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Abstract

In this paper we investigate whether machine learning techniques are an effective tool in improving
the predictability of the implied volatility surface (IVS) beyond the accuracy of traditional parametric
modelling. We examine the efficacy of a two-step methodology for predicting the IVS applied to indi-
vidual American-style equity options. Our approach involves initially modelling the IVS parametrically.
We then fit the model implied errors to a feedforward neural network and evaluate its ability to correct
the errors. To assess the accuracy of the nonparametric corrections, we use a large dataset of the options
of the US equities Amazon, JPMorgan and Microsoft. In our analysis, we apply the correction to three
models, Black-Scholes, Ad-Hoc Black-Scholes and Carr and Wu. The purpose for the range of the
models is to asses the versatility of this two-step framework and the importance of the inital parametric
model within it. Our research has shown effectiveness of this framework for improving predictability
of the IVS for equity options. We found that the accuracy of initial the parametric model used was
important in determining the accuracy of the corrected model, the parametric models performed best
for JPMorgan and worst for Amazon. This translated to the corrected models with JPMorgan again
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yielding the best results and Amazon the worst. We found that as time-horizon increased the accuracy
of our framework decreased. Lastly, inclusion of macro-economic features gave no improvement in
prediction accuracy.
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1 Introduction

Options are financial instruments whose prices are determined by four key characteris-
tics: price of underlying, strike price, time to maturity and future underlying volatility, the
only unobservable parameter. The three observable parameters can vary greatly between op-
tion contracts which makes direct comparison by price difficult. Two options on the same
underlying, will have the same future volatility. This gives volatility a crucial role in option
pricing analysis as it offers a method of comparison between option contracts. The volatil-
ity in question is theoretically the future volatility of the underlying security up until expiry.
In practice, as the future is yet to occur, we use (model) implied volatility (IV). IV, for each
option, is found by calculating which volatility, given the observed values for the other char-
acteristics, gives us the current option price given the Black-Scholes model. When implied
volatility is measured across the entire cross-section of moneyness1 and time to expiry we
call it the implied volatility surface (IVS). Our analysis focuses on predicting the IVS over
multiple time horizons2. A key assumption of the Black-Scholes model is that volatility is
constant across time, moneyness and maturity. Since 1973 it has been accepted this assump-
tion is imperfect. Particularly Dupire et al. (1994) found that the IVS of options exhibits a
’skew’ or ’smile’. This finding has motivated many researchers to attempt to find improved
option pricing models which means there is a plethora of parametric models available to-
day. Improvements have been made in the parametric modelling of options but we are still
yet to, and may never, find the perfect parametric model. I would argue this is because there
are non-linear relationships at play. Our paper is testing the robustness of the framework first
proposed by Almeida et al. (2022). The researchers found great success from their two-step
framework for European-style index options. In our paper we will extend their framework to
working with American-style equity options which in Bernales and Guidolin (2014) were
found to exhibit predictability. First, we fit the parametric model to the observed implied
volatilities. Then, we non-parametrically estimate the model-implied pricing error function.

For the non-parametric correction a neural network was the natural choice. Neural
networks have been extensively used in asset pricing and have been proven to be more ef-
fective than other ML techniques as in Gu et al. (2020). We use out-of-sample prediction
accuracy to compare across model, time-horizon and equity. We find strong evidence that
the two-step framework is more effective in predicting the IVS than parametric modelling
alone. We found adding macro-economic factors to the data further improves results, but
under specific circumstances. In order to reap this benefit you must sacrifice re-fitting the
NN each day, which yields the best results. Under the restriction of fitting a single NN to
the entire dataset, adding macro-economic variables improves prediction accuracy. Our
macro-economic analysis showed that the VIX index was by far the most important addi-

1Moneyness, m, of an option is defined as: m = S/K where S is underlying price and K is strike price
2Four to be precise: Same-day, 1-day, 5-day and 20-day
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tional feature. We found the least important features were the two interest rate proxies, the 3
Month treasury bill rate being slightly more important than the 10 Year treasury bond rate.
The remainder of the paper is organised as follows. There is a brief review of related litera-
ture next. In Section 2 we discuss the data, handling, processing and practicalities. Section
3 details the modelling, both parametric and non-parametric. Section 4 discusses the results.
Section 5 explores the of inclusions additional macroeconomic variables and Section 6 con-
cludes the research.

1.1 Literature Review

This paper is built on the fundamentals of parametric options pricing, The Black-Scholes
model first proposed by Black and Scholes (1973), offered the first closed-form solution for
option prices. Despite being revolutionary there are some clear limitations of the BS model,
namely the assumption volatility is constant across both strike price and time to expiry, giv-
ing a constant implied volatility surface. It is now widely recognised that the IV of options
exhibits a volatility smile/skew Dupire et al. (1994), the earliest papers that found evidence
of this phenomena did not formulate the results in such terms but instead described how
Black Scholes pricing errors vary systematically with strike price or with time to expiry. For
example, MacBeth and Merville (1979) reported that the Black-Scholes model underval-
ues in-the-money and overvalues out-of-the-money call options. Research from Rubinstein
(1985) then tested the null hypothesis that implied volatility is constant across strike prices
and yielded statistically significant results rejecting their null hypothesis, disproving the con-
stant volatility assumption that is imperative to the Black-Scholes model. Rubinstein’s most
robust result is that for out-of-the-money calls implied volatility is systematically higher for
options with shorter times to expiration. Later papers treated local volatility as a determinis-
tic function of other parameters and applied a smoothing effect to volatility estimation. The
Ad-Hoc Black-Scholes (AHBS) model, first proposed in Dumas et al. (1998), adapts the BS
model over time to improve accuracy. It does this by incorporating the extent of volatility
variation across time and moneyness using data from previous observations. ,

