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Abstract

This paper presents innovative advancements to time series forecasting through the exten-

sion of the Autoregressive Tree (ART) model to include exogenous variables, thus evolving it

into the Autoregressive Exogenous Tree (ARXT) model. The ART model, which combines

decision trees with autoregressive models at the leaf nodes, has been pivotal in handling

temporal dependencies within time series data. However, traditionally, it has only utilised

the target variable with up to ‘p’ lags to construct its predictive framework. This paper

contributes to this research by enabling the ART model to incorporate exogenous variables,

both in data splits and as supplementary variables within node models, enhancing the in-

terpretability and variance explanation of complex datasets. Furthermore, this paper delves

into hyperparameter re-tuning in the presence of concept drift, where the underlying data

distribution has changed. Utilising online changepoint detection and Bayesian optimisation,

the efficacy of updating hyperparameters sequentially is assessed, leveraging Bayesian priors

to inform the subsequent starting points and reduce computational costs. Empirical tests

on forecasting the S&P500 showed ARXT models outperforming AR models in Directional

Accuracy by up to 11%. ARXT’s integration of exogenous variables significantly improved

forecast precision. The tuning framework for ARXT, however, did not always enhance per-

formance, suggesting a need for refinement. The findings underscore the ARXT model’s

efficacy in leveraging exogenous variables for enhanced forecasting, marking a significant

advancement in econometric applications across diverse datasets.
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1 Introduction

The foundations set by Meek, Chickering and Heckerman (2002) have allowed econometricians to

use a new approach to forecasting time series. The Autoregressive Tree (ART) model represents

the combination of a decision tree with different autoregressive models at the leaf nodes. By

incorporating both features, this allows the decision trees to handle temporal dependencies in

time series data. The ART(p) gives a clear depiction of the different ‘p’ order autoregressive

models to be used for each split in the decision tree. Through this, an economist would easily

be able to see that a time series is likely to revert back strongly, if the previous value is very low

or have a low variance, in the case of previous values around zero. This reversal effect is proven

through the paper by Da, Liu and Schaumburg (2014). The model is then able to predict future

values using the relevant node of the decision tree in which the data at time t falls to.

Figure (1) ART(1) example

Note. The figure shows a figure from Meek et al. (2002), with a lag order, ‘p’, of 1 against a traditional AR(1)
model.

The ART models interpretability is clearly shown in Figure 1, with the different data char-

acteristics leading to distinctly different models from the ART(1) tree. However, the model only

uses the target variable with up to ‘p’ lags to make tree splits and construct the autoregress-

ive node models. In the years since the original ART(p) model, decision trees have evolved to

split on different features, build to ensembles and use a host of boosting methods in order to

efficiently make use of more elaborate datasets. This brings the first contribution of this

paper: Expand the ART(p) model to incorporate exogenous variables in the leaf splits and

as extra variables in node ARX models. This adaptation, named ARXT(p), while keeping the

advantages of the ART(p) model, gives clear data splits from which simple models are formed,

with extra variance being explained through the exogenous variables.

As with all machine learning models, the decision tree has multiple hyperparameters that

need to be tuned. Examples, such as the optimal minimum size and maximum depth can

have a big influence on the model outcomes (Probst, Wright & Boulesteix, 2019). Therefore,

the second contribution of this paper: Test the effectiveness of re-tuning hyperparameters
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when concept drift occurs in the data. Concept drift is when the underlying distribution of

the data changes, P (ys|xs) ̸= P (yt|xt) where P (xs) = P (xt). To test the effect of the change

in distribution, an Online Changepoint detection Algorithm by Adams and MacKay (2007) is

utilised to find the points in the data where the concept drift takes place. This algorithm

seamlessly fits into the model forecasting program through use of Bayesian prior distributions.

The hyperparameter training is done using the Bayesian optimisation process described in Snoek,

Larochelle and Adams (2012), where Bayesian priors are updated using an optimisation function

in order to sequentially tune the different hyperparameters. The advantage of using Bayesian

priors is that when re-tuning the model, the previous priors and parameters provide a starting

point from which the model can start, reducing the computational cost. Whereas the existing

concept drift literature focuses on re-training models such as Gama, Žliobaitė, Bifet, Pechenizkiy

and Bouchachia (2014), this paper looks at the improvement in forecasting when both hyper

and model parameters are re-trained. This allows models to reconsider hyperparameters, given

different data than that it was tuned with.

In order to test the our research questions, the models have been split up to include different

elements. This includes either re-tuning or re-training after changepoints, allowing exogenous

variables to determine split points and ignoring the changepoints completely. The effectiveness

of the models is considered through their RMSE and Directional Accuracy (DA) scores from

forecasting the S&P500 over a period of 16 years, from 2006. Eight additional variables have

been added as exogenous information, with both Log-Normalisation and Differencing of the

returns.

The RMSE values of the different models show that the ART model variants perform well

across the dataset, keeping a consistent score across different datasets. The ARXT models

without re-tuning or re-training, come second to the ART models in terms of the RMSE. When

the DA is considered, the ARXT models, both with and without exogenous variables in the

splits, without re-tuning or training achieved a DA of 60% throughout the data splits. This

is 11% higher than the benchmark AR models and 22% higher than the original ART model.

For the differenced data, the results are similar, with the ARXT train split model attaining the

highest RMSE by (work out percentages), and the DA scores again being higher for the ARXT

variants that are neither re-tuned nor re-trained. This is a good sign for the model, considering

its ability to forecast stock movements, which has applications to much more uses outside of

just financial time series.

While the performance of the ARXT model is good, the tuning framework proves not be as

effective, with either worse or significantly similar performance against their untuned or trained

counterparts. When considering the different split points, it is clear to see that the framework

poorly fits the new data, seeing as the last 600 data points at the point of the changepoint are

used. However, the framework set up is one that is easily adaptable and applicable to other

models. Given minor adjustments and models who have more influential hyperparameters, this

could make a large improvement to performance.

This introduction is followed by the relevant literature in Section 2. The methodology used

is defined in Section 3. In Section 4 the data used is explained. Section 5 presents the empirical

findings of the paper. Finally, Section 6 concludes the findings of the paper.
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2 Literature

The original book by Breiman (2017) introduced the concept of Classification and Regression

Trees, where regression trees are formed through a decision tree to predict continuous variables

based on feature values. This method’s relevance to our research lies in its foundational approach

to tree-based modeling, which informs our exploration of advanced tree structures and their

application in forecasting financial time series. Meek et al. (2002) adapt this approach by

integrating autoregressive models at the root nodes, enhancing the model’s ability to capture

temporal dependencies. This modification is particularly pertinent for our work in financial

forecasting, as it demonstrates the potential of combining tree-based models with time series

analysis to improve prediction accuracy.

The Bayesian Additive Regression Trees (BART) model, as introduced by (Chipman, George

& McCulloch, 2010), marks a significant departure from traditional Autoregressive Trees (ART)

through its ensemble approach and Bayesian statistical framework. Unlike ART models that

rely on a singular decision tree structure, BART employs a complex ensemble of decision trees,

each contributing to the final prediction through a Bayesian additive process. This methodo-

logy allows BART to capture intricate, nonlinear relationships between variables with a higher

accuracy and robustness against overfitting, leveraging the Markov chain Monte Carlo (MCMC)

algorithm to iteratively refine predictions. While the methodology in forming the trees in BART

is similar to the ART, there remains a distinct difference due to the less adaptable predictions

at the nodes

The additive nature of BART, combined with its capacity to integrate multiple endogen-

ous variables as demonstrated by Huber and Rossini (2022) in the Bayesian Additive Vector

Autoregressive Tree (BAVART) model, significantly enhances its applicability to complex data

structures like financial time series. This contrasts sharply with the more straightforward, but

less flexible, ART models. Although BART’s ensemble and Bayesian methodology introduce

challenges in interpretability, the model’s superior ability to model financial market dynamics,

characterized by volatility and nonlinearity,underscores its relevance to our research in advanced

statistical techniques for financial forecasting, emphasizing a critical trade-off between complex-

ity and interpretability.

On a similar track to the ART(p) model, many ensemble papers have proposed different ad-

aptations of the Random Forest by Breiman (2001). Tuncel and Baydogan (2018) propose their

adaptation through the Multivariate-Autoregressive Random Forest (mv-ARF) model. This

non-parametric, VAR-based approach is tailored to handle multivariate time series. Like the

ART(p) model, mv-ARF chooses different models based on collective decision-making. The

strength of mv-ARF lies in its ability to capture multivariate dependencies, although it can be

computationally intensive. Du, Gao, Suganthan and Wang (2022) add to the family of autore-

gressive forest models by using ten disparate models to create the Bayesian optimisation-based

dynamic ensemble (BODE) model. Dynamically adjusting the relative weighting by previous

predictions errors and tuning the hyperparameters using Bayesian theory offers adaptability.

However, the complexity of handling multiple models can be a drawback.

A key aspect of the ART model is its node Autoregressive (AR) models. The AR model is

fundamental to time series analysis, capturing temporal dependencies by expressing a variable’s
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current value as a linear combination of its past values. The AR model, extensively discussed

by (Box, Jenkins, Reinsel & Ljung, 2015), provides a robust framework for modeling and fore-

casting time series data, particularly where data points are closely time-correlated. Extending

this concept, the ARX model incorporates exogenous inputs, creating a more versatile tool for

multivariate time series analysis (Lütkepohl, 2005) and the incorporation of external factors into

time series prediction.

Another important aspect of this papers tree building process, are the split points used for

the tree building. The methods in D. M. Chickering, Meek and Rounthwaite (2001) address

the challenge of finding fair and representative split points. They propose a feature space of

8 different fragments in which the data is equally represented, to which they then take the

boundaries as the split points. This is critical to the splitting aspect of the tree building.

