

m )− diag(Σ−1
m (yt − umt) (yt − umt)

′Σ−1
m )

)
.

(35)

For the parameters κ = {P,ρ}, the conditional score defined in equation 30 becomes

1∑
st=0

1∑
st−1=0

∂ logP (st|st−1,κ)

∂κ
P (st, st−1|yt,θ)

+
t−1∑
τ=2

1∑
st=0

1∑
st−1=0

∂ logP (sτ |sτ−1,κ)

∂κ
P (sτ , sτ−1|yt,θ)− (P (s1|yt−1,θ))

+
1∑

s1=0

∂ logP (s1,κ)

∂κ
(P (s1|yt,θ)− P (s1|yt−1,θ)).

(36)

The conditional probabilities P (st, st−1|yt,θ) can be computed in a similar way as the terms

p∗ij(t), defined in equation 16. The partial derivatives w.r.t to ρ are not included as the regularity

condition, that the parameter should not lie at their boundary, is not met.

4.2 The ICAPM

At the base of this derivation is the log-linear approximation of the returns based on the investor’s

expectation of future dividend growth and stock returns, introduced by Campbell and Shiller

(1988). This approximation is given by

rt+1−Et[rt+1] ≈ (Et+1−Et)
∞∑
j=0

ρj∆dt+1+j−(Et+1−Et)
∞∑
j=0

ρjrt+1+j = NCF,t+1−Ndr,t+1, (37)

where rt the log asset return at time t, dt the log dividend paid by the firm of the cor-

responding asset, Et is the rational expectation at time t and ρ represents a constant annual

discount coefficient. This coefficient reflects the investor’s preference for receiving cash sooner

rather than later due to risk and the opportunity cost of investing. Campbell and Vuolteenaho

(2004) show that the ICAPM is robust for annual discount factors ranging from 0.93 to 0.97.

The annual discount rate is set to 0.95. For monthly data, this means that the disocunt rate is

0.95
1
12 ≈ 0.9957. ∆d is the change in log dividend at time t with respect to the period before

t − 1. This approximation decomposes the returns into two terms. The first term represents

the news about future cash-flows at time t+ 1, denoted as Ncf,t+1. The second term represents

the news about future discount rates and is denoted as Ndr,t+1 as it is the expected discounted

returns.
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In order to implement this variance decomposition we follow a VAR approach described by

Campbell (1991). We define an n× 1 vector yt+1 consisting of n variables. The first element of

yt+1 is the stock return and the assumption is made that yt+1 can be described by a first order

VAR model, i.e

yt+1 = Ayt +wt+1. (38)

We introduce an n × 1 vector e1 which consists of zeros except for the first element, which is

equal to 1. We can find an expression for expected returns assuming the VAR model trough

E[rt+1+j |yt] = e′1A
j+1yt (39)

Consequently, the discount rate news term Ndr,t+1 can be written as

Ndr,t+1 = e′1

∞∑
j=1

ρjAjwt+1, (40)

which for convenience will be written as λwt+1 with λ equal to e′1ρA(I− ρA)−1.The expression

can be derived from equation 40 as it is a convergent series. This result and the variance

decomposition formulated by equation 37 in turn allow us to find an expression for the cash-flow

news term. Ncf,t+1 can be formulated as

Ncf,t+1 = (e′1 + λ)wt+1. (41)

Campbell and Vuolteenaho (2004) builds upon these formulations of the cash-flow and dis-

count rate news to construct the cash-flow and discount rate beta. The cash-flow beta is defined

as

βi,cf =
Cov(ri,t, Ncf,t)

Var(reM,t − Et−1[reM,t])
, (42)

and the discount rate beta is defined as

βi,dr =
Cov(ri,t,−Ndr,t)

Var(reM,t − Et−1[reM,t])
. (43)

These betas are formulated such that their sum is equal to the market beta, i.e. βi,cf + βi,dr =

βi,M .
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4.3 The ICAPM-MS

To generalize the model such that the agents incorporate the information of possible regimes,

we follow Bianchi (2016) and Bianchi (2020).

First, given n state variables and m regimes, we define an nm× 1 vector qt = [q1
t , . . . ,q

m
t ].

Where, qit = E[yt1St=i|I0]. Here, yt are the n state variables and 1 is an indicator function such

that 1St=i is 1 if state St = i. We rewrite

qit = E[yt1St=i|I0] = E[yt|St = 1, I0]P (St = i|I0) (44)

and denote P (St = i|I0) as πi
t. The vector πt contains all elements πi

t, i,e πt = [π1
t , ..., π

m
t ]. This

is similar to the definition of the state variable given in equation 3. πt could therefore also be

written as ξt|0 assuming the number of regimes m is 2. For now we will continue using πt.

The variable qt cannot be recovered by the previously discussed algorithms for t ≥ 2 since

the prediction method only forecasts the states one step ahead. Using q0 and the estimates of

the parameters of the MSVAR model, a recursive forecasting method is formulated that predicts

qt multiple steps ahead, described as the law of motion of qt. The law of motion of qt is given

by

qt

πt

 =

Ω CP

P

 qt−1

πt−1,

 (45)

Where P is the transition matrix, C is a block diagonal matrix bdiag[C1, . . . ,Cm] with matrix

Ci a diagonal matrix with the elements of the intercepts given state i, ci, defined by equation

1, on the diagonal. In mathematical notation, this means that Ci = diag(ci). The matrix Ω is

defined as bdiag(Φ1, . . . ,Φm)(P ⊗ In), where Φi is the matrix consisting of the autoregressive

coefficients given state i, In is an n×n identity matrix, and operator ⊗ is the Kronecker product.