The BS model is not perfectly adapted for continuous data and in practice option prices
are a set of continuous data. Papers from Heston (1993), Bates (2000), Duffie et al. (2000)
and Andersen et al. (2015) have all attempted to account for this by implementing mecha-
nisms that account for added risk associated with continuous data such as stochastic volatil-
ity and jump risk. The dynamics of volatility modelling are complicated. Luckily, in 2022
Christensen et al. (2021) analysed several machine learning techniques for volatility mod-

elling with neural networks producing the most best results. Thus we will use a neural net-
work for the non-parametric adjustment of the model errors in this paper.

In 2014, a paper from Bernales and Guidolin (2014) showed that individual equity op-
tions exhibit predictability in their IVS and eight years later Almeida et al. (2022) was re-
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leased, which showed feed forward neural networks (FFNNs) were able to substantially im-
prove the accuracy of IVS predictions for several option pricing models, for index options.
The Almeida methodology coupled with the Bernales findings motivated this paper, an at-
tempt to extend the Almeida methodology to be used for individual equity options. Our re-
search is assessing the frameworks feasibility for predicting the IVS of the equities; Amazon,
JPMorgan and Microsoft. If it is useful beyond index options it will have large ramifications
for the broader financial industry and the approach to IVS forecasting for many options.

2 Data

For our research we selected 3 large-volume US equities; Amazon, the global e-commerce
retailer with ticker AMZN, JPMorgan Chase & Co, the world’s largest bank with ticker JPM
and Microsoft, a technology giant the world’s biggest company with ticker MSFT. Options
for these three equities are traded at the Chicago Board Options Exchange (CBOE). Our
dataset is all the qualifying options over a sample period of 2 years from January 1 2017
to December 31 2018. This data was obtained from OptionMetrics.

We followed standard practice when cleaning our data set. Firstly, following the indus-
try standard, we removed all ITM3 options and deal only with OTM4options in our analysis.
Then we removed all option contracts with less than 10 or more than 240 trading days to ex-
piry. Options with an excessively short time to expiry are hyper sensitive to market noise
while options with an excessively long time to maturity are, to a point, much unaffected
by macro-economic conditions compared to nearer term options. Because of this options
with extreme time to maturity at either side of the spectrum contribute little to describing the
overall IVS shape.

Next, similarly to Dumas et al. (1998) and Heston and Nandi (2000), we excluded con-
tracts with extreme moneyness. Our classification of extreme moneyness is less than 0.70
or greater than 1.60. At extreme moneyness option IVs become uninformative for the over-
all IVS. In Almeida et al. (2022) their categorisation of extreme moneyness was m < 0.8

or m > 1.4. The Almeida paper is based on index options, We are dealing with individual
equities which typically have a higher volatily than an index. Therefore, we felt it would be
prudent to extend our categorisation of extreme moneyness. The remaining dataset consists
of Put options with mi,t ∈ [1.00, 1.60) and Call options with mi,t ∈ (0.70, 1.00]. Follow-
ing Bakshi et al. (1997) and Goncalves and Guidolin (2006), we excluded option contracts
with prices lower than 1.00. Options with excessively low prices are heavily impacted by the
effects of price discreteness which can heavily skew their IVs. In all three models we are re-
maining in the implied volatility space this means in our model estimations we don’t use the

3ITM means In The Money. An ITM option is an option with non-zero intrinsic value
4OTM means Out of The Money. An OTM option has no intrinsic value
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option price. Consequently we don’t need to include the interest rate or dividend rate as the
purpose of both is to discount the option price. On any given day these will be the same for
all options of a given ticker.

An initial summary of our data is included in Table 1. Options with less than 60 days
to expiry were defined as short-term and options with between 60 and 240 days to expiry
were defined as long-term. This table shows a majority of our options are OTMC, ATM or
OTMP. For both companies there is a relatively even overall number of options with both
short and long maturities. Interestingly there are more ATM options with short maturities
but for every other option type there are more with long maturities.