Thomas Bayes proposed and published his theorem on Bayesian statistics, Bayes (1763), to

provide an alternative perception into standard probability theory. Many of the previous models

make use of the principle, viewing parameters as random variables and estimating uncertainty

through priors. One application of Bayesian mathematics is hyperparameter tuning. Snoek et al.

(2012) introduce a Gaussian surrogate model to approximate the objective function, combined

with an acquisition function that would use Bayesian priors to improve model parameters until

a certain stopping criteria is met.

Following on from the Bayesian framework, this paper makes use of the Maximum a Posteriori

Probability (MAP) parameters in calculating the node ARX models parameters. Gauvain and

Lee (1994) introduce estimation of MAP parameters in the context of speech recognition, offering

insights into the effective application of Bayesian estimation techniques in complex, real-world

settings. Their methodology is relevant to any field where Bayesian approaches are employed for

parameter estimation, including econometrics and financial modeling. As an extension to the

original estimation methods, Heckerman and Geiger (2013) work on learning Bayesian networks

proved a significant advancement in probabilistic modeling for networks. They provided a rig-

orous approach for learning both the structure and parameters of Bayesian networks, through

analytical solutions, from which the application can be extended to tree structures.

Another focus of this paper is the behaviour of stock price time series. Many have shown

evidence of concept drift in financial time series (Tsymbal, 2004)(Cavalcante, Minku & Oliveira,

2016). In the paper by Gama et al. (2014), the different learning methods used to find and deal

with concept drift are investigated, with the revelation of reoccurring (through seasonality) or

predictable concept drift being a key finding. The survey indicates that an adaptive learning

process helps models significantly, with one example of an adaptive learning method being

Online Model Learning. Adams and MacKay (2007) propose a method to incorporate a Bayesian

distribution calculated from the last ‘changepoint’, a changepoint being an abrupt variations in

the generative parameters of a data sequence after concept drift. Research has also been done

into transfer learning, with tests performed across inductive, transductive and unsupervised

transfer learning (Pan & Yang, 2009). While transfer learning offers the potential for leveraging

knowledge across domains, it has shown sensitivity to the specific domains involved, sometimes

resulting in detrimental outcomes.

6



3 Methodology

The methodology starts by introducing the formulation for the ARXT model in Section 3.1.

This includes the Bayesian learning framework and the parameterisation of the leaf models.

This is followed by the tuning framework we set up, explaining the choices in the Bayesian

Hyperparameter Optimisation, Changepoint detection algorithm and how all aspects combine

into the final model in Section 3.2. Finally, the evaluation methods and models used to compare

the ARXT performance are explained in Section 3.3.

3.1 ARXT

3.1.1 Autoregressive Model

This section introduces the ARXT(p) model, a novel adaptation of the ART model introduced

by Meek et al. (2002). The model is based on a decision tree with different nodes formed as ARX

models with up to p lags. Each model has L leaves, each with their corresponding parameters

θ. This makes leaf formulation 1:

f(yt|yt−p, . . . , yt−1, zt−p, . . . , zt−1, θ) = N (m+

p∑
j=1

(βjyt−j +

Q∑
q=1

(γqjzq,t−j)), σ
2), (1)

with θ = (m, b1, . . . , bp, z11, . . . , zQp, σ
2) the model parameters and N (µ, σ2) the normal distri-

bution, with mean µ and variance σ2. The variable zqp, q = 1, . . . , Q, has been introduced as

the, with γqj , the parameters corresponding to the set of exogenous variables. For notational

convenience, a vector of all z at time t is written as zt in f . The model still remains linear and

normally distributed with mean µ and variance σ2. This leads to the model formulation 2:

f(yt|yt−p, . . . , yt−1, zt−p, . . . , zt−1, θ) =
L∏
i=1

fi(yt|yt−p, . . . , yt−1, zt−p, . . . , zt−1, θi)
ϕi (2)

=
L∏
i=1

N (mi +

p∑
j=1

(βijyt−j +

Q∑
q=1

(γiqjzq,t−j)), σ
2
i )

ϕi ,

with L the number of leaves, and ϕ a boolean in the case of the data falling to that specific leaf.

The data going to each leaf is determined through the tree structure.

This delineation of the ARX model allows the model to be specified to different sets of data

dependent on the characteristics. Da et al. (2014) show that there is a clear reversal effect after

big jumps. This would mean that a large drop would be more likely to see a positive return in

the next period and that could be accounted for.

3.1.2 Leaf structure

Meek et al. (2002) makes use of the Bayesian score approach to learning for the ART(p) model.

Considering S alternative model structures s1, . . . , sS , each with θs as their corresponding model

parameters. The uncertainty of each of the different structures, p(s) and p(θs|s), is combined

with the data, d, to find the posterior distributions p(s|d) and p(θs|d, s). The learning pro-
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cess selects the model with the highest posterior probability, calculated through the Bayesian

conditional probability formula:

p(s|d) = p(s)p(d|s)
p(d)

. (3)

Given that p(d) is assumed constant at the time of learning, p(s)p(d|s) can be taken as

the Bayesian score. This approach can now be applied to the likelihood of the data as defined

in equation 2. Meek et al. (2002) introduce a windowing approach to the data to reduce the

computational cost to one of learning a linear regression model instead of a multiple variable

regression. The windowing is applied to the data before model learning. For each sequences

y = (y1, . . . , yT ), the data is transformed as follows:

xi = (xi1, . . . , x
i
p+1), 1 < i < T − p, where xij = yi+j−1, (4)

and the same holds for the exogenous variables:

vi = (vi
1, . . . ,v

i
p+1), 1 < i < T − p, where vi

j = zi+j−1. (5)

The subsequent transformed data set is now called the length p transformation. This allows

equation 26 to be rewritten to:

p(yp+1, . . . , yT |y1, . . . , yp, zt−p, . . . , zt−1, θ, s) =
T∏

t=p+1

fi(xt|xt−p, . . . , xt−1,vt−p, . . . ,vt−1, θ, s),

(6)

where fi is the normal distribution corresponding to the linear regression li for the data falling

to split s, as in 2. This likelihood is the same as one for an ordinary regression model with

target xp+1 and regressors x1, . . . , xp,v1, . . . ,vp.

In order to make the model selections, the Bayesian score has to be calculated for each split.

This score is constructed by the product of all the leaf scores. These can also be seen as the

product of the prior probability of the leaf and the marginal likelihood that data falls to that

leaf:

Score(s) =
L∏
i=1

LeafScore(li), (7)

where:

LeafScore(li) = κp+2

∫ ∏
xt at li

fi(x
t
p+1|xt1, . . . , xtp,vt

1, . . . ,v
t
p, θi, s)p(θi, s)dθi, (8)

and xt at li refers to the set of data at time period t corresponding to the specific leaf. The

priori likelihood is given by p(s) = κ|θ| with 0 < κ ≤ 1. Meek et al. (2002) set κ to 0.1, this value

is canceled out in a later calculation. The last element, the parameter prior, is taken as the

traditional conjugate prior for a linear regression. This is also referred to as the normal-gamma

prior for θi.

The exact formulation of the leaf score is based on Maximum a Posteriori Probability (MAP)

parameters. So given the transformation to the windowing approach, the exogenous variables
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and the target variable are combined into the variable ai = [yi, zi1, . . . , ziQ]. The new variable

can be used to set up the following relationship:

p(xtp+1|xt1, . . . , xtp,vt
1, . . . ,v

t
p, θ, s) = N (m+

p∑
j=1

bjat−j , σ
2), t = 1, . . . , N, (9)

where:

m = µp+1 −
p∑

i=1

biµi, bj =

p∑
i=1

(W−1)p+1,i (((W
−1)p×p)−1)i,j , σ2 =

1

Wp+1,p+1
. (10)

The formulas that maximise p(d|θ, s), solved analytically by Heckerman and Geiger (2013)

in the revised version of their 1995 paper, can be given as follows:

µ̃ =
αµµ0 +NµN

αµ +N
, W̃−1 =

1

αW +N − (p+ 1)
WN , (11)

where:

WN = W0 + SN +
αµN

αµ +N
(µ0 − µ̄N )(µ0 − µ̄N )′, (12)

and

µ̄N =
1

N

N∑
t=1

at, SN =

N∑
t=1

(at − µ̄N )(at − µ̄N )′, (13)

with µ̃ and µ̄ being the analytical and sample µ, respectively. Furthermore, W0 = I, αw =

p+ 2 and αµ = p.

The advantage of having these analytical solutions for the MAP parameters is the huge

decrease in computational time. Traditionally, MAP parameters have to be found through

simulation, which in this papers case, would mean simulations would have to be run for all

possible different split points and parameter estimates. In Gauvain and Lee (1994), EMM

estimation is also considered as an effective method to estimate MAP parameters, but at a

much heavier computational cost than the direct calculation.

With these estimations and the assumptions from Heckerman and Geiger (2013), the mar-

ginal likelihood p(d|s) can be formulated as:

p(d|s) = π− (p+1)N
2 (

αµ

αµ +N
)2
c(p+ 1, αW +N)

c(p+ 1, αW )
|W0|

αW
2 |WN |

αW+N

2 , (14)

where

c(l, α) =

l∏
i=1

Γ(
α+ 1− i

2
). (15)

This leads to the final marginal likelihood being given as:

∫ N∏
t=1

p(xtp+1|xt1, . . . , xtp,vt
1, . . . ,v

t
p, θ, s)p(θi, s)dθi =

p(d|s)
p(d−|s)

, (16)

Here, d− is the windowed data set to X1, . . . , Xp, leaving out Xp+1 meaning µ0,W0 and αw get
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replaced by µ−
0 ,W

−
0 and α−

w . The parameters are fixed at µ0 = 0,W0 = I and αw = p + 2 for

both d and d−. These parameters are hence the assumptions needed for MAP parameters, this

could prove to not hold in some cases leading to slight misspecification in the parameters.