Similarly, qi
t+s|t can be derived using the law of motion by noting that qi

t|t = ytπ
i
t|t. πi

t|t is

the smoothed estimate of the states. It is this last result, qi
t+s|t, that is important to generalize

the standard ICAPM. To understand this, we revisit the formulation of the agents’ expected

stock returns at time t+1+ j using all available information op until time t, given by equation

39. The expected returns are derived using the VAR(1) model that does not account for multiple

regimes. By understanding that qi
t+s|t = E[yt1St=i|It] and is a mn× 1 vector, we derive

E[yt+s|It] = Wqi
t+s|t, (46)

with W being an n×mn matrix consisting of m identity matrices In placed next to each other.
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The first element of yt should be the excess market returns. With this formulation, the returns

are forecasted while considering regime switching as well. We can now generalize equation 39,

which reads

Et[rt+1+j ] = e1
′Wqi

t+1+j|t. (47)

Using this expression, the generalized definitions of the cash-flow and discount rate news can be

derived in a similar way as previously discussed. The discount rate news is given by

Ndr,t = e1
′W[λqvq,t + λπvπ,t] (48)

and

Ncf,t = e1
′W[(Ir + λq)vq,t + λπvπ,t], (49)

with λq = ρΩ(Ir − ρΩ)−1 and λq = ρCP(Ir − ρΩ)−1(Ir − ρP)−1. Furthermore, vq,t =

qt+1|t+1 − qt+1|t and vπ,tπt+1|t+1 − πt+1|t.

4.4 Asset pricing tests

The Fama-Macbeth two-pass procedure consists of the following regressions for the ICAPM

(Fama & MacBeth, 1973). First, the ICAPM betas are estimated via a timeseries regression of

the excess returns of each of the portfolio returns i.

rei = λ0 + βi,drNdr + βi,cfNcf + ϵi, (50)

The ability of the model to explain the cross-sectional variation in average excess return of

the portfolios, r̄e can be evaluated via

r̄e = λ0 + λ1βdr + λ2βcf +α, (51)

with excess returns r̄e, and estimated betas for portfolios 1, . . . , N . λ0 is an intercept and λ1

and λ2 risk premiums for their corresponding risk factors. Given that the dependent variable is

the excess market returns, it is expected that λ0 is zero, as riskless returns should be theoretically

equal to the risk-free rate.

One method to evaluate the performance is to test whether the error terms α in equation 51

are jointly zero. Heteroskedasticity in the average returns of the portfolios is not uncommon. An
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OLS regression that assumes i.i.d error terms can thus produce spurious results. To account for

heteroskedasticity, the cross-sectional regression is conducted through GLS. Using this method,

the portfolios are essentially repackaged. The GLS test relies on the following result. In the

limit, the estimate α̂ converges to a normal distribution. Consequently,

J = α̂′Var(α̂)−1α̂ ∼ χ2
N−k, (52)

with N portfolios and k factors. Since the variance of α̂ cannot be inverted, we rewrite

α̂′Var(α̂)−1α̂ as α̂′Σ̃−1α̂. With covariance matrix Σ̃ defined as E[ẽ, ẽ′] and [ẽ] = [e1, . . . , eN ]′.

After adding the Shanken correction term, the J statistic can be determined by

J = T (1 + λ′Σ̃−1
f λ̂)−1α̂′Σ̃−1α̂. (53)

Here, λ denotes a vector of risk premiums and α denotes the error terms of the second pass

regression described by equation 51. T is the sample size. Using the result, by evaluating this

J-statistic formulated by Cochrane (2009), it can be determined whether the error terms α are

significantly close to zero.

The GLS R2, related to the J-statistic, defined as

R2 = 1− α′Σ−1α

(r̄e − λ̃0ι)′Σ−1(r̄e − λ̃0ι)
(54)

can be interpreted as the distance of the factors’ mimicking portfolio with the mean-variance

boundary, as is shown by Lewellen, Nagel and Shanken (2010). A GLS R2 of 1 would mean that

the mimicking portfolio is on the mean-variance boundary. Here, λ̃0 is the intercept of the same

GLS regression on a constant.
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Chapter 5

Results

5.1 Stationarity

For a standard VAR model, which is used as a benchmark model, assume stationary variables.

Therefore, variables deemed nonstationary are differenced in both the VAR and MSVAR models,

as the VAR model relies on the state variables being stationary. While the MSVAR model does

not necessarily rely on individual variables to be stationary, this way the models consist of the

same specification of the state variables. The results of the ADF test are reported in table 1

in appendix A. The results strongly suggest the presence of a unit root for the D/P- and P/E

ratio. To avoid model misspecification, all observations of the D/P ratio differenced by the

moving average of the 6 previous months. There is no consensus on the stationarity of the P/E

ratio, particularly in light of more recent data. To stay consistent with the literature that use

similar methodology to construct the ICAPM, the P/E ratio is not differenced. Using the same

reasoning, the small value spread is not differenced.

5.2 The MSVAR model

The MSVAR model is estimated with the excess market returns, term yield spread, small value

spread, price-to-earning ratio and the dividend-to-price ratio as state variables, with monthly

data from 07-1928 until 12-2022 (1334 observations). Four regimes are assumed to exist, with

two level regimes and two variance regimes with the level and variance regimes independent from

each other. Figure 1 shows the estimated smoothed probabilities that level regime 1 prevails.

This regime can be considered as a recession regime given the overlap with the NBER recessions,

depicted as shaded areas in the figure. Evaluating regime-specific expectations reported in table

3a, the recession regime can be characterized by negative excess market returns, and an elevated

term yield spread as well as increased small value spread.
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Table 1 shows the estimated level parameters for the corresponding regimes. It can be

observed from this table that autoregressive coefficients of the excess market returns (rM ) are

substantially large for the recession regime with respect to the stable regime (level regime 2).

The interdependence of the market returns and the lagged state variables thus increases during a

recession regime, which has implications for the construction of the discount rate- and cash-flow

news terms, given the way they are formulated in equation 40 and 41. This lagged relationship

between the market returns and the other variables is not captured by the regular VAR model,

which parameters are shown in table 1 in appendix B. In particular, the AR coefficient of the

D/P ratio (DP ) is much larger for the market returns in recession regimes and the lagged small

value spread (V S) is now negatively correlated with the market returns. It should be noted

that the coefficients of the D/P ratio and the P/E ratio are less interpretable in isolation, due

to them being influenced by common factors by definition. This is also indicated by the large

contemporaneous correlation shown in table 3 in appendix B.