Table 1: Option Cross-Section
Number µIV σIV

Company Moneyness/Expiry Short Long Short Long Short Long
Amazon DOTMC: [0.7, 0.9) 1647 1396 37.92% 29.78% 8.35% 5.56%

DOTMC: [0.9, 0.97) 5900 1399 28.73% 28.36% 9.37% 5.70%
ATM: [0.97, 1.03) 10847 1627 25.50% 28.33% 8.98% 5.47%
OTMP: [1.03, 1.1) 7159 917 28.26% 29.11% 8.85% 5.64%
DOTMP: [1.1, 1.6] 2920 1682 38.52% 32.19% 11.48% 6.05%
Total 28473 7021 28.92% 29.65% 9.25% 5.70%

JPMorgan DOTMC: [0.7, 0.9) 1 255 30.27% 20.33% 0.00% 2.58%
DOTMC: [0.9, 0.97) 352 1633 22.90% 19.16% 5.06% 2.12%
ATM: [0.97, 1.03) 3855 1599 20.25% 19.64% 4.51% 2.24%
OTMP: [1.03, 1.1) 495 1069 25.03% 21.70% 5.66% 2.47%
DOTMP: [1.1, 1.6] 24 576 37.91% 25.09% 10.69% 3.26%
Total 4727 5132 21.04% 20.56% 4.71% 2.38%

Microsoft DOTMC: [0.7, 0.9) 10 662 37.28% 23.77% 5.71% 3.62%
DOTMC: [0.9, 0.97) 929 2274 29.13% 21.49% 6.24% 3.56%
ATM: [0.97, 1.03) 5144 2240 24.28% 21.40% 6.55% 3.66%
OTMP: [1.03, 1.1) 825 1569 30.60% 23.18% 7.42% 3.78%
DOTMP: [1.1, 1.6] 69 1006 40.85% 26.68% 10.08% 4.56%
Total 6977 7751 25.85% 22.67% 6.64% 3.37%

In table Table 1 there is a clear pattern in the IVs of the options. ATM options have
low IV and options with more extreme moneyness have higher IV. We plotted this in Fig-
ures 1-3 with the darker line being short-term options and the lighter line being long-term
options. The graphs are showing average IV plotted on the y-axis and option type plotted on
the x-axis. This graph supports the idea of a volatility skew/smile as there is a clear viola-
tion of the Black-Scholes model’s constant volatility assumption. The skew/smile/smirk has
been heavily researched by Dupire et al. (1994) and our data supports its existence. Notably
the standard deviation of short term options is always considerably higher than their long
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term equivalents 5, sometimes even greater than 3 times larger, as for JPMorgan DOTMP
options. This observation is consistent with the idea that short term options are more sen-
sitive to news that their long term options. Figure 1, Figure 2 and Figure 3 show mean IV
plotted against option type for each of our three equities. The dark lines are short-term op-
tions and the light lines are long-term options. This figure is clear evidence for the existence
of volatility skew with all six curves exhibiting some level of skew. For all three equities
both the short and long curves have IV increasing as moneyness gets more extreme. 6

Figure 1: Amazon Mean IV by Option Type

5Except for DOTMC JPM which has a single option therefore no standard deviation.
6Except IVATM > IVOTMC for both Amazon and JPMorgan.
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Figure 2: JPMorgan Mean IV by Option Type

Figure 3: Microsoft Mean IV by Option Type
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2.1 Practicalities

After cleaning the datasets we are left with 35,494, 4,771 and 14,728 options for Ama-
zon, JPMorgan and Microsoft respectively. For our prediction exercise we split our dataset
into training and testing. In order for both our testing and training data to have a full spec-
trum of moneyness and time to maturity in the sets we chose a divisor 7 such that any op-
tions with strike price divisible by said divisor were put into the training set and the rest in
the testing set. Our goal was to have between 65 and 80 percent of our data allocated for
training, our chosen divisors gave us 77:23, 65:35 and 69:31 train-test data splits for each of
our equities.

When constructing our datasets for our four different prediction horizons we only in-
cluded trading days that had at least 5 options in both the testing and training sets. The sam-
ple size for each prediction horizon is shown in table Table 2.

Table 2: Trading Days in Analysis
Horizon

Company Same-day 1-day 5-day 20-day
Amazon 427 406 400 386
JPMorgan 159 152 147 133
Microsoft 301 279 269 246

3 Methodology

Our methodology intends to build on the research of Almeida et al. This paper found
that a FFNN is effective in improving the predictive power of more traditionally used para-
metric option pricing models when using European-style S&P500 options. In 2014, research
from from Bernales et al. found that American-style equity options exhibit predictability. In
our paper, we want to combine these findings and investigate whether the two-step frame-
work used by Almeida et al. is effective at capturing the predictability of American-style
equity options. As our option data is made up of American-style options we don’t have data
for European option prices. This makes finding an IV estimate via reverse-calculating the
model formulas tedious. Instead we opted to remain in the implied volatility space for all our
models.

3.1 Parametric Option Pricing Models

In our research we used models that vary in complexity in hopes to yield initial para-
metric model results which vary in accuracy, this will allow us to analyse the effect of the
initial models accuracy on the non-parametric models ability to correct errors.