Due to the value of α in the c function being heavily dependant on N, the values can explode

when larger datasets being allocated to a certain split. This causes the value for the marginal

likelihood to go to infinity, therefore, to handle these cases of large N, an approximation for

p(d|s) is derived:

p(d|s) ≈ p(d|θ̂s, s)−
|θ|
2

log(N) =

(
αu

αu +N

) p+1
2

|W0|
αW
2 |WN |−

αW+N

2 − αW

2
log(N). (17)

The final aspect to consider is the different split points when applying the above formulations

to different splits. The same approach as in Meek et al. (2002) is used to define split points

using the methodology by D. Chickering, Meek and Rounthwaite (2001). They propose a space

of eight different equiprobable continuous regions, estimated from a normal distribution on the

data split. The boundaries of the different spaces are then given as the split points. This

paper uses eight different regions, leading to seven different boundaries and split points for each

variable. This is applied to all exogenous and target variables.

3.1.3 Model Training

This section combines the previous section’s algorithms to train the ARXT model. In the

training process, all of the available data is used in order to build the tree structure. As

will be further explained in Section 3.2.3, a lot of the training framework revolves around the

hyperparameters.

The ARXT uses four distinct hyperparameters to optimise performance. The first hyper-

parameter, denoted as p, specifies the maximum number of lags in our autoregressive (ARX)

models, effectively determining the extent of historical data points the model considers. The

second hyperparameter, max depth, is defined as the maximum number of consecutive child

nodes that can branch off from the initial node, shaping the tree’s complexity and depth.

The last two hyperparameters, max weight and min size, share a conceptual similarity. The

hyperparameter min size, sets the minimum data size required for a split within the model,

ensuring a sufficient amount of data in each segment. Meanwhile, max weight establishes the

upper limit for the weight of the training data a child node can carry, balancing the distribution

of data across the nodes.

The data splits with, which the ARXT model is made, are based on the standard 70 / 30

split. This allows the model to be trained for 70% of the data and then evaluated using the final

30% of the data. This is critical to the model evaluation in Section 3.2.3.
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Algorithm 1 ARXT(p) Model Training

1. Node Creation: Start with the root node that includes the entire dataset.

2. Feature Selection: At each node, seven different split points are offered for all target

and exogenous variables and their lags. The leaf scores are calculated as in (16). The split

with the highest split score is chosen as the next splitting point.

3. Recursive Splitting:

• For each split, repeat the above point to create new splitting points until a stopping

criteria has been met.

• Create child nodes and assign the respective subsets of data to these children.

• Recursively apply the process to each child node.

4. Stopping Criteria: Determine when to stop splitting. This can be based on:

• Maximum tree depth.

• Minimum number of samples in a node.

• Minimum weight of a sample.

5. Terminal Node: Once the stopping criteria are met, declare the node as a terminal

node (leaf node). Determine the model parameters for the terminal node using the MAP

parameters and go back to the branches for which the stopping criteria has not been met.

The computational costs of training the model come to O((p× (Q+1))2× p×Q×N). This

is assuming the MAP parameters cost O((p× (Q+ 1))2 × d) to calculate, and there are p lags,

with Q exogenous variables. This is only not linear in p and Q, which realistically will stay

relatively small, showing the advantages of training the model using MAP parameters and the

windowing approach.

3.2 Bayesian Tuning

3.2.1 Bayesian Hyperparameter Tuning

The first choice that has to be made in the Bayesian optimisation process is the prior distribution

on the optimisation functions. The most convenient and powerful distribution is a Gaussian

Process (GP) (Snoek et al., 2012). The GP is defined by the property that any finite set of N

points {zn ∈ X}Nn=1 induce a multivariate Gaussian distribution on RN . The GP offers the best

flexibility and capacity for modeling complex functions. This leads to the function f(x), drawn

from a GP prior, with the assumption that the observations are of the form {xn, yn}Nn=1 where

yn ∼ N (f(xn), ν), ν being the variance of the noise.

Secondly, the acquisition function has to be chosen. Again using the evidence from Snoek et
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al. (2012) the Expected Improvement function gives a good closed form option to use:

aEI(x, θ) = σ(x, θ)(γ(x)Φ(γ(x)) +N (γ(x); 0, 1)), (18)

where:

γ(x) =
f(xbest)− µ(x, θ)

σ(x, θ)
,

which subsequently has µ(x, θ) and σ2(x, θ), the predictive mean and variance functions respect-

ively, with f(xbest) = argminxn f(xn). The advantage of the Expected Improvement function

is its ability to both focus on areas of high uncertainty and feature spaces, with the highest

predicted improvement through closed form solutions. When µ(x, θ) is larger than f(xbest), this

implies an improvement in the new feature space. When the uncertainty, σ(x, θ), is high, this

also leads to the best predicted improvement.

The final aspect of the Bayesian Optimisation, is the optimisation function. This paper trains

the model, as in Subsection 3.1.3, with the following hyperparameters: p, max depth, min size,

max weight on the training set. In order to assess the models, the following two metrics are

applied to the forecasting results in the testing set:

Directional Accuracy =
1

N − 1

N−1∑
i=1

I (sign(yi+1 − yi) = sign(ŷi+1 − ŷi)) , (19)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (20)

Target = Directional Accuracy ∗ 2− RMSE ∗ 0.5. (21)

This combination of the two metrics is novel, with a focus more towards RMSE than directional

accuracy, scaling the two metrics to get a fair distribution between the two aspects. The stand-

ard of RMSE is most commonly used, but given the application to financial point forecasting,

directional accuracy is an important factor to consider. The expected improvement algorithm

will be evaluated using f(x) as Target in 21.

Algorithm 2 Bayesian Hyperparameter Tuning

1. Set a starting point to determine the initial f(xbest).

2. Calculate the expected improvement aEI(x, θ) across the feature space.

3. Calculate f(xn) chosen by the highest EI and set that to the value of f(xbest) if there is

an improvement.

4. Repeat steps 1 through 3 until the desired number of iterations has been reached.

The implementation is done through the package provided in Bayesian Optimization Contrib-

utors (2024).
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3.2.2 Bayesian Changepoint Detection

The previous subsection describes how this paper uses Bayesian optimisation in order to find

the best possible hyperparameters given a set of training data. Only the focus of this paper

does not stop there. Namely, the second research question is if re-tuning hyperparameters after

concept drift would significantly improve model performance.

There are many different ways to define concept drift. This paper decides to test for change-

points using the methodology in Adams and MacKay (2007). They propose the following al-

gorithm to find the changepoints in the target variable. This is done with an online approach,

meaning that the procedure is continually applied to new data. The online approach is essential

to this papers model and usability, while the algorithm is flexible in allowing users to apply their

own priors to the data, even if there is no information to be passed to the model. With this

ability to set priors, there is room for error as the model continually updates its distribution to

fit to the data.

For this algorithm, the same Gaussian distribution as in 3.2.1 is used as the prior distribution.

This choice is motivated by the robustness of the model and conjugacy properties. This means

the only priors that have to be defined are that of the mean and variance.

The Hazard function H(τ) plays a crucial role in the Bayesian Online Changepoint Detection

algorithm. It quantifies the probability of a changepoint occurring at time τ , given that no

changepoint has occurred until then. For a given run length τ , the Hazard function H(τ) is

defined as:

H(τ) =
Pgap(g = τ)∑∞
t=τ Pgap(g = t)

, (22)

where Pgap(g) is the probability distribution of the gaps between changepoints. A discrete expo-

nential (geometric) distribution with timescale λ is used, with which the memoryless property

can be exploited to simplify H(τ) to a constant 1/λ.

In order to start the process, the initial run length, r0, and hyperparameters, ν
(0.00)
1 and

χ
(0.00)
1 , have to be defined for the exponential distribution. Considering there is a chance that

either a changepoint happened right before the algorithm starts or that we have prior information

that could influence the run length. The starting conditions are defined by the normalised

survival function:

P (r0 = τ) =
1

Z
S(τ), (23)

where Z is a normalising constant and:

S(τ) =

∞∑
t=τ+1

Pgap(g = t). (24)

This leads to the online changepoint detection methodology, fully detailed in Appendix 3.

Where a constant stream of data, in our case next day returns, is passed. The model is altered

to return a boolean to the algorithm, if at any point a changepoint is detected and re-tuning

needs to occur.
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3.2.3 Tuning Framework

In order to effectively apply the methodology in Section 3.2 and Algorithm 3, a combined

approach is taken. The initial tuning is done over the training set, the first 1000 observations in

the time series. This gives a reasonable window in which the tuning can be done for the first 700

observations and the evaluation can be done out of sample on the remaining 300 observations.

The feature space is defined as follows: p ∈ [1, 20], max depth ∈ [10, 150], min size ∈ [1, 50],

max weight ∈ [0.01, 0.15]. The training does an initial search over 20 parameter spots and then

uses the expected improvement calculation to find next optima. Once a maxima has been found

this is stored as the optimum, only if an improved maxima is found will the initial optimum

be overwritten. This is done until convergence, defined as a marginal improvement of less than

0.001, is found.

Following the initial tuning, further tuning takes place after all subsequent changepoints.

Based on the initial tuning, the optimal parameters are used as a starting points for the fur-

ther training. This is defined by setting the optimisation bounds as : p ∈ [0.7 × p∗, 1.3 × p∗],

max depth ∈ [0.7×max depth∗, 1.3×max depth∗], min size ∈ [0.7×min size∗, 1.3×min size∗],

max weight ∈ [0.7 × max weight∗, 1.3 × max weight∗]. This narrows the search of the hyper-

parameters to a smaller range based on previous optimisation, thereby reducing the need for a

full tuning. Because of this, each re-tuning only uses an initial search of 10 iterations, followed

by however many iterations are needed to converge.

Once the re-tuning has finished, the model is subsequently fit to the new data, based on the

previous 600 observations.