It is important to consider the change in persistence of each state variable, as persistent

variables are assigned larger weights in the predicting process. Although the persistence is quite

stable across the regimes, TY, V S and PE are highly persistent during the stable regime but

less persistent whenever the recession regime prevails.

Table 2 reports the correlation of VAR and MSVAR estimates of the news terms. There is a

strong correlation between the market news terms, but the correlations among the decomposed

news terms are less pronounced. This implies that a relatively similar market shock is decom-

posed differently by investors that consider recession and stable regimes and those who do not.

Figure 2 illustrates this by showing the difference between the ICAPM factors constructed via

the VAR model and the factors constructed using the MSVAR model. Here, the MSVAR factors

are subtracted from the VAR factors. The negative of the discount rate news is taken such that

a positive value corresponds to ’positive’ discount rate news. The shaded areas represent the

periods that the recession regimes prevail (during these periods the smoothed probabilities of

the recession regime exceed 0.5).

It can be observed that, during the stable regime, the difference in the (negative) discount

rate shocks is systematically positive whereas the difference in cash-flow shocks is negative. The

opposite applies during recession regimes. This is partly caused by the frequent positive shocks

of the market during stable regimes and negative shocks during recession regimes in the VAR

model, which can be observed in figure 1 in in appendix C. This might be a consequence of

using the information of both stable and recession regimes to forecast market returns, while

not making inferences of the current and future regimes. From the standard deviations and
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correlations in table 2 for the VAR model, it can be observed that the discount rate news terms

have a large variation with respect to the cash-flow news term and is strongly correlated to the

market shock terms. A large proportion of the market shocks can therefore be attributed to

discount rate news, which is consistent with Campbell (1991) and Campbell and Vuolteenaho

(2004). This leads to a reformulation of the previous argument: investors that do not consider

regimes discount their future earnings by too much during stable regimes.

Figure 1: Smoothed probabilities of the crisis level regime estimated via an MSVAR model
assuming two level regimes and two variance regimes. The state variables are the excess market
returns, term yield spread, small value spread, price to earning ratio and the dividend to price
ratio, with monthly data from 07-1928 until 12-2022 (1334 observations). The shaded areas
correspond to NBER recessions. The excess market returns are scaled by a factor 1

100 in this
table
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Figure 2: Differences between the decomposed market factors constructed via the VAR model
and the factors constructed using the MSVAR model, in percentage points. -dNdr and dNcf

corresponds to the difference between the estimated (negative) discount rate and cash-flow news
term between the models, respectively. The MSVAR model factors have been subtracted from
the VAR-model factors. The shaded areas represent the periods that the recession regimes
prevail, during these periods the smoothed probabilities of the recession regime exceed 0.5. The
estimates range from 07-1928 until 12-2022

Table 1: Estimations of the level parameters MSVAR

Regime 1 c reM,t TYt V St DPt PEt

rM,t+1 0.070 0.173 0.007 −0.018 0.119 −0.020

TYt+1 0.676 0.020 0.940 −0.039 0.198 −0.173

V St+1 0.001 0.055 0.000 0.999 0.040 0.000

DPt+1 −0.050 −0.581 −0.004 0.007 0.692 0.015

PEt+1 0.029 0.659 0.002 −0.009 0.124 0.989

Regime 2

reM,t+1 0.003 −0.015 −0.001 0.011 −0.002 −0.003

TYt+1 −0.103 0.202 0.969 0.065 −0.369 0.005

V St+1 0.002 0.066 0.000 0.996 −0.029 0.001

DPt+1 −0.003 −0.361 0.000 0.002 0.701 0.000

PEt+1 −0.004 0.385 0.000 0.006 0.044 0.998

Note: Estimated parameters of the level variables of the MSVAR model from 07-1928 until 12-2022. Level regime

1 corresponds to the recession regime and level regime 2 to the stable regime.

28



Table 2: correlations and standard deviations of the estimated news terms

MSVAR VAR

Ndr,ms Ncf,ms Nmkt,ms Ndr Ncf Nmkt

Ndr,ms 0.0382 Ndr 0.0417

Ncf,ms 0.0317 0.0367 Ncf -0.2330 0.0249

Nmkt,ms -0.7105 0.6808 0.0522 Nmkt -0.8907 0.6497 0.0533

corr(Ndr, Ndr,ms) 0.7734

corr(Ncf , Ncf,ms) 0.7833

corr(Nmkt, Nmkt,ms) 0.9677

Note: correlations and standard deviations of the discount rate news Ndr, cash-flow news Ncf , and market news

Nmkt, VAR estimates on the right-hand side and the news terms MSVAR estimates on the left-hand side (Ndr,ms,

Ncf,ms and Nmkt,ms). The off-diagonal elements correspond to the correlations and on the diagonal the standard

deviations of each news term is given. underneath the correlation matrices the correlations of the VAR estimates

of the news terms and their counterparts estimated by the MSVAR models are given.

Table 3: Additional MSVAR estimation results

(a) Level regime-specific expectations of the state
variables

Regime 1 Regime 2

rem -0.009 0.010
TY 1.283 1.495
V S 1.881 1.679
DP 0.020 -0.008
PE 2.752 2.873

(b) Estimated transition matrix P of the MSVAR
model

P (1, 1)t (1, 2)t (2, 1)t (2, 2)t
(1, 1)t+1 0.683 0.273 0.024 0.000
(1, 2)t+1 0.174 0.611 0.021 0.036
(2, 1)t+1 0.050 0.000 0.379 0.136
(2, 2)t+1 0.093 0.116 0.576 0.828

Note: Subtable (a) shows the level regime-specific expectations of the state variables. The expectations are calcu-
lated as the sum of all data points of each variable, weighted by the smoothed probabilities of the corresponding
regime and subsequently divided by the total sum of the smoothed probabilities. In subtable (b), the transition
matrix P of the MSVAR model is presented. The state (i, j) corresponds to the state with level regime i and
variance regime j. Level regime 1 and 2 are considered the crisis and stable regime, respectively. Variance regime
1 and 2 are considered high and low volatility regimes, respectively. No standard errors for the transition matrix
P are reported, as these errors were insignificant w.r.t the estimation.