7Our divisor was 2 for Amazon and 1 for JPMorgan and Microsoft
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3.1.1 Black-Scholes

When pubished in 1973 the Black-Scholes Model was ground-breaking as it was the
first formalised option pricing model which offered a closed-form solution.
The model expressed as a differential equation is as follows:

dSt

St

= µ+ σdWt, (1)

The formula for the Put and Call prices both have five unknowns. 8 9

CallBS(St, K, τ, r, σ) = StΦ10(d1)−Ke−rτΦ(d2) (2)

PutBS(St, K, τ, r, σ) = Ke−rτΦ(−d1)− StΦ(−d2)+ (3)

d1 =
ln(St/K) + (r + σ2/2)τ

σ
√
τ

(4)

d2 = d1 − σ
√
τ (5)

The BS model assumes a constant IVS across time, moneyness and time to expiry. Despite
our research focus on American-style options, an option type which Black-Scholes wasn’t
specifically designed for, we felt it would provide valuable insight into the effectiveness of
this framework to correct consistently inaccurate models.
As we are remaining in the implied volatility space, our Black-Scholes estimate was calcu-
lated by the below minimisation.

σ̂BS = σ : min
σ

1

n

n∑
i=1

[σi,t − σ]2 with σ > 0 (6)

3.1.2 Ad-Hoc Black Scholes

A key consequence of the Black-Scholes model is that the IV is constant across mon-
eyness and time to expiry. This is an idea that has been repeatedly refuted over the years, for
example by Dupire et al. and Heston et al., even our own option panel in Table 1 seemingly
refutes the assumption. Somewhat motivated by this failing, a paper from Dumas et al. was

8Stock Price (S), Strike Price (K), Risk Free Rate (r), Volatility (σ) and Time to Expiry (τ )
9τ = (T − t), T being the expiration date and t the current date
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released developing the Ad-Hoc Black-Scholes (AHBS) model. The AHBS model is char-
acterised by specifying implied volatility as a quadratic function of option moneyness and
time to expiry. Importantly the AHBS model assumes a time-varying IV, meaning it is to be
calculated for each day as well as for each moneyness and time to expiry.

σi,t = β0,t + β1,tmi,t + β2,tm
2
i,t + β3,tτi + β4,tτ

2
i + β5,tmi,tτi + ϵi,t (7)

Using observed values for σi,t to get parameter estimates via ordinary least squares (OLS).
This is done by minimizing the IVMSE such that:

min
β

1

n

n∑
i=1

[σi,t − σAHBS(βt,mi,t, τi,t)]
2 (8)

with

σAHBS(βt,mi,t,τi,t) = β0,t + β1,tmi + β2,tm
2
i + β3,tτi + β4,tτ

2
i + β5,tmiτi (9)

Given the estimated parameters β̂t, the IV predicted by the AHBS model for an option with
moneyness, m and time to expiry, τ is: σAHBS(β̂t,m, τ) 11

3.1.3 Carr and Wu Model

The Carr and Wu (CW) model was first proposed in Carr and Wu (2016) with the goal
of better incorporating position management techniques, used by institutional investors, into
option pricing. The Carr and Wu model starts with the near-term dynamics of the IVS and
derives no-arbitrage constraints from its current shape. The Carr and Wu model, like the
AHBS model, is recalculated on a daily basis. This means we can specify the near-term dy-
namics of the IVS while leaving its long-term variation unspecified and highlights the mod-
els ’semi-parametric’ flavour. The theory specifies just enough dynamic structure to achieve
a fully parametric characterisation of the IVS. The Carr and Wu model offers a computa-
tionally efficient framework and a straight-forward quadratic solution. An interesting and
important feature of Eq. (10) is that the no-arbitrage constraint depends only on the current
levels of the five dynamic processes (υt, πt, λt, ωt, ρt), but it does not depend directly on
the exact dynamics of these processes. Thus, the dynamics of the five state variables are left
unspecified. As a result, fitting the relation to observed implied volatility surfaces only in-
volves extracting the current values of the five dynamic states, which we calculate by least
squares on the training data set, but does not involve the estimation of any model parameters
that govern their state dynamics.

The Carr and Wu model assumes that the stock price is log-normally distributed with

11With the constraint that σAHBS(β̂t,m, τ) > 0∀t.
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time-varying volatility and has 5 time-varying parameters: (υ, π, λ, ω, ρ). The models dif-
ferential equations are defined as:

dSt

St

=
√
vtdWt (10)

dσt(K, τ)

σt(K, τ)
= e−λtτ (πtdt+ wtdZt) (11)

Given that we are going to be calculating daily estimates using the Carr and Wu model,
it is sufficient to assume these parameters on each day are constants. The Carr and Wu model’s
five dynamic processes have some constraints12 which ensure feasibility of the model. For
each day the value of our 5 parameters, βt = (υt, πt, λt, ρt, ωt) are found by minimizing
Equation 12 across all the options in the training dataset for day t13.

β̂t = (υ̂t, π̂t, λ̂t, ρ̂t, ω̂t) = argβt min

n∑
i=1

[
1

4
e−2λtτiω2

t τ
2
i σ

4
i + (1− 2e−λtτiπtτi − e−λtτωtρt

√
υtτi)σ

2
i

− (υt + 2e−λtτiωtρt
√
vtκi + e−2λtτiω2

t κ
2
i )]

(12)

Each σ̂CW is then obtained by solving Equation 13.