3.3 Evaluation

3.3.1 Evaluation Models

In order to evaluate the effectiveness of the ARXT model, there are four different models con-

sidered. The first model is a step between the original ART model and the ARXT model. This is

known as the ARXT target model, where the only difference to the ARXT model defined above

being the splitting points. Whereas the ARXT model determines data splits based on the target

value and all the exogenous variables and their respective lags, the splitting on the exogenous

variables is left out for the ARXT target model. This means that the model training algorithm

(1) changes in step 3 to only allow splits on the variable we are forecasting. For clarity, the

model including exogenous splits is referred to as ARXT exog, and the new comparative model

is named ARXT target.

The second model used to evaluate the ARXT is the original ART model introduced by

Meek et al. (2002), provided by Nekoie (2024). The main difference is the conversion of the

ARX node models to the AR models, as the ART model is a piece-wise AR model, and only the

target variable is used in the model. This leads to the node equations to be defined as:

f(yt|yt−p, . . . , yt−1, θ) = N (m+

p∑
j=1

bjyt−j , σ
2), (25)

14



with θ = (m, b1, . . . , bp, σ
2) the model parameters and N (µ, σ2) the normal distribution with

mean µ and variance σ2.

Subsequently the model definition for the ART(p) can be written as:

f(yt|yt−p, . . . , yt−1, θ) =

L∏
i=1

fi(yt|yt−p, . . . , yt−1, θi)
ϕi =

L∏
i=1

N (mi +

p∑
j=1

bijyt−j , σ
2
i )

ϕi , (26)

with L the number of leaves, each with their corresponding θi = (mi, bi1, . . . , bip, σ
2). ϕ is again

a boolean to determine if the tree is used for each leaf.

As this paper introduces ARX models into the nodes as opposed to the AR models, we use

both as benchmarks to compare the performance to. Both models use least squares to determine

the model parameters. The same amount of lags, p, are used for both models.

The AR model with p lags can be written as:

yt = α+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt, (27)

where ϕi for i = 1, . . . , p are the coefficients that measure the impact of the i-th lagged value on

the current value and εt is the error term.

The ARX(p) model (Lütkepohl, 2005) extends the AR model by incorporating external, or

exogenous, variables. Therefore, the ARX(p) model with k exogenous variables is represented

as:

yt = α+ β1x1,t + β2x2,t + · · ·+ βkxk,t + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt, (28)

where x1,t, . . . , xk,t represent the exogenous variables, with their corresponding lags, and β1, . . . , βk

are coefficients for each exogenous variable.

The above models are used to evaluate the first contribution of this paper, the novel ARXT

model. In order to test the second contribution, the improvement from re-tuning the model after

concept drift is found, further alterations are made. These changes are to the tuning framework

in Section 3.2.3. Instead of re-tuning the model at every changepoint, one alternative is to only

retrain the model. Secondly, the changepoints are not considered and the initial model is used

to forecast the time series from the beginning. These alterations are applied to the ARXT exog,

ARXT target and ART model. An overview of all models models, with their different features

and subsequent abbreviations is given in Table 1.
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Table (1) Overview of Different Models Evaluated

Model ARXT ART ARX AR Exog Split Initial Tuning Re-training Re-tuning

ARXT x tu x x x x x

ARXT x tr x x x x

ARXT x x x x

ARXT t tu x x x x

ARXT t tr x x x

ARXT t x x

ART tu x x x x

ART tr x x x

ART x x

ARX tr x x

ARX x

AR x

3.3.2 Evaluation Methods

In order to evaluate the performance of the models, two main metrics are used. The first is the

directional accuracy, as in equation 19. This metric calculates the number of times the model

correctly predicts the direction of the next movement. This is important when considering one

step ahead forecasts as the direction can influence investing decisions made using the model.

The second metric RMSE, as defined in 20, is an average over all squared errors. This efficiently

shows the absolute forecasting power of each model variation. Although the target function in

3.2.1 is a combination of the two, we present the results separately.

The Diebold Mariano test, as given by Diebold and Mariano (2002), is used to measure the

significance of the improvement over the benchmark. The Diebold-Mariano (DM) test statistic

is computed as follows:

DM =
d√
σ̂2

T

, (29)

where d is the average of the pairwise forecast error differentials between two competing mod-

els over T forecast horizons, σ̂2 is an estimate of the long-run variance of the forecast error

differentials and T is the number of forecasts.

The test is used to determine if the difference in forecast accuracy between two models is

statistically significant. A large absolute value of the DM statistic indicates that one model

has significantly higher predictive accuracy than the other. This is again used to compare the

effectiveness of models to a benchmark and to assess the improvement of the re-tuning after

changepoints.

All the models, evaluation methods and code can be found on the repository: https://

github.com/TiesHRL/DyART.
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4 Data

Three main indices are to be used: S&P 500, NASDAQ and the DJI. The forecasting will be

on the S&P 500, with the other two being used as exogenous variables. Additionally, three

further financial indicators: US inflation, unemployment and FOREX rates are used to give an

impression of the global economy. The final indicator is the volatility measure, the VIX.

For inflation, we use a proxy in order to get daily data, like the stock return data. For

this, a measure of expected inflation derived from 10-Year Treasury Constant Maturity Se-

curities (BC 10YEAR) and 10-Year Treasury Inflation-Indexed Constant Maturity Securities

(TC 10YEAR) is used. The latest value implies what market participants expect inflation to be

in the next 10 years, on average. This is obtained from FRED (2023).

As unemployment figures are also only reported on a monthly basis, another proxy is used

for this. The jobless claims, directly correlated to unemployment figures, poses as the effective

proxy. This data is weekly, but can reasonably be extrapolated to daily data. A rolling 4 week

average of the jobless claims is taken, with interpolation used to transform the weekly data into

daily data. This is also taken from FRED (2023).

All data is subsequently transformed to returns through the formula: ∆%xt =
xt−xt−1

xt−1
. This

allows the model assumptions in Equation 14 to hold.

Table (2) Descriptive statistics of raw returns

S&P500 DJI NASDAQ EURUSD JPYUSD GBPUSD VIX INFLATION ICSA

Mean 0.04 0.03 0.05 0.04 0.00 0.03 0.26 0.14 0.02

Median 0.04 0.03 0.06 0.00 -0.01 0.01 -0.34 0.00 -0.06

Maximum 11.58 11.37 11.81 25.01 18.35 37.47 115.60 380.00 283.73

Minimum -11.98 -12.93 -12.32 -17.95 -15.03 -18.44 -29.57 -90.00 -8.26

Std. Dev. 1.19 1.13 1.35 2.73 0.73 2.80 7.55 6.80 4.16

Skewness -0.25 -0.15 -0.21 0.74 1.86 2.33 2.12 37.45 61.45

Kurtosis 16.03 18.89 10.60 14.64 126.47 32.83 20.25 1979.88 4162.01

Jarque-Bera 36954 54934 12610 29933 3317109 198161 68575 8.51E+08 3.76+09

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

As seen from the results of the Jarque-Bera tests and the means, the data is not normally dis-

tributed. This is a problem for the AR(X(T)) model due to some of the underlying assumptions.

For this reason, two different approaches are considered. The first approach is Log-Normalising

the data. This can be done through the simple formula: xLN = ln(1 + xi)
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Table (3) Descriptive statistics of Log-Normalised data

S&P500 DJI NASDAQ EURUSD JPYUSD GBPUSD VIX INFLATION ICSA

Mean 0.03 0.03 0.04 0.00 0.00 -0.01 -0.01 0.01 -0.01

Median 0.04 0.03 0.06 0.00 -0.01 0.01 -0.34 0.00 -0.06

Maximum 10.96 10.76 11.16 22.32 16.85 31.82 76.82 156.86 134.48

Minimum -12.77 -13.84 -13.15 -19.78 -16.29 -20.38 -35.06 -230.26 -8.62

Std. Dev. 1.20 1.14 1.35 2.71 0.73 2.74 7.17 5.17 2.24

Skewness -0.51 -0.46 -0.41 0.23 0.57 1.35 1.07 -10.02 43.26

Kurtosis 16.30 19.23 10.86 13.30 118.11 24.87 9.81 969.80 2501.23

Jarque-Bera 38690 57409 13558 23098 2880795 105527 11068 2.03E+08 1.36E+09

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The values in this table show that the data has a lot more normal properties, but is far from

normal. However, for our model assumptions this is sufficient as all they require is a zero mean

and standard deviation of one, which the relevant predictors give. This approach however, does

not consider the stationarity of the data. For this, a unit root test can be used on our target

time series, S&P 500, to test for non stationarity. The Augmented Dickey-Fuller test by Fuller

(1979) is used, resulting in a test statistic of -82.24. Considering this is tested against the null

hypothesis of non-stationarity and a critical value of -2.86 at the 5% level, the data is clearly

stationary.

As an alternative approach, differencing is also used for the data: ∆yt = yt − yt−1. This

simple transformation leads to the following data:

Table (4) Descriptive statistics of Differenced data

S&P500 DJI NASDAQ EURUSD JPYUSD GBPUSD VIX INFLATION ICSA

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Median -0.06 -0.05 -0.07 0.02 0.02 -0.01 0.40 0.00 0.00

Maximum 18.80 19.35 18.78 32.57 33.38 49.38 87.09 355.00 280.15

Minimum -21.27 -22.29 -21.67 -24.94 -18.93 -38.06 -135.27 -346.67 -247.21

Std. Dev. 1.79 1.70 2.00 4.08 1.13 4.18 11.09 9.00 5.27

Skewness 0.49 0.45 0.30 0.10 4.28 0.65 -0.64 1.28 8.98

Kurtosis 19.84 23.54 13.96 10.26 190.16 22.56 13.26 974.95 2459.23

Jarque-Bera 61842 91891 26186 11467 7628821 83518 23216 2.05E+08 1.31E+09

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

By using a different approach, we are able to test the robustness of the data to different

characteristics, while keeping to the model assumptions.