The MSVAR model assumes four states, which are a combination of two level- and two

variance regimes. While the the level regimes are able to be identified as recession and stable

regimes, the estimated variance regimes are harder to interpret. The smoothed probabilities

of variance regime 1 are shown in figure 1 in appendix B, and the estimated contemporaneous

correlations and standard deviations are given in table 3 in appendix B. Variance regime 1

does seem to prevail more often during recessions, and can further be regarded as the high

volatility state. In the aforementioned table, it can be observed that the volatility of each state

variable is substantially higher for variance regime 1. However, a remarkable pattern can be

observed in the smoothed probabilities of variance regime 1. During stable periods, variance
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regime 1 also prevails specifically during June every year. The cause of this regime to reoccur in

June every year may simply be due to the reconstruction of the portfolios that occurs at June

each year which is used to define the small value spread. This reconstruction often results in a

relatively big correction in the small value spread, which is interpreted as a large shock. The

relative difference in standard deviation of the small value spread is significantly larger across

the regimes with respect to the volatility of the other variables. In fact, this standard deviation

is more than ten times as large for the high volatility regime, while the stand deviations of the

other variables are approximately twice as large.

Table 3b shows transition probabilities of the MSVAR model. As expected, the combination

of the stable level regime and the low volatility regime is the most persistent regime. Notable are

the large transition probabilities from a low to high volatility regime and vice versa. While this

effect may be caused due to the seemingly annual transition of volatility regimes in June during

the stable level regimes, the effect is also present during recession level regimes. This suggests

that volatility is dynamic and fluctuates during economic downturns. Figure 2 in appendix

B shows the smoothed probabilities of the recession regime in combination with the volatility

regimes, highlighting the dynamics of the volatility regimes. The recession-high volatility regime

is more persistent and prevails more often during earlier periods, especially during the Great

Depression. While the recession-low volatility regime is inpersistent, it tends to persist for

extended periods during certain phases. Again, this can be partly attributed to the identification

of high volatility regimes during stable periods, which occurs due to the small value spread. If

these specific periods coincide with low volatility in other state variables, the identification of

the ’high volatility’ regime may be perturbed.

5.3 The ICAPM-MS and asset pricing test results

Figures 3 and 4 show the performance measures of the second pass cross-sectional regression

on 24 size-value sorted portfolios. The extreme small-growth portfolio is not included in these

tests as it is considered an outlier in asset pricing models. For each model, there is no intercept

included in the second pass. Betas are estimated from 01-1967 until 12-2022 using a rolling

window of 35 years as sample. The factors of the ICAPM-MS consist of the market news

components estimated by the MSVAR model whereas the standard ICAPM has the two news

components estimated by the VAR model as factors. Figure 3 reports the cross-sectional GLS

R2 and figure 4 the p-values of the cross-sectional asset pricing tests. Based on the GLS R2, an

improvement in performance of the ICAPM-MS can be observed with respect to the ICAPM

whenever during transitions of regimes. An improved GLS R2 implies that a larger proportion

30



of the cross-sectional variation in the portfolio returns is explained by the ICAPM-MS. While

the overall GLS R2 is fairly low, and the observed improvement may not be substantial, the

p-values of the cross-sectional asset pricing tests show the same improvements during similar

periods.

Figure 3: R2 of the second pass cross-sectional GLS regressions on 24 size-value sorted portfolios,
using a 35-year moving window from 01-1967 until 12-2022. The shaded areas represent the
periods that the recession regimes prevail, during these periods the smoothed probabilities of
the recession regime exceed 0.5.

Figure 4: p-values of the asset pricing test of the second pass cross-sectional GLS regressions on
24 size-value sorted portfolios, using a 35-year moving window from 1967-01 until 2022-12. The
shaded areas represent the periods that the recession regimes prevail, during these periods the
smoothed probabilities of the recession regime exceed 0.5.

It is worth investigating whether there is a clear cause for the improved performance of

the ICAPM-MS around the years 1975, 1983 and 2005. Figure 5 shows the progression of the
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difference between the ICAPM-MS betas and the ICAPM betas for each portfolio. The betas

based on the factors estimated by the MSVAR model are subtracted from the betas based on the

estimated factors by the VAR model. If the improved performance was due to the ICAPM-MS

being able to better explain the size or value anomaly, one would expect a persistent difference

between the betas, e.g. the difference in the progression of the betas of the small portfolios

would be systematically positive, which is not the case. During the periods from 1980 until

1990 and from 2005 until 2010, the p-values of the asset pricing test do not reject the null that

the error terms are zero for the ICAPM-MS, while rejecting the ICAPM at a 90% confidence

level for most of the time. During these periods both models overestimate the aggregate returns

mainly for small and value portfolios. The difference is that the positive error terms of the

ICAPM-MS are not as large as those of the ICAPM. The periods can be characterized by a dip

in aggregate returns, mainly for small and value portfolios, and quickly decreasing discount rate

betas as well as increasing cash-flow betas for the ICAPM-MS. This results suggests that during

both periods, the sensitivities to discount rate news of high earning stocks is underestimated by

investors not recognizing the effect of a recession regime on returns. The sensitivity to market

shocks is acknowledged but misinterpreted as sensitivity to cash-flow news. These effects are

however very small, as the variation in betas is not significant

Figure 5: The first two rows show the progression of the difference between the ICAPM-MS betas
and the ICAPM betas for each of the portfolios. The betas are estimated using a 35-year rolling
window. The betas based on the factors estimated by the MSVAR model are subtracted from
the betas based on the estimated factors by the VAR model. The third row shows the average
return of each of the portfolios. In the first column, the five small portfolios are highlighted in
red. In the second column the five big portfolios, in the third column the five growth portfolios
and in the fourth column the five value portfolios are highlighted.
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Chapter 6