σ̂CW i,t = σ : [
1

4
e−2λ̂tτiω̂2

t τ
2
i σ

4 + (1− 2e−λ̂tτi π̂tτi − e−λ̂tτ ω̂tρ̂t
√

υ̂tτ)σ
2

− (υ̂t + 2e−λ̂tτiω̂tρ̂t
√

υ̂tκi + e−2λ̂tτi,tω̂2
t κ

2
i )]

2 = 0 with σ ∈ R+ (13)

3.2 Non-Parametric Correction

In this section we will discuss the second part of our framework in more detail. For the
nonparametric correction of the our parametric model, as in Almeida, we are opting to use
a feed forward neural network. After fitting a parametric model to the data we then fit the
model-implied error to a FFNN.
The model implied error, of model p, is defined as:

ϵp(mi,t, τi,t) = σ(mi,t, τi,t)− σp(mi,t, τi,t) (14)

There are several types of non-parametric model we could fit the model implied errors to,
the most promising and heavily researched is the FFNN. For a given model p the FFNN

12Carr and Wu model constraints: υ > 0, π ∈ R, λ > 0, ρ ∈ [−1, 1], ω > 0
13κi = Si/Ki
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works by minimizing the following objective function:

min
f

(
1

n

n∑
i=1

[ϵ̂p(mi,t, τi)− f(mi,t, τi)]
2) (15)

Over an appropriate space of functions f .
The function f̂(m, τ) is the one which best approximates the pricing errors of the parametric
model. Our new estimate is:

σ̂NN(m, τ) = σp(m, τ) + f̂(m, τ) (16)

3.2.1 Feed Forward Neural Network

Feed forward neural networks consist of an input layer of explanatory variables, in our
case the model implied errors, and multiple intermediate hidden layers. The hidden layers
are responsible for the nonlinear transformations. The number of hidden layers in a FFNN is
the known as the depth and the number of nodes in a hidden layer is referred to as its width.
The depth and width are both important factors in model effectiveness, we trialled differ-
ent architectures and decided to use 3 hidden layers, with our initial layer having 128 in-
put nodes as this yielded the best results for a subset of our data, details of this analysis are
found in the appendix. We used the step property to determine the width of our remaining
hidden layers and hence the widths are 64 and 32. Finally, there is the output layer which
gives the predicted value.
The generalised formulas for a FFNN architecture are Equation 17 and Equation 18 .
Starting from z0 = xi,t = ϵp(mi,t, τi,t) ∈ R we iterate using Equation 17:

zl
dl×1

= h̊( Al−1
dl×dl−1

× zl
dl−1×d1

+ bl−1)
dl×1

, for l = 1, ..., L (17)

f(xi,t) = AL
1×dL

zL
dL×1

+ bL
1×1

(18)

L is the number of hidden layers with each layer l containing dl output neurons. Al−1 is

the weight matrix, bl−1 is the intercept vector and h̊ : Rdl → Rdl applies the activation
function h(·) to each element of the vector Al−1zl−1 + bl−1. We used the Rectified Linear
Unit (ReLU) activation function defined as: h(x) = max(0, x).
The formula for our particular architecture is found in Equation 19.
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f(xi,t)
1×1

= A3
1×32

h̊[ A2
32×64

h̊( A1
64×128

h̊[ A0
128×1

× z0
1×1

+ b0
128×1

] + b1
64×1

) + b2
32×1

] + b3
1×1

(19)

4 Prediction of the Implied Volatility Surface

In this section, we conduct prediction exercises in the option cross-section based on a
day-by-day model estimation, which is common practice in the option pricing literature. In
fact, the AHBS and CW models are designed to fit the implied volatility surface on a given
day. While the daily re-estimation approach is theoretically inconsistent with the Black and
Scholes model which assumes that parameters are constant over time, these models are of-
ten also implemented on a day-by-day basis as in Bakshi et al. (1997), we chose to imple-
ment the BS model on a day-to-day basis to allow for comparison between all three models.
Our model parameters change on a daily basis but our input data lacks a time-varying sig-
nal, we decided it is logical to isolate each day of predictions and apply our non-parametric
correction to each day individually . The main performance metric for our analysis is the
out-of-sample Implied Volatility Root Mean Square Error (IVRMSE). The IVRMSE is com-
puted by aggregating prediction errors across the testing samples. We find this error metric
particularly valuable because it is expressed in terms of implied volatility, which is easily in-
terpretable while also facilitating comparisons scross equities and models. Additionally, it
aligns well with the modeling process and our analysis of implied volatility surface. 14

We investigate the performance of 6 total models. Consisting of our 3 parametric op-
tion pricing models BS, AHBS and CW and our 3 non-parametrically corrected models
BS+NN315, AHBS+NN3, CW+NN3. Our main goal is to answer whether neural networks
can successfully correct and improve upon the parametric models by learning their pricing
error surface. Secondarily we want to determine which parametric model performs best pre
and post non-parametric correction. For each equity we split the datasets by day, we then
split the daily data into a training and testing set. We fit each model to the training set and
tested the model on the appropriate testing set. For same-day prediction we used the training
and testing datasets of the same day and for 20-day ahead prediction we used the training set
on day X and the testing set on day X+20. The FFNN is applied to the model-implied errors
of the training set and then the output model is tested on the corresponding testing set.