Given a time period of 20 years, January 2003 to December 2022, this leads to 5218 observa-

tions for the raw and Log-Normalised data and 5217 points for the differenced data. All of the

necessary data can be collected using the appropriate tickers and the use of the Yahoo Finance

API (finance.yahoo.com) or through the FRED (2023).
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5 Results

From the changepoint detection algorithm explained in Section 3.2.2, Figure 2 was generated.

The grey shading shows the likelihood of the underlying distribution of the data being the same

as t − 1. This can also be interpreted as a darker shading meaning a higher chance of a run

length y at time t. As shown in Figure 2, this leads to triangular shaped shadings, showing the

different run lengths,and the probability of them occurring. The top of these triangles are darker

indicating the most probable run length at that time period. This is displayed under a depiction

of the log normalised returns throughout the entire forecasting period. For the points where

the probability of a changepoint occurring being maximal, over 0.9 in our case, red dotted lines

are shown. With the exception of two changepoints, these lines are all found at the end of the

shaded triangles. These two exceptions are found where the probability of the run continuing is

lower than a changepoint occurring, causing the changepoints to be found in the middle of the

shaded triangles. For the second changepoint, there is a clear darker shading at the bottom of

the larger triangle, which is why the algorithm determines that a changepoint at that point is

more probable than continuing the run.

5.1 Changepoint Detection

Figure (2) Results From Changepoint Detection Algorithm

Note. This figure is split into two parts. The top figure is the stock returns across the time series. The bottom

figure shows the changepoint detection. The y axis is the run length plotted against time. The darker shading

shows a higher probability of a run length of that magnitude at that time. The red dotted lines are plotted at

the points where changepoints are found and drawn across to the top figure.

Looking at both the top and bottom plot, it is easy to see why the changepoints for the different

sections are chosen. High periods of volatility in the data change the behaviour of the returns,

which in turn should be considered when using our market models. Each of the points accurately

reflect external influences to the S&P 500, as detailed below:

1. 2008-09-19: 2008 global financial crisis. Major financial institutions were failing, and there

was extreme volatility in global markets. The U.S. government proposed a significant

bailout plan for banks around this time, which likely caused shifts in market dynamics
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and the reason for the changepoint to be chosen later in the extensive global financial

crisis.

2. 2010-05-11: European sovereign debt crisis. Greece was particularly affected, and there

were concerns about the stability of the Eurozone. These international events likely influ-

enced the U.S. stock market, as investors reacted to the uncertainty in Europe.

3. 2011-08-10: Standard & Poor’s downgraded the United States’ credit rating from AAA

to AA+ for the first time, citing concerns about the rising debt burden and the political

environment. This was a significant event, leading to increased market volatility.

4. 2015-08-27: A period of significant volatility in the global markets, partly due to concerns

about the Chinese economy. China’s stock market experienced a major crash in mid-

2015, leading to global repercussions, as shown in the increased volatility in an otherwise

relatively stable period of 9 years.

5. 2018-12-27: A sharp downturn in the stock market, attributed to various factors including

trade tensions between the U.S. and China, concerns about global economic slowdown,

and the Federal Reserve’s interest rate hikes.

6. 2020-03-03: The onset of the COVID-19 pandemic. In early 2020, as the severity of

the pandemic became clear, global markets experienced significant declines due to the

uncertainty and expected economic impact.

7. 2022-11-11: Concerns over inflation, rising interest rates, geopolitical tensions, and the

ongoing impact of the COVID-19 pandemic. While markets recovered in the years after

the initial pandemic, this was seen as a period of correction.

Table (5) Data Characteristics after splitting data

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8

count 491 427 326 1056 870 308 703 36
mean -0.03 -0.01 0.00 0.05 0.03 0.07 0.04 -0.08
std 1.16 2.24 1.13 0.92 0.84 0.88 1.62 1.13
min -4.83 -9.47 -6.90 -4.56 -4.18 -4.52 -12.77 -2.52
max 4.24 10.96 4.63 4.53 4.84 4.50 8.97 3.05

Note. The table shows key statistics from all different splits in the Log-Normalised data chosen by the change-
points.

Table 5 shows the different characteristics of the data after defining the different splits. The

returns demonstrate varying data counts across splits, with Split 4 containing the largest dataset

(1056 data points) and Split 8 the smallest (36 data points), coming to an average of 527 points

per split. For the Log-Normalised returns, the mean values are relatively close to zero, with some

splits like Split 6 (0.07) and Split 8 (-0.08) showing slight deviations, indicative of the subtle but

distinct impacts of the respective market events on average returns. The standard deviation is

the most distinctive difference across the splits. Notably, Split 2 has a higher standard deviation

(2.24), potentially mirroring the market turmoil during the European sovereign debt crisis. The

range of returns, captured by the minimum and maximum values, also varies significantly, with
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extreme values like in Split 7 (-12.77, 8.97) likely reflecting the market’s response to events such

as the late 2018 downturn or the beginning of the corona pandemic.

These results show the ability of the changepoint algorithm to spot changes in the underlying

distribution of the data. These all clearly align with real life events, leading to seven points where

the re-tuning and re-training framework can be applied to. Even if the effect of the re-tuning is

not evident these results can be of use to explain different model performances across different

splits, with clear explanations to the behaviour of the market through those periods.

5.2 Hyperparameter Tuning

Figure 3 presents a comprehensive visualisation of the optimisation landscape for our hyperpara-

meters. The line plots depict the relationship between the model’s performance metric and the

respective hyperparameters. The series of contour plots, under the diagonal, offer insight into

the exploration between pairs of hyperparameters. These heatmaps are colour-coded to repres-

ent different performance levels, with lighter tones indicating superior model performance. The

red crosses mark the final outcome of specific hyperparameter combinations tested during the

optimisation process.

Figure (3) Bayesian Dependence Plot ARXT Log-Normalised

Note. The figure shows the cross dependence of each hyperparameter on each other and the respective partial
dependence to the target metric for the initial tuning of the ARXT model with Log-Normalised data. The target
variable is reversed in this plot.

Looking more sharply into the meaning of the Figure, we see for the min size, max depth

and max weight, ring shaped contours. These are consistent across all three and contrast starkly

to the lines found in the the bottom row, corresponding to p. This can be explained by the

partial dependence plots, as seen in the Figure, the only non horizontal partial dependence is

that of p. This indicates that the effect of changing the other hyperparameters is going to be
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minimal, yet there is still a correlation between higher values of the target function and certain

parameter pairs, leading to the clear contour lines. The areas with lighter shading should be

more populated than the rest considering Algorithm 2 focuses on areas of maximal improvement.

The darker shaded areas are also explored, yet to a lesser extent as it is often the case that the

algorithm thinks that there is still a possibility of improvement in certain areas.

When the results in Figure 4 are considered, a big difference is seen to that of the Log-

Normalised data. Instead of the much clearer congregation of the parameters, the spread is

much greater. This is due to the tuning process being less clear on the optimisation across

different feature spaces. The rings seen in the Log-Normalised plot are reversed in this case, as

the algorithm finds clear areas where the optimum is not found. Again the partial dependence

on p is much more significant than that of the other hyperparameters.

Figure B2 gives an insight into the simpler ART model, given that it does not have the

additional parameter of max weight. Similar results are again seen, with clear contouring on the

relative dependence between max weight and min size, leading to a more distinct clustering of

parameters for the Log-Normalised dataset. Again the importance of p over the rest is evident

by the partial dependence plots.

Figure (4) Bayesian Dependence Plot ARXT Differenced

Note. The figure shows the cross dependence of each hyperparameter on each other and the respective partial

dependence to the target metric. for the initial tuning of the ARXT model with Log-Normalised data.

Having seen the specific hyperparameters chosen and their optimums, it is interesting to see

the development of the model performance over iterations. In Figure 5, the learning curves for

the two datasets are given. Here the development of the target metric, as defined in equation

21, is plotted against the iterations of the initial hyperparameter tuning. This is done for the

ARXT exog, ARXT train and ART models.

As we are looking to maximise the target metric, the initial search of 20 iterations gives an
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optimum of 0.76 which is then not improved upon by the further iterations, with the closest

being 0.73. As there are no improvements found over the first optima, the corresponding hy-

perparameters are found to be: max depth = 37, max weight = 0.06, min size = 35, p = 14.

Looking at the learning curve for the ARXT t model, there are similar properties, with a max-

imum found at the second initial search. This same maximum is found again, with the only

constant hyperparameter across the maxima being p. This leads to results of: max depth =

68, max weight = 0.11, min size = 1, p = 7. The model learning curve also shows how the

addition of exogenous variables in the split decisions attains slightly forecasting results for the

out of sample test with which the target metric is decided. As for the ART model, clearly higher

results are attained in terms of the target metric. The optimum is found on the 11th iteration

with a corresponding metric of 0.95 and parameters max depth = 145, min size = 32, p = 2.

Figure (5) Learning Rates for ARXT

Note. The Figure shows the different learning rates for the tuned and trained variations of the ARXT x and t
model. The left figure gives the learning rate for the Log-Normalised data and the right gives the learning rate
for the Differenced data.

The behaviour of the learning curves for the Differenced data exhibits similar properties.

The maxima for ARXT x is found at the first iteration, with the deviations to the hyperpara-

meters proving not to be effective in improving the results of the parameters. The optimal

hyperparameters chosen are: max depth = 36, max weight = 0.06, min size = 35, p = 14. For

the ARXT t model a slightly higher optima is seen, with max depth = 68, max weight = 0.11,

min size = 1, p = 7. Again the ART model attains a higher metric with results of max depth =

11, min size = 26, p = 10, corresponding to a optima of 0.96.