Robustness tests

6.1 Asset pricing test on the full modern sample

Betas are estimated for each model for the 24 size-value sorted portfolios, based on the ’modern’

sample ranging from 03-1963 until 12-2022. Each model does contain an intercept along with the

betas. The estimated betas of the ICAPM-MS per portfolio are shown in table 1. In parentheses,

the difference of the estimated beta with respect to the estimated betas using the ICAPM is

given. For the ICAPM, the estimated betas are similar to the estimated betas by Campbell

and Vuolteenaho (2004) on a modern sample to some degree. Their sample starts at 03-1963

and ends at 12-2001. The main difference in estimated betas is that in general, the discount

rate betas are larger while the cash-flow betas are much smaller (in the range of 0.10). Another

difference is that the discount rate betas do not show much variation across the value spectrum

of the portfolios in the more updated sample.

The discount rate betas are still relatively capable in explaining the spread in returns in

Campbell, Giglio, Polk and Turley (2018), where the sample ranges from 03-1963 until 4-2011.

This effect can also be observed in figure 5, where growth and value portfolios do not seem to

have common sensitivities to discount rate news for the most recent samples. Further notable

from table 1 are the structurally smaller discount rate betas and larger cash-flow betas. As with

the rolling window samples, there is no obvious difference in variation across the portfolio sorts

between the estimated betas.

Table 2 reports the performance measures and estimated risk premiums of the ICAPM,

ICAPM-MS and CAPM. The OLS R2 is calculated as 1 - SS/SSb, where SS represents the

sum of squared errors, and SSb denotes the sum of squared errors from a regression with only

an intercept term. The models have an unrestricted zero-beta rate. Although the ICAPM and

ICAPM-MS have high OLS R2, the GLS R2 does not imply that the models successfully explain
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the cross-sectional variation in returns. Both discount rate risk premiums are negative, which

is unrealistic. Large cash-flow and small discount rate risk premiums are however expected as

cash-flow shocks are deemed to be permanent and discount rate shocks transient. The estimated

risk premium for cash-flow news is to some degree similar to the cash-flow news risk premium

estimated via a variant of the ICAPM by Campbell et al. (2018). Large zero-beta risk premiums

can be observed. Although the zero-beta estimated by the ICAPM-MS is the lowest, it still

deviates significantly from the expected zero percent.(This is expected as the the excess returns of

portfolios are evaluated.) Notable are the extreme and unrealistic risk premiums for the CAPM,

with a large zero-beta and negative market risk premium, further illustrating the inability of

the CAPM to explain asset returns in modern samples.

Table 1: Estimated betas ICAPM-MS for the modern sample

Bdr Growth 2 3 4 Value Diff.

Small 0.92(−0.13) 0.82(−0.10) 0.77(−0.08) 0.73(−0.07) 0.75(−0.08) 0.17 (−0.05)
2 0.87(−0.15) 0.79(−0.10) 0.73(−0.09) 0.70(−0.08) 0.79(−0.09) 0.08 (−0.06)
3 0.83(−0.16) 0.75(−0.10) 0.70(−0.07) 0.71(−0.08) 0.75(−0.09) 0.08 (−0.07)
4 0.78(−0.12) 0.73(−0.09) 0.71(−0.07) 0.69(−0.09) 0.74(−0.10) 0.04 (−0.01)
Big 0.67(−0.08) 0.64(−0.08) 0.62(−0.05) 0.63(−0.07) 0.68(−0.07) +0.01(−0.01)

Diff. 0.24(−0.05) 0.18(−0.02) 0.15(−0.04) 0.10(−0.00) 0.07(−0.01)

Bcf Growth 2 3 4 Value Diff.

Small 0.63(+0.12) 0.57(+0.10) 0.49(+0.07) 0.46(+0.06) 0.46(+0.07) 0.17 (+0.05)
2 0.66(+0.14) 0.54(+0.10) 0.50(+0.08) 0.47(+0.07) 0.52(+0.09) 0.14 (+0.04)
3 0.63(+0.14) 0.54(+0.10) 0.48(+0.07) 0.45(+0.07) 0.50(+0.09) 0.14 (+0.04)
4 0.59(+0.11) 0.52(+0.09) 0.47(+0.07) 0.46(+0.08) 0.51(+0.09) 0.08 (+0.02)

Value 0.48(+0.06) 0.46(+0.06) 0.42(+0.04) 0.43(+0.06) 0.47(+0.07) 0.06 (−0.01)

Diff. 0.16(+0.05) 0.10(+0.04) 0.09(+0.03) 0.03(−0.00) 0.23(+0.00)
Note: Estimated discount rate betas Bdr and cash-flow betas Bcf via the ICAPM-MS are estimated for value-
size sorted portfolios for the modern sample, ranging from 03-1963 until 12-2022. The value in brackets is the
deviation of the ICAPM-MS betas with respect to the ICAPM betas. The sixth column reports the difference in
estimated betas between the growth and value portfolios for each corresponding row. The values in brackets give
the deviation of this difference with respect to the difference in ICAPM beta estimations. Similarly, the sixth row
of the two subtables report the difference in estimated betas between the small and big portfolios.

34



Table 2: Performance measures and estimated risk premiums of the ICAPM-MS and benchmark
models with an unrestricted zero-beta rate.