14Our IVRMSEs are a daily average of all eligible test days
15NN3 refers to a feed-forward neural network of depth 3.
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4.1 Results

4.2 Predictions in 4 Time Horizons

In Table 2 we compare the IVRMSE of predictions for the three models aswell as the
NN3 corrected models. In 100% of instances the NN3 correction improved the IVRMSE
compared to the base pricing model. The best performing model for each company at each
time horizon is highlighted in bold.

Table 3: Data Summary
AMZN JPM MSFT Mean

Horizon Model No NN NN3 No NN NN3 No NN NN3 No NN NN3
Same-day BS 3.49% 0.96% 1.71% 0.49% 2.46% 0.69% 2.55% 0.71%

AHBS 1.81% 0.64% 1.75% 0.54% 6.87% 1.87% 3.48% 1.02%
CW 4.49% 1.05% 2.28% 0.55% 4.79% 1.19% 3.85% 0.93%

1-day BS 4.01% 1.49% 1.84% 0.79% 2.76% 1.08% 2.87% 1.12%
AHBS 4.02% 1.61% 4.18% 1.66% 6.04% 2.02% 4.75% 1.76%
CW 5.12% 1.70% 2.40% 0.86% 5.08% 1.82% 4.20% 1.46%

5-day BS 4.96% 2.54% 2.07% 1.04% 3.38% 1.59% 3.47% 1.72%
AHBS 5.10% 2.57% 6.90% 3.46% 4.47% 2.21% 5.49% 2.75%
CW 6.87% 2.91% 2.69% 1.14% 5.68% 2.29% 5.08% 2.11%

20-day BS 7.65% 4.08% 2.27% 1.27% 4.20% 2.41% 4.71% 2.59%
AHBS 12.63% 6.89% 3.52% 2.01% 6.08% 3.29% 7.41% 4.06%
CW 10.24% 5.01% 2.92% 1.41% 6.86% 3.21% 6.67% 3.21%

For most combinations of equity and model, increasing the prediction time horizon increases
the IVRMSE. This is logical as the training data upon which the models are estimated be-
comes further removed from the test data as time horizon increases. The BS+NN3 is the
clear best-performing model followed by CW+NN3 and then AHBS+NN3. Interestingly BS
is also the best-performing base model which suggests initial parametric model performance
is influential in the FFNN’s ability to correct. CW and AHBS perform quite comparitively
while CW+NN3 substantially outperforms AHBS+NN3, suggesting the dynamics of CW are
better suited to the two-step framework. The AHBS model is particularly bad at predicting
for JPMorgam which is interesting as it performs similarly to CW for Microsoft and even
outperforms CW slightly for Amazon. The relative difference in IVRMSE of Microsoft for
AHBS+NN3 and CW+NN3 is substantially lower than for the corresponding uncorrected
models. This shows the flexibility of the framework to provide similar but not identical re-
sults for different parametric models
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4.3 Prediction Accuracy

In Figure 4, Figure 5 and Figure 6 we are measuring the performance of 1-day ahead
predictions for our models on a single day and comparing them before and after the non-
parametric correction. For this section we wanted a day on which all three equities had at
least 10 options in the test sample, we ultimately chose 17/01/2017 because our three equi-
ties also had a similar amount of options which makes for more interesting comparison.

In both the right and left panels we are plotting option moneyness 16 on the x-axis against
IV % error 17 on the y-axis. In the left hand (LH) panel, the blue circles are the prediction
errors of the parametric model and the red circles are the prediction errors of the two-step
framework, that is after the parametric model errors have been fit to a FFNN. In the right
hand (RH) panel, the black circles show the improvement18 in IV % error for each obser-
vation and the dotted red lines show the the mean improvement for each model. Across all
three option models, the NN adjustment contributes a significant improvement in the IV%
error 19, ranging from 4.5% improvement up to 9.8%. The Black-Scholes model benefits the
most from the non-parametric correction but not by a significant degree compared to Ad-
Hoc Black-Scholes and Carr and Wu.

Firstly we have Figure 4 which analyses the different models for Amazon. If we look at
the LH graphs we can see from the blue circles that the CW model performed best with BS
and AHBS performing similarly to one another. CW had no predictions with greater than
20% error while both other models had several. After fitting the neural network, the CW
model is still the best performing, however the CW has the smallest average correction at
3.6% compared to 5.1% and 4.8% for BS and AHBS respectively. This highlights the impor-
tance of the initial model accuracy when using this framework.

Now referencing Figure 5, from the LH panel, the blue circles show us that the three
parametric models perform similarly with most predictions having an IV % error between
10% and 25%. Now looking at the RH panel, with the neural network correction the BS
model clearly outperforms the other models and AHBS is the worst performing, BS benefits
the most from the non-parametric correction with an average corrections of 9.8%. AHBS
and CW have average corrections of 4.1% and 6.5% for. AHBS performs particularly poorly
on the options with moneyness of less than 1.0, giving significant negative improvements for
two of these observations.