Table (6) Lengths of re-tunings

Log-Normalised Differenced
Split ARXT x ARXT t ART ARXT x ARXT t ART

2 16 15 13 17 16 13
3 14 13 12 19 13 15
4 15 14 11 12 16 15
5 12 17 11 15 12 15
6 17 17 13 14 16 12
7 12 15 10 15 15 13
8 13 17 10 13 15 14

Note. This Table presents the different iterations needed for each model, for each dataset across each split.
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While the actual target scores are presented above, it is also of interest to look into the

number of iterations required to converge. Figure 5 shows how the ART model only needs 27

and 28 iterations to converge, whereas the ARXT models vary a lot more in the number of

iterations. This ranges from 24 to 33. There are more hyperparameters to search through, even

if the partial dependence of the parameters outside of p are minimal. Table 6 gives the number

of iterations needed for the re-tunings with both Differenced and Log-Normalised datasets. On

average the number of iterations needed for the Log-Normalised data is less than that of the

Differenced data by one iteration. This goes as well for the spread of the Differenced data,

showing that the data is harder to fit and there is more room for the model to improve its

hyperparameters.

This section concludes the hyperparameter tuning through the methods introduced in Section

3.2. Of the hyperparameters used, the only one with a large effect is the value p. So when

testing the effectiveness of the improvement from tuning it should be considered that this tuning

framework may be more effective for a deep learning model such as a Neural Network, where

the partial dependence of each hyperparameter is higher. This sections results hint at the

performance of the different models, further evaluation and testing on the framework is given in

the following section.

5.3 Model Forecasting

5.3.1 Full Dataset

For this results section, the table in Section 3.3.1 displays the different methods tested for the

the data. There are eleven different methods, of which six are are different versions of this papers

ARXT model, allowing for the addition of exogenous variables in splits and the effectiveness of

re-tuning or re-training the model. The performance of the models is considered through the

Root Mean Squared Error (RMSE), Directional Accuracy (DA) and improvement with respect

to the AR(p) model, tested by the Diebold Mariano (DM) test.

The top four lines of Table 7 present the forecast results of all eleven models over the full

forecasting period. The ARXT models exhibit varied performance, their relative RMSE values

range from 0.08 to 0.22, while the ART models show slightly lower RMSE values, indicating a

better fit with values of -0.04 to 0.35. Notably, the untouched ART model, with a relative RMSE

of -0.07, shows an even stronger fit. In terms of Directional Accuracy (DA) with normalised

data, the ART models, after tuning and re-training, do not consistently outperform the AR

model, with relative DA’s as low as -0.11. The ARXT models with exogenous variables (ARXT

x) and target (ARXT t) variations have relative DA scores spanning from 0.02 to 0.17, with the

highest DA of 0.17 belonging to the base ART train model. This shows that while the RMSE

may not necessarily be better than that of the AR model, the ARXT models are able to leverage

information better in predicting the direction of price changes. The ARX models are evidently

affected by noise too much by the results, with both variants underperforming against the rest

of the models. This could also be due to the Least Squares estimation used in both the ARX

and AR models.

When examining the differenced dataset, the relative RMSE for ARXT models show a signi-

ficant spread from -0.31 to 0.11, while the ART models maintain a smaller range of -0.15 to -0.18.
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This may indicate a greater consistency in the ART forecasts models compared to the ARXT

variants. The DA scores for the ART model range from -0.01 to 0.07, which is comparable to

or worse than the ARXT models, signifying reliable predictive performance. Again, it can be

seen that the models that have not been retuned or trained after changepoints seem to perform

better in forecasting accuracy and direction. The ARX model underperforms even more when

applied to the differenced dataset with the lowest RMSE and DA of all the models.

The last two lines of Table 7 details the Diebold-Mariano (DM) test statistics, evaluating the

forecasting accuracy of the models against the benchmark AR model. The Normalised DM and

Differenced DM values for the ARXT models range dramatically, with some models showing

negative values indicating improvement relative to the AR model, and others showing high

positive values, particularly in normalised data, suggesting improved performance. Focusing on

the normalised data, the ARXT models all underperform relative to the AR model, with only

the ARXT t model being seen as statistically similar. When regarding the differenced data, all

ARXT models are either statistically similar or have better performance than the AR model, a

reflection of the RMSE results. For both datasets, the ART model exhibits consistently negative

DM values, reflecting a robustness to different datasets. The ARX models show very positive

DM statistics, especially in differenced data, with values around -1.33 to -6.72, pointing to a

substantial deviation from the AR model’s performance.

These findings suggest that while the ARXT models have some strengths, particularly in

directional accuracy, the AR model generally provides a robust baseline. The variability in the

ARXT models’ performance across different data transformations underscores the complexity of

model selection for forecasting purposes. The second conclusion that can be drawn from these

forecasting results is the initial sign of better performance of the models without re-tuning and

training.
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Table (7) Forecast Results RMSE and Directional Accuracy Full Dataset Log-Normalised and Differenced data

ARXT x tu ARXT x tr ARXT x ARXT t tu ARXT t tr ARXT t ART tu ART tr ART ARX tr ARX

Norm RMSE 0.20 0.20 0.08 0.21 0.22 0.03 -0.04 -0.05 -0.07 0.35 0.29
Norm DA 0.02 0.03 0.08 0.02 0.00 0.11 -0.11 -0.12 -0.11 -0.15 -0.14
Diff RMSE -0.01 0.01 -0.31 0.11 0.00 -0.34 -0.16 -0.15 -0.18 0.83 0.75
Diff DA 0.02 0.02 0.14 0.01 -0.01 0.17 0.00 -0.01 0.07 -0.31 -0.31
Norm DM 3.60 (0.00) 3.87 (0.00) 2.20 (0.03) 4.56 (0.00) 3.61 (0.00) 0.88 (0.38) -1.33 (0.18) -1.68 (0.09) -2.44 (0.01) 6.06 (0.00) 5.29 (0.00)
Diff DM -0.26 (0.80) 0.26 (0.79) -8.99 (0.00) 2.49 (0.01) 0.07 (0.94) -9.40 (0.00) -5.48 (0.00) -5.26 (0.00) -6.72 (0.00) 10.92 (0.00) 10.81 (0.00)

Note. The top four lines of the table show the relative RMSE and Directional accuracy compared to the AR model for the entire forecasting period. The best performers (to
4 d.p.) for each metric are given in bold. The last two lines give the results from the Diebold Mariano tests, using the AR(p) model as a benchmark. The values are the test
statistic from the test with the corresponding p-value in brackets. If the respective model is significantly similar to the AR(p) at the 5% level, then this is indicated in bold
text.
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5.3.2 Split Dataset

In the previous section the results show a superiority of the ART models and the ARXT models

without tuning or training. The performance is further evaluated by looking into the results

through the different splits. To start, the different RMSE values for the models is plotted in

Figure 6. This gives a quick overview of the performance across the different splits.

Figure (6) RMSE across splits

Note. This figure is split into two parts. The left plots all the different RMSE values for the different models
across all splits with Log-Normalised data, while the right does the same for the Differenced data.

Differing behaviour is clear across the samples, with a bigger range for the AR model com-

pared to the rest. Looking at the left Figure of 6, the results from Table 7 can be deciphered.

The ART models give a consistent RMSE across the splits with slight deviations after tuning and

training. Conversely, the ARXT models have a much larger range of results, the same starting

points diverging majorly throughout the dataset. Looking closer into the ARXT models, the

tuned and trained models see a distinct increase in performance across splits 3 to 6, this can be

explained by the lower volatility across those splits. The same holds for the AR model, with an

RMSE as low as 1.1 for split 5.

When considering the differenced data, a similar patter of the performance is seen across

the models. Across the board, models have aligned performance for the different splits, only

differing in magnitude, regardless of the data processing method. Narrowing our focus onto the

best performers, the raw ARXT t and ARXT x models show how they consistently beat all

other models, with the exception of splits 4 through 6 to the AR model. This benchmark AR

model is comparatively worse than for the normalised data, with big jumps seen in the second

and seventh split. The ART models again perform well, slightly worse than the ARXT t and

ARXT x model, and show consistency across different data sections.

Looking into the directional accuracy scores of all models in Table C1, there is a distinct

drop in the scores from the second split, with the exception of the ARXT t and ARXT x

models. These keep a DA score above 0.55 up to the last split, which only has 36 values. For

the differenced data, in Table C2, a similar pattern is again seen. The untuned and untrained

models keeping a consistently high score across the splits, while the tuning and training has an

adverse effect.

In Tables C1 and C2 the above is again seen. A clear positive begin from the ARXT t

and ARXT x models, with the remaining splits having either significantly better results for the

remaining splits or significantly similar results to the benchmark AR model. The differenced

data reflects the comparatively worse AR model, with results significantly close to the ARXT
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tu and ARXT tr models for both variants. The ART model see’s very similar results to the AR

model for all variants in the normalised dataset, with very negative values in the differenced

data, up to the last two splits.

From the results in this section so far, we can clearly see a sensitivity to the changing

distribution of the data. This could be due to the way that the models are retrained. The model

looks at the past 600 observations before the changepoint, when training for the next split of

data. This indicates that a sub sample of the data under the new distribution should be used

to train the model again to fully encapsulate the effects we search for. However, it is positive

to see the ability of the two ARXT models leveraging the exogenous variables, in its ability to

predict correct price changes better than its simpler variant and the benchmark models.

5.3.3 re-tuning evaluation

In order to effectively analyse the effect of the hyperparameter tuning and training after change-

points take place, a further test is taken in which each retuned and retrained model is compared

to its model without extra training/tuning. In Table 8, the Diebold Mariano test is used to test

for significant difference in forecasts, with the first split being ignored as the models have not

been retuned or trained at that point. For the full dataset, none of the retuned or retrained mod-

els show improvement, as seen in previous sections. However, when looking into the individual

splits we see either significant similarity, weighing to improvement, or negative score on the

splits 4 through 6 in the ARXT x model. For the ARXT t model, the effectiveness of re-tuning

is not seen, with only split 4 and 6 giving negative results, even if the re-training model shows

significant similarity from split 4. When considering the ART model, a model which performed

slightly worse than the untuned and untrained ARXT variants, improvements can be seen from

the first re-tuning. It is clear to see here how the re-tuning has less of an effect as both the tuned

and trained models result in the same statistics for all but the last three splits. This is due to

the same hyperparameters being chosen and both models going through the same re-training.