Model ICAPM-MS ICAPM CAPM

GLS R2 0.129 0.042 0.006

(0.070,0.142) (0.029, 0.068) (0.003,0.034)

OLS R2 0.507 0.406 0.011

(0.314,0.612) (0.290, 0.458) (0.005, 0.213)

λ0 0.0072 (8.8%) 0.0114 (13.8%) 0.0473 (56.8%)

(3.4%, 12.4%) (6.7%, 19,1%) (33.2%, 62.5%)

λcf 0.0230 (27.8%) 0.0221 (26.5%) -

(23.5%, 38.0%) (18.4%, 33.7%) -

λdr -0.0010 (-1.23%) -0.0021 (-1.57%) -

(-4.83%, 2.01%) (-3.98%, 0.23%) -

λm - - -0.0330 (-39.6%)

- - (-48.0%, -19,7%)

Note: The GLS R2, OLS R2 and estimated risk premiums of the ICAPM, ICAPM-MS and CAPM. λ0 corresponds

to the zero-beta rate. λcf , λdr and λm correspond to the risk premiums of the cash-flow, discount rate and market

news, respectively. The values in parentheses next to the values of the risk premiums denote the annualized risk

premiums in percentage points. For each model, the zero-beta rate is unrestricted. Underneath each estimation

the standard deviations are reported. The confidence intervals are constructed by by simulating 10.000 draws of

the MSVAR parameters assuming a multivariate normal distribution for the estimates. Each iteration, the factor

models and performance measures are re-estimated.

6.2 MSVAR specification

By adding the regime switching component to the ICAPM, the estimations of the discount rate

and cash-flow news become heavily reliant on the choice of the state variables. Campbell and

Vuolteenaho (2004) found that the ICAPM was robust when different state variables are added

or omitted, except for the small value spread, which was essential for reproducing similar results.

As shown in Bianchi (2020), if the MSVAR model assumes separate level and variance Markov

chains, the small value spread has a significant influence on the optimization process. Figure

2 in appendix C, shows the smoothed probabilities that the Great Depression regime prevails.

The specifications of this model are the same as the previously discussed MSVAR model, but

without the P/E ratio as state variable. Analogous to the results of Bianchi (2020), this regime

prevails during the Great Depression and seems to shortly prevail during the Great Recession.
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Notable is the slight increase in the probability that this regime prevails in 2020. It is found

that removing any of the macroeconomic variables other than the small value spread, makes the

model more inclined to find the Great Depression regime.

By imposing that the level regimes and variance regimes are independent, similar probab-

ilities as well as parameters are found. In this case the level regimes are more distinct but

the variance regimes are again driven by the variance of the small value spread. While the

level regimes are more distinct, the recession regime is also inpersistent and has consequently

less overlap with the NBER recessions. The smoothed probabilities are shown in figure 3 in

appendix C.

The computed standard deviations of the estimates can be observed in table 1 and 3 in

appendix B. It can be observed that the standard deviations can be quite significant with

respect to the actual values, with occasional standard deviations larger than 50% of the absolute

value of the estimates. The volatility estimates do however come with relatively small standard

deviations.

6.3 Window size

The sample of the excess market returns and other state variables to estimate the MSVAR model

ranges from 07-1928 until 12-2022. The betas of the ICAPM are re-estimated with a 35 year

rolling window starting from 01-1967 until 12-2022. From the variation in GLS R2 over time

in figure 3, it becomes clear that the performance of the ICAPM-MS is quite sensitive to the

sample. The discussed improvements do persist for smaller window sizes. To illustrate this,

figures 4 and 5 in appendix C show the test statistics for a 25 year rolling window. The observed

improvements of the ICAPM-MS diminish for window size larger than 45 years, which is shown

in figure 6 and 7. This is attributed to the convergence of estimated betas by the two models.

It is likely that the betas converge due to the inclusion of many regime switches in the sample.

The estimated betas by the ICAPM-MS based on a sample that includes many regime may be

similar to the betas estimated by the regime-independent ICAPM. This sample size can also

be deemed as the tipping point of the overall performance, as the GLS R2 starts to fall below

0.25 during most periods. The cross-sectional test is rejected at a 90% confidence level for most

periods as well.
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6.4 Additional tests

The R2 of the cross-sectional regression via OLS using the 35 year rolling window is shown

in figure 8 in appendix C. As mentioned before, the results from the OLS regression should

evaluated carefully given its i.i.d assumption. What can be observed is the larger R2 around the

periods 1975, 1983 and in 2005, although being marginally different. The OLS R2 does however

come with the intuitive interpretation: it measures the accuracy of the model to predict the

average returns. The overall R2 is high from 1980 until 2008, but this does not serve as proof

to a high performance of the model, as Lewellen et al. (2010) points about that is it relatively

easy for any factor model to obtain such a high R2. S
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Chapter 7

Conclusion

The results of asset pricing tests on the models with a rolling window sample suggest that the

performance of the ICAPM-MS during recession regimes increases, with respect to the ICAPM,

due to better estimating the risk factors during recession regimes. The overall GLS R2 of the

model is fairly low and the based on the GLS R2, it is disputable whether the improvements of

the MS-CAPM can be regarded as significant. The p-values of the asset pricing test do mitigate

this concern, showing significant improvements during the discussed periods. A drawback of

the ICAPM-MS is the dependence on the sample. While the estimated betas are relatively

consistent, the performance of the model relies heavily on the window. The models’ performance

for large window sizes is quite low, leaving it incapable to find a persistent relation between

portfolio returns and the risk factors, or explain the abnormalities in portfolio returns for longer

periods.

Based on comparisons of the factors of the two models, it could be argued that projections by

investors about future cash-flows were too optimistic during stable regimes and too pessimistic

during recession regimes, if regimes were not considered. On the other hand, said investors would

discount future cash-flows by too much during stable regimes and not enough during recessions.

While this effect was persistent, no significant improvements were made in estimating the betas

and finding more accurate risk premiums. In general, it can be concluded that including the

possibilities of regime switching did not lead to a better representation of investor behavior.

Nevertheless, there was indication that ICAPM-MS outperformed the ICAPM during specific

periods. The improved performances occurred after the transition from a recession regime to a

stable regime. This may be due to more positive expectations of the discount rate of investors

that consider the regimes during these periods. This would imply that investors do in fact

consider the transition to a stable or expansion regime at the end of a recession.

The improved performance of the ICAPM-MS was not due to its ability to better explain
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the size or value anomaly. Rather, the improvement were largely attributed to its enhanced

capability to predict average portfolio returns in general, during the specified periods. These

periods are relatively short the improvements are not observed for the majority of time. This

concept of short-lived improvements is also discussed in (L. E. Farmer, Schmidt & Timmermann,

2023), who found evidence for local stock predictability. Similarly, these periods of predictability

of stock returns accur briefly.