In Figure 6 we are analysing Microsoft. In this instance the CW model is the best initial
model with all predictions having a percentage error less than 15%. BS and AHBS perform
similarly on average but the BS predictions are of lower volatility. The improvement per-
centages for all three models are similar with 7.8%, 5.2% and 5.7% this results in CW also

16moneyness = StockPrice/StrikePrice

17IV % error is defined as: ( |IV−IVmodel|
IV )100

18improvement = (IV%Error)model − (IV%Error)NN

19We opted to use IV % error in this section due to isolating individual observations for analysis
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having the best results after the neural network correction, again highlighting the importance
of the initial model.

It is worth noting that these results represent a single day from a two-year data set and
are included simply to illustrate the framework more clearly, to draw concrete conclusions
more robust analysis in this way is required. On 01/17/2017 across our three equities, the
CW model performed best followed by the BS and then the AHBS. Interestingly, for JPMor-
gan the AHBS was actually the best model, lacking the extreme anomalies present in both
Amazon and Microsoft for this model. The above graphs highlight the importance of the
initial model in this framework, with the best performing model in the parametric approach
translating to the best performing model in the two-step approach for all three equities. This
can be seen from the correction percentages, which are relatively similar for all three models
for each of our equities. The results for Microsoft are more similar to Amazon than JPMor-
gan. From the LH panel we can see that CW performs best followed by BS and then AHBS,
with the latter two performing similarly. As seen in the RH panel the degree of correction is
very similar for all three models with 6.4%, 4.5% and 4.6% respectively. The BS correction
for Microsoft is the most accurate of all our examples, with all predictions having an IV %
error below 1% after correcting.

Similarly to for JPMorgan, the neural network correction performed poorly for the op-
tions with a moneyness less than 1.0, with an average improvement of -8%. Each model had
some large anomalies with a % error greater than 25%

In summary, it is clear from the figures that on an individual day the equities have quite
different shapes.
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Figure 4: Prediction Errors of Models and NN Improvements: Amazon 17/01/2017
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Figure 5: Prediction Errors of Models and NN Improvements: JPMorgan 17/01/2017
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Figure 6: Prediction Errors of Models and NN Improvements: Microsoft 17/01/2017
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5 Analysis with Additional Macroeconomic Factors

In this section we added four macroeconomic factors to our dataset. The VIX index
(VIX) which is a measure of market volatility. The inflation index (INF) which is a measure
of US inflation and both the 3-month treasury bill rate (3M) and 10-year treasury note rate
(10Y) which are proxies for the interest rate representing the short and long end of the yield
curve respectively. All four factors were obtained from the Centre for Research in Security
Prices (CRSP) database. We assessed the effect of the inclusion of the additional macroeco-
nomic factors on same-day and 1-day ahead predictions for the two best performing models
from the previous sections, the Black-Scholes and Carr and Wu models.

For this section of our paper we chose to analyse the Black-Scholes and Carr and Wu
models. The former because it is the benchmark model for option pricing while also per-
forming the best in the previous section and the latter because, in the previous section, our
NN found more success in correcting it than AHBS. We used the same-day and 1-day ahead
time horizons to test the inclusion of macroeconomic factors. Our four factors don’t vary
intra-day therefore an option will give the data of the form:
xi,t = (mi,t, τi,t, V IXt, INFt, 3Mt, 10Yt). This means on a given day all options share
the same value for each of the four macro-factors. If we use our approach from the previ-
ous section, of fitting a neural-network to each day it would be equivalent to including four
constants in our dataset. To capture the time-varying nature of these factors we decided to
train our NN on one single large dataset. In Table 4 we have the IVRMSEs for each of our
three equities and two chosen models, BS and CW, across the two time horizons. The NN3
column results are using the same methodology as the NN3+F columns, one non-parametric
fitting on the entire dataset.

Table 4: Comparison of 3 Levels of Model Complexity
Black-Scholes Carr and Wu

Horizon Ticker No NN NN3 NN3 + F No NN NN3 NN3 + F
Same-day Amazon 3.71% 1.87% 1.61% 3.90% 1.75% 1.60%

JPMorgan 1.80% 0.90% 0.80% 2.52% 1.41% 1.16%
Mircrosoft 2.85% 1.50% 1.19% 4.02% 2.41% 1.88%

1-day Amazon 4.55% 2.01% 1.67% 4.80% 2.07% 1.79%
JPMorgan 1.97% 1.05% 0.89% 2.75% 1.51% 1.22%
Mircrosoft 3.38% 1.89% 1.62% 4.43% 1.94% 1.43%

Across both time-horizons in our analysis, a NN3+F corrected model was the best per-
forming for all three companies. This suggests including the macro-economic factors can
aid the ability of the FFNN to correct a parametric model. The BS+NN3+F slightly outper-
forms CW+NN3+F but to a lesser degree compared to when the macro-economic featurs are
not included. These results have an important caveat, the nature of these factors means we
cannot apply the correction to each day independently, as all four factors don’t change on an
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intra-daily basis, and would not impact the correction. Therefore, depite the clear improve-
ment the factors provide, using them requires us to treat our data suboptimally and means
we actually obtain a higher IVRMSE than if we had not used them. It can simultaneously be
said that the factors are impactful at improving the correction but also that they require a less
effective handling of the data. The inclusion of the macro-economic features changes the
architecutre of our neural network. For NN3+F the architecture becomes as seen in Equa-
tion 20.