As for the results themselves, the effectiveness varies again, with the third split suffering from

bad training data.

Considering Table 8’s counterpart, Table B5 in the Appendix , we see that the effectiveness

of re-tuning is negative across the board. Only in two splits, 2 and 3, is there an improvement

seen by the ART model. This shows how the re-tuning is not holding up to the differenced data.

Overall, the results show how the re-tuning and re-training of the model is most effective

when we don’t see big variations in the data. This effect is converse when the methodology

is applied to differenced data, and the method of re-tuning should be considered. This does

not take away from the results of the ARXT x and ARXT t models, given their superior DA

scores, robust over different data sets, which is very useful to people looking to use the model in

predicting financial movements. Given more testing into the re-tuning framework, these results

could also be seen to be enhanced further
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Table (8) Relative Results Diebold Mariano Test Log-Normalised

ARXT x tu ARXT x tr ARXT t tu ARXT t tr ART tu ART tr

full 2.11 (0.04) 2.42 (0.02) 3.27 (0.00) 3.17 (0.00) 1.82 (0.07) 2.66 (0.01)
2 2.16 (0.03) 2.98 (0.00) 1.06 (0.29) 1.96 (0.05) -1.06 (0.29) -1.06 (0.29)
3 2.74 (0.01) 2.82 (0.01) 3.98 (0.00) 4.49 (0.00) 2.14 (0.03) 2.14 (0.03)
4 -1.86 (0.06) -2.67 (0.01) -0.76 (0.45) 1.18 (0.24) -1.63 (0.10) -1.63 (0.10)
5 -1.49 (0.14) 2.20 (0.03) 3.59 (0.00) 1.85 (0.06) -0.02 (0.98) -0.02 (0.98)
6 -0.72 (0.47) -0.72 (0.47) -1.24 (0.22) -0.72 (0.47) 2.58 (0.01) -0.46 (0.65)
7 1.01 (0.31) 0.04 (0.97) 2.17 (0.03) 1.34 (0.18) 1.52 (0.13) 2.83 (0.00)
8 0.04 (0.97) -0.16 (0.87) 2.62 (0.01) 0.57 (0.57) 0.86 (0.39) -0.98 (0.34)

Note. The Table shows the results from the Diebold Mariano tests, using the respective models without re-tuning
or re-training as a benchmark for the different splits and the full dataset. The values are the test statistic from the
Diebold Mariano test with the corresponding p-value in brackets. If the respective model is significantly similar
to its basic model at the 5% level then this is indicated in bold text. Negative values indicate an improvement
over the comparative model.

6 Conclusion

This paper presents a novel approach to forecasting financial market data, employing advanced

econometric techniques such as changepoint detection, hyperparameter re-tuning, and advance-

ments to Meek et al. (2002) ART model. This presents the two aims of the paper: will in-

corporating exogenous variables in the ART model improve its performance and if re-tuning

hyperparameters following changepoints is effective.

The changepoint detection algorithm accurately highlighted key moments of market shifts,

such as the 2008 financial crisis and the onset of the COVID-19 pandemic. These moments were

not only pivotal from a financial perspective, but also marked significant changes in market

dynamics and investor behavior. The alogrithm proved to be flexible in the priors it needed,

while adapting well to changing input data. This complemented the tuning framework well with

its ability to update values based on a steady data stream.

The ARXT models showed that incorporating the exogenous variables into the model leads

to improvements. Using both Log-Normalised and Differenced stock returns, and a host of

different indicators the models were used to predict stock returns over a period of sixteeen

years, with approximately four years to train and tune the original models. In order to tune

the hyperparameters of the model, Bayesian Optimisation was utilised. The results from the

optimisation indicated that the model clearly found the best set of hyperparameters, yet the

relevance of all but the lag order p was marginal. With the importance of the sole hyperparameter

p, the effectiveness of implementing the advanced Bayesian Optimisation over another method,

such as a random search, was limited.

However, given the initial training, all 11 model variations were tested against the benchmark

AR model. Results show that the models without tuning or training scored best. With the

ART model attaining a better RMSE than the benchmakr AR across both datasets. The

ARXT models that did not have further tuning and training performed remakeably well. They

comfortably beat the benchmakr and the ART model with their Differenced RMSE and achieved

a Directional Accuracy (DA) score of over 60%. This shows the inert ability of the model to

harness exogenous factors into model predictions and predict price changes better than any other
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of the tested models. This performance did not carry over to the retuned and retrained models,

with the initial performance dropping after the first data split made by the changepoints. The

reason for this is due to the training dataset used for the models, with the last 600 observations

being used to train at the point where the changepoint is found. Given this further testing may

be useful in the best dataset to use when re-tuning the models in order to optimise the models

to the changing underlying distribution of the data.

As with any paper, this research is not without its limitations. The sole focus on S&P500 data

limits the exploration into alternative datasets. This could be expanded outside of US stocks, or

even into datasets such as retail, commodities, traffic or sentiment, as influential external factors

can be exploited by the model. The use of the ARX model in leaf nodes may be changed to

a different model such as a ARIMA or VAR. This could then be further expanded by allowing

feature selection in node models, in both the lag order used and the variables chosen. Another

approach could be to use an information criteria such as the AIC to evaluate the relevance of

certain factors to the model predictions. The tuning framework could also be enhanced by taking

even more information into the model, such as passing on the expected improvement values to

the next tuning, instead of using the optimal hyperparameters as a starting point.

In conclusion, this paper contributes to the field of econometrics by introducing the ARXT

model which excels in predicting price changes, with easy application to different datasets. The

re-tuning framework, based on changepoint detection, is one that can easily be applied to any

model. Using models with more influential hyperparameters, the framework could drastically

increase performance at a relatively cheap computational cost.
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A Bayesian Optimisation Algorithm

Algorithm 3 Bayesian Online Changepoint Detection

1. Initialise:

P (r0) = S̃(r) or P (r0 = 0) = 1

ν
(0.00)
1 = νprior,χ

(0.00)
1 = χprior

2. Observe New Datum: xt

3. Evaluate Predictive Probability: π
(r)
t = P (xt|ν(r)t ,χ

(r)
t )

4. Calculate Growth Probabilities: P (rt = rt−1+1,x1:t) = P (rt−1,x1:t)π
(r)
t (1−H(rt−1))

5. Calculate Changepoint Probabilities:

P (rt = 0,x1:t) =
∑
rt−1

P (rt−1,x1:t)π
(r)
t H(rt−1)

6. Calculate Evidence: P (x1:t) = P (rt,x1:t)

7. Determine Run Length Distribution: P (rt|x1:t) = P (rt,x1:t)/P (x1:t)

8. Update Sufficient Statistics:

ν
(0.00)
t+1 = νprior

χ
(0.00)
t+1 = χprior

ν
(r+1)
t+1 = ν

(r)
t + 1

χ(t+1) = χ
(r)
t + µ(xt)

9. Perform Prediction: P (xt+1|x1:t) =
∑

rt
P (xt+1|x(r)

t , rt)P (rt|x1:t)

10. Return information: If the probability of a changepoint is over 90% then pass this
information back.

11. Return to Step 2
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B Hyperparameter Tuning

Figure (B1) Dependence Plots ARXT t Hyperparameters

Note. The figure shows the cross dependence of each hyperparameter on each other and the respective partial

dependence to the target metric for the initial tuning of the ARXT t model. The left figure uses Log-Normalised

data, while the right figure is using Differenced data.

Figure (B2) Dependence Plots ART Hyperparameters

Note. The figure shows the cross dependence of each hyperparameter on each other and the respective partial

dependence to the target metric for the initial tuning of the ART model. The left figure uses Log-Normalised

data, while the right figure is using Differenced data.
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C Model Forecasting

Table (C1) Forecast Results Relative RMSE and Directional Accuracy Log-Normalised

ARXT x tu ARXT x tr ARXT x ARXT t tu ARXT t tr ARXT t ART tu ART tr ART ARX tr ARX

1 RMSE 0.00 0.00 0.00 0.02 0.02 0.02 -0.03 -0.03 -0.03 0.32 0.32

1 DA 0.06 0.06 0.06 0.10 0.10 0.10 -0.15 -0.15 -0.15 -0.20 -0.20

2 RMSE 0.71 0.74 0.14 0.43 0.60 0.19 -0.06 -0.06 -0.06 0.77 0.50

2 DA 0.08 0.10 0.09 0.09 0.09 0.09 -0.08 -0.08 -0.09 -0.12 -0.13

3 RMSE 0.32 0.31 0.04 0.39 0.46 0.00 0.01 0.01 -0.01 0.40 0.27

3 DA 0.10 0.11 0.09 0.07 0.05 0.11 -0.06 -0.06 -0.07 -0.12 -0.12

4 RMSE 0.04 0.00 0.14 -0.04 0.04 -0.01 -0.05 -0.05 -0.05 0.20 0.13

4 DA 0.04 0.04 0.07 0.05 -0.02 0.11 -0.10 -0.10 -0.10 -0.15 -0.15

5 RMSE 0.00 0.16 0.06 0.36 0.18 0.06 -0.09 -0.09 -0.09 0.14 0.13

5 DA -0.07 -0.07 0.06 -0.09 -0.07 0.12 -0.15 -0.15 -0.12 -0.17 -0.17

6 RMSE 0.05 0.05 0.12 -0.04 0.00 0.07 -0.08 -0.17 -0.16 0.04 0.07

6 DA 0.04 0.04 0.11 0.01 -0.02 0.15 -0.07 -0.06 -0.05 -0.09 -0.08

7 RMSE 0.19 0.05 0.05 0.22 0.22 -0.07 -0.02 -0.04 -0.12 0.45 0.49

7 DA 0.01 0.03 0.11 0.01 -0.01 0.08 -0.11 -0.15 -0.10 -0.14 -0.12

8 RMSE 0.06 0.02 0.05 0.70 0.13 -0.01 0.06 -0.07 -0.06 0.22 0.09

8 DA 0.03 0.00 -0.03 -0.09 -0.09 0.14 -0.14 -0.20 -0.20 -0.06 -0.06

Note. The Table shows the relative RMSE and Directional accuracy (DA) for each split for all 11 models to the AR(p) model. The best performers (to 4 d.p.) for each split

are given in bold. The results are from the Log-Normalised dataset. After the ARXT, x means that it considers exogenous variables as a splitting point, whereas t is only

considering the target value as a splitting point. Tune means that the model is retuned after each changepoint and train indicates re-training the model after changepoints.
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Table (C2) Forecast Results Relative RMSE and Directional Accuracy Differenced