An important reason for the low general performance of the ICAPM-MS can be attributed

to the fact that the model is quite a modest extension of the CAPM. The discount rate and

cash-flow news terms are defined by Campbell (1991) via a log-linear approximation based on

future returns and dividends. This method is parsimonious as well as interpretable and the

results show a significant improvement of the model with respect to the CAPM. This shows

that distinguishing between the two sources of risk via this method is of importance. However,

the ICAPM with the inclusion decomposition based on an MSVAR model specified as in this

paper does not sufficiently explain the abnormalities in portfolio returns. One of the issues of

the ICAPM-MS was the unusual estimated variance regimes.

These regimes were primarily identified through the small value spread, overshadowing iden-

tification based on volatility clustering of returns. A variant that does a better job in capturing

stochastic volatility, is the extended three factor ICAPM by Campbell et al. (2018). Similar to

the two factor ICAPM, the factors are derived based on the SDF of a long-term investor, but in

a setting with conditional heteroskedasticity. An additional risk factor is included in the model,

which represents news about volatility. They find that this additional factor helps explaining

the spread excess returns in value sorted portfolios, which did not seem to be explained by

the regime dependent cash-flow and discount rate news terms. This method allows for a more

flexible representation of the stochastic volatilty. The three factor ICAPM might be more adept

at capturing complex patterns of volatility clustering, without the assumption of recession and

stable regimes.

Another approach that can improve the overall performance of the model, is to include

other factors that may contribute in explaining abnormalities in returns, which the decomposed

market factors did not account for. For example, Khan (2008) constructs a four factor model

consisting of the decomposed market news terms as well as the High-Minus-Low and Small-

Minus-Big factors, and shows improved performance of the model in explaining abnormal returns

in accrual-size sorted portfolios compared to other benchmark models. Since the main objective

of this research was to compare the ICAPM-MS to the ICAPM, adding additional factors is not

considered.
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Appendix A

Stationarity state variables

Table 1: ADF test results variables

ADF (p-value)

reM -8.52 (< 0.001)

TY -5.02 (< 0.001)

V S -2.42 (0.14)

DP -1.22 (0.67)

PE -1.84 (0.36)
Note: Results of the Augmented Dicky-Fuller test along with the p-value of the null hypothesis that a unit root

is present. Tests are conducted on the excess market returns (reM ), term yield spread (TY ), small values spread

(V S), the D/P ratio (DP ), and the P/E ratio (PE). The null is rejected for the excess market returns and term

yield spread at a 1% confidence level and for the small value spread at a 15% confidence level. The null is not

rejected for the D/P ratio and the P/E ratio at any reasonable confidence level.
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Appendix B

Estimates VAR models

Table 1: Estimated parameters of the VAR model

(a) Estimated level parameters

c reM,t TYt V St DPt PEt

reM,t+1 0.034 0.113 0.002 −0.004 0.036 −0.009

TYt+1 0.079 0.000 0.939 0.070 −0.020 −0.039
V St+1 0.015 0.103 0.000 0.989 −0.029 0.001
DPt+1 −0.019 −0.478 −0.001 0.003 0.689 0.006
PEt+1 0.013 0.534 0.002 −0.006 0.065 0.997

(b) Estimated contemporaneous correlations and variances

reM,t+1 TYt+1 V St+1 DPt+1 PEt+1

reM,t+1 0.053

TYt+1 −0.026 0.343
V St+1 0.076 −0.003 0.050
DPt+1 −0.722 0.032 −0.057 0.030
PEt+1 0.769 −0.049 0.022 −0.914 0.035

Subtable (a) shows the level parameter estimates of the VAR model. In subtable (b), the off-diagonal elements are
the estimated contemporaneous correlations of the variables. The diagonal elements are the standard deviation
estimates.
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Table 3: Estimated contemporaneous correlations and standard deviations MSVAR model

Regime 1 reM,t+1 TYt+1 V St+1 DPt+1 PEt+1

reM,t+1 0.081

(0.024), (0.106)

TYt+1 −0.057 0.502

(0.031), (0.045) (0.114), (0.083)

V St+1 0.108 −0.014 0.098

(0.044), (0.035) (0.028), (0.012) (0.016), (0.008)

DPt+1 −0.752 0.111 −0.055 0.045

(0.110), (0.079) (0.880), (0.152) (0.211), (0.301) (0.009), (0.017)

PEt+1 0.769 −0.104 0.050 −0.945 0.053

(0.641), (0.046) (0.020), (0.010) (0.315), (0.205) (0.004), (0.006) (0.012), (0.009)

Regime 2 reM,t+1 TYt+1 V St+1 DPt+1 PEt+1

reM,t+1 0.037

(0.011), (0.008)

TYt+1 0.037 0.258

(0.019), (0.022) (0.005), (0.006)

V St+1 0.045 −0.024 0.008

(0.020), (0.033) (−0.022), (0.017) (0.002), (0.002)

DPt+1 −0.741 −0.071 −0.005 0.022

(0.041), (0.064) (0.022), (0.016) (0.011), (0.016) (0.003), (0.020)

PEt+1 0.750 0.054 −0.007 −0.954 0.025

(0.058), (0.419) (0.022), (0.029) (0.013), (0.009) (0.616), (0.050) (0.005), (0.007)

Note: Estimated variance parameters MSVAR model for two variance regimes. The off-diagonal elements are

the estimated contemporaneous correlations of the variables. The diagonal elements are the standard deviation

estimates. Underneath each estimation, the standard deviations are reported in parentheses. The standard devi-

ations are constructed by assuming a multivariate normal distribution for the estimates. Due to the specification

of a combination of two level- and two variance regimes, two standard deviations are reported. The left standard

deviation represents the variation when a particular variance regime coincides with the recession level regime,

while the right standard deviation corresponds to the variance regime coinciding with the stable level regime.
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Figure 1: Smoothed probabilities of variance regime 1 estimated via an MSVAR model assuming
two level regimes and two variance regimes. The state variables are the excess market returns,
small value spread, price to earning ratio and the dividend to price ratio, with monthly data from
07-1928 until 12-2022 (1334 observations). The shaded areas correspond to NBER recessions.