f(xi,t)
1×1

= A3
1×32

h̊[ A2
32×64

h̊( A1
64×128

h̊[ A0
128×5

× z0
5×1

+ b0
128×1

] + b1
64×1

) + b2
32×1

] + b3
1×1

(20)

with z0 = xi,t = [ϵp(mi,t, τi,t), V IXt, Inflationt, 3Mt, 10Yt] ∈ R5

5.1 Feature Importance

To identify which covariates are most important when modelling the implied volatility
surface and correcting our option pricing models, we use a simple notion of feature impor-
tance as used in Gu et al. (2020). We defined the importance of feature j as the increase in
the IVRMSE arising from setting all values of feature j to zero, measured as a percentage.
We then normalised all the features of our model such that the total feature importance adds
to 100%. Feature importance should be high for covariates that help predict IVS.

Both models closely agree on feature importance, determining model error and VIX are
the clear two most important features and that 3M and 10Y are rather unimportant. Model
error as expected is the most important feature with 45.6% and 47.8% importance for Black-
Scholes and Carr and Wu respectively. Combined with VIX they are responsible for close to
75% of variation in both models. The largest difference between the two models is that VIX
is 4.5% more important in Carr and Wu than in Black-Scholes (27.7% vs 23.2%). The low
feature importance of 3M and 10Y is consistent wit the fact they are highly correlated with
one another.
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Figure 8: Carr and Wu model+NN3+F Feature Importance

Figure 7: Black-Scholes model+NN3+F Feature Importance
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6 Conclusion

Our study builds upon the research conducted by Almeida et al., wherein we assess
the effectiveness of their two-step framework on individual US equities. Specifically, we
analyzed three highly liquid stocks representing diverse sectors: Amazon in e-commerce,
JPMorgan Chase & Co in finance, and Microsoft in technology. To begin, we constructed a
parametric model based on the observed implied volatility surface. Subsequently, we applied
this model to fit the pricing errors to a feedforward neural network. Our evaluation encom-
passed various models, including Black-Scholes, Ad-Hoc Black-Scholes, and Carr and Wu,
selected based on their closed form solution for volatility, as we focused on American-style
options. Our primary performance metric was out-of-sample implied volatility root mean
square error (IVRMSE), enabling comparison across models, prediction horizons, and equi-
ties. Notably, we found that the corrected models consistently outperformed the parametric
model, often significantly. Additionally, our analysis indicates the broader applicability of
the framework to individual equities, especially for large financial institutions engaged in
regular options trading for risk management purposes. For instance, institutions seeking to
mitigate downside equity risk through put options can make more accurate assessments us-
ing this framework compared to traditional parametric modeling. However, our findings,
while significant, fall short of industry-defining. Specifically, we observed less impressive
results for individual equities compared to the S&P 500. Our results suggest that the neural
network’s ability to enhance accuracy may be contingent upon the number of eligible op-
tions, limiting the framework’s effectiveness to larger companies. The inclusion of macroe-
conomic factors does improve performance but necessitates a sub-optimal data setup, as the
time-varying nature of these factors is not fully captured in the daily neural network refitting
process. We determined that the sacrifice in setup did not justify the marginal improvement
in performance, leading us to recommend excluding macro factors and refitting the neural
network daily. Our analysis revealed that relying solely on model-implied errors and daily
refitting of the neural network yields the best results. Furthermore, we underscored the im-
portance of the initial parametric model in determining the framework’s effectiveness, with
superior initial models yielding better results post-correction.

Upon comparison with the Almeida paper, we identified a shared emphasis on the sig-
nificance of the parametric model for predicting corrected models’ accuracy. While the
Almeida paper highlighted the universal approximation feature of neural networks, our re-
sults indicate a weaker manifestation of this feature, likely attributable to variations in daily
option quantities. In summary, our findings align with the Almeida paper but are compara-
tively less remarkable. Both studies observed an increase in IVRMSE with an extended time
horizon.

This paper lays the groundwork for several potential avenues for future exploration. Ini-
tial indications suggest its applicability may be restricted to large companies with numerous
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daily eligible options. It would be fascinating to explore how the framework performs with
companies that have fewer eligible options. Moreover, examining the framework’s viability
in live trading scenarios would offer valuable insights into its practical viability.
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The results in (Optimal Architecture) are for JPMorgan with same-day time horizon
with our chosen architecuture in bold.

Table 5: Assessment of Optimal FFNN Architecture by IVRMSE
Number of Hidden Layers

No NN Top Layer Size 1 2 3 4 5
1.71% 32 0.90% 0.74% 0.56% 0.61% 0.67%
1.71% 64 0.85% 0.70% 0.53% 0.51% 0.65%
1.71% 128 0.84% 0.67% 0.49% 0.54% 0.62%
1.71% 256 0.86% 0.69% 0.51% 0.56% 0.69%
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