ARXT x tu ARXT x tr ARXT x ARXT t tu ARXT t tr ARXT t ART tu ART tr ART ARX tr ARX

1 RMSE -0.27 -0.27 -0.27 -0.26 -0.26 -0.26 -0.11 -0.11 -0.11 0.75 0.74

1 DA 0.11 0.11 0.11 0.17 0.17 0.17 0.02 0.02 0.02 -0.35 -0.35

2 RMSE -0.11 -0.13 -0.57 -0.13 -0.28 -0.52 -0.35 -0.30 -0.24 1.69 1.37

2 DA 0.18 0.15 0.15 0.12 0.13 0.15 0.19 0.15 0.08 -0.29 -0.31

3 RMSE -0.01 -0.07 -0.40 0.13 0.36 -0.39 -0.21 -0.20 -0.19 0.75 0.61

3 DA 0.10 0.14 0.15 0.10 0.09 0.16 0.06 0.05 0.08 -0.29 -0.30

4 RMSE -0.11 0.00 -0.20 0.03 0.01 -0.30 -0.16 -0.15 -0.19 0.57 0.48

4 DA 0.04 0.00 0.13 0.01 -0.07 0.16 0.02 -0.01 0.07 -0.31 -0.31

5 RMSE 0.09 0.23 -0.28 0.44 0.18 -0.31 -0.18 -0.19 -0.23 0.43 0.42

5 DA -0.11 -0.11 0.10 -0.13 -0.10 0.17 -0.07 -0.06 0.04 -0.33 -0.34

6 RMSE -0.03 -0.18 -0.32 -0.12 0.04 -0.38 -0.29 -0.27 -0.31 0.33 0.36

6 DA -0.04 0.06 0.18 0.06 -0.04 0.21 -0.01 -0.02 0.12 -0.25 -0.24

7 RMSE 0.17 0.17 -0.27 0.36 0.05 -0.37 -0.02 -0.02 -0.14 1.03 1.05

7 DA -0.02 0.01 0.17 -0.05 -0.07 0.15 -0.10 -0.10 0.11 -0.29 -0.28

8 RMSE 0.53 0.16 -0.36 0.11 0.74 -0.33 -0.14 -0.11 -0.20 0.96 0.79

8 DA -0.06 -0.14 0.14 0.03 -0.11 0.23 -0.09 0.00 0.06 -0.26 -0.26

Note. The Table shows the relative RMSE and Directional accuracy (DA) for each split for all 11 models to the AR(p) model. The best performers (to 4 d.p.) for each split are

given in bold. The results are from the Differenced dataset. After the ARXT, x means that it considers exogenous variables as a splitting point, whereas t is only considering

the target value as a splitting point. Tune means that the model is retuned after each changepoint and train indicates re-training the model after changepoints.
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Table (C3) Forecast Results Diebold Mariano Test Log-Normalised Splits

ARXT x tu ARXT x tr ARXT x ARXT t tu ARXT t tr ARXT t ART tu ART tr ART

1 0.06 (0.95) 0.06 (0.95) 0.06 (0.95) 0.29 (0.77) 0.29 (0.77) 0.29 (0.77) -0.57 (0.57) -0.57 (0.57) -0.57 (0.57)

2 2.67 (0.01) 3.61 (0.00) 1.13 (0.26) 2.25 (0.02) 2.68 (0.01) 1.13 (0.26) -0.65 (0.52) -0.65 (0.52) -0.6 (0.55)

3 3.17 (0.00) 3.26 (0.00) 0.49 (0.62) 4.11 (0.00) 5.11 (0.00) 0.01 (0.99) 0.11 (0.91) 0.11 (0.91) -0.17 (0.86)

4 0.89 (0.37) -0.02 (0.98) 2.74 (0.01) -0.88 (0.38) 0.86 (0.39) -0.18 (0.86) -1.27 (0.20) -1.27 (0.2) -1.13 (0.26)

5 -0.08 (0.93) 3.51 (0.00) 1.17 (0.24) 4.90 (0.00) 3.26 (0.00) 1.04 (0.30) -2.87 (0.00) -2.87 (0.00) -2.81 (0.01)

6 0.59 (0.55) 0.59 (0.55) 1.08 (0.28) -0.37 (0.71) 0.04 (0.97) 0.58 (0.56) -1.40 (0.16) -2.08 (0.04) -2.2 (0.03)

7 1.71 (0.09) 0.36 (0.72) 0.41 (0.68) 1.92 (0.05) 1.04 (0.30) -0.9 (0.37) -0.16 (0.88) -0.36 (0.72) -1.34 (0.18)

8 0.26 (0.80) 0.10 (0.92) 0.23 (0.82) 1.95 (0.06) 0.68 (0.50) -0.04 (0.97) 0.29 (0.77) -0.44 (0.66) -0.38 (0.70)

Note. The Table shows the results from the Diebold Mariano tests, using the AR(p) model as a benchmark for the different Log-Normalised splits. The values are the test

statistic from the Diebold Mariano test with the corresponding p-value in brackets. If the respective model is significantly better than the AR(p) at the 5% level then this is

indicated in bold text.

Table (C4) Forecast Results Diebold Mariano Test Differenced Splits

ARXT x tu ARXT x tr ARXT x ARXT t tu ARXT t tr ARXT t ART tu ART tr ART

1 -4.49 (0.00) -4.49 (0.00) -4.49 (0.00) -4.09 (0.00) -4.09 (0.00) -4.09 (0.00) -2.69 (0.01) -2.69 (0.01) -2.69 (0.01)

2 -0.53 (0.59) -0.73 (0.47) -4.59 (0.00) -0.8 (0.42) -1.33 (0.18) -3.72 (0.00) -3.99 (0.00) -3.75 (0.00) -3.11 (0.00)

3 -0.06 (0.95) -0.53 (0.6) -4.14 (0.00) 1.02 (0.31) 1.51 (0.13) -4.72 (0.00) -3.81 (0.00) -3.61 (0.00) -3.70 (0.00)

4 -2.18 (0.03) -0.04 (0.97) -3.97 (0.00) 0.46 (0.64) 0.22 (0.83) -6.43 (0.00) -3.61 (0.00) -3.52 (0.00) -4.22 (0.00)

5 1.91 (0.06) 5.14 (0.00) -5.18 (0.00) 5.83 (0.00) 3.11 (0.00) -5.41 (0.00) -4.97 (0.00) -5.15 (0.00) -5.95 (0.00)

6 -0.31 (0.76) -1.75 (0.08) -2.66 (0.01) -1.03 (0.30) 0.55 (0.58) -2.90 (0.00) -3.10 (0.00) -2.92 (0.00) -3.41 (0.00)

7 1.44 (0.15) 1.56 (0.12) -2.85 (0.00) 2.81 (0.01) 0.25 (0.81) -3.72 (0.00) -0.23 (0.82) -0.23 (0.82) -1.56 (0.12)

8 1.59 (0.12) 0.90 (0.37) -2.05 (0.05) 0.46 (0.65) 2.34 (0.03) -0.96 (0.34) -1.05 (0.30) -0.89 (0.38) -1.71 (0.10)

Note. The Table shows the results from the Diebold Mariano tests, using the AR(p) model as a benchmark for the different Differenced splits. The values are the test statistic

from the Diebold Mariano test with the corresponding p-value in brackets. If the respective model is significantly similar to the AR(p) at the 5% level then this is indicated

in bold text.
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Table (B5) Relative Results Diebold Mariano Test Differenced

ARXT x tu ARXT x tr ARXT t tu ARXT t tr ART tu ART tr

full 6.27 (0.00) 7.41 (0.00) 8.52 (0.00) 5.70 (0.00) 1.59 (0.11) 2.53 (0.01)

2 2.35 (0.02) 2.69 (0.01) 2.16 (0.03) 1.19 (0.23) -2.90 (0.00) -2.78 (0.01)

3 3.47 (0.00) 3.04 (0.00) 3.87 (0.00) 2.86 (0.00) -1.46 (0.15) -0.87 (0.39)

4 1.44 (0.15) 3.70 (0.00) 6.05 (0.00) 7.25 (0.00) 3.21 (0.00) 5.43 (0.00)

5 6.68 (0.00) 8.74 (0.00) 7.64 (0.00) 6.61 (0.00) 5.67 (0.00) 7.35 (0.00)

6 4.15 (0.00) 2.23 (0.03) 3.02 (0.00) 4.29 (0.00) 1.35 (0.18) 2.22 (0.03)

7 3.45 (0.00) 3.47 (0.00) 4.25 (0.00) 2.05 (0.04) 2.43 (0.02) 2.43 (0.02)

8 2.18 (0.04) 2.24 (0.03) 1.52 (0.14) 2.24 (0.03) 1.26 (0.21) 2.13 (0.04)

Note. The Table shows the results from the Diebold Mariano tests, using the respective models without re-tuning

or re-training as a benchmark for the different Log-Normalised splits and the full dataset. The values are the

test statistic from the Diebold Mariano test with the corresponding p-value in brackets. If the respective model

is significantly better than its basic model at the 5% level then this is indicated in bold text. Negative values

indicate an improvement over the comparative model.
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