Figure 2: Smoothed probabilities of the combined recession regime (level regime 1) and the
volatility regimes estimated via an MSVAR model assuming two level regimes and two vari-
ance regimes. regime 1,1 corresponds to the recession-high volatility regime while regime 1,2
corresponds to the recession-low volatility regime. The state variables are the excess market
returns, small value spread, price to earning ratio and the dividend to price ratio, with monthly
data from 07-1928 until 12-2022 (1334 observations). The shaded areas correspond to NBER
recessions.

47



Appendix C

Additional tables and figures

Table 1: Estimated betas ICAPM-MS for the modern sample

Bdr Growth 2 3 4 Value

Small 0.92 0.82 0.77 0.73 0.75

(0.70, 1.05) (0.60, 0.96) (0.59, 0.90) (0.54, 0.83) (0.57, 0.83)

2 0.87 0.79 0.73 0.70 0.79

(0.65, 0.91) (0.58, 0.95) (0.51, 0.81) (0.52, 0.81) (0.61, 0.89)

3 0.83 0.75 0.70 0.71 0.75

(0.61, 0.92) (0.63, 0.87) (0.56, 0.80) (0.64, 0.79) (0.55, 0.85)

4 0.78 0.73 0.71 0.69 0.74

(0.56, 0.86) (0.50, 0.88) (0.56, 0.79) (0.51, 0.76) (0.62, 0.82)

Big 0.67 0.64 0.62 0.63 0.68

(0.55, 0.75) (0.51, 0.71) (0.54, 0.74) (0.52, 0.76) (0.69, 0.79)

Bcf Growth 2 3 4 Value

Small 0.63 0.57 0.49 0.46 0.46

(0.48, 0.86) (0.45, 0.79) (0.38, 0.71) (0.37, 066) (0.37, 0.63)

2 0.66 0.54 0.50 0.47 0.52

(0.52, 0.83) (0.42, 0.75) (0.39, 0.67) (0.40, 0.69) (0.42, 0.67)

3 0.63 0.54 0.48 0.45 0.50

(0.51, 0.80) (0.46, 0.71) (0.40, 0.68) (0.38, 0.62) (0.41, 0.61)

4 0.59 0.52 0.47 0.46 0.51

(0.45, 0.81) (0.40, 0.76) (0.39, 0.67) (0.38, 0.59) (0.39, 0.63)

Value 0.48 0.46 0.42 0.43 0.47

(0.41, 0.64) (0.37, 0.66) (0.35, 0.60) (0.36, 0.58) (0.40, 0.59)

Note: Estimated discount rate betas Bdr and cash-flow betas Bcf via the ICAPM-MS for value-size sorted

portfolios for the modern sample, ranging from 03-1963 until 12-2022. The value in parentheses denote the 90%

confidence intervals. The confidence intervals are constructed by by simulating 10.000 draws of the MSVAR

parameters assuming a multivariate normal distribution for the estimates. Each iteration, the betas are re-

estimated.
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Figure 1: Estimated news terms of the VAR model and the MSVAR model, in percentage
points. -Ndr, Ncf and Nmkt correspond to the (negative) discount rate, cash-flow and market
news terms estimated by the VAR model. Similarly, -Ndr,ms, Ncf,ms and Nmkt,ms correspond to
the (negative) discount rate, cash-flow and market news terms estimated by the MSVAR model.
The shaded areas represent the periods that the recession regimes prevail, during these periods
the smoothed probabilities of the recession regime exceed 0.5
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Figure 2: Smoothed probabilities of the Great Depression regime estimated via an MSVAR
model assuming two level regimes and two variance regimes. The state variables are the excess
market returns, small value spread, price to earning ratio and the dividend to price ratio, with
monthly data from 07-1928 until 12-2022 (1334 observations). The shaded areas correspond to
NBER recessions.

Figure 3: Smoothed probabilities of the crisis level regime estimated via an MSVAR model
assuming two level regimes and two variance regimes, that are independent. The state variables
are the excess market returns, term yield spread, small value spread, price to earning ratio and
the dividend to price ratio, with monthly data from 07-1928 until 12-2022 (1334 observations).
The shaded areas correspond to NBER recessions.
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Figure 4: R2 of the second pass cross-sectional GLS regressions on 24 size-value sorted portfolios,
using a 25-year moving window from 01-1967 until 12-2022. The shaded areas represent the
periods that the recession regimes prevail, during these periods the smoothed probabilities of
the recession regime exceed 0.5.

Figure 5: p-values of the asset pricing test of the second pass cross-sectional GLS regressions
on 24 size-value sorted portfolios, using a 25-year moving window from 01-1967 until 12-2022-.
The shaded areas represent the periods that the recession regimes prevail, during these periods
the smoothed probabilities of the recession regime exceed 0.5.
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Figure 6: R2 of the second pass cross-sectional GLS regressions on 24 size-value sorted portfolios,
using a 45-year moving window from 1975-01 until 2022-12. The shaded areas represent the
periods that the recession regimes prevail, during these periods the smoothed probabilities of
the recession regime exceed 0.5.

Figure 7: p-values of the asset pricing test of the second pass cross-sectional GLS regressions on
24 size-value sorted portfolios, using a 45-year moving window from 1975-01 until 2022-12. The
shaded areas represent the periods that the recession regimes prevail, during these periods the
smoothed probabilities of the recession regime exceed 0.5.
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Figure 8: R2 of the second pass cross-sectional OLS regressions on 24 size-value sorted portfolios,
using a 35-year moving window from 1967-01 until 2022-12. The shaded areas represent the
periods that the recession regimes prevail, during these periods the smoothed probabilities of
the recession regime exceed 0.5.
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